Tijdens wereldwijde persconferenties, onder meer bij de Europese Zuidelijke Sterrenwacht (ESO), presenteerden wetenschappers in 2022 de eerste opname van Sgr A*. Hoewel het superzware zwarte gat in het Melkwegcentrum, dat zich op ongeveer 27.000 lichtjaar van de aarde bevindt, meer dan duizend keer kleiner en minder massarijk is dan dat van M87 – het allereerste zwarte gat dat in beeld werd gebracht, bleek uit de waarnemingen dat de twee opmerkelijk veel op elkaar lijken. Hierdoor vroegen wetenschappers zich af of zij behalve hun uiterlijk ook andere kenmerken gemeen hadden. Om daar achter te komen, besloot het team om Sgr A* in gepolariseerd licht te bestuderen. Eerdere onderzoeken van het licht rond het zwarte gat in M87 (M87*) hebben laten zien dat de omliggende magnetische velden dit zwarte gat in staat hebben gesteld om krachtige jets van materie terug de ruimte in te schieten. De nieuwe opnamen bouwen hierop voort en laten zien dat hetzelfde mogelijk ook voor Sgr A* geldt.
‘Wat we nu zien is dat er in de nabijheid van het zwarte gat in het centrum van de Melkweg sterke, verstrengelde en georganiseerde magnetische velden aanwezig zijn,’ zegt Sara Issaoun, gepromoveerd aan de Radboud Universiteit, nu NASA Hubble Fellowship, Einstein Fellow bij het Center for Astrophysics | Harvard & Smithsonian in de VS, en medeleider van het project. ‘Samen met het feit dat Sgr A* een opvallend vergelijkbare polarisatiestructuur heeft als die in het veel grotere en krachtigere zwarte gat M87*, hebben we geleerd dat sterke en geordende magnetische velden van cruciaal belang zijn voor de manier waarop zwarte gaten in wisselwerking treden met het gas en de materie in hun omgeving.’
Licht is niets anders dan een oscillerende (op en neer gaande) elektromagnetische golf die ons in staat stelt om objecten te zien. Soms oscilleert licht in een voorkeursrichting: we noemen het dan ‘gepolariseerd’. Hoewel overal om ons heen gepolariseerd licht voorkomt, is het menselijk oog niet in staat om dit van ‘normaal’ licht te onderscheiden. In het plasma rond zwarte gaten zorgen deeltjes die rond magnetische veldlijnen wervelen voor een polarisatiepatroon dat loodrecht op het veld staat. Dit biedt astronomen de mogelijkheid om in meer detail te zien wat zich in de omgeving van zwarte gaten afspeelt en hun magnetische veldlijnen in kaart te brengen.
‘Door gepolariseerd licht van gloeiend heet gas in de buurt van zwarte gaten in beeld te brengen, kunnen we direct de structuur en sterkte afleiden van de magnetische velden die de gas- en materiestroom begeleiden die het zwarte gat voedt en uitstoot,’ zegt Harvard Black Hole Initiative Fellow en projectcoördinator Angelo Ricarte. ‘Gepolariseerd licht leert ons veel meer over de astrofysica, de eigenschappen van het gas en de mechanismen die in werking treden wanneer een zwart gat zich voedt.’
Maar het in beeld brengen van zwarte gaten in gepolariseerd licht is niet zo eenvoudig als het opzetten van een gepolariseerde zonnebril – vooral niet bij Sgr A*, die heel snel verandert en als het ware niet stil blijft zitten voor de foto. Voor het vastleggen van dit superzware zwarte gat zijn instrumenten nodig die geavanceerder zijn dan de instrumenten die voor het fotograferen van het veel stabielere object M87* werden gebruikt.
Uitdagende afbeelding
De project directeur, Huib Jan van Langevelde van JIVE in Dwingeloo en Universiteit Leiden zegt: 'Het is altijd al moeilijk om polarisatie VLBI te doen, maar in het geval van SgrA* was het extreem, omdat de structuur en de polarisatie veranderen tijdens de waarneming. Uiteindelijk heeft ons team nieuwe methodes moeten ontwikkelen om in kaart te brengen hoe het magneetveld loopt in de directe omgeving van het zwarte gat, zoals nu te zien is in het nieuwe plaatje waarin de lijnen het magneetveld aangeven.' Van Langevelde gaat verder: ‘We waren opgelucht dat gepolariseerde beeldvorming überhaupt mogelijk was. Sommige modellen waren veel te rommelig en turbulent om een gepolariseerd beeld te construeren, maar de natuur was ons gunstig gezind.’
Mariafelicia De Laurentis, plaatsvervangend EHT-projectwetenschapper en hoogleraar aan de Universiteit van Napels Federico II in Italië, zegt: ‘Met een steekproef van twee zwarte gaten – met zeer verschillende massa’s en zeer verschillende moederstelsels – is het belangrijk om te bepalen waarin ze overeenkomen en verschillen. Omdat ze allebei tekenen van sterke magnetische velden vertonen, kan dit erop wijzen dat dit een universele en misschien zelfs fundamentele eigenschap van dit soort objecten is. Een mogelijke overeenkomst tussen deze twee zwarte gaten zou een jet kunnen zijn, maar terwijl we een overduidelijke jet in beeld hebben gebracht bij M87*, hebben we er bij Sgr A* nog geen kunnen vinden.’
Om Sgr A* te kunnen observeren, heeft de EHT-samenwerking acht telescopen over de hele wereld met elkaar verbonden, om een denkbeeldige telescoop ter grootte van de aarde te creëren: de EHT. De Atacama Large Millimeter/submillimeter Array (ALMA), waarin ESO partner is, en het door ESO gehoste Atacama Pathfinder Experiment (APEX), beide in het noorden van Chili, maakten deel uit van het netwerk dat de waarnemingen in 2017 heeft verricht.
‘Als grootste en krachtigste telescoop van de EHT heeft ALMA een sleutelrol gespeeld bij het maken van deze opname’, zegt María Díaz Trigo, Europees ALMA programmawetenschapper bij ESO. ‘ALMA zal binnenkort een ‘extreme makeover’ ondergaan – de Wideband Sensitivity Upgrade – waardoor hij nog gevoeliger wordt en een fundamentele rol zal blijven spelen bij toekomstige EHT-waarnemingen van Sgr A* en andere zwarte gaten.’
EHT
De EHT heeft sinds 2017 diverse waarnemingen gedaan en zal Sgr A* in april 2024 opnieuw waarnemen. Naarmate er nieuwe telescopen worden toegevoegd, de bandbreedte wordt vergroot en nieuwe waarnemingsfrequenties worden toegevoegd, zullen de beelden alleen maar beter worden. Met de geplande uitbreidingen voor het komende decennium kunnen hifi-films van Sgr A* worden gemaakt waarop diens verborgen jet te zien zijn en astronomen in staat stellen om vergelijkbare polarisatiekenmerken bij andere zwarte gaten waar te nemen. Als de EHT ondertussen naar de ruimte kan worden uitgebreid, zou dat beelden van zwarte gaten opleveren die scherper zijn dan ooit tevoren.
De resultaten zijn gepubliceerd in twee papers en te lezen op de website van Astrophysical Journal Letters: