| | | | Cursus | | NWI-WP025 | Categorie | | PB (Propedeuse) | Voertaal | | Nederlands | Aangeboden door | | Radboud Universiteit; Faculteit der Natuurwetenschappen, Wiskunde en Informatica; Wiskunde, Natuur- en Sterrenkunde; | Docenten | | | | Collegejaar | | 2018 | | Periode | | KW1 | (03-09-2018 t/m 04-11-2018) |
| Aanvangsblok | | KW1 | |
| Onderwijsvorm | | voltijd | |
| Opmerking | | - | Inschrijven via OSIRIS | | Ja | Inschrijven voor bijvakkers | | Ja | Voorinschrijving | | Nee | Wachtlijst | | Nee | Plaatsingsprocedure | | - |
| | | | | |
- De student heeft een werkend begrip van complexe getallen, limieten, continue functies, differentiëren, integreren en is in staat een functieonderzoek te doen, in het bijzonder asymptotisch gedrag, extreme waarden, benaderingen
- De student is vertrouwd met verschillende expliciete klassen van functies, zoals de exponentiële functie, logaritme, goniometrische functies
- De student is bekend met verschillende belangrijke resultaten zoals de hoofdstelling van de integraalrekening, tussenwaardestelling, middelwaardestelling, hoofdstelling van de algebra
- De student kan van reeksen het convergentiegedrag bepalen door middel van verschillende kenmerken en is in staat te werken met machtreeksen en Taylorreeksen
- De student is vertrouwd met gewone differentiaalvergelijkingen en beginwaardeproblemen
- De student kan eerste orde separabele differentiaalvergelijkingen en eerste orde lineaire differentiaalvergelijkingen oplossen en is vertrouwd met oplossingstechnieken voor tweede orde homogene en inhomogene differentiaalvergelijkingen met constante coëfficiënten
- De student kan de technieken toepassen op praktische situaties
|
|
|
In dit college wordt een aantal basistechnieken voor de studie van één-variabele functies behandeld na een korte inleiding in de complexe getallen. In het bijzonder worden kwalitatieve aspecten van functies geanalyseerd door middel van functieonderzoek en benaderingen. Een grote klasse van functies, namelijk de continue en differentieerbare functies, hebben eigenschappen die tot uitdrukking komen in klassieke resultaten zoals de tussenwaardestelling en de middelwaardestelling.
Differentiaalrekening beschrijft en analyseert beweging en is om deze reden een belangrijke tool voor de toepassingen in velerlei gebied, van natuurkunde tot economie. Integraalrekening behelst het berekenen van oppervlaktes, en blijkt verbonden te zijn met differentiëren via de hoofdstelling van de integraalrekening. Verder worden vele voorbeelden van functies en toepassingen op problemen besproken.
Reeksen worden bestudeerd aan de hand van hun convergentieeigenschappen, en meerdere convergentiekenmerken, zoals het quotiënt-, wortel-, integraal-, majorantenkenmerk, worden besproken. In het bijzonder wordt dit toegepast op machtreeksen en, daarmee samenhangend, Taylorreeksen van functies, o.a. in verband met integreren en differentiëren.
Differentiaalvergelijkingen, en gerelateerde beginwaardeproblemen, zijn vergelijkingen waarbij een relatie tussen een onbekende functie en zijn afgeleide(s) wordt voorgeschreven. Differentiaalvergelijkingen komen voor in modelleringen van o.a. bewegingen van een deeltje (wet van Newton), veer (wet van Hooke), maar ook in economische en biologische modellen.
Technieken voor het oplossen van verschillende types eerste en tweede-orde differentiaalvergelijkingen worden besproken, in het bijzonder separeren, integrerende factor, karakteristieke vergelijking. Voor het bepalen van de particuliere oplossing van tweede orde inhomogene differentiaalvergelijkingen met constante coëfficiënten worden technieken besproken. Het vinden van oplossingen van differentiaalvergelijkingen in termen van Taylorreeksen wordt besproken. Verder worden voorbeelden van differentiaalvergelijkingen en hun oplossingen als toepassingen op problemen, zoals trillende veren en resonanties, besproken. |
|
|
|
|
• complexe getallen, formules van Euler en de Moivre, hoofdstelling van de algebra • limieten, afgeleiden, regels voor differentiëren • functieonderzoek • integratie, integratietechnieken • de hoofdstelling van de integraalrekening • goniometrische functies, inverse goniometrische functies, exponentiële functies en logaritmen |
Schriftelijk, waarbij werkcollegeresultaten meetellen |
| | | Verplicht materiaalBoekR.A. Adams, C. Essex, Calculus. A complete course, 8th ed., Pearson, 2013. |
ISBN | : | | 978-0-32-178107-9 |
|
|
WerkvormenCursusgebeurtenis
| Hoorcollege
| Werkcollege
| Zelfstudie
|
| ToetsenTentamenWeging | | 1 |
Toetsvorm | | Tentamen |
Gelegenheden | | Blok KW1, Blok KW2 |
|
|
| | |
| |
| |