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Abstract

This thesis is about side-channel analysis of the SHA-3 competition winner
Keccak and a similar algorithm Ascon. During the operation of such an algo-
rithm on a device information will leak in many different ways. In this thesis
we only look at the information that is leaked by the power consumption of
a device. This leakage can be exploited with a technique called DPA. With
DPA one tries to obtain a small part of secret data, usually the secret key
using a many power traces with random input messages and the key in each
trace. We verified a theoretical attack with experiments on an actual chip.
We also compared an attack on MAC-Keccak implemented on an FPGA to
an ASIC. For Ascon which was implemented on an FPGA we crafted a sim-
ilar attack as Keccak. With DPA being a very powerful tool for an attacker
hardware needs to be designed with countermeasures against this. Threshold
implementations are such countermeasures, we tried to attack an threshold
implementation on an FPGA of Ascon to see if it was possible with a feasible
amount of power traces. Finally, we look a the noise components in a power
trace and how much effect the effect of electrical noise is with Ascon.
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Chapter 1

Introduction

DPA is a statistical attack on the power consumption of the implementation
of a cipher on the data it processes. The statistical attack correlates the
power consumption with intermediate values computed by the attacker. The
register that is attacked is called a sensitive variable and can be part of the
secret key. The intermediate value for that register depends on part of the
secret key and part of the variable input. Because the power consumption
depends on the values in the sensitive variable which depends on the input
and the key an attacker can exploit this. The attacker makes an hypothesis
for part of the key and computes the intermediate values for different hy-
potheses for the sensitive variable. To distinguish between the correct and
incorrect hypotheses a distinguisher is used. One is the correlation coefficient
and is explained in chapter 6 [22]. Another selection function is distance of
means. Many power traces are often necessary for the selection function to
be able to distinguish between the correct and incorrect sub key candidates.
Keccak is a cryptographic sponge function [4] which among other things is
capable of hashing and symmetric encryption. It has an internal state on
which several rounds of the permutation function, also called a round func-
tion is applied to mix up the input combined with the internal state. For
the security of the algorithm it is crucial that the internal state remains se-
cret. Keccak is a flexible sponge of seven permutations that ranges from an
internal state of 25 to 1600 bits. A state size up to 200 bits is lightweight
and the 1600 bit state is used when high performance is required. As the
size of the internal state can be changed from a lightweight cipher to a large
internal state. The security of Keccak is proportional to the capacity which
can easily be increased by increasing by increasing the size of the internal
state.
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Ascon is an authenticated encryption algorithm with a structure based on a
duplex which is based on a cryptographic sponge function. Because of this
it has similar properties as Keccak. Ascon is a candidate in the CAESAR
competition for a new authenticated encryption algorithm. The algorithm
also uses a variant of the S-box of Keccak which makes the leakage model
very similar.
A threshold implementation can be used to protect against DPA, it splits
a variable up in different shares in such a way that knowing bits from one
share can not help an attacker to determine bits of the original variable.

DPA is done frequently especially because it is a very powerful attack. DPA
of protected and unprotected Keccak has been studied theoretically and ver-
ified with simulations in [6]. However, it is interesting to see whether the
theory hold when conducting the attack on an actual ASIC.

With Keccak as the SHA-3 standard and since the cryptographic primitive
is capable of different applications like keyed modes for encryption, MAC
computation and authenticated encryption. Research has been done on the
resistance against side-channel analysis. Two authenticated encryption algo-
rithms using Keccak are Keyak [16] and Ketje [7]. The previously mentioned
simulation of unprotected Keccak resulted in a theoretical success rate to
obtain the correct key candidate from as a function of the number of traces.
This resulted in the following research question: Does DPA on Keccak hard-
ware implementations follow the theoretical success rate?

The round function of Keccak consists of several steps which can be classified
in a linear and a non-linear part. As both parts may leak information dur-
ing operation of a device it may be interesting to determine how the success
rate differs and which part is more vulnerable to side-channel analysis, in
particular DPA. An attack on the linear part of Keccak was already done
on an implementation on an FPGA by [20]. We would like to see the differ-
ences compared to an attack on an ASIC instead of an FPGA with a similar
architecture where one round of Keccak-f is applied each clock cycle. This
resulted in the following research question: How does the success rate of an
attack on the linear and non-linear part of Keccak-f vary between the ASIC
and FPGA implementation?

Since Ascon uses a variant of the S-box of Keccak DPA on Ascon should
be similar to DPA on Keccak with an attack on the non-linear part of both

5



algorithms. This resulted in the following research question: Can the same
techniques used on Keccak be used on Ascon for DPA on the non-linear part
of both algorithms?

For Ascon there is no ASIC available which is why the we use an implemen-
tation on an FPGA. On any platform there will be electrical noise generated
by the circuit. This electrical noise is assumed to be Gaussian white noise
and can be reduced by averaging the power traces with an equal input. With
this we hope to be able to determine how large the electrical noise component
is from the total amount of noise and how it affect the success rate of the
attack on Ascon. This resulted in the following research question: How does
averaging affect the success rate of an attack on Ascon and what does this
say about the contributions of the algorithmic noise to the total noise?

In [6] a simulation was done on a threshold implementation for Keccak on
a fully parallel implementation also known as a high speed core which re-
quired a huge amount of traces compared to an attack on an unprotected
implementation. We try to attack a threshold implementation of Ascon on
an FPGA with a feasible amount of traces. This resulted in the following
research question: How feasible is an attack on a threshold implementation
of a scaled-down version of Ascon?
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Chapter 2

Background Information

2.1 Encryption Algorithms

With today’s usage of the Internet where it is common to communicate with
the bank, governmental institutions, companies or to have communication
between people there is a huge need to keep these communications secret.
To accomplish this encryption algorithms are used. There are two types of
cryptography, asymmetric and symmetric cryptography. Asymmetric cryp-
tography is used e.g. in key establishment in symmetric cryptography and
digital signatures, symmetric cryptography is used e.g. in encryption and au-
thentication of data. In this thesis we only focus on symmetric cryptographic
algorithms.

2.1.1 Symmetric Cryptography

Symmetric cryptographic algorithms are used to encrypt or authenticate data
for communication over an insecure channel. Both parties use the same key,
more information on key management can be found in [2]. An important
property of symmetric encryption is that a message M is encrypted with a
secret key K the decryption of that results in M, M = dec(enc(M, K), K).
Another property is when a message is encrypted with a key C = enc(M, K)
the resulting cipher text C can not be linked with the original message M.

Over the years many different symmetric encryption algorithms have been
published and used. But with the computational power increasing all the
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time many algorithms like several instances of DES, RC2 and many others
stopped being secure and should not be used anymore. The latest symmetric
encryption standard is called AES, Advanced Encryption Standard [11] which
is a block cipher. Some other used block ciphers are certain instances of DES,
PRESENT because it is very compact, and Blowfish. Block ciphers need to
be used in a mode to be able to encrypt data. Some commonly used modes
for encryption are ECB, CBC and CTR. Stream ciphers are also used for
encryption, some commonly used stream ciphers are AES in CTR mode and
ChaCha.

2.2 Hashing

Hashing is used to verify the integrity of data by applying the hash function
on the data and comparing the output of the function to a value which is the
correct output value for that data. If the values match the data is equal, if
there is no match the data is not equal and something may have gone wrong
during the transmission of the data. A hash function is a deterministic
one-way function meaning that if we compute a hash function for a certain
value X the result H(X) will always be the same. It maps data of arbitrary
size to an output of a fixed size. Hash functions should be collision resistant,
meaning X ̸= Y, H(X) = H(Y) and have high pre-image resistance, meaning
the should be hard to compute X from H(X).

2.2.1 Message Authentication Codes

A message authentication code is a hash of a message combined with a secret
key which allows a verifier to verify the integrity of the message. The message
can be of arbitrary size while the size of the key depends on what algorithm
in used. Unlike a normal hash which everyone can verify the message only
the parties who hold the key are able to do this.

2.3 SHA-3

SHA-3 (Secure Hashing Algorithm) is a new hashing standard by the Na-
tional Institute of Standards and Technology (NIST) for which there was a
competition which ran over several years. The purpose of the competition

8



was to establish a new secure standard for cryptographic hashing after SHA-
0, SHA-1 and SHA-2. The competition consisted of three rounds and for
each round there was a conference where the candidates were presented and
discussed. After each round additional criteria was discussed to reduce the
amount of candidates each round. Initially there were 64 candidates of of
which 51 completed the minimal submission requirements for the first round
of the selection process. After the second round five finalists were selected
for the final round. The five finalists are BLAKE [3], Grøstl [15], JH [28],
Skein [14] and the winner Keccak [5] which won on 2 October 2012.

The hashing algorithm BLAKE is built on previously built and studied com-
ponents to provide security. The algorithm iterates through several rounds
depending on the size to compress the input. The compression function is
based on a stream cipher ChaCha which has a high performance and can be
parallelized.
Like BLAKE Grøstl also is an iterated hash function with a compression
function. This algorithm uses components very different from the previous
SHA functions. It borrows components from AES so it has similar counter-
measures to side-channel attacks as AES.
Similar to the previous candidates JH also uses previously built components
in its design. For JH the designers generalized the design of AES to design
large block ciphers. For hashing a constant key is used. Since is it is similar
to AES, again it has similar countermeasures to side-channel attacks.
Skein uses the block cipher Threefish as its core. Using Threefish in a unique
block iteration mode enables the algorithm to compress input of an arbitrary
length to a fixed length output. Since Skein uses an already established block
cipher it protects against similar side channel attacks as the block cipher.
The winner of the SHA-3 competition Keccak uses a cryptographic sponge
function as its core which has an internal state where a round function is
computed on. Keccak can be used for many applications like hashing, sym-
metric encryption and creating MAC’s.

For the third and final round of the SHA-3 competition an ASIC was pro-
duced by Virginia Tech [17] with the five finalists on it. The chip was pro-
duced using standard cell CMOS technology. For the final round of the com-
petition it was important that each candidate could thoroughly be tested for
performance on an ASIC instead of an FPGA as a high performing candidate
would score better during the evaluation by the NIST. The chip contains the
five finalists but since the power is gated to the selected candidate there is no
noise from the other candidates. Later in this thesis we describe an attack
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using traces generated by this chip.

2.4 Cryptographic Sponge Functions

A cryptographic sponge function [4] is a construction that can be used for
different applications. A sponge function has arbitrary input and output
length. It uses a fixed amount of memory to store its internal state. And
a permutation function that operates on a fixed amount of bits b called the
width. The state consists of b = r + c where r is the bit-rate and c is the
capacity. A sponge function consist of two phases, an absorbing phase and
a squeezing phase as can be seen in Figure 2.1a. Before the absorbing phase
the input message M is padded and split into blocks of length r and the state
is initialized with 0. During the absorbing phase each input block of length r
is XOR’ed into the first r bits of the state. After a block is XOR’ed into the
state a certain amount of rounds of the permutation function is computed on
the state. During the squeezing phase the first r bits of the state are returned
as a block of output. After each block again a certain amount of rounds of
the permutation function is computed on the state. A user can choose an
arbitrary amount of output blocks.
Figure 2.1b shows a duplex function which is a closely related function to
the sponge function. Before the function starts the input is padded, split
into blocks of length r and the state is initialized on 0. Each input block
is XOR’ed into the state, a certain amount of rounds of the permutation
function is computed on the state and the first r bits of the state are returned
as output.
These two constructions can be used for different applications like hashing,
symmetric encryption and creating MAC’s. It is nice that it is possible to
use a single permutation function for many different applications.

2.5 Keccak

The following text is directly from the Keccak reference document [5].

Keccak is a family of sponge functions [4] that use as a building block a
permutation from a set of 7 permutations. In this chapter, we introduce our
conventions and notation, specify the 7 permutations underlying Keccak
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(a) Sponge

(b) Duplex

Figure 2.1: A visualization of both the sponge and duplex construction [4]

11



and the Keccak sponge functions. We also give conventions for naming
parts of the Keccak state.

2.5.1 Conventions and notation

We denote the absolute value of a real number x is denoted by |x|.

2.5.1.1 Bitstrings

We denote the length in bits of a bitstring M by |M|. A bitstring M can
be considered as a sequence of blocks of some fixed length x, where the last
block may be shorter. The number of blocks of M is denoted by |M|x. The
blocks of M are denoted by Mi and the index ranges from 0 to |M|x − 1.

We denote the set of all bitstrings including the empty string by Z∗2 and
excluding the empty string by Z+

2 . The set of infinite-length bitstrings is
denoted by Z∞

2 .

2.5.2 Padding rules

For the padding rule we use the following notation: the padding of a message
M to a sequence of x-bit blocks is denoted by M||pad[x](|M|). This notation
highlights that we only consider padding rules that append a bitstring that
is fully determined by the bitlength of M and the block length x. We may
omit [x], (|M|) or both if their value is clear from the context.

Keccak makes use of the multi-rate padding.

Definition 1. Multi-rate padding, denoted by pad10∗1, appends a single bit
1 followed by the minimum number of bits 0 followed by a single bit 1 such
that the length of the result is a multiple of the block length.

Multi-rate padding appends at least 2 bits and at most the number of bits
in a block plus one.

2.5.3 The Keccak- f permutations

There are 7 Keccak- f permutations, indicated by Keccak- f [b], where
b = 25× 2ℓ and ℓ ranges from 0 to 6. Keccak- f [b] is a permutation over
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Zb
2, where the bits of s are numbered from 0 to b− 1. We call b the width

of the permutation.

The permutation Keccak- f [b] is described as a sequence of operations on
a state a that is a three-dimensional array of elements of GF(2), namely
a(5, 5, w), with w = 2ℓ. The expression a(x, y, z) with x, y ∈ Z5 and z ∈ Zw,
denotes the bit in position (x, y, z). It follows that indexing starts from zero.
The mapping between the bits of s and those of a is s(w(5y + x) + z) =
a(x, y, z). Expressions in the x and y coordinates should be taken modulo
5 and expressions in the z coordinate modulo w. We may sometimes omit
the (z) index, both the (y, z) indices or all three indices, implying that the
statement is valid for all values of the omitted indices.

Keccak- f [b] is an iterated permutation, consisting of a sequence of nr
rounds R, indexed with ir from 0 to nr − 1. A round consists of five steps:

R = ι ◦ χ ◦ π ◦ ρ ◦ θ, with

θ : a(x, y, z) ← a(x, y, z) +
4

∑
y′=0

a(x− 1, y′, z) +
4

∑
y′=0

a(x + 1, y′, z− 1),

ρ : a(x, y, z) ← a(x, y, z− (t + 1)(t + 2)/2),

with t satisfying 0 ≤ t < 24 and
(

0 1
2 3

)t (1
0

)
=

(
x
y

)
in GF(5)2×2,

or t = −1 if x = y = 0,

π : a(x, y) ← a(x′, y′), with
(

x
y

)
=

(
0 1
2 3

)(
x′

y′

)
,

χ : a(x) ← a(x) + (a(x + 1) + 1)a(x + 2),
ι : a ← a + RC(ir).

The additions and multiplications between the terms are in GF(2). With
the exception of the value of the round constants RC(ir), these rounds are
identical. The round constants are given by (with the first index denoting
the round number)

RC[ir](0, 0, 2j − 1) = rc[j + 7ir] for all 0 ≤ j ≤ ℓ,

and all other values of RC[ir](x, y, z) are zero. The values rc[t] ∈ GF(2) are
defined as the output of a binary linear feedback shift register (LFSR):

rc[t] =
(

xt mod x8 + x6 + x5 + x4 + 1
)

mod x in GF(2)[x].
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The number of rounds nr is determined by the width of the permutation,
namely,

nr = 12 + 2ℓ.

2.5.4 The sponge construction

The sponge construction [4] builds a function sponge[ f , pad, r] with variable-
length input and arbitrary output length using a fixed-length permutation
(or transformation) f , a padding rule “pad” and a parameter bitrate r. The
permutation f operates on a fixed number of bits, the width b. The value
c = b− r is called the capacity.

For the padding rule we use the following notation: the padding of a message
M to a sequence of x-bit blocks is denoted by M||pad[x](|M|), where |M|
is the length of M in bits.

Algorithm 1 The sponge construction sponge[ f , pad, r]

Require: r < b

Interface: Z = sponge(M, ℓ) with M ∈ Z∗2, integer ℓ > 0 and Z ∈ Zℓ
2

P = M||pad[r](|M|)
s = 0b

for i = 0 to |P|r − 1 do
s = s⊕ (Pi||0b−r)
s = f (s)

end for
Z = ⌊s⌋r
while |Z|rr < ℓ do

s = f (s)
Z = Z||⌊s⌋r

end while
return ⌊Z⌋ℓ

Initially, the state has value 0b, called the root state. The root state has a
fixed value and shall never be considered as an input. This is crucial for the
security of the sponge construction.
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2.5.5 The Keccak sponge functions

We define the sponge function denoted by Keccak[r, c] by applying the
sponge construction as specified in Algorithm 1 with Keccak- f [r + c], multi-
rate padding and the bitrate r.

Keccak[r, c] ≜ sponge[Keccak- f [r + c], pad10∗1, r].

This specifies Keccak[r, c] for any combination of r > 0 and c such that
r + c is a width supported by the Keccak- f permutations.

The default value for r is 1600− c and the default value for c is 576:

Keccak[c] ≜Keccak[r = 1600− c, c],

Keccak[] ≜Keccak[c = 576].

2.5.6 Security claim for the Keccak sponge functions

For each of the supported parameter values, we make a flat sponge claim [4,
Section “The flat sponge claim”].
Claim 1. The expected success probability of any attack against Keccak[r, c]
with a workload equivalent to N calls to Keccak- f [r + c] or its inverse shall
be smaller than or equal to that for a random oracle plus

1− exp
(
−N(N + 1)2−(c+1)

)
.

We exclude here weaknesses due to the mere fact that Keccak- f [r + c] can
be described compactly and can be efficiently executed, e.g., the so-called
random oracle implementation impossibility [4, Section “The impossibility of
implementing a random oracle”].

Note that the claimed capacity is equal to the capacity used by the sponge
construction.

2.5.7 Parts of the state

In this subsection, we define names of parts of the Keccak- f state, as il-
lustrated in Figure 2.2. This naming convention may help use a common
terminology when analyzing or describing properties of Keccak- f .

The one-dimensional parts are:
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Figure 2.2: Naming conventions for parts of the Keccak- f state
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• A row is a set of 5 bits with constant y and z coordinates.

• A column is a set of 5 bits with constant x and z coordinates.

• A lane is a set of w bits with constant x and y coordinates.

The two-dimensional parts are:

• A sheet is a set of 5w bits with constant x coordinate.

• A plane is a set of 5w bits with constant y coordinate.

• A slice is a set of 25 bits with constant z coordinate.

2.6 Ascon

Ascon [12] is a cipher which is a candidate in the Competition for Authenti-
cated Encryption: Security, Applicability, and Robustness or in short CAE-
SAR [1]. To be considered a candidate for the competition a cipher must
follow certain functional requirements. It must have five inputs which con-
sist of a variable length plain-text, a variable length associated-data, a fixed
length secret message number which may be zero, a fixed length public mes-
sage number and a fixed length key. The security requirements of those
inputs are that they must all keep integrity. The plaintext and secret mes-
sage number must keep confidentiality. If either message number is used
more than once with a key the cipher may lose its security. A submission is
required to a have list of recommended parameters like the key length. In
this thesis when Ascon is mentioned, Ascon-128 is meant, where are 128-bit
key and nonce are used and the blocksize of the input data is 64-bit
The authenticated encryption algorithm Ascon uses a cryptographic duplex
construction for encryption and a sponge construction for the absorption of
the associated data. Figure 2.3 shows the process of Ascon. For encryption
it takes four inputs, plaintext Pi, associated data Ai, nonce N and a key K.
The block cipher produces two outputs the ciphertext Ci and a tag T. p∗ is
the permutation function, in this case a = 12 and b = 8 which are the num-
ber of rounds given by the recommended parameters for the algorithm. The
nonce is the public message and the secret message has length zero. The tag
is used during decryption to authenticate the ciphertext. During decryption
the algorithm uses the tag as an input and produces the plaintext as output
and the result of the validation of the tag.

The internal state of the algorithm consists of 320 bits which is split up into
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Figure 2.3: Ascon encryption [12]

five registers of 64 bits, named x0 to x4. During the initialization of the algo-
rithm register x0 of the internal state is initialized with a 64-bit initialization
vector which is a constant listed in the recommended parameters. Register
x1 is initialized with the most significant 64-bits of the key, register x2 with
the least significant part of the key. And registers x3 and x4 are initialized
with the most significant and the least significant half of the nonce respec-
tively. Also the associated data and plaintext are padded to have a length
of a multiple of 64 bits. When the internal state is initialized twelve rounds
of the round function are applied. Next, the associated data is absorbed into
the state. For each block six rounds of the round function are applied. Af-
ter each block of plaintext is duplexed into the state, again six rounds of the
round function are applied, except for the final block. During the finalization
of the part of the algorithm another twelve rounds of the round function are
applied and a tag is produced which is used to authenticate the data during
decryption.

The round or permutation function used in Ascon consists of three parts.
The first part is the addition of a round constant to register x2 on the least
significant bits of the register which can be computed as follows for each
round i.

RCi = 0xF− i||0x0+ i

Where || means the concatenation of the two parts. The second part is a
non-linear five-bit S-box with algebraic degree two, which takes one bit from
each register shown in Figure 2.4 and replaces it with the output of the S-
box. The S-box is a variant of the S-box used in Keccak and is shown in
Figure 2.5. Table 2.1 shows the results of the 5-bit S-box.

The final part is the linear diffusion layer where each register is twice rotated
and XOR’ed with itself which is called Σi(xi). Below are the expressions of
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x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S(x) 4 11 31 20 26 21 9 2 27 5 8 18 29 3 6 28

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
S(x) 30 19 7 14 0 13 17 24 16 12 1 25 22 10 15 23

Table 2.1: The 5-bit S-box of Ascon

x4
x3
x2
x1
x0

Figure 2.4: Input of the S-box of Ascon [12]

Figure 2.5: The S-box of Ascon [12]

x4
x3
x2
x1
x0
x1

Figure 2.6: Input of the linear diffusion layer of Ascon [12]
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the linear diffusion layer.

Σ0(x0) = x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28)
Σ1(x1) = x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39)
Σ2(x2) = x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6)
Σ3(x3) = x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17)
Σ4(x4) = x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41)
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Chapter 3

Side-Channel Analysis

3.1 Introduction

When a processor computes a cryptographic function on some data it is un-
avoidable that information leaks. With side-channel analysis an attacker
tries to exploit this leakage and whether that is possible depends on many
different factors. Side-channels that can leak information are for instance
time, electromagnetic fields, and power consumption. In this thesis we only
look at the power consumption, electromagnetic fields is similar to power
consumption but requires a whole different setup and models and time leak-
age requires completely different techniques to exploit the leakage which is
why it is not in the scope if this thesis. To measure the power consumption
of a device a small resistor is put in series with the circuit and connected to
the ground. The voltage difference over the resistor is the power consump-
tion. Oscilloscopes can sample this difference at very high sampling rates.
An example of a power trace is shown in Figure 3.1.

To exploit the information leakage of the power consumption of a crypto-
graphic function an attacker has two options called simple power analysis
and differential power analysis. With SPA an attacker only requires a few
power traces and looks for patterns in the trace that can be related to key
specific actions in certain cryptographic function. If this function is not pro-
tected against SPA an attacker can often obtain the key that was used by
just looking at a plot of the power trace. In-depth knowledge of the device is
required for this attack as the attacker needs to know exactly what happens
when in the power trace.
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Figure 3.1: Example of a power trace

With DPA less in-depth knowledge of the device is required as it is more of
a statistical approach which requires many power traces compared to SPA
where the same key is used. The distinguisher requires a power consump-
tion model to compute the hypothetical power consumption of the device
for a certain input at a specific time during the operation. The computed
hypothetical power consumption can then be related to the actual power con-
sumption to obtain small parts of the key that was used during the operation
of the device.

Since it is possible to obtain the key that is used during a cryptographic
operation with few resources. A designer of a cryptographic device needs to
take this account and apply countermeasures where required. In this thesis
we only look at an implementation protected against DPA.

3.2 Simple Power Analysis

In [18, Section 2] and [22, Chapter 5] SPA is explained. With SPA an attacker
tries to reveal the key from only a small amount of power traces, sometimes
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even a single power trace. When there are more traces available with the same
plaintext as input the attacker can try to reduce the noise by computing the
mean of the traces. Whether an attacker has just one or multiple traces,
the attack is the same. The attacker tries to find patterns in the recorded
trace which are caused by key dependent operations. For SPA to work the
key must have a significant impact on the power consumption. In-depth
knowledge about the device is required to be able to distinguish between the
key dependent operations in the power trace.

3.3 Differential Power Analysis

3.3.1 General Description

DPA [22, Chapter 6] is used to reveal the secret key of cryptographic devices
based on a large number of power traces that have been recorded while the
devices encrypt or decrypt different blocks of data. Compared to SPA DPA
has the advantage that no in depth knowledge of the device is required. It is
often sufficient to know what algorithm is executed on the device. Another
difference between the two attacks is the way the traces are analyzed. In
SPA an attacker tries to find patterns in the power consumption along the
time axis of the trace. On the other hand in DPA attacks the time axis is
not important. With DPA an attacker analyzes how power consumption at
fixed moments of time depends on the processed data. DPA focuses on the
data dependency of a large amount of power traces. More in detail, a DPA
attack consists of five general steps described below.

In step 1 an attacker choses an intermediate result of the cryptographic al-
gorithm that is executed by the device. This result needs to be a function
f (d, k) where d is a known non-constant data value and k is a small part of
the key. These intermediate results can be used to reveal k. Usually d is the
plaintext or the ciphertext.

In step 2 an attacker measures the power consumption of the cryptographic
device while is encrypts or decrypts D different data blocks. For each of these
runs the attacker needs to store the corresponding value d which is required
in the calculation of the intermediate results from step 1. These known input
values are stored as a vector d = (d1, ..., dD)

′, where di is the data values in
the ith encryption or decryption run.
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During each run the power trace is recorded. The power trace that corre-
sponds to data block di as t′i = (ti,1, ..., ti,T), where T is the length of the
trace. Since the attacker stores a traces for each of the D data blocks, the
traces can be written as a matrix T with with size D× T. For the attack to
work it is important that the traces are aligned, meaning that each column
t j of the matrix T needs to correspond to the same operation. In order to
obtain aligned power traces, the oscilloscope needs to be triggered by a trig-
ger signal so the oscilloscope starts recording at the exact same time for each
run. In this thesis a trigger signal is always available from the attacked device.

In step 3 an attacker calculates hypothetical intermediate values for every
possible choice of k. These possible choices are written as a vector k =
(k1, ..., kK), where K is the total number of choices for k. With DPA we refer
to the elements of this vector as key hypotheses or key candidates. Given
data vector d and the key hyptheses k an attacker can calculate hypothetical
intermediate values f (d, k) for all D run and for all K key hypotheses. This
results in a matrix V of size D× K.

vi,j = f (di, k j) i = i, ..., D j = 1, ..., K

Column j of V contains the intermediate results based on key hypothesis k j.
One column of V contains all intermediate values for D runs of the device.
Vector k contains all possible values for k so the key that was used by the
device is in k. We refer to the used key in the device as he correct key can-
didate or correct sub key candidate. The goal of the attack is to find which
column of V has been processed by the device during the D runs. As soon as
we know which column of V has been processed in the device we know the
correct key hypothesis.

In step 4 an attacker maps the hypothetical intermediate values V to hypo-
thetical power consumption values in matrix H. This is done using a model.
The quality of the model strongly depends on the knowledge of the device by
the attacker. Two frequently used models are the Hamming weight and the
Hamming distance model [10]. The Hamming weight is the number of bits
that are one of the intermediate value. The Hamming distance is the number
of bits that have flipped from the old state to the new state of the interme-
diate value.The result of the model and the intermediate value is stored in
matrix H.

In step 5 an attacker compares the hypothetical power consumption values
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with the power traces. In this step each column hi of matrix H is compared
with each column tj of matrix T. This means that the attacker compares
the hypothetical power consumption values of each key hypothesis with the
recorded traces at every position. The result is stored in a matrix R of size
K× T, where each element ri.j contains the result of the comparison between
columns hi and tj. The comparison is done based on distinguishers discussed
later. All distinguishers have the property that a higher value for ri,j means
a better match between columns hi and tj. To determine the correct key
candidate an attacker simply looks at the highest value in R. It happens
in practice that all values in R. are almost equal. In this case an attacker
has usually not measured enough power traces. To resolve this an attacker
simple acquires more traces and goes through the steps again.

3.3.2 Difference of Means

A commonly used distinguisher in DPA is difference of means or DoM. With
this distinguisher an attacker splits the set of traces T up based on the
hypothetical power consumption values in H. Next the difference of means
of those sets is subtracted and highest difference results in the correct key
candidate.
For each key candidate the set of traces is split up based on the hypothetical
power consumption values meaning that if hi,j is 0 trace ti goes into one set
and if hi,j is 1 trace ti goes into another set. When this is done for all D
values in H the two sets are subtracted from each other and stored in row ri,
all T time samples included. This is repeated for each key candidate. The
row in R with the highest value is the correct key candidate. An example
plot two rows of R containing a correct and incorrect candidate is shown in
Figure 3.2.

3.3.3 Correlation Power Analysis

The correlation coefficient is the most common way to determine linear rela-
tionships between data. Therefore it is an excellent choice for DPA attacks.
The correlation coefficient is defined as follows.

ρX,Y =
cov(X, Y)

σXσY

In DPA attacks, the correlation coefficient is used to determine the linear
relationship between columns hi and tj for i = 1, ..., K and j = 1, ..., T. This
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(a) Correct key candidate (b) Incorrect key candidate

Figure 3.2: Example results for DoM

results in a matrix R of estimated correlation coefficients. We estimate each
value ri,j based on the D elements of the columns hi and tj. We use h̄i and
t̄j to denote the mean values of the columns hi and tj.

ri,j =

D
∑

d=1
(hd,i − h̄i) · (td,j − t̄j)√

D
∑

d=1
(hd,i − h̄i)2 · (td,j − t̄j)2

The highest value ri.j denotes the correct key hypothesis.

3.3.4 Combining partitions of the correlation coeffi-
cient

When using many traces with many samples each the set of power traces
may become very large. For instance, storing five hundred thousand traces
requires approximately 7.5 GB of storage and RAM. If five million traces are
required to successfully attack the implementation that would require 75 GB
of memory. There is usually plenty of hard disk storage available but large
amounts of RAM are not available in comparable amounts. Even if only the
first cycle of each trace is stored which will reduce the required memory to
approximately one tenth, but as more traces are required it still is unpracti-
cal. If the set is split up into several smaller partitions which can be stored
in RAM for which the correlation coefficient is computed and the results can
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be combined as if the correlation coefficient was computed on the whole set
this could help.
Another case is for parallel computing as each partition can be used in par-
allel and the combination of the results can be done in log2 n steps.

A method for this was described by Dunlap [13] and used by [9] for side-
channel analysis. The formulas for this method are summarized below. For
this the total set of power traces with their hypothetical power consumption
values is split up in N partitions with each n elements.

Ri,j =

N
∑

k=1
nk
(
σHk σTk ρ(Hk, Tk) + δHk δTk

)
√

N
∑

k=1
nk

(
σ2

k + δ2
Hk

)
·
√

N
∑

k=1
nk

(
σ2

Tk
+ δ2

Tk

)
δXi = MXi −MX

Where M denotes the mean of a set. If we use these formulas to incrementally
add each set, N = 2 and the size of that partition increases each step by n.
We also need to compute the new variance and mean of the combined set as
follows for two sets with each m and n elements.

σ2 =
m(σ2

m + δ2
m) + n(σ2

n + δ2
n)

m + n

M =
mMm + nMn

m + n

With these formulas it is possible to compute the correlation coefficient for
a very large set of power traces without using a lot of memory.

3.3.5 Higher-order attacks

With DPA attacks that are widely used designers of implementations for
cryptographic operations must protect their designs against such attacks.
This can be accomplished on different levels in the algorithm, for instance in
the protocol where the usage of a single key can be limited or in the in actual
design of the implementation of the algorithm. There are several techniques
for protecting the design on an implementation level. One is masking [27]
where the data is masked and the algorithm is computed separately on the
masked data and the mask. At the end of the computation the data is un-
masked and can be read. The computations on the data and the mask can
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be done in parallel. A specific type of masking is a threshold implementation
where several shares are used to mask the data. This technique makes it
harder to correlate the intermediate value with the power consumption as
the power consumption is not directly related to that data. A more detailed
explanation about threshold implementations is given in section 3.4.1.

To attack masked implementation previous attacks are not going to work.
These attacks fall into the category of first-order attacks and to attack im-
plementations with multiple shares higher-order attacks must be used [26]. If
an implementation has two shares on which the computations on each share
are computed in parallel a second order attack must be used. A second-order
attack is similar to a difference of means attack, except for the distinguisher.
Instead of the mean the variance is used which is the average distance to the
mean of all the samples in a distribution. The variance of a distribution X
is defined as follows.

Var(X) = E(X− µ)2

Where E() is the expected value and µ is the mean of distribution X. Other
names for the mean and the variance are respectively the first and second
central moment.

When an implementation uses three shares a third-order attack must be
used, this number increases with each share but since implementations with
no more then three shares are studied in the thesis higher then third-order
attacks are not explained. A third-order attack again is similar to difference
of means except where the difference of the mean is used, the difference of the
skewness is used. The skewness determines if a distribution is symmetrical
on the mean or leans more to the left or the the right. The skewness of
distribution X is defined as follows.

Skew(X) =
E(X− µ)3

σ3

From the previous formula the E(X − µ)3 is also called the third central
moment and the skewness is the third standardized moment. The pattern
that emerges can be used to compute any arbitrary statistical moment.

3.3.6 Computing the third standardized moment

Attacking a TI is not possible anymore with a first order attack like CPA or
difference of means. To attack a TI with three shares we need to look at the
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difference of the skewness. A problem with the formula of the skewness is
that all the variables must be stored in memory. When only a small amount
of traces is used that is fine but when attacking TI’s it usually takes millions
of traces which may not fit.

Using an algorithm to iteratively compute the skewness makes it possible
to compute the skewness of a very large set while using a small and con-
stant amount of RAM. To do this we first need to compute the third central
moment to compute the third standardized moment or the skewness. It is
possible to do this if a set is partitioned into two sets [25]. If the set is
partitioned in two sets A and B, these formula’s apply.

δ = µB − µA

µ = µA + δ
nB

n
M2 = M2A + M2B + δ2 nAnB

n

M3 = M3A + M3B + δ3 nAnB(nA − nB)

n2 − 3δ
nAM2B − nBM2A

n
And finally the skewness.

S =
√

n
M3

M3/2
2

If we simplify those formulas where one set contains only a single element the
formula’s reduce to the following, allowing us to compute the third central
moment and skewness iteratively.

δ = x− µ

µ = µ +
δ

n

M3 = M3 + δ3 (n− 1)(n− 2)
n2 − 3δ

M2

n

M2 = M2 + δ2 n− 1
n

The four formulas must be computed such that each iteration a variable is
added and the actual skewness is only computed in the end. Using these
formula’s makes it possible to compute the skewness of a large amount of
traces stored on a hard disk without using a large amount of RAM. While
collecting the traces it is also possible to compute the skewness without
storing the traces on the hard disk.
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3.4 Countermeasures

3.4.1 Threshold Implementations

The previous implementations can be attacked by using first-order DPA. A
technique to protect against first-order DPA is a threshold implementation
[23]. A threshold implementation or TI has three requirements: correctness,
non-completeness and uniformity. Correctness means that the output of a
function on each share must be equal to the output of that function used
on the XOR of the shares. Non-completeness means that a function can not
combine all shares, at least one must not be used.
All linear parts of a round function in a TI can be applied to each share
separately and will be conform the requirements. If there is an addition of a
round constant it should be added to a single share. The non-linear part is a
different story. To satisfy the non-completeness requirement the non-linear
function can only use two shares in case of a three share implementation. If
there are three shares A, B and C the non-linear part will look like this.

A′ = f (B, C)
B′ = f (A, C)
C′ = f (A, B)

Not all non-linear functions keep the uniformity of their input shares, this
is a problem because it has been proven that if the shares are uniformly
distributed, correct and non-complete the implementation is secure against
first-order DPA [24]. It is possible to preserve the uniformity with by adding
new random bits since both Ascon and Keccak do not a have uniform round
function this is required. It is possible to reduce the amount of new random
bits that are required each round [8] for Keccak. Since Ascon uses a variation
of the S-box of Keccak this works for Ascon as well.
The used threshold implementations from Ascon and Keccak both have three
shares and one round of the round function is computed in parallel each clock
cycle.
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Chapter 4

Related Work

4.1 MAC-Keccak

Research has been done on a specific version of Keccak, called MAC-Keccak
[20] where Keccak-f[1600] was used. MAC stands for message authentication
code and is used to verify the integrity of a message where both parties use
the same key. In this case features of the sponge construction are not used
as the key and the message are put in the initial state on which 24 rounds of
the permutation function are performed. In this paper they attacked the θ
part of the round function. To do this they attacked 32-bits of a sheet which
contained information about 16 key bits. With a success rate of almost
100% using thirty thousand traces they were able to extract 8 key bits of
information out of this since part of those bits are XOR’ed. When the attack
is performed on the whole state the key could be extracted by solving the
system of linear equations. In the paper they used the attack described below
the obtain the whole key from the previous result.
Another attack that was performed was on part of the θ function where the
parity between the planes is computed. This time they attacked 8 bits from
the result which contained information about 8 key bits. With a success rate
of 90% using five hundred thousand traces they were able to extract all 8 key
bits. The result of this attack shows that it is possible to attack the linear
part of the round function of Keccak for the implementation that was used.
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Chapter 5

Differential Power Analysis on
Ascon

5.1 Introduction

The experiment is done using VHDL code which runs on a Sakura-G with a
Spartan-6 FPGA. The oscilloscope that is used during the experiment is a
Teledyne Lecroy WaveRunner 610Zi. The implementation uses a finite state
machine to control the behavior of the algorithm. A start signal is imple-
mented so the oscilloscope can be triggered to show the power consumption
from that point. In the experiment the oscilloscope is set to a sampling rate
of 250 million samples per second which results in 2502 samples for each
power trace.
In Figure 5.1 the setup is shown with the oscilloscope and the Sakura-G
board to capture power traces. On the oscilloscope we see the yellow block
wave that triggers the oscilloscope to capture the signal. The gray device to
the left of the Sakura-G is to program the FPGA with the required imple-
mentation.

5.2 Selection Function

As mentioned before the internal state of Ascon consists of five 64-bit regis-
ters. Since we know the contents of the state at initialization except for the
key part and we can vary the nonce each run we pick the end of the first
round as our initial point of attack. As sensitive variable we pick the MSB
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Figure 5.1: A photo of the setup for capturing traces with the Sakura-G

of x0, since the contents of that register is known before the first round two
power models can be used, the Hamming distance and the Hamming weight
model. In this attack we use the Hamming distance model.
For the attack intermediate values have to be computed for each different
key guess on the nonce. The linear step for x0 is the following:

Σ0(x0) = x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28) (5.1)

The output of the non-linear S-box for x0 can be expressed in the following
way:

y0 = x4x1 + x3 + x2x1 + x2 + x1x0 + x1 + x0

This can be rewritten to one quadratic term.

y0 = x1(x4 + x2 + x0 + 1) + x3 + x2 + x0

We use the Hamming distance model, even though we know the contents of
the register before the first we still add this term a0 to the equation similar
as in [6, Section 3].

y0 = x1(x4 + x2 + x0 + 1) + x3 + x2 + x0 + a0
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The equation now determines the activity of the register after the first round.
If we look at how the state is initialized we see that x1 and x2 are constant
key bits, x3 and x4 are variable bits of the nonce and x0 is a constant bit of
the IV. All the bits that add a constant amount to the activity of the register
can be removed. Doing so results in:

y0 = x1(x4 + 1) + x3 (5.2)

As a result the intermediate value now only depends on one bit from one
register of the key and two bits from two registers of the nonce. If we combine
equations (5.1) and (5.2) we get the following selection function.

Si(N, K∗) = κ∗0(νi+64 + 1)+ νi + κ∗1(νi+109 + 1)+ νi+45 + κ∗2(νi+100 + 1)+ νi+36
(5.3)

Where the N is the 128-bit nonce and κ∗i is a bit from a key guess. Since
there are three key bits in the selection function there are eight key guesses.
In Figure 5.2 we can see that using fifty thousand traces results in a success
rate of almost 1, so with this attack on register x0 it is possible to obtain the
most significant 64-bits of the key.

Since the remaining number of unknown key bits is too large to enumerate
the least significant half of the key must be attacked as well. In the S-box
x1 is the only register in which has a result with a quadratic term containing
x2 which contains the least significant half of the key before the first round.
Starting again with the linear step:

Σ1(x1) = x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39) (5.4)

And the output of the S-box for x1:

y1 = x4 + x3x2 + x3x1 + x3 + x2x1 + x2 + x1 + x0

y1 = x3(x2 + x1 + 1) + x4 + x2x1 + x2 + x1 + x0

y1 = x3(x2 + x1 + 1) + x4

y1 = x3(x12 + 1) + x4 (5.5)

Rewriting the expression with the least amount of quadratic terms and re-
moving the terms that contribute a constant amount to the activity in the
register results in equation (5.5). In the attack it will not be possible to dis-
tinguish the XOR between x1 and x2 so their result will be regarded as one
term x12. To create a selection function for the bits in register x1 equations
(5.4) and (5.5) can be combined.

Si(N, K∗) = νi(κ
∗
0 + 1)+ νi+64 + νi+3(κ

∗
1 + 1)+ νi+67 + νi+25(κ

∗
2 + 1)+ νi+89

(5.6)
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Figure 5.2: Success rate of attack on Ascon bit by bit

Figure 5.2 shows that the success rate of the attack on register x1 approaches
1 at fifty thousand traces, with this attack it is possible to obtain the XOR
x12 between bits from register x1 and x2 which contain the key before the
first round. Since the first attack resulted in the key bits stored in x1 this
can be XOR’ed with x12 to obtain x2. With high success rate it is possible
to obtain the key from Ascon using DPA.

Looking at the remaining output registers of the S-box.

y2 = x4x3 + x4 + x2 + 1
y3 = x4x0 + x4 + x3x0 + x3 + x2 + x1 + x0

y4 = x4x1 + x4 + x3 + x1x0 + x1

We can see that y2 and y3 have no non-linear terms with a key and a nonce
register so they can not be attacked. Register y4 does have a non-linear term
with a key and a nonce register and can be attack. The expression can be
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rewritten in a similar way.

y4 = x4x1 + x4 + x3 + x1x0 + x1

y4 = x4(x1 + 1) + x3 + x1x0 + x1

y4 = x4(x1 + 1) + x3

Since it was already possible to obtain the whole key by attacking register
y0 and y1 register y4 was not attacked. It may be interesting to look at this
later as the leakage is not exactly the same for registers y0 and y1 so this
might also be the case for register y4.

5.3 Minimal required amount of traces

A good way to describe how well a device is protected against DPA is by
looking at how many traces are required to successfully obtain the key. A
way to do this theoretically was proposed in [21]. To calculate a lower bound
on the required number of samples they used the distance between the dis-
tributions where the correlation ρ = 0 and ρ = ρmax. The following equation
was derived:

S = 3 + 8

(
Zα

ln(1+ρmax
1−ρmax

)

)2

In the equation Zα is a quantile which determines the distributions of ρ = 0
and ρ = ρmax. The higher α the bigger the distance between the distributions
which results in a higher peak in the correlation. A higher α also means a
higher number of required traces. Next we need a way to compute ρmax. In
chapter 6.3 of [22] a way to compute an estimate of an upper bound of the
correlation is derived.

ρmax =

√
a

a + n
Where a is the number of wires that process the attacked intermediate value
and n is the number of wires that process the other statistically independent
bits. To get this simplified equation some strict assumptions were made but
since an attacker usually does not have more information the result will be
a good estimate of the upper bound of the correlation coefficient.

In the case of Ascon one bit is attacked and the state has a total of 320 bits
this results in ρmax = 0.056. Setting α = 0.9999 should result in a lower
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bound of the number of traces that are used where we can determine the
correct key with high probability. If we compute the lower bound on the
number of traces we get S ≈ 9000. Figure 5.2 shows that the success rate
starts to increase rapidly after approximately 10000 traces. This means that
the calculated lower bound is a bit low but a good estimate to start with.

5.4 Algorithmic and other noise

In the previous section we saw that the estimated lower bound on the required
amount of traces to be able to distinguish between the distributions of correct
and incorrect key guesses was lower than the empirical results from Figure
5.2. This could be because the noise levels are a lot higher in the FPGA that
was used than the noise of the model which may be more applicable to an
actual ASIC.
In [6] they show how to compute the theoretical success probability from the
total number of bits in the state, the number of key guesses and the amount
of traces that are used. This is done by modeling the algorithmic noise and
the power consumption of a chip. To compute the success probability of
this model the difference of means of the modeled power consumption of the
correct and incorrect key hypotheses is computed.

Gh(σ
2) =

∫ ∞

0

(
er f
(

t√
2σ

))h−1 (
N(−1;σ2)(t) +N(1;σ2)(t)

)
dt

Psuccess = Gh

(
b
|M|

)
Where h is the number of key hypotheses, b is the number of bits in the state
and |M| is the number of traces that are used. This is based on a difference
of means attack but correlation power analysis on one bit is equivalent.

In Figure 5.3a we see that the theoretical success probability of a state with
1300 bits follows the success rate from the attack oon register x0 very closely.
This means that the algorithmic noise 320/1300 ≈ 0.25 is approximately
25% and the rest of the noise is 75%. For register x1 this is the case with
b = 1000 and this results in algorithmic noise of 320/1000 = 0.32 is 32% and
the rest of the noise is 68%. In both results the amount of algorithmic noise is
low. The total amount of flip-flops in the implementation is lower than 1000
which means the FPGA generates a lot of noise other than algorithmic noise.
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(a) Noise for register x0 (b) Noise for register x1

(c) Noise for register x0 with averaging (d) Noise for register x1 with averaging

Figure 5.3: Success rate with the algorithmic noise
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We saw that a lot of the generated noise is noise other than algorithmic noise.
Other noise that is present is electrical noise. We assume the electrical noise
is Gaussian which makes it possible to reduce it by averaging over a set
amount of traces with an equal input.
In this case the traces were averaged over fifty equal inputs and the result
can be observed in Figure 5.3c and 5.3d. Both figures show that the success
rate is a bit higher for the same amount of traces. The result is still not close
to the theoretical curve where the state contains 320 bits. This means that
other than the theoretical algorithmic noise and electrical noise there is a lot
of other noise still present in the power trace. The causes of this unknown
noise require more research to be determined.
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Chapter 6

Differential Power Analysis on
TI of Ascon

6.1 Introduction

The threshold implementation used in the experiment is a VHDL implemen-
tation which runs on the Sakura-G board which contains a Spartan-6 FPGA.
The oscilloscope that is used during the experiment is a Teledyne Lecroy Wa-
veRunner 610Zi. The TI uses three shares which are initialized by a python
script and send to the FPGA. The used sampling rate is 250 million samples
per second which resulted in 2502 samples per trace.

6.2 Selection Function

An internal state of 320 bits will have a lot of algorithmic noise. When using
a state of this size the theoretical amount of traces required to successfully
obtain the correct key is infeasible [6] as it might require an amount of traces
in the order of a billion. To be able to obtain the correct key with a feasible
amount of traces it was required to reduce the amount of algorithmic noise
by decreasing the size of the state. In Ascon the state consists of five 64-bit
registers, to reduce the amount of algorithmic noise the size of the registers
are decreased to 4-bit registers each. In total the state consists of 20 bits
and with three shares there are 60 bits.
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This change does not affect the substitution layer of the round function from
the algorithm. The round constant is changed to the following where i is the
round number starting from 0.

x2 = x2 ⊕ (0xF− i ∗ 0x1)

The linear layer is also affected, the rotations are computed modulo the size
of the registers and result in the following expressions.

Σ0(x0) = x0 ⊕ (x0 ≫ 3)⊕ (x0 ≫ 0)
Σ1(x1) = x1 ⊕ (x1 ≫ 1)⊕ (x1 ≫ 3)
Σ2(x2) = x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 2)
Σ3(x3) = x3 ⊕ (x3 ≫ 2)⊕ (x3 ≫ 1)
Σ4(x4) = x4 ⊕ (x4 ≫ 3)⊕ (x4 ≫ 1)

Since 28 mod 4 = 0 the two XOR’s cancel each other out and result in a
shorter linear expression.

Σ0(x0) = (x0 ≫ 3)

To attack the x0 register we can combine Equation (5.2) from the attack on
the unprotected implementation and Σ0(x0) to obtain a selection function.

Si(N, K∗) = κ∗0(νi+5 + 1) + νi+1

The equation contains only one key bit, as a result there are two key candi-
dates in the attack.

To attack register x1 we can combine Equation (5.5) again from the previous
attack on the unprotected implementation and Σ1(x1). This results in the
following selection function.

Si(N, K∗) = νi(κ
∗
0 + 1) + νi+4 + νi+3(κ

∗
1 + 1) + νi+7 + νi+1(κ

∗
2 + 1) + νi+5

This equations contains three key bits and as a result there are eight key
candidates to be considered in the attack.

Since the implementation is protected with a threshold implementation the
mean of the power consumption of the two sets for each key candidate will
be equal and a first-order attack with distinguisher like difference of means
or the Pearson correlation will not work. As a consequence we need a higher
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order distinguisher, since the implementation uses three shares a third order
distinguisher is required. In this attack we will use the difference of skewness
for this, Section 3.3.6 describes the definition and how it is computed for a
large data set.

First we ran the attack for register x0, after 3.4 million traces this resulted
in a peak on the first clock cycle for the wrong key candidate. This was
strange but as there are only two candidates so this is also the complement
of the bit-value of the key candidate, this may also leak so we decided to
continue to register x1 and see if there was similar behavior. After over 33
million traces there was still no distinctive peak on the correct clock cycle
for the correct key candidate or it’s complement. Next we decided to collect
new traces but instead of initialized the shares randomly we initialize them
with zeros. Since there was no protection anymore a first order attack should
suffice to obtain the correct key candidate. This was not the case, on the
correct clock cycle for the correct key candidate there was a peak but there
were also higher peaks on different clock cycles for incorrect key candidates.
To verify that the attack was working we did a simulation of the first twelve
rounds of Ascon which is the initialization part.

We modeled the power consumption similar as in [6] but instead of the Ham-
ming distance model the Hamming weight model was used to model the
contribution of the values in the registers to the power consumption. If a
bit is 0 it contributes +1 to the power consumption and if a bit is 1 it con-
tributes -1. A bit in the state of Ascon can be represented by three bits in
the threshold implementation, for 0 there are 000, 011, 101 or 110, for 1 there
are 111, 001, 010 or 100. Since the threshold implementation is initialized
randomly the occurrence of each triplet is also random so for each bit in the
state we compute the power consumption each round in the following way,
if a bit in the state is 0 either all three registers are 0 contributing +3 to
the power consumption or 1 bit is 0 and 2 bits are 1 which contributes -1
to the power consumption. The contribution of +3 has probability 1/4 and
-1 a probability of 3/4. If the bit is 1 either all three registers are 1 which
contributes -3 to the power consumption or 1 register is 1 and 2 are 0 which
contributes +1. The contribution of -3 has a probability of 1/4 and the con-
tribution of +1 has a probability of 3/4. This results in a mean of 0 and a
variance of 3. The resulting power trace contains 12 samples, one for each
clock cycle.
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(a) Simulation of Ascon for register x0 (b) Simulation of Ascon for register x1

Figure 6.1: Simulation results for Ascon TI with 20 bit state

Figure 6.1 shows the result of the attack on the simulated traces for register
x0 and x1 where the difference of skewness was used as a distinguisher. From
both figures can be observed that it is possible to obtain the correct key
candidate with the attack. For register x0 150.000 traces were required and
for register x1 900.000. This result shows that the attack on this smaller
threshold implementation of Ascon is not the issue with the traces from the
FPGA. Why it does not work on traces collected with an FPGA is not clear,
but during the synthesis of the VHDL code for the FPGA many things can
happen so to find out exactly why the attack did not work more research
should be done on the implementation of the FPGA.
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Chapter 7

Differential Power Analysis on
MAC-Keccak

7.1 Introduction

MAC-Keccak is an instance of Keccak where a message authentication code
is computed using the Keccak function. In this case the key and the message
are appended and then hashed. This is done using Keccak-f[1600] with a
capacity of 576 and a rate of 1024. The key is 320 bits and is initially stored
in the plane where (y = 0). The remaining 704 bits are used the for message.
If the key and the message is larger then the block size more blocks can be
inserted but in this case we use a message size which when appended to the
key results in exactly one block.

In section 4.1 we saw it is possible to attack the linear part θ of the Keccak
round function with an implementation on an FPGA. Since the chip contain-
ing the Keccak function is available on the chip from the SHA-3 competition
we execute the same attack as [20]. During the collection of the traces the
SASEBO-R board is used with the SHA-3 chip. The oscilloscope that is used
during the experiment is a Teledyne Lecroy WaveRunner 610Zi. The chip
produces a block wave to display that the core is operating which is used as
a trigger for the oscilloscope. A sampling rate of 1 billion samples per second
is used which results in 2002 samples per trace.
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7.2 Selection Function

In this attack part of a sheet shown in Figure 2.2 is used as a sensitive
variable. Since in plane (y = 0) the key is stored we look at the four lanes
where that do not contain key material and eight columns in the lane of a
sheet. Because of the parity computation this leads to key 16 bits in the
selection function. As a leakage model the hamming weight model is used.

θ(x, y, z) = A(x, y, z) +
4

∑
y′=0

A(x− 1, y′, z) +
4

∑
y′=0

A(x + 1, y′, z− 1) (7.1)

From equation (7.1) we can see that if y > 0 there are two key bits in the
result, key bit A(x − 1, 0, z) and A(x + 1, 0, z − 1). Since this is an XOR
between the two bits it is not possible to distinguish between them during
the attack, as a result only their combination can be found for each result of
theta from a different column. In the attack we use the Hamming weight of
four lanes and eight columns of a sheet, this results in the following selection
function.

i+l−1

∑
z=i

4

∑
y=1

HW(θ(x, y, z))

Where i ∈ {0, .., 63}, l ∈ {1, .., 64} and x ∈ {0, .., 4}. In this experiment
we use l = {8, 4, 2, 1} to increase the correlation but still have a manageable
amount of key candidates of 256, 16, 4 and 2 respectively. We attack different
sizes of the intermediate value to try to show that the correlation value
increases if a larger size of intermediate value is used.

7.3 Results

Figure 7.1 shows the result of the attack on MAC-Keccak with different sizes
as intermediate value. The graph is zoomed in on the y-axis because the
differences in the correlation values are very small. In Figure 7.1a we can
see that the correlation values of the key candidates converge, even though
the correct key candidate does not have a much higher correlation compared
to the incorrect key candidates it shows that after after 600.000 traces the
correct key candidate always has the highest correlation value. To obtain
a similar convergence for smaller sizes of the intermediate value it is likely
that more traces are required. As we can see in Figures 7.1b, 7.1c and 7.1d
the correct key candidate does not yet converge to a higher correlation value
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(a) (b)

(c) (d)

Figure 7.1: Correlation plot of MAC-Keccak for different sizes of the inter-
mediate value
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compared to the incorrect key candidates.

This shows that a larger intermediate value is more efficient when we look at
the amount of traces that are required to obtain the correct key candidate.
A larger intermediate value influences the amount of unknown key bits in the
intermediate value and increases the search space and computational time to
obtain the correct key candidate. Finding the right size for the intermediate
value is a trade-off between efficiency in power traces and computational
time. Which is more important is different for each situation. As computers
are fast and collecting many traces is easy it is often not necessary to find
the perfect trade-off as a good trade-off will also result in a successful attack.
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Chapter 8

Differential Power Analysis on
Keccak

8.1 Introduction

In this experiment we attack the non-linear part of Keccak called χ. The
traces are generated by an ASIC containing the five finalists of the SHA-
3 competition which is mounted on a SASEBO-R board and controlled by
an FPGA. The ASIC has Keccak-f[1600] implemented with a rate of 1024
and a capacity of 576. The state is initialized with zeros, next the key is
absorbed and 24 rounds of Keccak-f are applied as specified in Section 2.5.
Then the message is duplexed into the state and again 24 rounds of Keccak-f
are applied on the state. The traces are collected using a Teledyne Lecroy
WaveRunner 610Zi. The oscilloscope is set a sampling rate of 1 billion sam-
ples per second which results in 2002 samples per trace.

In Figure 8.1 we see the oscilloscope with the SASEBO-R board. The black
square on the top left corner of the SASEBO-R board is the mounted SHA-3
ASIC. In the bottom right corner we see power supply for the ASIC and the
board.
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Figure 8.1: The setup for capturing traces with the Sasebo-R and the SHA-3
chip
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8.2 Selection Function

In this attack we focus on a single bit of the 1600 bit state of Keccak and a
row of 5 bits as shown in Figure 2.2. The attack on a single bit is equal to the
attack on the simulation in [6] where the non-linear part χ is attacked. The
first round after the data is absorbed is our point of attack. At this point
it is possible to compute an intermediate value containing parts of the data
and parts of the state which contains the key. To compute the hypothetical
power consumption we use the Hamming distance model.

We know Keccak-f consists of five steps ι, χ, π, ρ and θ. Let’s call the linear
part of the round function λ = π ◦ ρ ◦ θ. From Section 2.5 we know χ is
defined as follows.

χ(a(x,y,z))← a(x,y,z) + (a(x+1,y,z) + 1)a(x+2,y,z)

The linear part can be computed separately for different data like the input
and the key state after the absorption of the key and XOR’ed later to combine
them before χ. This way the input of χ can be split up into bits from the
key state and bits from the input message.

χ(a0)← k0 + m0 + (k1 + m1 + 1)(k2 + m2)

Where m∗ are the message bits of the output of λ and k∗ are the bits from
the key state after λ. We are interested in the activity d of the register where
the bit is stored.

d = a0 + k0 + m0 + (k1 + m1 + 1)(k2 + m2)

d = a0 + k0 + m0 + k1k2 + m1k2 + k2 + m2k1 + m2m1 + m2

d = a0 + k0 + (k1 + 1)k2 + m0 + (m1 + 1)m2 + m2k1 + m1k2

The result of a0 + k0 + (k1 + 1)k2 is equal for each trace and contributes a
constant amount to the activity so it can be removed. This results in the
following selection function.

S(M, K∗) = m0 + (m1 + 1)m2 + m2k∗1 + m1k∗2

The selection function contains two key bits which means there are four key
candidates.

In the previous attack we needed to guess two key bits for one bit of the
state, if we extend this attack to a full row of five bits we also need to guess
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five key bits which makes the attack more efficient. Below we can see the
resulting selection function.

S(M, K∗) = m0 ⊕ (m1 + 1)m2 ⊕m2k∗1 ⊕m1k∗2
+ m1 ⊕ (m2 + 1)m3 ⊕m3k∗2 ⊕m2k∗3
+ m2 ⊕ (m3 + 1)m4 ⊕m4k∗3 ⊕m3k∗4
+ m3 ⊕ (m4 + 1)m0 ⊕m0k∗4 ⊕m4k∗0
+ m4 ⊕ (m0 + 1)m1 ⊕m1k∗0 ⊕m0k∗1

This selection function uses five key bits which results in 32 key guesses and
uses five bits from λ(M).

While this selection function seems to be correct at first glance it is not as
the model for the power consumption is the Hamming distance and for each
register this computes if the register flips or not, but we do not know which
of the two. While for 1 bit this is fine, for 5 bits this does not work as the
set is not split up properly since flipping of the register and not flipping of
the register gets mixed up.

8.3 Results

In Figure 8.2 we see the results for the attack on a single bit of the Keccak
state after the first round the message is absorbed. After approximately 1.3
million traces the correct key candidate is the one with the highest correlation
coefficient. The differences values between the correct and incorrect key
candidates is very small but the correct key candidate is clearly on higher
then the rest. Compared to the results in the theoretical model on of the
same attack, the attack on the ASIC requires many more traces. Where the
theoretical model required around 10 thousand traces the ASIC required over
a million.
The result for the attack on row of 5 bits of the state is omitted as the current
selection function is not correct so the results would have no meaning.
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Figure 8.2: Correlation plot for CPA on 1 bit of the Keccak state
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Chapter 9

Future Work

While working on this thesis different things were researched and unfortu-
nately not everything could be covered in the amount of time there was.

During our research on Ascon we tried to find out how much the electrical
noise affects the success rate of the attack. We were able to quantify the
algorithmic noise using a model and we tried to reduce the electrical noise
to see if the success rate would be according to the model which it was not.
This means there is a lot of other noise in the signal which we could not
explain according to the model. To determine where this noise comes from
more research is required.

Our attack on the threshold implementation of Ascon did not work while
the attack on the simulated traces did work which means the attack works.
Since the implementation if very small and we do not really know what hap-
pens inside the FPGA cause by the synthesizer we could not explain why the
attack did not work but we believe it was caused by this. To fully explain
why it did not work more research in required.

While the attack on 1 bit of the state of Keccak was successful the attack
on 5 five unfortunately was not as the attack on 1 bit could not easily be
extended to more bits. An attack on would be more efficient compared to
an attack on 1 bit, this makes it interesting to get a working attack but to
accomplish this more research in required.

Even though the attack on 1 bit of the state of Keccak was successful, the
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amount of traces that were required were much higher compared to the at-
tack on the model. The model [6] only takes algorithmic noise into account
and the results show that there is a lot of other noise as well. More research
is required to create a model closer to the reality.

For the results for Ascon we were able to compute the success rate as it did
not require too many traces. With the attack on the ASIC with Keccak
the positive result required many traces and to compute the success rate it
would require many more. For this reason we decide to plot the correlation
values instead of the success rate. With more time it would still be possible
to compute the success rates for these attacks.
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Chapter 10

Conclusion

With our attack on Keccak we were unfortunately not able to compute the
success rate due to the high amount of traces that were required. The imme-
diately answers our first research question: Does DPA on Keccak hardware
implementations follow the theoretical success rate of obtaining the correct
key? It does not, the model which was used only takes algorithmic noise into
account and this shows there is a lot of noise in the signal as well.

In [6] a generalization was shown for quadratic functions, since Ascon also
has quadratic component in its round function. We applied the generaliza-
tion on the round function of Ascon and we were able to successfully craft an
attack. So it is possible to use the same techniques for Keccak on Ascon for
their non-linear parts. The reason it works is likely because the non-linear
part in Ascon is a variation of the non-linear part in Keccak.

During our research on Ascon we tried to reduce the electrical noise by com-
puting the average over traces with an equal input. This resulted in a slight
increase of the success rate but much lower then expected. So the reduction
of the electrical noise does not affect the success rate of the attack on Ascon
implemented on an FPGA very much.

With the attack on an unprotected implementation of Ascon being successful
we also tried to attack an implementation protected with a threshold imple-
mentation. Looking at the model in [6] we decided to reduce the size of the
state of Ascon which reduces the algorithmic noise as the complete state of
320 will likely take billions of traces to attack. With the smaller implementa-
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tion with a 20 bit we were not able to successfully craft an attack. There were
strange peaks on different clock cycles for different key candidates which we
could not explain. For this reason we simulated traces and attacked those,
we were able to attack the simulated traces which shows the attack works.
We can’t fully explain why it did not work but it is likely that the VHDL
code is not the as what happens in the FPGA.

In this thesis we attack two parts of Keccak, the linear and the non-linear
part. As expected the linear part required more traces to obtain the correct
key candidate. Unfortunately we were not able to compute the success rate
due to high amount of traces that would be required for this.
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