RADBOUD UNIVERSITY NIJMEGEN

Master’s Thesis Computer Science

Fuzzing the GSM Protocol

vy Brinio Hond

Supervisors:
Thesis number: 654 ir. Stan Hegt]"|
Date: July 29, 2011 ir. Ronald Heil"}

dr.ir. Erik Poll9

2Advisor ICT Security & Control at KPMG
bManager ICT Security & Control at KPMG
©Associate Professor Digital Security at Radboud University Nijmegen

ii

Abstract

In our current society GSM can be considered a critical infrastructure as it is
used by over 3.5 billion people worldwide. And even though the protocol is
already over twenty years old most serious scrutiny on it stems from the last
couple of years. This is due to the rapid evolution of Software Defined Radio
(SDR) five years ago, which allowed most of the signal processing to take place in
software instead of hardware. Several open source projects emerged that used
the principle of SDR to implement a GSM stack in software using relatively
cheap radio hardware.

In this thesis one part of the security of GSM is analysed using an SDR based
on the open source project OpenBTS and a hardware device called USRP-1.
With a technique called protocol fuzzing the robustness of the implementation
of the GSM protocol on different cell phones is tested. In this thesis it is first
described which parts of the protocol stack are most suitable for fuzzing, as
well as which fields in GSM communication are most likely to result in strange
behaviour on the receiving end. Then this theory is put to the test and two
parts of the GSM stack (SMS and Call Control) are fuzzed on actual cell phones.
Using a test set of just over 900 messages seven out of sixteen tested phones could
be caused to reboot remotely. On two smart phones it was possible to cause a
Denial-of-Service on receiving SMS messages until the phone was switched off
and back on. Even though the discovered attacks can not be sent over real,
commercial networks they serve to illustrate how vulnerable most phones are.

iii

iv

ABSTRACT

Acknowledgements

First and foremost I would like to thank my supervisors Erik, Stan and Ronald.
Thank you for all the time you put into helping me with problems I encountered,
giving me suggestions to improve both my research and this document and
providing me with feedback regarding everything I wrote.

My gratitude also goes out to Fabian van den Broek and Ronny Wichers
Schreur, who built the fake basestation at the university and helped me out
with any technical problems on the way.

I also want to thank those that lent or donated me phones for this research.
Bram, Erik, Fabian, Ineke, Pieter, Ronald, Ronald, Ronny, William and others
from ICIS whom I missed in this list, thank you all. My thanks also go out to
Lejla for watching over the key.

Last but not least I would like to thank everyone from KPMG team ISC for
the great time I had there during my graduation. Their openness, professional-
ism and great social skills made the time fly every day again. I had such a blast
that I took the opportunity to work there after graduation with both hands.

vi

ACKNOWLEDGEMENTS

Contents

[Abstract]

|Acknowledgements|

[L__Introduction|

1.2.2 Scopel

[2.1.1 Mobile Station (MS)[.
[2.1.2 Base Station Subsystem (BSS)|
[2.1.3 Network Switching Subsystem (NSS)|.

2.2 Uminterfacel

[2.2.1 Physical Layer| 0oL
[2.2.2 Data Link Layer|

............................

3 Introduction to protocol fuzz testing|

4 Considerations on GSM protocol fuzzing|

[4.1 Fuzzing on the GSM (sub)layers|
[4.1.1 Fuzzing the Physical Layer|
[4.1.2 Fuzzing the Data Link Layer|
[4.1.3 Fuzzing Layer 3|. oL

4.2 GSM protocol fuzzing strategy and tooling|
[4.2.1 Fuzzing SM5Sand CC|
[4.2.2 Protocol tuzzing tool|

vii

iii

10
11
11
11
12
12

17
17
18

viii CONTENTS

[Practical protocol fuzz testing on GSM cell phones| 27
b.1 Scrutinised cell phones| oo 0oL 27
b.2 Summary of the results| 27

B2T Tcond. . . 28
B22 Nonotification] L. 29
5.2.3 Read memory|. 29
B24 Rebootl . . . v ot 30
5.2.5 Unable to delete messages| 31
9.2.6 Long time DoS| oo 0oL, 31

6 Future Workl 33

[T_Conclusion| 35
[7.1 Interesting observations| 35
[7.2 Summary and conclusions| oo 36

|A Details of the GSM protocoll 37
IA.1 Um interface detailsl 0. 37

|A.1.1 Physical Layer| 37
IA.1.2 Data Link Layer| 40
............................ 40
|A.2 Layer 3 message format| 41
1A.2.1 GSM Layer 3 message basics| 41
IA.2.2 Layer 3 message header| 42
IA.2.3 Layer 3 message body| 44

[B Protocol fuzz testing in depth| 47

IB.1 Ornginal tuzz testing| 48
IB.1.1 Black box tuzz testing| 48
IB.1.2 White box tuzz testing|. 49

IB.2 Existing protocol tuzzing tools| 51
B2I SPIKEl. . . . 51
............................. 51
IB.2.3 mangleme|o oo 51

IB.3 Fuzzing tools and GSM| oo 52
IB.3.1 Pickingatool. 0. 52

|C Fuzz test generator| 53

[D"SMS fuzzing] 55
ID.1 SMS protocol stack|. oo 55
ID.2° 5SMS message delivery process| oL 56
ID.3 SMS message structure]. oL 57

ID.3.1 SMS Connection Management sublayer and CP messages| 57

ID.3.2 Short Message Relay Layer and RPDUs| 58

ID.3.3 Short Message Transfer Layer and TPDUg|. 60

ID.3.4 Short Message Application Layer| 62
[E_Call Control fuzzing) 65
.1 Call setup message sequence|. 65

[E2 Call setup message structures|o ... 66

CONTENTS

[’ _Fake base station|

|G Details of the fuzzing results|

|G.1 Icons for special SMS messages|

G2 HTC. ...

I(I ; I L;(1II—3;§§iji“

G.0.2 SGH-DH00l

(G533 Galaxy S|o

IG.6 Sony Ericsson|

(c.6.1 T630i

ix

69

71
71
71
71
72
72
72
72
72
72
73
73
73
73
73
73
74
74
74

77

81

CONTENTS

Chapter 1

Introduction

Hacking the Global System for Mobile Communication (GSM) is hot. Although
the protocol was already published in 1990 by the European Telecommunications
Standards Institute (ETSI) [I] most attacks on GSM date from the last few
years. This is strange, especially considering the fact that GSM has grown
incredibly fast. The first GSM network was online in 1991 and in 1994 GSM
already had one million users. In 2004 GSM over one billion people used GSM,
with the latest numbers being nearly three and a half billion users worldwide in
2009 (see Figure . For reference, the number of Internet users was only just
over two billion in March 2011 [2].

One of the main reasons GSM was mostly left alone by security researchers
is because it was simply too expensive to attack practically. Third party equip-
ment that is accurate enough for GSM communication was expensive, while it
was unknown how to use equipment designed for GSM communication (i.e. cell
phones) in ways not specifically allowed by the vendors (e.g. sniffing or sending
custom data). In addition people were unfamiliar with the protocol. The GSM
protocol specification consists of nearly two thousand documents, each being
anywhere from a dozen to over six hundred pages long. And last but not least
the GSM implementations on nearly all cell phones were (and still are) closed
source, so these could not be used to learn more about the protocol.

Of course the above problems did not stop all researchers and some flaws
in different parts of the GSM protocol were revealed as early as the end of the
90’s. Two of the most significant flaws of GSM that were already discovered
back then are the stream cipher that is still used in most GSM networks (called
A5/1) and that only the cell phone is authenticated when connecting to a GSM
network while the network is not. However, practical attacks to exploit these
issues were not found at that time.

In the last couple of years Software Defined Radio (SDR) started to emerge,
which allows a large part of the signal processing involved in radio communi-
cation to be handled in software instead of hardware. This not only allowed
software experts to enter the world of radio communication, but also made the
equipment with sufficient accuracy that is required for GSM traffic a lot cheaper.
As a result several open source projects have emerged to implement parts of the
GSM network based on the principle of SDRs. These community efforts provide
a lot of insight into the GSM protocol and have also enabled researchers to
discover and implement practical attacks on GSM, although that was not the

2 CHAPTER 1. INTRODUCTION

Figure 1.1 Development of GSM connections over the years. Data taken from
the GSM Association [3 [].

GSM connections

10.000.000.000

w

c

K=l

5 100.000.000 -

g

c

o 1.000.000

Q ’
E

3 10.000

%5 / =4-GSM connections
5 100

£ /

= Le

1990 1995 2000 2005 2010

Year

main purpose of these projects.

There are two independent open source SDR projects that both aim to be a
complete GSM network: OpenBTS [5] and OpenBSC [6]. These projects allow
anyone to run their own GSM network for calls and Short Message Service
(SMS) on relatively cheap SDR devices (starting at around €1500), but can
be also used for GSM security reviews. One possible attack is to mount a
man-in-the-middle attack against a real network to control all communication
between the cell phone and the network and attack confidentiality, integrity
and availability. This is possible due to the lack of mutual authentication in
GSM. Besides these two GSM network implementations there is also an open
source solution for certain cell phones called OsmocomBB [7]. OsmocomBB can
completely replace the commercial closed source firmware and thus allows the
user to have a cell phone running open source software only. Besides this goal
OsmocomBB has also been successfully used to implement an attack to sniff
on GSM communication. Using a few cheap cell phones with OsmocomBB, a
desktop computer and rainbow tables of two terabytes in size it is possible to
crack the session key of the A5/1 cipher in less than five seconds [§], subverting
the confidentiality of GSM.

The above attacks focus on weaknesses in the GSM protocol itself, but there
is another point at which security issues can be introduced in the GSM equip-
ment: the implementation of the protocol. The specification with its tens of
thousands of pages is hopelessly large and some parts are very complex as well.
This large pile of paper describes many different features of GSM, with a large
part of those features unknown by most and barely ever used. An example of
these obscure features of GSM is sending a fax or email over Short Message
Service (SMS). Because of the sheer amount of features and room for future ex-
tensions in all aspects of GSM it is highly likely programming errors occurred in
the implementation, which can be exploited by an attacker for Denial-of-Service
(DoS) attacks or possibly even worse (for example remote code execution in case
of a buffer overflow).

1.1. RELATED WORK 3

The focus of this research is exactly these programming errors introduced
when implementing the protocol specifications. Through the use of a technique
called protocol fuzzing programming errors in GSM protocol implementations
in commercial cell phone brands can be identified, giving an indication of the
robustness of GSM implementations. This research describes how this protocol
fuzzing can be done on GSM, from which hardware and software is required
to do this, up to which parts of the protocol are most interesting to fuzz and
how this can be done both efficiently and thoroughly. These ideas are then put
to the test using a fake basestation, made with a USRP-1 in combination with
OpenBTS, to fuzz sixteen different cell phones on parts of the SMS protocol
and Call Control (CC) service. A total of just over 900 test cases generated by
us were executed on all phones and with this test set we could induce a remote
reboot on seven and an SMS DoS on two phones.

The remainder of this chapter is organised as follows. First related work
regarding protocol fuzzing attacks on the GSM protocol is described, followed
by a section on the contributions and scope. In the third section the research
methodology is described. Section 4 discusses the relevance of this research and
the final section of this chapter describes the organisation of the rest of this
thesis.

1.1 Related Work

Due to the popularity of GSM has become a popular topic for research now that
equipment is affordable and widely available. Many different aspects of GSM
have been scrutinised, from protocol specifications and encryption algorithms
to implementations of certain features on the handsets and in the network. This
research focuses on the implementation of GSM, but is not the first to do so.

Two basic attacks on the robustness of an implementation exist, one based
on source code review and the other based on testing. Because most cell phone
Operating Systems (OSs) are closed source the former is difficult to realise and,
to the best of our knowledge, has not been performed on commercial cell phones
by independent researchers. The attacks taking the latter approach were mostly
fuzzing attacks, since that is a well-known way to test robustness of software
(see also Chapter [3).

Protocol fuzzing on GSM has a problem that has to be overcome. Making
calls or sending SMS messages over a commercial network costs a fee. The fee is
small for a single call or message, but protocol fuzzing usually requires a large
test set making it add up very rapidly. As a result all previous research on
GSM protocol fuzzing used some way to get the messages to the phone without
having to pay a fee, either by using a private network or otherwise.

One of the first robustness tests of GSM dates from 2006. Mulliner and Vigna
used protocol fuzzing on the Multimedia Messaging Service (MMS) feature of
GSM [9]. MMS is an extension to SMS for the exchange of multimedia content.
When an MMS message is sent the recipient receives an SMS message with a
Uniform Resource Identifier (URI) to a server where the MMS content can be
retrieved from using the Wireless Application Protocol (WAP). Mulliner and
Vigna built a virtual (malicious) MMS server using open source software and
retrieved content from it on different cell phones. They found several weaknesses
in various implementations, among others buffer overflows in the Synchronised

4 CHAPTER 1. INTRODUCTION

Multimedia Integration Language (SMIL) parser, the part that takes care of the
presentation of the content on the cell phone to the user. Some of these buffer
overflows could be used for arbitrary code execution, which resulted in a proof
of concept of “... the first [exploit] to perform a remote code execution attack
against a mobile phone using an MMS message as the attack vector” [9].

In 2009 Welte presented three ways how one could perform protocol fuzzing
on GSM [I0]. The first approach is to use a cell phone to fuzz the network.
This requires full access to the radio part of the GSM phone, which was not yet
possible at that time (but is now with the OsmocomBB project). The second
approach uses a rogue network endpoint (called basestation) to test the cell
phone, which can be achieved with OpenBTS or OpenBSC. This is also the
strategy of choice for this research. The last approach works by using a proxy
between the basestation and the rest of the network to inject messages to test
both cell phone and the network. This could be done using a combination of
Scapyﬂ an interactive packet manipulation program, and OpenBSC.

Another target of earlier GSM protocol fuzzing has been SMS. Mulliner and
Miller targeted SMS on smart phones in 2009 [I1] and Mulliner and Golde tar-
geted the same feature on feature phones in 2010 [I2]. The approach in these
two researches was quite different. To fuzz the smart phones Mulliner and Miller
built a custom injection framework to inject messages on a software level in the
phone itselﬂ They found several DoS attacks for three popular smartphone
0OSs: i0S, Android and Windows Mobile. Mulliner and Golde used the second
approach described by Welte: a rogue basestation based on OpenBSC. Further-
more they used a J 2MEE| application for monitoring on the cell phones. They
found DoS attacks for six different popular feature phone brands using SMS
messages that can even be sent over commercial (real) networks. After consul-
tation with the phone manufacturers Mulliner and Golde did not publish the
actual messages that cause the DoS.

1.2 Contributions and scope

1.2.1 Contributions

This research presents a way to use protocol fuzzing on GSM enabled devices (i.e.
cell phones) using a fake basestation made with a USRP—lEl The USRP-1 made
it possible to send arbitrary messages using OpenBTS from a notebook hooked
up to the Universal Software Radio Peripheral (USRP) to any connected phone.
The research question that formed the basis for this research is the following:

On which parts of the GSM protocol can protocol fuzzing be used
to cause unexpected behaviour of a Mobile Station?

The following contributions are made in this research:

Thttp://www.secdev.org/projects/scapy/

2Note that this was an approach not foreseen by Welte in his presentation.

3Java 2 Platform, Micro Edition; a Java platform designed for embedded systems like
mobile devices.

4http://www.ettus.com

http://www.secdev.org/projects/scapy/
http://www.ettus.com

1.2. CONTRIBUTIONS AND SCOPE)

e It is described which layers, sublayers and services of the GSM protocol
are interesting targets for protocol fuzzing and how this could be done
(Chapter [4).

e The messages for two of these services (SMS and CC) are described in
detail, including pointers to which fields in messages are most likely to
trigger unexpected behaviour (Chapter [4f and Appendices |E|, and .

e A working proof of concept was built for easy creation of GSM protocol
fuzz test cases that fuzz the aforementioned fields that are most interest-
ing.

e We are, to the best of our knowledge, the first to use OpenBTS for GSM
protocol fuzzing and extended OpenBTS version 2.6.0 to allow fuzzingﬂ

e We generated just over nine hundred test cases for a practical analysis of
sixteen cell phones. For nine of the sixteen phones strange behaviour on
certain messages was found and the fields that cause this are discussed.
Most of these messages can only be sent when controlling the basestation
and are thus academical in nature. However, they serve to illustrate the
potential of these kind of attacks and how much effort cell phone manu-
facturers put into robustness of their products.

1.2.2 Scope

In this research protocol fuzzing is only used against cell phones. There were
two reasons why it was not used against networks:

1. Commercial basestations are not our property and attempting to hack
or disrupt them without permission is unlikely to be allowecﬂ It was
also deemed unlikely that GSM providers would grant us permission to
find weaknesses (that would get published) in their commercially used
basestations.

2. OpenBTS and OpenBSC are not based on implementations of real com-
mercial basestations, thus fuzzing them would not grant us insight in how
a real basestation would respond to invalid messages. In addition they
are still under development and at least OpenBTS does not handle most
encountered errors gracefully (i.e. simply shuts down with an assertion
failure).

Another scoping decision was that of which layers of the SMS protocol are
fuzzed. In [12] the Short Message Application Layer (SM-AL) was fuzzed ex-
tensively, so we did not fuzz this SMS layer.

Last but not least for the practical part of this research we were dependent
on donations of cell phones, otherwise it would cost too much. As a result
mostly older types of phones could be tested, but a couple of smart phones are
included as well. Even though older, ‘dumb’ phones are not used often anymore,

5We had access to a USRP-1, which is only supported by OpenBTS.

6We did not look deeply into the legal issues this would cause, but our guess is that it
is not forbidden by criminal law, but could be covered by the Terms and Conditions of the
telecom provider.

6 CHAPTER 1. INTRODUCTION

they pose the biggest threat. Most of these phones can not have their firmware
updated. And even if they can, they have no means to notify the user that an
update is ready. In addition performing an update requires the user to hook up
the phone to a computer to perform the update. This means that the problems
are unlikely to ever be fixed on all older phones. Smart phones on the other
hand can often be updated more easily, either with over-the-air update methods
or simply using the Internet connection.

1.3 Research methodology

e Literature study. We try find out as much as possible about GSM, protocol
fuzzing and the combination of the two. For the GSM standards the most
recent release (at the start of this research in February 2011) was used.
Even though GSM is not explicitly named in the title of this release, it
still contains information to which GSM should comply as Welﬂ

e Proof of concept. We build a proof of concept implementation for a pro-
gram to generate fuzz tests. In addition we extend the current OpenBTS
version (2.6.0) with methods to send GSM arbitrary Layer 3 messages
specified in raw hexadecimal format.

1.4 Relevance

GSM is a critical infrastructure in many countries and downtime of a network
or user can result in financial losses or even worse. Previous work has shown
that the resilience of cell phones is nothing to write home about and it is likely
that the resilience of networks is just as bad. The tools to test both parts of
the infrastructure are within reach of researchers and thus also of attackers. As
a result it is important that issues are identified and fixed before a malicious
person or organisation exploits them on a large scale.

Despite the introduction of the newer and more secure 3G and 4G protocols
for mobile communication GSM is still widely used. In Q2 of 2009 there were
almost 3.5 billion GSM connections against only just over 0.5 billion 3G con-
nections [4]. In addition few phones offer an option to turn usage of GSM off
completely, which would be the only way to prevent fuzzing attacks on GSM
(since most do not require user interaction from the receiver). And even then
attacks on SMS could still occur, because SMS is a separate protocol and SMS
messages can also be sent over 3G and 4G networks.

1.5 Outline

This thesis is split up in two parts. The main contributions and results are
conveyed in the chapters, while the technical details of this research are discussed
in the appendices. The chapters are organised as follows.

Chapter 2 is a short introduction to GSM with an overview of the network
and the protocol stack. It provides a basic understanding of the part of a
network we attack and what layers, sublayers and services can be distinguished

"See http://www.3gpp.org/Specification-Numbering.

http://www.3gpp.org/Specification-Numbering.

1.5. OUTLINE 7

within the GSM protocol. Chapter 3 is an introduction to protocol fuzzing
and what protocol fuzzing strategies exist. In Chapter 4 it is described which
protocol (sub)layers and services of GSM are interesting targets for fuzzing and
which of the introduced protocol fuzzing strategy was chosen for this research.
Chapter 5 contains the results of protocol fuzzing on sixteen cell phones with six
different types of unexpected behaviour found on nine different phones. Chapter
6 describes future work and this thesis is concluded in Chapter 7.

CHAPTER 1. INTRODUCTION

Chapter 2

Introduction to GSM

This first chapter is dedicated to the Global System for Mobile Communication
(GSM) network infrastructure and protocol stack. This chapter is a only short
introduction to GSM, more details can be found in Appendix [A]

In the first section of this chapter an overview is given of the GSM network
infrastructure. The different subsystems of GSM are briefly discussed, as well
as some of the entities within the network. In the second section a short de-
scription of the air interface between a cell phone and the network is described.
Appendix [A] contains a more thorough description of this air interface, as well
as a description of the messages that are transmitted over the air on Layer 3 of
the GSM protocol stack. These messages will be the target of fuzzing in this
research, as will be discussed in Chapter

2.1 GSM network infrastructure overview

A GSM network (officially called a Public Land Mobile Network (PLMN)) is a
complex infrastructure with many different entities. Each network operator has
its own PLMN in an area and a single PLMN can span an entire country. The
entities in a PLMN are spread over three subsystems, which are called:

1. Mobile Station (MS)
2. Base Station Subsystem (BSS)

3. Network Switching Subsystem (NSS).

An overview of these subsystems and some of the entities within the sub-
systems is given in Figure Only the parts relevant for this research are
shown and described in this section. For more information about the PLMN
infrastructure see [13], [14].

2.1.1 Mobile Station (MS)

The Mobile Station (MS) is what most GSM users are familiar with, since it is
the phone they hold in their hand. An MS is actually the combination of two
parts:

10 CHAPTER 2. GSM

Figure 2.1 Overview of a Public Land Mobile Network (PLMN).

PLMN BSS NSS

Land
networks

1. Mobile Equipment (ME)
2. Subscriber Identity Module (SIM).

The Mobile Equipment (ME) is the cellular phone that is used for incoming
and outgoing calls. The Subscriber Identity Module (SIM) is a small smart
card supplied by the GSM service provider which fits in the ME. The SIM
contains, among others, a (globally) unique identifier called International Mobile
Subscriber Identity (IMSI) that identifies that particular SIM/MSﬂ The SIM
also contains information about the default frequencies used by the provider
that issued the SIM and a symmetric encryption key shared with the provider
that it can use to authenticate to the network and to derive a session key to
encrypt part of the GSM signal travel path (see [15, [14]). Evidently there are
many MSs in a single PLMN.

2.1.2 Base Station Subsystem (BSS)

The Base Station Subsystem (BSS) is the part of the PLMN that connects to
MSs over the air on one end and to the NSS (usually over land) on the other
end. The main purpose of each BSS in a PLMN is exactly connecting the other
two subsystems; it uses several many-to-one interfaces to combine the traffic
of a lot of different MSs that was sent over the air to a single connection to
the NSS. Most, if not all, PLMNs have multiple BSSs, each serving their own
region. Within a BSS two different entities exist:

1. Base Transceiver Station (BTS)
2. Base Station Controller (BSC).

Base Transceiver Station (BTS)

Base Transceiver Station (BTS) is the name for a transceiver on a cell tower.
The BTS is the entity that an MS connects to and is thus the first hop in GSM

81t is important to note that the IMSI is not the same as the phone number (officially called
Mobile Subscriber Integrated Services Digital Network number (MSISDN)). These numbers
are linked by the provider, allowing a user to switch provider (which requires switching the
SIM) but keeping the same phone number.

2.2. UM INTERFACE 11

traffic originating from the MS (called uplink) and the last hop in GSM traffic
terminating at the MS (called downlink).

BTSs are connected over the air with MSs on one hand and with a BSC
over ‘land’ on the other®l The BTS has to take care of all the details of the
radio (air) interface with the MS, like frequencies, voice encoding/decoding (for
compression), multiplexing and ciphering. The air interface between the MSs
and BTS is officially called Um interface and is further described in Section [2:2]

Base Station Controller (BSC)

The Base Station Controller (BSC) is the heart of a BSS and usually serves
many BTSs at the same time. It is concerned with the radio channel setup and
handovers of MSs between BTSs connected to it [14]. Each BSS has exactly one
BSC. Since this entity is not relevant for this research, it will not be discussed
here further.

2.1.3 Network Switching Subsystem (INSS)

The Network Switching Subsystem (NSS) is the core of a PLMN and conse-
quently every PLMN has exactly one NSS. An NSS contains many different
entities, but these are not relevant for this research and therefore will not be
described here. For further reading on the NSS see [13] [14].

2.2 Um interface

In this section the radio interface between the MS and BTS is described: the
Um interface. The name of this interface was picked because it is very similar
to the U interface between the network and a client in a land network (officially
called Public Switched Telephone Network (PSTN), see [16]), but adapted for
mobile communication. The Um interface is based on the bottom three layers
of the Open Systems Interconnection (OSI) reference model [I7] and shown in
Figure From bottom to top the layers for GSM are:

1. the Physical Layer

2. the Data Link Layer

3. Layer ﬂ

Each of these layers takes care of a part of the connection between an MS
and BTS. The following subsections give an overview of the three layers.

2.2.1 Physical Layer

The lowest layer of the Um interface is the Physical Layer, which is specified
n [I8]. This layer serves as an abstraction of the radio communication for the

9Land should not be taken literally, sometimes a microwave directional antenna, is used for
this connection [I4].

10Tn the Open Systems Interconnection model the third layer is called the Network Layer,
but in the GSM standards it is called Layer 3, because it is much more than only a Network
Layer.

12 CHAPTER 2. GSM

Figure 2.2 The OSI and GSM protocol layer stacks.
(a) OSI stack (b) GSM stack

Application Layer

Presentation Layer

Session Layer
Transport Layer Layer 3
Network Layer

Data Link Layer Data Link Layer
Physical Layer Physical Layer

higher level layers. It offers several channels to the Data Link Layer on which
data can be transmitted. The Data Link Layer then only has to specify which
channel and which bits have to be transmitted and the Physical Layer will
ensure that this happens, using error detection/correction and also encryption
when necessary.

A channel in the Physical Layer has two important parameters: frequency
and timing. To make optimal use of the available bandwidth both parameters
can be varied, so traffic of different users can be multiplexed together both in
frequency and time. This is further discussed in Appendix

2.2.2 Data Link Layer

The second layer in the Um interface is the Data Link Layer. This layer is the
interface between Layer 3 and the Physical Layer. Its main purpose is to offer
two optional services to Layer 3, which are specified in [19]:

1. acknowledgements and retransmits

2. segmentation.

When acknowledgements are used at the Data Link Layer messages are re-
transmitted until the receiver acknowledges delivery. This guarantees to Layer
3 that a message will be delivered. Segmentation can be used to deliver Layer 3
messages that are too long to fit into a single Data Link Layer message, allowing
Layer 3 to send messages of arbitrary length. Segmentation can only be used in
combination with acknowledgements.

2.2.3 Layer 3

Layer 3 is the highest layer in the GSM stack. It utilises the services offered by
the Data Link Layer (and thus indirectly also the Physical Layer) to perform
its functions. Layer 3 itself consists of several sublayers, each offering their

2.2. UM INTERFACE 13

Figure 2.3 Layer 3 of the GSM protocol consists of three sublayers.

Connection Management (CM)

Layer 3 Mobility Management (MM)

Data Link Layer Radio Resource (RR)

Physical Layer

own services and having their own responsibilities. The different sublayers are
defined in [20] and depicted in Figure

1. Radio Resource sublayer
2. Mobility Management sublayer

3. Connection Management sublayer.

Each of the sublayers are briefly described below, with a more detailed de-
scription in Appendix
Radio Resource (RR) sublayer

The Radio Resource (RR) sublayer is the bottom sublayer inside GSM Layer
3, which means it forms the basis for the rest of Layer 3. It has as main
purpose the setting up and tearing down of logical channels for point-to-point
communication between the network and a single MS. More on logical channels

can be found in Appendix
Mobility Management (MM) sublayer
The Mobility Management (MM) sublayer is the sublayer that is used to make

sure the network knows exactly in which cell an MS is at any one time. It defines
several different messages that can be used to update the location information
of an MS or connect an MS that is new in the PLMN. Authentication of the
cell phone to the network is also carried out on this sublayer.

Connection Management (CM) sublayer

The Connection Management (CM) sublayer is the name for all services running
on top of the MM sublayer. Six of these services are distinguished in [20] and
depicted in Figure

1. Call Control
2. Short Message Service
3. Location Services

4. Supplementary Services

5. Group Call Control

14

CHAPTER 2. GSM

Figure 2.4 The six services distinguished in the Connection Management sub-

layer.
Call Short Location Supple- Group Broadcast
Message . mentary Call Call

CM Control) Services)

(C) Service (LCSs) Services Control Control
MM (SMS) (SSs) (GCC) (BCC)
RR

6. Broadcast Call Control.

Each of these services are briefly discussed below.

Call Control (CC) is the service GSM was originally designed for: making
and receiving phone calls. CC manages everything related to phone calls,
from call establishment to call tear down and everything in between. It
allows the user to make, accept and hold calls. The specifics of CC can
be found in [21].

The Short Message Service (SMS) was added shortly after the initial re-
lease of GSM and the first SMS message was sent in 1992 [3]. The first
version of SMS allowed the exchange of short text messages between GSM
users, but SMS has gone a long way since then. Not only can SMS be used
to exchange text messages, but at this time pictures, sounds and many
other types of data can be sent over the SMS. The current SMS standards
also allow segmentation of messages that are too long to fit into a single
message, enabling users to transmit much longer messages. Finally SMS
is no longer only linked to GSM, but is also available for the more recent
protocols 3G and 4G protocols. The current SMS specification is found
in [22] 23].

A GSM user can subscribe to Location Services (LCSs) to receive interest-
ing services based on his/her current location. To this extent applications
to which the user is subscribed can request a more accurate estimate of
the location of the MS and use this information to give localised services,
for example weather forecasts or directions to the nearest bank. These
services are run by a Serving Mobile Location Centre (SMLC), which is
an optional entity in the network. Upon activation of an LCS the MS
can determine its location more accurately using the Global Positioning
System (GPS) for the location estimation (if available in the cell phone)
or by measuring the distance to different BTSs in the area (using timing
measurements). LCSs are specified in [24].

Supplementary Services (SSs) are additional services optionally offered
by GSM providers. There are just over a dozen SSs currently speci-
fied. Among others SSs give the possibility to show the phone number
(MSISDN) of the caller, block incoming or outgoing calls or temporary
put calls on hold. The SSs are split up in two categories, those that are
call related and those that are not. The call related SSs, like showing the
phone number of the caller, are officially integrated into the CC service.
An exhaustive list of all SSs is given in [25].

2.2. UM INTERFACE 15

e Group Call Control (GCC) is an optional feature for both the network
and the MS. When implemented it allows a group of subscribers to make
a group call when they are together in an area (cell or PLMN). Among
others the GCC sublayer takes care of handovers of active participants of
the group call. GCC is described in [26].

e Broadcast Call Control (BCC) is another optional feature and very similar
to GCC. The only difference is that with BCC only a single user can speak,
while the other subscribers can only listen. BCC is described in [27].

16

CHAPTER 2. GSM

Chapter 3

Introduction to protocol
fuzz testing

This chapter will give a short introduction to protocol fuzz testing (or protocol
fuzzing for short). Protocol fuzzing is the testing of a protocol implementation
for robustness, i.e. testing how well it copes with invalid or unexpected input.
In other words it tests whether a program accepts input it should not accept
and fails while processing it. A typical example of a robustness issue is a buffer
overflow, meaning the program stores input that is too long while it should
either truncate the input, process it in smaller parts or report an error before
storing it.

In this chapter a brief overview of protocol fuzzing is given. Appendix [B]
holds more details regarding protocol fuzzing: some history on protocol fuzz
testing as well as fuzz testing in general, several techniques that exist for fuzz
testing and which tools can be used to assist in protocol fuzzing. This chapter
will start with an explanation of protocol fuzz testing and then describe which
three main strategies of protocol fuzzing exist. In Chapter [4] the strategy chosen
for this research is discussed.

3.1 What is protocol fuzz testing?

Protocol fuzz testing is a fairly new technique to test the robustness of a pro-
tocol implementation. It is important to note that protocol fuzz testing tests
the implementation; protocol fuzz testing can not be used to directly test the
protocol specification itself. However, it is always possible that a problem in
an implementation is related to a more fundamental issue with the protocol
specifications.

The way protocol fuzzing works is actually quite simple: feed a protocol im-
plementation input that does not conform to the specifications and see whether
the implementation behaves correctly, e.g. does not hang or crash. Example pro-
tocol fuzzing input is a length field specifying the wrong length for an Internet
Protocol (IP) packet or starting with the non-existent request method FOO-
BAR in a HyperText Transfer Protocol (HTTP) request line. Sometimes the
specification might state how an implementation should respond to such mal-
formed input, but even if it does not specify any behaviour the implementation

17

18 CHAPTER 3. INTRODUCTION TO PROTOCOL FUZZ TESTING

should gracefully handle those input values, for example by ignoring them or
returning an error message to the sender. Misbehaviour of the implementation
on invalid input could be used for DoS attacks (e.g. making a web application
crash thus rendering it unreachable for genuine users), or even worse, it might be
exploitable for arbitrary command execution (e.g. in case of a buffer overflow).

There are two different parts of the implementation that can be fuzzed with
protocol fuzzing, either separately or together. The most obvious part is fuzzing
the content of the exchanged messages, like invalid types or wrong length fields.
But there is another part that can often be fuzzed: the state machine. Most
protocols have some sort of set sequences in which messages are exchanged and
which messages are expected at any one time is tracked in a state machine.
When the wrong message is sent at some point in time and still accepted by
the implementation it shows a problem with its state machine. The impact of
this is hard to estimate, because it depends on what states can be skipped, but
for some protocols it might allow one to bypass authentication steps, posing a
serious security risk.

3.2 Protocol fuzzing strategies

Protocol fuzzing has three different strategies, which of these can be chosen
depends on the knowledge of two aspects of the protocol implementation. The
first aspect that influences the strategy one can take is the knowledge of the pro-
tocol specification. Fuzz testing using the protocol specifications is called smart
fuzzing, while fuzz testing without the specifications is called dumb fuzzing [28].
The second aspect is the knowledge of the source code of the implementation.
The terms used to describe using the knowledge of the implementation source
code is called white box, while not using said knowledge is called black box.
Because knowledge of the source code usually implies also knowing the protocol
(either because it is also available to the tester or because it can be deduced
from the source code) white box fuzzing generally implies smart fuzzing,.

Each of the three strategies has its advantages and disadvantages, therefore
one should carefully decide which strategy to pick for a particular fuzz test. Of
course when neither the protocol specification nor the implementation source
code is known only a single strategy is possible. But if one or both of these as-
pects are known, using them is not necessarily a good thing. Below an overview
of the three strategies is given.

e Dumb black box fuzzing, the simplest of the strategies that can be picked,
but often also the least effective. Because neither the specifications nor
the source code is known the tester knows essentially nothing. So the
only option is to (pseudo-)randomly generate input and feed it to the
implementation (called generation-based fuzzing). The advantage of this
method is that input is incredibly easy to create and is easily portable
between different implementations. The disadvantage comes from the fact
that in many protocols only very specific message formats are accepted (for
example only a handful of methods in an HTTP request header are valid)
or only one specific value (for example when using a nonce). Randomly
generated messages are unlikely to comply with these protocol rules, so
the number of attempts required to proceed further down the message
sequence quickly explodes.

3.2. PROTOCOL FUZZING STRATEGIES 19

e Smart black box fuzzing, a refinement of dumb black box fuzzing. With
this strategy the protocol specification is used to create more intelligent
test cases to penetrate deeper into the protocol. An often employed way of
work with this strategy is to take a correct message and change different
parts of the message one by one (mutation-based fuzzing). For example
using the correct HTTP request line “HEAD / HTTP/1.1” and to first
try “head / HTTP/1.1”7, then “HEAD \ HTTP/1.1” and finally “HEAD
/ HTTP/1.2”.

The advantage over dumb black box fuzzing is pretty clear from this ex-
ample, the test cases can penetrate deeper into the protocol by first testing
the parsing of earlier parts and then using correct values for those parts (in
this case “HEAD” and “/”). On the other hand smart black box fuzz tests
take more time to create then dumb black box fuzz tests, because each
protocol rule has to be implemented and then parts have to be mutated.
In addition the tester can (accidentally) make the same assumptions as
the programmer, missing test cases because they are simply not tried. For
example the above header might result in a buffer overflow if the length
of the request method is more than 20 characters, regardless of actual
characters in the header. A dumb fuzz test might have found this, while
a smart one might not because the tester forgot to test very long request
methods. The last disadvantage of smart black box fuzzing is that the
resulting fuzz tests are only portable to other protocol implementations,
but not to other protocols, unlike dumb black box fuzzing.

e White box fuzzing, the strategy that uses knowledge of both the protocol
and source code to test as thoroughly as possible. By having access to the
source code white box fuzzing theoretically allows one to find all robust-
ness problems. Test cases can be made to test every possible execution
path through the program and thus all erroneous paths can be discovered.
Unfortunately this will often be infeasible in practise due to the size of the
search space for larger code bases.

Because testing every execution path is generally always infeasible the
usual approach with white box protocol fuzzing is to first execute smart
black box fuzz tests and then use the source code either to measure how
much of the program code was actually covered by the tests or to monitor
what happens exactly with each test. The former strategy is aimed at
increasing the code coverage of the tests, i.e. how much of the code is
actually tested. The higher the code coverage the more likely it is that an
erroneous instruction is performed. The latter strategy on the other hand
is aimed at finding even the slightest issues that do not show to the user,
for example a very small memory leak.

White box fuzzing has a big disadvantage, it takes a great investment in
both time and effort to design all test input and execute them with the
source code in hand. The more information that has to be implemented in
the test cases the longer it takes to make them. In addition the resulting
test set is only useful for that protocol implementation and is not portable
at all.

20 CHAPTER 3. INTRODUCTION TO PROTOCOL FUZZ TESTING

Chapter 4

Considerations on GSM
protocol fuzzing

In this chapter it is described for each GSM (sub)layer and service introduced
in Chapter [2] how effective protocol fuzzing of that part would be. In addition
we point out why SMS and CC, both at the CM sublayer of Layer 3 of the GSM
protocol, are the target of protocol fuzzing in this research. At the end of this
chapter the protocol fuzzing strategy and tooling used in the practical analysis
of this research are described.

4.1 Fuzzing on the GSM (sub)layers

Unfortunately not all of the three layers, nor Layer 3 sublayers, are equally
suitable for protocol fuzz testing, as is described in this chapter. The lower
layers are more difficult to monitor, because nothing about what is happening
is displayed on the screen. For some of the higher sublayers the interesting
messages are only sent in mobile originating transactions, which often have to
be started manually. This makes fuzzing those sublayers very time-consuming,
because manually calling a number or sending an SMS message takes a lot of
time compared to automatically doing this from a computer.

4.1.1 Fuzzing the Physical Layer

The Physical Layer of the GSM protocol is difficult to fuzz. Sending messages
with the wrong timing or on the wrong frequency is relatively easy, but tracking
what happens on the MS side is much more difficult, because usually nothing will
ever appear on the screen. A hang or reboot can be seen quite easily, but smaller
problems, like the MS being in a wrong state, can not. In addition it is very
likely that the MS makes the hardware only listens to the correct frequencies
at the correct time to safe as much battery power as possible, meaning that the
fuzzed messages might not even reach the cell phone OS. But again that leaves
the problem of how one can observe whether the radio is even listening at all.

21

22 CHAPTER 4. CONSIDERATIONS ON GSM PROTOCOL FUZZING

4.1.2 Fuzzing the Data Link Layer

The second protocol layer is not very suitable for fuzz testing either. The
acknowledgements and retransmits of messages are difficult to influence with
OpenBTS without major time investments. And just like messages in the Phys-
ical Layer it is difficult to track what exactly happens inside the cell phone.
Message segmentation offers a lot more options for fuzzing and is easier to mon-
itor, but requires a lot of in-depth knowledge of the Data Link Layer. Due to the
limited time that was available for this research this did not seem very efficient.
However, it could be an interesting topic for further study.

4.1.3 Fuzzing Layer 3

The third and highest layer of the GSM protocol OSI stack is the most suitable
layer for fuzz testing. It offers a lot of different services and monitoring is
significantly easier than for the lower layers.

Fuzzing the Radio Resource (RR) sublayer

The RR sublayer has some interesting features that can be fuzzed, for example
there are 75 different valid RR Message Types, all with their own content format
and peculiarities. However, the RR sublayer suffers from the same problem as
the Physical and Data Link layers: it is difficult to monitor unless something
really bad happens. Testing whether a channel request is handled correctly and
a channel is established is possible by sending genuine data over the channel.
But what if it the genuine data is not received? Did the MS ignore the bogus
RR message and does it therefore not receive the genuine message? Or did it
allocate the wrong channel, which costs battery power? Or did something even
more exotic happen? The difference is impossible to tell on most cell phones.

Fuzzing the Mobility Management (MM) sublayer

The MM sublayer only has a handful of tasks and most of them will prove
difficult to fuzz. OpenBTS does not (yet) support authentication and cipher-
ing, so fuzzing those messages is rather difficult without major changes to the
code. In addition, one would hope that authentication and ciphering are more
thoroughly tested for robustness, because errors there would make the phone
completely unusable. So that leaves location updates and CM service control
as the only remaining options for fuzzing on the MM sublayer.

MM messages for the control of CM services are only sent for CM services
initiated by the MS. CM services initiated by the network do not explicitly
use these MM messages, but instead either instruct the MS to set up an MM
connection via paging or simply start sending CM messages to implicitly set
up an MM connection. So in order to fuzz these messages one has to start a
mobile originating CM transaction, but this is highly inefficient for the reasons
discussed at the start of this chapter. Another option would be to start a mobile
terminating CM transaction that forces the MS to set up an MM connection,
but besides (optional) authentication and ciphering message exchanges only an
acknowledgement (ACK) is sent, making the options for fuzzing close to zero.

The last function of the MM sublayer is the location update procedure.
Just like the CM control messages activity regarding location updates is mostly

4.1. FUZZING ON THE GSM (SUB)LAYERS 23

initiated by the MS. It does happen automatically from time to time (unlike
CM service control), but too infrequently for efficient fuzzing. This makes the
entire MM sublayer difficult to fuzz and this is therefore not attempted in this
research.

Fuzzing the Connection Management (CM) sublayer

The highest sublayer in the GSM protocol stack, the CM sublayer, is the most
suitable (sub)layer for protocol fuzzing. The main reason (again) is that this
highest sublayer is the easiest one to track, because you can be sure that the MS
received the message and that it was parsed somewhere in the MS. When no
ACK was received one can nonetheless be certain that the at least part of the
intended message was parsed by the OS of the cell phone, unlike for example
fuzzed RR messages. As a result all messages that are sent really test the GSM
protocol implementation in the MS and none are lost in transit because the
hardware was not tuned in to listen.

However, not all of the services in the CM sublayer are easily fuzzable. Below
for each of the services possibilities for protocol fuzzing are described.

e Call Control (CC) is an interesting service from a fuzzing perspective.
There are quite complex state machines defined for CC and at the same
time many different types of messages exist. Of course there are still some
downsides to fuzzing CC, e.g. many state transitions can not be influenced
by the network in a mobile terminating transaction. For example the
transitions from call received by the phone to alerting the user (i.e. ringing)
to call accepted/rejected by the user all happen at the MS side and can
not be altered from the network side. Still, this sublayer has a lot of
options for fuzzing and was the second (sub)layer to be fuzzed in this
research. More on the specifics of fuzzing of Call Control can be found in

Appendix [E]

e Short Message Service (SMS) is a great target for fuzzing attacks, espe-
cially for fuzzing of messages. Very few protocol states exist for SMS
traffic, but this is made up for by the fairly large and complicated header
included in SMS messages. This was the first (sub)layer being fuzzed for
this research exactly for that reason. However, because some parts were
already fuzzed in earlier research only lower layers of the SMS protocol
stack were fuzzed in this research. More details on the SMS protocol stack
and SMS fuzzing can be found in Appendix

e Location Services (LCSs) seem like a nice target to fuzz. Although the
number of messages exchanged is limited to three, resulting in few protocol
states, the messages do have many optional fields with a lot of possible
values. Unfortunately the exact message structure is poorly described in
the standards and we could not figure out how it worked} In addition
LCSs are not supported (yet) by OpenBTS, thus a large time investment
would be required to implement LCS fuzzing. Because of these reasons

This is of course very interesting from a fuzzing point of view, because it might mean the
cell phone manufacturers did not understand it either, possibly resulting in a higher number
of implementation errors.

24 CHAPTER 4. CONSIDERATIONS ON GSM PROTOCOL FUZZING

Figure 4.1 Fuzzing of the different GSM protocol (sub)layers. White layers are
fuzzed in this research, light grey are recommended for future research, while
dark grey (sub)layers will prove difficult to fuzz.

CM CC SMS | LCSs - GCC | BCC
@

Data Link RR

fuzzing of LCSs was not attempted in this research, but would be nice to
do in future work.

e Non-call related Supplementary Services (SSs) are the fourth type of CM
service. SSs are rather hard to fuzz, because all but one are only used
in mobile originating transactions. The only SS that is not initiated by
the MS is “barring of incoming calls”, which blocks all calls terminating
at the MS. But when a call is blocked nothing gets reported to the MS,
so no messages are exchanged at all making fuzzing those transactions
impossible.

e Group Call Control (GCC) and Broadcast Call Control (BCC) are op-
tional features in both the network and the MS. It is not supported by
OpenBTS, but initial message exchange is similar to regular CC and hence
should not be hard to add. However, both GCC and BCC are optional
features of GSM and do not have to be implemented on the MSs. Fuzzing
these services might prove to be a waste of time and was due to time
constraints not attempted. Nonetheless it could be interesting in further
research.

An overview of the evaluation in this section is given in Figure

4.2 GSM protocol fuzzing strategy and tooling

Besides choices on which layers to fuzz another choice had to be made regarding
the protocol fuzzing strategy. In this research cell phones of different brands will
be tested and the OS of most cell phones is closed source. This makes a white
box approach impossible. In addition even if the source code was available white
box fuzzing would still be undesirable, because then for each implementation
a different test set has to be created. This would simply cost too much time.
The GSM protocol specifications on the other hand are publicly available, so
smart protocol fuzzing is possible. To ensure that the phone actually parses
the message, at least the lower layers of the protocol should be used correctly.
And the first few fields in a messages determine the message type so these are
probably the first to get parsed by the MS. Therefore to get the best results
by being able to pass these checks black box smart fuzzing was the strategy of
choice. The test cases can then be used on all different brands of cell phones
and can target any desired part of the protocol with ease.

4.2. GSM PROTOCOL FUZZING STRATEGY AND TOOLING 25

In this section the decisions regarding what aspects of SMS and CC are
fuzzed more extensively than others are explained first. In the second part a
short overview of tools is given that can aid with fuzzing, as well as what tools
were used in this research.

4.2.1 Fuzzing SMS and CC

SMS and CC both have two messages sent from the network that can be fuzzed.
For both the first message is complex with many fields that can be changed,
while the second is a simple ACK with only three fields. Recall that besides
fuzzing the content of these messages there is also the state machine that can be
tested. The latter does require much more coding in OpenBTS, but can show
interesting results as well. Below both of these options are explored.

Message content fuzzing

The number of possible invalid SMS or CC messages is too large to test exhaus-
tively, which means concessions had to be made on which fields to fuzz more
extensively than others. Luckily some fields are more likely to have insufficient
error checking than others, making those the prime targets. In addition some
fields are barely ever used in practise and thus received little real world testing.
Those fields are very interesting targets for fuzzing as well.

Fields that specify the type of the message or the service the message belongs
to are probably always verified, since these fields determine which part of the
OS should parse the rest of the message. As a result extensively testing these
fields is not very useful and it is more efficient to only test a handful of invalid
or wrong values.

On the contrary fields that specify the length of a block in the message are
much less likely to always be checked thoroughly. Using a very small or very
large value for this field can easily trigger buffer overflows or similar issues if
verification is insufficient. Also values that are just smaller or just larger than
the actual length are also likely to cause a problem in an implementation. A
different but similar approach is to leave the length field alone, but instead vary
the size of the block it encodes the size of. Additionally most blocks have a
minimum and maximum length specified in the GSM specifications. Deviating
from these values is also more likely to result in strange behaviour.

Other interesting fields are those that are deprecated, reserved for future use
or can be used as extension mechanism in future use. Changing these values
might trigger undocumented or untested features.

Last but not least are the parts of the specifications that are barely ever
used. An example was already given in Chapter [I} sending email or fax over
SMS. Because these parts are not used often, they have barely been tested in
the real world. This might also mean that it has a lower testing priority for cell
phone manufacturers and thus potentially contains more bugs. Bugs in these
parts might also exist for a longer time over generations of phones/firmware,
simply because they were not yet discovered.

26 CHAPTER 4. CONSIDERATIONS ON GSM PROTOCOL FUZZING

State machine fuzzing

Fuzzing the state machine in the phone requires more effort than fuzzing the
content of messages. OpenBTS is made to send the messages in the correct
order and on the correct times, so this is where changes have to be made to fuzz
the state machine. It is possible to implement this generically, but that does
take time.

Due to the time constraints of this thesis only state machine fuzzing of the
SMS protocol was done and only in a limited way. The tests included both
sending a correct message when it was not expected by the phone and sending a
correct message when a different message was expected by the phone. Fuzzing
the state machine for CC is more interesting because more states exist, but this
was much harder to implement in OpenBTS. Therefore this option is left open
for future research.

4.2.2 Protocol fuzzing tool

Several protocol fuzzing tools exist, for example SPIKE [29], Sulley [30] and
mangleme [31], some of which are described in Appendix The tools range
from simple fuzz test input generators or mutators for a single protocol, to
more advanced fuzzers where the protocol can be specified by the user. Some
fuzzers also include monitoring of the target implementation via Virtual Ma-
chines (VMs) and even automated restarting of the target in case of a crash.

Unfortunately none of these tools were ideal for GSM fuzzing. Advanced
fuzzers with target monitoring were out of the question, because that would
require VMs with all the cell phone OSs on it, which are difficult to get when
the OSs are closed source. In addition one would also have to simulate the air
interface over a different interface, something that might not work as expected.
These two factors together made the use of advanced fuzzers very difficult, if
not impossible.

But even simple fuzzers missed a couple of necessary features, mostly because
they all seemed to work at the byte level. None of the tools that were tried
supported bit level fuzzing, something which was required to be able to fuzz bit
flags used in GSM. This would require a lot of recoding to add. In addition,
some length fields in GSM do not count in octets (sequences of eight bits),
but in septets (sequences of seven bits) or half-octets (sequences of four bits)
instead. In the existing tools only counting in bytes was supported, but other
granularities would be fairly easy to add by simply converting the current result.
Other encountered problems with existing fuzzers included lack of support for
writing output to files and lack of support to exclude certain values in tests.
Because of these issues it was decided that building a tool from scratch, taking
good features from established tools and adding the remaining required features
at the same time, was the way to go for this research and a proof of concept
was built in the Python programming language. The features of this proof of
concept are described in Appendix [C}

Chapter 5

Practical protocol fuzz
testing on GSM cell phones

Part of this research was a practical analysis of the implementation of the GSM
protocol stack on different cell phones. The cell phones we used for this were
either lend or donated to us, so our selection was limited. However, interesting
results could be found in the test set nonetheless.

In this chapter a summary of the results is given and the most interesting
findings are highlighted. In Appendix [G] a more detailed description of the
results is given, including the exact messages that causes them.

5.1 Scrutinised cell phones

A total of sixteen different cell phones have been tested for robustness using
almost 550 SMS content fuzzing messages and over 350 CC content fuzzing
messages on the message parts described in the previous chapter and also eleven
SMS message sequence fuzzing tests. The SMS tests took on average one and a
half hour per phone, while the CC tests took approximately one hour per phone.
Unfortunately we could not get an even distribution of different popular cell
phone brands for our practical analysis, but different types of the same brand
did give different results. In Figure fifteen of the tested cell phones are
displayed. Table gives an overview of all the phones, their firmware versions
and OS version if applicable[l—_zl For older phones the firmware version and OS
version are basically one and the same, but on smartphones there is a clear
difference (e.g. Android running on smartphones of different manufacturers).

5.2 Summary of the results

Out of the sixteen tested cell phones nine had at least one message that triggered
strange behaviour. Nearly all of the messages that caused this can only be sent
when the attacker controls the BTS, because the headers involved are built by
the BTS. However, the values might get copied from the message submitted to

121t is unclear to us at what level the CC and SMS stacks are implemented and whether
the firmware or cell phone OS cause the observed behaviour.

27

28CHAPTER 5. PRACTICAL PROTOCOL FUZZ TESTING ON GSM CELL PHONES

Figure 5.1 Fifteen of the sixteen tested phones. Only the HTC Legend is
missing.

Figure 5.2 Sony Ericsson T630 showing three icons for new types of messages,
from left to right voice recording, email and fax.

the network by the sender, but this was not tested because we do not know how
the network will respond to fuzzed messages (nor did we have the capabilities
to easily send fuzzed messages from a phone).

In this section the discovered problems are summarised by type, from small-
est impact to largest impact, and for each type the affected phones are listed.
In Table[5.2] at the end of the chapter an overview is given of the problems for
each phone. In Appendix[G]details about the exact fields that caused the issues
can be found.

5.2.1 Icons

SMS offers the ability to notify a user that a voice, fax or email message is
waiting to be retrieved. According to the specifications every cell phone has to
show an icon on the screen when this happens. Problem is that these icons are
hard to remove when they were activated illegitimately. Normally these icons
are removed by another SMS sent from the network with flags set such that
the phone will clear the icons. But these messages can not be forced from the
network. The only way we found to remove them as a user is to insert a different
SIM into the phone and power it on.

Even though this is not an actual security risk it can be quite annoying. The
icons on most phones are not very clear, thus an unexpecting user might lose

5.2. SUMMARY OF THE RESULTS 29

Table 5.1 Cell phones tested in this research.

Brand Type Firmware version (Operating System)
Blackberry 9600 5.0.0.743

HTC Legend 3.15.405.3 (Android 2.2)

iPhone 4 04.10.01 (i0S 4.3.3)

Nokia 1100 6.64

Nokia 2600 4.42

Nokia 3310 5.57

Nokia 3410 5.06

Nokia 6610 4.18

Nokia 6610 4.74

Nokia 7650 4.36

Nokia E70-1 3.0633.09.04

Nokia E71-1 110.07.127

Samsung SGH-A800 AS80XAVK3

Samsung SGH-D500 D500CEED2

Samsung Galaxy S FROYO.XWJS5 (Android 2.2.1)
Sony Ericsson T630 R7A011

a lot of time trying to figure out what these icons mean and even more time
to get rid of them. This is unfortunately exactly how it is specified, but we
nonetheless recommend an option for the user to remove the icons from the cell
phone, even though this is not required by the specifications.

5.2.2 No notification

Five phones would accept invalid SMS messages and store them on the SIM
or in the phone memory but not actually notify the user of the new message.
As a result an attacker can silently fill up the phone memory (or in one case
only the SIM) of the victim to temporarily make the user unreachable for SMS
messages. Affected phones are both Nokia 6610s, the Samsung SGH-A800 and
SGH-D500 (SIM card memory only) and the Sony Ericsson T630. All of these
phones do notify the user when a message is received while the memory is full,
so even when the memory is full the user will still get notified for new (genuine)
messages and can clear the memory to receive it. The affected Nokia phones
would already alert the user when 80% of their memory capacity was full.

5.2.3 Read memory

On two different phones it was possible to read out (part of) the phone memory.
The most interesting of these phones was the Nokia 2600, where a text message
would get stored that shows a seemingly random part of the phone memory
upon opening (see Figure |5.3(a)). Closing and reopening of the same message
would display a different part of the memory (Figure [5.3(b)]), sometimes also
causing a reboot of the phone.

On the Samsung SGH-D500 certain messages would show a strange sequence
of characters when opened, but it was unclear to us where it came from. The
same message would show up differently when sent multiple times, so we expect

30CHAPTER 5. PRACTICAL PROTOCOL FUZZ TESTING ON GSM CELL PHONES

Figure 5.3 The same SMS message on the Nokia 2600 opened twice showing
part of the phone memory. The @ symbol in the GSM 7 bit default alphabet is
encoded as only zeroes, explaining why it occurs quite often.

(b) Showing the name of a wallpaper
(a) Showing garbage and two games

it came somewhere from memory. The content shown in the SMS was actually
also the content of the message (when opened on a different cell phone), unlike
the issue on the Nokia 2600 where the displayed content was not stored in the
message itself.

Problems like these can be quite dangerous. It is likely these issues are caused
by a buffer overflow on some buffer, causing the following part of memory to
be read. It might be possible to not just read this part, but actually overwrite
parts as well. When this happens one is very close to remote, arbitrary code
execution at the phone.

5.2.4 Reboot

Seven of the sixteen phones could be forced to reboot remotely. When reboot-
ing the network connection would be lost temporarily. With two exceptions
discussed below all phones would go back to standby mode and restore the net-
work connection without asking for the Personal Identification Number (PIN)
after the reboot, making these messages cause a short DoS. In all but two cases
reboots were caused by a discrepancy between a length field and the actual
length of that field in the message, making it likely that the behaviour is caused
by a buffer overflow.

Two phones did, under certain circumstances, require the user to enter the
SIM PIN again when being forced to reboot. The Nokia 2600 would sometimes
reboot when receiving or opening the SMS messages that allows one to read
parts of the phone memory (see above). When this happened the PIN would be
required to use the phone again. The Samsung SGH-A800 on the other hand
would reboot when it was not connected to a power outlet, but would shut down
completely while charging. When this happened the phone had to be switched
on again and the PIN had to be reentered.

5.2. SUMMARY OF THE RESULTS 31

5.2.5 Unable to delete messages

A rather annoying bug manifested itself on two cell phones, the Sony Ericsson
T630 and Samsung SGH-D500. On the Sony Ericsson it was not too bad, but
some messages could not be deleted when using the “delete all new messages”
option. However, manually deleting them one by one or using “delete all mes-
sages” did work. On the affected Samsung phone certain messages would be
stored as invisible messages. They could not be viewed or deleted in any way,
but they still occupied space on the SIM. The only way to delete these messages
was to put the SIM in a different phone and delete them there.

5.2.6 Long time DoS

For the iPhone 4 and HTC Legend the attack with the highest impact was
found. By sending a carefully crafted SMS message the phone would not display
anything and also stop receiving any SMS messages altogether. In addition on
the iPhone it was impossible to change network after the attack, when trying
to change network the phone would notify the user that it was unable to load
the network list. Both smart phones returned to normal when turned off and
on again or when out of range of our basestatiorﬂ

13Because we were testing on a single BTS it was impossible to verify whether one has to
go out of range of the BTS or of the entire network. This would be interesting to verify in
future work.

32CHAPTER 5. PRACTICAL PROTOCOL FUZZ TESTING ON GSM CELL PHONES

Table 5.2 Summary of the discovered problems.

Phone Protocol Type of problem Solution
All SMS Icons on screen Insert other SIM
Blackberry
HTC
Legend SMS SMS DoS Reboot/Change network
iPhone
4 SMS SMS DoS Reboot
Nokia
2600 SMS Read memory n/a
2600 SMS Reboot n/a
6610 SMS No notification n/a
6610 SMS Reboot n/a
7650 SMS Reboot n/a
Samsung
SGH-A800 SMS Reboot n/a
SGH-A800 SMS No notification n/a
SGH-D500 SMS Reboot n/a
SGH-D500 SMS Read memory n/a
SGH-D500 SMS Message deletion Delete on other phone
SGH-D500 CC Reboot n/a
Sony Ericsson
T630 SMS No notification n/a
T630 SMS Message deletion Delete one by one
T630 cC Reboot n/a

Chapter 6

Future Work

This research was just the start in extensive protocol fuzzing of all aspects
of GSM. Together with some previous work many parts of the SMS protocol
and the some parts of the CC service have been tested on several phones with
protocol fuzzing. But many questions remained unanswered, both regarding the
results found so far and regarding the untested parts. In this chapter several
pointers for future work are given.

First of all protocol fuzzing can be carried out on different phones or the
same phones with different firmware and OS versions. Interesting questions
are whether certain attacks work across different firmware or phones. Another
interesting idea is to try and combine attacks on different phones to a single
attack that works on multiple types of phones at the same time. This would
greatly increase the power of an attack and thus also the severity of the problems.

Another possibility is to fuzz other (sub)layers and services of GSM or other
parts of SMS or CC. Especially the (sub)layers and services discussed in Chap-
ter [4] are promising targets. Based on the results with SMS and CC it is likely
that other (sub)layers or services contain bugs as well. And if those attacks can
be performed over commercial networks practical attacks are close.

One of the most interesting targets for protocol fuzzing, which to the best
of our knowledge have not been tested yet, are commercial basestations or even
complete networks. Being able to make a certain type of phone of a certain brand
reboot is nice, but the actual impact is rather small. It is very well possible
that the same thing can be done with a commercial network, which can have a
much higher impact. A promising fact is that many phone manufacturers also
build and sell GSM network components, so bugs are likely to be found there
as well. The only problem is that (most likely) permission is required from the
service provider to fuzz the network and getting permission could prove quite a
challenge.

Another option for future research is using OsmocomBB to fuzz other cell
phones over commercial networks. Because OsmocomBB is open source it
should be fairly easy to modify parts of the GSM stack to let the phone send
arbirary messages over the network. One problem is that it is unknown how the
network will respond, but fuzzing at the highest layers might be fairly safe.

A fifth starting point for future study is trying to actually exploit the attacks
found so far. Some crashes are likely to be caused by buffer overflows and these
might be exploitable for remote code execution (for example as shown by [9]).

33

34 CHAPTER 6. FUTURE WORK

Finding out what exactly happens on the phone and how this can be exploited
is probably very tedious because the source code is not available, but can be
very rewarding especially when performed on popular (smart) phones.

Chapter 7

Conclusion

During this research we encountered several strange, funny, annoying and inter-
esting things. In this chapter we discuss some of the highlights, both positive
and negative, we found. In addition we summarise the results of this research
and draw conclusions based upon these results.

7.1 Interesting observations

An interesting observation in this research was that different types of phones
of the same brand more often than not reacted differently to the same fuzzed
message. For example the three different types of Nokia phones on which a DoS
attack was found misbehaved on completely different fields and would not fail
on the fields that brought the others in trouble. This seems to imply that either
they did not reuse the firmware code for newer phones or that they did reuse
it, but broke parts that worked while fixing parts that were broken. This is
contrary to what others (like Welte [10]) observed.

An annoyance we encountered is that OpenBTS is still rather fragile. It does
check for errors where they may occur, but often simply with an assertion. The
result is that every now and then on unexpected input from the user or phone
(the latter often happened with the Samsung SGH-D500) OpenBTS would crash
with an assertion failure. Initially when this happened we thought we had to
completely reboot the notebook running OpenBTS, because it could not fire
up OpenBTS again due to a used socket. But later it was pointed out to us
by Ronny Wichers Schreur that killing the process called “transceiver” also
stopped the use of that socket. Either way, after firing up OpenBTS it took
a good minute for the basestation to have enough signal to be found by cell
phones. This has cost us a quite a lot of time over the course of our analysis.

One of our findings that still seems rather strange to us is that a certain
SMS message causes the Samsung SGH-A800 to shut down while charging, but
to reboot when not charging. This probably means there is something weird
going on in the error management and recovery (i.e. crash and restart) module.
Either this module checks whether it is charging and changes behaviour based
on that (unlikely) or there is something wrong with when the phone considers
itself on: showing that it is charging or being in standby.

The most promising finding is probably the possibility to read out the phone

35

36 CHAPTER 7. CONCLUSION

memory of the Nokia 2600. This bug seems the easiest to exploit for remote
code execution, but nonetheless it will probably cost a lot of time to implement.

7.2 Summary and conclusions

This research focused on the GSM protocol and how protocol implementations
could be tested using protocol fuzzing. For each (sub)layer and service of the
Um interface it was determined how feasible protocol fuzzing of that part would
be. The lower (sub)layers were more challenging than others because of the
difficulty of monitoring, while some of the higher level services were problem-
atic because the transactions get initiated by the MS resulting in an inefficient
fuzzing process. Besides discussing fuzzing of each piece of the GSM protocol
stack the interesting fields of Layer 3 messages are also described. The length
fields, the length of the blocks encoded by length fields and reserved values were
pointed out as the prime targets, while type fields are most likely to be parsed
safely.

All this information was brought together into a practical analysis of sixteen
cell phones using a USRP-1. We built a fuzzer to create just over nine hundred
‘smart’ black box test cases and extended OpenBTS to send these test cases.
With these test cases nine of the sixteen phones could be caused to reboot, to
show parts of their memory, to not notify the user when a certain SMS message
was received, to store SMS messages that could not be deleted on that phone
or to stop receiving SMS messages altogether until switched off and back on.

From these results we can conclude that the robustness of GSM implemen-
tations is rather lacklustre on many phones. Even with a relatively small test
set of just over 550 SMS messages and 350 CC messages already more than half
of the sixteen tested phones could be caused to reboot or to refuse to accept
SMS messages until restarted. These attacks described can not be sent over
a commercial network, because the affected headers are built by the network,
but they are only the tip of the iceberg. For example we found nothing for the
Nokia E70-1 and E71-1 although at least one attack against those phones is
known [32], which can actually be sent over commercial networks.

How regrettable it might be, it is not strange issues exist on this many
phones. The GSM standards are hopelessly large and complex with tens of
thousands of pages full of features and extension mechanisms for future use.
Bugs are likely to exist in implementations of these standards, especially con-
sidering the fact that many specified features are never used, and thus also
never tested, in practise. In addition only just a few years ago bugs could not
be found, let alone exploited, by the public without major investments in both
time and money, thus these bugs used to be of low risk.

Now with the emerging of cheap SDR systems like the Universal Software
Radio Peripheral-1 (USRP-1) and the open source projects OpenBTS, OpenBSC
and OsmocomBB attacks are becoming feasible and as a result these bugs more
critical. With this research we hope to make people more aware of the issues
and create an incentive for manufacturers to pay more attention to robustness
of their products.

Appendix A

Details of the GSM protocol

In this appendix the GSM protocol is described in more detail. The first section
is a more thorough description of the GSM Um interface than that of Section[2.2}
The remainder of this appendix describes the messages sent on Um Layer 3
in detail, providing a better understanding of the exact fuzzing parameters
introduced in Appendices [D] and [E]

A.1 Um interface details

In this section more details regarding the Um interface are described. The
structure of this section is similar to that of Section describing the protocol
stack layers from bottom to top.

A.1.1 Physical Layer

The bottom layer of the GSM protocol stack is the Physical Layer. It provides
abstractions to the Data Link Layer right above it in the form of logical chan-
nels. Logical channels are defined by frequency, timing and purpose. In this
section details regarding the frequencies, timing and different purposes of logical
channels are described.

GSM frequencies

Every PLMN operates in a certain frequency range or band. In most parts of
the world the GSM-900 (890-960 MHz) and GSM-1800 (1710-1785 MHz) are the
frequencies for GSM, however in the United States and Canada the GSM-850
(824-894 MHz) and GSM-1900 (1930-1990 MHz) bands are used.

Each GSM band is split up in frequency channels of 200 kHz that can be used
simultaneously. This is called Frequency Division Multiple Access (FDMA).
Each frequency channel is used for uplink or downlink, but never both. Each
band has a specific offset between uplink and downlink for all frequency chan-
nels, resulting in the lower frequency half of the band always being used for
uplink and the higher frequency half for downlink.

Communication on a logical channel between an MS and BTS does not nec-
essarily stay on the same frequency channel; to reduce interference the BTS can

37

38 APPENDIX A. GSM DETAILS

decide to use frequency hopping. In that case the BTS communicates parame-
ters to the MS so both parties can derive the same sequence of frequencies to
jump through at a set rate (around every 4.615 ms). This process is completely
transparent to the higher level layers.

GSM timing

Besides FDMA GSM traffic is also multiplexed in time, called Time Division
Multiple Access (TDMA). Each frequency channel is divided into eight time
slots, creating eight logical channels out of one frequency channel. Traffic be-
tween an MS and BTS only uses one time slot on a certain frequency, so eight
MSs can communicate on the same frequency channel to the same BTS. There
is much more going on with regard to timing in the GSM protocol, but this will
not be discussed here. For further reading see [33] [14].

Logical channels

Each logical channel created through FDMA and TDMA can be used as Traffic
Channel (TCH) or one of the many different control channel. Nearly all traffic
on the TCH is speech data, while all the traffic on any of the control channels
is to let the network function properly.

There are ten different types of control channels, aggregated in three sub-

types:
1. Broadcast Channels

2. Common Control Channels
3. Dedicated Control Channels.

Each of these subtypes and the channels belonging to these subtypes are briefly
described below. Only the channels relevant for this research are described in
more detail.

e The Broadcast Channels (BCHs) are used by the BTS to broadcast the
network parameters and synchronisation information to all MSs in its cell,
even those not yet connected to the BTS. These channels are used continu-
ously in the downlink direction and ensure that all MSs can determine the
correct frequencies and timing to communicate with the BTS and initiate
a connection to the network. The channels in this subtype are the:

1. Broadcast Control Channel

2. Frequency Correction Channel
3. Synchronisation Channel

4. Cell Broadcast Channel.

Because these channels are not relevant for this research they will not be
described. For further reading about these channels see [14].

e The Common Control Channels (CCCHs) are shared between the BTS
and all MSs in the cell. The main use of these channels is to set up a
Dedicated Control Channel between the BTS and a single MS. The three
CCCHs that exist are the:

Al

UM INTERFACE DETAILS 39

1. Paging Channel
2. Random Access Channel
3. Access Grant Channel.

The Paging Channel (PCH) is used by the BTS to inform MSs of an
incoming call or message. This process is called paging. Messages on

this channel are addressed to a single MS by IMSI or Temporary Mobile
Subscriber Identity (TMSI) (see Section [A.1.3)).

The Random Access Channel (RACH) is the only uplink CCCH. This
channel is shared between all MSs and used to request a Dedicated Con-
trol Channel (DCCH) from the BTS. When an MS wants to transmit a
message on this channel it just sends it and listens whether any other MS
transmitted a message at the same time. If multiple MSs sent a message
at the same time they all wait a random delay before they try sending
their message again.

The last CCCH is the Access Grant Channel (AGCH). Just like the PCH it
is a downlink channel sending a message to an MS addressed with the IMSI
or TMSI. Responses to requests on the RACH are sent on this channel

and contain information about the allocated Dedicated Control Channel
(DCCH).

The last subtype of control channels are the Dedicated Control Channels
(DCCHs). Unlike the other two subtypes these channels are not shared by
all the MSs in the cell, but used by a single MS and the network. DCCHs
are, among others, used for location updates, call setups, handovers and
SMS messaging. All of the DCCHs are both uplink and downlink channels.
There are three types of DCCHs:

1. Standalone Dedicated Control Channel
2. Slow Associated Control Channel
3. Fast Associated Control Channel.

The Standalone Dedicated Control Channel (SDCCH) is in most cases the
first channel that is being allocated upon a channel request over the RACH
and positive response from the BTS over the AGCH. An SDCCH can be
used for call setup (which includes allocating a TCH), location updates or
sending of SMS messages. It is also used for authentication and setting up
of encryption. As soon as the SDCCH has outlived its purpose, or some
error has occurred, it can be released again so the logical channel can be
reused.

A Slow Associated Control Channel (SACCH) is an internal part of every
TCH and SDCCH. Messages on this logical channel are sent instead of
a regular TCH or SDCCH message at a set interval (for TCHs this is
once every 26 messages). The two main purposes of the SACCH are
improving channel performance (for example by issuing synchronisation
commands) and the ‘heartbeat’ signal for that TCH/SDCCH. Reception
of the ‘heartbeat’ SACCH message means that the associated channel is
still alive, therefore in every SACCH frame a message has to be sent, even
if no control data has to be transmitted.

40 APPENDIX A. GSM DETAILS

The last DCCH is the Fast Associated Control Channel (FACCH). Like
the SACCH it is not an actual separate logical channel, but is instead
part of every TCH. Unlike the SACCH the FACCH does not have a set
timing within the TCH, but can instead ‘steal’ part of a data burst for
control messaging. The FACCH is used for urgent control messages like
handovers or hangups (disconnects), which can happen at unpredictable
times during a conversation.

A.1.2 Data Link Layer

As discussed in Section [2:2.2] the Data Link Layer offers two services to Layer
3:

e acknowledgements and retransmits when applicable
e segmentation when applicable.

The Data Link Layer can transmit messages in either acknowledged or unac-
knowledged mode. Messages sent in acknowledged mode have to be acknowl-
edged by the receiver, which can be either the MS or the BTS. If the sender
does not receive such an ACK within a certain time frame the message is re-
transmitted until an ACK for that message does arrive in time. This guarantees
that all messages arrive at the destination. Messages sent in unacknowledged
mode do not have such guarantees and are sent on a best-effort basis.

Whether acknowledged or unacknowledged mode is used depends on logical
channel and message; acknowledged mode can only be used on DCCHs, while
unacknowledged mode can be used on all channels except for the RACH. Mes-
sages on the RACH use a different scheme altogether, because multiple MSs can
transmit on this channel at the same time. For further reading on Data Link
Layer RACH messages see Clause 4.2.6 of [19].

In case acknowledged mode is used the Data Link Layer can also perform
segmentation. This is used when a Layer 3 message that has to be transmitted
in acknowledged mode is too long to fit in a single Data Link Layer message. In
such a case the message is split up in several parts and the parts are transmitted
separately. The Data Link Layer on the receiving end sends an ACK for each
segment. When all segments have arrived the receiving Data Link Layer restores
the original Layer 3 message and passes it on to the receiving Layer 3. In
unacknowledged mode the Data Link Layer does not offer any segmentation
capabilities.

A.1.3 Layer 3

In this subsection further information regarding sublayers for Radio Resource
and Mobility Management of the GSM Layer 3 is given. The CM sublayer was
already quite extensively described in Section [2.2.3]

RR sublayer

The Radio Resource (RR) sublayer is the lowest sublayer of the Layer 3 stack
and described in [34]. Tt interfaces with the Data Link Layer below it, and the
Mobility Management sublayer above it. Messages on the RR sublayer are sent
over BCHs, CCCHs and also DCCHs.

A.2. LAYER 3 MESSAGE FORMAT 41

The most important aspect of the RR sublayer is the creation and tearing
down of TCHs and DCCHs. The higher sublayers can request the RR sub-
layer to use this functionality to create an RR connection, which allows point-
to-point communication between the network and the MS. This connection is
subsequently used by the higher sublayers to exchange messages.

Part of the procedure of establishing and maintaining these RR connections
are handovers. Whenever an MS roams (i.e. moves) to a different cell the RR
sublayer takes care of the correct opening of channels with the new BTS and
then closing of the old channels. This happens without the user or the upper
sublayers noticing it.

Besides channel management and handover support the RR sublayer also
takes care of transmitting control data over the various other control channels
and keeps track of which kind of ciphering is used on which channel.

MM sublayer

The Mobility Management (MM) sublayer is used to keep track of the location
of connected MSs, connect users that are new to the network and allow CM
sublayer services to send service control messages. MM runs on DCCHs only.

Before a newly arrived MS can be connected to the PLMN it has to au-
thenticate itself first via its IMSI and a challenge-response scheme based on the
secret symmetric key the SIM shares with the provider. This message exchange
takes place on the MM sublayer. Only when the MS successfully authenticated
itself it can be connected to the PLMNI4

Another (optional) feature that operates on the MM sublayer is the issuing
of a TMSI to an MS in order to provide identity confidentiality. The mapping
of TMSIs to IMSIs is stored inside the NSS. The TMSI is only valid in the area
it was issued. The network decides whether TMSIs are used and when they are
updated.

A.2 Layer 3 message format

All messages sent on Layer 3 of the GSM protocol have a standard message
layout. This layout is the topic of this section. First some basics of the message
formats and representations used in the GSM protocol are described. Then the
header of Layer 3 messages is described, followed by a section on the (optional)
body of the messages. The terms used in this section are the same as those used
in the full specification of the Layer 3 message layout found in [20].

A.2.1 GSM Layer 3 message basics

GSM Layer 3 messages are nothing more than bit strings of finite length. The
bits are usually ordered in groups of eight, called an octet in the ETSI docu-
ments. The bits in an octet are numbered from right to left as 1 to 8 with bit 8
being the most-significant bit. Consecutive octets are simply concatenated for
GSM, but in the figures used throughout this paper they are depicted from top
to bottom. Another convention used in this paper is to write numbers simply

141n the authentication protocol the session key with which all traffic data will be encrypted
is created as well.

42 APPENDIX A. GSM DETAILS

Figure A.1 Semi-octet representation of the number “123”. The half-octet
value 1111 is used to mark the end of the number in case of an odd amount of
digits.

as number (e.g. 22), hexadecimal representation of a number starting with 0x
(e.g. 0x16), binary notation in a monospaced font (e.g. 00010110) and a literal
string between double quotes (e.g. “house”).

The way data within an octet is represented can differ and depends on the
use of the octet. The most commonly used data representation schemes are:

e Bit fields. A run of at least one bit in the octet can have a specific meaning,
allowing for up to eight bit fields to be specified in a single octet.

e Spare parts. Parts of an octet can consist of spare bits. A spare bit should
be coded as a default value (usually 0), but should not result in an error
when coded as a different value. Spare parts do not have a meaning and
are only used as fill bits.

e Integer. The octet can represent an integer either in (unsigned) binary or
2-complement binary.

e Semi-octet. The octet is split in two parts of four bits (half-octet) and
each half-octet represents an integer. For both parts the most-significant
bit is the left-most bit. This representation is typically used for addresses
(or more commonly called phone numbers). Important to note is that the
digits of the address are stored in the octet from right to left, as shown in

Figure [A]

Every Layer 3 message consists of at least two octets which form the header
of the message. The header is optionally followed by a body of data octets. The
format of the header is described in the next section, the format of the body in
the subsequent section.

A.2.2 Layer 3 message header

The first two (or three) octets of each Layer 3 message form a header. This
header consists of three parts:

1. Protocol Discriminator (PD)
2. Transaction Identifier (TT) or Skip Indicator
3. Message Type (MT).

In Figure [A22] the first octet of a Layer 3 message is shown. Bits 1 to 4 of this
octet are the Protocol Discriminator (PD). The PD determines which Layer 3
sublayer should handle the message. In Table the meaning of all possible
PDs is given.

A.2. LAYER 3 MESSAGE FORMAT 43

Figure A.2 First octet of a GSM Layer 3 message.

(a) CM message format
8 7 6 5 4 3 2 1

| TIF I Tl Value I Protocol Discriminator |

(b) RR and MM message format

| Skip indicator I Protocol Discriminator |

Table A.1 Meaning of all sixteen possible Protocol Discriminators. Note that
not all of them are used for GSM; Evolved Packet System (EPS) and General
Packet Radio Service (GPRS) specific messages are defined too.

bits Sublayer

0000 GCC

0001 BCC

0010 Evolved Packet System (EPS) Session Management messages
0011 CC & call related SSs

0100 General Packet Radio Service (GPRS) Transparent Transport Protocol
0101 MM messages

0110 RR management messages

0111 EPS MM messages

1000 GPRS MM messages

1001 SMS messages

1010 GPRS Session Management messages

1011 Non call related SSs

1100 LCSs

1101 Undefined in the GSM standard

1110 Reserved for future extension of the PD to one octet length
1111 Reserved for test procedures

The other half of the first octet (bits 5 to 8) is occupied by the TI or Skip
Indicato”} CM messages use the format of Figure [A.)(a)] with the TI, while
RR and MM messages use the format of Figure [A.(b)| with a Skip Indicator.

The Skip Indicator is a spare part and should be coded as 0000. The TT is
used to identify to which transaction this message belongs. The TI consists of
two parts, the TT flag and TT value. The TI flag is a single bit at bit position 8
that encodes who initiated the transaction. Messages sent by the initiator have
the TI flag set to 0, while messages sent by the other party have the TI flag set
to 1. The TI value is coded in the remaining three bits (5 to 7) and is a value
between 0 and 6. By varying the TI value and TI flag seven uplink and seven
downlink transactions can be identified in parallel.

In case these seven transactions in either direction are not enough an exten-
sion mechanism is specified. When the extended Transaction Identifier is used
the TI value in octet one of the Layer 3 message is coded as 111. This means
that bits 1 to 7 of the second octet encode the TI value of this transaction, while

15There are actually two other possible meanings for these four bits specified in [20], but
these are not used in GSM.

44 APPENDIX A. GSM DETAILS

Figure A.3 First two octets of a Layer 3 message header using an extended

Transaction Identifier.
8 7 6 5 4 3 2 1

TIF 1 1 1 PD

EXT Tl Extended

Figure A.4 Format of the Message Type octet in a Layer 3 message header for
the sublayers from Table

(a) RR format
8 7 6 5 4 3 2 1

| 0 | Message Type |

(b) GCC, BCC and LCS format

| 0 |N(SD)| Message Type |

(¢) MM, CC and SS format
| N(SD) | Message Type |

(d) SMS format

| Message Type |

the TI flag in the first octet retains its meaning. This is shown in Figure
The EXT bit can be used to further extend the extended TI by setting it to 0,
but this is reserved for future use only. It should now always be coded as 1.

The octet after the TT is the Message Type (MT) octet. Usually this is the
second octet in the Layer 3 message, but when the extended TT is used it is
the third. The most important part of the MT octet is (confusingly) called the
Message Type (MT) field. Together with the PD and the TI flag the MT field
uniquely identifies the exact type of the message, for example whether a CC
message is to setup a new call or an RR message is to release a channel. The
exact meaning of the MT field therefore depends on the PD and also on the TI
flag of the message.

There are slightly different formats to represent the MT octet, which for-
mat is used depends solely on the PD. The four possible formats are shown in
Figure In RR messages bit 8 is set to the default value 0, the rest is used
for the MT field. In LCS, MM, CC and SS messages a send sequence number
(N(SD)) is included. This field is incremented (ignoring overflow) for every next
message and is used to detect duplicate messages in the case of roaming. In LCS
messages this field takes up a single bit with the other bit set to 0, in the other
three cases the N(SD) is two bits. Finally for SMS messages the whole MT
octet is used as MT field.

A.2.3 Layer 3 message body

Most Layer 3 messages do not only contain a header, but also transmit data to
the receiving party. This is done using the message body. Data in the body is
represented in Information Elements (IEs), which is in essence a different name

A.2. LAYER 3 MESSAGE FORMAT 45

Figure A.5 The eight different formats of Layer 3 Information Elements.

(a) Type 1 IE of format V (b) Type 1 IE of format V
8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1
| Value | - | | - | Value |
(¢) Type 1 IE of format TV (d) Type 2 IE of format T
| IEl | Value | | IEl |
(e) Type 3 IE of format V (f) Type 3 IE of format TV

IEI

Value

=
L

e

—i E Value
l_ 1
(g) Type 4 IE of format LV (h) Type 4 IE of format TLV
Length IEI
| _ Length
H Value H | —
i_ —i : Value

for Type-Length-Value (TLV) triples. In the GSM standards the type is called
Information Element Identifier (IEI), the length is called Length Indicator (LI)
and the value is simply called value. The LI specifies the length of the value in
octets. Not all of these three fields have to be present, as long as at least one
of them is. This is done to save precious space in Layer 3 messages.

For each unique message type (thus PD, TI flag and MT field combination)
the GSM standards define which IEs are mandatory and which IEs are optional.
Mandatory IEs always precede optional IEs. Because the mandatory fields
are always present and in a static order in the message, the IEI for those IEs
is omitted to save space. Likewise if a specified IE (mandatory or optional)
always has a certain length (including length zero) the LI field can be omitted.
Therefore seven possible combinations of IE TLV elements exist, with a total
of eight different IE formats defined called Type 1 to 4. These are depicted in
Figure and described below.

Type 1 IEs have a value that takes up only four bits. It can be used either
with or without TEI. When the IEI is omitted the value can be the left or right
half-octet (Figure [A.5(a)| and [A.5(Db)| respectively), depending on the circum-
stances. In case an IEI is used it is always the left half-octet while the value is
the right half-octet (Figure [A.F(c)).

Type 2 IEs only have an IEI of one octet and do not have an LI or value
(Figure . They are nothing more than an optional flag.

Type 3 IEs have a value of a static length of at least one octet. Because the
length is static the LI field is omitted. Type 3 IEs can be used without an TEI
or with an IEI (Figure [A.f(e)| and [A.J(f)| respectively).

Type 4 IEs have a value of variable length of zero or more octets. Therefore
the LI element is always present. Just like the Type 1 and Type 3 IEs the Type

46 APPENDIX A. GSM DETAILS

4 IE can have an IEI present or not (Figure [A.§(g)] and [A.).

Appendix B

Protocol fuzz testing in
depth

Protocol fuzz testing is a testing technique based on ‘regular’, i.e. non-protocol,
fuzz testing (which will be called original fuzz testing in this paper to prevent
ambiguity). Original fuzz testing is a testing technique to test (generic) software
reliability and robustness. Reliability and robustness issues can directly impact
the security of the software, because they can threaten confidentiality, integrity
(e.g. using a buffer overflow exploit) or availability (e.g. DoS by causing the
software to crash). Original fuzz testing is done test cases executed by the
program. This is in contrast to human testing methods like code inspection,
walk-through and review, where a small group of people carefully checks the
software code for programming errors. Testing using test cases is recommended
to be performed after human testing [35].

Original fuzz testing is already relatively old. Studies of different original
fuzzing strategies date back to the end of the 70s and start of 80s [35] B86]. Pro-
tocol fuzz testing is much newer and is in essence an advanced form of original
fuzzing. Messages in a protocol often have a very specific format with optional
fields and variable lengths (for example HTTP headers or IP packets) and a
certain encoding (e.g. ASCII or Unicode). Compared to a Graphical User In-
terface (GUI) or character string as input method in most generic software this
allows for many more fuzzing possibilities. Furthermore in a protocol environ-
ment consecutive input to the program is often much more directly related to
previous input or output (for example through a nonce), or to a static value
not revealed in the communication (cryptographic keys). Original fuzz testing
usually does not have these characteristics.

This appendix first describes original fuzz testing in more detail. It also
describes a few original fuzzing techniques, because some of the concepts are
also applicable for protocol fuzzing. The second section describes several existing
protocol fuzzing tools and their characteristics. In the last section it is described
in more detail why we did not reuse an existing protocol fuzzing tool, but instead
chose to build our own tool for this research.

47

48 APPENDIX B. PROTOCOL FUZZ TESTING IN DEPTH

B.1 Original fuzz testing

Original fuzz testing comes in a large variety of flavours, from quick and dirty
to slow and extensive. Each strategy has different characteristics and make
it suitable for different kinds of verification, depending on time, budget and
desired quality.

The quality of a fuzz test can be expressed by its code coverage. Code
coverage is a measurement of the amount of software code that is actually tested
by a fuzz testing set. The higher the code coverage, the higher the number of
(potentially erroneous) statements executed and thus the more likely it is that
the application will misbehave.

Original fuzz testing techniques can be divided into two main categories:
black box and white box, depending on the knowledge of the source code of the
software. In this section both of these categories are described more extensively.

B.1.1 Black box fuzz testing

Black box fuzzing is the easiest form of fuzz testing, but not necessarily the most
effective. In the black box approach the specifics of the software are ignored,
which allows you to use simple and efficient methods to (pseudo-)randomly
generate input for the software.

Two basic approaches of black box fuzzing exists: random fuzzing and ex-
haustive fuzzing. These two basic strategies are discussed below.

Random fuzz testing

Random fuzzing is the most basic approach of black box fuzzing and is used
quite often. It only uses a couple of very basic parameters, like input length,
input length variation and possible values for the bytes to test. This makes
random testing very easy to implement and highly portable between different
applications.

The simplicity and cheapness of random fuzz testing are also its curse. Be-
cause the test input is randomly generated, it is unlikely that all execution
paths in the implementation are tested. For example, if the application only
supports one single value for a certain byte and the implementation checks this
byte properly, then only 1 out of 28 = 256 test values get past this check. If
more of these checks are included for other bytes or larger data structures, the
test set that tests past this point in the software quickly shrinks, and so does
the code coverage as a result.

Exhaustive fuzz testing

The second basic black box fuzzing strategy is exhaustive fuzzing. Exhaustive
fuzzing is simply trying every single input value on the software, which conse-
quently means you have full code coverage and thus are guaranteed to find all
robustness issues (and as a side-effect also correctness issues).

However, even though you are sure to find all problems, exhaustive fuzzing
has a big problem: it is in almost all cases infeasible. More often than not the
input domain will be infinitely large (for example all possible bit sequences) or at
least too large to test exhaustively within a reasonable time frame (for example

B.1. ORIGINAL FUZZ TESTING 49

all sequences of printable ASCII characters of length up to 15). Therefore
practical applications of exhaustive fuzzing are hard to find.

B.1.2 White box fuzz testing

White box fuzz testing is more sophisticated than black box fuzz testing, because
the software code is taken into account to generate the test cases, which can
result in tests with higher code coverage. Downside is that it is much more
labour intensive to create white box fuzz tests and the resulting tests are unlikely
to be portable to other applications.

One of the most well-known white box testing approaches is partition fuzz
testing [37, B8]. The idea of partition fuzzing is that you partition potential
inputs in domains according to some criteria and test at least one input from
each domain. Other white box approaches include using constraint solvers to
efficiently and automatically mutate correct input to create (slightly) incorrect
input with large code coverage [39]. In this section the focus is on partition
fuzzing strategies, because this approach is also used in this research.

Partition fuzz testing

Partition fuzz testing divides the software input in domains and executes at
least one test case from each domain. It is important to note that often the
partitions made for partition testing are not mathematical partitions, because
they are not necessarily disjoint (on the other hand, the union of all partitions
usually does span the entire input space).

Partition fuzzing comes in a large variety of flavours, from very generic to
very specific. The specificity of partition fuzz testing depends on the criteria
used to create the partitions of the input domain. Several standard criteria have
been established for often employed varieties of partition fuzzing and each of
these varieties has been named. Some examples, ordered from low code coverage
to high:

1. Random fuzzing. While not really considered a white box fuzz testing
strategy, it can be seen as an extreme form of partition fuzzing where all
possible inputs are collected in a single domain from which multiple inputs
are drawn.

2. Statement coverage. A variety for which each program statement has a
domain, which contains exactly those program inputs that execute that
statement. The resulting domains are (extremely) overlapping, but exe-
cuting the test means that all statements are tested at least once.

3. Branch coverage. With this form the program inputs are divided in do-
mains depending on execution path through the program, such that the all
different branches of the program are covered by at least one domain [40)].
The code coverage is equal to that of statement coverage, but the number
of partitions is generally much lower. This strategy results in overlapping
domains.

4. Path coverage. A flavour where the program inputs are divided in sets
that share the exact same entrance and exit statement (i.e. paths). The

50 APPENDIX B. PROTOCOL FUZZ TESTING IN DEPTH

Block B.1 Branch coverage might not find the error in this function, while
path coverage will.

Input: a as integer
Returns: integer

1. x+3

2: if a > 20 then

3 ré—x—2

4: end if

5: if a > 1 Aa < 22 then
6: T+ x—1

7: end if

8: return 6/z

difference with branch coverage is subtle and will be explained with an
example below. Path coverage results in partitions that are disjoint [37].

5. Exhaustive testing. Another black box approach that can be seen as
extreme partition testing where every single program input value has its
own domain and thus all input values are tested. Trivially this also means
that all partitions are disjoint.

The difference between branch and path coverage will be explained with an
example. The pseudo-code in Block [B:1]is a small function that does something
completely arbitrary, but will crash if and only if a = 21 because that results
in division by zero. Using branch coverage there will be four partitions, two for
each if-statement depending on whether the condition evaluates to true or false.
The partitions are (in terms of a):

1. a <20 (first condition false)
2. a > 20 (first condition true)
3. a <1Va > 22 (second condition false)
4. a > 1A a < 22 (second condition true).

If one random case from each partition is tested, the probability that the error
case is picked is approximately 1 : 20.

With path coverage we see a very different picture. Path coverage also has
four partitions, but this time it is for all possibilities through both if-statements
combined. In terms of a that gives:

1. a <1 (both conditions false)

2. a > 22 (only first condition true)

3. a>1Aa <20 (only second condition true)
4. a =21 (both conditions true).

This time if we pick a random case from each partition we are sure to find the
division by zero problem with case 4.

B.2. EXISTING PROTOCOL FUZZING TOOLS 51

B.2 Existing protocol fuzzing tools

Over the years several protocol fuzzing tools and frameworks have been released.
Some of the more well-known tools will be described below, but many more

exisﬂ

B.2.1 SPIKE

SPIKE is one of the older and most heavily used smart fuzzing frameworks [29].
It is a free network protocol fuzzer for smart black box fuzzing written in C.
SPIKE was the first to use a block-based approach for data representation. With
this approach the protocol messages can be build from blocks of primitive data
types and for each block it can be specified if and how it should be fuzzed. In
addition it enables the creation of dependencies among blocks, for example to
implement length fields and checksums. Aitel [41] argued that block-based data
representation allows for easier and quicker representation of complex protocol
data than other approaches. A disadvantage of SPIKE is that it is state-less
and protocol state fuzzing has to be manually implemented by the user.

Besides normal SPIKE there is also SPIKEfile, which works similarly but is
made for file fuzzing.

B.2.2 Sulley

Sulley is an open source network protocol fuzzing framework for smart black
box fuzzing written in the Python programming language and released under
a GPL license [30]. Sulley does not only assist in automated test generation,
but also takes care of the data transmission and can even do target monitoring
using virtual machines. Especially the latter eases the burden on the fuzz tester,
since you can leave Sulley running without paying attention to it and still get
reports of all the inputs that caused an error. The data representation scheme
of Sulley is a tidied up version of that of SPIKE, and hence also block-based.
Additionally Sulley supports protocol state fuzzing by default.

Peach

Peach is an open source smart black box fuzzing platform released under the
MIT License [42]. The current version (version 2) is written in Python and
allows for both generation-based and mutation-based fuzzing. Both message
formats (block-based like SPIKE and Sulley) and the state machine are repre-
sented using eXtensible Markup Language (XML), allowing for high customis-
ability but also a steep learning curve [43]. Just like Sulley it also supports
process monitoring of the target process with virtual machines.

B.2.3 mangleme

mangleme is a smart black box fuzzer specifically designed to automatically
generate broken HyperText Markup Language (HTML) in order to test web
browsers and is released under the LGPL license [31]. It has successfully found

Ohttp://www.fuzzing. org contains a more extensive, yet also not exhaustive, list of fuzzers.

http://www.fuzzing.org

52 APPENDIX B. PROTOCOL FUZZ TESTING IN DEPTH

dozens of bugs in all major web browsers. Unlike the previous three it is not
very customisable and really only for HTML.

B.3 Fuzzing tools and GSM

The tools discussed in the previous section are not made to be used with cell
phones. Especially the target monitoring aspects generally work on network
interfaces and virtual machines, while we have separate devices connected over
a (custom) radio interface. This makes automatic target monitoring with one
of these tools impossible. However, one of these tools could be used to generate
fuzzed messages based on the protocol specifications or by mutating correct
input. The block-based approach from SPIKE, Sulley or Peach seems the most
useful for this.

B.3.1 Picking a tool

Picking a tool for fuzz test generation turned out to be harder than expected.
Since Sulley is essentially SPIKE but in Python and with additional features,
SPIKE was the first framework to be dropped. Peach followed closely because
the documentation was confusing and the learning curve was indeed very steep.
Only Sulley was left in the running.

But Sulley was not ideal either. Sulley does not support fuzzing on binary
data very well (for example fuzzing only certain bit positions within a byte),
while this is required to be able to fuzz GSM messages. In addition Sulley
does not innately support writing output to a file, but this was fairly easy to
solve, because each output block could already be rendered to a string. A third
problem is that state fuzzing is done at a later stage and not compatible with
using the render function for the blocks to print it to an output file. In order to
fuzz a message sequence with Sulley one has to manually concatenate multiple
outputs.

To get around these issues it seemed easier to built a trimmed-down version
of Sulley from scratch, with all required features supported by default, than to
extend Sulley itself. The resulting fuzz test generator would be much smaller,
since the whole monitoring part could be left out entirely. More about the fuzzer
can be found in Appendix [C]

Appendix C

Fuzz test generator

This appendix describes the fuzzer GSMfuzz used for this research. It is a
mutation-based smart fuzzer, with features designed specifically for GSM, but
nonetheless can be used for other protocols as well. The fuzzer is written in
the Python programming language (version 2.6) and loosely based on Sulley. It
therefore uses the same block-based approach as SPIKE and Sulley. It has the
following features:

e Block-based with syntax similar to Sulley
e Fuzzing of bit positions within a byte
e Possibility to exclude certain byte values from the result

e Partition fuzz testing of special fields (type, length), resulting in few cases
with maximum impact

e Innate support for the eight different GSM Layer 3 IEs
e Length fields can count octets, septets or half-octets

e Output in hexadecimal to a file, which can be used directly in our extended
version of OpenBTS (OpenBTSraw).

GSMfuzz itself is just over 900 lines of code (excluding white space). Besides
the source code of the program itself we created 34 files with input to mutate
valid messages. The input files are 3601 lines in total (excluding white space
and comments).

Both GSMfuzz and OpenBTSraw will be published in the near future under
the GNU GPLv2 license and GNU AGPLv3 license respectively. For now source
code for both projects can be gotten upon request. The input files for GSMfuzz
can be gotten upon resuest as well.

33

54

APPENDIX C. FUZZ TEST GENERATOR

Appendix D

SMS fuzzing

The Short Message Service (SMS) service is used to transfer messages from user
to user or from network to user (an example of the latter is the “Welcome!”
message when entering a different country). As described in Chapterthe SMS
sublayer offers many options for protocol fuzzing the header, but few options
for fuzzing the state machine. In this appendix all options are explored and it
is pointed out which were tried in this research.

D.1 SMS protocol stack

The SMS sublayer is in turn a small protocol stack (see Chapter . Four
different layers can be identified within the protocol, which are depicted in

Figure and described in Section
1. Connection Management (CM) specified in [22]
2. Short Message Relay Layer (SM-RL) specified in [22]
3. Short Message Transfer Layer (SM-TL) specified in [23]

4. Short Message Application Layer (SM-AL)

The SMS stack is layered because SMS messages are delivered on a best-effort
basis. If the network is very busy (e.g. on New Year’s Eve) or the recipient is
unreachable (e.g. the MS is switched off) delivery of the message can be delayed
and the message can even be discarded in case the recipient remains unreachable
for a longer period of time. In addition the layered model made it possible to
standardise SMS not only for GSM but also for 3G and 4G protocols.

Whenever a mobile originating SMS message is sent, it is first delivered to
the SMS-Service Centre (SMS-SC), a part of the NSS in a PLMN. This SMS-
SC stores the received message and attempts to forward it to the recipient. If
forwarding fails for any reason the SMS-SC keeps the message for a certain
time and periodically polls whether the message can be delivered. When the
receiving MS is connected to a network and there is bandwidth available the
SMS-SC forwards the message via an intermediate NSS entity to the MS (see
Figure . After successful delivery the copy of the message in the SMS-SC

%)

56 APPENDIX D. SMS FUZZING

Figure D.1 The SMS protocol stack. On the very right are the names of the
messages on that specific layer.

SM-Application Layer (SM-AL) le——— User Data (UD)
Short Message SM-Transfer Layer (SM-TL) le—— TPDU
Service (SMS) SM-Relay Layer (SM-RL) e RPDU
MM Connection Management (CM) l«— CP messages
RR

Figure D.2 Interaction between the SMS-Service Centre and the MS on the
different layers of the SMS protocol (simplified) [23].

intermediate
SMS-SC M
NSS entity S

SM-Application Layer (SM-AL) - — — - - - - -~ »

SM-Transfer Layer (SM-TL)

SM-Relay Layer (SM-RL)

Connection Management (CM)

is deleted. However if the validity period of a message stored in the SMS-SC
expires before the target MS is available the message is discardedEl

In the upcoming two parts the process of delivering an SMS message to the
MS are further described. First the sequence of messages is described and then
the layers and the exact format of the messages on each layer are explained.

D.2 SMS message delivery process

Delivery of SMS messages happens in a few steps. The first step in delivering an
SMS message to an MS is setting up an MM connection with that MS. This is
done by paging the MS over the PCH and allocating an SDCCH upon receiving
the response over the RACH. The MS then initiates all the steps for setting up

7By default the sender is not notified of this. However on many modern cell phones the
sender can request a status report from the network upon (un)successful delivery of the SMS
message.

D.3. SMS MESSAGE STRUCTURE o7

Figure D.3 Message sequence chart of delivering an SMS to an MS.
Service Centre Mobile Station

| |
< SDCCH >

1. SMS-DELIVER
2. CP-ACK
3. RP-ACK
4. CP-ACK
I I

an MM connection on the SDCCH and when successful delivery can start.

After the MM connection is established four messages are exchanged as
shown in Figure[D.3] The first message is the SMS-DELIVER message sent from
the SMS-SC to the MS. This message contains the actual content (user data)
with an optional User Data Header (UDH) and mandatory Transfer Protocol
(TP), Relay Protocol (RP) and Connection Protocol (CP) headers. The MS
first parses the CP header and verifies it. If it is valid the MS returns a CP-
ACK message, otherwise it returns a CP-ERROR message and releases the MM
connection to free up the allocated channel.

If the CP header was correct the MS continues by verifying the RP header
and checking if the phone has enough memory to store the message. If either of
those checks fails it returns an RP-ERROR and releases the MM connection. If
both checks succeed the MS returns an RP-ACK with a CP header.

The final message is sent by the SMS-SC when the RP-ACK passes the
checks for the CP header at the network side.

D.3 SMS message structure

In this section the different layers of the SMS stack are discussed from bottom
to top, as well as the structure of messages on each layer.

D.3.1 SMS Connection Management sublayer and CP mes-
sages

The CM sublayer in SMS differs from the CM sublayer as part of Layer 3. The
Layer 3 CM sublayer is used to denote any of the six services that can be run on
top of the MM sublayer, while the SMS CM layer is to ensure proper delivery
of Relay Protocol Data Units (RPDUs), the messages of the layer immediately
above it.

For correct delivery of RPDUs there are three different CP message types
defined for the SMS Protocol Discriminator (which was 9 as shown in Table[A.1)).
The CP message type is contained in the Layer 3 Message Type (MT) field and
encoded as follows:

e CP-DATA, used to deliver an RPDU, encoded with MT 0x01

58 APPENDIX D. SMS FUZZING

Figure D.4 Format of Layer 3 SMS CP-DATA messages.

8 7 6 5 4 3 2 1
TIF | Tl Value | Protocol Discriminator
Message Type
RPDU length

Relay Protocol Data Unit
(RPDU)

Figure D.5 Format of SMS RP-DATA messages. The entire message is the
Relay Protocol Data Unit (RPDU).

8 7 6 5 4 3 2 1

RP-Message Type Indicator (RP-MTI)

RP-Message Reference (RP-MR)

RP-Originating Address (RP-OA)

RP-Destination Address (RP-DA)

TPDU length

Transfer Protocol Data Unit
(TPDU)

e CP-ACK, used to acknowledge the received CP-DATA, encoded with MT
0x04

e CP-ERROR, used to report an error with a received CP-DATA message,
encoded with MT 0x10.

A CP-DATA message contains as body a single Type 4 LV Information
Element (IE): the RPDU (see Figure D.4). A CP-ACK only consists of the
Layer 3 header and does not have a body. CP-ERROR messages contain a
single Type 3 V IE of a single octet as body, encoding the reason for the error.
An example error cause is 81 when the received TI was invalid.

D.3.2 Short Message Relay Layer and RPDUs

The Short Message Relay Layer (SM-RL) is used by both the SMS-SC and MS
to report problems with delivery, for example when the destination address is
unknown or when the memory of the receiving MS is full. To this end RP
messages, i.e. Relay Protocol Data Units (RPDUs), are used which contain
several fields:

1. RP-Message-Type-Indicator (RP-MTI), a Type 3 format V IE of one

D.3. SMS MESSAGE STRUCTURE 59

Figure D.6 Format of the Originator-Address and Destination-Address Infor-
mation Elements.

8 7 6 5 4 3 2 1

Length

1 I Type of number Numbering plan

Value

= -

octet. This field specifies which type of RP message this is and is manda-
tory in all RPDUs. Four different values are defined:

e RP-DATA, used to transfer a Transfer Protocol Data Unit (TPDU)
(see Figure D.5). Encoded as 0x00 from MS to SMS-SC and 0x01 in
the other direction

e RP-SMMA used to notify the network that the MS again has mem-
ory available to receive SMS messages. Encoded as 0x06

e RP-ACK, used to acknowledge receiving of an RP-DATA or RP-
SMMA message. Encoded as 0x02 from MS to SMS-SC and 0x03 in
the other direction

¢ RP-ERROR, used to report an error with a received RP-DATA or
RP-SMMA message. Encoded as 0x04 from MS to SMS-SC and 0x05
in the other direction.

2. RP-Message-Reference (RP-MR), an IE in Type 3 V format of one octet.
This single octet is a reference number used to link an RP-ACK or RP-
ERROR reply to the preceding RP-DATA or RP-SMMA message. It is a
mandatory IE in all the possible RPDU message types.

3. RP-Originator-Address (RP-OA), the address of the originating SMS-SC
in Type 4 LV format, only used in RP-DATA messages. In case of an
uplink RP-DATA message the length is set to 0, signifying this field is
unused. In the downlink direction the the length is the total length of the
value in octets, where the first octet of the value is the address encoding
scheme (0xA1l (national) or 0x91 (international) by default), followed by
the actual address in semi-octet representation, see Figure The ad-
dress encoding scheme can be extended in the future, but the EXT bit
should now always be coded as 1. The maximum value of the length octet
is 11, resulting in a maximum address length of twenty digits.

4. RP-Destination-Address (RP-DA), the address of the destination SMS-SC
in Type 4 LV format, only used in RP-DATA messages. This field uses
the exact same encoding as RP-OA, but is used in the opposite direction.
So in downlink messages the length is set to 0, while in uplink messages
it specifies the SMS-SC address.

5. RP-Cause (RP-Cause), which is a Type 4 LV format IE with a value part
of one or two octets. Included if and only if the RP-MTTI is RP-ERROR.
The RP-Cause conveys the cause of the error in a single octet, sometimes
with an additional octet specifying diagnostics information.

60 APPENDIX D. SMS FUZZING

6. RP-User-Data (RP-UD), which is the TPDU in Type 4 LV (when manda-
tory) or TLV (when optional) format. This part is mandatory in RP-
DATA messages and optional in RP-ACK and RP-ERROR messages. The
maximum length of the value part of the RP-UD is 231 (RP-DATA) or
232 (RP-ACK and RP-ERROR) octets.

D.3.3 Short Message Transfer Layer and TPDUs

The layer above SM-RL is the Short Message Transfer Layer (SM-TL). Messages
on this layer are called Transfer Protocol Data Units (TPDUs) and again contain
several fields. The most important of these fields is present in all TPDUs and
is called the TP-Message-Type-Indicator (TP-MTI), which is in bits 1 and 2
of the first octet of the TPDUT} This field, together with the direction of the
message, determines the message type of the TPDU. There are six different
message types and the message type determines which other fields are present
in the TPDU. The six possible TPDU message types are discussed below:

e SMS-DELIVER, used by the SMS-SC to deliver an SMS to the MS. En-
coded as TP-MTTI 0x00.

e SMS-DELIVER-REPORT, a report from the MS conveying the positive
or negative acknowledgement to an SMS-DELIVER or SMS-STATUS-
REPORT message. Encoded as TP-MTI 0x00.

e SMS-SUBMIT, used by the MS to deliver an SMS to the SMS-SC. En-
coded as TP-MTI 0x01.

e SMS-SUBMIT-REPORT, a report from the SMS-SC to the MS conveying
the positive or negative acknowledgement to an SMS-SUBMIT or SMS-
COMMAND message. Encoded as TP-MTT 0x01.

o SMS-STATUS-REPORT, a report by the SMS-SC to the MS conveying
the status of the SMS-SC. Encoded as 0x02. Difficult to fuzz because these
messages refer to data in a preceding mobile originating transaction.

e SMS-COMMAND, conveying a command from the MS to the SMS-SC.
Example commands are to request a status report or delete a previously
submitted message. Encoded as 0x02.

As can be seen from the above list only three TP-MTI values are valid,
because the meaning of each value depends on the direction of the message. As
a result only three different message types can be fuzzed, because the other three
are not interpreted as such due to the direction. From those three the SMS-
SUBMIT-REPORT and SMS-STATUS-REPORT messages are sent as response
to a mobile originating transaction, making them inefficient to fuzz (unless there
is a problem with the state machine). SMS-DELIVER messages are sent in a
mobile terminating transaction and can thus be fuzzed efficiently.

18Tn the official ETST documents regarding SMS the bits are numbered from 0 to 7, but in
this paper the numbering convention 1 to 8 of the GSM documents, which was introduced in
Appendix@ is used.

D.3. SMS MESSAGE STRUCTURE 61

Figure D.7 Format of SMS TPDUs.

8 7 6 5 4 3 2 1

Other TP header fields TP-MTI

Other TP header fields

TP-User Data Length (TP-UDL)

SMS-DELIVER TPDU Most of the remaining fields in TPDUs are only
used in specific types of TPDUs. Therefore only the fields useful for fuzzing
(i.e. those that are included in SMS-DELIVER messages) are discussed below.
An extensive overview of all the TPDU fields and their meaning can be found
in Clause 9 of [23].

1. Because the TP-MTTI is only two bits long, the remaining bits of the octet
are used for various flags. Bit 3 is used for the TP-More-Messages-to-Send
(TP-MMS) to indicate if there are more messages to deliver from the SMS-
SC to the MS. Bit 4 can be used in certain cases as TP-Loop-Prevention
(TP-LP) to prevent infinite looping in case of forwarding or automatic
message generation and bit 5 is a spare bit. Bit 6 can be used as TP-
Status-Report-Indication (TP-SRI) to request a status report from the
receiving entity, while the TP-User-Data-Header-Indicator (TP-UDHI) in
bit 7 indicates whether the content of this message, called the TP-User-
Data (TP-UD), starts with a header or only contains the actual message.
Finally bit 8 in the first octet of the TPDU is used as TP-Reply-Path
(TP-RP) which specifies whether or not replies must be routed back via
the SMS-SC specified in the RP-OA.

2. The TP-Originator-Address (TP-OA) is an address in an unusual format.
Just like the RP-OA it starts with an octet for the length, then an octet
for the address encoding scheme, and finally the actual address in semi-
octet representation. However, unlike the RP-OA the LI in the TP-OA
is not the number of octets of the value (including the address encoding
scheme octet), but the number of semi-octets in the actual address (i.e.
excluding the address encoding scheme octet). The address specified in
this field is the Mobile Subscriber Integrated Services Digital Network
number (MSISDN) of the MS that sent the message, i.e. the phone number
of the sender.

3. The TP-Protocol-Identifier (TP-PID) is a field that can specify a higher
layer (SM-AL) protocol that should get this message. Example protocols
are default text, Internet e-mail or fax, although this feature seems to be
rarely used.

4. The TP-Data-Coding-Scheme (TP-DCS) which denotes the coding scheme
used within the TP-UD of this message. Three main schemes exist, where

62 APPENDIX D. SMS FUZZING

each scheme has several flavours that determine how the MS should handle
the message exactly (for more on these flavours see [44]). The TP-DCS
can also specify that the content is compressed. The main schemes are:

e 7 bit GSM default alphabet, where each character is represented in
seven bits

e 8 bit data, used only for transmission of data

e Universal Coded Character Set-2 (UCS-2) which is a 16 bit alphabet
allowing for many more different characters.

Because the maximum length of the content is 140 octets, these coding
schemes result in a maximum of 160 characters, 140 bytes of data and 70
characters respectively.

5. The TP-Service-Centre-Time-Stamp (TP-SCTS) is a field that consists of
seven octets. It represents the data and time that the SMS-SC received the
message. The first six octets are the year (last two digits only), month, day,
hour, minute and second respectively in semi-octet format. The seventh
octet encodes the time zone, also in semi-octet format, in quarters of an
hour from GMT. Bit 4 of the time zone octet is used as the sign (0 for
positive, 1 for negative) of the distance from GMT.

6. The TP-User-Data-Length (TP-UDL) specifies the length of the TP-UD
of this message. If the TP-DCS is set to the GSM 7 bit default alphabet
the length is counted in septets (i.e. characters), in the other two coding
schemes it is counted in octets.

7. The last field in SMS-DELIVER messages is the TP-User-Data (TP-UD).
This is the actual content that is being sent.

D.3.4 Short Message Application Layer

The Short Message Application Layer (SM-AL) is the highest layer in the SMS
stack. Actually the SM-AL is a collective noun for many different protocols, of
which one is selected for each SMS message by the TP-PID field in the header
of the TPDU. SMS messages can originate from an MS or SMS-SC, which is
shown as the two dashed arrows on the SM-AL in Figure of the SMS stack.

The message transmitted on the SM-AL is the TP-UD. It can contain one
or more headers (when the TP-UDHI is set) and have different coding schemes
(via the TP-DCS). SMS can be used for many different messages, from simple
text to pictures, sounds and even animations. For all but the first headers have
to be used to define what type of content it is. Another feature of SMS is
to use segmentation to send content longer than the limit of 140 octets. The
sender splits up the content over multiple SMS messages and the receiver glues
them together again. Message is a complete example of an SMS-DELIVER
message.

D.3. SMS MESSAGE STRUCTURE 63

Message D.1 Example of a valid SMS-DELIVER message from the MS with
Mobile Subscriber Integrated Services Digital Network number “0612” convey-
ing the text “Hello”

Octet Hex Bits Meaning
1 09 ----1001 PD: SMS
1 09 -000---- TI value: 0
1 09 0----—-—- TI flag: direction SMS-SC to MS
2 01 00000001 MT: CP-DATA
3 1C 00011100 Length of the following RPDU is 28 octets
4 01 00000--- Spare bits
4 01 ----- 001 RP-MTI: RP-DATA from SMS-SC to MS
5 34 00110100 RP-MR: 52
6 03 00000011 Length of the RP-OA is 3 octets
7T Al 1-—-——- RP-OA is not extended
7 Al -010---- RP-OA is a (default) national number
7 Al ----0001 RP-OA uses the (default) ISDN numbering plan
8 21 00100001 RP-OA: “12”
9 F3 11110011 RP-OA: «3”
10 00 00000000 Length of the RP-DA is 0 octets
11 14 00010100 Length of the following TPDU is 20 octets
12 00 --—-—-—- 00 TP-MTI: SMS-DELIVER
12 00 ----- 0-- TP-MMS not set, no more messages waiting in
the SMS-SC
12 00 ----0--- TP-LP not set, this message is not spawned or
forwarded
12 00 ---0---- Spare bit
12 00 --0----- TP-SRI not set, no status report requested upon
delivery
12 00 -0----—-- TP-UDHI not set, no UDH included in the TP-
UD
12 00 O0----——- TP-RP not set, no reply path specified
13 04 00001010 Length of the TP-OA is 4 semi-octets
14 A1 1--—-——-—- TP-OA is not extended
14 Al -010---- TP-OA is a (default) national number
14 Al ----0001 TP-OA uses the (default) ISDN numbering plan
15 60 01100000 TP-OA: “06”
16 21 00100001 TP-OA:“12”
17 00 00000000 TP-PID: 0, no SM-AL protocol specified
18 00 00000000 TP-DCS: 0, GSM 7 bit default alphabet
19 11 00010001 TP-SCTS: year ’11
20 30 00110000 TP-SCTS: month 03
21 41 01000001 TP-SCTS: day 14
22 01 00000001 TP-SCTS: hour 10
23 45 01000101 TP-SCTS: minute 54
24 63 01100011 TP-SCTS: second 36
25 80 10000000 TP-SCTS: timezone GMT+2
26 05 00000101 TP-UDL: length of the TP-UD is 5 septets
27 C8 11001000 TP-UD: “H”
28 32 00110010 TP-UD: “e”
29 9B 10011011 TP-UD: “1”
30 FD 11111101 TP-UD: “”
31 OE 00000110 TP-UD: “o”

64

APPENDIX D. SMS FUZZING

Appendix E

Call Control fuzzing

Call Control (CC) is the service in GSM that is used for all messages regarding
phone calls, from setting them up to closing them down. Nearly three dozen
different MTs are defined for CC and call related Supplementary Services. Un-
fortunately only few of these messages were implemented in OpenBTS at the
time of writing, so not all of them could be fuzzed. In fact only the setup of
calls was tested and from this set of messages only the content and not the
state machine. We also only tested using early assignment (see below), but the
other two channel assignment types are interesting for future work. In this ap-
pendix the message sequence of call setup is described, as well as the structure
of CC-SETUP messages.

E.1 Call setup message sequence

Three different message sequences are defined for setting up a phone call: late
assignment, early assignment and very early assignment. The difference between
the sequences is which messages are exchanged over which logical channel. In
OpenBTS only early assignment and very early assignment are implemented,
with early assignment being the default. In Figure the (simplified) message
exchange for early assignment is given. In the actual message exchange several
RR and MM messages are also exchanged to facilitate the channel changes, but
these are excluded from this figure.

Whenever a user is getting called on a network using early assignment the
network first pages the cell phone of the recipient over the PCH, which responds
on the RACH. The response from the network is sent to the phone on the AGCH
and both entities tune in to the allocated SDCCH. The network then starts by
transmitting the SETUP message. The phone acknowledges this message with
a CALL CONFIRMED message, causing the network to allocate a TCH over
which the actual conversation will take place. However this channel is first used
for control messages (thus as FACCH) starting with an ALERTING message
from the phone when it started notifying the user of the incoming call. Once
the user accepts the call the phone sends a CONNECT message to the network,
acknowledged by the CONNECT ACK. From that point on the TCH is an
actual TCH for the voice data.

65

66 APPENDIX E. CALL CONTROL FUZZING

Figure E.1 Message sequence chart of a Mobile Terminating call setup using
early assignment.

Network Mobile Station

| |
< SDCCH >

1. SETUP
2. CALL CONFIRMED

< FACCH/TCH >

3. ALERTING
4. CONNECT
5. CONNECT-ACK

< TCH >
* *

E.2 Call setup message structures

During a mobile terminating call setup two messages are sent from the network
to the cell phone: the SETUP and CONNECT ACK messages. The CONNECT
ACK is the simplest of the two, consisting only of an Layer 3 header with a
Protocol Discriminator (PD) of 3, Transaction Identifier (TT) the same as the
SETUP message and Message Type (MT) of 0xOF. The SETUP message is a
lot more complicated.

A CC SETUP message consists, like all other Layer 3 messages, of a manda-
tory header. The PD must be set to 3, the TI must lie between 0 and 6 and
the MT must be set to 0x07. Besides this header a SETUP message has an
optional body of Information Elements (IEs). Because all elements in the body
are optional all have to start with an Information Element Identifier (IEI) and
most also include a Length Indicator (LI). IEs that are out of order should be
ignored, as should any duplicated IE after the first (unless more than one is
allowed).

Due to time constraints only some of the elements in a SETUP message
were tested. Below only those elements are described, for further reading on all
elements see Clause 9 of [21]. An overview of the SETUP message as it was
used in this research can be found in Figure [E.2

1. The Bearer Capability 1 element specifies capabilities supported by the
network. It is a type 4 IEs in TLV format with the IEI set to 0x04. The
Bearer Capability element is full of different mandatory and optional bit
fields, too many to discuss here. For a full specification of all the bit fields
see clause 10.5.4.5 of [21].

2. The Progress Indicator IE is a type 4 TLV format element with IEI set to

E.2.

CALL SETUP MESSAGE STRUCTURES 67

Figure E.2 The elements of CC SETUP messages that were fuzzed in this
research.

8 7 6 5 4 3 2 1
TIF I Tl Value | Protocol Discriminator
N(SD) l Message Type

10.

0x1E. It can be used to describe an event that happened during a call.

The the Signal element is a Type 3 TV format element of length 2 and is
used by the network to specify certain tones. The IEI of this element is
0x34.

The Calling Party BCD Number is the phone number of the caller. It is
encoded just like the RP-OA element for SMS with an LI, numbering plan
and the value in semi-octet notation. The IEI is 0x5C.

The Called Party BCD Number is the phone number of the callee, starting
with IEI Ox5E. It is encoded the same as the Calling Party BCD Number.

. The Redirecting Party BCD Number is also encoded as the Calling Party

BCD Number but uses IEI 0x74. This element is included when the call
was redirected from the original callee to this MS.

The User-user element is a type 4 TLV format element with IEI Ox7E.
This element can be used to transmit user information from the caller to
the callee.

The Priority IE is a type 1 TV format message with IEI 0x8 that can be
used to set the priority of the call.

The Alert IE can encode which alerting tone the phone should use to alert
the user of the incoming call. This feature does not have to be supported
by the phone. The IEI of this element is 0x19.

The last fuzzed element is the Network Call Control Capabilities element
with IEI 0x2F. This type 4 TLV format message actually only includes a
single bit value that specifies whether the network supports multicalls.

68

APPENDIX E. CALL CONTROL FUZZING

Appendix F

Fake base station

The fake base station used in this research was built by Ronny Wichers Schreurs
and Fabian van den Broek of the Radboud University Nijmegen. It consists of
the following hardware components from Ettus Research LL(™|and Fairwaved™|
(with price estimation excluding taxes in brackets) and is shown in Figure

e Ettus USRP-1 (€550)

e Ettus WBX daughterboard (€450)

e Fairwaves ClockTamer-1.2 (€210)

e Ettus LP0926 900 MHz to 2.6 GHz antenna (€30)

The software in use was OpenBTS version 2.6.0 [5], modified to be able
to transmit arbitrary SMS and CC messages. We used the 1800 MHz base-
band on Absolute Radio Frequency Channel Number (ARFCN) 881, which is
free for (unlicensed) use with low power equipment in the Netherlands until at
least 2013. For the basestation identification we used the country code of the
Netherlands (204) and the unused network code 98 to not interfere with genuine
networks. Two cheap prepaid SIM cards were used to connect the phones to
the private network.

The USRP-1 was hooked up to an IBM ThinkPad Lenovo R60e via a USB-2
connection. The notebook has the following specifications:

e Intel Core Duo T2300 CPU at 1.66GHz
e 512 MB DDR-2 RAM

e Hitachi 80 GB ATA hard drive

e Ubuntu 10.10 32 bit

A second notebook was used for bookkeeping of the results using Microsoft
Excel 2007.

9http://www.ettus. com
20http://shop.fairwaves.ru

69

http://www.ettus.com
http://shop.fairwaves.ru

70 APPENDIX F. FAKE BASE STATION

Figure F.1 The USRP-1 with on top of it the antenna.

Figure F.2 The setup with on the left the USRP-1, on the right the notebook
running OpenBTS and in the centre the notebook used for bookkeeping. In the
front are five cell phones.

Appendix G

Details of the fuzzing
results

In this appendix the results of the practical part of this research are described
in more detail. For all the different cell phones the field(s), introduced in Ap-
pendix [D] that cause problems are identified and specific values that cause
strange behaviour are given. Note that not all of the identified issues happened
consistently, which also means that some other inconsistent issues might not
have shown itself.

This appendix is organised by cell phone brand and type. But first the
annoyance of the icons on specific types of SMS messages is described, since
that affects all tested cell phones.

G.1 Icons for special SMS messages

The TP-DCS field can be used to encode a notification to the user that a voice,
fax or email message is waiting to be retrieved from the network. This message
is easy to send from a fake basestation by encoding the TP-DCS as 0xDS,
0xD9 and 0xDA respectively. These values conform to the specifications and
the resulting message is a syntactically and semantically correct message. As
was discussed in Chapter [p| getting rid of the icons on the cell phone is rather
difficult and the icons themselves can be confusing and annoying.

G.2 HTC

G.2.1 Legend

On the tested HTC Legend a bug exists which makes it possible to prevent the
phone from receiving any more SMS messages until the phone is turned off or
switched to a different network. This occurs when an SMS message with the
RPDU length is set to a low value (we only tested 0 and 1, but possibly other
values lower than the actual length are affected as well). Turning the phone off
and on, switching to a different network or getting out of range of the BTS or

71

72 APPENDIX G. DETAILS OF THE FUZZING RESULTS

network@ stop the DoS.

G.3 iPhone

G.3.1 4

The tested iPhone 4 has a bug similar to the HTC Legend where a silent SMS
message causes a DoS on receiving SMS messages. In addition, after having
received this malicious message it is impossible to switch to a different network.
This behaviour is triggered by using the TI extension mechanism in an SMS
message. The DoS can be stopped by switching the phone off and on again or
getting out of range of the BTS or network.

G.4 Nokia

G.4.1 1100

Nothing extraordinary was found for the Nokia 1100.

G.4.2 2600

The Nokia 2600 has an issue that causes strange but inconsistent behaviour.
This happens when playing with the TP-UDHI field. When setting this field to
1 the first octet in the TP-UD is interpreted as the length of the (non-existing)
UDH. When this octet is sufficiently large (we found that with 3 octets of data
10 was the minimum value) one of three things happened when sending the
message to the Nokia 2600:

1. The message would disappear, i.e. would get acknowledged by the phone
to the network but nothing happened on the phone. This happened about
75% of the time.

2. The message would be stored and show part of the phone memory when
opened (as described in Section , happening about 20% of the time.

3. The phone would immediately reboot without acknowledging to the net-
work that it received the message, happening the remaining 5% of the
time. This reboot would require the user to enter the SIM PIN again
before the phone would return to standby mode.

G.4.3 3310 and 3410

We did not identify any problems on the Nokia 3310 and 3410.

21'We did not have the means to verify whether getting out of range of the BTS is sufficient
or that one has to move out of range of the entire network.

G.5. SAMSUNG 73

G.4.4 6610

On the Nokia 6610 it is possible to silently fill up the phone memory. When
playing with the DCS5 thingy. TODO

In addition the phone reboots when sending a valid SMS-STATUS-REPORT
or SMS-SUBMIT-REPORT with some of the unknown fields guessed (e.g. the
RP-MR of the last SMS submitted by the MS). However, this only happened
to the first report of both types, for any subsequent report the phone would
return an RP-ERROR message. This indicates that the phone first checks the
state before it parses the message and only crashes when actually parsing the
message. Finding out what exactly caused this behaviour was out of scope, but
would be interesting for future work.

G.4.5 Nokia 7650

The Nokia 7650 would consistently restart when the TPDU length field is set to
0. It did not matter what came after the TPDU length field, the TPDU could
be valid or omitted entirely, the phone would reboot either way.

G.4.6 E70-1 and E71-1
No issues were identified on the Nokia E70-1 and E71-1.

G.5 Samsung
G.5.1 SGH-AS800

Two different issues on the Samsung SGH-A800 were identified in this research.
The first issue allows an attacker to fill up the phone memory by setting the
TP-DCS field to 0xD7, 0xDF or OxEF. Bit 1 and 2 in this message mean that
there is an “other message” waiting at the network, while bit 4 sets the flag for
this to inactive (0) or active (1). Bit 3 is spare and should be coded as 0, but
is set to 1 instead. Bits 5 to 8 of this field designate that the TP-UD in this
message should be stored on the MS and is encoded in the GSM default 7 bit
alphabet (0xD) or in the UCS-2 format (0xE) .

The second issue occurs when the TPDU length field is set to a value that
is much larger than the actual length (38 instead of 19 was the minimum we
found). The result depends on whether the phone is charging or not. When the
phone is not charging it reboots and goes back to standby. However, when the
phone is charging it will not reboot, but instead completely shut down. As a
result the phone can not receive any calls or SMS messages until the user turns
it on and enters the PIN again.

G.5.2 SGH-D500

The Samsung SGH-D500 was the phone with the most robustness issues. Similar
to the SGH-A800 setting the TPDU length field to a sufficiently large value
causes a reboot. When this happens the vibrate alert of the phone will go off
and continue to do so until the phone is completely rebooted and back in standby

74 APPENDIX G. DETAILS OF THE FUZZING RESULTS

mode. Unlike the SGH-A800 the phone will always reboot when receiving these
messages, even when charging.

Fuzzing on two other fields in SMS messages can also cause a reboot of the
SGH-D500. When the RP-DA length is set to a sufficiently large value the
phone reboots. Also when the TP-UD is much longer than allowed (tested with
480 7bit characters) the same thing happensiﬂ

A third issue found with SMS is that it always accepts SMS-SUBMIT-
REPORT messages. When received they are stored as a regular SMS message
with (presumably) some part of the phone memory in them. The content of the
message is really stored as such on the SIM, unlike on the Nokia 2600 where the
content would be different every time the message is opened.

The last issue with SMS on the SGH-D500 is that one can silently fill up the
SIM card memory. When setting the TP-LP bit to 1 the phone will not notify
the user of an incoming message, unless there is already a new message waiting.
In that case it will actually notify the user. In either case a message is stored
on the SIM that can not be viewed or deleted with this phone, in fact the inbox
does not show it at all. However something is stored on the SIM card. When
the SIM card is full an empty message is displayed on the phone when another
one of these malicious messages is received. The only way to free up memory
on the SIM again is to clear it using a different phone.

With CC fuzzing two more values that would cause a reboot were found.
When setting the length of the “Redirecting party BCD number” to OxFF the
phone would reboot. With any other values nothing strange happened.

Also when making the CC SETUP message too long (tested with 350 octets
in total of duplicate “Calling party BCD number” values) the phone would
reboot. Interesting enough this also happened with SMS messages that were
too long, but not with arbitrary messages that are too long. So it is not a buffer
overflow in the input buffer, but rather two separate problems.

G.5.3 Galaxy S

No issues were found on the Galaxy S.

G.6 Sony Ericsson

G.6.1 T630

The only tested Sony Ericsson phone had several problems as well. Similar to
the Samsung SGH-D500 an SMS message with its TP-UD too long or a CC
SETUP message that is too long cause it to reboot.

In addition when playing around with the TP-DCS field two different issues
were found, both when the first half of the TP-DCS octet is set to OxF, meaning
that the remaining half octet encodes the data coding scheme and message class.
When the second half octet is set to 0xA, 0x6 or OxE the message could not
be deleted using the “delete all new messages” function, but could be deleted
one by one or via “delete all messages”. However, when the second half of this
octet is set to 0x3, 0x7, 0xB or OxF the result was quite different. A message is

221n this case OpenBTS stops working as well with an assertion failure.

G.6. SONY ERICSSON 75

received but no notification is given to the user. As a result it is possible to fill
up the entire phone memory without the user noticing.

The last interesting finding on the T630 is that it accepts all STATUS and
SUBMIT report messages. This shows a problem with the state machine, be-
cause such a report should only be accepted once after an SMS is submitted.
The phone might also be susceptible to invalid fields in these messages, but
this was not attempted in this research. This could be interesting for future
research.

76

APPENDIX G. DETAILS OF THE FUZZING RESULTS

List of Abbreviations

ACK

AGCH
ARFCN

BCC

BCCH
BCH
BSC
BSS
BTS

CBCH
CC

CCCH
CM

CP

DCCH

DoS

EPS
ETSI

FACCH
FCCH
FDMA

acknowledgement

Access Grant Channel
Absolute Radio Frequency Channel Number

Broadcast Call Control

Broadcast Control Channel
Broadcast Channel

Base Station Controller
Base Station Subsystem
Base Transceiver Station

Cell Broadcast Channel
Call Control

Common Control Channel
Connection Management

Connection Protocol

Dedicated Control Channel
Denial-of-Service

Evolved Packet System
European Telecommunications Standards
Institute

Fast Associated Control Channel

Frequency Correction Channel
Frequency Division Multiple Access

7

22, 23, 25, 40,
60

39, 65

69

14, 15, 24, 43,
44

38

38, 40

10, 11

9-11

10, 11, 14, 27,
31, 37-41, T1,
72

38

iii, 3, 5, 13, 14,
21, 23-27, 32,
33, 36, 43, 44,
65, 67, 69, 74
38-40

13, 14, 21-24,
40, 41, 43, 55,
57

57

38-41
iii, 2-4, 18, 30
32, 35, 47, 72

43
1, 41, 60

39, 40, 65
38
37, 38

78

GCC
GPRS

GPS
GSM

GUI

HTML
HTTP

IE
IET
IMSI
1P
ISDN
LCS
LI
ME
MM

MMS
MS

MSISDN

MT

N(SD)
NSS

0s
O8I

PCH

List of Abbreviations

Group Call Control
General Packet Radio Service

Global Positioning System
Global System for Mobile Communication

Graphical User Interface

HyperText Markup Language
HyperText Transfer Protocol

Information Element

Information Element Identifier
International Mobile Subscriber Identity
Internet Protocol

Integrated Services Digital Network
Location Service

Length Indicator

Mobile Equipment

Mobility Management

Multimedia Messaging Service
Mobile Station

Mobile Subscriber Integrated Services Digi-
tal Network number
Message Type

send sequence number
Network Switching Subsystem

Operating System
Open Systems Interconnection

Paging Channel

13, 15, 24, 43,
44

43

14

i, 1-7, 9-14,
21-27, 30, 33,
36-38, 40, 41,
43, 45, 52, 53,
55, 60, 62, 63,
65, 73

47

51, 52

17-19

44-46, 53, 58,
59, 66, 67

45, 46, 66, 67
10, 39, 41

17

10, 61, 63, 78
13, 14, 23, 24,
43, 44

45, 61, 66, 67
10

13, 22, 23, 40,
41, 43, 44, 56,
57, 65

3, 4

4, 911, 13-
15, 21-24, 36-
41, 55-63, 67
73

10, 14, 61, 63
92, 42, 44, 45,
57, 58, 63, 65,
66

44

9-11, 41, 55

3, 4, 21, 23-27,
29, 33

11, 12, 22

39, 56, 65

List of Abbreviations

PD

PIN
PLMN

PSTN

RACH
RP
RP-Cause
RP-DA
RP-MR
RP-MTI
RP-OA
RP-UD
RPDU
RR

SACCH
SCH
SDCCH
SDR
SIM

SM-AL
SM-RL
SM-TL
SMIL

SMLC
SMS

SMS-SC
SS

TCH
TDMA
TI

TLV
TMSI
TP

TP-DCS

Protocol Discriminator

Personal Identification Number
Public Land Mobile Network

Public Switched Telephone Network

Random Access Channel
Relay Protocol

RP-Cause
RP-Destination-Address
RP-Message-Reference
RP-Message-Type-Indicator
RP-Originator-Address
RP-User-Data

Relay Protocol Data Unit
Radio Resource

Slow Associated Control Channel
Synchronisation Channel

Standalone Dedicated Control Channel
Software Defined Radio

Subscriber Identity Module

Short Message Application Layer
Short Message Relay Layer
Short Message Transfer Layer

Synchronised Multimedia Integration Lan-

guage
Serving Mobile Location Centre
Short Message Service

SMS-Service Centre
Supplementary Service

Traffic Channel
Time Division Multiple Access
Transaction Identifier

Type-Length-Value
Temporary Mobile Subscriber Identity

Transfer Protocol

TP-Data-Coding-Scheme

79

42-45, 57, 63,
66

30, 72, 73
9-11, 13, 15, 37,
41, 55

11

39, 40, 56, 65
57-60, 79

59

59, 63, 74
59, 63, 73
58, 59, 63
59, 61, 63, 67
60
57-59, 63, 71
13, 22, 23, 40,
41, 43, 44, 65

39, 40
38

39, 56, 57, 65
iii, 1, 2, 36

10, 28-32, 41,
69, 72, 74

5, 55, 61-63
55, 58, 60

55, 60

3

14
iii, 2-6, 13, 14
21, 23, 25-33,
35, 36, 39, 43,
44, 55-63, 67,
69, 71-75, 79
55-63

13, 14, 24, 43,
44, 65

38-41, 65
38

42-45, 58, 63,
66, 72

45

39, 41

57, 59-62, 79,
80

61-63, 71, 73,
74

80

TP-LP
TP-MMS
TP-MTI
TP-OA
TP-PID
TP-RP
TP-SCTS
TP-SRI
TP-UD
TP-UDHI
TP-UDL
TPDU

UCs-2
UDH
URI
USRP
USRP-1
VM
WAP

XML

TP-Loop-Prevention
TP-More-Messages-to-Send
TP-Message-Type-Indicator
TP-Originator-Address
TP-Protocol-Identifier
TP-Reply-Path
TP-Service-Centre-Time-Stamp
TP-Status-Report-Indication
TP-User-Data
TP-User-Data-Header-Indicator
TP-User-Data-Length

Transfer Protocol Data Unit

Universal Coded Character Set-2
User Data Header

Uniform Resource Identifier

Universal Software Radio Peripheral
Universal Software Radio Peripheral-1
Virtual Machine

Wireless Application Protocol

eXtensible Markup Language

List of Abbreviations

61, 63, 74
61, 63

60, 61, 63
61, 63

61-63

61, 63

62, 63

61, 63
61-63, 72-74
61-63, 72
62, 63
59-63, 73

62, 73
57, 63, 72

3

4,5

iii, 3, 4, 36, 69,
70

26
3

o1

Bibliography

[1]

[10]

[11]

European Telecommunications Standards Institute, “ETSI History.” URL:
http://www.etsi.org/WebSite/AboutETSI/AboutEtsi.aspx, 2011. Last
accessed 14 July 2011.

Internet World Stats, “Internet World Stats.” URL: http://www.
internetworldstats.com/stats.htm, March 2011. Last accessed 14 July
2011.

GSM Association, “GSMA History.” URL: http://www.gsmworld.com/
about-us/history.htm, 2009. Last accessed 14 July 2011.

GSM Association, “GSMA Market Statistics.” URL: http://wuw.
gsmworld.com/newsroom/market-data/market_data_summary.htm,
2009. Last accessed 14 July 2011.

“OpenBTS.” URL: http://openbts.sourceforge.net/, 2008. Last ac-
cessed 14 July 2011.

“OpenBSC.” URL: http://openbsc.osmocom.org/trac/wiki/0OpenBSC,
2008. Last accessed 14 July 2011.

“OsmocomBB.” URL: http://bb.osmocom.org/trac/, 2009. Last ac-
cessed 14 July 2011.

K. Nohl, “Attacking Phone Privacy.” Presented at Blackhat, Abu Dhabi.
White paper URL: https://media.blackhat.com/bh-ad-10/Nohl/
BlackHat-AD-2010-Nohl-Attacking-Phone-Privacy-wp.pdf, 2010.
Last accessed 14 July 2011.

C. Mulliner and G. Vigna, “Vulnerability Analysis of MMS User Agents,”
in 22nd Annual Computer Security Applications Conference (ACSAC),
pp. 77-86, ACM, 2006.

H. Welte, “Using OpenBSC for Fuzzing of GSM Handsets.” Presented at
26C3. URL: http://events.ccc.de/congress/2009/Fahrplan/events/
3535.en.html| 2009. Last accessed 14 July 2011.

C. Mulliner and C. Miller, “Fuzzing the Phone in your Phone.” Presented
at Black Hat, USA. URL: http://www.blackhat.com/presentations/
bh-usa-09/MILLER/BHUSAO9-Miller-FuzzingPhone-PAPER.pdf, 2009.
Last accessed 14 July 2011.

81

http://www.etsi.org/WebSite/AboutETSI/AboutEtsi.aspx
http://www.internetworldstats.com/stats.htm
http://www.internetworldstats.com/stats.htm
http://www.gsmworld.com/about-us/history.htm
http://www.gsmworld.com/about-us/history.htm
http://www.gsmworld.com/newsroom/market-data/market_data_summary.htm
http://www.gsmworld.com/newsroom/market-data/market_data_summary.htm
http://openbts.sourceforge.net/
http://openbsc.osmocom.org/trac/wiki/OpenBSC
http://bb.osmocom.org/trac/
https://media.blackhat.com/bh-ad-10/Nohl/BlackHat-AD-2010-Nohl-Attacking-Phone-Privacy-wp.pdf
https://media.blackhat.com/bh-ad-10/Nohl/BlackHat-AD-2010-Nohl-Attacking-Phone-Privacy-wp.pdf
http://events.ccc.de/congress/2009/Fahrplan/events/3535.en.html
http://events.ccc.de/congress/2009/Fahrplan/events/3535.en.html
http://www.blackhat.com/presentations/bh-usa-09/MILLER/BHUSA09-Miller-FuzzingPhone-PAPER.pdf
http://www.blackhat.com/presentations/bh-usa-09/MILLER/BHUSA09-Miller-FuzzingPhone-PAPER.pdf

82

[12]

[13]

[17]

[18]

[19]

[23]

BIBLIOGRAPHY

C. Mulliner and N. Golde, “SMS-o-Death.” Presented at 27C3.
URL: http://events.ccc.de/congress/2010/Fahrplan/events/4060.
en.html, 2010. Last accessed 14 July 2011.

ETSI, “Digital cellular telecommunications system (Phase 2+); Universal
Mobile Telecommunications System (UMTS); LTE; Network architecture,”
3GPP TS 23.002 Version 9.5.0 Release 9, European Telecommunications
Standards Institute, 2010.

F. van den Broek, “Catching and Understanding GSM-Signals,” Master’s
thesis, Radboud University Nijmegen, 2010.

ETSI, “Digital cellular telecommunications system (Phase 2+); Security-
related network functions,” 3GPP TS 43.020 Version 9.1.0 Release 9, Eu-
ropean Telecommunications Standards Institute, 2010.

ATIS, “Integrated Services Digital Network — Basic Acces Interface for Use
on Metallic Loops for Application on the Network Side of the NT (Layer 1
Specification),” ATIS 0600601.1999(R2009), Alliance for Telecommunica-~
tions Industry Solutions, 2009.

ISO/IEC, “Information technology — Open Systems Interconnection —
Basic Refereence Model: The Basic Model,” ISO/IEC International
Standard 7498-1:1994, International Organization for Standardization
(ISO) /International Electrotechnical Commission (IEC), 1994.

ETSI, “Digital cellular telecommunications system (Phase 24); Layer 1;
General Requirements,” 3GPP TS 44.004 Version 9.0.0 Release 9, European
Telecommunications Standards Institute, 2010.

ETSI, “Digital cellular telecommunications system (Phase 2+); Data Link
(DL) Layer General Aspects,” 3GPP TS 44.005 Version 9.0.0 Release 9,
European Telecommunications Standards Institute, 2010.

ETSI, “Digital cellular telecommunications system (Phase 2+); Universal
Mobile Telecommunications Systems (UMTS); LTE; Mobile radio interface
signalling layer 3; General Aspects,” 3GPP TS 24.007 Version 9.0.0 Release
9, European Telecommunications Standards Institute, 2010.

ETSI, “Digital cellular telecommunications system (Phase 2+); Universal
Mobile Telecommunications Systems (UMTS); LTE; Mobile radio interface
Layer 3 specification; Core network protocols; Stage 3,” 3GPP TS 24.008
Version 9.5.0 Release 9, European Telecommunications Standards Institute,
2010.

ETSI, “Digital cellular telecommunications system (Phase 2+); Universal
Mobile Telecommunications Systems (UMTS); LTE; Point-to-Point (PP)
Short Message Service (SMS) support on mobile radio interface,” 3GPP TS
24.011 Version 9.0.1 Release 9, European Telecommunications Standards
Institute, 2010.

ETSI, “Digital cellular telecommunications system (Phase 2+); Universal
Mobile Telecommunications System (UMTS); Technical realization of the
Short Message Service (SMS),” 3GPP TS 23.040 Version 9.3.0 Release 9,
European Telecommunications Standards Institute, 2010.

http://events.ccc.de/congress/2010/Fahrplan/events/4060.en.html
http://events.ccc.de/congress/2010/Fahrplan/events/4060.en.html

BIBLIOGRAPHY 83

[24]

[25]

[31]

[32]

[33]

[34]

ETSI, “Digital cellular telecommunications system (Phase 2+); Functional
stage 2 description of Location Services (LCS) in GERAN,” 3GPP TS
43.059 Version 9.0.0 Release 9, European Telecommunications Standards
Institute, 2010.

ETSI, “Digital cellular telecommunications system (Phase 2+); Universal
Mobile Telecommunications Systems (UMTS); LTE; General on supple-
mentary services,” 3GPP TS 22.004 Version 9.0.0 Release 9, European
Telecommunications Standards Institute, 2010.

ETSI, “Digital cellular telecommunications system (Phase 2+); Group Call
Control (GCC) protocol,” 3GPP TS 44.068 Version 9.0.0 Release 9, Euro-
pean Telecommunications Standards Institute, 2010.

ETSI, “Digital cellular telecommunications system (Phase 2+); Broadcast
Call Control (BCC) protocol,” 3GPP TS 44.069 Version 9.0.0 Release 9,
European Telecommunications Standards Institute, 2010.

S. Gorbunov and A. Rosenbloom, “AutoFuzz: Automated Network Proto-
col Fuzzing Framework,” IJCSNS International Journal of Computer Sci-
ence and Network Security, vol. 10, no. 8, pp. 239-245, 2010.

Immunity, Inc., “SPIKE fuzzing tool.” URL: http://www.immunityinc.
com/resources-freesoftware.shtml, 2001. Last accessed 14 July 2011.

A2009, “Sulley: Fuzzing Framework.” URL: http://code.google.com/p/
sulley/, 2007. Last accessed 14 July 2011.

M. Zalewski, “mangleme.” URL: http://freshmeat.net/projects/
mangleme/|, 2004. Last accessed 14 July 2011.

T. Engel, “S60 Curse of Silence.” URL: http://berlin.ccc.de/~tobias/
cursesms.txt, 2008. Last accessed 14 July 2011.

ETSI, “Digital cellular telecommunications system (Phase 2+); Physical
layer on the radio path; General description,” 3GPP TS 45.001 Version
9.3.0 Release 9, European Telecommunications Standards Institute, 2010.

ETSI, “Digital cellular telecommunications system (Phase 2+); Mobile ra-
dio interface layer 3 specification; Radio Resource Control (RRC) protocol,”
3GPP TS 44.018 Version 9.7.0 Release 9, European Telecommunications
Standards Institute, 2010.

G. J. Myers, The Art of Software Testing. John Wiley & Sons, 1979.

J. W. Duran and S. C. Ntafos, “An Evaluation of Random Testing,” IEFEE
Transactions on Software Engineering, vol. 10, no. 4, 1984.

E. J. Weyuker and B. Jeng, “Analyzing Partition Testing Strategies,” IEEE
Transactions on Software Engineering, vol. 17, no. 7, 1991.

W. J. Gutjahr, “Partition Testing vs. Random Testing: The Influence of
Uncertainty,” IEEE Transactions on Software Engineering, vol. 25, no. 5,
1999.

http://www.immunityinc.com/resources-freesoftware.shtml
http://www.immunityinc.com/resources-freesoftware.shtml
http://code.google.com/p/sulley/
http://code.google.com/p/sulley/
http://freshmeat.net/projects/mangleme/
http://freshmeat.net/projects/mangleme/
http://berlin.ccc.de/~tobias/cursesms.txt
http://berlin.ccc.de/~tobias/cursesms.txt

84

[39]

[40]

[41]

[42]

[43]

[44]

BIBLIOGRAPHY

P. Godefroid, “Automated Whitebox Fuzz Testing,” in Proceedings of the
Network and Distributed Systems Security Symposium, ACM, 2008.

W. E. Howden, “Functional Program Testing,” IFEFE Transactions on Soft-
ware Engineering, vol. 6, no. 2, 1980.

D. Aitel, “The Advantages of Block-Based Protocol Analysis for Security
Testing,” White paper, Immunity, Inc., 2002.

M. Eddington, “Peach Fuzzing Platform.” URL: http://peachfuzzer.
com/}, 2004. Last accessed 14 July 2011.

M. Sutton, A. Greene, and P. Amini, Fuzzing: Brute Force Vulnerability
Discovery. Addison-Wesley, 2007.

ETSI, “Digital cellular telecommunications system (Phase 2+); Univer-
sal Mobile Telecommunications System (UMTS); LTE; Alphabets and
language-specific information,” 3GPP TS 23.038 Version 9.1.1 Release 9,
European Telecommunications Standards Institute, 2010.

http://peachfuzzer.com/
http://peachfuzzer.com/

	Abstract
	Acknowledgements
	Introduction
	Related Work
	Contributions and scope
	Contributions
	Scope

	Research methodology
	Relevance
	Outline

	Introduction to GSM
	GSM network infrastructure overview
	Mobile Station (MS)
	Base Station Subsystem (BSS)
	Network Switching Subsystem (NSS)

	Um interface
	Physical Layer
	Data Link Layer
	Layer 3

	Introduction to protocol fuzz testing
	What is protocol fuzz testing?
	Protocol fuzzing strategies

	Considerations on GSM protocol fuzzing
	Fuzzing on the GSM (sub)layers
	Fuzzing the Physical Layer
	Fuzzing the Data Link Layer
	Fuzzing Layer 3

	GSM protocol fuzzing strategy and tooling
	Fuzzing SMS and CC
	Protocol fuzzing tool

	Practical protocol fuzz testing on GSM cell phones
	Scrutinised cell phones
	Summary of the results
	Icons
	No notification
	Read memory
	Reboot
	Unable to delete messages
	Long time DoS

	Future Work
	Conclusion
	Interesting observations
	Summary and conclusions

	Details of the GSM protocol
	Um interface details
	Physical Layer
	Data Link Layer
	Layer 3

	Layer 3 message format
	GSM Layer 3 message basics
	Layer 3 message header
	Layer 3 message body

	Protocol fuzz testing in depth
	Original fuzz testing
	Black box fuzz testing
	White box fuzz testing

	Existing protocol fuzzing tools
	SPIKE
	Sulley
	mangleme

	Fuzzing tools and GSM
	Picking a tool

	Fuzz test generator
	SMS fuzzing
	SMS protocol stack
	SMS message delivery process
	SMS message structure
	SMS Connection Management sublayer and CP messages
	Short Message Relay Layer and RPDUs
	Short Message Transfer Layer and TPDUs
	Short Message Application Layer

	Call Control fuzzing
	Call setup message sequence
	Call setup message structures

	Fake base station
	Details of the fuzzing results
	Icons for special SMS messages
	HTC
	Legend

	iPhone
	4

	Nokia
	1100
	2600
	3310 and 3410
	6610
	Nokia 7650
	E70-1 and E71-1

	Samsung
	SGH-A800
	SGH-D500
	Galaxy S

	Sony Ericsson
	T630

	List of Abbreviations
	Bibliography

