NWI-MOL159
Physics and mathematics of complex biological systems
Cursus informatieRooster
CursusNWI-MOL159
Studiepunten (ECTS)3
CategorieBA (Bachelor)
VoertaalEngels
Aangeboden doorRadboud Universiteit; Faculteit der Natuurwetenschappen, Wiskunde en Informatica; Moleculaire Wetenschappen;
Docenten
Coördinator
prof. dr. A.J. van Opstal
Overige cursussen docent
Docent
prof. dr. A.J. van Opstal
Overige cursussen docent
Contactpersoon van de cursus
prof. dr. A.J. van Opstal
Overige cursussen docent
Examinator
prof. dr. A.J. van Opstal
Overige cursussen docent
Collegejaar2020
Periode
KW4  (05-04-2021 t/m 31-08-2021)
Aanvangsblok
KW4
Onderwijsvorm
voltijd
Opmerking-
Inschrijven via OSIRISJa
Inschrijven voor bijvakkersJa
VoorinschrijvingNee
WachtlijstNee
Plaatsingsprocedure-
Cursusdoelen
 
Inhoud
In this course we will try to answer some of the most pressing questions of life, which will ultimately be: “Why do we die?”
It turns out that in order to answer such a question, we will have to dive into the way as to how Biological systems are organized: what makes them ‘tick’? Why are they so special, when compared to other physical-chemical systems, like the ocean, rocks, or the moon and the stars? Why is it that there are these astonishing scaling laws that seem to hold over almost 25 (!) orders of magnitude in body mass (i.e., from single-cell organisms, with a mass of a few picograms, all the way up to the 30 m long Blue Whale of 160 tons …).
 
We will see that all Biological systems share three basic principles (‘Newton’s Laws’ for biological systems ….) that we can formulate quantitatively, and on the basis of which we can build a true scientific theory of complex systems that answers the above questions. In a nutshell: “Complex biological systems are characterized by branching networks that have optimized the total energy transfer throughout the network to ‘feed’ the body”.
The theory has been developed by Geoffrey West and his colleagues from the Santa Fé institute of Complex Systems (New Mexico, USA). The work has been published in Nature, Science, PNAS, etc., and in the course we will discuss several of their most important papers.

Instructional Modes
2 hrs lecture + 2 hrs practical/discussions/literature reading
 
Niveau

Voorkennis
Although the course is designed for 2nd year Science students, other students are welcome to join as well.
 
Toetsinformatie
Home-written essay on selected research papers on this topic.
Bijzonderheden
  • Lecture 1: Classical scaling laws (V~R3 and A~R2) and Poiseuille flow
  • Lecture 2: Fractal geometry
  • Lectures 3+4: Scaling facts in Biology: power laws with exponent ±n/4, not ±n/3; Introduction to the three ground principles for scaling in biological distributive networks: the model of West et al. (Santa Fé institute): applied to the heart and blood circulation, the lungs, tracheae in insects, and vesicles in plants and trees
  • Lecture 5: Influence of temperature on the scaling relationships
  • Lecture 6: Application of allometry to growth and death
  • Lecture 7: Application of allometry to other systems: cities and forests
Verplicht materiaal
Syllabus
Syllabus and research papers

Werkvormen
Cursus
AanwezigheidsplichtJa

Toetsen
Essay
Weging1
ToetsvormEssay
GelegenhedenBlok KW4, Blok KW4