Exotic objects
Black holes are exotic cosmic objects which have enormous mass, but are small in size. A black hole exerts extreme influence on its environment. It curves spacetime and heats surrounding matter to super-high temperatures. “The size of the shadow is related to the mass of a black hole and we managed to actually measure the enormous mass of the black hole in M87”, says Sera Markoff, Professor of Astrophysics in Amsterdam, who is a member of the EHT Science Council and coordinator of the Multiwavelength Working Group.
“We know that black holes exert an enormous influence over their surroundings, at scales hundreds of millions times bigger than those of its event horizon. Using the EHT, we have been able to observe the origin of this process for the first time”, adds Markoff.
Team work
At Radboud University itself, a team of 10 researchers and students, co-managed by astrophysicists Monika Moscibrodzka and Ciriaco Goddi, have worked hard over the past two years to achieve this result. They took part in the observations with the different telescopes and made a crucial contribution to the data analysis and the development of the theoretical models.
Important contributions were provided by the University of Amsterdam in the area of modelling and interpretation, by the Allegro group of the Leiden Observatory in relation to the calibration of the observations, by JIVE in the field of data-analysis software, and by the NOVA submm group of the University of Groningen in relation to specialised equipment.
The next step
Falcke is looking forward to achieving clearer imaging after upgrades in the network. “It is the beginning of a new era in which the ultimate limit of space and time is no longer an abstract concept, but a measurable reality. To increase the sensitivity, we want to expand the EHT network and build a millimetre telescope in Africa. We are fortunate to already have the first supports in place, from different parties and even businesses.”