NWI-IBC023
Introduction to Cryptography
Cursus informatieRooster
CursusNWI-IBC023
Studiepunten (ECTS)6
CategorieBA (Bachelor)
VoertaalEngels
Aangeboden doorRadboud Universiteit; Faculteit der Natuurwetenschappen, Wiskunde en Informatica; Informatica en Informatiekunde;
Docenten
VorigeVolgende 4
Coördinator
prof. dr. L. Batina
Overige cursussen docent
Docent
prof. dr. L. Batina
Overige cursussen docent
Examinator
prof. dr. L. Batina
Overige cursussen docent
Contactpersoon van de cursus
prof. dr. J.J.C. Daemen
Overige cursussen docent
Docent
prof. dr. J.J.C. Daemen
Overige cursussen docent
Collegejaar2019
Periode
KW3-KW4  (03-02-2020 t/m 30-08-2020)
Aanvangsblok
KW3
Onderwijsvorm
voltijd
Opmerking-
Inschrijven via OSIRISJa
Inschrijven voor bijvakkersJa
VoorinschrijvingNee
WachtlijstNee
Plaatsingsprocedure-
Cursusdoelen
  • Learn the basic mathematics behind cryptographic primitives
  • Perform basic computation required for public key cryptosystems and their cryptanalysis
  • Critically evaluate (security of) cryptographic schemes
  • Get familiar with basic cryptographic primitives, the design principles behind them, and their modes of use
Inhoud
This course provides an introduction to modern cryptography. 
It starts with a refresh of basic number theory and algebra such as groups and finite fields and then treats symmetric cryptography and public key cryptography. It explains the most common attacker models, the concept of security strength and the basis for cryptographic security: public scrutiny.
In symmetric cryptography it discusses the design principles and cryptanalysis of primitives such as stream ciphers, block ciphers and hash functions and their modes of use. 
For the latter, we show how easily reductionist security proofs can be given.
In public key cryptography the course treats discuss key establishment and signature schemes and identification protocols. 
It covers both the RSA cryptosystem and discrete-log based crypto on the other, with the emphasis on elliptic curve groups. 
It treats different attack methods for solving the discrete log problem and the consequence for the size parameters of the group used in discrete-log cryptography. Schemes and protocols are built on top of groups where the discrete log is hard and they include the Schnorr identification protocol, Schnorr and Elgamal signatures and Diffie-Hellman key exchange.
Niveau

Voorkennis
The bachelor course "Security". Some affinity to mathematics is helpful.
Toetsinformatie

Bijzonderheden
The class will be given in English. There will be no recordings
Bijzonderheden
The class will be given in English.
There will be no recordings

Onderwerpen
• Mathematical background for modern cryptography (e.g., discrete mathematics, finite fields)
• Basic cryptographic concepts and terminology, attacker model, security claim, security strength
• Stream ciphers:
• linear feedback shift registers (LFSR), filtered LFRS, divide-and-conquer attacks, guess-and-determine attacks
• Security definitions: indistinguishability, attack complexity, advantage
• Block ciphers:
• Block vs stream encryption
• Security definition: pseudorandom permutation security
• DES and its weaknesses
• AES and its design principles
• Block ciphers modes of use
• Block encryption modes: ECB and CBC
• Stream encryption modes: OFB and counter mode
• Reductionist security proofs with counter mode as example
• Message authentication code (MAC) functions
• CBC-MAC and its weaknesses
• C-MAC
• Hash functions and their modes of use
• Classical requirements: collision-resistance, 1st pre-image resistance, 2nd pre-image resistance
• Security in keyed modes
• Merkle-Damgard construction and its weaknesses
• MD5, SHA-1 and SHA-2
• Keccak, SHA-3 and extendable output functions (XOF)
• Security of sponge functions
• Public-key cryptography (PKC)
• Diffie-Hellman key exchange
• RSA cryptosystem
• Advanced topics in public-key cryptography
• Elliptic Curve Cryptosystems (ECC): encryption and signatures
• ECC deployment and implementation issues
• Cryptanalysis of PKC
• Privacy-preserving techniques

Voorkennis
The bachelor course "Security". Some affinity to mathematics is helpful.

Aanbevolen materiaal
Boek
H.C.A. van Tilborg, Fundamentals of Cryptology: A Professional Reference and Interactive Tutorial. Kluwer Academic Publishers, Boston etc., 2000.
Wordt nader bekendgemaakt
An additional reading list will be provided in the class.

Werkvormen
Cursus
AanwezigheidsplichtJa

Exam Q4

Hoorcollege
AanwezigheidsplichtJa

Resit Exam Q4

Werkcollege
AanwezigheidsplichtJa

Zelfstudie
AanwezigheidsplichtJa

Toetsen
Final exam
Weging9
ToetsvormTentamen
GelegenhedenBlok KW4, Blok KW4

Homework
Weging1
ToetsvormOpdracht
GelegenhedenBlok KW4

Midterm exam
Weging0
ToetsvormTentamen
GelegenhedenBlok KW3