Over the course of six years, astronomers Heino Falcke (Radboud University), Sera Markoff (University of Amsterdam) and Rob Fender (Oxford University) will conduct research on black holes from different perspectives. Black holes are icons of the fundamental nature of gravity, the mysterious force shaping the Universe. They are also the Universe’s most efficient power houses, turning infalling gas into energy and outflows that, together with gravity, help mould galaxies and ultimately stars and planets. The Principal Investigators (PIs) bring together complementary expertise over the entire black hole mass scale in combining radio imaging with monitoring across the entire electromagnetic spectrum, astroparticle physics, and theoretical modelling to bear on the problem.
“Via the “BlackHolistic” Synergy Grant, we will try to understand what goes on just outside the event horizon of black holes. We need a better grasp of how the complicated physics of plasmas leads to the radiation and high-energy particles we observe, before we can do things like further test theories of gravity. At the same time understanding all of that will help us develop a complete picture of how black holes affect their environments on the largest scales,” says Sera Markoff.
The challenge in understanding the astrophysics of black holes and their impact on the cosmos is that they span >8 orders of magnitude in mass, size, and timescales, and emit light over 15 orders of magnitude in frequency. The new approach overcomes this scale separation by simultaneously addressing the dynamics of large and small black holes, in colour, i.e. across the entire electromagnetic spectrum.
Rob Fender: “With this funding we will take existing and future EHT observations and compare them with multi-frequency observations of black holes across the electromagnetic and mass spectrum. These data sets will allow us, for the first time, to understand the entire process of black hole accretion and jet formation from launch to termination. We will truly bring about a new paradigm for black hole research.”