Molecular mechanism of anaerobic ammonium oxidation

Boran Kartal1, Wouter J. Maalcke1, Naomi M. de Almeida1, Irina Cirpus1, Jolein Gloerich2, Wim Geerts1, Huub J. M. Op den Camp1, Harry R. Harhangi3, Eva M. Janssen-Megens3, Kees-Jan Francois3, Hendrik G. Stunnenberg3, Jan T. Keltjens1, Mike S. M. Jetten1,4 & Marc Strous1,5

Two distinct microbial processes, denitrification and anaerobic ammonium oxidation (anammox), are responsible for the release of fixed nitrogen as dinitrogen gas (N2) to the atmosphere1–4. Denitrification has been studied for over 100 years and its intermediates and enzymes are well known5. Even though anammox is a key biogeochemical process of equal importance, its molecular mechanism is unknown, but it was proposed to proceed through hydrazine (N2H4)6,7. Here we show that N2H4 is produced from the anammox substrates ammonium and nitrite and that nitric oxide (NO) is the direct precursor of N2H4. We resolved the genes and proteins central to anammox metabolism and purified the key enzymes that catalyse N2H4 synthesis and its oxidation to N2. These results present a new biochemical reaction forging an N–N bond and fill a lacuna in our understanding of the biochemical synthesis of the N2 in the atmosphere. Furthermore, they reinforce the role of nitric oxide in the evolution of the nitrogen cycle.

Ammonium is difficult to activate in the absence of molecular oxygen. Therefore, how anammox bacteria are able to oxidize ammonium coupled to the reduction of nitrite and forge an N–N bond to make N2 has been an intriguing question for a long time. Based on the in silico analysis of the genome assembly of the anammox bacterium Kuenenia stuttgartiensis, a set of three redox reactions (equations (1)–(3)) involving N2H4 and nitric oxide (NO) was proposed8 to explain the overall anammox stoichiometry (equation (4)).

\[
\begin{align*}
\text{NO}_2^- + 2\text{H}^+ + e^- &= \text{NO} + \text{H}_2\text{O} \quad (E_0' = +0.38 \text{V}) \quad (1) \\
\text{NO} + \text{NH}_4^+ + 2\text{H}^+ + 3e^- &= \text{N}_2\text{H}_4 + \text{H}_2\text{O} \quad (E_0' = +0.06 \text{V}) \quad (2) \\
\text{N}_2\text{H}_4 &= \text{N}_2 + 4\text{H}^+ + 4e^- \quad (E_0' = -0.75 \text{V}) \quad (3) \\
\text{NH}_4^+ + \text{NO}_2^- &= \text{N}_2 + 2\text{H}_2\text{O} \quad (\Delta G^\circ' = -357 \text{kJ mol}^{-1}) \quad (4)
\end{align*}
\]

The role of N2H4 in anammox catabolism was originally proposed based on the observation that the compound transiently accumulated when ammonium oxidation was inhibited (Fig. 2a). Further, the cells were incubated with ammonium, nitrite and nitric oxide (2 mM each) and 100 μM NO scavenger PTIO (2-phenyl-4,3,5, -tetramethylimidazoline-1-oxyl-3-oxide)9. When PTIO was introduced at the start of the incubation or when it was added to active cells, anammox activity was inhibited (Fig. 2a). Further, the cells were incubated with ammonium and nitrite (2 mM each) in the presence of DAF2-DA (10 μM) that reacts with NO to form a fluorescent product9,10. Sampled K. stuttgartiensis cells displayed the characteristic green fluorescence indicating NO production (Fig. 2b and Supplementary Fig. 1). In control experiments without nitrite or with added PTIO, there was no detectable fluorescent signal. It should be noted that both PTIO and DAF2-DA might have a wider reaction spectrum than NO and might not inhibit anammox activity.

In the present study, we resolved the anammox pathway and its enzymes by a combination of complementary approaches (Fig. 1). K. stuttgartiensis was enriched and grown as suspended cells in a membrane bioreactor8,9. Fluorescence in situ hybridization (FISH) showed that K. stuttgartiensis made up more than 95% of the population. Transcription was shown for more than 97% of all genes after random hexamer-primed reverse transcription of extracted RNA, sequencing and mapping of 5.6 million 32-nucleotide reads on an Illumina Genome Analyser (metatranscriptome accession number GSE15408). Expression of 1010 proteins was demonstrated by metaproteomics11 (peptidome accession number PSE111). Further, inhibitor and isotope labelling studies were performed and the activity of enzyme complexes was demonstrated after their purification by liquid chromatography.

Transcriptomics and proteomics indicated that K. stuttgartiensis expressed cd4 nitrite: nitric oxide reductase (NirS, kuste4136, 9% of predicted peptides detected (p.p.d.) and 6.3-fold messenger RNA (mRNA) coverage) with the potential ability to reduce nitrite to NO. This possibility was investigated by incubating cell suspensions of K. stuttgartiensis with ammonium, nitrite (2 mM each) and 100 μM NO scavenger PTIO (2-phenyl-4,3,5, -tetramethylimidazoline-1-oxyl-3-oxide)3. When PTIO was introduced at the start of the incubation or when it was added to active cells, anammox activity was inhibited (Fig. 2a). Further, the cells were incubated with ammonium and nitrite (2 mM each) in the presence of DAF2-DA (10 μM) that reacts with NO to form a fluorescent product3,4. Sampled K. stuttgartiensis cells displayed the characteristic green fluorescence indicating NO production (Fig. 2b and Supplementary Fig. 1). In control experiments without nitrite or with added PTIO, there was no detectable fluorescent signal. It should be noted that both PTIO and DAF2-DA might have a wider reaction spectrum than NO and might not inhibit anammox activity.

In the present study, we resolved the anammox pathway and its enzymes by a combination of complementary approaches (Fig. 1). K. stuttgartiensis was enriched and grown as suspended cells in a membrane bioreactor9,10. Fluorescence in situ hybridization (FISH) showed that K. stuttgartiensis made up more than 95% of the population. Transcription was shown for more than 97% of all genes after random hexamer-primed reverse transcription of extracted RNA, sequencing and mapping of 5.6 million 32-nucleotide reads on an Illumina Genome Analyser (metatranscriptome accession number GSE15408). Expression of 1010 proteins was demonstrated by metaproteomics11 (peptidome accession number PSE111). Further, inhibitor and isotope labelling studies were performed and the activity of enzyme complexes was demonstrated after their purification by liquid chromatography.

Transcriptomics and proteomics indicated that K. stuttgartiensis expressed cd4 nitrite: nitric oxide reductase (NirS, kuste4136, 9% of predicted peptides detected (p.p.d.) and 6.3-fold messenger RNA (mRNA) coverage) with the potential ability to reduce nitrite to NO. This possibility was investigated by incubating cell suspensions of K. stuttgartiensis with ammonium, nitrite (2 mM each) and 100 μM NO scavenger PTIO (2-phenyl-4,3,5, -tetramethylimidazoline-1-oxyl-3-oxide)3. When PTIO was introduced at the start of the incubation or when it was added to active cells, anammox activity was inhibited (Fig. 2a). Further, the cells were incubated with ammonium and nitrite (2 mM each) in the presence of DAF2-DA (10 μM) that reacts with NO to form a fluorescent product3,4. Sampled K. stuttgartiensis cells displayed the characteristic green fluorescence indicating NO production (Fig. 2b and Supplementary Fig. 1). In control experiments without nitrite or with added PTIO, there was no detectable fluorescent signal. It should be noted that both PTIO and DAF2-DA might have a wider reaction spectrum than NO and might not inhibit anammox activity.

In the present study, we resolved the anammox pathway and its enzymes by a combination of complementary approaches (Fig. 1). K. stuttgartiensis was enriched and grown as suspended cells in a membrane bioreactor9,10. Fluorescence in situ hybridization (FISH) showed that K. stuttgartiensis made up more than 95% of the population. Transcription was shown for more than 97% of all genes after random hexamer-primed reverse transcription of extracted RNA, sequencing and mapping of 5.6 million 32-nucleotide reads on an Illumina Genome Analyser (metatranscriptome accession number GSE15408). Expression of 1010 proteins was demonstrated by metaproteomics11 (peptidome accession number PSE111). Further, inhibitor and isotope labelling studies were performed and the activity of enzyme complexes was demonstrated after their purification by liquid chromatography.

Transcriptomics and proteomics indicated that K. stuttgartiensis expressed cd4 nitrite: nitric oxide reductase (NirS, kuste4136, 9% of predicted peptides detected (p.p.d.) and 6.3-fold messenger RNA (mRNA) coverage) with the potential ability to reduce nitrite to NO. This possibility was investigated by incubating cell suspensions of K. stuttgartiensis with ammonium, nitrite (2 mM each) and 100 μM NO scavenger PTIO (2-phenyl-4,3,5, -tetramethylimidazoline-1-oxyl-3-oxide)3. When PTIO was introduced at the start of the incubation or when it was added to active cells, anammox activity was inhibited (Fig. 2a). Further, the cells were incubated with ammonium and nitrite (2 mM each) in the presence of DAF2-DA (10 μM) that reacts with NO to form a fluorescent product3,4. Sampled K. stuttgartiensis cells displayed the characteristic green fluorescence indicating NO production (Fig. 2b and Supplementary Fig. 1). In control experiments without nitrite or with added PTIO, there was no detectable fluorescent signal. It should be noted that both PTIO and DAF2-DA might have a wider reaction spectrum than NO and might not inhibit anammox activity.
produced N_2H_4 would be oxidized to N_2 as expected from the overall precursor for N_2H_4. Simulation was not observed, consistent with the role of NO as the direct result in an immediate accumulation of NO; hydroxylamine accumulated by anammox cells (equation (2)). Importantly, acetylene inhibition apparently also interfered with the ammonium-activating step of hydrazine (18 μM) for incubations with hydroxylamine or NO. Furthermore, the inhibition of kustc0694 explained the transient accumulation of NO and NO could be supplied at much lower concentrations (equation (3)). For a long time, N_2H_4 was known as an alternative substrate for octahaem hydroxylamine oxidoreductases (HAOs), the enzymes that catalyse the conversion of hydroxylamine to nitrite in aerobic ammonium oxidizers18,19. Strikingly, the K. stuttgartiensis genome encoded ten divergent paralogues of this enzyme, and six were detected at high levels in the transcriptome and proteome (mRNA up to 189-fold coverage, 27–58% p.p.d.; Supplementary Table 1). Six expressed paralogues belonged to the ‘type II’ hydrazine/hydroxylamine oxidoreductases (HZO/HAO)20. Two related ‘type II’ HZO/HAO and one divergent octahaem cytochrome c were also detected at lower levels (4–15% p.p.d.) and one was not detected. By a two-step liquid chromatography procedure, we purified two highly expressed HZO/HAO-like proteins (kuste2859–61). These enzymes appear to be closely related to two enzymes of unknown function isolated from an anammox enrichment culture KSU-1 (refs 21, 22). Interestingly, when acetylene (15 μM) was added, the anammox reaction was inhibited. Acetylene inhibits aerobic ammonium oxidation by binding covalently to the ammonia monooxygenase, the ammonia-activating enzyme of aerobic ammonium oxidizers15–17. Apparently, it also interfered with the ammonium-activating step of anammox cells (equation (2)). Importantly, acetylene inhibition resulted in an immediate accumulation of NO; hydroxylamine accumulation was not observed, consistent with the role of NO as the direct precursor for N_2H_4.

The second step of the predicted anammox pathway would then be the reduction of NO and its simultaneous condensation with ammonium (equation (5)). The reduction of NO and NH_4^+ (2 mM each) conversion by anammox bacteria (scale bar, 10 μm).

![Figure 2](image-url) Determination of nitric oxide (NO) as an intermediate. NO_2^- and NH_4^+ (2 mM each) conversion was inhibited by 100 μM PTIO (a). PTIO added at $t = 0$ (open triangle), PTIO added at 40 min (open square) and without PTIO (open circle), $n = 2$ (error bars, s.d.). (b) Epifluorescence image of (diaminofluorescein-2-diacetate) DAF-2-DA derivative of NO formed during NH_4^+ and NO_2^- (2 mM each) conversion by anammox bacteria (scale bar, 10 μm).

![Figure 3](image-url) Hydrazine turnover. K. stuttgartiensis cells were incubated with 2 mM H_2O_2 and NH_4^+ each in the presence of 2 mM N_2H_4. Under these conditions cells would only produce N_2H_4 and preferentially consume N_2H_4, leading to N_2 label accumulation in the N_2H_4 pool. The 295 and 296 m/z masses correspond to derivatization products of N_2H_4 and N_2H_4 with para-dimethylaminobenzaldehyde (a). The 294 m/z mass arises from the impurities of the matrix. Within 15 min, 16% of the N_2H_4 pool was labelled (b). Hydrazine (open circles) was produced by the cells incubated with 2 mM NH_4^+ (open triangles) and NO (0.1 mM) (open squares), $n = 2$ (error bars, s.d.) (c).

![Figure 4](image-url) Hydrazine turnover. K. stuttgartiensis cells were incubated with 2 mM H_2O_2 and NH_4^+ each in the presence of 2 mM N_2H_4. Under these conditions cells would only produce N_2H_4 and preferentially consume N_2H_4, leading to N_2 label accumulation in the N_2H_4 pool. The 295 and 296 m/z masses correspond to derivatization products of N_2H_4 and N_2H_4 with para-dimethylaminobenzaldehyde (a). The 294 m/z mass arises from the impurities of the matrix. Within 15 min, 16% of the N_2H_4 pool was labelled (b). Hydrazine (open circles) was produced by the cells incubated with 2 mM NH_4^+ (open triangles) and NO (0.1 mM) (open squares), $n = 2$ (error bars, s.d.) (c).
most highly expressed proteins in the proteome (greater than 60% p.p.d., visible as three dominant spots on two-dimensional gels; Supplementary Table 1 and Supplementary Fig. 2a) and extremely abundant mRNAs in the transcriptome (greater than 50-fold coverage). The transcription of the other candidate cluster (kuste2474–83) was well below average (1.7-fold coverage) and expression was not detected by proteomics.

The kuste2859–61 proteins were purified from the cell-free extract of the *K. stuttgartiensis* as a complex that separated into three distinct bands on a denaturing polyacrylamide gel, corresponding to polypeptides encoded by three consecutive genes (kuste2859–2860–2861, Supplementary Fig. 2). Native polyacrylamide gel electrophoresis revealed that the complex was a dimer with a mass of approximately 240 kDa. Hydrazine synthesis activity of the complex was shown in a coupled assay with the kuste1061 HZO/HAO, using 15N-ammonium (1 mM) and NO (0.9 mM) as substrates (Fig. 4). In the assay, kuste1061 would ‘pull’ the reaction by rapidly oxidizing the produced N2H4 to 29N2 as the end product, while simultaneously ‘pushing’ the reaction by providing the electrons for N2H4 synthesis (equations (2) and 3). Kuste1061 alone did not catalyse the reaction, and N2 production above background could not be measured in the absence of ammonium or NO. N2 was not produced above background when hydroxylamine or nitroxyl (HNO) were provided as substrates with ammonium. The activity of N2 formation in the coupled assay was 20 nmol h⁻¹ mg protein⁻¹, lower than the activity of whole cells with ammonium and nitrite (approximately 1800 nmol h⁻¹ mg protein⁻¹). The cell-free extracts were unable to form N2 from ammonium and nitrite, but could from NO and ammonium under the same experimental conditions, at sixfold lower rate than the purified HZS (3.4 nmol h⁻¹ mg protein⁻¹). The decrease in activity upon mere cell disruption was most probably due to the disruption of a tightly coupled multi-component system with hydrazine synthesis as the rate-limiting step.

Interestingly, the kuste2859–61 complex was capable of N2 formation from ammonium and NO on its own (Fig. 4). The purified enzyme oxidized N2H4 to N2 with a specific activity of 34 nmol min⁻¹ mg protein⁻¹, resulting in an overall disproportionation reaction (equation (5)). Considering that N2H4 is the energy source in anammox metabolism, N2 formation by HZS would be unproductive. Consequently, we may speculate that the anammox bacterium harbours backup systems that efficiently trap hydrazine and that keep (nitrogenous) inhibitory compounds, like NO and hydroxylamine, at low concentrations, which would partly explain the redundancy of HAO/ HZO-like proteins in the organism. Our experiments showed that HZS and HDH were necessary and sufficient to make N2 from the substrate ammonium and the intermediate NO.

 Taken together, anammox catabolism and energy for growth must be conserved from three reactions (equations (1)–(3)). It is hypothesized that anammox bacteria synthesize ATP through a membrane-bound ATP synthase complex driven by proton-motive force (pmf) generated through catabolic reactions with the intermediary action of the quinol::cytochrome c oxidoreductase system (complex III, the bc1 complex).

Intriguingly, three gene clusters encoding bc1 complexes and four encoding ATP synthases were present in the *K. stuttgartiensis* genome. Transcription and expression of one (kuste4569–74) of these gene clusters were detected at higher levels (26–33% p.p.d., 6- to 24-fold mRNA coverage) than the other two (0–19% p.p.d., 2- to 15-fold mRNA coverage). When *K. stuttgartiensis* cell suspensions were spiked with pentachlorophenol (10 μM), a structural analogue of quinol and a known inhibitor of the bc1 complex, anammox activity was completely inhibited, indicating that the bc1 complex involved in energy conservation and its role in electron transport from N2H4 oxidation to nitrite reduction and hydrazine synthesis was not backed up by any other system. The expression of the four gene clusters encoding ATP synthase was even more skewed. Peptide coverage for kuste3789–96 was 14–58% p.p.d. compared with less than 1% for the other three ATP synthases, and mRNA coverage differed by a factor of six. The gene product encoding the catalytic β-subunit of the highest expressed ATP synthase (kuste3787–96) was recently shown to be associated with the membranes of the intracellular cell compartment, the anammoxosome, suggesting it to be the site where the proton-motive machinery resides.

In the present study we experimentally identified NO and N2H4 as the intermediaries of anaerobic ammonium oxidation. The highly expressed protein encoded by the gene cluster kuste2859–61 was purified and N–N bond formation from NO and ammonium was demonstrated. Hydrazine synthase and the NO reductase of denitrifiers are the two enzymes capable of binding two N atoms together. In contrast to NO reductase, hydrazine synthase combines two different nitrogen-ous molecules. It is intriguing that all the N2 in our atmosphere is formed by the oxidizing power of NO, in line with the hypothesis that N2O may have been the first deep redox sink on Earth.

METHODS SUMMARY

Activity Measurements

Physiological experiments were performed at 33 °C, pH 7.5 with *K. stuttgartiensis* cells. To determine the role of NO and hydroxylamine in the anammox metabolism, cells were incubated with (1) NaNO2, NH4Cl (2 mM each) and spiked with acetylene (15 μM); (2) NaNO2, NH4Cl (2 mM each) and DAF-2DA (10 μM); (3) NO (0.1 mM) and 2 mM NH4Cl. Hydroxylamine, NH4⁺, NO⁻ and N2H4 were determined as previously described. NO was measured online as previously described. To determine N2H4 turnover, cells were incubated with Na15NO2, NH4Cl (or vice versa) and N2H4 (2 mM each). Isotopic composition of hydrazine was determined with matrix-assisted laser desorption/ionization–time of flight mass spectrometry (MALDI–TOF MS) after para-dimethylaminobenzaldehyde derivatization, developed after Watt and Chrisp. All labelled compounds were 99% pure (Cambridge Isotope Laboratories).

Proteins were purified from cell-free extracts with anion exchange and hydroxyapatite liquid chromatography. Activity measurements were performed at 37 °C, pH 7 in an anaerobic chamber. Kuste2859–61 (1.6 mg) and kuste1061 (4.7 μg) were incubated with NO (0.9 mM) and 15N2H4Cl (1 mM), and 29N2 production was monitored by gas chromatography (Agilent 6890 with a PorapakQ column, 80 °C) combined with a mass spectrometer (Agilent 5975c quadrupole inert MS). For rate calculations, kuste0694 (1.3 μg) or kuste1061 (4.7 μg) were incubated with 15N-ammonium (1 mM) and NO (0.9 mM) and 15N2H4Cl (2 mM each) and the 29N2 production in the control experiments, hydrazine synthase complex and kuste1061 (1 mg protein each) and spiked with acetylene (15 μM) or PTIO (100 μM) and DAF-2DA (10 μM). NO was measured online as previously described. To determine N2H4 turnover, cells were incubated with Na15NO2, NH4Cl (or vice versa) and N2H4 (2 mM each). Isotopic composition of hydrazine was determined with matrix-assisted laser desorption/ionization–time of flight mass spectrometry (MALDI–TOF MS) after para-dimethylaminobenzaldehyde derivatization, developed after Watt and Chrisp. All labelled compounds were 99% pure (Cambridge Isotope Laboratories).

Figure 4 | 29N2 production by hydrazine synthase complex and kuste1061 from 15NH4⁺ and NO. 29N2 was produced with the highest rate when hydrazine synthase complex (1.6 mg) and kuste1061 (4.7 μg) was incubated with 15NH4⁺ (1 mM), 15NO (0.9 mM) and cytochrome c (50 μM) (filled circles). In the control experiments, hydrazine synthase complex and cytochrome c (open circles), kuste1061 and cytochrome c (open diamonds), cytochrome c (filled squares) and only buffer (open triangles) were incubated under the same experimental conditions; n = 3 (error bars, s.d.).

©2011 Macmillan Publishers Limited. All rights reserved
incubated with N_2H_4 or hydroxylamine and cytochrome c (50 μM each), and $^{32}\text{N}_2$ or ^{31}NO production was measured.

Molecular methods. Total RNA was extracted, reverse transcribed, sequenced with Illumina and mapped to the genome sequence of *K. stuttgartiensis*. From the aligned reads, per-position coverage was calculated for each contig and used to calculate the coverage for each ORF, intergenic region and predicted RNA element.

Cell free extracts were separated by SDS–polyacrylamide gel electrophoresis (SDS–PAGE) or two-dimensional gel electrophoresis, digested with trypsin and analysed with liquid chromatography–mass spectrometry (LC–MS/MS)28,29. Mass spectrometry data was searched against a database of predicted peptide sequences.

Full Methods and any associated references are available in the online version of the paper at www.nature.com/nature.

Received 30 May; accepted 12 August 2011.

Published online 2 October 2011.

Cytochrome bc$_2$ complex. To determine the role of cytochrome bc$_2$ complex in anammox catalysis, K. stuttgartiensis suspensions were incubated with pentachlorophenol, a specific inhibitor of the bc$_2$ complex. NO$_3^-$ and NH$_4^+$ were added to the incubations to a final concentration of 2 mM. Pentachlorophenol was added to a final concentration of 10 mM. NO$_3^-$ and NH$_4^+$ were determined as described previously.

Preparation of cell free extract. K. stuttgartiensis cells (21, OD$_{600}$ 1.2) were harvested from the membrane bioreactor. After centrifugation (4,000g, 4°C), the pellet was resuspended in one volume with 20 mM potassium phosphate buffer and 150 mM Na$_2$SO$_4$. Cell suspensions were passed three times through a French pressure cell operated at 138 MPa. The lysate was incubated with 1% (w/v) sodium deoxycholate at 4°C for 1 h to solubilize membrane associated proteins. After centrifugation for 15 min at 1,700 g at 4°C, the cell-free fraction was obtained as clarified supernatant.

Protein electrophoresis and MALDI-TOF analysis. Samples were denatured by incubation with 60 mM Tris-HCl buffer (pH 8) containing 5% l-mercaptoethanol, 2% SDS (sodium dodecyl sulphate) and 25% glycerol for 3 min at 100°C. SDS-PAGE was performed in 10% or 6% slab gels in 375 mM Tris-HCl glycerine buffer, pH 8.8 according to Laemmli. Native PAGE (6%) was performed according to the same procedure with the following modifications: the protein preparations were not boiled before electrophoresis. SDS and l-mercaptoethanol were omitted from the gels, and Tris-HCl glycine (375 mM, pH 8.3) was used as the running buffer. Gels were stained with colloidal Coomassie blue as described elsewhere.

To identify the protein bands resolved in SDS-PAGE, gel spots (~3 mm) were picked, digested with trypsin and analysed with MALDI-TOF mass spectrometry as described elsewhere.

Purification of kuste2859–2860–2861, kusto694 and kustc1061. Cell-free extract was centrifuged at 140,000g, 10°C (Discovery 10, Sorvall, equipped with a T-1270 rotor) to remove the membranes. The supernatant was loaded on a 30 ml Q Sepharose XL (Amersham Pharmacia Biotech) column equilibrated with 20 mM Tris-HCl, pH 8.0, and the column was eluted isocratically with 200 mM NaCl in 20 mM Tris-HCl, pH 8 (2 ml min$^{-1}$). Eluted fractions were subsequently loaded onto a 10 ml Hydroxyapatite (Bio-Rad) column equilibrated with 20 mM potassium phosphate buffer, pH 7 and eluted with a gradient of the same buffer (200–500 mM, 2 ml min$^{-1}$). Kustc1061 and kuste2859–2860–2861 were collected in fractions eluted at 100 mM and 200 mM phosphate, respectively.

The pooled fractions were desalted and concentrated using Vivaspin tubes (100 kDa cut-off, Sartorius Stedim Biotech) to concentrations of at least 0.86 mg ml$^{-1}$ (kuste2859–2860–2861) and 2.3 mg ml$^{-1}$ (kustc1061) in 20 mM phosphate buffer, pH 7.

Detection of hydrazine and hydroxylamine oxidation by kustc1061 and kustc694. To 2 ml (final volume) of phosphate buffer (20 mM, pH 7), 4.7 µg of Kustc1061 or 1.3 µg of Kusto694 and cytochrome c (50 µM final concentration, bovine heart, Sigma-Aldrich) were added to a 3-ml exetainer (Labco). To start the reaction to determine the electron stoichiometry, 10 µM, and for routine rate assays 50 µM, N$_2$-labelled 15NH$_4^+$ was added from an anoxic stock. To determine the capacity for NH$_3$OH oxidation, proteins were incubated in separate vials with 50 µM NH$_3$OH and cytochrome c (each). Exetainers were incubated at 37°C in the anaerobic chamber. 15N$_2$ and 15NO production was monitored by gas chromatography (Agilent 6890 equipped with a Porapak Q column at 80°C) combined with a mass spectrometer (Agilent 5975c quadrupole inlet MS).

Combined assay of kuste2859–2860–2861 and kustc1061. Cytochrome c (50 µM final concentration, bovine heart, Sigma-Aldrich), Kustc1061 (4.7 µg), 1 mM 15NH$_4^+$ and 5 mM NH$_3$OH were added to 1.6 mg of kuste2859–2860–2861 in 1 ml phosphate buffer (20 mM, pH 7) in a 3-ml exetainer (Labco). The reaction was started by adding phosphate buffer (20 mM, pH 7) with NO (0.9 mM) to a final volume of 2 ml. Before incubation at 37°C in the anaerobic chamber, 1 ml of 20 mM NO (in He) was added to the headspace. Control experiments were performed in the absence of ammonium (1 mM) with NH$_3$OH (1 mM) and HNO supplied as Angeli’s salt (41 mM) in separate incubations. 15N$_2$ production was monitored by gas chromatography (Agilent 6890 equipped with a Porapak Q column at 80°C) combined with a mass spectrometer (Agilent 5975c quadrupole inlet MS).

LC/MS/MS analysis and data processing. After PAGE, gels were stained with colloidal Coomassie blue as described elsewhere. The gel lane was cut into four slices and each slice was destained with three cycles of washing with 50 mM ammonium bicarbonate and 50% acetonitrile. Protein reduction, alkylation and digestion with trypsin were performed as previously described. After digestion, samples were desalted and purified according to Rappsilber et al. Sample analysis was performed using an Agilent 1100 series liquid chromatograph coupled online through a nano-electrospray ion source (Thermo Fisher Scientific) to a 7700 linear ion trap Fourier transform ion cyclotron resonance mass spectrometer (LTQ FT, Thermo Fisher Scientific). The Chromatographic column consisted of a 15-cm fused silica emitter (New Objective, PicoTip Microbore).
Emitter, Tip: 8 ± 1 μm, internal diameter 100 μm) packed with 3-μm C18 beads (Reprosil-Pur C18 AQ, Dr Maisch GMBH) 27. After loading the peptides onto the column in buffer A (0.5% HAc), bound peptides were gradually eluted using a 67-min gradient of buffer B (80% ACN, 0.5% HAc). First, the concentration of acetonitrile was increased from 2.4 to 8% in 5 min, followed by an increase from 8 to 24% acetonitrile in 55 min, and finally an increase from 24 to 40% acetonitrile in 7 min. The mass spectrometer was operated in positive ion mode and was programmed to analyse the top four most abundant ions from each precursor scan using dynamic exclusion. Survey mass spectra (350–2000 m/z) were recorded using the ion cyclotron resonance cell at a resolution of R = 5E5. Data-dependent collision-induced fragmentation of the precursor ions was performed in the linear ion trap (normalized collision energy 27%, activation q = 0.250, activation time 30 ms).

Mass spectrometric data files were searched against the K. stuttgartiensis database (known contaminants like human keratins and trypsin were added to the database) using the database search program Mascot (Matrix Science, version 2.2). To obtain factors for the recalibration of precursor masses, initial searches were performed with a precursor ion tolerance of 50 p.p.m. Fragment ions were searched with 0.8-Da tolerance and searches allowed for one missed cleavage, database) using the database search program Mascot (Matrix Science, version 2.2). To obtain factors for the recalibration of precursor masses, initial searches were performed with a precursor ion tolerance of 50 p.p.m. Fragment ions were searched with 0.8-Da tolerance and searches allowed for one missed cleavage, including modifications that were found in the Mascot database search results. The results from these searches were used to calculate the m/z-dependent deviation, which was used to recalibrate all precursor m/z values. After recalibration of the precursor masses, definitive Mascot searches were performed using the same settings as stated above, but with a precursor ion tolerance of 20 p.p.m. Additional, reverse database searches were performed with the same settings. Protein identifications were validated and clustered using the PROVAULT algorithm to calculate a false-discovery rate of less than 1% (ref. 38).

Two-dimensional gel electrophoresis. Before protein separation by isoelectrofocusing, 1 mg of the protein suspension was incubated with 1% (v/v) Immobil pH-gradient (IPG) buffer of the appropriate range, 5 mM tributyl phosphine and 0.01% (w/v) bromophenol blue for 15 min at room temperature and centrifuged at 10,000g for 15 min at 10°C. Isoelectrofocusing was performed with the IPGphor system using commercial 24-cm-long IPG strips with linear immobilized pH gradients of various ranges. The conditions for rehydration of the IPG strips, sample entry and isoelectrofocusing were as follows: the temperature was set constant at 18°C and 50-μA per strip were applied. Focused IPG strips were equilibrated before SDS–PAGE two times for 15 min in 375 mM Tris–HCl pH 8.5, 2% (v/v) SDS, 20% (v/v) glycerol, 6 M urea, 10 mM DTT, 50 mM acrylamide and 0.1% (w/v) bromophenol blue. Gels were run for 45 min with constant cooling to 18°C at 20 V, 40 W and subsequently at 40 V, 40 W until the bromophenol blue marker reached the end of the gel. Gels were fixed in 30% (v/v) ethanol and 10% (v/v) glacial acetic acid and were stained with colloidal Coomassie blue 36 or silver stain 37. Picked gel spots were digested and analysed with MALDI–TOF as described elsewhere 38.

Blue native PAGE. Blue native PAGE of the protein complexes was performed as described elsewhere 39. For protein identification in two-dimensional gels, 16 cm × 20 cm gels were self-casted according to Calvaruso et al. with the following exception: 4–10% linear polyacrylamide gradient was used 40. Sample additive (1.5 μl) (0.75 M 6-aminopropionic acid, 5% Serva Blue G) was added to 40 μg protein sample before loading the gel.

Electrophoresis was performed at 50 V until the migration front entered the resolving gel and then at 100 V until the migration front reached the end of the gel. Cathode and anode buffer for blue native PAGE were 50 mM Bis-Tris, pH 7.0, and 50 mM Tricine, 15 mM Bis-Tris, pH 7.0, respectively. Preparation of the first-dimension gel strip and assembly and casting of the second-dimension gel were performed as described elsewhere 41 with the exception that the second-dimension cassette had the same thickness as the first dimension. No Coomassie blue was added to the cathode buffer.

Transcriptomics. RNA was extracted using the Ribopure Bacteria Kit (Ambion) according to the manufacturer’s instructions. First-strand cDNA was synthesized with random primers using the RevertAid H Minus First Strand cDNA Synthesis Kit, and the second strand was synthesized using DNA polymerase and manufacturer’s instructions (Fermentas).

The quality scores of the obtained Solexa reads (3.5 million) were converted to PHRED format and mapped with Maq (http://maq.sourceforge.net) to the five contigs that constitute the K. stuttgartiensis genome (accession numbers CT030148, CT573071–4). From the aligned reads, the per-position coverage was calculated for each contig and used to calculate the coverage for each orf, intergenic region and predicted RNA element.