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We introduce a new framework for hyperrealistic reconstruction of  perceived naturalistic stimuli from brain 
recordings. To this end, we embrace the use of  generative adversarial networks (GANs) at the earliest step of  
our neural decoding pipeline by acquiring functional magnetic resonance imaging data as subjects perceived 
face images created by the generator network of  a GAN. Subsequently, we used a decoding approach to 
predict the latent state of  the GAN from brain data. Hence, latent representations for stimulus (re-)generation 
were obtained, leading to state-of-the-art image reconstructions.
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In recent years, the field of  neural decoding has 
been gaining more and more traction as advanced 
computational methods became increasingly 
available for application on neural data. This is a very 
welcome development in both neuroscience and 
neurotechnology since reading neural information 
will not only help understand and explain human 
brain function but will also find applications in brain 
computer interfaces and neuroprosthetics to help 
people with disabilities. 

Neural decoding can be conceptualized as the 
inverse problem where brain responses are mapped 
back to sensory stimuli via a latent space (Van 
Gerven, Seeliger, Güçlü, & Güçlütürk, 2019). Such 
a mapping can be idealized as a composite function 
of  linear and nonlinear transformations. The linear 
transformation models the mapping from brain 
responses to the latent space. The latent space 
should effectively capture the defining properties of  
the underlying neural representations. The nonlinear 
transformation models the mapping from the latent 
space to sensory stimuli.

The systematic correspondences between latent 
representations of  discriminative convolutional 
networks (convnets) and neural representations of  
sensory cortices are well established (Yamins et al., 
2014; Seyed-Mahdi, Khaligh-Razavi & Kriegeskorte, 
2014; Cadieu et al., 2014; Güçlü & Van Gerven, 
2015; Güçlü & Van Gerven, 2017; Güçlü, Thielen, 
Hanke, & Van Gerven, 2016). As such, exploiting 
these systematic correspondences in neural decoding 
of  visual experience has pushed the state-of-the-art  
forward (Van Gerven et al, 2019) . This includes linear 
reconstruction of  perceived handwritten characters 
(Schoenmakers, Barth, Heskes, & Van Gerven, 
2013), neural decoding of  perceived and imagined 
object categories (Horikawa & Kamitani, 2017), and 

reconstruction of  natural images (Seeliger, Güçlü, 
Ambrogioni, Güçlütürk & Van Gerven, 2018; Shen, 
Horikawa, Majima, & Kamitani, 2019) and faces 
(Güçlütürk et al., 2017; VanRullen & Reddy, 2019). 
Yet, there is still room for improvement since these 
state-of-the-art results still fall short of  providing 
photorealistic reconstructions.

At the same time, generative adversarial networks 
(GANs) have emerged as perhaps the most powerful 
generative models to date that can potentially bring 
neural decoding to the next level (Brock, Donahue, 
& Simonyan, 2018; Goodfellow et al., 2014; Karras, 
Aila, Laine, & Lehtinen, 2017; Karras, Laine, & Aila, 
2019). A GAN is a is a deep learning architecture for 
generative modelling, consisting of  two competing 
neural networks, as described by Goodfellow et 
al. (2014). In short, a generator network is pitted 
against a discriminator network that learns to 
distinguish reconstructed “fake” data samples from 
real data samples. In turn, the generator’s goal is to 
fool the discriminator by generating new and unique, 
real-looking data samples from randomly sampled 
low-dimensional latent features. Competition is the 
drive between both neural networks to improve 
their methods in tandem until the generated samples 
are indistinguishable from the real ones. However, 
since the true latent representations of  GANs are 
not readily available for pre-existing neural data 
(unlike those of  the aforementioned discriminative 
convnets), the adoption of  GANs in neural decoding 
has been relatively slow (see (Seeliger et al., 2018) 
for an earlier attempt with GANs and (VanRullen & 
Reddy, 2019) for a related attempt with variational 
autoencoders-GAN [VAE-GANs]).

In this study, we introduce a very powerful yet 
simple framework for HYperrealistic reconstruction 
of  PERception (HYPER), which elegantly 

Figure 1. Schematic illustration of the HYPER framework. Face images are generated from randomly 
sampled latent features z  Z by a face-generating GAN, as denoted by the dotted box. These faces 
are then presented as visual stimuli during brain scanning. Next, a linear decoding model learns the 
mapping from brain responses to the original latent representation, after which it predicts latent features 
for unseen brain responses. Ultimately, these predicted latent features are fed to the GAN for image 
reconstruction.
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integrates GANs in neural decoding by combining 
the following components (Fig. 1):

i	 GAN. We used a pretrained GAN, which 
allows for the generation of  meaningful data samples 
from randomly sampled latent vectors. This model 
is used both for generating the stimulus set and for 
the ultimate reconstruction of  perceived stimuli. In 
the current study, we used the progressive growing 
of  GANs (PGGAN) model (Karras et al., 2017), 
which generates photorealistic faces that resemble 
celebrities.

ii	 Functional magnetic resonance imaging 
(fMRI). We made use of  neural data with a known 
latent representation, obtained by presenting the 
stimulus set produced using the above-mentioned 
generative model, and recording the brain responses 
of  participants to these stimuli. In the current study, 
we collected fMRI recordings in response to the 
images produced using the PGGAN. We created a 
dataset consisting of  a separate training and test set.

iii	 Decoding model. We used a decoding 
model, mapping the neural data to the latent space 
of  the generative model. Using this model, we then 
obtained latent vectors for the neural responses 
corresponding to the stimulus images in the test set. 
Feeding these latent vectors back into the generative 
model resulted in the hyperrealistic reconstructions 
of  perception.

Method

Training on synthetic images with 
known latent features

State-of-the-art face reconstruction techniques use 
deep neural networks to encode vectors of  latent 
features for the images presented during the fMRI 
experiment (Güçlütürk et al., 2017; VanRullen & 
Reddy, 2019). These feature vectors have been 
shown to have a linear relation with measured 
brain responses. However, this approach entails 
information loss since the target images need to be 
reconstructed from the linear prediction using an 
approximate inversion network such as a variational 
decoder, leading to a severe bottleneck to the 
maximum possible reconstruction quality.

In this paper, we avoid this sub-optimality by 
presenting photorealistic synthetic images generated 
using PGGAN to the participants. This allows us 
to store the ground-truth latents corresponding 
to the generated images which can be perfectly 
reconstructed using the generative model after 
predicting them from brain data.

Neural Decoding

Progressive GAN. To achieve the generation 
of  high-resolution images, a training procedure 
was developed that grows the generator and 
discriminator network in a progressive fashion 
(Karras et al., 2017). More specifically, training on 
face images from the CelebA-HQ dataset started at 
a low resolution of  4×4 pixels and layers were added 
incrementally. To avoid shocks to the well-trained 
lower-resolution layers, these additional layers were 
“faded in” smoothly by linear interpolation of  the 
weights from 0 to 1. In the end, a mapping was 
established from 512-dimensional latent features to 
hyper-realistic face images with a final resolution of  
1024×1024 pixels. At this point, both the generator 
and discriminator network consisted of  nine phases 
and 23.1M trainable parameters.

Predicting latent vectors from brain data. We 
adapted the deep generative network of  PGGAN by 
adding a dense layer at the beginning to transform 
brain data into latent vectors. This layer was trained 
by minimizing the Euclidean distance between true 
and predicted latent representations (batchsize = 
30, lr = 0.00001, Adam optimization) with weight 
decay (alpha = 0.01) to reduce complexity and 
multicollinearity of  the model. The remainder of  the 
generative network was kept fixed.

Datasets

Visual Stimuli. High-resolution face images 
(1024×1024 pixels) were generated by the generator 
network of  a Progressive GAN (PGGAN) model 
(Karras et al., 2017) from randomly sampled latent 
vectors. Each generated face image was cropped 
and resized to 224×224 pixels. In total, 1050 unique 
faces were presented once for the training set, and 
36 faces were repeated 14 times for the test set of  
which the average brain response was taken. This 
ensured that the training set covered a large stimulus 
space to fit a general face model, whereas the voxel 
responses from the test set contained less noise and 
higher statistical power.

Brain responses. fMRI data was collected, 
consisting of  blood oxygen level dependent (BOLD) 
responses that corresponded to the perceived face 
stimuli. The BOLD responses (TR = 1.5 s, voxel 
size = 2×2×2 mm3, whole brain coverage) of  two 
healthy subjects were measured (S1: 30-year old 
male; S2: 32-year old male) while they were fixating 
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on a target (0.6×0.6 degrees) (Thaler, Schütz, 
Goodale, & Gegenfurtner, 2013) superimposed on 
the stimuli (15×15 degrees) to minimize involuntary 
eye movements.

During preprocessing, the obtained brain volumes 
were realigned to the first functional scan and the 
mean functional scan, respectively, after which the 
volumes were normalized to MNI space. A general 
linear model was fit to deconvolve task-related 
neural activation with the canonical hemodynamic 
response function (HRF). Next, for each voxel, we 
computed its t-statistic and converted these t-scores 
to z-statistics to obtain a brain map in terms of  z 
per perceived stimulus. Ultimately, most-active 4096 
voxels were selected from the training set to define 
a voxel mask (Fig. 2). Most of  these mask voxels 
are located in the downstream brain regions. Voxel 
responses from the test set are not used to create the 
voxel mask to avoid double-dipping.

The experiment was approved by the local 
ethics committee (CMO Regio Arnhem-Nijmegen). 
Subjects provided written informed consent in 
accordance with the Declaration of  Helsinki. The 
fMRI dataset for both subjects and used models are 
openly accessible.

Evaluation

Model performance is assessed in terms of  
three metrics: latent similarity, feature similarity, 
and structural similarity. First, latent similarity is 
the Euclidean similarity between predicted and 
true latent vectors. Second, feature similarity is the 
Euclidean similarity between feature extraction layer 
outputs (n=2048) of  the ResNet50 model, pretrained 
for face recognition, which we feed stimuli and 
reconstructions. Lastly, structural similarity is used 
to measure the spatial interdependence between 
pixels of  stimuli and reconstructions (Wang, Bovik, 
Sheikh, & Simoncelli, 2004).

Next, based on the assumption that there exists 
a hyperplane in latent space for binary semantic 
attributes (e.g. male vs. female), Shen, Gu, Tang and 
Zhou (2019) have identified the decision boundaries 
for five semantic face attributes in PGGAN’s latent 
space: gender, age, the presence of  eyeglasses, smile, 
and pose, by training five independent linear support 
vector machines (SVMs). We used these decision 
boundaries to compute feature scores per image, by 
taking the dot product between latent representation 
and decision boundary, resulting in a scalar. In this 
way, model performance with regard to specific 
visual features could be captured along a continuous 
spectrum and could be compared across images.

Figure 2. Voxel mask: 4096 most active voxels based on highest z-statistics within the averaged z-map 
from the training set responses, resulting in a distributed network of activity.
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Implementation Details

fMRI preprocessing is implemented in SPM12 
after which first-order analysis is carried out in 
Python’s Nipy environment. NVIDIA’s PGGAN 
TensorFlow source code is used in combination 
with CUDA V10.0.130, CuDNN, and Anaconda3 
(Python 3.6). Keras’ pretrained implementation of  
VGGFace (ResNet50 model) is used to evaluate 
similarities between feature maps of  the perceived 
and reconstructed images. Linear decoding is 
implemented using ScikitLearn.

Results

Linear decoding of  fMRI recordings using 
PGGAN’s latent space has led to unprecedented 
stimuli reconstructions. Figure 3 presents all the 
image reconstructions together with the originally 
perceived stimuli.

To keep the presentation concise, the first half  
of  the images (1-18) are reconstructed from brain 
activations from Subject 1 and the second half  (19-
36) from Subject 2. The interpolations visualize 
the distance between predicted and true latent 
representations that underlie the (re)generated faces. 
It demonstrates which features are being retained 
or change. The bar graphs next to the perceived 
and reconstructed images show the scores of  each 
image in terms of  five semantic face attributes in 
PGGAN’s latent space: gender, age, the presence of  
eyeglasses, smile, and pose. Looking at the similarities 
and differences in the graphs for perceived and 
reconstructed images is a way to evaluate how well 
each semantic attribute is captured by our model. For 
most reconstructions, the two graphs match in terms 
of  directionality. A few cases, however, demonstrate 
that there is still room for improvement (e.g. number 
31, 34, and 35). Correlating the feature scores for 
stimuli and reconstructions resulted in significant 
(p < 0.05; Student’s t-test) results for gender, age, 
eyeglasses, and pose, but not for smile (Fig. 4). We 
would like to point out that using feature scores 
quantifies model performance as continuous rather 
than binary, explaining the significant correlation for 
eyeglasses despite lack of  reconstruction in number 
1 and 8.

Next, we compared the performance of  the 
HYPER framework to the state-of-the-art VAE-
GAN approach (VanRullen & Reddy, 2019) and the 
traditional eigenface approach (Cowen, Chun, & 
Kuhl, 2014) which maps the brain recordings onto 
different latent spaces. For a fair comparison, we 

used the same voxel mask to evaluate all the methods 
presented in this study without any optimization 
to a particular decoding approach. The VAE-
GAN approach predicts 1024-dimensional latent 
representations which are fed to the VAE’s decoder 
network for stimulus reconstruction (128×128 
pixels). The eigenface approach predicts the first 512 
principal components (or ’ eigenfaces’) after which 
stimulus reconstruction (64×64 pixels) is achieved 
by applying an inverse principal component analysis 
(PCA) transform. All quantitative and qualitative 
comparisons showed that the HYPER framework 
outperformed the baselines and had significantly 
above-chance latent and feature reconstruction 
performance (p < 0.001, permutation test), indicating 
the probability that a random latent vector or image 
would be more similar to the original stimulus (Table 
1).

We also present arbitrarily chosen but 
representative reconstruction examples from 
the VAE-GAN and eigenface approach, again 
demonstrating that the HYPER framework resulted 
in markedly better reconstructions (Fig. 5).

Figure 3. Results of model 0 that is trained on 
only the latent vectors. Here, we display the 
testing set samples 1-18 for Subject 1 and 19-36 
for Subject 2. Image reconstructions (left) versus 
perceived images (right). Interpolations visualize 
similarity regarding the underlying latent 
representations. Next to each reconstruction and 
perceived stimulus, a rotated bar graph displays 
the corresponding feature scores for gender (g), 
age (a), eyeglasses (e), pose (p), and smile (s).
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Discussion

We have decoded brain recordings during 
perception of  face photographs using the presented 
HYPER method, leading to state-of-the-art stimulus 
reconstructions. Consequently, this work serves as a 
proof-of-concept of  using generative modelling to 
approximate neural manifolds of  real-world data, 
possibly bringing our understanding of  human brain 
function forward in the process. The success of  this 
approach is due to the astonishing performance of  
PGGAN. At the same time, PGGAN puts (potential) 
bottlenecks on what can be reconstructed: the 
generator network had to regenerate face images 
that it had already generated before, guaranteeing 
its competence. The next step is verifying whether 
a linear decoding model trained on brain responses 
with regard to generated face images generalizes 

Figure 4. Reconstruction performance on five features. The x-axis denotes the true scores with 
respect to the perceived stimuli whereas the y-axis represents the predicted scores with respect to the 
reconstructions. Additionally, the Pearson correlation coefficient (r) and corresponding p-value (p) are 
displayed.

Table 1. Model performance of the HYPER framework compared to the state-of-the-art VAE-GAN 
(VanRullen & Reddy, 2019) and the eigenface approach (Cowen et al., 2014) is assessed in terms of the 
feature similarity (column 2) and structural similarity (column 3) between stimuli and reconstructions 
(mean ± std error). The first column displays latent similarity which is only applicable to the HYPER 
method because the true and predicted latent vectors are known. Because of resolution differences, all 
images were resized to 224 × 224 pixels and smoothed with a Gaussian filter (kernel size = 3) for a fair 
comparison. Also, the backgrounds of the images were removed. In addition, statistical significance of 
the HYPER method was evaluated against randomly generated latent vectors and their reconstructions.

to brain responses to real faces. The true latent 
representations of  real images are not accessible, but 
would no longer be required if  the decoding model 
has learned to accurately predict them from the 
artificial data samples. This would result in a great 
leap forward within the field of  neural coding.

Next, the HYPER framework resulted in 
considerably better reconstructions than the two 
benchmark approaches. It is important to note that 
the reconstructions by the VAE-GAN approach 
appear to be of  lower quality than those presented 
in the original study. A likely explanation for this 
result could be that the number of  training images 
in our dataset was not sufficient to effectively train 
their model (8000 vs 1050) and the different voxel 
selection procedure.

Importantly, image reconstructions by HYPER 
appear to contain biases. That is, the model predicts
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primarily latent representations corresponding to 
young, western-looking faces without eyeglasses 
because predictions tend to follow the image 
statistics of  the (celebrity) training set. PGGAN’s 
generator network is also known to suffer from this 
problem – referred to as “feature entanglement” – 
where manipulating one particular feature in latent 
space affects other features as well (Shen et al., 
2018). For example, editing a latent vector to make 
the generated face wear eyeglasses simultaneously 
makes the face look older because of  such biases 
in the training data. Feature entanglement obstructs 
the generator to map unfamiliar latent elements to 
their respective visual features. It is easy to foresee 
the complications for reconstructing images of  real 
faces.

A modified version of  PGGAN, called 
StyleGAN (Karras et al., 2019;  Karras et al., 2020), 
is designed to overcome the feature entanglement 
problem. StyleGAN maps the entangled latent 
vector to an additional intermediate latent space, 
thereby reducing feature entanglement, which is 
then integrated into the generator network using 
adaptive instance normalization. This results 
in superior control over the semantic attributes 
in the reconstructed images and possibly the 
generator’s competence to reconstruct unfamiliar 
features. Compared to PGGAN, the generated 
face photographs by StyleGAN have improved 

considerably in quality and variation, of  which the 
latter is likely to alleviate current biases. Replacing 
the PGGAN with StyleGAN would therefore be 
a logical next step for studies concerned with the 
neural decoding of  faces.

Furthermore, neural decoding can reveal what 
information is (not) present in the observed brain 
activations. That is, even though participants are 
presented with identical stimuli, sensory information 
is likely to be integrated with subjective expectations 
and beliefs, causing subjective variations in 
reconstructions. This may include enhanced, 
diminished, missing, imagined, or transformed 
information. Eventually, the HYPER framework 
might allow us to bridge the gap between objective 
and subjective experience. However, care must be 
taken as “mind reading” technologies also involve 
serious ethical concerns regarding mental privacy. 
Although current approaches to neural decoding, 
such as the one presented in this manuscript, 
would not allow for involuntary access to thoughts 
of  a person, future developments may allow for 
extraction of  information from the brain more 
easily, as the field is rapidly developing. As with all 
scientific and technological developments, ethical 
principles and guidelines as well as data protection 
regulations should be followed strictly to ensure 
the safety of  (the data of) potential users of  these 
technologies.

Figure 5. Qualitative results of our approach compared to VanRullen and Reddy (2019) (the VAE-
GAN approach) and the eigenface approach in reconstructing image 26, 28, and 36 (arbitrarily chosen). 
The model columns display the best possible results. For VanRullen and Reddy (2019), this displays 
reconstructions directly decoded from the 1024-dimensional latent representation of this method. For the 
eigenfaces approach, this shows reconstructions directly obtained from the 512 principal components.
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Finally, besides the large scientific potential, 
this research could also have societal impacts 
when enabling various applications in the field of  
neurotechnology (e.g. brain computer interfacing 
and neuroprosthetics) to help people with disabilities. 
While the current work focuses on decoding of  
sensory perception, extensions of  our framework 
to imagery could make it a preferred means for 
communication for locked-in patients.

Conclusion

We have presented a framework for HYperrealistic 
reconstruction of  PERception (HYPER) by neural 
decoding of  brain responses via the GAN latent 
space, leading to unparalleled state-of-the-art 
stimulus reconstructions. Considering the speed of  
progress in the field of  generative modelling, we 
believe that the HYPER framework that we have 
introduced in this study will likely result in even 
more impressive reconstructions of  perception and 
possibly even imagery in the near future, ultimately 
allowing for better understanding the mechanisms 
of  human brain function.
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