Structure of the Master Specialisation Data Science
The list below illustrates the basic organization of the 120 ec Data science master specialisation,[1] which consists of the following elements:
- Specialisation basis (18 ec)
- Specialisation electives (24 ec)
- Specialisation specific research seminar (6 ec)
- Research internship (15 ec)
- Specialisation external electives (12 ec)
- Computer science and society (3 ec)
- Free electives (12 ec)
- Master thesis project (30 ec)
The programme is in principle structured in the following manner.
The components are further refined as follows:
Specialisation basis (mandatory courses) (18 ec):
- NWI-I00041 Information Retrieval (6 ec)
- NWI-IMC030 Machine Learning in Practice (6 ec)
- NWI-IMC012 Bayesian Networks (6 ec)
Specialisation electives (24 ec):
to be chosen from the categories below (not necessarily all from the same category or one from all categories).
Data Science Theory and Tools
- NWI-NB054E Statistical Machine Learning (6 ec)
- NWI-IMC042 Natural Computing (6 ec)
- NWI-NM048C Machine Learning (9 ec)
Data Science Applications
- NWI-IMC037 Intelligent Systems in Medical Imaging (6 ec)
- SOW-MKI49 Computational Cognitive Neuroscience (6 ec)
- NWI-SM299 Pattern Recognition for the Natural Sciences (3 ec)
- LET-REMA-LCEX06 Text Mining (6 ec)
Data Science Aspects
- NWI-IMC006 Law in Cyberspace (6 ec)
- NWI-I00035 Foundations of Information Systems (6 ec)
- NWI-I00054 Cognition and Representation (6 ec)
- SOW-MKI61 Cognitive computational modeling of language and web interaction (6 ec)
Specialisation specific research seminar (6ec)
Research internship (15 ec)
Specialisation external electives (12 ec)
A coherent set of courses outside the specialisation, to be approved by the Examining Board.
Computer, Science and Society (3 ec)
Free electives (12 ec)
To be chosen from courses offered by Radboud University, but overlap with other courses is not allowed. Should be approved by the Examining Board.
Final thesis (30 ec): MSc-project.
The final thesis is scheduled in the last semester. The MSc project is finished by writing a Master's thesis. Generally speaking, students will do their Master's project under the supervision of a member of staff of their own university. However, students may, after consulting a local supervisor, choose to do a Master's project at another site, or an external project at a company or abroad.
The total amount of EC's of this programme should be 120 EC at least.
[1] The programme described here is the research specialisation Data Science. Students who are more interested in taking a more applied and/or management related angle may have a look at the specialisations Science, Management and Innovation or Science in Society, which can also be taken with a Data Science programme (see the master-specific requirements for Computing Science at the bottom of these respective pages). |