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Editorials

From the Editors in Chief

Dear Reader,

We are glad to present the first issue of  the 16th volume of  the CNS Journal.

With everything that has been happening in this crazy 2020, it was not easy to adapt the journal to the 
new lifestyle the year has brought us. Many changes were made in the process of  creating this new issue. 
However, the product of  the work done shows that even in these difficult times, gems can still be made. In 
fact, if  we had to summarise with a few words the work that was done throughout these last months, they 
would surely be: per aspera ad astra.

We want to highlight the incredible work and effort of  each CNS Journal member. Despite all the 
circumstances,  the CNS Journal team continued their strong work. We, as Editors in Chief, are very proud 
of  this! Therefore, we want to thank each single team: editors, subeditors, layout, webmasters, and public 
relations. To all of  you: thank you! Without you all, this would not have been possible.

We hope you truly enjoy this new piece of  the CNS Journal adventure.

Furthermore, we want to spend a moment remembering a member of  this journal that sadly will not be 
able to see and enjoy this new edition. Vaibhav Arya was a brilliant CNS student and a fundamental member 
of  the CNS Journal. First, joining the subediting team (junior and senior) and then becoming an Editor in 
Chief  last year, he embodied all the values that this student-led project incorporates: in-depth appraisal and 
assessment, creativity, innovation, mentoring, and teamwork. He was one of  us. He is and will be deeply 
missed. Thank you Vab, you were one of  the best people we will ever meet. Rest in peace.

Nijmegen, January 2021

Gregorio Borghi and Annika Mordelt

Editors in Chief

Annika Mordelt Gregorio Borghi
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Editorials

From Dr. Saskia Haegens

It is my pleasure to welcome you to the first issue of  the 16th volume of  the Nijmegen CNS journal. This 
is, in fact, my second editorial for this journal — back when I was a student myself, I was the editor-in-chief  
for one of  the first editions — so on a personal level this is somewhat of  a coming full circle. It is very 
rewarding to see the journal still going strong after all this time, and to see how the CNS program has grown 
over the years. Writing this editorial feels even more special now that my own students are publishing in this 
very journal!

The research published in this issue was conducted in a highly unusual academic year — one during which 
our lives were turned upside down, seemingly overnight, by a global pandemic. Labs, offices and the 
entire university closed down. Ongoing experiments had to be abandoned, and virtually all labs had to 
pivot to working from home. To say this was disruptive to the thesis projects presented here would be an 
understatement. 

It really speaks to the resilience of  these students who, despite such extreme circumstances, still managed to 
produce the excellent work published here. Between the uncertainty, fear, stress, anxiety, the social isolation 
and worry about the future — especially during such a critical period of  their (academic) careers — they 
managed to pull through. They showed up to zoom lab meetings, ran remote matlab sessions, did online 
experiments, and made the best of  it. 

Having life as we knew it come to a sudden halt also presented us with an opportunity for reflection. 
While fairly disruptive to our work, I want to acknowledge that most of  us in academia were pretty lucky 
in that we can actually relatively easily work or study from home, at least for a good while, without serious 
consequences. Most of  us had the flexibility to switch to data analysis, to writing papers, all from the safety 
of  our homes. 

The students I had the honour of  working with this past year, all had very different reactions to these 
highly stressful times, and different coping mechanisms. For some, focusing on their research was a positive 
distraction, while for others, slowing down and exploring new hobbies and routines was a better way to deal 
with the situation. Interestingly — and despite my telling them our research is not that important, in the 
grand scheme of  things, and not to worry too much about it — they all finished their projects and produced 
impressive work. And, perhaps the part I valued most, they managed to support each other in the process. 
Indeed, resilience takes many forms, and this current edition of  the Nijmegen CNS journal is testament to 
that.

Saskia Haegens

Saskia Haegens
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About the Cover

Over the past few decades, the preeminent 
importance of  sleep for people’s physiological well-
being has become increasingly recognized among 
scientists. Studies have repeatedly provided strong 
evidence that dreaming helps people improve their 
waking life. However, there are dreams that are 
experienced very similarly as in waking life; lucid 
dreams. A study in 1985 by Stephen LaBerge at 
Standford University revealed that, unlike in most 
dreams, time perception in lucid dreaming is about 
the same as in waking life. Regardless of  how they 
work and whether they are truly ‘dreams’, people 
who experience lucid dreams are able to observe 
their dreams, recall the waking world, and sometimes 
control the direction of  the dream. 

The cover is inspired by the power of  lucid dreaming 
and aims to represent a dreamer who is aware of  
dreaming while asleep and is sorting the caught 
dreams using the dreamcatcher. I decided to title the 
cover “The neuronal dreamcatcher”, or simply “The 
dreamer”. Adverse to a brain made out of  neurons 
or a dreamcatcher which is a hoop on which is 
woven a net or a web, you can observe a person who 
combines both these qualities in a metaphysical art 
style: dreamcatcher made out of  neurons.

The ‘neuronal dreamcatcher’ is catching dreams 
during the night and separating the good dreams 
from nightmares. Traditionally dreamcatchers were 
used to hang over a cradle as protection: to encourage 
good dreams. Despite the dreamcatcher depicting 
both good and bad dreams, the feathers almost 
always direct good dreams to the sleeping owner 
of  the dreamcatcher. The feathers in this case are 
symbolized by synaptic endings which are sending 
information out. As in dreams mostly everything is 
imaginable, for example here the synaptic endings 
are releasing stars instead of  neurotransmitters. 
Stars and constellations are covering the background 
of  this cover. Good memories and dreams are 
represented by the glowing stars, while nightmares 
are represented by the black holes and the black 
background.

The woven net or web, made of  neurons, around 
the hoop is inspired by the beautiful neuron images 
Camillo Golgi obtained around 1870-1880 with his 
staining method and by the images the neuroscientist 
Greg Dunn made.

Carmen Heuvelmans
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Why in particular did you choose to work on the 
layout?

I believed it was one of  the few possibilities to 
bridge my creative interests with my passion for 
neuroscience. Science and art are often considered 
separate fields. I have been able this year to combine 
some 3D printing knowledge with real-scale 
anatomical brain scans of  my colleagues but nothing 
more. I remember seeing a cover of  the CNS Journal 
with a sketch of  Leonardo da Vinci and immediately 
I thought like I can combine my passion for art and 
science by designing intriguing covers with patterns 
of  neurons or 3D printed brain parts.

Meet the Journal Team: Layout

What do you take with you from your experience 
as a part of  the CNS Journal team?

The power of  collaboration. Everyone in our team 
has their particular interests and strengths. We all 
work on a specific part of  the journal, and this works 
together perfectly. Releasing a student journal twice 
a year only works if  you do it together and allow 
people to work on where they are drawn to. 

What would be your advice for students that 
want to join the layout team for later issues?

Dare. Don’t be afraid to come up with your own 
ideas, paintings or sketches. When I saw that in 
previous versions students used pictures from the 
web, I was insecure if  it was actually a good idea to 
bring my own drawings. I tried it the first two times, 
but none of  my covers were selected. I was hesitant 
to try a third time, however this was my lucky time. 
The journal team voted both of  my covers with 
a slight majority for The dreamer instead of  the 
intriguing pattern of  the circle of  Willis. 

Carmen Heuvelmans
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Corresponding author: Lucas Billen; E-mail: lucas.billen@gmx.de

Measuring Real-World Head Orientation Priors 
With Naturalistic Motion Tracking in a Bayesian 

Multisensory Integration Framework

Lucas Billen1

Supervisor: Pieter Medendorp1

1Donders Centre for Cognition, Nijmegen, The Netherlands

Previous research has shown that the brain integrates multisensory information via Bayesian inference to 
achieve spatial orientation. The key feature of  this approach is that, in addition to vestibular, visual, and 
somatosensory information, prior knowledge is incorporated in the sensory integration. The effect of  such a 
prior is twofold: Near upright, it improves precision, but with increasing head-tilt, systematic errors in the final 
head-in-space estimate are induced. The prior is assumed to be based on lifelong experiences, represented as 
a Gaussian distribution centered on upright. Whether this accurately represents the underlying head-in-space 
prior was unknown. Here, we used motion tracking to kinematically measure the head orientation distributions 
of  six participants performing naturalistic activities. We investigated whether 1) the resulting head orientation 
distributions can accurately represent the underlying head-in-space prior and 2) whether performances on 
tasks of  perceived visual verticality (SVV tasks) can be simulated by incorporating the obtained real-world 
prior into a previously developed multisensory integration model. In line with previous research, we expected 
the naturalistic head orientation distributions to be best described by Gaussian distributions, accurately 
simulating SVV task performance. Results showed that head orientation distributions were, in fact, best fitted 
by t Location-Scale distributions, characterized by fatter tails compared to Gaussian distributions. Simulation 
of  SVV task performance was not in line with previous research regarding both magnitude and direction of  
the biases. Thus, using a novel motion tracking approach, we provide evidence that the underlying head-in-
space prior deviates considerably from normality. Future research should focus on successfully incorporating 
such a prior in the Bayesian multisensory integration model.

Keywords: Bayesian inference, multisensory integration, prior, motion tracking, spatial orientation, subjective visual vertical

Disclaimer: Due to regulations concerning the Covid-19 pandemic, it was not possible to collect novel data 
for this study, and the study had to be re-steered. This involved a novel analysis of  a previously collected 
pilot data set of  six subjects in the sensorimotor lab. Because of  the limited sample size, statistical analysis 
lacked sufficient power.
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Spatial orientation, which is our sense of  
body orientation and self-motion relative to the 
environment, is fundamental to numerous basic 
motor actions, such as balance, locomotion, and 
the interaction with objects in the environment 
(MacNeilage et al., 2008). Not being able to tell 
how we are oriented in space could be fatal in many 
situations. For example, if  a diver or a pilot loses 
their sense of  spatial orientation, this could have 
severe consequences. However, in most situations, 
the brain seems to be able to achieve spatial 
orientation effortlessly. Given that the information 
from the various sensory organs is inherently noisy 
and partly ambiguous, how is the brain able to 
accurately reconstruct the state of  the world and the 
state of  the body, such that errors remain minimal? 

Research has shown that the statistically optimal 
way of  dealing with the inherent noisiness of  the 
sensory information is to use several sources of  
information. The multisensory information is 
then integrated while their respective noisiness is 
taken into account in a Bayesian inference fashion 
(Clemens et al., 2011; De Vrijer et al., 2008; Körding 
& Wolpert, 2004; MacNeilage et al., 2007). According 
to the Bayesian multisensory integration model developed 
by Clemens and colleagues (2011) and later adapted 
by Alberts and colleagues (2016), the brain uses 
three sources of  information to achieve an estimate 
of  how the head is oriented in space (Figure 1A). 
Firstly, as part of  the vestibular system, the otoliths 
directly measure acceleration of  the head, and 
therefore provide a direct signal of  how the head is 
oriented in space. Secondly, information from body 
sensors providing an estimate of  the orientation 
of  the body in space can be combined with the 
information provided by the neck sensors, which 
measure the angle between head and body. This 
yields a second, albeit indirect, measure of  how the 
head is oriented in space. Thirdly, this model allows 
for the brain to useprior knowledge to estimate the 
current orientation of  the head in space. This so-
called prior is assumed to be a representation of  
life-long experiences of  how the head is typically 
oriented in space (Clemens et al., 2011). 

The different noisy signals are usually represented 
as Gaussian probability distributions. It is assumed 
that the sensory signals (i.e. information from the 
otoliths, and the transformed signals from the body 
sensors and the neck proprioceptive information) are 
calibrated unbiasedly, meaning that they are centered 
on the true head-tilt angle. However, because these 
signals are inherently noisy, the resulting uncertainty 
about the sensory information is represented in 
the width of  the Gaussian distribution. The noisier 

the signal, the higher the uncertainty and therefore 
the broader the distribution. In terms of  Bayesian 
inference, this means that during the integration of  
the sensory information, highly noisy signals are 
weighted less, while less noisy and therefore more 
reliable signals are weighted more heavily. The 
model assumes the noise levels of  the body sensors 
and the neck sensors to be constant, while the 
noise of  the sensory information coming from the 
otoliths increases rectilinearly with increasing head-
tilt (Clemens et al., 2011; De Vrijer et al., 2008). The 
benefit of  this Bayesian inference approach is that 
all of  the available information is used optimally, 
such that the resulting head-in-space estimate has a 
lower degree of  perceptual uncertainty than can be 
derived from the individual sources. 

In contrast to the sensory signals, the prior is 
assumed to be centered around a head-tilt of  zero 
degrees (i.e. upright), because the most likely head 
orientation during everyday life is assumed to be 
upright, too. The effect of  such a prior is twofold: At 
small head-tilt angles, it improves precision, because 
it further reduces the uncertainty of  the final 
estimate. However, the prior also induces a bias in the 
final estimate of  head-in-space orientation, which 
becomes increasingly more pronounced at larger 
head-tilt angles (see Figure 1B). Thus, at large head-
tilt angles, the prior biases the final estimate towards 
zero and away from the true head-tilt angle, resulting 
in an underestimation of  one’s actual head-tilt (so-
called Aubert effect; Aubert, 1861; Mittelstaedt, 
1983; Van Beuzekom & Van Gisbergen, 2000) (for 
a complete description of  the model, see Methods). 

These large systematic errors in one’s perception 
of  head orientation can behaviorally be measured 
with the so-called Subjective Visual Vertical task 
(SVV), hence providing a methodological approach 
to indirectly study the underlying multisensory 
integration processes taking place (Aubert, 1861; 
Barra et al., 2010; Ceyte et al., 2009; De Vrijer et al., 
2009; Eggert, 1998; for a review on the perception 
of  verticality, see Dieterich & Brandt, 2019). The 
SVV task is conducted in the dark to minimize 
visual influences. During the task, participants’ 
bodies are roll-tilted while they are sitting in a 
vestibular chair. They are then presented with 
luminous bars with varying angles relative to true 
vertical. The participants’ task is to judge whether 
the bar is rotated clockwise or counterclockwise 
compared to their perceived gravitational vertical. 
As was mentioned above, participants are quite 
accurate at this task at small head-tilt angles, but 
as the head-tilt increases (in some experiments up 
to 120°), the systematic error increases to up to 
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Figure 1. Bayesian multisensory integration. A. Bayesian multisensory integration model: The brain can 
use information from body sensors, neck sensors and the otoliths, represented as Gaussian probability 
distributions. The otoliths provide a direct measure of head-in-space orientation, while the information 
from the body and the neck sensors can be combined in the coordinate transformation stage to provide an 
additional indirect measure. Furthermore, a head-in-space prior that is centred on 0° head-tilt is assumed 
to be part of the signal combination stage, resulting in a final head-in-space estimate (adapted from 
Clemens et al. (2011) and Alberts et al. (2016)). B. Example of multisensory integration: The probability 
of the sensory estimate of head orientation in space (otolith and body sensors) can be represented as 
Gaussians centred on the true tilt angle (i.e. 50°) and corrupted by noise, represented by the width of the 
Gaussian. The Gaussian prior is centred on upright (i.e. 0°). Thus, the final estimate which is given by the 
optimal integration of the sensory information and the prior, will be biased toward the prior, but with 
smaller uncertainty with respect to the individual sources.



Nijmegen CNS | VOL 16 | ISSUE 14

Lucas Billen

60° (which means that the luminous bar has to be 
tilted 60° to be perceived as vertical), indicating a 
strong underestimation of  one’s own head-tilt. The 
aforementioned multisensory integration can explain 
the observed behavior on this task adequately, even 
though performances on the SVV task can differ 
substantially between individuals (Clemens et al., 
2011). The large systematic error can be accurately 
explained by the prior introducing a bias towards 
upright.

Even though the model provides a good fit to 
the data and is intuitively appealing, there is still 
uncertainty about the true underlying nature of  the 
distributions of  the various signals. For example, 
it is assumed that the prior is based on lifelong 
experiences of  how the head is typically oriented in 
space. Given the observation that the head’s vertical 
axis is usually aligned with gravity, it is justified to 
assume that the prior is centered on a head-tilt of  0°. 
However, in previous research, the prior distribution 
was always assumed to be Gaussian for reasons of  
computational convenience and/or simplicity. On 
the one hand, this makes the modelling easier and 
more intuitive. However, having a fixed distribution 
type makes it impossible to determine whether the 
model reflects the true underlying nature of  the 
prior distribution (Stocker & Simoncelli, 2006). 
In other words, whether a Gaussian distribution 
reflects the true underlying nature of  the prior, 
and whether potential differences in the underlying 
prior can explain the individual differences on SVV 
task performance, were not addressed in previous 
research regarding head orientation in space.

The present study aimed to tackle these 
questions. Because it is assumed that the prior is 
based on lifelong experiences, naturalistic motion 
tracking might be a viable approach to measure the 
underlying prior. Thus, we used motion tracking to 
measure kinematic head movements during typical 
naturalistic activities. Subsequently, we investigated 
what type of  distribution fits the measured data 
best in an attempt to test the basic assumption 
that the prior is of  Gaussian nature. We then used 
the best fitting distributions as representations of  
the underlying prior, by implementing them in the 
Bayesian sensory integration model of  Clemens 
et al. (2011). We were able to simulate what the 
SVV task performance would look like in the same 
participants, providing us with a novel approach to 
gain insights into the true underlying distribution 
of  the head-in-space prior. Thus, the current study 
combined a naturalistic motion tracking approach 
with a controlled lab-based task of  perceived 
verticality to get a more realistic and complete view 

of  what the underlying head-in-space prior might 
look like, and how it can bias perception on tasks of  
perceived verticality.

Not many studies have used motion tracking to 
investigate head movements during everyday life 
activities. Carriot and colleagues were the first to 
study the natural vestibular inputs that the brain needs 
to process during naturalistic activities (Carriot et 
al., 2014). Using a micro-electromechanical systems 
module, which combines three linear accelerometers 
and three gyroscopes, they measured participant’s 
head movements during several active and passive 
movements, such as walking, running, jumping, and 
riding on a bus. Interestingly, they showed that the 
probability distributions of  the angular velocities 
that the vestibular system experiences in everyday 
life also deviate significantly from normality. Instead, 
the probability distributions were characterized by 
large excess kurtoses (i.e. fatter tails). Using a similar 
methodological approach, while focusing more 
on the head-in-space orientation might therefore 
be a good approach to quantify naturalistic head 
orientations. The general study design of  Carriot et 
al.’s study therefore serves as a good basis for the 
present study. Thus, similar to the study by Carriot 
and colleagues, participants in this study performed 
five naturalistic activities: walking, running, going up 
and down the stairs, standing and sitting. These tasks 
cover a wide range of  activities that predominantly 
occur in everyday life, therefore providing a 
relatively realistic representation of  activities that the 
underlying head-in-space might be based on. 

In line with the Bayesian sensory integration 
model developed by Clemens and colleagues 
(2011), we expected to show that the resulting 
naturalistic head-in-space distributions measured 
by the motion trackers will be best captured by 
Gaussian distributions centered on 0° degrees 
head-tilt. Furthermore, we expected that upon 
implementation of  those naturalistic priors into 
the model, a simulation of  SVV task performances 
would closely follow the actual performances 
observed in past studies.

Materials and Methods

Participants

Six healthy subjects participated in the study 
(three male and three female). Ages ranged from 
23 to 28 yrs (M = 25.5; SD = 1.64 yrs). They were 
free of  any known neurological or movement 
disordershad normal or corrected-to-normal vision 
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and were personally recruited by the experimenter. 
All participants took part voluntarily and gave 
written consent after they were informed about the 
experimental procedure. 

Naturalistic Motion Tracking

Experimental setup. To acquire naturalistic 
motion kinematics, the MVN motion capture suit 
from Xsens was used (Xsens, 2017). This system 
consists of  17 sensors for full body motion tracking. 
For the purpose of  this project, only 11 sensors were 
used to measure upper body and head kinematics. 
Sensors were placed on the pelvis, shoulders, 
sternum, upper arms, forearms, hands, and head. 
The sensors on the torso were attached with a tight-
fitting vest, the sensor on the head was attached 
with a headband and the sensors on the arms were 
attached with Velcro-straps. This equipment was 
provided by Xsens and therefore was designed 
to securely contain the sensors with integrated 
Velcro pockets. Each sensor is a compact Inertial-
Magnetic Measurement Unit (IMMU) (47mm ×30 
mm × 13mm, weight: 16 g), containing inertial 
sensor components, including a 3D rate gyroscope 

measuring angular velocities and a 3D accelerometer 
measuring acceleration. Additionally, it comprises a 
3D magnetometer, a barometer, and a thermometer. 
Combined with the internal Xsens signal processing 
algorithms, 3D drift-free orientation data is provided. 
The sensors are wirelessly connected to the Awinda 
Station, which serves as the interface between the 
laptop running the Xsens-based software (MVN 
Analyze/Animate) and the IMMUs.

The integrated MVN Fusion Engine calculates the 
position, orientation, and numerous other kinematic 
measures of  each body segment with respect to an 
earth-fixed reference coordinate system. By default, 
the earth-fixed reference is defined as a right-handed 
Cartesian coordinate system with X being positive 
when pointing to the local magnetic North, Y being 
oriented according to the right-handed coordinates 
(pointing West), and Z being positive when pointing 
up (Figure 2A). 

For each body segment, all kinematic quantities 
are expressed in a common, local coordinate frame, 
L, which is also a right-handed coordinate system 
with X being positive when pointing forward, lying 
in the horizontal plane, Y being oriented according 
to the right-handed coordinate system with respect 

Figure 2. Global and local reference frames. A. Representation of the earth-fixed reference coordinate 
system. B. MVN avatar in N-pose.
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to X and Z, and Z being positive when pointing 
upwards along the vertical, gravity referenced, axis. 
The system was calibrated while the participant was 
standing in a neutral position (‘N-pose’), as shown 
in Figure 2B. In this pose, the participant is standing 
in a relaxed, upright position, with the feet being 
parallel to each other and the arms flat against the 
body, while looking straight ahead with a natural 
head position.

Procedure. During the experiment, participants 
were asked to perform five different tasks, namely 
walking, running, going up and down the stairs, 
sitting and standing. The walking and running tasks 
were performed outside on a standard sidewalk on 
campus. Going up and down the stairs was done 
in the university building and the sitting/standing 
task was performed on a normal office chair in the 
lab. The first three tasks were adapted from the 
experiment conducted by Carriot et al. (2014). Each 
task was repeated three times and each repetition 
lasted about two minutes, resulting in roughly 
six minutes of  recorded data for each task. The 
participants were instructed to perform each task at 
a comfortable speed and while moving and looking 
around as naturally as possible.

Data Analysis

Pre-Processing. The MVN software saves 
the orientation data of  the motion-trackers in 
quaternion form. For the purpose of  this project, 
the quaternion data was converted to Euler angles, 
because we needed to represent the head-in-space 
prior as a distribution comprised of  angles in 
degrees in the roll-tilt dimension. Therefore, after 
importing the raw data into MATLAB (version 
2019a), the orientation data of  the MVN sensor 
that was attached to the head was converted to 
Euler angles represented in radians, such that 
 

 
in which φ equals the roll-tilt angle, θ equals the 
pitch angle and equals the yaw angle. q0, q1, q2 and 
q3 stand for the four elements that a quaternion is 
comprised of  (Hemingway & O’Reilly, 2018). After 
the conversion, the data was cleaned by deleting 
outliers that deviated more than four standard 

deviations from the mean. Lastly, the data was 
converted from radians to degrees.

Distribution fitting. We characterized the 
data based on their four statistical moments, 
namely the mean, the variance, the skewness, and 
the kurtosis. Shortly, in probability and statistics, 
the mean or expected value is a measure of  the 
central tendency of  a probability distribution, 
i.e. the location of  the distribution. The second 
moment, the variance, provides information about 
the spread of  the distribution. The third moment, 
the skewness, is a measure of  the asymmetry of  a 
probability distribution. A normal distribution (or 
any other symmetrical distribution) has a skewness 
of  zero. A negative skew indicates that the left 
tail of  the distribution is longer, and a positive 
skew indicates that the right tail is longer. Lastly, 
the kurtosis is a measure regarding the tails of  a 
distribution. A normal distribution has a kurtosis 
of  three. A kurtosis greater than three (i.e. excess 
kurtosis), indicates that the probability distribution 
has fatter tails, which means that it produces more 
outliers. Additionally, the peak of  the distribution is 
oftentimes higher and sharper (Brown, 2016). Just 
like the skewness, the kurtosis is a measure of  the 
shape of  the distribution.

To test which distribution type best represents 
the measured head orientation data and therefore the 
underlying head-in-space prior, multiple distributions 
were fitted to the converted roll-tilt data of  the MVN 
sensor. The fitting procedure was performed via the 
opensource function ‘fitmethis’ (De Castro, 2020). 
This function finds the distribution that best fits the 
data among all distributions available in MATLAB’s 
built-in Maximum Likelihood Estimation function 
(for a complete overview of  the fitted distributions 
and their respective parameters, see Appendix). 
Because some distributions can only be fitted to 
non-negative data (such as the Weibull distribution), 
we added a constant of  100 degrees to the head 
orientation data, so that the distributions are roughly 
centered on 100 degrees head-tilt (instead of  0). 
This did not affect the actual fitting procedure. The 
distributions are then ranked according to their Log-
Likelihood. This procedure provided us with the 
necessary distribution-specific parameters which 
we subsequently used to represent the underlying 
head-in-space prior. It should be noted that we 
would formally have to fit circular distributions, 
because we are dealing with rotation data (De 
Winkel et al., 2018; Murray & Morgenstern, 2010). 
However, because the standard deviations of  the 
head orientation data were rather small, differences 
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between the distributions that were fitted here 
and circular distributions such as the Von Mises 
distribution would be negligible (De Winkel et al., 
2018). For reasons of  computational simplicity, we 
therefore chose to fit non-circular distributions. 

From the resulting fits, it became clear that the 
normal distribution, the (log)logistic distribution 
and the t Location-Scale distribution provide the 
best fits. These three distributions are therefore 
briefly introduced here.  

Normal Distribution. A normal (or 
Gaussian) distribution is a continuous probability 
distribution for a real-valued random variable. The 
parameter μ is the mean of  the distribution and 
σ is its standard deviation, with variance σ2. The 
general form of  its probability density function is 
 

 
During the MLE fitting procedure, the maximum 
likelihood estimators of  μ and σ, respectively, are 
 

 
where (5)  is the sample mean, an unbiased estimator 
of  the parameter μ, and (6) is a biased estimator of  the 
parameter σ2 (MathWorks - Normal Distribution, 2020). 
As was mentioned above, a normal distribution has, 
by definition, a kurtosis of  3 and is non-skewed.

Logistic Distribution. The logistic distribution 
is typically used for growth models and in logistic 
regression. It resembles the normal distribution, but 
it has longer tails and therefore a higher kurtosis. 
Its probability density function is defined as 
 

 
where μ is the mean of  the distribution and σ is the 
scale parameter.

t Location-Scale Distribution. The t 
Location-Scale distribution is a generalized form of  
the Student’s t distribution. It typically has heavier tails 
than the both the normal distribution and the logistic 

distribution. Its probability density function is given by 
 

  
 
where Γ(●) is the gamma function, μ is the location 
parameter, σ is the scale parameter and ν is the shape 
parameter. Compared to the standard Student’s 
t distribution, which only has one parameter, ν, 
the t Location-Scale distribution is more flexible, 
because here, the scale parameter σ is independent 
of  the shape parameter ν, which is not the case in 
the traditional Student’s t distribution. As ν increases 
towards infinity, the distribution approaches the 
normal distribution. 

Bayesian sensory integration model. 
Figure 1A represents the Bayesian sensory 
integration model that was used to implement the 
measured head-in-space orientation to predict the 
performance on the SVV task. This framework 
was originally developed by Clemens et al. (2011), 
although this version of  the model is mostly based 
on the work by Alberts et al. (2016). The model 
contains three stages of  information processing: an 
input stage, a coordinate transformation stage, and a 
sensory integration stage. 

Sensory input. In the sensory input stage, 
physical information about the world is transformed 
to sensory signals, denoted with a hat symbol (^). 
It is assumed that all sensory signals are unbiased 
but corrupted by Gaussian noise with variance σ2. 
Firstly, the otoliths provide the brain with direct 
information about the orientation of  the head in 
space (ĤS). At small head-tilt angles this information 
is very precise. However, due to the physiological 
properties of  the otoliths, it can be assumed 
that the noise level of  the sensory information 
increases rectilinearly with increasing head-tilt (De 
Vrijer et al., 2008; Tarnutzer et al., 2009, 2010): 
 

 

Here,  βHS reflects the noise level of  the otoliths 
at 0° head-tilt and αHS reflects the proportional 
noise increase with increasing head-tilt. Secondly, 
neck sensors provide proprioceptive head-on-
body information (ĤB) and thirdly, body somato-      
sensors respond to the orientation of  the body in 
space ( ). 
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Coordinate transformation. In addition 
to the direct head-in-space information from the 
otoliths, the brain can use the information from 
the body somatosensors and the neck sensors to 
get an indirect measure of  head-in-space orientation 
(ĤSI). In order to do so, the information from 
these two sources needs to be combined. This 
involves a coordinate transformation, such that 
 

 

This means that the Gaussian distributions of  the 
single sources that are centered on BS and HB are now 
combined to one Gaussian distribution centered on 
BS + HB. 

Sensory integration. At this stage, all available 
information is statistically optimally combined to a 
single final head-in-space estimate. As was mentioned 
before, it is also assumed that, in addition to the 
sensory information, the brain uses prior information 
about head orientation in space. In previous research, 
this prior was represented as a Gaussian distribution 
that was centered on 0, while the variance of  the prior 
was one of  the free parameters. As was described 
before, we based our head-on-space prior on the 
motion tracking data, meaning that it is not fitted 
as a free parameter. This prior is denoted as Hprior. 
When integrating the sensory signals and the prior, 
the peak of  the resulting distribution representing 
the head-in-space orientation estimation (the 
posterior) follows from Bayes’ rule, and is given by: 
 

 
 

with
 

 

Here, wHD, wHI and wHP, are the noise-dependent 
weights of  the direct, indirect, and prior information 
pathway. 

Finally, the brain needs to compute the orientation 
of  the luminous line in space. This is achieved 
by combining the head-in-space information  
( ) with eye-in-head information  and line-

relative-to-eye information ( ). The line-relative-
to-eye information itself  is assumed to be unbiased, 
and therefore does not contribute to the resulting 
error. Regarding the eye-in-head information, it is 
assumed that the eyes automatically counter-rotate 
to compensate for small head-tilt angles (i.e. if  the 
head is slightly tilted CW, the eyes rotate CCW).

However, evidence suggests that the brain does 
not seem to compensate for this counter-rotation, 
resulting in small errors in the direction opposite 
of  the actual head-tilt at small head-tilt angles 
(E-effect; Palla et al., 2006). This uncompensated 
ocular counterroll can be represented as: 
 

 

The final systematic error that occurs at different 
degrees of  head-tilt angles (E-effect at small angles, 
A-effect at large angles) can, thus, be described as: 
 

After having established the type of  distribution 
that best fits the head orientation data, we forward 
simulated what the SVV task data might look like in 
these subjects, based on the multisensory integration 
model. We used both average values for the various 
parameters from previous research (Clemens et al., 
2011) and, for the signal of  the prior, the parameters 
that resulted from the distribution fitting. More 
specifically, we used the values from Clemens et 
al. (2011) for the parameters of  the otolith signal, 
the body-in-space signal, the head-on-body signal 
and the ocular counterroll (αHS, βHS, σ2

BS, σ2
HB, 

AOCR) (for an overview of  the specific parameters, 
including the parameters for the prior signal, see 
Table 4 and 5). Upon simulating the SVV task data 
with the multisensory integration model using the 
best fitting distributions as the prior, we expected 
to find that the predicted SVV task performance 
between head-tilts of  ±120° would closely match 
previously observed SVV task behavior. 

Results

In the following, the shape of  the different 
head orientation distributions and the best fitting 
distribution types will be discussed. This will be 
done by investigating the four statistical moments 
of  a distribution. Figure 3 shows a histogram of  
the roll-tilt data of  the head of  one example subject 
(S4) during all five activities (44 bins). The bottom 
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right subplot demonstrates a histogram of  the 
data pooled across all activities. Most distributions 
are roughly centered on 0° head-tilt, while being 
relatively non-skewed. This indicates that this 
particular subject tends to hold their head relatively 
stable in the roll-dimension (i.e. with low variance) 
without having a bias to either the right or the left 
roll-tilt side. The standard deviation of  the roll-
tilt is lowest in the “standing” condition, which is 
unsurprising. Going up and down the stairs resulted 
in the highest variance in the roll-tilt dimension, 
which can potentially be explained by both the 
frequent gaze shifts that are necessary and by the 
constant shifts of  the body weight when going up 
and down the stairs. The kurtosis of  the last plot 
(the data of  the pooled activities) is equal to 5.28 
(see Table 1), indicating that this particular subject 
has more extreme values in the roll-tilt dimension 
and a higher peak than would be assumed if  the 
distribution was normally distributed. This pattern 
is consistent across most subjects (Table 1).

Figure 4 shows the pooled data across all activities 
for each subject separately. Table1shows the four 
statistical moments of  that data. 

1. Mean: In all six subjects, the mean roll-tilt angle 
of  the head across all activities was roughly centered 
on zero. Subject 1 showed the largest bias (M = -2.62 
degrees). One-sample Wilcoxon signed-rank tests 
indicated that the median of  the head orientation 
distributions of  all subjects deviated significantly 
from 0° head-tilt (p< .001). However, effect sizes 

were rather small (effect size formula based on 
Rosenthal (1994); r = .25; r = .17; r = .14; r = .19; r 
= .20; r = .02, for S1 to S6 respectively), suggesting 
that the significant results are caused by the large 
sample sizes (≈120.000 samples per subject). Thus, 
on average, the participants kept their head upright, 
without demonstrating considerable biases to either 
the left or the right roll-tilt side.

2. Standard deviation: Overall, the standard 
deviations can be considered relatively low. It was 
highest for Subject 1 (SD = 9.60 degrees) and lowest 
for Subject 4 (SD = 6.17 degrees), meaning that the 
majority of  the head tilts in the roll dimension were 
small. Overall, Subject 6 showed the most extreme 
head-tilts with values up to 59.6 degrees and Subject 
3 had the least extreme head-tilts (33.9 degrees).

3. Skewness: The distributions from five out 
of  six subjects were practically non-skewed, with 
only slight deviations from zero. Subject 2 showed 

Figure 3. Example data of one subject. The number of samples of the MVN sensors is plotted as a function 
of roll-tilt of the head. All activities are displayed. The last subplot contains the pooled activities. 

Subject Mean Std Skew Kurtosis
S1 -2.62 9.60 -0.85 5.86
S2 -1.98 7.59 -1.04 4.44
S3 0.48 6.44 -0.60 5.29
S4 0.82 6.17 -0.49 5.28
S5 1.16 6.98 0.24 6.32
S6 -0.08 6.26 0.12 5.87

Table 1. Four statistical moments of pooled 
activities across subjects.
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Figure 4. All pooled activities across subjects. Note. S = Subject.

Subject Best fits Log-Likelihood

S1 t Location-Scale distribution -442350.66

Logistic distribution -443412.15

Loglogistic distribution -447007.89

Weibull distribution -447266.82

S2 Extreme Value distribution -367709.04

Weibull distribution -367739.56

t Location-Scale distribution -373448.99

Logistic distribution -373756.24

S3 t Location-Scale distribution -432454.20

Logistic distribution -432981.81

Loglogistic distribution -434876.83

Normal distribution -437678.17

S4 t Location-Scale distribution -369039.59

Logistic distribution -369984.30

Loglogistic distribution -371200.89

Normal distribution -374895.08

S5 t Location-Scale distribution -349880.51

Logistic distribution -354003.98

Loglogistic distribution -354033.10

Nakagami distribution -361908.37

S6 t Location-Scale distribution -454105.05

Logistic distribution -454405.78

Loglogistic distribution -454651.04

Normal distribution -458572.73

Table 2. Best-fitting distributions and their respective log-likelihoods. Note. Note that not the absolute 
values should be interpreted, but the value relative to the other fits. The higher the value, the better the 
fit (relative to the others).
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Figure 5. Distribution fitting. S = Subject; PDF = probability density function. A. The four best-fitting 
distribution types for each individual are shown, plotted on top of the data. Distributions can, thus, 
differ between individuals. Distributions are sorted by best fit (blue = best fit; orange = second-best fit 
etc.). B. Fitted normal distributions vs. t Location-Scale distributions plotted on top of the data for each 
individual.
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the largest asymmetry (-1.04), which is also visible 
in Figure 4. As a general rule of  thumb, skewness 
values that exceed ±1 can be considered highly 
skewed (Normality Testing - Skewness and Kurtosis, n.d.).

4. Kurtosis: The distributions of  all subjects 
showed excess kurtoses (>3), with values ranging 
from 4.44 (S2) to 6.32 (S5), which indicates that there 
were more outliers (i.e. fatter tails) and higher peaks 
than would be expected if  the data were normally 
distributed.

Summarizing, for all subjects the head orientation 
distributions were all roughly centered on 0° roll-tilt, 
with relatively small standard deviations, supporting 
the assumption that the prior is centered on upright. 
Furthermore, the distributions of  five out of  six 
subjects were practically symmetrical. Only subject 
2 demonstrated a considerable skewness of  the head 
orientation data to the left. Notably, all subjects had 
head orientation distributions with excess kurtosis, 
which deviate considerably from what would be 
expected under the assumption that the data are 
normally distributed. 

Distribution fitting

Figure 5A shows the four best fitting 
distributions, superimposed on the combined roll-
tilt head orientation data of  all subjects. Table 2 
shows the corresponding log-likelihoods for those 
fits. It should be noted that, in theory, the log-
likelihood can lie between  and  and the values in 
itself  are not meaningful. The values can only be 
compared to other log-likelihoods. The results 
show that in five out of  six cases, the t Location-
Scale distribution provided the best fit to the data, as 
indicated by the highest log-likelihoods. For subject 
2, the extreme value distribution provided the best 
fit. This is presumably caused by the fact that this 
head orientation distribution is the most asymmetric 
one, therefore resulting in worse fits of  distributions 
that are by definition symmetric, such as the normal 
distribution or the t Location-Scale distribution.

Importantly, the Gaussian distribution does not 
fit the data well. Figure 5B shows a comparison 
between the fits of  the t Location-Scale distribution 
and the normal distribution. In contrast to the fit 
of  the normal distribution, the t Location-Scale 
distribution follows the data much more closely, 
providing a better representation of  the data and, 
consequently, a more realistic depiction of  what 
the underlying head-in-space prior might look 
like. Most strikingly, the normal distributions are 
not able to follow the fat tails of  the data, which 
in turn results in lower-than-optimal peaks. This 

means that they underrepresent the amount of  the 
head-tilt data that lies closely around 0°. Hence it 
follows that the spread of  the normal distributions 
around the inflection points is too large, resulting in 
an overestimated spread of  the data. Furthermore, 
the excess kurtoses of  the data, and therefore its 
‘tailedness’, cannot be captured by the normal 
distributions, because, by definition, they have a 
kurtosis of  three. It seems logical that the tLocation-
Scale distribution provides a better fit compared 
to the Gaussian distribution, because it has one 
parameter more that can be flexibly fitted to the 
data. Therefore, to avoid overfitting, we additionally 
compared the distribution fits based on the Akaike 
Information Criterion (AIC).The AIC deals with 
the risk of  over fitting by punishing an increasing 
number of  parameters, therefore providing a more 
objective measure when comparing models with 
different numbers of  parameters. Generally, a 
difference in AIC scores of  more than 10 means 
that there is essentially no empirical support for the 

Figure 6. Model simulation of the systematic 
errors for all subjects. Note. S = Subject.
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model with the higher AIC (Burnham & Anderson, 
2002; Cavanaugh & Neath, 2019). Thus, the smaller 
the AIC score, the better the fit of  the distribution 
(relative to the other distribution fits). As can be 
inferred from Table 3, the AIC scores for the t 
Location-Scale distribution fits are substantially 
smaller than the AIC scores for the Gaussian 
distribution, providing further evidence that the t 
Location-Scale distribution provide a significantly 
better fit compared to the Gaussian distributions.

To summarize, the normal distributions do 
not provide a good fit for the naturalistic head 
orientation data. The data is more peaked and has 
fatter tails than what a normal distribution is able 
to capture. Instead, the t Location-Scale distribution 
provides both the best overall fit in five out of  the 
six subjects and in all six cases a better fit than the 
normal distribution. Due to its three parameters 
(location, scale and shape parameter), it is more 
flexible and therefore better suited to capture this 

particular dataset and, consequently, mightbe a 
better representation of  the underlying head-in-
space prior. 

Model Simulation

We subsequently simulated the Bayesian sensory 
integration model with both the traditional Gaussian 
distribution prior and with the best-fit t Location-
Scale distribution prior. For the other sensory 
parameters (see Table 5), we used the best-fit 
parameters obtained in previous studies (Alberts 
et al., 2016; Clemens et al., 2011). Thus, only the 
parameters relating to the prior differed between 
individuals, while the other parameters were kept 
constant across participants. Figure 6 shows the 
expected systematic error in the head-in-space 
estimate as a function of  head roll-tilt, ranging from 
-120 degrees (CCW) to +120 degrees (CW). 

Gaussian Prior

With the Gaussian prior, the systematic errors 
simulated by the model closely correspond to 
previous findings of  systematic errors on SVV tasks 
(e.g. Alberts et al., 2016; Clemens et al., 2011; De 
Vrijer et al., 2008). At the maximum head-tilt of  
120 degrees the systematic errors ranged between 
roughly 50° (S1) and 76° (S4). Thus, when being 
roll-tilted 120°, a presented line would need to be 
rotated between 50° to 76° in the head-tilt direction 
to be perceived as completely vertical, because the 
participants severely underestimate their own head-
tilt. These large individual differences are caused by 
the different variances of  the priors. As is shown 
in Table 4, S1 and S4 have the largest and smallest 
variances of  the fitted Gaussian prior, respectively 
(S1: SD = 9.59; S4: SD = 6.17). Because the prior is 

Figure 7. Model simulation of the standard 
deviations of the final head-in-space estimate. 
Note. S = Subject.

Subject t Location-Scale Gaussian

S1 884707.32 898018.93

S2 746903.99 753097.96

S3 864914.41 875360.34

S4 738085.19 749794.17

S5 699767.01 723877.08

S6 908216.10 917149.47

Table 3. AIC scores of t location-scale fits and 
Gaussian fits. Note. The smaller the score, the better 
the fit. A difference in scores of >10 is considered 
significant.
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weighted according to its variance in the integration 
stage of  the model, the prior is weighted less in S1 
and weighted more in S4, resulting in the simulated 
differences in systematic errors. At small roll-tilt 
angles, however, the E-effect becomes visible, where 
small systematic errors in the opposite direction of  the 
head-tilt appear, as if  the brain overestimates one’s 
own head-tilt. This is caused by the aforementioned 
uncompensated ocular counterroll (, in the model). 
Figure 7 shows the variance of  the resulting head-
in-space estimate as a function of  head-tilt. Again, 
S1 shows the largest variance in the head-in-space 
estimate at large tilt-angles, which is explained by 
the high-variance prior. Regarding the magnitudes 
of  the variances, they also correspond to the 

equivalent values reported in previous studies. Near 
upright, the smaller variances of  the final estimate 
indicate lower uncertainty. As roll-tilt increases, so 
does the uncertainty in the head-in-space estimate. 
Thus, simulating the Bayesian optimal integration 
model by using the Gaussian distributions that were 
obtained from the naturalistic head orientation 
distributions resulted in systematic errors and head-
in-space estimate variances that closely correspond 
to previously reported results on tasks of  perceived 
verticality.

t Location-Scale prior

For the t Location-Scale distribution prior, this 
was not the case. Although providing a much better 
fit to the naturalistic data, the simulated systematic 
errors do not correspond to both the Gaussian prior 
version of  the simulation and previously measured 
systematic errors on SVV tasks. In contrast to what 
would be expected, the systematic errors are 1) much 
smaller in magnitude (ranging between 6.83° (S6) 
and 11.06° (S5)) and 2) in the opposite direction of  
what previous studies have reported. Furthermore, 
differences between individuals are rather small 
and do not correspond to the individual differences 
from the simulation with the Gaussian prior (i.e. S6 
and S5 with minimum and maximum systematic 
errors, compared to S1 and S4 in the Gaussian prior 
simulation). In contrast to the systematic error, 
the variance of  the final head-in-space estimate 
corresponds more closely to the variance profile of  
the Gaussian prior simulation, with higher variances 
at large head-tilts, compared to upright. However, at 
head-tilt angles beyond 100°, the variance suddenly 
decreases significantly, as if  uncertainty about one’s 
own head-tilt also decreases. Thus, even though the t 
Location-Scale distribution fits the naturalistic head-
orientation data considerably better than a Gaussian 
distribution, it does not seem to be able to capture 
the previously observed systematic errors and 
variances in the final head-in-space estimate. 

Figure 8. Simulated systematic errors without 
uncompensated ocular counterroll with t location-
scale prior. Note. S = Subject; OCR = Ocular 
counterroll.

Subject Gaussian
prior

t Location-Scale
prior

μ σ μ σ ν

S1 -2.62 9.59 -1.92 6.92 3.87
S2 -1.98 7.59 -0.94 5.82 4.42
S3 0.48 6.44 0.91 4.98 4.79
S4 0.82 6.17 1.10 4.41 3.71
S5 1.16 6.98 1.05 3.97 2.37
S6 -0.08 6.26 -0.10 5.13 6.19

Table 4. Parameters of the Gaussian prior and 
the t location-scale prior. Note. Note that the μ 
and the σ do not correspond to the same thing 
in the Gaussian and t Location-Scale case. In the 
latter case, μ = location parameter and σ = scale 
parameter, not Mean and SD.

Parameters αHS βHS σ2BS σ2HR AOCR

Values 0.16 2.4 10.8 4.9 14.6

Table 5. Best-fit parameter values adapted from 
previous studies. Note. αHS = proportional variance 
increase of otolith signal; βHS = base signal; σ2BS 
= variance body-in-space signal; σ2HR = variance 
head-on-body signal; AOCR = uncompensated 
ocular counterroll.
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Discussion

This study investigated whether motion 
tracking of  naturalistic activities can serve as a 
viable methodological approach to represent and 
model the underlying head-in-space prior as part 
of  a Bayesian multisensory integration framework. 
More specifically, we investigated what type of  
distribution best fits the real-world head orientation 
data and whether it can be successfully integrated in 
the Bayesian optimal integration model to explain 
performances on tasks of  perceived verticality. Based 
on the assumptions from previous research (e.g. 
Alberts et al., 2016; Clemens et al., 2011; De Vrijer et 
al., 2008; MacNeilage et al., 2007)2007, we assumed 
the naturalistic head orientation distributions to be 
best described by Gaussian distributions and that we 
would be able to adequately simulate what the SVV 
task performance would look like in these subjects. 
The hypotheses were not supported. We showed 
that a Gaussian distribution is not able to capture the 
peaks and tails of  the naturalistic head orientation 
distributions. In fact, the best fit was provided by 
the tLocation-Scale distributions. However, upon 
simulating the Bayesian optimal integration model 
with both the best-fitting Gaussian distribution and 
the t Location-Scale distribution as the prior, only 
the Gaussian prior version of  the model simulated 
the biases that were observed in previous studies of  
verticality perception in a realistic way. 

Why the simulated SVV task 
performances do not correspond to 
previous findings

Two reasons contribute to the finding that the 
systematic errors that resulted from the model 
simulation incorporating the t Location-Scale 
prior did not correspond to previous findings on 
tasks of  verticality perception. Figure 8 illustrates, 
what the systematic error would look like if  the 
uncompensated ocular counterroll was not added to 
the final estimate (Equation 16). It becomes clear 
that in that case, the errors go in the direction of  
the head-tilt, which is in line with previous research, 
but they only reach values of  about 10°, therefore 
being far smaller than what was expected. Prior 
research has shown that systematic errors can reach 
magnitudes up to 60° at head-tilts of  120° (Clemens 
et al., 2011). The small magnitude of  the systematic 
error observed here is partly caused by the fat tails 
of  the t Location-Scale prior. The effect this has on 
the model simulation is remarkable. Even though the 

t Location-Scale distributions appear to be smaller in 
width than the normal distributions, they have far 
fatter tails. This causes the prior to be weighted less 
in the signal integration stage of  the model. Thus, 
it only slightly pulls the final head-in-space estimate 
towards zero, resulting in a much smaller systematic 
error. 

If  then, on top of  the already small systematic 
errors, the OCR is added to the error, this results 
in the observed systematic errors of  the model 
simulation. As can be inferred from Equation 15, 
the OCR is essentially represented as a relatively 
large sinusoid that is added on top of  the head-in-
space error, causing the systematic error to go in 
the direction opposite of  the actual head-tilt. Thus, 
both the fat tails of  the t Location-Scale prior and 
the OCR that is added on top of  the error cause the 
model simulation to inaccurately predict the SVV 
task performance. 

Can the model work with t Location-
Scale priors?

How could the simulation of  the SVV task 
performance be improved in the case of  the t 
Location-Scale prior? One of  the main limitations of  
the present study is that the variances of  the various 
sensory signals were fixed in the model simulation. 
This is problematic, because the variances were 
adapted from previous research under the assumption 
that the prior is of  Gaussian nature. Replacing the 
Gaussian prior for a t Location-Scale prior, while 
keeping the variances of  the sensory signals fixed, 
thus causes the presented results. To compensate 
for the different properties of  the t Location-Scale 
distribution (e.g. the fatter tails), the variances of  the 
sensory signals would need to be adjusted, too. This 
could be achieved by either increasing the variances 
of  the otolith signal and the indirect body signal, 
therefore increasing the relative weight of  the t 
Location-Scale prior, and/or by reducing the large 
effect that the uncompensated ocular counterroll 
has on the results. Ideally, this would be achieved 
by letting the same participants that took part in 
the motion tracking experiment perform an SVV 
task. One could then fit the Bayesian multisensory 
integration model to the SVV data. In that case, 
the prior would be fixed, because it is based on the 
previously measured head orientation distributions, 
while the sensory signals are fitted to the data as free 
parameters. This should provide a more accurate 
fit of  the model and, in turn, should result in more 
realistic parameters for the various signals that are 
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part of  the multisensory integration model. Due to 
the current situation regarding the COVID-19 crisis, 
such an experiment was unfortunately not possible, 
but should be considered in future research.

	
Implications for future research

In the current study, we were able to extensively 
quantify head orientations during everyday life 
activities. We demonstrated that wireless motion 
tracking can be flexibly used to accurately quantify 
everyday life activities and that it can serve as a way 
to combine naturalistic tasks with controlled lab-
based measures to investigate spatial orientation. 
Using a similar naturalistic approach, Carriot and 
colleagues (2014) have shown that the vestibular 
system has to deal with angular velocities that deviate 
considerably from normality. Here we showed that 
the same applies to probability distributions of  head-
orientations in the roll-tilt dimension. Participants’ 
head orientation distributions were all roughly 
centered on upright and, apart from one subject, 
largely non-skewed. However, the probability 
distributions were characterized by fatter tails, as 
indicated by higher kurtoses. Thus, in everyday life, 
participants experience more extreme head-tilts in 
the roll dimension than what a normal distribution 
is able to capture. Assuming that the underlying 
head-in-space prior is based on lifelong experiences 
of  how the head is typically oriented in space, and 
further assuming that the activities used in the current 
study are a realistic representation of  everyday life 
activities, it can be concluded that the underlying 
prior deviates considerably from normality. Thus, 
frequently observed individual differences on SVV 
tasks could be explained by different underlying 
priors, and, therefore, different naturalistic head 
orientation distributions. Future research should 
explore this possibility more extensively. 

In the current study, we have challenged the 
assumption that the head-in-space prior is of  
Gaussian nature. Apart from the head-in-space 
prior, the original model (Clemens et al., 2011) also 
assumed the sensory information from the various 
sources (otoliths, neck, body somatosensors) to be 
corrupted by Gaussian noise. Therefore, the question 
can be asked whether the sensory information 
from those sources is also non-Gaussian, contrary 
to what is assumed in the multisensory integration 
model. Future research could look into the specific 
statistical characteristics of  the different sensory 
signals. It should be noted though that we would 
not expect the multisensory integration model to 
predict significantly different results, even if  the 

sensory signals are found to be of  non-Gaussian 
nature, too. This is because the sensory signals are 
assumed to be unbiased and, thus, to be centered 
on the true head/body tilt, while the systematic 
errors that the model predicts are solely elicited by 
the prior. The specific shape of  the distributions of  
the sensory signals would therefore not have a large 
impact on the multisensory integration process. 
An alternative multisensory integration model that 
employs unbiased, albeit non-Gaussian sensory 
signals, would likely predict very similar systematic 
errors in the head-in-space estimate compared to the 
original model.

We assumed the line-relative-to-eye information 
(i.e. the sensory information of  how the line falls 
onto the retina) to be unbiased. However, Girshick, 
Landy and Simoncelli (2011) have shown that 
observers are biased towards perceiving cardinal (i.e. 
horizontal, vertical) relative to oblique orientations. 
They argue that these biases might occur due to a 
prior centered on the two cardinal orientations (i.e. 
0° and 90°). Thus, in addition to the head-in-space 
prior that is solely centered on upright, future work 
might include an additional “line-relative-to-eye 
prior” that is centered on 0° and 90° and could 
therefore account for the biases found by Girshick 
et al. (2011). In the present study, we chose to use 
an unbiased line-relative-to-eye representation so 
that we employ a multisensory integration model 
that only differs from previous studies in its head-
in-space prior, while keeping all other components 
of  the model the same. This made comparisons 
with previous findings (e.g. Clemens et al. (2011)) 
substantially easier.

Future projects should also consider the 
possibility of  applying the current approach to 
patient groups with vestibular disorders, potentially 
providing novel evidence about the underlying 
priors in such populations. Previous research has 
shown that patients with bilateral vestibular function 
loss tend to show a larger bias in the SVV task at 
large head-tilts (90°) compared to control subjects 
(Alberts et al., 2015). In line with the Bayesian 
optimal integration model (Clemens et al., 2011), 
this can theoretically be explained by the fact that 
the brain in those patient groups is not able to 
use vestibular information. Instead, contributions 
from other sensory signals regarding head-in-space 
orientation and the contribution from the prior 
will be weighted more heavily, resulting in larger 
systematic errors. Investigating how these patients 
orient their heads during naturalistic activities and 
what that indicates with regards to the underlying 
prior might, therefore, provide valuable evidence 
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regarding the underlying mechanisms taking place to 
achieve spatial orientation in patients with vestibular 
function loss.

Limitations

One of  the limitations of  the current study is the 
fact that the chosen naturalistic activities constrain 
the head movements of  the participants, in that it is 
advantageous to keep the head as stable as possible 
to maintain spatial orientation, for example during 
the running task. This leads to relatively small inter-
subject differences in both the head orientation 
distributions and, after integration of  those 
distributions in the model, SVV task performance 
simulations. In future research it could be considered 
to introduce activities that force participants to move 
their heads around more extensively. Even if  those 
activities would not perfectly represent the activities 
that the underlying prior is based on, they would 
allow for larger inter-subject differences, which, in 
turn, might be correlated to inter-subject differences 
on SVV task performance, providing evidence that 
everyday life head movements might influence lab-
based tasks of  verticality perception.

Conclusion

Here we were able to, for the first time, measure 
and quantify head orientations during naturalistic 
activities, providing novel evidence of  what the 
underlying head-in-space prior as part of  a Bayesian 
multisensory integration model might look like. 
In contrast to how the prior has been modelled in 
previous studies, we showed that head orientation 
distributions deviate from normality and are 
characterized by fatter tails, indicating that the 
underlying head-in-space prior might, too, be of  
non-Gaussian nature. T Location-Scale distributions 
provided the best fit to the data in the vast majority 
of  the subjects. However, after integrating those 
distributions as representations of  the prior in the 
model, simulations of  SVV task performance did 
not correspond to previous behavior on tasks of  
verticality perception regarding both the direction 
and magnitude of  the systematic errors. This was 
caused by the properties of  the t Location-Scale 
distribution (i.e. the fat tails) and the fact that the 
variances of  the sensory signals were not adjusted 
to account for those specific properties of  the 
prior. Future research should investigate this more 
extensively, for example by adjusting the motion 
tracked real-world activities to elicit more inter-
subject differences in head orientations. Those same 

subjects would subsequently participate in a task 
on verticality perception to investigate correlations 
between individual differences of  naturalistic head 
orientation distributions and lab-based tasks of  
perceived verticality.
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Appendix

Distribution type Parameter 1 Parameter 2 Parameter 3
Normal Distribution μ: mean σ: standard deviation -
Exponential Distribution μ: mean - -
Gamma Distribution a: shape parameter b: scale parameter -
Logistic Distribution μ: mean σ: scale parameter -

t Location-Scale 
Distribution

μ: location parameter σ: scale parameter ν: shape parameter

Uniform Distribution a: lower endpoint 
(minimum)

b: upper endpoint 
(maximum)

-

Extreme Value Distribution μ: location parameter σ: scale parameter -
Rayleigh Distribution b: scale parameter - -
Generalized Extreme Value 
Distribution

k: shape parameter σ: scale parameter μ: location parameter

Beta Distribution a: first shape 
parameter

b: second shape 
parameter

-

Nakagami Distribution μ: shape parameter ω: scale parameter -
Rician Distribution s: noncentrality 

parameter
σ: scale parameter -

Inverse Gaussian 
Distribution

μ: scale parameter λ: shape parameter -

Birnbaum-Saunders 
Distribution

 β: scale parameter  γ: shape parameter -

Generalized Pareto 
Distribution

 k: tail index parameter  σ: scale parameter  θ: threshold parameter

Loglogistic Distribution μ: mean of logarithmic 
values

σ: scale parameter of 
logarithmic values

-

Lognormal Distribution μ: mean of logarithmic 
values

σ: scale parameter of 
logarithmic values

-

Weibull Distribution a: scale parameter b: shape parameter -

Table 6. All fitted distributions and their respective parameters.
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We introduce a new framework for hyperrealistic reconstruction of  perceived naturalistic stimuli from brain 
recordings. To this end, we embrace the use of  generative adversarial networks (GANs) at the earliest step of  
our neural decoding pipeline by acquiring functional magnetic resonance imaging data as subjects perceived 
face images created by the generator network of  a GAN. Subsequently, we used a decoding approach to 
predict the latent state of  the GAN from brain data. Hence, latent representations for stimulus (re-)generation 
were obtained, leading to state-of-the-art image reconstructions.
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In recent years, the field of  neural decoding has 
been gaining more and more traction as advanced 
computational methods became increasingly 
available for application on neural data. This is a very 
welcome development in both neuroscience and 
neurotechnology since reading neural information 
will not only help understand and explain human 
brain function but will also find applications in brain 
computer interfaces and neuroprosthetics to help 
people with disabilities. 

Neural decoding can be conceptualized as the 
inverse problem where brain responses are mapped 
back to sensory stimuli via a latent space (Van 
Gerven, Seeliger, Güçlü, & Güçlütürk, 2019). Such 
a mapping can be idealized as a composite function 
of  linear and nonlinear transformations. The linear 
transformation models the mapping from brain 
responses to the latent space. The latent space 
should effectively capture the defining properties of  
the underlying neural representations. The nonlinear 
transformation models the mapping from the latent 
space to sensory stimuli.

The systematic correspondences between latent 
representations of  discriminative convolutional 
networks (convnets) and neural representations of  
sensory cortices are well established (Yamins et al., 
2014; Seyed-Mahdi, Khaligh-Razavi & Kriegeskorte, 
2014; Cadieu et al., 2014; Güçlü & Van Gerven, 
2015; Güçlü & Van Gerven, 2017; Güçlü, Thielen, 
Hanke, & Van Gerven, 2016). As such, exploiting 
these systematic correspondences in neural decoding 
of  visual experience has pushed the state-of-the-art  
forward (Van Gerven et al, 2019) . This includes linear 
reconstruction of  perceived handwritten characters 
(Schoenmakers, Barth, Heskes, & Van Gerven, 
2013), neural decoding of  perceived and imagined 
object categories (Horikawa & Kamitani, 2017), and 

reconstruction of  natural images (Seeliger, Güçlü, 
Ambrogioni, Güçlütürk & Van Gerven, 2018; Shen, 
Horikawa, Majima, & Kamitani, 2019) and faces 
(Güçlütürk et al., 2017; VanRullen & Reddy, 2019). 
Yet, there is still room for improvement since these 
state-of-the-art results still fall short of  providing 
photorealistic reconstructions.

At the same time, generative adversarial networks 
(GANs) have emerged as perhaps the most powerful 
generative models to date that can potentially bring 
neural decoding to the next level (Brock, Donahue, 
& Simonyan, 2018; Goodfellow et al., 2014; Karras, 
Aila, Laine, & Lehtinen, 2017; Karras, Laine, & Aila, 
2019). A GAN is a is a deep learning architecture for 
generative modelling, consisting of  two competing 
neural networks, as described by Goodfellow et 
al. (2014). In short, a generator network is pitted 
against a discriminator network that learns to 
distinguish reconstructed “fake” data samples from 
real data samples. In turn, the generator’s goal is to 
fool the discriminator by generating new and unique, 
real-looking data samples from randomly sampled 
low-dimensional latent features. Competition is the 
drive between both neural networks to improve 
their methods in tandem until the generated samples 
are indistinguishable from the real ones. However, 
since the true latent representations of  GANs are 
not readily available for pre-existing neural data 
(unlike those of  the aforementioned discriminative 
convnets), the adoption of  GANs in neural decoding 
has been relatively slow (see (Seeliger et al., 2018) 
for an earlier attempt with GANs and (VanRullen & 
Reddy, 2019) for a related attempt with variational 
autoencoders-GAN [VAE-GANs]).

In this study, we introduce a very powerful yet 
simple framework for HYperrealistic reconstruction 
of  PERception (HYPER), which elegantly 

Figure 1. Schematic illustration of the HYPER framework. Face images are generated from randomly 
sampled latent features z  Z by a face-generating GAN, as denoted by the dotted box. These faces 
are then presented as visual stimuli during brain scanning. Next, a linear decoding model learns the 
mapping from brain responses to the original latent representation, after which it predicts latent features 
for unseen brain responses. Ultimately, these predicted latent features are fed to the GAN for image 
reconstruction.
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integrates GANs in neural decoding by combining 
the following components (Fig. 1):

i	 GAN. We used a pretrained GAN, which 
allows for the generation of  meaningful data samples 
from randomly sampled latent vectors. This model 
is used both for generating the stimulus set and for 
the ultimate reconstruction of  perceived stimuli. In 
the current study, we used the progressive growing 
of  GANs (PGGAN) model (Karras et al., 2017), 
which generates photorealistic faces that resemble 
celebrities.

ii	 Functional magnetic resonance imaging 
(fMRI). We made use of  neural data with a known 
latent representation, obtained by presenting the 
stimulus set produced using the above-mentioned 
generative model, and recording the brain responses 
of  participants to these stimuli. In the current study, 
we collected fMRI recordings in response to the 
images produced using the PGGAN. We created a 
dataset consisting of  a separate training and test set.

iii	 Decoding model. We used a decoding 
model, mapping the neural data to the latent space 
of  the generative model. Using this model, we then 
obtained latent vectors for the neural responses 
corresponding to the stimulus images in the test set. 
Feeding these latent vectors back into the generative 
model resulted in the hyperrealistic reconstructions 
of  perception.

Method

Training on synthetic images with 
known latent features

State-of-the-art face reconstruction techniques use 
deep neural networks to encode vectors of  latent 
features for the images presented during the fMRI 
experiment (Güçlütürk et al., 2017; VanRullen & 
Reddy, 2019). These feature vectors have been 
shown to have a linear relation with measured 
brain responses. However, this approach entails 
information loss since the target images need to be 
reconstructed from the linear prediction using an 
approximate inversion network such as a variational 
decoder, leading to a severe bottleneck to the 
maximum possible reconstruction quality.

In this paper, we avoid this sub-optimality by 
presenting photorealistic synthetic images generated 
using PGGAN to the participants. This allows us 
to store the ground-truth latents corresponding 
to the generated images which can be perfectly 
reconstructed using the generative model after 
predicting them from brain data.

Neural Decoding

Progressive GAN. To achieve the generation 
of  high-resolution images, a training procedure 
was developed that grows the generator and 
discriminator network in a progressive fashion 
(Karras et al., 2017). More specifically, training on 
face images from the CelebA-HQ dataset started at 
a low resolution of  4×4 pixels and layers were added 
incrementally. To avoid shocks to the well-trained 
lower-resolution layers, these additional layers were 
“faded in” smoothly by linear interpolation of  the 
weights from 0 to 1. In the end, a mapping was 
established from 512-dimensional latent features to 
hyper-realistic face images with a final resolution of  
1024×1024 pixels. At this point, both the generator 
and discriminator network consisted of  nine phases 
and 23.1M trainable parameters.

Predicting latent vectors from brain data. We 
adapted the deep generative network of  PGGAN by 
adding a dense layer at the beginning to transform 
brain data into latent vectors. This layer was trained 
by minimizing the Euclidean distance between true 
and predicted latent representations (batchsize = 
30, lr = 0.00001, Adam optimization) with weight 
decay (alpha = 0.01) to reduce complexity and 
multicollinearity of  the model. The remainder of  the 
generative network was kept fixed.

Datasets

Visual Stimuli. High-resolution face images 
(1024×1024 pixels) were generated by the generator 
network of  a Progressive GAN (PGGAN) model 
(Karras et al., 2017) from randomly sampled latent 
vectors. Each generated face image was cropped 
and resized to 224×224 pixels. In total, 1050 unique 
faces were presented once for the training set, and 
36 faces were repeated 14 times for the test set of  
which the average brain response was taken. This 
ensured that the training set covered a large stimulus 
space to fit a general face model, whereas the voxel 
responses from the test set contained less noise and 
higher statistical power.

Brain responses. fMRI data was collected, 
consisting of  blood oxygen level dependent (BOLD) 
responses that corresponded to the perceived face 
stimuli. The BOLD responses (TR = 1.5 s, voxel 
size = 2×2×2 mm3, whole brain coverage) of  two 
healthy subjects were measured (S1: 30-year old 
male; S2: 32-year old male) while they were fixating 
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on a target (0.6×0.6 degrees) (Thaler, Schütz, 
Goodale, & Gegenfurtner, 2013) superimposed on 
the stimuli (15×15 degrees) to minimize involuntary 
eye movements.

During preprocessing, the obtained brain volumes 
were realigned to the first functional scan and the 
mean functional scan, respectively, after which the 
volumes were normalized to MNI space. A general 
linear model was fit to deconvolve task-related 
neural activation with the canonical hemodynamic 
response function (HRF). Next, for each voxel, we 
computed its t-statistic and converted these t-scores 
to z-statistics to obtain a brain map in terms of  z 
per perceived stimulus. Ultimately, most-active 4096 
voxels were selected from the training set to define 
a voxel mask (Fig. 2). Most of  these mask voxels 
are located in the downstream brain regions. Voxel 
responses from the test set are not used to create the 
voxel mask to avoid double-dipping.

The experiment was approved by the local 
ethics committee (CMO Regio Arnhem-Nijmegen). 
Subjects provided written informed consent in 
accordance with the Declaration of  Helsinki. The 
fMRI dataset for both subjects and used models are 
openly accessible.

Evaluation

Model performance is assessed in terms of  
three metrics: latent similarity, feature similarity, 
and structural similarity. First, latent similarity is 
the Euclidean similarity between predicted and 
true latent vectors. Second, feature similarity is the 
Euclidean similarity between feature extraction layer 
outputs (n=2048) of  the ResNet50 model, pretrained 
for face recognition, which we feed stimuli and 
reconstructions. Lastly, structural similarity is used 
to measure the spatial interdependence between 
pixels of  stimuli and reconstructions (Wang, Bovik, 
Sheikh, & Simoncelli, 2004).

Next, based on the assumption that there exists 
a hyperplane in latent space for binary semantic 
attributes (e.g. male vs. female), Shen, Gu, Tang and 
Zhou (2019) have identified the decision boundaries 
for five semantic face attributes in PGGAN’s latent 
space: gender, age, the presence of  eyeglasses, smile, 
and pose, by training five independent linear support 
vector machines (SVMs). We used these decision 
boundaries to compute feature scores per image, by 
taking the dot product between latent representation 
and decision boundary, resulting in a scalar. In this 
way, model performance with regard to specific 
visual features could be captured along a continuous 
spectrum and could be compared across images.

Figure 2. Voxel mask: 4096 most active voxels based on highest z-statistics within the averaged z-map 
from the training set responses, resulting in a distributed network of activity.
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Implementation Details

fMRI preprocessing is implemented in SPM12 
after which first-order analysis is carried out in 
Python’s Nipy environment. NVIDIA’s PGGAN 
TensorFlow source code is used in combination 
with CUDA V10.0.130, CuDNN, and Anaconda3 
(Python 3.6). Keras’ pretrained implementation of  
VGGFace (ResNet50 model) is used to evaluate 
similarities between feature maps of  the perceived 
and reconstructed images. Linear decoding is 
implemented using ScikitLearn.

Results

Linear decoding of  fMRI recordings using 
PGGAN’s latent space has led to unprecedented 
stimuli reconstructions. Figure 3 presents all the 
image reconstructions together with the originally 
perceived stimuli.

To keep the presentation concise, the first half  
of  the images (1-18) are reconstructed from brain 
activations from Subject 1 and the second half  (19-
36) from Subject 2. The interpolations visualize 
the distance between predicted and true latent 
representations that underlie the (re)generated faces. 
It demonstrates which features are being retained 
or change. The bar graphs next to the perceived 
and reconstructed images show the scores of  each 
image in terms of  five semantic face attributes in 
PGGAN’s latent space: gender, age, the presence of  
eyeglasses, smile, and pose. Looking at the similarities 
and differences in the graphs for perceived and 
reconstructed images is a way to evaluate how well 
each semantic attribute is captured by our model. For 
most reconstructions, the two graphs match in terms 
of  directionality. A few cases, however, demonstrate 
that there is still room for improvement (e.g. number 
31, 34, and 35). Correlating the feature scores for 
stimuli and reconstructions resulted in significant 
(p < 0.05; Student’s t-test) results for gender, age, 
eyeglasses, and pose, but not for smile (Fig. 4). We 
would like to point out that using feature scores 
quantifies model performance as continuous rather 
than binary, explaining the significant correlation for 
eyeglasses despite lack of  reconstruction in number 
1 and 8.

Next, we compared the performance of  the 
HYPER framework to the state-of-the-art VAE-
GAN approach (VanRullen & Reddy, 2019) and the 
traditional eigenface approach (Cowen, Chun, & 
Kuhl, 2014) which maps the brain recordings onto 
different latent spaces. For a fair comparison, we 

used the same voxel mask to evaluate all the methods 
presented in this study without any optimization 
to a particular decoding approach. The VAE-
GAN approach predicts 1024-dimensional latent 
representations which are fed to the VAE’s decoder 
network for stimulus reconstruction (128×128 
pixels). The eigenface approach predicts the first 512 
principal components (or ’ eigenfaces’) after which 
stimulus reconstruction (64×64 pixels) is achieved 
by applying an inverse principal component analysis 
(PCA) transform. All quantitative and qualitative 
comparisons showed that the HYPER framework 
outperformed the baselines and had significantly 
above-chance latent and feature reconstruction 
performance (p < 0.001, permutation test), indicating 
the probability that a random latent vector or image 
would be more similar to the original stimulus (Table 
1).

We also present arbitrarily chosen but 
representative reconstruction examples from 
the VAE-GAN and eigenface approach, again 
demonstrating that the HYPER framework resulted 
in markedly better reconstructions (Fig. 5).

Figure 3. Results of model 0 that is trained on 
only the latent vectors. Here, we display the 
testing set samples 1-18 for Subject 1 and 19-36 
for Subject 2. Image reconstructions (left) versus 
perceived images (right). Interpolations visualize 
similarity regarding the underlying latent 
representations. Next to each reconstruction and 
perceived stimulus, a rotated bar graph displays 
the corresponding feature scores for gender (g), 
age (a), eyeglasses (e), pose (p), and smile (s).
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Discussion

We have decoded brain recordings during 
perception of  face photographs using the presented 
HYPER method, leading to state-of-the-art stimulus 
reconstructions. Consequently, this work serves as a 
proof-of-concept of  using generative modelling to 
approximate neural manifolds of  real-world data, 
possibly bringing our understanding of  human brain 
function forward in the process. The success of  this 
approach is due to the astonishing performance of  
PGGAN. At the same time, PGGAN puts (potential) 
bottlenecks on what can be reconstructed: the 
generator network had to regenerate face images 
that it had already generated before, guaranteeing 
its competence. The next step is verifying whether 
a linear decoding model trained on brain responses 
with regard to generated face images generalizes 

Figure 4. Reconstruction performance on five features. The x-axis denotes the true scores with 
respect to the perceived stimuli whereas the y-axis represents the predicted scores with respect to the 
reconstructions. Additionally, the Pearson correlation coefficient (r) and corresponding p-value (p) are 
displayed.

Table 1. Model performance of the HYPER framework compared to the state-of-the-art VAE-GAN 
(VanRullen & Reddy, 2019) and the eigenface approach (Cowen et al., 2014) is assessed in terms of the 
feature similarity (column 2) and structural similarity (column 3) between stimuli and reconstructions 
(mean ± std error). The first column displays latent similarity which is only applicable to the HYPER 
method because the true and predicted latent vectors are known. Because of resolution differences, all 
images were resized to 224 × 224 pixels and smoothed with a Gaussian filter (kernel size = 3) for a fair 
comparison. Also, the backgrounds of the images were removed. In addition, statistical significance of 
the HYPER method was evaluated against randomly generated latent vectors and their reconstructions.

to brain responses to real faces. The true latent 
representations of  real images are not accessible, but 
would no longer be required if  the decoding model 
has learned to accurately predict them from the 
artificial data samples. This would result in a great 
leap forward within the field of  neural coding.

Next, the HYPER framework resulted in 
considerably better reconstructions than the two 
benchmark approaches. It is important to note that 
the reconstructions by the VAE-GAN approach 
appear to be of  lower quality than those presented 
in the original study. A likely explanation for this 
result could be that the number of  training images 
in our dataset was not sufficient to effectively train 
their model (8000 vs 1050) and the different voxel 
selection procedure.

Importantly, image reconstructions by HYPER 
appear to contain biases. That is, the model predicts
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primarily latent representations corresponding to 
young, western-looking faces without eyeglasses 
because predictions tend to follow the image 
statistics of  the (celebrity) training set. PGGAN’s 
generator network is also known to suffer from this 
problem – referred to as “feature entanglement” – 
where manipulating one particular feature in latent 
space affects other features as well (Shen et al., 
2018). For example, editing a latent vector to make 
the generated face wear eyeglasses simultaneously 
makes the face look older because of  such biases 
in the training data. Feature entanglement obstructs 
the generator to map unfamiliar latent elements to 
their respective visual features. It is easy to foresee 
the complications for reconstructing images of  real 
faces.

A modified version of  PGGAN, called 
StyleGAN (Karras et al., 2019;  Karras et al., 2020), 
is designed to overcome the feature entanglement 
problem. StyleGAN maps the entangled latent 
vector to an additional intermediate latent space, 
thereby reducing feature entanglement, which is 
then integrated into the generator network using 
adaptive instance normalization. This results 
in superior control over the semantic attributes 
in the reconstructed images and possibly the 
generator’s competence to reconstruct unfamiliar 
features. Compared to PGGAN, the generated 
face photographs by StyleGAN have improved 

considerably in quality and variation, of  which the 
latter is likely to alleviate current biases. Replacing 
the PGGAN with StyleGAN would therefore be 
a logical next step for studies concerned with the 
neural decoding of  faces.

Furthermore, neural decoding can reveal what 
information is (not) present in the observed brain 
activations. That is, even though participants are 
presented with identical stimuli, sensory information 
is likely to be integrated with subjective expectations 
and beliefs, causing subjective variations in 
reconstructions. This may include enhanced, 
diminished, missing, imagined, or transformed 
information. Eventually, the HYPER framework 
might allow us to bridge the gap between objective 
and subjective experience. However, care must be 
taken as “mind reading” technologies also involve 
serious ethical concerns regarding mental privacy. 
Although current approaches to neural decoding, 
such as the one presented in this manuscript, 
would not allow for involuntary access to thoughts 
of  a person, future developments may allow for 
extraction of  information from the brain more 
easily, as the field is rapidly developing. As with all 
scientific and technological developments, ethical 
principles and guidelines as well as data protection 
regulations should be followed strictly to ensure 
the safety of  (the data of) potential users of  these 
technologies.

Figure 5. Qualitative results of our approach compared to VanRullen and Reddy (2019) (the VAE-
GAN approach) and the eigenface approach in reconstructing image 26, 28, and 36 (arbitrarily chosen). 
The model columns display the best possible results. For VanRullen and Reddy (2019), this displays 
reconstructions directly decoded from the 1024-dimensional latent representation of this method. For the 
eigenfaces approach, this shows reconstructions directly obtained from the 512 principal components.
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Finally, besides the large scientific potential, 
this research could also have societal impacts 
when enabling various applications in the field of  
neurotechnology (e.g. brain computer interfacing 
and neuroprosthetics) to help people with disabilities. 
While the current work focuses on decoding of  
sensory perception, extensions of  our framework 
to imagery could make it a preferred means for 
communication for locked-in patients.

Conclusion

We have presented a framework for HYperrealistic 
reconstruction of  PERception (HYPER) by neural 
decoding of  brain responses via the GAN latent 
space, leading to unparalleled state-of-the-art 
stimulus reconstructions. Considering the speed of  
progress in the field of  generative modelling, we 
believe that the HYPER framework that we have 
introduced in this study will likely result in even 
more impressive reconstructions of  perception and 
possibly even imagery in the near future, ultimately 
allowing for better understanding the mechanisms 
of  human brain function.
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Brain oscillations are known to reflect fluctuations of  low and high excitability states in neuronal populations. 
These oscillations can adjust to the surrounding environment such that high excitability states co-occur with 
relevant sensory information. Such adjustment is a promising mechanism for filtering sensory input and could 
occur through neural entrainment. Driven by an external rhythmic input, intrinsic oscillations might phase-
align with (i.e., entrain to) this input, resulting in the optimal processing of  stimuli that are in phase with the 
rhythm. Oscillatory adjustment could also occur through covert active sensing which entails that the motor 
cortex drives the signals in the sensory cortex. Thus, covert active sensing and entrainment could explain 
a novel behavioural effect found in prior work, namely that subjects respond faster in a discrimination task 
when the external rhythm is faster. 13 subjects performed a visual discrimination task while brain signals were 
recorded using MEG. Targets were cued by a rhythmic stream of  visual stimuli at different frequencies and 
appeared after one, two, or three cycles, or not at all. In summary, we found support for the aforementioned 
behavioural effect (i.e., subjects responding faster when cued by faster external rhythms) and covert active 
sensing, but not for entrainment. We further discuss how the findings of  the current study could inspire the 
development of  artificial cognitive agents to tackle the problem of  determining which information from the 
environment is relevant. Importantly, this includes a proposal for how the fields of  neuroscience and AI can 
actively interact with each other, such that both fields benefit.

Keywords: oscillations, entrainment, theta, delta, covert active sensing, artificial cognitive agents, problem of  relevance, frame problem
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Neural oscillations

Neural oscillations are rhythmic fluctuations 
in neural activity that can be measured by, among 
other methods, non-invasive scalp recordings 
such as electroencephalography (EEG) and 
magnetoencephalography (MEG).

Oscillations as a filter mechanism. Bishop 
(1932) suggested that brain oscillations reflect 
fluctuations of  low and high excitability states in 
neuronal populations. Intracellular peaks over time 
correspond to high excitability, meaning a state in 
which a neuron needs less stimulation to generate 
an action potential. In contrast, intracellular troughs 
correspond to low excitability states. This proposal 
by Bishop has been confirmed by multiple studies 
(see Schroeder and Lakatos (2009) for a recent 
discussion).

This mechanism as proposed by Bishop could 
play a key role in the sampling of  relevant information 
and controlling the flow of  information through the 
brain. If  phases of  high excitability coincide with 
relevant input, this input receives optimal processing. 
If  instead the input coincides with a state of  low 
excitability, the amplitude of  the generated neural 
activity will be smaller (see Figure 1).

Entrainment. One key question is whether 

the brain can use rhythmic fluctuation as an active 
mechanism for sensory sampling (i.e., if  the 
timing of  relevant input is predictable, rhythmic 
fluctuations can adjust to coincide with this input). 
There is evidence that intrinsic brain rhythms can 
be synchronised to external rhythmic stimuli in our 
environment via neural entrainment (see Figure 
1;  Thut, Schyns, and Gross (2011); Zoefel, ten 
Oever, and Sack (2018) for reviews). Here, neural 
entrainment entails that the intrinsic oscillators 
synchronise with an external rhythm. The advantage 
of  such entrainment is that by predicting the timing 
of  a relevant stimulus, the peaks of  excitability can be 
adjusted such that they coincide with the predicted 
timing. Then, the stimulus undergoes optimal 
processing if  it indeed occurs at the predicted timing. 
Without such a prediction, the timing of  the stimulus 
relative to peaks of  excitability is random and thus 
would not necessarily be processed optimally.

However, the behavioural correlates and 
the underlying neural mechanisms of  neural 
entrainment remain unclear (Haegens & Golumbic, 
2018; Obleser & Kayser, 2019). One of  the issues 
is that it is difficult to establish whether neural 
findings are part of  a proactive mechanism, or 
whether they simply echo the rhythmic environment 
(Nobre & van Ede, 2018). During a rhythmic input, 
oscillations could reflect a build-up of  rhythmic 
evoked responses rather than actual entrainment. A 

Figure 1. Schematic overview of rhythmic facilitation. The green input is facilitated due to the timing 
relative to the oscillation, as opposed to the red input which is impaired. Here, facilitation entails that 
the input is processed preferentially or more efficiently. Top: intrinsic, spontaneous oscillation. Bottom: 
oscillation entrained to an external rhythm. Figure adapted from Haegens and Golumbic (2018).
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stronger case for neural entrainment could be made 
when one can demonstrate the effects of  rhythmic 
input in the brain signals after the rhythm itself  is no 
longer present (Haegens & Golumbic, 2018). Zoefel 
et al. (2018) argued that the oscillations could be 
more than a repetition of  evoked responses. They 
argued that research should disentangle endogenous 
oscillatory activity, evoked responses, and predictive 
processes. In the current study, we included time 
windows in our analyses that did not contain evoked 
responses for this reason.

Importantly, we can only speak of  true 
entrainment when the following three requirements 
are met (Haegens, 2020; Haegens & Golumbic, 
2018):

1.	 An endogenous neural oscillator is present 
apart from rhythmic stimulation.

2.	 The neural oscillator phase-aligns with the 
external rhythm. This implies that the frequency of  
the oscillator exactly matches that of  the external 
rhythm. Crucially, this should only work for a certain 
range of  frequencies rather than for any frequency. 
Since intrinsic oscillations have a limited range, these 
oscillations cannot entrain to a rhythm that is outside 
of  this range.

3.	 This phase-alignment continues for some 
number of  cycles beyond the presentation of  the 
external rhythm.

Active sensing. Active sensing is the process 
of  actively gathering more information about 
what is being sensed, rather than passively waiting 
for input to arrive. Examples given by Schroeder, 
Wilson, Radman, Scharfman and Lakatos (2010) 
are somatosensory exploration, natural viewing, and 
sniffing. When identifying an object using tactile 
information, we actively use our fingers to feel 
different parts of  the object until we have identified 
the object. When viewing a scene, we use saccades 
to move our fovea to multiple parts of  the scene 
to create a full picture, rather than passively viewing 
the centre and processing the relatively scarce 
information. Finally, when detecting an odour, we, 
and other animals, start sniffing in order to gather 
more information about the odour to identify it. 
Interestingly, high frequency neural oscillations 
in the olfactory system are heavily involved in the 
sampling of  olfactory input (Pont, 1987). Sniffing 
could play a major role in actively coordinating the 
timing between the inflow of  input and the phase of  
the neural oscillations.

The examples given above all involve actual 
movement. These movements can have an impact 
on the ongoing neural oscillations, for example by 

resetting the phase after a saccade (Leszczynski 
& Schroeder, 2019). This makes the oscillations 
time-locked to the movement. If  then the input is 
time-locked to this same movement as well, as is 
the case for saccadic movements, the input arrives 
consistently at a certain phase of  the oscillations. 
Possibly the brain employs the same neural 
mechanisms for perceptual selection without overt 
movements taking place, which we investigated in 
the current study. This covert active sensing entails 
that the motor system coordinates the oscillations 
in the sensory cortex by the use of  synchronisation. 
This would be supported by finding an increase in 
synchronisation between the motor and sensory 
cortex, without any actual movement taking place.

In fact, multiple studies have found support for 
this sensory-motor coupling in the auditory domain. 
For example, Alho et al. (2014) found a correlation 
between performance in a phonetic categorisation 
task and neural synchronisation between the 
auditory and premotor cortex. Another study 
used causal connectivity analysis and found that, 
during continuous speech perception, the motor 
cortex modulates oscillations in the auditory cortex 
in the low-frequency range (Park, Ince, Schyns, 
Thut, & Gross, 2015). Assaneo, Florencia and 
Poeppel (2018) even showed that, while listening 
to speech, there is only an auditory-motor coupling 
when the rate of  the speech falls within a certain 
range. Moreover, this coupling is enhanced at the 
frequency that corresponds to the mean syllable 
rate in natural speech (about 4.5 Hz). By the use 
of  neural modelling, they also suggested that the 
possible underlying neural architecture, namely an 
intrinsic oscillator, could give rise to such coupling.

In this project we investigated sensory-motor 
coupling in the visual domain. To our knowledge, this 
mechanism has not yet been thoroughly explored in 
this sensory domain.

As explained above, this potential mechanism 
could explain how we sample the input from our 
environment. This mechanism is interesting from 
the perspective of  AI, as determining which input is 
relevant (and thus should be processed after filtering) 
is one of  the open computational problems. The 
computational problems relevant to the current 
study are described next.

Computational problems of relevance 
in AI

The field of  AI is already able to achieve 
impressive results in various domains. For example, 
the facial recognition system DeepFace is able to 
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recognise faces at roughly the same performance 
level as humans (Taigman, Yang, Ranzato, & Wolf, 
2014). In addition, the computer system AlphaGo 
defeated the human European champion in Go 
(Silver et al., 2016). Moreover, an increasing amount 
of  research is devoted to improving the detection of  
cancer by the use of  artificial neural networks (e.g., 
Chon, Balachandar, & Lu, 2017). Although these and 
other examples of  successful AI applications can be 
useful, they require many resources (i.e., time and 
energy), particularly when training the models. This 
is unlike natural intelligence, which can learn game 
rules and possible strategies after few presentations 
and without the need for much energy. Moreover, the 
scope of  the solvable problems using the methods 
of  conventional AI is limited, especially as compared 
to the achievements of  natural intelligence. Some 
of  the problems that are outside of  this scope of  
solvable problems, are actually solved by natural 
intelligence. For example, humans are able to adjust 
their movements after an injury. If  an AI system 
with a robotic arm would play a game of  Go against 
a human opponent, but both players slightly injure 
their arm due to an accident shortly before the 
game, the AI system would have trouble adjusting to 
the new situation (such as a motor in the arm having 
less power than before). Instead, the human player 
would use their other arm or adjust the movements 
of  their injured arm such that it is not painful, while 
still reaching the goal of  placing a piece on the board 
at the right location.

Importantly, one of  the main differences between 
conventional AI and natural intelligence is the use 
of  the time dimension. Conventional AI such as 
deep neural networks abstract away from natural 
neural networks, to the extent that the dimension 
of  time almost completely disappears. As discussed 
in the section on neural oscillations, the timing of  
input in combination with oscillations could be of  
great importance in determining which input is 
relevant. This specific problem of  determining what 
is relevant is actually an unsolved computational 
problem in AI, as explained below.

The frame problem. In Cognitive Science and 
AI, the problem of  determining what is relevant 
is also known as the frame problem. In the original 
interpretation, this problem entails that one has 
to make a computational system determine what 
information in the world does not change after a 
certain event or action (McCarthy & Hayes, 1981). 
This is also termed the inertia problem (McDermott, 
1987). For example, if  someone takes a cookie out 
of  a jar, they do not only know that the number of  

cookies in the jar decreased by one, but also that 
this action did not change the stain that is on their 
trousers, the city that they are currently in, and many 
other details that were present in the world before 
taking the cookie out of  the jar.

In a broader sense, the frame problem is about 
“how the relevant pieces of  knowledge are found 
and how they influence one’s understanding of  the 
situation” (Haselager, 1997, p.83). Here, knowledge 
can consist of  both current perception and already 
existing knowledge. Thus, the frame problem can be 
simplified to determining what is relevant, given the vast 
amount of  information in the world. This is exactly 
what natural intelligence is exposed to as well, given 
the continuous stream of  input from various sensory 
modalities as described earlier.

The problem of  abstraction. Another way 
of  looking at the problem of  what is relevant, 
is looking at how one can abstract away from the 
world and all of  its information to the problem 
at hand. Computational cognitive scientists and 
computer scientists often describe a computational 
problem while assuming that an abstraction from 
the real world to the computational problem has 
already taken place. These computational problems 
then already exclude any input that is irrelevant to 
the problem. Kwisthout (2012) argued that this 
abstraction cannot just be assumed to take place 
correctly and without any computational overload. 
Additionally, Kwisthout presented a computational 
framework that pertains to abstracting away from all 
of  the available information in the world to a formal 
representation of  the current problem to be solved. 
Abstracting away means taking only those pieces of  
information that are relevant and leaving those that 
are irrelevant. Kwisthout then showed that finding 
a subset of  relevant pieces of  information given 
all possible subsets is in fact intractable, meaning 
that it is very unlikely that either natural or artificial 
intelligence is or will be able to solve this abstraction 
problem. Nonetheless, humans and other animals 
seem to somehow solve this problem with ease, 
as they perform everyday tasks in a world full of  
incoming stimuli and knowledge.

In order to create an artificial cognitive agent 
that can dynamically and appropriately react to its 
environment, the problem of  abstraction should 
be solved, possibly by the use of  a heuristic (i.e., 
strategies that simplify the problem by creating 
short-cuts). By using a heuristic, the mechanism 
may not always result in the correct answer, but in 
practice the results are sufficient. Since the proof  
by Kwisthout that showed intractability only applies 
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to an exact solution, there is reason to believe that 
the use of  a heuristic, rather than always finding 
exact solutions, could still be tractable. Interestingly, 
Dennett (2006) noted that human beings are not 
perfect in determining what is relevant. They make 
mistakes, but in practice it works well enough. Thus, 
this is a clear indication that these problems are solved 
by natural intelligence by the use of  heuristics and 
that AI could do that as well. A possible approach 
that could lead to a solution in AI would be taking 
inspiration from how the natural brain solves this 
problem, possibly sufficiently rather than exactly.

The problem of  perceptual relevance. 
In this project we focused on a small aspect 
of  the aforementioned problems: the problem 
of  determining which stimuli in the current 
environment are relevant and amplifying these 
stimuli when processing the information. Here we 
term this problem the problem of  perceptual relevance. 
This thus includes the information that is perceived 
while performing a certain task, but not any already 
existing knowledge. Note that pre-existing knowledge 
may still be involved in determining which perceived 
stimulus is relevant, but the question in the problem 
of  perceptual relevance only pertains to perceived 
stimuli.

Linking findings in natural intelligence and 
AI to each other. The fact that humans do not 
seem to have any trouble with establishing what is 
relevant indicates that there must be a way to address 
the problem. Perhaps the strategy or mechanism as 
used by humans could inspire possible mechanisms 
to be used by an artificial cognitive agent. That is 
one of  the reasons why the field of  neuroscience is 
important to AI.

We can also learn about natural intelligence by 
researching AI. If  we find a way in which AI could 
solve the frame problem, then possibly this holds 
for natural intelligence as well. However, as Dennett 
(2006) noted, many proposals to solve the frame 
problem easily become biologically implausible. 
This is an issue when one tries to understand natural 
cognition by researching AI. Here we tried to avoid 
this pitfall by studying literature in the field of  
neuroscience, as well as conducting an experiment 
with human subjects.

The notions of  active sensing and entrainment, 
as described in the section on neural oscillations, 
are potential solutions that can be studied in natural 
intelligence. These mechanisms cannot solve the 
problem of  perceptual relevance fully, in either 
natural or artificial intelligence, but it is possibly 

a solution to at least part of  the problem. We 
believe that natural intelligence solves the problem 
of  perceptual relevance by means of  multiple 
mechanisms that are integrated together, of  which 
sensory-motor coupling could be one.

Research questions and hypotheses

In this project we investigated entrainment and 
the role of  active sensing in the human brain. As part 
of  investigating active sensing and entrainment, we 
aimed to answer the following research questions:

•	 Do brain oscillations in the motor and visual 
system adapt to different visual external rhythmic 
streams?

•	 Does the motor system coordinate active 
sensing through oscillatory inter-regional phase 
coupling with the visual system?

•	 If  so, does this coupling correlate with 
performance?

The motivation for this study stems from a 
series of  psychophysics experiments showing 
that subjects were faster when task frequency 
increased (manuscript in preparation). Here, the task 
frequency was the frequency of  the external rhythm 
that was used to cue participants. In these series of  
experiments, participants performed an auditory 
task where they were rhythmically cued regarding 
the timing of  a stimulus probe. Reaction time (RT) 
decreased when task frequency increased, which was 
a consistent finding across all experiments. Active 
sensing could explain this finding. Namely, if  the 
frequency of  the external rhythm increases, then 
active sensing increases the functional connectivity 
between the motor cortex and visual cortex. 
This speeds up interregional communication and 
increases the sampling rate to adjust to higher 
frequencies, given that the oscillations are entrained. 
A higher sampling rate implies that input could be 
sampled earlier than for a lower sampling rate. If  
stimuli are sampled earlier in time, a reaction can 
also take place earlier, giving a lower RT for higher 
task frequency. These unpublished results are in line 
with the literature about auditory-motor coupling 
discussed in the section on neural oscillations.

Based on these findings, we expected to find 
such a relationship between RT and frequency of  
the rhythmic cue: RT decreases with increasing 
task frequency. As active sensing is our underlying 
hypothesis that could explain this finding, we also 
expected an increase in synchronisation in both the 
motor cortex and the visual cortex when performing 
a task that includes a rhythmic cue. More importantly, 
we expected this synchronisation to somehow differ 
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between different task frequencies. This difference 
in synchronisation could manifest itself  in two ways: 
frequency-specific or frequency non-specific (see 
Figure 2). In the former case, synchronisation peaks 
shift to higher neural frequencies given a higher 
task frequency. In the latter case, synchronisation 
increases at a certain neural frequency given a 
higher task frequency. Alternatively, synchronisation 
could increase when being rhythmically cued, but 
without the task frequency having an effect on the 
magnitude or location of  the peak in the frequency 
domain. Here, we quantified neural synchronisation 
as inter-trial coherence (ITC) or power. We expected 
to at least see a shift in peak given a lower or higher 
task frequency during the presentation of  a rhythmic 
cue. This would be a consequence of  having regular 
evoked responses. Our main window of  interest 
was that following the external rhythm. Within this 
window, we expected either of  the two possibilities 
or possibly a combination, meaning that the peak 
both shifts and increases in amplitude. Furthermore, 
we expected our findings to be within the delta-to-
theta range (1-7 Hz).

Other than the neural effects within the motor 
and visual cortex, we also investigated the functional 
connectivity between the two regions to answer our 
second research question. This is more indicative 
of  active sensing taking place, as we expected a 
high functional connectivity in anticipation of  a 
task-related stimulus. Here we hypothesised that 
beta oscillations establish the connection between 
two sources (Spitzer & Haegens, 2017), and thus 
we expected to see the effect in the beta frequency 
range (14-40 Hz). 

Both a higher functional connectivity and an 
increase in synchrony within a brain region would 

be beneficial for performing the task. We therefore 
further expected to see a positive correlation between 
the functional connectivity and performance, and 
between synchrony measures within regions and 
performance.

Effects of the corona regulations

From Monday, March 16th onward, all data 
collection with participants was set on hold at the 
Donders Centre for Cognitive Neuroimaging. At 
that point in time we had collected MEG and MRI 
data of  only eight participants. Before we had started 
this data collection, we also collected pilot data of  
another five participants that were not supposed 
to be part of  the final analysis. We had initially 
decided to exclude these because of  a slight change 
in paradigm. Namely, the used baseline period (see 
the section on experimental design) was lengthened 
from 1 to 2.5 s. Given the unusual circumstances, we 
have decided to include those five pilot participants 
in our analysis in order to have a more substantial 
dataset for the purpose of  this thesis. Furthermore, 
we reported inconclusive results and additionally 
mentioned some of  the trends that seem to be 
present based on visual inspection, rather than 
statistical significance.

Methods

Participants

Thirteen participants were recruited through 
the SONA subject database of  Radboud University 
(age mean = 26; age SD = 4.40; 9 female, 4 male). 
Five of  those participants performed the task with 

Figure 2. Schematic visualisation of how an increase in synchronisation due to increasing task frequency 
could manifest itself in the brain signals. Here, f1 is the lowest task frequency and f3 the highest. Left: 
frequency-specific; the peak height of the synchrony measure stays the same, but the peak shifts to a 
higher neural frequency. Right: frequency non-specific; the neural frequency at which synchrony is high 
does not shift, but the amount of synchronicity increases for higher task frequencies.
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a baseline period of  1 s, while the remaining eight 
had a baseline period of  2.5 s. All participants were 
either right-handed or ambidextrous, and reported 
normal or corrected-to-normal vision and no 
neurological or health problems. At the start of  the 
session, participants signed a consent form. They 
were rewarded monetarily. Nine participants already 
had an MRI scan available from a previous MEG 
experiment.

The study was approved by the local ethics 
committee and conducted according to the 
corresponding ethical guidelines (CMO Arnhem-
Nijmegen).

Experimental design

Task. Participants performed a visual 
discrimination task. They were presented with a 
stimulus and instructed to indicate whether the 
stimulus was a number or a letter. They responded 
using a button press with their right index finger. 
The button mapping was counterbalanced across 
participants.

Stimuli. The stimuli were adapted from the 
study by Gwilliams and King (2017) (see Figure 
3A) and consisted of  “digital-clock” style letters 
and numbers, each consisting of  at most seven line 
segments. There were four possible letters and four 
possible numbers. We had chosen pairs of  stimuli 
such that they would differ in only one line segment 
from each other. These pairs were: 1 and J, 4 and 
H, 6 and E, and 8 and A. The intensity value of  
the differentiating line segment could be changed to 
adjust the difficulty level of  the task. An example 

of  such an adjustment is shown in Figure 3B. The 
task was made more challenging by making the 
intensity values of  the ambiguous line segments of  
both stimuli closer to each other. We further had 
chosen the stimuli such that in two out of  four pairs, 
the letter contained the extra line segment, while 
the number contained the extra line segment in the 
remaining two pairs. This was needed to avoid that 
either of  the two categories (letter or number) was 
harder than the other. It further prevented subjects 
from basing their decision on mere luminance, which 
would have been an option if  for instance only the 
letters had one line segment more.  Difficulty level 
was adjusted to individual subjects in order to have 
the right performance level for each subject. It was 
determined during the training phase.

The stimuli were presented on a semitranslucent 
screen (1920 x 1080 pixel resolution, 120 Hz refresh 
rate) back-projected by a PROpixx projector (VPixx 
Technologies). They were presented on a grey 
background and 10.6 by 5.7 cm in size. The non-
ambiguous line segments of  the stimuli were black, 
while the ambiguous line segment had a value 
between the grey background and black, where the 
exact value depended on the difficulty.

To create a visual rhythm, we presented a cue 
stream consisting of  five zeros at the task frequency 
before the onset of  the stimulus. Participants were 
asked not to respond to these zeros, but still attend 
to them since they helped predict the timing of  the 
stimulus.

Conditions and target timings. The frequency 
of  the rhythm at which the cue stream was presented 
varied across conditions. Each participant was 

A B

Figure 3. Stimuli. A. The eight possible stimuli. Top: 1, 4, 6, and 8. Bottom: J, H, E, and A. Any letter 
in the bottom row forms a pair with the number that is shown above it. These images exclude the 
ambiguity that is added to make the task more difficult. B. Example of a pair of stimuli where ambiguity 
is added by changing the intensity value of the one line segment that differs between the two stimuli. 
Here, left is closer to 4 and should be identified as a number, while right is closer to H and thus should 
be identified as a letter.
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exposed to three task frequencies in a block-wise 
matter: 1.3 Hz, 2.1 Hz and 3.1 Hz. In what follows, 
these task frequencies are denoted by f1, f2, and f3, 
respectively. We had chosen the task frequencies 
such that they were within the delta frequency range: 
low enough to not be irritating to the eye. They were 
also chosen such that the harmonics of  the lower 
frequencies did not interfere with a higher frequency 
while taking frequency resolution into account.

The target could appear at four target timings 
(described in Figure 4). The stimulus occurred either 
one, two or three cycles after the cue stream, where 
a cycle equals the inverse of  the task frequency. In 
40% of  the trials, the stimulus did not appear at 
all, in which case the participant was not supposed 
to press any button. These trials are termed catch 
trials. We introduced the various target timings to 
create big enough windows of  interest to perform 
meaningful frequency analysis with a high enough 
frequency resolution, for which three cycles need 
to fit in the window. Our window of  interest was 
defined as the period between the offset of  the cue 
stream and the onset of  the stimulus, or the end 
of  the trial in case of  a catch trial. The purpose of  
the various target timings was to avoid biasing the 
expectation of  the participant regarding the timing 
of  the stimulus toward the end of  the window of  
interest. As such, these three target timings were 
equally likely to occur (20% each). We introduced 
the catch trials (remaining 40%) to have a stimulus-
free window of  interest. Additionally, we expected 
no or very few mistakes during catch trials. Thus, 
fewer trials had to be omitted in this target timing as 
compared to any non-catch target timing. Moreover, 
we could increase the ratio of  the catch trials without 
affecting participants’ expectations regarding the 
timing of  the target. In total, 60% of  the trials were 

used for MEG analysis.
In what follows, the trials with 1, 2 or 3 cycles 

are referred to as cycle1, cycle2, and cycle3 trials, 
respectively.

Protocol. Each trial started with a fixation cross, 
shown for 200 ms. The fixation cross was followed 
by an empty screen, which remained for 1 s in 
case of  the first five subjects and 2.5 s in case of  
the other eight participants. In non-catch trials, the 
response window was 2 s. In case of  catch trials, the 
screen remained empty after the cue stream for 3 
cycles plus a jitter of  300-400 ms. We added the jitter 
to avoid having roughly the same phase in the brain 
signals at the start of  the next trial. All trials were 
followed by another 500 ms of  an empty screen to 
avoid contaminating the baseline period at the start 
of  the next trial with a motor evoked response.

Participants performed 12 blocks of  40 trials each 
(480 trials in total). The task frequency varied across 
blocks, giving 4 blocks per task frequency. Multiple 
times throughout the experiment, participants were 
asked two questions. Before and after each block, 
they were presented with the statement ‘Please rate 
your sleepiness’. They responded using a button 
press on a four-point scale ranging from ‘Very Alert’ 
to ’Very Sleepy’. After each block, participants were 
also asked about their perceived rhythmicity during 
the preceding block, again on a four-point scale 
and using a button press to respond. Here the scale 
ranged from ‘Very Irregular’ to ‘Very Rhythmic’. 
They were then shown their performance (accuracy) 
during the preceding block, and were invited to take 
a break as long as they needed. At the end of  this 
break, the head position was adjusted to get back to 
the initial head position, as measured at the start of  
the experiment, as much as possible.

Figure 4. Overview of target timings and ratios.
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Before the main experiment started, participants 
performed the task in the training phase. This training 
phase was meant to determine the subject-specific 
level of  difficulty. Here, one block consisted of  36 
trials. Within such a block, every 12 trials were of  a 
different task frequency. The order of  the possible 
frequencies was randomised. Catch trials were 
still included, although they did not contribute to 
learning the task, to avoid surprising the participant 
at the start of  the main experiment.

Participants received feedback after every trial: 
a green fixation cross if  they were correct, and a 
red one if  they were incorrect. This differed from 
the main part of  the experiment, where they only 
received feedback after a full block by means of  an 
accuracy percentage. After each block, the level of  
difficulty was adjusted if  needed. There were 11 
possible difficulties (i.e., pairs of  intensity values 
of  the ambiguous line segments). Each participant 
performed at least 3 training blocks. The goal was to 
have an accuracy between 70 and 85 percent before 
starting the main part of  the experiment, excluding 
the accuracy on catch trials. The resulting difficulty 
was used throughout all 12 blocks of  the main 
experiment.

The session lasted in total about 2 hours. This 
includes preparation, training, breaks, and measuring 
the head shape as described in the section on 
measurements. The experiment was programmed 
using Psychtoolbox (Brainard, 1997) in MATLAB 
(The Mathworks, Inc).

Measurements

Subjects were seated in a CTF-275 MEG system 
with axial gradiometers at a distance of  80 cm from 
the projection screen. We monitored their head 
position using three head coils: one in each ear 
using earplugs and one taped to the nasion. During 
the main part of  the experiment, eye movements 
were measured using an Eye Link 1000 Eye tracker 
(SR Research). RT and accuracy were logged for 
each trial. After the experiment, the shape of  the 
participant’s head was acquired with the Polhemus. 
Information about the head shape was used to 
increase the quality of  source reconstruction.

Finally, those participants that did not yet 
have a T1-weighted anatomical MRI available, 
underwent an MRI scan while wearing ear plugs 
that contained vitamin E, which is useful in source 
reconstruction analysis described in the section on 
neurophysiological analysis.

Behavioural analysis

Behaviour was analysed for all trial types except 
catch trials. RTs were normalized, after which outliers 
were removed by calculating the Tukey fences. This 
last step also removed any non-catch trial where the 
subject did not respond. For all subjects, at most 
10 percent of  the trials were flagged as outliers. 
Furthermore, any incorrect trial was removed when 
analysing RT, while they were still included for 
computing accuracy.

Repeated-measures ANOVAs were performed 
on accuracy and median RT with 2 factors: task 
frequency (3 levels: f1, f2, f3) and target timing (3 
levels: cycle1, cycle2, and cycle3).

Neurophysiological data analysis

Pre-processing. MEG data was first down-
sampled to 300 Hz. We used three band-stop filters 
to remove line noise (50 Hz) and its harmonics (100 
Hz, 150 Hz). We defined the frequencies of  the 
filters as the frequency to be removed ± 1 Hz. Trials 
were cut into epochs of  13 s (-1 to 12 s, relative to 
the onset of  the fixation cross).

Trials contaminated with high variance, muscle 
artefacts, or SQUID jumps were removed through 
visual inspection on a trial-by-trial basis. In case of  
muscle artefacts, data was first high-pass filtered 
(60 Hz) before visual inspection. We performed an 
independent component analysis (ICA) on remaining 
trials in order to identify components representing 
heartbeat, blinks, or saccades. On average, 4 
components were removed per subject. Finally, all 
incorrect trials were removed before analysing the 
brain signals at both sensor- and source-level.

Source-level data. We computed individual 
volume conduction models using the single-shell 
method on the MRI image, supplemented with 
MEG Polhemus head shape information to further 
refine co-registration. Individual source models 
were computed by warping the MNI coordinates 
of  a 5 mm-grid to the individual MRI images using 
non-linear normalization. The volume conduction 
model, source model and cleaned MEG data were 
then used to compute the leadfield.

In order to localise visual and motor regions, we 
used the evoked responses to the first zero of  the cue 
stream and to the button press respectively. A spatial 
filter was computed from the leadfield, volume 
conduction model and covariance matrix (from 
start of  baseline until end of  activity window) using 
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linearly constrained minimum variance (LCMV) 
beamforming (van Veen,  van Drongelen, Yuchtman, 
& Suzuki (1997); lambda 5%). The spatial filter was 
then used to compute the average time courses 
within the activity windows (visual: +80 to +180 
ms, motor: -100 to +400 ms) for each voxel, and 
the corresponding baselines (visual baseline period: 
-100 to 0 ms, motor baseline period: -600 to -100 
ms). We had carefully selected the visual window of  
interest to include the peak evoked responses for all 
individuals. Voxels with the highest increase in signal 
within the activity windows were selected: two for 
the motor source and two for the visual source. In 
case of  the visual source, one voxel was selected 
from each hemisphere.

A covariance matrix was computed for the full 
epoch. Then a spatial filter was computed using 
LCMV beamforming with the same parameters as 
before. Finally, the virtual sensors were computed 
using this spatial filter, and averaging across the two 
voxels per source.

Window selection

Each trial contained three time periods: baseline, 
cue stream, and target periods. Here, the target 
period was the time between the offset of  the cue 
stream and the onset of  the target (or the end of  
the trial in case of  catch trials). We defined the 
trial-level baseline period as the period between the 
offset of  the fixation cross and the onset of  the cue 
stream. In order to avoid contamination with evoked 
responses due to visual stimulation, we removed the 
first 200 or 300 ms of  the baseline period (starting 
after fixation cross) and the first 200 ms of  the target 
window (starting at offset of  the cue stream).

The maximum length of  the resulting baseline 
window was either 0.8 or 2.2 s. In combination with 
the variance of  task frequency, the full cue stream 
was sometimes longer and sometimes shorter than 
the maximum baseline window. For spectral analysis, 
window lengths were matched. In case of  catch 
trials, the end of  the target window was defined as 
3 cycles plus 200 ms. Again, window lengths were 
matched.

Power and inter-trial coherence

For the target window and corresponding 
baseline, only cycle3 and catch trials were included, 
because these allow for better spectral resolution. 
We zero-padded all windows up to 10 s. A Fourier 
transformation was then performed with a Hanning 
taper on each window. We defined the frequencies of  

interest as 0.1 Hz to 10 Hz (in steps of  0.1 Hz) and 
10 to 40 Hz (in steps of  1 Hz). This was done for 
each trial separately, resulting in a complex Fourier 
spectrum per trial per time window, from which 
both the power and ITC could be computed. We 
further removed any frequency that was below the 
true frequency resolution. Here, the true frequency 
resolution equals 1 divided by the length of  the 
window in seconds. In case of  ITC, we specifically 
computed the inter-trial phase coherence rather than 
the inter-trial linear coherence.

To compute the change in power during the cue 
stream window or target window as compared to the 
corresponding baseline, we averaged the power of  
the baseline windows of  all trials with a certain task 
frequency. This means that all target timings (or only 
cycle3 and catch in case of  investigating the target 
window) were taken together to compute an overall 
baseline. Then the percentage change in power was 
computed per trial, using this average baseline rather 
than the single-trial baseline. This is to avoid any 
extreme values in percentage change in power due 
to an extremely low value in the baseline window 
that can be present at the trial-level.

ITC was first computed per window and per 
condition. We then averaged the ITC across the two 
included timing types. To compute an increase in 
ITC as compared to the baseline, we subtracted the 
baseline ITC from the ITC during the window of  
interest.

Functional connectivity analysis

In order to compute the functional connectivity 
between the visual and motor source, we used the 
virtual channel data as computed in the section 
on neurophysiological data analysis. A Fourier 
transformation with a Hanning taper was again 
performed, but now the frequencies of  interest were 
defined as 1 to 40 Hz, with a frequency resolution 
of  1 Hz. Again, the data per time window were 
first padded to 10 s, and any results in the range 
of  frequencies below the true frequency resolution 
were removed.

Connectivity analysis was performed on the 
remaining data. More specifically, we computed 
the imaginary part of  the coherence between the 
two virtual channels. As a result, we had a measure 
of  functional connectivity per window. The effect 
of  volume conduction is a common concern in 
functional connectivity analysis. It implies that 
perfect source separation is not possible, because of  
which some signals in our computed motor source 
may actually originate from the visual source or vice 
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versa. This would then give a spurious increase in 
functional connectivity. However, by looking at the 
imaginary part of  coherence, we circumvent the 
effect of  volume conduction (Nobre & van Ede, 
2018).

Statistical analysis of 
neurophysiological data

To determine the statistical significance of  ITC, 
power, and functional connectivity, cluster-based 
permutation tests (Maris & Oostenveld, 2007) were 
performed within the frequency range of  1 to 7 Hz 
or in the range of  1 to 40 Hz in case of  functional 
connectivity. The cluster-level statistic equalled the 
sum of  the sample-specific statistics (t- or F-values) 
that belong to the cluster. The test statistic that 
was evaluated by the use of  permutation, equalled 
the maximum of  the cluster-level statistic. The 
alpha value of  the clusters was set to 0.05. All tests 
consisted of  1000 permutations with Monte-Carlo 
estimates of  the significance probabilities.

We first performed the statistical analysis on task-
induced signals, meaning that the signal of  interest 
during either the cue window or the target window 
was contrasted with the corresponding baseline. 
Here, dependent samples t-statistics were computed 
for each sample in each permutation. In case of  ITC 
and functional connectivity, the test was one-tailed, 
while it was two-tailed in case for power. This was 
done because ITC and functional connectivity were 
expected to only increase as compared to baseline, 
while power could decrease as well due to an increase 
in attention. This analysis was done for all task 
frequencies together in order to investigate whether 
the task itself  already affected these measures, and 
then for all task frequencies separately. In case of  
two-tailed tests, alpha was set to 0.025, rather than 
0.05.

These cluster-based permutation tests were 
performed on both sensor-level data and source-
level data. In case of  sensor-level data, clusters were 
two-dimensional (space and neural frequency) and 
the minimum number of  channels per cluster was 
set to 3. For source-level data, clusters were only 
computed in one dimension (neural frequency), but 
then for each source separately.

When taking all task frequencies together, the 
measurement (i.e., ITC or power) was first computed 
per task frequency, and then averaged across task 
frequencies. To test whether the frequency of  the 
external rhythm affected the increase in synchrony, 
the task frequencies were contrasted by comparing 
the change in either ITC or power, rather than the 

raw values. Here, dependent samples F-statistics 
were computed for each sample in each permutation.

Reaction time and inter-trial coherence

As part of  exploratory analyses to investigate 
the correlation between synchrony and behaviour, 
the relationship between RT and ITC was studied. 
Subjects were binned based on their RTs. Specifically, 
we subtracted the mean RT during f3 trials from the 
mean RT during f1 trials. We specifically looked at 
the difference in RT within each subject rather than 
at the raw RTs per subject, because the variability of  
the average RT between subjects could mitigate any 
potential effect, especially given the low number of  
subjects.  Subjects were divided into two bins based 
on this RT effect, and the average ITC increase 
during the cue stream was computed.

Questionnaires

Subjects were asked about their sleepiness and 
rhythmicity per block. To investigate the effect of  task 
frequency on sleepiness, we matched the responses 
with the task frequency of  the preceding block. Thus, 
the first response to the sleepiness question, taking 
place before the start of  the first block, was omitted. 
We performed repeated-measures ANOVAs on 
both the sleepiness and rhythmicity responses with 
the factor task frequencies and the levels f1, f2 and 
f3.

Results

Behaviour

When the task frequency increased, subjects 
responded faster (Figure 5A, df = 2, F = 5.62, p = 
.01). Post-hoc tests revealed that responses were 
significantly faster in case of  f3 as compared to f1 
(t = 2.81, p = .047). The differences between f1 and 
f2 (t = 1.65, p = .126) and between f2 and f3 (t = 
2.207, p = .095) were not significant. Furthermore, 
the timing of  the target affected RT (Figure 5B, df 
= 2, F = 8.20, p = .002). Here, post-hoc test revealed 
that subjects responded significantly slower in case 
of  cycle1, relative to cycle2 (t = 2.82, p = .031), as 
well as to cycle3 (t = 4.93, p = .001). There was no 
significant difference in RT between cycle2 and 
cycle3 (t = 0.43, p = .676). Likewise, there was no 
interaction between target timing and task frequency 
(Figure 5C, df = 4, F = 0.30, p = .88).

As opposed to RT, accuracy was not affected 
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by task frequency, although it did trend toward 
significance (Figure 5D, df = 1.36, F = 3.488, p = 
.069, Greenhouse-Geisser corrected). Target timing 
did have a significant effect on accuracy (Figure 5E, 
df = 2, F = 4.77, p = .018). Post-hoc tests revealed 
that subjects responded correctly more often during 
cycle2 trials as compared to cycle3 trials (t = 3.67, 
p = .010), while the difference in accuracy between 
cycle1 and cycle2 (t = 0.32, p = .753) and between 
cycle1 and cycle3 (t = 2.17, p = .101) were not 
significant. There was again no interaction between 
task frequency and target timing (Figure 5F, df = 4, 
F = 1.48, p = .223).

Inter-trial coherence

During the cue window, ITC increased in both 
the visual and motor source (Figure 6A, E; p < 
.001 in the visual source, and p = .015 and p = .039 
in the motor source) for a broad range of  neural 
frequencies (visual: 1 to 7 Hz; motor: 1.2 to 4.8 
Hz and 5 to 7 Hz). When separating the three task 
frequencies, clear peaks were visible in the visual 
source (Figure 6B-D). Moreover, the peaks matched 
the corresponding task frequency and its harmonics. 
The increase in ITC was significant for a broad range 
of  neural frequencies (all p < .001, f1: 1 to 7 Hz, f2: 
1.3 to 7 Hz, f3: 1 to 7 Hz). In the motor source, 

peaks were visible for the separate task frequencies 
as well (Figure 6F-H). Significant clusters of  increase 
in ITC were found in the motor source, although for 
a smaller range of  frequencies as compared to the 
visual source (f1: 1.2 to 2.6 Hz, p = .030, 5.8 to 6.9 
Hz, p = .044; f2: 1.3 to 4.6 Hz, p = .004; f3: 1.1 to 4.4 
Hz, p = .016, 4.6 Hz to 6.9 Hz, p = .019).

During the target window, there was no 
significant increase in ITC when taking all task 
frequencies together (Figure 7A, E). Furthermore, 
separating the task frequencies did not reveal any 
clear peaks (Figure 7B-D, F-H). Based on visual 
inspection, there did seem to be a higher offset in the 
low frequency range for higher task frequencies. We 
therefore contrasted the increases in ITC per task 
frequency (Figure 8). Indeed, it looked like a higher 
task frequency gave a higher increase in ITC around 
2 Hz, especially in the visual source, but none of  
these differences were significant. Interestingly, the 
difference was significant at the sensor-level data 
(Figure 9), giving one cluster at the right side (1.4 
Hz to 1.9 Hz, p = .008) and one at occipital sensors 
(1.4 Hz to 1.9 Hz, p = .040). Here, the planar MEG 
gradients had been computed and combined with 
the axial data before analysis. This implies that the 
signals were underneath the sensors that picked them 
up. Post-hoc tests revealed that in both clusters, the 
increase in ITC was significantly higher for f3 as 

Figure 5. Behavioural results per task frequency (A,D), per target timing (B,E), and interaction between 
task frequency and target timing (C,F). Top panel (A to C): normalized RT. Bottom panel (D to F): 
accuracy. The grey lines between boxplots and the grey circles on the boxplots represent the results 
of individual subjects. Post-hoc tests followed a repeated-measures ANOVA when main effects were 
found. Significant differences following post-hoc dependent t-tests are indicated by stars (* p < .05, ** p 
< .01, *** p < .001). Error bars in C and F represent the standard error of the mean.
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compared to f2 (right: p < .001, occipital: p = .002) 
and as compared to f1 (right: p < .001, occipital: p < 
0.001). The differences between f1 and f2 were not 
significant (right: p = .542, occipital: p = .060)	

Power

As compared to baseline, power decreased in 
the visual source between 2.3 and 4.2 Hz during the 
cue window (Figure 10A, p = .029). There was no 

significant difference in the motor source (Figure 
10B). When separating the task frequencies, clear 
peaks in power were present in the visual source 
that corresponded to the task frequency and its 
harmonics (Figure 10B-D). These peaks were absent 
in the motor source (Figure 10F-H). Only the first 
peak of  f3 in the visual source was significant (2.2 to 
4 Hz, p = .014).

During the target window, power in both the 
visual source and the motor source generally 

Figure 6. Raw ITC during the cue stream window. The coloured lines represent the ITC during the cue 
window, while the grey lines represent the ITC during the corresponding baseline window. Shaded 
areas represent the standard error of the mean. The vertical coloured lines correspond to the task 
frequencies (red: f1, 1.3 Hz; green: f2, 2.1 Hz; blue: f3, 3.1 Hz). Significant differences following cluster-
based permutation tests are indicated by stars (* p < .05, ** p < .01, *** p < .001). A to D: visual source ITC 
for respectively all task frequencies together, f1, f2, and f3. E to H: motor source ITC for respectively all 
task frequencies together, f1, f2, and f3.
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Figure 7. Raw ITC during the target window. The coloured lines represent the ITC during the target 
window, while the grey lines represent the ITC during the corresponding baseline window. Shaded areas 
represent the standard error of the mean. The vertical coloured lines correspond to the task frequencies 
(red: f1, 1.3 Hz; green: f2, 2.1 Hz; blue: f3, 3.1 Hz). No significant differences followed from cluster-based 
permutation tests. A to D: visual source ITC for respectively all task frequencies together, f1, f2, and f3. 
E to H: motor source ITC for respectively all task frequencies together, f1, f2, and f3.

Figure 8. Increase in ITC during the target window at source-level, separately for each task frequency. 
Shaded areas represent the standard error of the mean. The vertical coloured lines correspond to the 
task frequencies (red: f1, 1.3 Hz; green: f2, 2.1 Hz; blue: f3, 3.1 Hz). Cluster-based permutation tests did 
not reveal significant differences. Left: increase in ITC in the visual source. Right: increase in ITC in the 
motor source.
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Figure 9. Increase in ITC during the target window at sensor-level, separately for each task frequency. 
Shaded areas represent the standard error of the mean. The vertical coloured lines correspond to the task 
frequencies (red: f1, 1.3 Hz; green: f2, 2.1 Hz; blue: f3, 3.1 Hz). Left: topography of the masked statistics 
of the two significant clusters (F-values, cluster-based permutation). Middle and right: ITC increase per 
cluster, averaged across the sensors that are part of the cluster. Significant differences following post-hoc 
dependent t-tests are indicated by stars (* p < .05, ** p < .01, *** p < .001). The green stars represent the 
p-values of the f3-f2 contrast, while the red stars represent those of the f3-f1 contrast.

Figure 10. Raw power during the cue stream window. The coloured lines represent the power during 
the cue window, while the grey lines represent the power during the corresponding baseline window. 
Shaded areas represent the standard error of the mean. The vertical coloured lines correspond to the 
task frequencies (red: f1, 1.3 Hz; green: f2, 2.1 Hz; blue: f3, 3.1 Hz). Significant differences following 
cluster-based permutation tests are indicated by stars (* p < .05, ** p < .01, *** p < .001). A to D: visual 
source power for respectively all task frequencies together, f1, f2, and f3. E to H: motor source power for 
respectively all task frequencies together, f1, f2, and f3.
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decreased (Figure 11A, E), with both sources having 
a significant cluster (visual: 2.8 to 5.3 Hz, p = .024; 
motor: 1 to 4.3 Hz, p = .007). When separating 
the task frequencies, this general decrease in power 
seemed to be present for each task frequency in both 
the visual source (Figure 11B-D) and the motor 
source (Figure 11B-D) based on visual inspection, 
although only the differences in the motor source 
during f1 trials (1 to 3.9 Hz, p = .005) and in the 
visual source during f3 trials (1.4 Hz to 7 Hz, p < 
.001) were significant.

Functional connectivity

Functional connectivity between the visual 
source and the motor source increased significantly 
during the cue stream as compared to baseline in the 

range of  6 to 8 Hz (Figure 12A, p = .025). When 
separating the task frequencies, such an increase was 
present at roughly the same frequency range for each 
task frequency (Figure 12B-D, f1: 6 to 7 Hz, f2: 7 
Hz to 8 Hz, f3: 6 to 8 Hz), although only the cluster 
during f3 trials was significant (p = .024), while those 
during f1 and f2 trials only showed a trend toward 
significance (f1: p = .076, f2: p = .094).

There was no significant increase in functional 
connectivity during the target window when taking 
all task frequencies together (Figure 12E). However, 
when separating the task frequencies (Figure 12F-
H), functional connectivity increased significantly 
during f3 trials between 7 and 10 Hz (p = .003). 
There was no trend toward significance for f1 and 
f2, unlike during the cue window.

Figure 11. Raw power during the target window. The coloured lines represent the power during the 
target window, while the grey lines represent the power during the corresponding baseline window. 
Shaded areas represent the standard error of the mean. The vertical coloured lines correspond to the 
task frequencies (red: f1, 1.3 Hz; green: f2, 2.1 Hz; blue: f3, 3.1 Hz). Significant differences following 
cluster-based permutation tests are indicated by stars (* p < .05, ** p < .01, *** p < .001). A to D: visual 
source power for respectively all task frequencies together, f1, f2, and f3. E to H: motor source power for 
respectively all task frequencies together, f1, f2, and f3.
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Reaction time and inter-trial coherence

Based on visual inspection, the increase in ITC 
was consistently higher for subjects with a smaller 
RT effect than those with a larger RT effect, except 
in the motor source during f1 trials (Figure 13). 
Furthermore, this difference seemed to be more 
extreme for higher task frequencies. No statistical 
test was performed on this data.

Sleepiness and rhythmicity

Task frequency affected neither sleepiness (df = 
2, F = 0.388, p = .683), nor rhythmicity (df = 2, F = 
0.889, p = .427).

Discussion

In this study we investigated the notions of  
entrainment and active sensing, which constitute 
potential mechanisms for sampling the relevant 
input from the environment. To study these potential 
mechanisms, subjects were presented with a visual 
discrimination task, in which the target was preceded 
by a visual rhythmic cue stream. This rhythmic cue 
stream could have three different task frequencies, 
all falling within the delta range, which is thought 
to play a role in sensory sampling (Schroeder & 
Lakatos, 2009). Based on a series of  unpublished 
experiments (manuscript in preparation), we 
expected to find a decrease in RT with increasing 

Figure 12. Imaginary part of the coherence (i.e., functional connectivity). The coloured lines represent 
the functional connectivity during the window of interest, while the grey lines represent the functional 
connectivity during the corresponding baseline window. Shaded areas represent the standard error of 
the mean. Significant differences following cluster-based permutation tests are indicated by stars (* p < 
.05, ** p < .01, *** p < .001). Grey bars on the x-axis are clusters that trend toward significance (p-value 
between .05 and .1). A to D: functional connectivity during the cue stream window for respectively all 
task frequencies together, f1, f2, and f3. E to H: functional connectivity during the target window for 
respectively all task frequencies together, f1, f2, and f3.
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task frequency. As this behavioural effect would be 
supported by an increase in synchrony, we further 
expected an increase in phase-alignment in both the 
visual source and the motor source, and between 
these two sources. We indeed replicated the finding 
of  decreasing RT with increasing task frequency. 
We further measured peaks in synchrony to the 
external rhythm. The neural frequency of  these 
peaks corresponded to the task frequency. However, 
shortly after the rhythm, these peaks in phase-
alignment diminished. We further found an increase 
in functional connectivity between the visual source 
and the motor source, but in a different neural 
frequency range than expected. Unfortunately, we 
were only able to collect data from 13 subjects. 
Therefore, more data should be gathered before 
drawing final conclusions. Importantly, 5 out of  13 
subjects had a different baseline period length. This 
difference could slightly affect the results by giving 
a lower frequency resolution, but importantly this 
further implies that these 5 subjects had the same 
number of  trials in less time, potentially affecting 
their attention with respect to the 8 subjects with a 
longer baseline period.

Faster responses to faster rhythms

We found that subjects responded faster in a 
visual discrimination task when the task frequency 
increased, which is a replication of  a series of  
previous experiments with an auditory discrimination 

task (manuscript in preparation). Importantly, here 
we demonstrated the effect in the visual domain 
rather than the auditory domain, making this a novel 
behavioural finding. One possible explanation is 
that there was a trade-off  between RT and accuracy, 
with RT being more prioritised for higher task 
frequencies. However, we did not find an effect of  
task frequency on accuracy. We therefore conclude 
that the effect of  task frequency on RT is not the 
result of  a trade-off  between RT and accuracy.

One could further argue that higher task 
frequencies make subjects more alert, possibly 
decreasing their RT. However, we did not find an 
effect of  task frequency on the subjects’ sleepiness 
rating and therefore conclude that alertness is not 
different for different task frequencies. 

Another concern is that some task frequencies 
might be perceived as being more rhythmic than 
others. Again, we did not find an effect of  task 
frequency on the subjects’ responses to the perceived 
rhythmicity question.

Furthermore, we found an increase in RT when 
the timing of  the target was early, as compared to later 
time points. Possibly this is an effect of  the Hazard 
rate (Näätänen, 1971), entailing that there is less 
time-uncertainty for the target at later time points, 
as the probability of  the target occurring increased 
when more time had passed. More uncertainty in 
time appears to slow down the response (Niemi 
& Näätänen, 1981). The accuracy however did not 
show such an effect. Here we would expect to find 

Figure 13. ITC increase during the cue window as compared to the baseline window, separately for 
subjects with a small RT effect and subjects with a large RT effect. Here, the RT effect is defined as 
subtracting the mean RT across f3 trials from the mean RT across f1 trials. Shaded areas represent the 
standard error of the mean. No statistical analysis was performed on this data.
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higher accuracy for later time points, but instead we 
found that accuracy increased when the target was 
presented after two cycles as compared to when it 
was presented after three cycles. Possibly subjects 
were inclined to prioritise RT over accuracy when 
the target appeared later in time, potentially because 
of  growing impatience for three cycles. Another 
possible explanation for RT being lower for later 
time points, is that only one cycle is not yet enough 
time for the motor system to be fully prepared, while 
two cycles is enough, since RTs become significantly 
faster from two cycles onward.

One remaining question is whether an increase 
of  general pace of  the task could have this effect on 
RT, rather than the task frequency itself. Namely, if  
the task frequency increases, the duration of  a full 
trial decreases. As a result, the target is presented 
more often in the same amount of  time, as compared 
to lower task frequencies, increasing the general pace 
of  the experiment. It would therefore be interesting 
in a future study to examine the effect of  the task 
frequency on RT, but instead with a constant time 
between the start of  one trial and the start of  the 
next trial.

Entrainment

During the cue window, we found clear peaks 
in both ITC and power as compared to baseline. 
These peaks appeared at the task frequency and its 
harmonics. This finding is in line with the frequency 
specific hypothesis as described in Figure 2, in which 
the peak in power or ITC shifts toward higher neural 
frequencies for higher task frequencies. The same 
ITC effect was also found by Will and Berg (2007) 
in the auditory domain. However, we did not find 
this tendency for either ITC or power in the period 
after the rhythm had been presented. At the sensor-
level, we did find a higher ITC increase in the delta 
range for the highest task frequency as compared 
to the lower ones. We investigated whether this 
increase could be a result of  a difference in evoked 
responses between task frequencies, but no such 
difference was found. We also found that delta and 
theta power decreased after the presentation of  the 
rhythm and before target onset in both the visual 
source and motor source. This could be an effect 
of  attention (Fries, Reynolds, Rorie, & Desimone, 
2001), indicating that subjects attended more when 
expecting a target stimulus.

We can only speak of  true entrainment when 
three requirements are met (Haegens, 2020; Haegens 
& Golumbic, 2018; discussed in the section on neural 
oscillations). First, an endogenous neural oscillator 

must be present apart from rhythmic stimulation. In 
the current study, this would be during the baseline 
period, but investigating the presence of  such 
oscillations is outside the scope of  this study. Second, 
the neural oscillator phase-aligns with the external 
rhythm, and this only happens for a limited range 
of  frequencies. In this study, the ITC and power 
showed peaks at exactly the task frequency and its 
harmonics during the presentation of  the external 
rhythm, which is in line with this requirement. 
Because of  the limited number of  task frequencies 
used in this study, it is unclear whether this only 
happens for a limited range of  task frequencies. 
Importantly, when investigating ITC and power 
during the presentation of  a rhythm, it is impossible 
to distinguish between true oscillations and a series 
of  evoked responses. Third, the phase-alignment 
must continue for some number of  cycles after the 
presentation of  the external rhythm. This however 
we did not find, violating the last requirement. We 
therefore conclude that entrainment, as defined 
above, is not happening under the circumstances 
of  this experiment. This conclusion contradicts 
the general idea that neural oscillations entrain to 
external rhythms within a wide range of  stimuli, 
tasks, and neural frequencies (as reviewed by 
Lakatos, Gross, & Thut, 2019), and is instead 
more in line with critical reviews such as  Helfrich, 
Breska, and Knight (2019), Obleser and Kayser 
(2019), Haegens and Golumbic (2018) and Zoefel 
et al. (2018). Instead, the peaks in ITC and power 
as found during the presentation of  a rhythmic cue, 
could be a result of  evoked responses. Even though 
the last requirement of  entrainment was violated, it 
would still be interesting to see whether the first two 
requirements hold or not by studying the oscillations 
before the onset of  the rhythm and increasing the 
number of  task frequencies. Importantly, the lack of  
support for entrainment only applies to the context 
of  the experiment of  this study. Instead, possibly 
entrainment still plays a role in other contexts. For 
instance, one can change the sensory domain (e.g., 
auditory rather than visual), task frequencies (e.g., 
up to 10 Hz rather than up to 3.1 Hz) and task 
(e.g., detection rather than discrimination). Another 
approach is to use near-threshold stimuli, since the 
effect of  the timing relative to the phase of  neural 
oscillations are higher for such stimuli (Schroeder & 
Lakatos, 2009).

As part of  exploratory analysis, subjects were 
binned into two groups based on the difference 
between their mean RT for the highest task 
frequency and that of  the lowest task frequency. The 
‘large RT effect’ bin consisted of  those subjects that 
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showed a bigger decrease in RT with increasing task 
frequency. The ITC increase seemed to be lower 
for subjects with a large RT effect than those with 
a small RT effect. An increase in ITC implies that 
there is less jitter across trials. Possibly a jitter across 
trials affects to which extent RT changes when the 
task frequency increases. Namely, if  there is zero 
jitter in the visual system, motor system and in the 
communication between these two systems, stimuli 
that are in-phase with a rhythm, as was always the 
case in the experiment of  the current study, will 
always be optimally processed, which then gives the 
same RT regardless of  the frequency of  the rhythm. 
This is under the assumption that the intrinsic 
oscillations correctly adjust to the external rhythm 
by either entrainment or another mechanism, such 
that high excitability states coincide with stimuli that 
are presented an integer number of  cycles after the 
rhythm. Instead, if  there is jitter, the chances of  
neural input arriving at a state of  high excitability 
is higher for higher task frequencies due to a higher 
sampling rate, as argued in the section on research 
questions and hypotheses. Thus, when there is more 
jitter, ITC decreases and the RT effect is larger. This 
possible interaction between RT and ITC should be 
further investigated.

Important to note here, is that the excitability 
of  the neurons only depend on the phase of  the 
oscillation, and thus in theory the high excitability 
states are longer for lower task frequencies, but 
occur more often for higher task frequencies. This 
would also imply that a small offset of  the input 
with respect to the maximum excitability state (e.g., 
50 ms) would decrease the chance of  the input 
arriving during the same excitability state for higher 
task frequencies. However, for big offsets (e.g., 200 
ms) the chances of  the input arriving at the next 
excitability state is higher for higher task frequencies, 
because the next high excitability state occurs earlier 
in time, giving the higher sampling rate as mentioned 
above. An important aspect that should be further 
investigated before drawing conclusions about the 
effect of  jitter, is the range of  this potential jitter 
(e.g., more than one cycle or not) and the distribution 
(i.e., flat or biased).

Covert active sensing

While we expected to find an increase in 
functional connectivity in the beta range, as it could 
establish the connection between the motor cortex 
and the sensory cortex (Spitzer & Haegens, 2017), we 
instead found this increase in the delta-theta range. 
This increase as compared to baseline was present 

during both the presentation of  the external rhythm 
and shortly after it, in particular for the highest task 
frequency. The theta-delta range has been shown to 
play a major role in sensory sampling (Schroeder & 
Lakatos, 2009). Delta phases are thought to have a 
modulating effect on beta bursts (for a recent review, 
see Morillon, Arnal, Schroeder, & Keitel (2019)), 
while theta phase may modulate gamma power 
(Canolty et al., 2006). In this study, we specifically 
focused on the phase alignment, rather than power, 
as a measure of  functional connectivity by looking at 
the imaginary part of  coherence, which may be why 
the possible effect on beta power was undetected.

Covert active sensing entails that the motor system 
coordinates the brain signals in the sensory cortex by 
the use of  synchronisation. We therefore expected to 
find an increase in functional connectivity during the 
task, which we found both during the presentation 
of  an external rhythm and shortly after it. To further 
investigate whether the motor cortex drives the 
signals in the sensory cortex, one could look at the 
Wiener-Granger causality (Bressler & Seth, 2011) 
between the two sources. A next step would be to 
use neuromodulation methodologies that make it 
possible to directly control the signals in the motor 
cortex, such as trans-cranial magnetic stimulation 
(TMS) in human participants or optogenetics in 
animals.

Importance for AI

To discuss how our findings and those of  other 
studies could help us to make a step toward tackling 
the problem of  perceptual relevance in AI, we 
focused on the following questions:

•	 How could the findings of  the current study 
be used as a source of  inspiration when tackling the 
problem of  perceptual relevance in the development 
of  artificial cognitive agents?

•	 How could oscillatory mechanisms be 
realised in artificial systems?

•	 What are some good practices when 
combining empirical research within the fields of  AI 
and neuroscience, such that both fields benefit?

Time dimension. Before discussing the 
potential uses of  oscillations in AI, the possible 
use of  a time dimension should be discussed first. 
Conventional AI, such as machine learning, artificial 
neural networks, and Bayesian networks, have 
been able to achieve some impressive goals but 
mostly ignore the dimension of  time. The scope of  
problems that can be solved by AI may increase by 
including this dimension, as timing plays a major role 
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in how natural intelligence processes information, as 
discussed in the current study. Time can still roughly 
be used by these conventional methods, as done 
by for example Kucherenko, Hasegawa, Henter, 
Kaneko and Kjellström (2019). Their artificial neural 
network took auditory time series (speech) as input 
and predicted which gestures over time would fit 
those time series. It contained gated recurrent units 
(GRUs), which uses information from previous 
input, such as earlier time points, and combines 
them with the current input. Thus, even though 
both input and output contain a time dimension, 
the underlying computations only look at the order 
in which the input is presented, rather than actual 
timing.

As opposed to these conventional AI techniques, 
spiking neural networks (SNNs; Maass, 1997) 
resemble natural neural networks much more by 
outputting ‘spikes’ over time depending on the 
input, just like natural neurons fire action potentials 
over time. This resemblance makes it possible to 
incorporate the time dimension within the network. 
This way, the same input to an artificial neuron 
can elicit a different response in the network when 
presented at a different moment in time.

Simulating SNNs on conventional computers 
is computationally expensive. However, because 
of  more recent developments in the field of  
neuromorphic hardware, efficiency is greatly 
increasing. In neuromorphic hardware, information 
is represented by the use of  spikes over time, rather 
than a series of  zeros and ones as in conventional 
computers. For instance, Intel recently developed a 
neuromorphic chip called Loihi. This chip was used 
by Imam and Cleland (2020) to implement rapid 
online learning. Their algorithm, implemented on 
Loihi, was able to learn new odours and reliably 
recognise them after only one presentation. Such 
achievements are not possible for conventional 
methods, as they require a substantial amount of  
data to train the parameters. These developments 
in the field of  neuromorphic computing therefore 
make the exploration of  timing and specifically 
oscillations in AI an interesting next step in research.

Oscillations. Neural oscillations are rhythmic 
fluctuations in neural activity. They include the intra- 
or extracellular electrical currents, which are affected 
by action potentials.

The concept of  oscillations could still be used 
in conventional AI without having a real time 
dimension. For instance, Neil, Pfeiffer and Liu 
(2016) proposed that instead of  (conventional) long 
short-term memory networks (LSTMs), phased 

LSTMs should be used. Just like GRUs, LSTMs 
combine the current input with information about 
previous input. Their new phased LSTM model 
contained extra gates that could be either open or 
closed. Whether a gate was open or closed, was 
determined by an oscillation, in the sense that it was 
open for some time points, then closed for other 
time points, and this pattern was repeated over time. 
Information through those gates could only pass 
when the gate was open. This implementation is 
thus in line with Bishop’s proposal of  oscillations 
reflecting fluctuations in excitability. The new model 
is able to integrate input from sensors of  different 
sampling rates and has a general improvement in 
performance. However, the implementation is vastly 
simplified, as is evidenced by having binary gates 
(i.e., having only ‘open’ and ‘closed’ states), while 
Bishop’s excitability states are not binary.

Such novel implementations can increase the 
scope of  problems that can be solved by AI or 
increase the performance on problems that are 
already addressed to some extent. In the following 
discussion, we will focus on more biologically 
plausible implementations to be able to make use of  
the exact timing at which input arrives.

The next question is whether and how the 
notion of  oscillations can be used in SNNs and 
neuromorphic computing. Pfeiffer and Pfeil (2018) 
already discussed that SNNs should be able to model 
the timing of  reference spikes relative to network 
oscillations. We are not aware of  any implementation 
that includes such network oscillations. However, 
since these networks and hardware closely mimic 
the electrical activity of  natural neurons, oscillations 
may already be present as an emergent property. 
Before implementing specifically active sensing or 
entrainment, these potential properties of  SNNs 
and neuromorphic hardware should be studied. 
For the remaining part of  this discussion, we will 
assume that oscillations can be present in SNNs, 
either intentionally implemented or as an emergent 
property. We further assume that these oscillations 
are either within the artificial spiking neurons or 
outside of  them while being able to influence them.

Perceptual relevance. Starting with Bishop’s 
proposal of  oscillations representing fluctuations in 
excitability states, artificial spiking neurons should 
combine the information of  this oscillation with 
the input it receives. The same input to the neuron 
should be more likely to elicit a spike for some 
timings relative to the phase of  the oscillations, as 
compared to other timings. This does not have to 
hold for all input, but at least for input that is close 
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to threshold. If  artificial oscillations are present 
within the artificial neuron, the artificial electrical 
current of  that neuron fluctuates. We then expect 
the property of  fluctuations in excitability to already 
be present as an emerging property, as Bishop’s 
proposal was based on precisely this property of  
intracellular fluctuations in electrical current.

In order to use this proposal to tackle the 
problem of  perceptual relevance, which is defined 
as determining which sensory input is relevant 
in the current context, the oscillations should be 
adjusted accordingly. In this study, we hypothesised 
that entrainment could underlie this adjustment by 
first exactly matching the intrinsic oscillation to the 
external rhythm, continuing this adjusted oscillation 
for some time. However, our results only showed 
clear peaks in power and ITC during the rhythmic 
input. These peaks were not present anymore 
shortly after the presentation of  this external 
rhythm. We therefore believe that other potential 
mechanism could be more promising in tackling 
the problem of  perceptual relevance. Instead of  
entrainment, the notion of  rhythmic tracking 
could be further investigated. Rhythmic tracking is 
defined as a rhythmic neural response to rhythmic 
input (Haegens, 2020). This term does not imply 
exact phase-alignment of  an intrinsic oscillation to 
an external rhythm and neither that the response 
should continue for some amount of  time after the 
presentation of  the external rhythm. Perhaps neural 
responses at frequencies higher than the delta and 
theta range could have a function here, which could 
be further investigated using the current dataset.

The second potential mechanism we studied 
was covert active sensing. This mechanism is more 
promising, as we did find an increase in functional 
connectivity between the motor source and the 
visual source both during the presentation of  
an external visual rhythm and briefly after it. A 
potential reason is that perhaps the presence of  a 
rhythm increases the communication rate between 
the motor cortex and the visual cortex. Moreover, a 
faster external rhythm elicits higher communication 
rates. This difference in communication rate could 
be caused by oscillations adjusting differently to the 
external rhythm. Therefore, making the artificial 
oscillations in an SNN adjust to an external rhythm 
is an interesting first step, followed by an increase in 
communication rate. Here, this adjustment does not 
have to exactly match the frequency of  the external 
rhythm, as is implied by entrainment. Instead, the 
oscillations could acquire an increase in functional 
connectivity within a certain frequency range (e.g., 
6-10 Hz, as in our findings) but with a higher increase 

in synchrony for faster external rhythms.
This proposal of  implementing active sensing in 

SNNs is thus not so much about filtering perceptual 
input before it is processed in the network, but 
rather about changing the communication between 
multiple artificial neuronal populations within the 
network. This could still contribute to tackling the 
problem of  perceptual relevance, as the filtering of  
input does not have to happen at the first level of  
the network. Filtering may take place while activity 
goes from one neuronal population to the other.

The frame and abstraction problem. Above 
weonly discussed possible implementations in 
AI that could tackle the problem of  relevance. 
Therefore, this only includes information that is 
currently being perceived by an agent, and not any 
already existing knowledge. However, there are types 
of  knowledge that have to be filtered other than 
the information that is currently being perceived 
by an agent. These types of  knowledge are factual 
knowledge that was gained in the past, information 
about the current context, and predictions about 
events that are not directly perceived. By extending 
the scope of  information to include these aspects 
as well, the problem of  abstraction and the frame 
problem, explained in the section on computational 
problems of  relevance in AI, are included.

In case of  purely perceptual relevance, the 
proposal of  oscillations reflecting fluctuations 
in excitability gives a straightforward possible 
mechanism for filtering input: if  the sensory input 
arrives at the wrong timing, it is filtered out. However, 
when including factual knowledge about the past, the 
current context and expectations, there is no direct 
sensory input that can be filtered depending on the 
timing. Instead, all of  the information comes from 
within the system. The information could be filtered 
by the use of  oscillations when the information flows 
from one area to another, but then a new important 
question arises: when does the information start to 
flow and how is this flow elicited? As this idea of  
using oscillations as a filter mechanism gives rise 
to more questions than potential answers, further 
research is needed. How to effectively perform 
such research in which AI and neuroscience are 
combined, is discussed in the next section.

Combining AI and neuroscience 
research

AI and neuroscience are two closely related 
fields. They can learn from each other but without 
an active interaction, progress is slow. In this section, 
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we discuss how the two fields can contribute to each 
other and how to effectively combine research in the 
fields of  AI and neuroscience.

The use of  AI research in neuroscience. 
Interestingly, computational problems such as 
the original frame problem (i.e., how to efficiently 
determine which aspects in the world do not change) 
are not obvious when looking at natural intelligence 
but instead are brought to light by the novel 
methodology that is used by AI (Dennett, 2006). 
Namely, in natural intelligence we start with already 
existing intelligence when trying to understand 
it. Instead, in AI one has to build intelligence 
from the ground up. This way, philosophical and 
computational problems are encountered that are 
not too clear when looking at the finished picture 
(i.e., natural intelligence). This is one of  the ways 
in which AI research can contribute to the field of  
neuroscience: defining problems and questions that 
are undetected when studying natural intelligence.

AI research can further contribute to the field of  
neuroscience by testing and developing hypotheses 
from a different perspective. By implementing the 
hypotheses, one can investigate the behaviour of  
the system given the hypothesis. Furthermore, 
parameters can be controlled to learn more about 
the effects of  these parameters. Not only does this 
give more controlled studies, which is often not 
ethically, or practically, possible on subjects, but it 
also provides a more efficient way of  testing and 
adjusting hypotheses before testing on subjects, 
which requires more resources. AI can go further 
than merely virtual simulations by having physical 
platforms, such as robots, embedded in a rich 
environment. This change in environment is 
important, as virtual environments are simplified, 
possibly to the extent that pitfalls or obstacles remain 
undetected. Perhaps in the future this can be done by 
having a physical robot running on neuromorphic 
hardware and placed in the real world.

Another contribution of  AI in the field of  
neuroscience is the development of  data analysis 
methods, such as machine learning, to further 
investigate brain signal recordings. This kind of  
contribution is however not further discussed in this 
study. The fields of  AI and neuroscience can benefit 
most from each other by having an active interaction 
between the two fields. This active interaction is 
described next.

Active interaction between AI and 
neuroscience. Figure 14 presents a schematic 
overview of  effective interaction between the fields 

of  neuroscience and AI. Each arrow is explained 
below.

1.	 If  we have results found in the field of  
neuroscience, one can attempt to implement these 
findings in AI. For the findings of  the current 
study, this step is discussed in the section on 
the importance for AI. See Hassabis, Kumaran, 
Summerfield and Botvinick  (2017) for a review 
of  neuroscience-inspired AI studies. The arrow is 
bidirectional, because active discussion is needed 
during the development of  the implementation in 
order to stay close to neuroscience.

2.	 When implementing previous findings, one 
may encounter an aspect that has to be implemented 
to complete the implementation, while the current 
results and discussion in neuroscience do not suffice, 
creating a gap between neuroscience and AI. This is 
how the frame problem in the original sense came 
to light.

3.	 If  such a gap is encountered, there are two 
ways in which it can be closed.			 

   a.	 Go back to the field of  neuroscience to 
discuss the gap and hypotheses to close it. Possibly 
new experiments can be conducted that are designed 
to answer a question in AI. This discussion can also 
lead to novel questions and insights within the field 
of  neuroscience. After this discussion and possible 
new experiments, arrow 1 leads back to improving 
the implementation.

   b. 	Instead of  directly consulting neuroscience, 
one can also develop the implementation further 
by investigating the possibilities in the field of  
AI. This step should still be done with inspiration 
from neuroscience in order to have a biologically 
plausible implementation. By having a biologically 
plausible implementation, the results can contribute 
to neuroscience in later steps.

4.	 When the field of  AI has found a working 
implementation that goes beyond the knowledge 
in neuroscience, the implementation could be 
studied to investigate why it works and question 
whether natural intelligence could be using such an 
implementation as well.

5.	 The resulting implementation can be used 
in a simulation to gather results about the behaviour 
of  the system.

6.	 Then comparisons can be made between 
the implementation in AI and the findings in 
neuroscience. This comparison not only pertains to 
the results of  the simulation, but also to the actual 
implementation itself.

7.	 The comparison in turn can result in novel 
insights in the field of  neuroscience, creating new 
research questions and hypotheses that can further 



Nijmegen CNS | VOL 16 | ISSUE 1 51

ACTIVE SENSING THROUGH OSCILLATORY SYNCHRONIZATION

be investigated. Additionally, the same comparison 
can give new insights on how to improve the current 
implementation in AI.

This active interaction is preferred over AI 
researchers merely looking at results and discussions 
in neuroscience because of  three reasons. First, 
there is no guarantee that neuroscience has useful 
results to answer the question at hand. By having this 
interaction, research in the field of  neuroscience can 
be conducted that is designed to answer questions in 
both AI and neuroscience. Without this interaction, 
a researcher in AI has to wait for useful findings to 
occur, and may encounter a hiatus while developing 
a biologically plausible system. Second, it is of  great 
importance to understand the underlying mechanisms 
that result in the measurements. For example, in case 
of  MEG, one has to be aware that radial sources (i.e., 
dipoles in line with the centre of  the head) are not 
detected, and that perfect source separation is not 
possible. These aspects should be considered when 
interpreting the results and possibly using them in AI. 
Third, the discussion in neuroscience that influences 
the artificial implementation should include various 
studies and not focus on one or very few studies. 
The more studies are included, the more likely that 
the artificial implementation actually resembles 
findings in neuroscience. In general, researchers in 
neuroscience will have a better overview of  the field 
than researchers in AI.

Conclusions

In this project we investigated the role of  neural 
oscillations in sensory sampling and how this 
role could inspire the development of  AI. At the 
behavioural level, we found that subjects responded 
faster when task frequency increased. Although 
we conclude that entrainment is not happening, it 
is possible that active sensing could still contribute 
to the RT effect in combination with other neural 
mechanisms. Rather than the oscillations adjusting 
to the task frequency by entraining to the external 
rhythm, the oscillations possibly still adjust but, for 
instance, not with an exact re-alignment to the task 
frequency. Then, active sensing could still increase 
the communication between the motor system 
and the visual system, giving lower RTs when task 
frequency increases.

Since the decrease in RT with increasing task 
frequency is a novel finding, particularly in the visual 
domain, we propose to further investigate this effect. 
More task frequencies could be added to the task to 
find where the limit of  this effect is. Additionally, 
various sensory domains could also be studied and 
compared.

We further discussed how the notion of  time 
and specifically oscillations can be used in the 
development of  AI. By including these concepts 
in an artificial system, we may be able to tackle the 
problem of  perceptual relevance in general AI. 

Figure 14. Proposed general flow of research when combining the field of AI and neuroscience to further 
learn about both fields.
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This is needed to develop artificial cognitive agents 
that are able to perform the same scope of  tasks 
as humans can in a complex environment, rather 
than having narrow AI. Promising developments are 
those in the fields of  neuromorphic computing and 
spiking neural networks, which are more biologically 
plausible than conventional hardware and AI.

When drawing inspiration from neuroscience to 
develop AI, an active interaction between the two 
research fields is necessary to optimally contribute to 
both fields. We described how such a process could 
take place and how both fields can benefit from such 
a collaboration.

In the current project, we reported a novel 
behavioural effect in the visual domain and found 
support for the concept of  covert active sensing. 
Moreover, by relating the study to AI, this project 
creates a step toward further developing general AI.
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Alpha oscillations (8–13 Hz) have traditionally been associated with a state of  cortical idling and show an 
increase over posterior areas when awake participants close their eyes. In recent years, alpha oscillations have 
been proposed to reflect a mechanism of  active functional inhibition, by suppressing cortical activity over 
task-irrelevant brain regions and facilitating excitability in task-relevant ones. Many studies investigated this 
top-down role of  alpha, though it remains unclear how eye closure might impact modulation of  alpha activity 
during cognitive tasks, and how this affects subsequent behavioural performance. In this study, we tested 33 
participants performing a somatosensory spatial discrimination task in an eyes-open and closed condition, 
while recording brain activity using magnetoencephalography (MEG). We report an increase of  alpha 
oscillations with eye closure and found further evidence of  a functional inhibition role of  alpha oscillations 
during somatosensory attention, reflected by alpha activity decrease over the contralateral somatosensory 
cortex as well as alpha increase over visual regions. Furthermore, we report the visual alpha modulation to be 
significantly higher for eyes-open than eyes-closed trials, implicating a necessity of  increased alpha inhibition 
when irrelevant visual input is available. We demonstrated that this posterior anticipatory alpha activity 
predicted task performance, by associating higher activity with positive behavioural outcome, independent 
of  eye condition. We therefore showed evidence that eye closure alters the general alpha activity profile and 
furthermore influences the anticipatory posterior alpha modulation during a somatosensory attention task. 
Eye closure however did not have an effect on the impact of  alpha modulation on behaviour.

Keywords: alpha rhythm, functional inhibition, eye closure, somatosensory attention, MEG
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Our brains continuously receive a high amount 
of  information and are thus challenged with the 
task of  filtering relevant input and suppressing 
distracting input. In recent years, cortical alpha 
oscillations (8-13 Hz) have been proposed to play 
a role in this filtering process (Jensen & Mazaheri, 
2010). Furthermore, eye closure is associated 
with a general increase of  posterior alpha (Adrian 
& Matthews, 1934) and is theoretically linked to 
facilitate sensory attentional processes by shutting 
out distracting visual input (Glenberg, Schroeder, 
& Robertson, 1998). Here, we aimed to investigate 
whether and how increased alpha activity due to 
eye closure impacts anticipatory alpha modulations  
during a somatosensory discrimination task.

Inhibitory alpha

For a long time the alpha rhythm was associated 
with a general state of  cortical idling. However, 
more recent research proposes that alpha oscillatory 
activity reflects a mechanism for functional 
inhibition (Klimesch, Sauseng, & Hanslmayr, & 
2007; Jensen & Mazaheri, 2010; Foxe & Snyder, 
2011; Haegens, Nácher, Luna, Romo, & Jensen, 
2011). This is supported by studies showing an 
increase of  alpha band power over task irrelevant 
brain regions and networks, and a decrease of  
alpha power over task relevant brain regions (e.g., 
Pfurtscheller & Klimesch, 1991; Worden, Foxe, 
Wang, & Simpson, 2000; Sauseng et al., 2005). In 
this way, alpha oscillations are thought to gate the 
information flow in the brain to increase perceptual 
performance, which is demonstrated  by an increase 
of  alpha oscillations in anticipation of  distractors 
(Bonnefond & Jensen, 2012).

In the visual domain this targeted inhibition of  
task-irrelevant information occurs in a lateralized 
pattern (e.g., Thut, Nietzel, Brandt, & Pascual-
Leone, 2006; Ikkai, Dandekar, Curtis, 2016). In 
other words, when a stimulus was presented in either 
the right or left visual field, alpha activity decreased 
contralateral to the attended region and increased 
contralateral to the to-be-ignored location (Worden 
et al., 2000; Sauseng et al., 2005; Rihs, Michel, 
& Thut, 2007; Kelly, Gomez-Ramirez, & Foxe, 
2009). This alpha activity increase over occipital 
regions, responsible for processing the not-to-be 
attended visual information, is assumed to reflect 
an inhibition of  distracting input. The pattern of  
lateralized alpha in- and decrease can be described 
by a lateralization index, defined by positive values 
for right-ward attention and negative values for left-
ward attention (Thut et al, 2006). Importantly, the 

alpha lateralization index was deterministic of  target 
perception, with negative values preceding a more 
rapid and accurate detection of  left-ward targets 
and positive-values preceding the detection of  right-
ward targets (Thut et al., 2006; Kelly et al., 2009; 
Händel, Haarmeier, & Jensen, 2011). 

Somatosensory anticipatory alpha 
lateralization

The lateralization pattern is not specific to the 
visual domain but also exists in the somatosensory 
domain (Haegens, Osipova, Oostenveld, & 
Jensen, 2010). In this case, a lateralization occurs 
over the right or left hemispheric somatosensory 
cortex, with alpha decrease contralateral to the 
stimulus application, indicating a similar functional 
mechanism for tactile tasks as the posterior alpha 
during visual tasks. 

This lateralization pattern occurred in an 
anticipatory fashion prior to the presentation of  
an expected stimulus, when a cue guided attention 
towards the left or the right side. The power of  
this lateralization pattern furthermore decreased 
when this attentional cue was unreliable  (Haegens, 
Händel, & Jensen, 2011).

Furthermore, increased somatosensory alpha 
lateralization modulated the subsequent task 
performance.  For example, better performance (i.e., 
more accurate and faster responses) followed a higher 
increase of  lateralized alpha over the somatosensory 
cortex (Haegens et al., 2011; Haegens, Luther, 
& Jensen, 2012). These findings show that alpha 
induces an anticipatory brain state of  sensory 
regions to optimize processing in a predictive 
manner. Studies in the visuospatial literature 
indicated that lateralized alpha modulation is mainly 
driven by a contralateral decrease (e.g., Sauseng et al., 
2005; Thut et al., 2006), while others also reported 
a role of  ipsilateral increase (Rihs et al., 2007; Rihs, 
Michel, & Thut, 2009). Here, ipsilateral increase 
seemed especially dependent on distractor strength. 
Also for the somatosensory domain, ipsilateral 
alpha increased with the presentation of  distractors, 
though with further increase of  distractor strength a 
global decrease of  alpha was shown both contra- as 
well as ipsilateral (Haegens et al. 2012). Similar to 
the visual information processing, somatosensory 
alpha therefore increased over the task-irrelevant 
sensory cortex, showing an inhibitory mechanism 
in the context of  expected irrelevant information in 
the form of  distractors.

Importantly, during somatosensory discrimi-
nation processing the lateralized alpha pattern 
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is accompanied by an increase of  anticipatory 
posterior alpha power (Haegens et al., 2012). As 
somatosensory alpha increase is associated with 
an inhibition of  processing of  the task-irrelevant 
hand, the posterior alpha is assumed to reflect a 
general inhibition of  visual input. Furthermore, 
posterior alpha increase also reflected a modulation 
on task performance, with more accurate responses 
emerging after a higher increase of  posterior alpha 
(Haegens et al., 2012).

Eye closure effect

Since the discovery of  cortical alpha oscillatory 
activity by Hans Berger (1929) almost a century 
ago, it has been known that a general increase of  
alpha power occurs when awake participants close 
their eyes. This modulation is especially localized in 
parieto-occipital regions (Adrian & Matthews, 1934), 
but has also been observed in a more widespread 
distribution (Geller et al., 2014). However, little is 
known about how this general alpha effect might 
interact with the inhibitory role of  alpha during 
cognitive tasks and whether these alpha activities 
might originate from the same underlying sources. 

Anecdotally, eye closure enhances the 
concentration  on other sensory modalities to 
improve the cognitive performance by suppressing 
visual input. This line of  thought stems from the 
assumption of  a dominant role of  visual processing. 
In this sense, a functional imaging study reported 
a shift of  processing networks, highlighting the 
exclusion of  the dominant visual mode as a 
consequence of  eye closure (Brodoehl, Klingner, 
& Witte, 2015). On the somatosensory level, eye 
closure lead to a more sensitive somatosensory 
threshold during a simple perception paradigm 
(Brodoehl, Klingner, Stieglitz, & Witte, 2015). In the 
context of  memory recall, eye closure also facilitated 
recollection (e.g., Vredeveldt, Baddeley, & Hitch, 
2012; Vredeveldt et al., 2015).

So far, a possible eye closure effect on the 
inhibitory modulation of  alpha has only been 
investigated in the context of  auditory attention 
(Wöstmann, Schmitt, & Obleser, 2019). The prior 
reported effects of  lateralized and posterior alpha 
modulation during somatosensory attention tasks 
exist also for the auditory domain, showing alpha 
modulations for auditory spatial tasks (Banerjee, 
Snyder, Molholm, & Foxe, 2011) as well as for 
listening tasks including speech perception (Strauß, 
Wöstmann, & Obleser, 2014; Dimitrijevic, Smith, 
Kadis, & Moore, 2017). In the same manner as for 
the other two modalities, alpha increase over task-

irrelevant and decrease over task-relevant temporal 
regions improved  performance during an auditory 
task (Dimitrijevic et al., 2017). In their study, 
Wöstmann and colleagues (2019) reported that eye 
closure not only increased the general power of  
alpha oscillations, but also the modulation of  alpha 
during the attentional task. The study presented two 
auditory streams of  numbers, which either had to 
be attended or ignored. In this regard,  alpha activity 
over parietal and occipital regions increased with the 
presentation of  the attended numbers compared to 
the ignored numbers, which was shown for both the 
eyes open as well as the eyes closed condition. Yet, 
this modulation of  alpha significantly increased with 
eye closure. However, eye closure did not facilitate 
task performance, indicating a general neural effect 
of  eye closure with no impact on behaviour. So far 
the eye closure alpha effect has not been investigated 
in the context of  somatosensory alpha lateralization. 

Current Study

Here we aimed to investigate whether eye closure 
affects alpha modulation during a somatosensory 
discrimination task. We adapted the paradigm used 
by Haegens et al. (2011) to include eyes-open and 
eyes-closed conditions. 

First, we examined differences in alpha activation 
for open and closed eyes, expecting higher alpha 
power for the eyes closed condition. Next, we 
analysed the pre-stimulus time window regarding 
the alpha activation pattern of  paying attention to 
the left or the right hand. This pattern was further 
examined on a possible difference in activity based 
on eye closure. Lastly, we investigated whether 
performance was modulated by alpha lateralization 
and/or posterior alpha power, hypothesizing a 
possible effect of  eye closure on this modulation.

Method

Participants

34 participants (Age: M = 25, SD = 3.86, 
range = 20-33 years; 18 female, 16 male; 30 right 
handed, 2 left handed, 2 ambidextrous) took part 
in the experiment. One subject was excluded from 
analysis due to poor data quality. All participants 
were recruited with the online system SONA 
and were healthy, free from any neurological or 
psychiatric disorders, and reported normal hearing 
and normal or corrected-to-normal vision. Prior 
to the experiment, participants received a detailed 
overview of  the MEG system and the study and 
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signed an informed consent form. The study falls 
under the general ethics approval (CMO 2014/288 
“Imaging Human Cognition”) in accordance with 
the Declaration of  Helsinki. 

Materials

For the presentation of  the sensory stimuli, two 
electrodes were attached to the participant’s right 
and left thumb. These electrodes administered a 
short electrical stimulus (0.2 ms) in the form of  a 
pulse train. Electrical stimuli were generated using 
two constant-current high voltage stimulators 
(Digitimer Ltd, Model DS7A). Through the use 
of  two Digitimer stimulators we were able to 
present different intensities for each hand, in order 
to account for the variance of  sensory thresholds 
between hands.

Intensity of  the electrical stimuli were determined 
by acquiring the sensory threshold for each thumb 
and setting the final stimulus at 150% of  this 
threshold level (Mright = 6.4 mA, range = 3.9 – 9.5 
mA; Mleft = 5.5 mA, range = 3.2 – 9.9 mA). 

During the experiment the pulse trains were 
presented in a low and high frequency (frequency 
represented by the number of  pulses). Low (either 
25 or 33.3 Hz) and high frequencies (41.7, 50, or 
66.7 Hz) were determined for each participant 
individually to ensure a successful execution of  
the task, avoiding chance level as well as ceiling 
performance. Auditory cues and feedback (200 ms 
length each) were computer generated and presented 
binaurally through air-conducting tubes. 

Experimental paradigm

Participants performed a somatosensory 
discrimination task while their brain activity was 
recorded using MEG. Participants received an 
electrical stimulus of  a low or high frequency to 
either the right or left thumb. Prior to the stimulus 
presentation, a 100% valid auditory cue guided 
participants’ attention to either the right or left side. 
Participants were instructed to determine as fast and 
accurately as possible whether the perceived stimulus 
was of  the low or the high frequency. Answers were 

Figure 1. Experimental design and behavioural results. A. Typical trial procedure. Participants performed the 
task in an eyes-open and an eyes-closed condition. The pre-stimulus interval served as the primary window 
of  interest. B. Behavioural performance of  the discrimination rate (left) and the RTs (right) divided into the 
two eye conditions. RTs were calculated only on correct trials and showed a significant difference between 
eyes open and eyes closed. 
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given via button press with the right index finger 
(i.e., left button press indicated the low frequency; 
right button press indicated the high frequency). 

A typical trial started with a pre-cue interval of  
1.2 s followed by the auditory cue, a jittered 1–1.8 
s pre-stimulus interval, the stimulus (240 ms pulse 
train), a maximum response time of  1.5 s, and finally 
auditory feedback indicating whether the answer was 
correct or incorrect (Fig. 1A). 

Participants performed this task under two 
conditions, an eyes-open condition (EO) and an eyes-
closed condition (EC). Conditions were presented in 
a counter-balanced block-design of  four blocks per 
condition with 76 trials each, resulting in a total of  
304 trials per condition. During the EO condition 
participants were instructed to fixate on a fixation 
cross in the middle of  the screen. For the EC 
condition participants kept their eyes closed for the 
duration of  the block. After each block, participants 
were presented with a short questionnaire of  four 
answer possibilities to rate their sleepiness (very 
sleepy, sleepy, awake, very awake).

Prior to the experiment, participants performed 
four training blocks (two per condition, 12 trials per 
block), during which they got familiar with the task. 

Participants were seated upright in the MEG 
helmet and instructed to keep their head position as 
stable as possible for the duration of  the experiment. 
After each block participants were able to take a 
short break for which they stayed seated in the MEG 
chair.

Data acquisition

Whole-head brain activity was recorded with 
a 275-channel CTF MEG system with axial 
gradiometers at a sampling rate of  1200 Hz (CTF 
MEG Systems, VSM MedTech Ltd.). The MEG 
system was positioned in a magnetically shielded 
room. For a real time representation of  the 
participant’s head position, three head localization 
coils were placed at the right and left ear canals as 
well as at the nasion. The real time representation of  
the head position allowed for monitoring of  head 
movements and adjustments to the original position. 
The three points furthermore served as offline 
anatomical landmarks. During the experiment 
eye movement of  the left eye was tracked using 
an Eyelink 1000 eyetracker (SR Research Ltd.). 
Experimental stimuli were programmed and 
presented with the software Presentation (Version 
18.0, Neurobehavioral Systems, Inc., Berkeley, CA,  
www.neurobs.com).

In a separate session an anatomical MRI of  the 

participant’s brain was acquired, unless a recent 
anatomical MRI could be obtained from the database 
of  the institute. MR images were acquired with any of  
the three available scanners at the Donders Centre of  
Neuroimaging; The 3T Siemens Magnetom Prisma 
MR scanner, the 3T Siemens Magnetom PrismaFit 
MR scanner, or the 3T Siemens Magnetom Skyra 
MR scanner (Erlangen, Germany). For the MRI scan 
participants were wearing ear plugs with drops of  
Vitamin E for improved co-registration of  the MRIs 
and MEG data. The anatomical images served the 
purpose of  source reconstruction of  the MEG data; 
however, note that source reconstruction analysis is 
not included for this report. 

Behavioural analysis

For the behavioural data, we analysed 
discrimination rate (percentage of  correct responses) 
and reaction times (RTs) of  correct trials. A repeated-
measures two-way ANOVA was computed for each 
of  these behavioural measures with the factors eye 
condition (EO and EC) and cue condition (left and 
right).

Pre-processing

A pre-processing pipeline for the MEG data 
was developed using the Matlab toolbox FieldTrip 
(Oostenveld, Fries, Maris, & Schoffelen, 2011). 
Raw data was downsampled offline to 300 Hz and 
epoched (-4 – 3 s, relative to the somatosensory 
stimulus onset). Trials were first visually inspected 
and rejected based on a trial summary representation 
of  variance. Furthermore, the resulting trials were 
manually inspected on a trial-by-trial basis and 
rejected on the basis of  muscle artefacts and SQUID 
sensor jumps. We used independent component 
analysis to correct for cardiac and eye movement 
components (Meanremoved = 8). A last visual inspection 
of  the corrected trials was performed based on 
variance, range, z-scores and maximum absolute 
values. This cleaning process was done blind to 
experimental condition. On average 11% of  all trials 
were rejected during this procedure. Time window 
descriptions in the following analyses are always in 
regard to the stimulus onset as time t = 0 s, unless 
indicated otherwise.

Spectral analysis

Since data was collected with axial gradiometers, 
a transformation towards a planar representation 
of  the MEG field distribution was calculated using 
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the nearest-neighbour method. Planar gradient 
representations allow for a clearer presentation 
of  the data as activity is typically maximal above a 
source. We computed spectral representations for 
three time windows: the pre-stimulus window (-1 
– 0 s), the post-stimulus window (0 – 1 s), and the 
pre-cue window (-1 – 0 s of  cue-onset). The pre-cue 
window served as a baseline and was determined by 
re-defining the data to centre of  the cue onset. The 
post-stimulus time window was specifically used for 
the determination of  the visual regions of  interest 
(as explained below).  Fast Fourier transformations 
were computed for all sensors by segmenting trials 
into the respective time windows and multiplying 
them with a Hanning taper. The computation of  
power distributions ranged from  1 to 30 Hz.

For a time-resolved-representation of  the spectral 
power distribution, we computed an additional 
time-frequency analysis (TFR) on the pre-stimulus 
interval (-1.5 – 0.5 s). For this, we chose a constant 
sliding time window of  0.5 s for each frequency (1 
– 30 Hz).

Impact of eye closure on oscillatory 
activity

To statistically test for power differences between 
the EO and the EC condition in the alpha and beta 
range, we computed a cluster-based permutation 
test on the whole head in the pre-stimulus time-
window -1 s to 0 s (Maris & Oostenveld, 2007). For 
this test the contrast EO – EC was chosen, which 
leads to positive values for a stronger activation in 
the EO condition and negative values for stronger 
activation in the EC condition. This statistical 
analysis allows dealing with the multiple comparison 
problem by computing a dependent-samples t-value 
for each sample-pair (i.e., sensor-frequency-pairs). 
Samples that exceeded a p-value threshold of  .05 
were clustered based on their spatial adjacency. 
Individual cluster statistics were calculated through 
the summation of  t-values within each cluster. 
Subsequently, the maximum cluster was selected as 
the test-statistic. Data was randomized across the two 
conditions and the test-statistic was repeated 1000 
times. This allows to obtain a reference distribution 
of  maximum cluster t-values to evaluate the statistic 
of  the actual data.

Alpha peak selection

For the sensor-level analysis, we computed the 
individual alpha peaks for each participant. These 

peaks were selected based only on the activity in the 
individual visual ROIs. The FFT of  the pre-stimulus 
interval (-1 – 0 s) was divided into EO and EC trials. 
We determined participants’ peak frequencies by 
calculating the maximal absolute activity within a 
broad alpha range (7 – 14 Hz). As intra-individual 
alpha peaks did not significantly vary between 
conditions (t (32) = 0.53, p = .6) they were averaged 
for each participant (M = 10 Hz, range = 8.5 – 11.5 
Hz) across EO and EC conditions.

Calculating the individual alpha peak frequencies 
allows taking into account the inter-individual 
variability of  alpha frequencies between subjects. In 
this way, we obtained a more accurate estimation of  
alpha activity by avoiding a possible bias against some 
participants and contamination of  neighbouring 
frequency bands, as can be the case by choosing 
a fixed frequency band (Haegens et al., 2014). All 
further analysis was computed using these individual 
alpha peaks unless indicated otherwise.

Regions of interest selection

Three regions of  interest (ROIs) where selected 
for further sensor-level analysis: A visual ROI, a 
left somatosensory ROI and a right somatosensory 
ROI. We computed these ROIs  individually for 
each participant.

For the selection of  the somatosensory ROIs, 
individual post-stimulus event-related fields (ERFs) 
were calculated regardless of  eye-condition. These 
ERFs were divided in right-hand-stimulus and 
left-hand-stimulus trials. A baseline correction was 
applied based on the baseline window -1.5 to -1 s. The 
sensors with the maximum activity of  the stimulus 
ERF determined the left and right somatosensory 
regions of  interest. 

As the experiment did not include the presentation 
of  strong visual stimuli, the visual sensors were 
selected with the previously computed post-stimulus 
FFT (0 s – 1 s). The post-stimulus FFT was divided 
into EO and EC trials, averaged over trials within the 
two conditions, and finally contrasted in the form of  
EO – EC. The sensors with the maximal difference 
within this contrast were used for the visual ROI. 

Therefore, for each participant the individual 
20 maximum channels for left somatosensory, right 
somatosensory and visual cortex were available for 
further analysis.

Alpha lateralization index

The alpha lateralization index describes the ratio 
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of  alpha distribution over both the ipsilateral and 
contralateral hemispheres of  the somatosensory 
cortex. This index is calculated based on the 
activity of  individual alpha peaks within individual 
somatosensory ROIs in the following way: 
Alpha lateralization index = (alpha-ipsilateral – 
alpha-contralateral) / (alpha-ipsilateral + alpha-
contralateral). The index gives positive values if  
alpha power activity is higher over the ipsilateral 
hemisphere and/or lower over the contralateral 
hemisphere. Negative values arise if  alpha power 
activity is lower over the ipsilateral hemisphere and/
or higher over the contralateral hemisphere. The 
calculation of  the alpha lateralization index follows 
the same rationale as the index used by Thut et al. 
(2006).

Effect of alpha modulation on 
performance

To investigate the impact of  pre-stimulus 
alpha modulation on behavioural performance, we 
conducted an analysis on the alpha lateralization 
index as well as the visual alpha power and their 
interaction with the discrimination rate (percentage 
correct) and reaction times.

For each participant the pre-stimulus FFT (-1 
– 0 s) was divided into correct and incorrect trials 
(omitting no-response trials) for each of  the two eye 
conditions separately. The alpha lateralization index 
was computed for correct and incorrect trials for 
each condition following the strategy as explained 
above. For statistical analysis, we calculated a 
repeated-measures two-way ANOVA with the 
factors eye condition (EO or EC) and discrimination 
rate (correct or incorrect).

We followed the same procedure for the 
computation of  alpha lateralization indices for 
fast and slow trials. For each participant, a median 
split of  the reaction times of  only the correct trials 
determined the categorisation of  fast and slow trials. 
Similar to the analysis of  the discrimination rate, a 
repeated-measures two-way ANOVA with factors 
eye condition (EO or EC) and reaction times (fast 
or slow) was computed for statistical analysis.

We repeated this process for investigating 
the relationship between visual alpha power and 
behavioural performance. The pre-stimulus FFT 
(-1 – 0 s) was divided into the two separate eye 
conditions and baseline corrected based on the 
baseline FFT (-1 – 0 s cue-onset, separate for each 
condition). The visual alpha power was computed 
based on individual visual ROIs and individual alpha 

peaks for correct and incorrect trials, as well as for 
fast and slow trials. We calculated two repeated-
measures two-way ANOVAs, one with the factors 
eye condition and discrimination rate, and one with 
the factors eyes condition and reaction times.

Results

Performance over all 33 participants for both eye 
conditions combined was an average discrimination 
rate of  73.4% (SD = 10.2%) and an average reaction 
time (correct trials only) of  673.1 ms (SD = 92.9 
ms). Figure 1B shows the discrimination rates and 
RTs for the EO and the EC condition. 

Slower performance with eye closure

To test for statistical differences between the 
conditions, we calculated a repeated-measures 
two-way ANOVA with the factors eye (EO or 
EC) and attention condition (left or right) on the 
discrimination rate. Only a trend was observed for 
the main effect of  eye condition (F (1, 32) = 3.62, 
p = .06), indicating higher accuracy for the EO 
condition. Neither the difference of  attention sides 
(F (1, 32) = 0.04, p = .85), nor the interaction of  eye 
and attention condition (F (1, 32) = 0.22, p = .64) 
were significant. 

In the same fashion, a repeated-measures two-
way ANOVA was computed on the RTs. The main 
effect of  eye condition was significant (F (1, 32) 
= 31.58, p < .001) with faster performance in the 
EO condition. A main effect of  attention side was 
found as well (F (1, 32) = 5.89, p = .02), reflecting 
faster RTs for the right side. This result can be 
attributed to the fact that participants were giving 
their answers through button press with the right 
index finger. Therefore, participants performed the 
task faster when the stimulus was applied to the 
same hand they were giving their answer with. The 
interaction between eye and attention condition was 
not significant for the RTs (F (1, 32) = 0.19, p = .67). 

Eye closure increases oscillatory alpha 
activity

Generally, the EC condition showed higher alpha 
and beta power in the pre-stimulus window than 
the EO condition, with a focus on occipital regions 
(see Fig. 2A). A cluster-based permutation test was 
computed to test the difference of  oscillatory activity 
between EO and EC for significance. Contrasting 
the EO with the EC condition revealed two negative 
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clusters (p < .001; Fig. 2B), one in the alpha range 
(7 – 14 Hz) and one in the beta range (15 – 30 Hz). 
The alpha cluster was distributed over widespread 
regions with a peak at 10 Hz, while the beta cluster 
was concentrated towards occipital sensors, showing 
the highest difference between conditions around 
20 Hz. Therefore, power of  both, alpha and beta 
oscillations, significantly increased with eyes closure.

Anticipatory posterior alpha 
modulation stronger for open eyes

To investigate the alpha modulation during  
the pre-stimulus interval, we computed spectral 
representations of  the attention conditions, by 
contrasting the pre-stimulus alpha activation against  
a baseline (i.e., left-ward attention vs baseline, right-
ward attention vs baseline; see Fig. 3A & B). Only 
for the EO condition an increase of  occipital alpha 
power can be observed, while both conditions 
show a decrease of  alpha power over contralateral 
central sensors in anticipation of  the stimulus. A 
paired-samples t-test was calculated on the pre-
stimulus visual alpha power increase against baseline 

between the two conditions to test for differences 
in posterior alpha modulation due to eye closure. 
Visual alpha power was based on individual alpha 
peaks and individual visual ROI sensors. The EO 
condition had a significantly higher posterior alpha 
modulation than the EC condition (t (32) = 6.28, p 
< .001; see Fig. 3C). This result reflects an increase  
of  posterior alpha power during the pre-stimulus 
interval vs baseline in the eyes open condition, while 
the EC condition does not show such modulation. 
Hence, despite an overall increase of  alpha power 
with eyes closure, the anticipatory posterior alpha  
modulation during the pre-stimulus interval was 
higher for open eyes.

No difference of alpha lateralization 
between eye conditions

To further investigate the alpha power 
decrease during the pre-stimulus interval over 
contralateral somatosensory regions, we computed 
a normalization which takes into account leftward 
and rightward attention and lead to a visualisation  
of  the previously reported lateralization pattern 

Figure 2. Spectral condition differences. A. Non-baseline corrected FFT (1 – 30 Hz) of  the pre-stimulus 
window (t = -1 – 0 s) for eyes open and eyes closed. B. Cluster statistics of  the EO – EC contrast. Left: 
Topographic representations of  cluster distributions. Right: Frequency distributions of  clusters, dotted 
lines represent frequencies with significant differences between conditions. Top: Widespread alpha cluster 
with significant frequency differences 5 – 12 Hz. Bottom: Occipital centred beta cluster with significant 
frequency differences 17 – 30 Hz.
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(see Fig. 4A; Haegens et al., 2011; Haegens et al., 
2012). We further examined the time course of  
this modulation of  the somatosensory anticipatory 
alpha through the computation of  time-frequency 
representations (TFRs). These TFRs were computed 
separately for the EO and EC condition in regard to 
the activation of  lower band frequencies (5 – 30 Hz) 
for the left vs right normalization (see Fig. 4C; right 

hemispheric sensors were mirrored to combine with 
left hemispheric ones). Through this visualisation we 
observed a sustained modulation for alpha (around 
10 Hz) as well as for beta (around 20 Hz) during the 
pre-stimulus interval.

To investigate differences between EO and EC 
alpha lateralization, the alpha lateralization index  
over somatosensory sensors was computed for both 

Figure 3. Attention modulation. Topographic plots of  pre-stimulus alpha power (individual alpha peaks) 
modulation following the left cue (A) and the right cue (B) against baseline activity. Left: eyes open condition. 
Right: eyes closed condition. Both conditions show central alpha modulation based on cue direction. Only 
eyes open condition shows an additional modulation of  visual alpha increase. C. Difference of  visual alpha 
modulation between conditions (p < .001). The empty helmet layout marks the visual ROIs used for the 
power estimation (summary individual visual ROIs). 

Figure 4. Left vs right attention modulation. A. Topographic representation of  the attention left vs 
attention right alpha power modulation (individual alpha peaks) for the eyes open (left) and the eyes closed 
(right) condition. B. Difference of  alpha lateralization index between conditions regarding the individual 
somatosensory ROIs represented in the empty helmet. C. Time-frequency representation of  the low 
frequency (5 – 30 Hz) modulation during the pre-stimulus interval (individual somatosensory ROIs). Top: 
Eyes open condition. Bottom: Eyes closed condition.
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conditions. There was no significant difference of   
alpha lateralization between the conditions (t (32) = 
1.21, p = .23; Fig. 4B). This indicates that eye closure 
did not have an impact on the anticipatory lateralized 
alpha modulation.

No performance modulation by alpha 
lateralization index

To investigate whether performance was 
modulated by the pre-stimulus lateralized alpha 
activation, we computed repeated-measure two-way  
ANOVAs on the lateralization index; one with the 
factors eye condition (EO or EC) and discrimination 
rate (correct or incorrect), and one with the factors 
eye condition (EO or EC) and reaction times (slow 
or fast). Figure 5 shows a representation of  the 
results. For discrimination rate, neither the main 
effect of  performance (F (1, 32) = 0.004, p = .95), 
nor the main effect of  eye condition (F (1, 32) 
= 2.77, p = .11), nor the interaction (F (1, 32) = 

0.7, p = .41) showed significant results. Therefore, 
no increased alpha lateralization was found for 
improved  discrimination for either condition. 

For reaction times, no significant effects for the 
main effect of  eye condition (F (1, 32) = 0.33, p = 
.57) and the interaction effect of  eye condition and 
RTs (F (1, 32) = 0.01, p = .94) were found. However, 
a trend for the main effect of  RTs (F (1, 32) = 3.95, 
p = .06) can be observed, indicating a link between 
faster RTs and increased alpha lateralization index.

Improved performance with increased 
posterior alpha power

Similar to the analysis of  the lateralization 
index, we wanted to test for a possible influence 
of  posterior alpha modulation on performance 
outcome. Therefore, repeated-measures two-way 
ANOVAs were calculated on the pre-stimulus 
posterior alpha modulation (i.e., power vs baseline) 
with the factors eye condition and discrimination 

Figure 5. Behavioural performance modulation by alpha lateralization index. The empty helmet represents 
the somatosensory ROIs used for this analysis (summary of  individual ROIs). P-values represent the main 
effect of  performance. A. Modulation by alpha lateralization index on discrimination rate (% correct 
responses). No significant differences between correct and incorrect trials were found for either the eyes 
open or the eyes closed condition. B. Modulation by alpha lateralization index on RTs of  correct trials. A 
significance tendency of  reaction times was found, indicating a possible positive impact of  increased alpha 
lateralization index on performance speed independent of  eye condition.
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rate, and the factors eye condition and RTs (Fig. 6).
For discrimination rate, a main effect of  

performance (F (1, 32) = 7.28, p < .01) was found, 
indicating increased accuracy with higher posterior 
alpha modulation. A main effect of  eye condition 
(F (1, 32) = 42.24, p > .001) was found as well, 
with higher posterior alpha modulation for the EO 
condition. The interaction of  eye condition and 
performance did not prove to be significant (F (1, 
32) = 0.28, p = .6). 

For the RTs, a main effect of  performance (F (1, 
32) = 11.1, p < .01), reflecting increased posterior 
alpha modulation for faster trials, and eye condition 
(F (1, 32) = 37.34, p < .001), with increased posterior 
alpha modulation for the EO condition, was found. 
The interaction of  eye condition and performance 
was not significant (F (1, 32) = 0.002, p = .96). 

In summary, these results indicate an impact 
of  posterior alpha modulation on behaviour, with 
better performance following a higher increase 
of  posterior alpha power during the pre-stimulus 

interval. This effect was furthermore independent 
of  eye condition.

Discussion

In this study we aimed to investigate the effect 
of  eye closure on attentional modulations of  
alpha oscillations and the subsequent behavioural 
performance during a somatosensory discrimination 
task. For this we adapted the paradigm by Haegens et 
al. (2011) to include an eyes-open and an eyes-closed 
condition. We replicated the lateralization pattern of  
attentional anticipatory alpha modulation, however 
found no significant impact on performance 
outcome. However, we do report a trend of  
faster reaction times with increased lateralization. 
Furthermore, though eye closure lead to a general 
increase of  oscillatory activity, it also resulted in a 
reduced modulation of  the posterior alpha power 
during the pre-stimulus interval in comparison 
with the eyes-open condition. The posterior alpha 

Figure 6. Behavioural performance modulation by posterior alpha power. The empty helmet represents 
the visual ROIs used for this analysis (summary of  individual ROIs). P-values represent the main effect 
of  performance. A. Modulation by posterior alpha power on discrimination rate (% correct responses). A 
significant difference of  correct and incorrect trials was found, indicating an improved discrimination rate 
with higher posterior alpha modulation independent of  eye condition. B. Modulation by posterior alpha 
power on RTs of  correct trials. A significant difference of  fast and slow trials was found, indicating a faster 
performance speed with higher posterior alpha modulation independent of  eye condition.
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modulation positively influenced task performance, 
independent of  eye condition.

Eye closure leads to general increase of 
reaction times

Even though we did not formulate prior 
hypotheses on the effect of  eye closure on general 
performance, we report here an increase of  reaction 
times for the eyes-closed condition in comparison 
with eyes open, and a tendency of  reduced accuracy. 
This speaks against the anecdotal assumption of  
improved performance with eye closure, which 
is thought to lead to better focus towards other 
sensory modalities (e.g., Glenberg et al., 1998). 
It furthermore contradicts previous findings of  
increased somatosensory perception detection 
associated with eye closure (Brodoehl et al., 2015a). 
However, these behavioural results are in accordance 
with a study conducted by Götz et al. (2017), 
who reported an impairment of  somatosensory 
discrimination with eye closure accompanied by 
a reduction of  somatosensory evoked fields. The 
authors proposed a possible trade-off  between 
perception that requires spatial discrimination and 
perception that does not, implicating a negative 
effect of  eye closure on spatial perception. This line 
of  thinking follows from the assumption that eye 
closure does not only represent a control of  visual 
input, but also influences processing mechanisms of  
somatosensory information.

Eye closure increases alpha power but 
decreases posterior alpha modulation

In agreement with previous studies (e.g., Adrian & 
Matthews, 1934; Geller et al., 2014; Wöstmann et al., 
2019), we found an increase of  alpha power with eye 
closure. We furthermore found an additional increase 
of  beta power with eye closure, which was centred 
towards occipital sensors, while the alpha power 
increase showed a more widespread pattern. This 
widespread pattern of  increased alpha power with 
eye closure is in accordance with previous findings 
(Geller et al., 2014) and indicates that the eye closure 
effect is not bound to occipital sources. The global 
increase of  alpha further supports the assumption 
of  an eye-closure effect on neural processing, unlike 
simply reflecting the disengagement of  visual areas. 

Though eye closure lead to a general increase 
of  alpha power, we furthermore report a reduction 
of  anticipatory posterior alpha modulation in 
comparison to the eyes-open condition. In this 
case, modulation of  posterior alpha increase 

against baseline activity was more prominent, when 
participants had their eyes open than when their eyes 
were closed. 

Anticipatory alpha power increase has been 
proposed to reflect a functional mechanism of  
inhibition to gate information (Jensen & Mazaheri, 
2010; Foxe & Snyder, 2011). In the context of  
somatosensory attention, visual input is not relevant 
for the completion of  the task and therefore increase 
of  alpha activity over occipital regions was proposed 
to regulate an inhibition of  the processing of  visual 
input (Haegens et al., 2012). Our current findings 
further support this idea, as a much higher increase 
of  posterior alpha synchronization is observed for 
the condition in which visual input is apparent. 

Lateralized alpha modulation for both 
eyes open and eyes closed

In the context of  spatial tactile attention, 
the inhibitory functional mechanism of  alpha 
oscillations is further reflected by an increase of  
alpha activity over the ipsilateral and a decrease over 
the contralateral attentional somatosensory cortex 
(Haegens et al., 2011; Haegens et al., 2012). We 
replicated this pattern of  contralateral alpha power 
decrease for both the eyes-open and the eyes-closed 
condition. Even though we do not observe an 
ipsilateral increase in our contrasts, this is possibly 
due to the fact that our study did not include the 
presentation of  distractors. It has been shown, for 
both the visual (Rihs et al., 2007; Rihs, Michel, & 
Thut, 2009) as well as the somatosensory domain 
(Haegens et al., 2012), that ipsilateral increase of  
alpha is dependent on the presence and the strength 
of  distractors engaging the task-irrelevant side.

The observed lateralization pattern reflected a 
general decrease of  alpha over right somatosensory 
sensors for left-side attention, and left somatosensory 
sensors for right-side attention. This further supports 
the theory that alpha gates the information flow 
during somatosensory attention tasks, by facilitating 
excitability in the task relevant somatosensory cortex. 
However, this interpretation stems purely from the 
visualisation of  spectral sensor activity. Further 
source analysis is necessary to contrast the activation 
over somatosensory cortices for a statistical test 
of  significant contralateral alpha activity decrease. 
Since no source reconstruction was included for this 
report, no statistical claim and no certainty of  the 
sources of  this attentional modulation can be made 
at this point, as selection of  somatosensory ROIs 
are imprecise on sensor level (see future directions 
section for more details). 
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We also investigated the evolution of  pre-
stimulus alpha modulation over time, which showed 
a sustained modulation for alpha (around 10 Hz) as 
well as for beta (around 20 Hz) oscillations for both 
eye conditions. This indicates that the anticipatory 
modulation of  alpha started after the presentation 
of  the cue and lasted until the presentation of  the 
stimulus, in line with previous studies (e.g., Jensen & 
Mazaheri, 2010; Haegens et al., 2011; Haegens et al., 
2012; Ikkai et al., 2016).

No impact of lateralization index on 
task performance

The lateralization index reflects the ratio of  
ipsilateral alpha activity increase and contralateral 
alpha activity decrease. In previous studies this alpha 
lateralization index modulated the task performance, 
leading to better accuracy and faster reaction times 
with increased lateralization index (Haegens et al., 
2011; Haegens et al., 2012). However, we were not 
able to replicate accuracy effects here, though we did 
find a trend for RTs, indicating a possible impact of  
lateralization index on the speed of  performance 
(independent of  eye condition). It is worthy to note, 
that this analysis as well has to be fine-tuned for 
further interpretational gains (see future directions). 
Furthermore, for our analysis of  RTs we calculated a 
separation of  fast and slow trials based on a median 
split. This definition of  RTs could be improved 
by binning RTs into multiple ranges from slow to 
fast (e.g., five instead of  two), or by performing a 
single trial correlation. We plan to address these 
possibilities in future analysis. 

For now, we were not able to replicate an influence 
on performance through the modulation of  alpha 
lateralization and no influence of  eye closure was 
reported. If  these findings translate to later, more 
precise analyses this would implicate that alpha 
lateralization is not predictive of  task performance. 

Posterior alpha modulation increases 
task performance independent of eye 
condition

We replicated previous findings of  an impact of  
posterior alpha modulation on task performance 
both for discrimination rate and RTs (Haegens 
et al., 2012). In this sense, higher posterior alpha 
was associated with more accurate and faster 
responses. This modulation was independent of  
eye condition. We therefore found evidence that the 
inhibition of  visual processing leads to increased 
task performance. This is in line with the idea that 

through alpha increase over visual regions, resources 
are gated towards task-relevant brain regions, leading 
to more successful behavioural outcome. This gating 
process does not seem to be impacted by eye closure. 

In summary, we did observe a steady increase of  
alpha activity with eye closure, yet the anticipatory 
alpha modulation showed a higher increase for the 
eye-open condition. Furthermore, even though 
posterior alpha modulation showed an impact on the 
behavioural outcome, this effect was independent 
of  eye condition. This implicates, that the eye 
closure induced alpha increase and the inhibitory 
alpha modulation during the EO condition, follow 
the same mechanism to suppress visual regions and 
improve the somatosensory task performance. 

Similar mechanism for alpha and beta?

Interestingly, we observed similar effects in the 
beta range (15 – 30 Hz) as for the alpha range. 
First of  all, we observed an eye closure effect not 
only for alpha but also for beta oscillations. This is 
not surprising as previous research has indicated 
an effect of  eye closure on all frequency bands to 
some extent (Geller et al., 2014). We here show — 
in contrast to previous findings (Geller et al., 2014) 
— that the beta effect of  eye closure was limited to 
occipital sensors and does not show a widespread 
pattern like alpha. This could implicate, that with eye 
closure, unlike alpha, beta does not show a further 
influence on processing mechanisms outside the 
occipital cortex, but only reflects an impact of  the 
disengagement of  the visual domain.

Regarding anticipatory oscillatory modulation, 
we observed a sustained contralateral decrease of  
beta activity for the pre-stimulus interval, similar 
to the alpha activity. Previous studies proposed 
that beta follows a similar mechanism as alpha 
during somatosensory attentional tasks, reflected 
by a modulation of  beta activity in the form of  
contralateral decrease in anticipation of  expected 
stimuli and an impact of  this modulation on 
performance speed (van Ede, Jensen, & Maris, 
2010; van Ede, de Lange, Jensen, & Maris, 2011). 
However, a study by Haegens et al. (2012)  also 
showed a possible dissociation of  alpha and beta in 
the somatosensory domain, with ipsilateral increased 
alpha being accompanied by decreased beta activity 
(see Spitzer & Haegens, 2017, for further discussion 
on a potential alpha-like role of  beta oscillations). 

For future investigation of  the interplay of  these 
two oscillatory bands, we are planning to expand our 
analysis to also take into account a possible effect 
of  beta modulation during somatosensory attention. 
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If  the current trend of  a similar beta activity to the 
alpha activity holds true, it would speak for further 
evidence of  similar functions of  the two oscillatory 
bands in the context of  somatosensory tasks. 
Furthermore, it will be interesting to see whether the 
eye closure effect on beta oscillations, which showed 
to be specific for occipital sensors, shows a different 
modulation than for alpha oscillations.

Future directions

It has to be noted that the results reported here 
were all conducted on sensor level, which hold the 
constraint of  a mixture of  signals from different 
sources. This complicates possible assumptions 
of  the origins of  a signal. Therefore, the selection 
of  our ROIs also followed a less spatially resolved 
categorisation, with possible contamination of  
auditory and visual sources. For future directions 
we plan to move to a source level representation of  
the data. For this the individual anatomical MRIs of  
the participants were collected to enable a source 
reconstruction using beamformer techniques, which 
allow to counteract the problem of  spatial mixing 
and allow for more precise interpretation of  effects.

Conclusion

We showed a general increase of  alpha 
oscillations with eye closure as long established 
(Adrian & Matthews, 1934; Geller et al., 2014), with 
a widespread pattern of  alpha, which implicates a 
possible influence of  eye closure on processes outside 
the visual domain. Furthermore, the findings of  this 
study support the previously proposed mechanism 
of  alpha oscillations to gate information flow in 
the brain through functional inhibition (Jensen 
& Mazaheri, 2010; Foxe & Snyder, 2011). In this 
sense, we showed that alpha power over posterior 
sensors increased more when available visual input 
had to be actively inhibited as attention was guided 
towards the somatosensory domain. This posterior 
alpha activity increase furthermore has shown to be 
behaviourally relevant for both eyes conditions, as 
performance increased with higher alpha activity. 
This implies that with an increased inhibition of  
the visual domain, attentional resources are gated 
towards the somatosensory task, independent of  eye 
condition. We replicated a pattern of  contralateral 
alpha decrease over task-relevant somatosensory 
sensors, indicating a regulatory role of  alpha for 
facilitation of  excitability. However, we did not 
replicate previous findings of  a somatosensory 
alpha lateralization impact on performance 

outcome, which leads to the assumptions that the 
somatosensory lateralized alpha modulation might 
only reflect a neural process but does not further 
influence behaviour. Our behavioural results 
furthermore contradict an anecdotal assumption 
of  performance improvement with eye closure, 
as we report an increase of  reaction times for the 
eyes-closed condition. In summary, we provide 
novel insights into alpha activity during eye closure, 
showing evidence that while eye closure increased 
the global alpha activity it did not further impact the 
inhibitory alpha modulation on performance. 
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Supplementary Material

Methods of visualisation

To visualize attention effects within the pre-
stimulus interval, we evaluated the pre-stimulus 
FFT based on whether attention was being guided 
to the left or the right hand (dependent on the 
auditory cue). For this, we divided trials into four 
conditions: EO attention-right, EO attention-left, 
EC attention-right, and EC attention-left. A baseline 
correction was applied based on the FFT of  the 
baseline window -1 s to 0 s of  cue-onset. Baseline 
corrections were done separately for EO and EC 
trials. For each attention side of  each condition the 
whole-head power distributions were computed. 

For a visualisation of  the lateralization pattern 
the pre-stimulus FFT was once again divided into 
the four conditions, based on eye-condition and 
attention-side, but not baseline corrected. Instead, 
a normalization in the form of  (attention-left – 
attention-right) / (attention-left + attention-right) 
was computed for each eye-condition separately. 
This normalization leads to positive values if  there is 
a stronger decrease in the attention-right condition 
and negative values for a stronger decrease in the 
attention-left condition.

To obtain a representation of  the modulation of  
alpha activity over time, the TFR of  the pre-stimulus 
interval (-1 s – 0 s) was divided into EO and EC 
trials and baseline corrected (with baseline -1.5 s – 
-1 s) for each condition separately. As before, the 
left vs right normalization of  attention sides was 
applied for the two conditions. Only the individual 
somatosensory ROIs were used for this visualisation. 
Left hemispheric sensors were mirrored to combine 
them with the right hemispheric sensors, leading to 
a general representation of  the decrease of  activity. 
Power spectra of  low frequencies in the range of  5 
to 30 Hz were used for this visualisation.
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It is currently unclear how the language network in the brain evokes a concept that is the result of  semantic 
composition. We conducted a pilot study laying the groundworks for a laminar functional magnetic resonance 
imaging (fMRI) study that aims to investigate this matter further. A paradigm was developed where target 
words were either primed through compositional semantics, identity primes, neither, or both. A behavioural 
experiment showed that the identity priming manipulation successfully reduced reaction times in a lexical 
decision task, which was the predicted behavioural effect. We predicted and found a modulated blood oxygen 
level-dependent (BOLD) response in the left inferior frontal gyrus and middle temporal gyrus to target words 
that were compositionally primed. This work will inform a subsequent laminar fMRI study, where the directed 
connectivity during sentence processing between these regions will be examined. 
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When using a statement like “It’s getting cold” 
as a request to close a window, one can see that an 
utterance can have meaning beyond the word-level. 
The example shows that it is possible to produce 
utterances that, as a whole, evoke a certain image 
unattributable to the individual words making 
up the sentence. A sentence such as, “The man 
followed the woman and lifted the wallet from her 
bag,” would likely evoke the image of  a pickpocket. 
The distinction between the word-meaning and the 
sentence-meaning becomes clearer when the word 
order is switched around. In “The woman followed 
the man and lifted the wallet from her bag,” the idea 
of  a pickpocket is largely irrelevant, even though 
the individual words in both sentences are identical. 
We will refer to this sentence-level meaning as the 
compositional meaning of  the sentence, and the 
processes by which it is derived as composition. 

Even though speakers constantly derive 
the compositional meaning of  utterances they 
encounter, this topic has not received a great deal of  
attention in the neuroimaging and priming literature. 
Common psychological and neurobiological 
models of  sentence processing acknowledge the 
presence of  some form of  semantic composition 
by including a step where listeners combine words 
into a coherent whole, but neglect to speculate how 
this compositional meaning is eventually retrieved 
(Ferreira & Lowder, 2016; Frazier & Clifton, 1996; 
1997; MacDonald et al., 1994; Vosse & Kempen, 
2000; Humphries et al., 2006; 2007; Friederici, 2011; 
Hagoort, 2005; 2013; 2016). If  the syntactic and 
semantic components of  an utterance are the recipe 
for the compositional meaning, then the current 
models would be akin to a cooking class that ended 
once eggs, flour and milk are mixed into a bowl. A 
critical subsequent step is missing to get to a fully 
baked conclusion. It is currently understudied how 
the networks responsible for the composition of  
language evoke a concept or image as a result of  
complex input.

The common language network

Computational and neurobiological models of  
sentence processing have both set out to explain 
the processes that give rise to sentence processing. 
Computational models set out to study what 
computations (e.g., statistical inferences or network 
behaviour) may lay at the root of  sentence processing. 
Neurobiological models in the meantime try to 
understand which sections of  the brain are involved, 
what the role of  each section might be in sentence 
processing, and how they interplay. Research on the 

neurobiology of  language has converged on a model 
that includes a large, mostly left-lateralised network. 
This network includes a large array of  regions: from 
the visual word-form area on the occipito-temporal 
border, involved in reading (Dehaene & Cohen, 
2011) and bilateral temporal cortex, which has been 
linked to speech sound processing (McGettigan 
& Scott, 2012), to the inferior frontal gyrus (IFG; 
Thompson-Shill et al., 1997) and angular gyrus (AG; 
Binder et al., 2009). We will focus on the properties 
of  the left middle temporal gyrus (MTG), IFG, 
and AG, as these appear to play a more prominent 
role in semantic processing of  both words and 
sentences (Friederici, 2011; Hagoort, 2005; 2013; 
2016). Understanding this network is then crucial 
to understanding how compositional meaning is 
derived from utterances, and vice versa.

When it comes to developing a map of  the 
language network, modern neurobiological models 
of  language overlap in key aspects, for example the 
importance of  the temporal lobe. Involvement of  
the MTG seems to be critical in semantic processing, 
lexical memory retrieval, and conceptualisation 
(Whitney et al., 2010; Snijders et al., 2010; Visser et 
al., 2012; Hagoort, 2013; 2016; Davey et al. 2016). 
Structurally, its spatial proximity to the hippocampus, 
as well as its pronounced structural connections to 
the occipital, frontal, and parietal lobes make it a 
strong candidate region for these functions (Turken 
& Dronkers, 2011).  The connections between MTG 
and frontal cortex are further supported by Xiang 
et al. (2010), where a functional connectivity map 
of  IFG based on resting state fMRI data showed 
links with MTG in the perisylvian language network. 
Here, functional connectivity shows how regions 
functionally communicate, beyond the structural 
pathways that may be in place. Due to its wide 
connections, the MTG is believed to be involved in 
conceptual representation processes (Snijders et al., 
2010; Hagoort, 2013; 2016). Further frontotemporal 
connections are proposed by Friederici (2011), who 
lays out the structural pathways through which the 
temporal cortex communicates with the frontal 
lobe. The posterior superior temporal gyrus (STG) 
and BA44 are connected through a dorsal pathway, 
and the anterior STG is connected with BA45 and 
the frontal operculum through two ventral pathways 
(Friederici, 2011). These connections illustrate its 
potential for complex language processing.

Hagoort (2013; 2016) and Humphries et al. (2006) 
seem to agree that the MTG is involved in word-level 
semantic processing. Their claim is supported by, 
among others, Snijders et al. (2009), which tested the 
computational Unification Space model proposed 
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by Vosse and Kempen (2000), and found that MTG 
activity is related to lexical retrieval, including word-
level semantics. However, Humphries et al. (2006) 
also agree with Friederici (2011) in suggesting that the 
MTG (as well as the STG and the anterior temporal 
lobe regions) are additionally involved in semantic 
relation calculations, such as ambiguity resolution. 
The MTG’s connectivity profile nominates it as a 
candidate for this early composition function, as 
it both centrally connects brain regions implicated 
in language processing and since it is sensitive to 
lexical retrieval demands. Despite the different 
interpretations of  MTG’s function in language 
processing, however, it is generally accepted that the 
MTG is involved in language processing in some 
capacity. 

As the demand for integration of  new input 
increases, so does IFG activity. It is considered 
critical to composition processing, be it for relation 
calculations (Friederici, 2011) or for composition 
directly (Hagoort, 2013; 2016). Hagoort (2016) 
provides a description of  the connections between 
the MTG and the IFG, where the two regions are in 
continuous back-and-forth with one another during 
ongoing integration of  a stream of  input. Through 
feedback loops, context of  the overall input is 
repeatedly adjusted (for a more detailed study of  
the connectivity profile of  the IFG, see Xiang et 
al., 2010). Thompson-Shill et al. (1997) found that 
response selection on the basis of  semantic relations 
involved the IFG, but simple retrieval processes did 
not. This suggests that the IFG is indeed involved 
when semantic properties of  disparate items need 
to be evaluated (see also Roskies et al., 2006). Zhu 
et al. (2009) found that small semantic violations 
evoked larger IFG responses (corresponding with 
longer rejection times) than large violations (which 
had shorter rejection times). The differential IFG 
activity in semantic manipulations suggests that the 
IFG is involved in semantic processing (as opposed 
to exclusively syntactic processes), where a higher 
degree of  successful integration leads to more 
activity. However, Zhu et al.’s (2009) results could 
also be interpreted as resulting from re-evaluation 
difficulties, where large violations simply are given 
up on, and small violations require more effort. 
Regardless, IFG activity appears to be related to 
the extraction of  meaning from input that requires 
composition to interpret correctly. Studies on the 
time course of  MTG and IFG activity provide 
converging evidence for a functional hierarchy 
between these two regions. Frontal activity during 
sentence processing follows temporal activity (100-
300ms in Friederici, 2011; ~150ms in Hagoort, 2013), 

suggesting that frontal processes during sentence 
processing rely on input from the temporal cortex. 
Again, different models propose different functions 
of  the IFG. Humphries et al. (2006) found IFG 
activity after both coherent and incoherent complex 
input, suggesting that the IFG is always active for 
complex input, and Friederici (2011) suggests 
that IFG activity in language processing is largely 
attributable to syntactic processing. Here we will 
assume that the IFG is the locus for compositional 
processes, following the Memory, Unification, and 
Control (MUC) model (Hagoort, 2013; 2016). 

The model that we take as a starting-point in this 
study is Hagoort’s (2016) MUC model, due to the fact 
that it makes clear predictions of  feedback between 
its titular unification and memory components. 
Following this model, we expect that we can measure 
both the effect of  input in the MTG through retrieval 
processes, and the effect of  composition as a result 
of  a neural feedback system in the MTG (Snijders et 
al., 2010; Baggio & Hagoort, 2011). The purpose of  
the present study is to determine whether the IFG 
communicates with the MTG in feedback fashion 
during compositional meaning processes, to evoke 
a unified representation. However, we deviate from 
the MUC model in one aspect. We would expect 
that compositional meaning elicitation could also 
involve other regions, like the AG, as some literature 
suggests (e.g., Humphries et al., 2006; Binder et al., 
2009), which the MUC model proposes is involved 
in retrieval processes (Hagoort, 2016). Evidence 
for how or why the AG is involved in this process 
is currently still lacking, however. Overall, we will 
maintain an exploratory approach, in order to further 
develop a fully comprehensive model of  sentence 
(or language) processing in the brain.

Laminar fMRI

The experiment discussed in this thesis will serve 
as a pilot study for subsequent work investigating 
the behaviour of  laminar structures in relation to 
processing compositional meaning. It was as such 
designed with laminar resolution functional magnetic 
resonance imaging (fMRI) in mind. 

Laminar fMRI refers to the acquisition of  fMRI 
data at a high-enough resolution for the blood 
oxygen level-dependent (BOLD) -response in 
the grey matter to be separated into several bins 
over depth (conventionally voxel sizes <1mm³). 
The responses within these bins are then looked 
at independently. Based on the assumption that 
layer-specific activity is attributable to top-down or 
bottom-up processes (e.g., Kok et al., 2016; Sharoh 
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et al., 2019), it becomes possible to study how brain 
regions interact with one another at different levels. 
Here we define top-down processes as information 
being relayed from a hierarchically higher region 
to a hierarchically lower region (i.e., feedback). In 
more concrete terms, activity in the middle layer of  
isocortex is generally evoked by signals from brain 
regions that are involved at a lower level in a given 
process than a reference region (i.e., bottom-up 
processes); meanwhile activity in the superficial and 
deeper layers of  isocortex are commonly attributed 
to input from higher order regions (i.e., top-down 
processes; Harris & Mrsic-Flogel, 2013; Lefort, et 
al., 2009; Brown & Hestrin, 2009).

Studying these top-down and bottom-up 
connections in vivo in this way was inaccessible 
until the advent of  laminar fMRI (Koopmans et al., 
2010; Olman et al., 2012; Kok et al., 2016; Sharoh 
et al., 2019). It is important to understand these 
connections, since a lot of  the brain’s functioning 
relies on attentional and world-knowledge restrictions 
that are imposed by higher-order areas onto, for 
example, sensory brain regions (e.g., Hagoort et al., 
2004; Kok et al., 2016). One reason why feedback 
during sentence processing is currently understudied, 
is because there are notable difficulties in capturing 
this activity using non-invasive neuroimaging 
techniques. One way to study feedback processes in 
the brain would be to look at the functional time-
course of  different brain regions, and see how 
activity in higher-order regions temporally correlates 
to activity in lower-order regions. In fMRI, this is 
difficult because the low temporal resolution of  
the BOLD response, on which fMRI relies, makes 
it difficult to disentangle activity patterns with high 
temporal overlap. Additionally, the variations in the 
hemodynamic response make it difficult to compare 
the temporal relations between activity patterns 
(Aguirre et al., 1998; Kastrup et al., 1999). These 
properties of  the signals that are measured in fMRI 
cause problems when inferring which underlying 
activity preceded which. Electroencephalography 
(EEG) and magnetoencephalography (MEG) in 
the meantime suffer from their own restrictions. 
Even with the high temporal resolution of  M/
EEG, which allows these methods to capture the 
fine temporal aspects of  communication between 
the IFG and MTG, and the relatively high spatial 
resolution of  MEG, it is potentially problematic to 
decide the causal relationship of  temporally related 
activity patterns. This is especially the case in on-
going processes such as sentence processing, where 
continuous activity causes temporal overlap (but see 
Lyu et al., 2019). 

Laminar fMRI, in combination with specialised 
analysis methods, offers an alternative to the strictly 
temporally-based method. Laminar fMRI enables 
the study of  directed connections on the basis of  
structural properties of  the in vivo brain (Koopmans 
et al., 2010; Olman et al., 2012; Kok et al., 2016; Sharoh 
et al., 2019). By looking at layer-specific activity in 
laminar fMRI, the issue of  low temporal resolution 
is circumvented when looking at interregional 
interactions, by looking at which layers of  different 
regions respond to a given stimulus (e.g., Kok et al., 
2016; Sharoh et al., 2019). Assuming different layers 
receive input from different hierarchical directions, 
by finding an interaction between different layers of  
two regions, it is plausible to infer how these two 
regions communicate, especially if  there is evidence 
for a directed correlation between regions. By 
designing stimuli that differentially evoke bottom-
up and top-down activity in a region(s) of  interest 
(ROI), it becomes possible to disentangle which 
regions communicate with this ROI, in what order, 
and what proportion of  the measured activity 
within a region relates to bottom-up and top-down 
processes.

Our manipulation

Behavioural priming is the psychological effect 
where, once a person is presented with a stimulus, 
their reaction to a similar stimulus is affected 
compared to if  an unrelated stimulus were presented. 
An example of  these priming effects in language is 
identity priming, where recognition or production of  
a word is enhanced if  it has been presented before 
(e.g., Buckner et al., 2000; Raposo et al., 2006). 
There is also semantic priming, where processing of  
an item is once again enhanced if  it is semantically 
related to a preceding stimulus (e.g., Hutchison, 
2003; Rissman et al., 2003; Rossell et al., 2003; Wible 
et al., 2006), or syntactic priming, where sentence 
structures are comprehended or produced more 
easily if  they have been presented earlier (Pickering 
& Branigan, 1999). Moreover, these effects have 
been found in neuroimaging experiments in the 
form of  modulated BOLD or event-related potential 
(ERP) responses (for a review, see Segaert et al., 
2013). Our assumption is that identity priming is a 
mix of  lower order priming and semantic priming, 
and that we can evoke a top-down semantic priming 
effect through compositional primes. We expect 
that by manipulating the degree of  different forms 
of  priming, we can disentangle the top-down and 
bottom-up processes that lead to a compositional 
interpretation of  linguistic input. We will further 
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discuss identity and semantic priming, as these 
forms of  priming were used for our manipulation. 

At the neuronal level, these priming effects 
manifest as a modulated response of  the neuron due 
to repeated activation. While this often goes paired 
with a behavioural effect as well (for a review on 
semantic priming, see Hutchison, 2003), we will 
focus on the neural response in light of  this study. 
The most straightforward and strongest effect is that 
of  identity priming. If  an individual is stimulated 
in an identical fashion twice in a row, the neural 
response to the second stimulation is modulated 
by the first. Most commonly, this effect is found 
in the form of  repetition suppression (Segaert 
et al., 2013). This effect has been found in visual 
priming (Summerfield et al., 2008), auditory priming 
(Bergerbest et al., 2006), motor priming (de C. 
Hamilton & Grafton, 2008), and linguistic priming 
(Buckner et al., 2000; Raposo et al., 2006). We expect 
that we can modulate the lower order representations 
of  semantic concepts by repeating the lower level 
stimulation. It should be noted, however, that 
repetition priming has also been linked to repetition 
enhancement effects. Segaert et al. (2013) concluded 
in their review that this enhancement is likely due 
to feedback effects as well, where the direction of  
the effect is task dependant. We nonetheless expect 
part of  this offset to be driven by bottom-up activity 
modulating the neural response to the presentation 
of  an identity-primed target word.

Semantic priming is one step removed from 
this. Semantic priming is the pre-activation of  
semantic representations based on a non-identical, 
semantically related prime. Behavioural experiments 
have previously shown that reaction times are faster 
in a number of  tasks when a target is semantically 
primed against a non-primed condition (for a 
review, see Hutchison, 2003). At the word-level, the 
semantic priming effect has been found in several 
fMRI studies, where the STG and the MTG showed 
stronger activity in the unrelated condition than in 
the related condition (Rissman et al., 2003; Rossell 
et al., 2003; Wible et al., 2006). Notably, the priming 
effect appears to be stronger for identity priming 
than for semantic priming (e.g., Rugg, 1985). 
Moreover, the priming effects of  linguistic context 
and repetition appear to be additive (Den Heyer et 
al., 1985). While Den Heyer et al. (1985) only studied 
these priming effects in a behavioural study, it 
suggests that the effect of  repetition priming is not 
at ceiling and can be enhanced with context priming. 
As such, the combined effect can be distinguished 
from the individual effects. In addition, if  we can 
find this additive effect in behaviour, it stands to 

reason that these individual effects have their unique 
(albeit potentially overlapping) neural fingerprints. 
Whether the semantic priming effect is the result 
of  feedback from higher regions, communication 
of  neurons on the same hierarchical level, or 
both is currently uncertain. It is worth noting that 
expectancy, a top-down effect, can influence the size 
of  the semantic priming effect (e.g., Keefe & Neely, 
1990), but it is unclear how such effects inform the 
expected effects of  a compositional prime. 

As with identity priming, semantic priming may 
induce enhancement effects, depending on task or 
ROI (e.g., Rossell et al., 2003; for a review, see Segaert 
et al., 2013), but again we expect that semantically 
priming a target evokes a modulation nonetheless. 
If  we assume that a (deliberately constructed) 
sentence can elicit a unique semantic representation, 
then this representation should semantically prime 
related targets (similar to the context effect in 
Den Heyer et al., 1985, but at the sentence level). 
We expect a modulation as a result of  the IFG 
communicating the output of  composition to the 
MTG in the case of  these compositional primes, 
without lower order priming effects. In response to 
the compositional stimuli, we expect IFG activity 
to be higher compared to a non-compositional 
condition, and we expect this activity to be related 
to MTG activity. By manipulating the compositional 
semantic representations, we predict we are able 
to study the top-down effects of  the IFG onto 
the linguistic memory network through semantic 
priming effects (be they in the form of  suppression 
or enhancement). It should be pointed out that 
identity priming may include a semantic priming 
effect, since prime and target are semantically related, 
but it includes a lower order priming effect as well. 
We do not expect a correlation with IFG activity and 
the identity manipulation.

Our main interest is to see how the interpretation 
of  utterances would neurally prime a target word. To 
do this, we want to look at the differences between 
priming of  a target word by an identity token and 
by a complex, compositionally related token. We 
assume that priming effects from a compositional 
token would result from higher-order composition 
processes. These higher-order processes proceed to 
activate a combined conceptual representation that 
would be relayed back to the memory compartment 
of  the language system. This feedback-induced 
priming effect would be identifiable by its laminar 
profile. In order to allow the study of  the laminar 
activity profile of  top-down processes in the future, 
we manipulate the bottom-up effect as well. This 
way, changes in the BOLD response between 
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layers and conditions may be disentangled. We 
assumed that the priming effect of  the identity 
prime includes a bottom-up effect in the MTG. 
Combining these factors, we end up with four 
conditions: a compositional prime (sentence) that 
includes an identity prime (i.e., a copy of  the target) 
(+Comp/+ID); a compositional prime (sentence) 
where the identity prime is replaced with another 
word, but is otherwise identical to the +Comp/+ID 
prime (+Comp/-ID); a non-compositional prime, 
which is a scrambled list of  words, one of  which 
is the identity prime for the target (-Comp/+ID); 
a non-compositional prime (scrambled list of  
words) that does not contain the identity prime         
(-Comp/-ID).

Since this is a pilot study, our predictions will 
remain general. We predict that we find a priming 
effect in the left MTG for both the identity and 
compositional priming conditions. We expect that the 
IFG is more strongly involved in our compositional 
condition. We expect that MTG activity shows a 
repetition effect for the identity conditions, and a 
semantically primed pattern for the compositional 
conditions. We also might expect some AG activity 
in response to the compositional primes.

Methods

Design

We designed an experiment to identify potentially 
distinct language processing mechanisms through 
different priming methods. Our paradigm consisted 
of  a 2*2 design with compositional priming (on vs. 

off) by identity priming (on vs. off) manipulations. 
Primes consisted of  strings of  words. Targets 
consisted of  single words. The prime strings were 
either intact Dutch sentences (Sentence), or random 
strings of  Dutch words (Scramble). The sentences 
were always designed to be compositionally 
equivalent to the target word (compositional 
primes), whereas the scrambles were designed not 
to be (non-compositional primes). Our goal was to 
semantically prime the target with the compositional 
primes. In addition, we manipulated whether the 
target word was present in the prime string (identity 
prime) or replaced by a word that did not prime that 
target by itself  (non-identity prime). See Table 1 for 
a schematic overview of  the study design. Target 
words never exceeded 13 characters in length to fit 
within the reading span limit imposed by Rayner 
(2009) and consisted only of  nouns and (inflected) 
verbs. Scrambles were created so that there was no 
intrinsic semantic priming at both the compositional 
and word levels (see subsection scrambling for the 
scrambling procedure). 

Stimulus creation

Stimuli were constructed in several steps outlined 
below. Two native Dutch speakers constructed 236 
sentences for the compositional prime conditions. 
126 of  these sentences were adapted from Lai et 
al. (2015). Each sentence was constructed with a 
target in mind that semantically summarised the 
prime (e.g., PRIME: “The man followed the woman 
and lifted the wallet from her bag”; TARGET: 
“Pickpocket”). Additionally, the target had to be able 

Table 1. The primes for the target “verdrinking” (drowning) in each condition. Original Dutch presented in 
black, followed by the grey English translation. The translation is intended to reflect the intended message 
of the sentence and may not accurately reflect the word-count or the semantic relations between individual 
items and the target of the Dutch item.
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to replace an item in the sentence without altering 
the interpretation or interpretability of  the sentence 
(e.g., PRIME: “The pickpocket followed the woman 
and lifted the wallet from her bag”; TARGET: 
“Pickpocket”). The stimuli based on Lai et al. (2015) 
contained a valence confound. We subsequently 
constructed our items so that half  of  the final set 
would contain negative valence composition, and 
the other half  neutral valence composition. Valence 
was considered an orthogonal manipulation but was 
not included in the pilot analyses.

Nearest neighbour test. Following stimulus 
construction, we confirmed that the individual lexical 
items in the primes were not likely to semantically 
prime the target by themselves.  The vector space 
model for semantic distance snaut was used for this 
purpose (Mandera et al., 2017) and rank nearest 
neighbour was taken as our distance metric (Lapesa 
and Evert, 2013; 2014). Lemma-level rather than 
word-level relations were used to avoid the influence 
of  syntactic information. Nearest neighbour ranks 
of  lemmas were based on the cosine distance 
between vector representations (Kenett et al., 2017; 
Ettinger et al., 2016; Lenci, 2018). Lexical items that 
fell outside the first 40 nearest semantic neighbours 
were considered non-priming. We verified both 
forwards and backwards distance values. 

Frequency in the training data of  snaut seemed 
to affect the reliability of  the semantic distance 
values. Vector values that were based on insufficient 
data were taken to be unstable. We determined an 
item needed at least 500 exemplars in SoNaR-500 
(Oosterdijk et al., 2013) . Word-level distance was 
considered if  snaut reported no instances for the 
lemma-level distance, and if  the frequency threshold 
was met in SoNaR-500. Where spotted and possible, 
if  the item used in the stimuli had a low frequency 
(<500), a synonym with a higher frequency was 
used in snaut (e.g., kots instead of  braaksel; both 
“vomit”). In case the target had a SoNaR-500 
frequency of  <500 and no reasonable alternative 
form was available, the target was replaced entirely. 
Two items were excluded after this step (resulting N 
= 234).

Independent prime-target associations. 
Following the nearest-neighbour assessment, one RA 
and two interns were asked to provide at least three 
associations for each prime independently. If  at least 
two of  these judges agreed on a target, the target 
was accepted for later steps (be it our target or a new 
target). If  one agreed with our target and/or the 
rest gave associations close to our target, the target 

was checked and either changed accordingly, or left 
unchanged for later steps. If  targets were changed, 
they were checked against snaut again. If  there was 
no consensus on a target, or if  implementing a new 
target would violate the other criteria for our stimuli, 
the entire item was removed from the stimulus list. 
223 items remained in the stimulus list after this 
process.

Assessing stimulus frequency. A frequency 
analysis of  the lemmas of  our items was performed 
next using the subtitle corpus SubtLex-NL (Keuleers 
et al., 2010; see also New et al., 2007; Dimitropoulou 
et al., 2010). This was done to reduce the influence 
of  item frequency on our measurements. Non-
content words were deleted from the stimulus 
list, and remaining items were replaced with their 
uninflected forms. The raw lemma frequency for 
each content word was extracted and the 10log for 
each item was calculated (Howes & Solomon, 1951; 
but see also Murray & Forster, 2004). Next, the mean 
and standard deviation for targets (M = 2.74, SD = 
0.712, n = 234 ) and prime content items (M = 3.60, 
SD = 1.10, n = 1606) were calculated separately. 
The outcome indicated that targets were on average 
10 times less frequent than prime content items. 
This was to be expected since target items were 
often more specific (i.e., less underspecified) than 
the items they replace in the primes, and thus less 
frequent. We ensured that no items were more or 
less frequent than three times the standard deviation 
from the mean. This was done separately for target 
items and prime content items. Six items fell outside 
the 3SD range (one of  234 targets and five of  
1606 sentence items). These were replaced and the 
semantic relations of  these new items to the targets/
primes were confirmed using snaut. A subsequent 
identical check was done at 2SD, to ensure that, 
while all items were within 3SD, the distribution was 
not weighted towards the tails. Here 52 items stood 
out (six of  234 targets, 46 of  1606 sentence items). 
This was considered to be within acceptable limits.

Valence check. As the stimuli contained a 
valence manipulation, we verified that independent 
participants replicated our valence labelling. A 
valence judgement survey was constructed for 
LimeSurvey (Limesurvey GmbH). Items had to 
be judged on a 1-to-9 scale (1 being negatively 
valent, 5 being neutral, 9 being positively valent), 
using the Self-Assessment mannequin (Bradley & 
Lang, 1994). Four separate surveys were developed 
totalling all individual lexical items in our stimuli (N 
= 1107, 223 Target items), and another survey for 
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the compositional primes as a whole (N = 2342). 
Subjects were recruited using the Max Planck Institute 
for Psycholinguistics participant database until each 
list had exactly ten complete responses (total N = 
57, male = 8). The study was conducted according 
to the institutional guidelines of  the local ethics 
committees. The survey was conducted online and 
in an environment unknown to the experimenters. 
Subjects were encouraged to complete the survey 
on a laptop or desktop computer (mobile N = 4). 
Subjects could pause and recommence the survey at 
any time. Informed consent was collected through a 
confirmation screen at the start of  the questionnaire, 
and subjects were reimbursed for 30 minutes of  
their time. Individual responses were excluded 
on the basis of  the item-specific SD and mean, 
where responses > 2SD from the item mean were 
excluded. The mean and SD for each item was then 
recalculated. All three categories showed evidence 
for high linearity (sentences, targets, and sentence 
items). Rank correlation for prime valence was ρ = 
0.991 (Fig. 1A), for target valence ρ = 0.985 (Fig. 
1B), and for prime content item valence ρ = 0.962. 
When comparing the pre-labelled valence groups 
(negative vs. neutral) on valence scores using a 
t-test assuming inequality between groups (negative 
= 115; neutral = 108), scores showed a significant 
difference between the negative-labelled items and 
the neutral-labelled items (P = 2.0e-53, ci = -2.64; 
-2.20, t-stat = -21.6 and DF = 193.15). Testing for a 
correlation between prime scores and target scores 
showed evidence for a correlation, after removing 
prime-target pairs with a difference in valence scores 
> 3 SD (= 3 * 0.76) from the mean difference (= 

1.0) (Nremoved = 2). Due to an unidentified error, 
one item was missing from the resulting list. The 
resulting list included 220 items with a correlation 
coefficient of  ρ = 0.81 between prime valence and 
target valance (Fig. 2) at P = 3.7e-49. Prime content 
items had a mean valence value of  5.2, with an SD 
of  1.60 after removing outlier responses. Due to the 
high linearity in the valence scores, we decided to add 
the prime and target valence scores as regressors for 
each item for the analysis in the main study, rather 
than rely on the binary negative/neutral labels. 

Semantic relatedness test. The remaining 
items were then assessed in terms of  their semantic 
relatedness. A semantic relatedness judgment task 
was created using LimeSurvey (Limesurvey GmbH). 
Participants who participated in the valence survey 
were excluded from participating in this survey. Target 
items were judged on their semantic relatedness to 
a preceding sentence on a 1-to-5 scale. Sentences 
could not be revisited once the target was presented. 
Our stimuli were split into two counterbalanced lists. 
In each list, half  the target items remained paired 
with their intended prime, and half  the targets were 
swapped randomly between primes. These new pairs 
were then checked to make sure they were not judged 
as semantically related at the sentence level by one 
of  the researchers. Next, two versions of  both lists 
were created, where each version contained ~50% 
+Comp/-ID primes and ~50% +Comp/+ID 
primes, to ensure that the identity manipulation 
did not have a detrimental effect on the semantic 
relatedness judgment. This resulted in a total of  four 
conditions (related vs. unrelated target * +Comp/-

Figure 1. A. Valence scores ordered by rank for each prime. B. Valence scores ordered by rank for 
targets. Both primes and targets show high linearity between score and rank (ρ = 0.991 and ρ = 0.985 
respectively).
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ID vs +Comp/+ID prime) for each stimulus across 
lists (stimuli per list = 221 ). Subjects were recruited 
using the Max Planck Institute for Psycholinguistics 
participant database until each list had a total of  five 
complete responses (total N = 22). The study was 
conducted according to the institutional guidelines 
of  the local ethics committees. The survey was 
conducted online and in an environment unknown 
to the experimenters. Subjects were encouraged 
to complete the survey on a laptop or desktop 
computer (tablet N = 1, mobile N = 1). Subjects 
could pause and recommence the survey at any 
time. Informed consent was collected through a 
confirmation screen at the start of  the questionnaire, 
and subjects were reimbursed for 30 minutes of  
their time. All complete responses were included in 
the analysis. We chose an average relatedness score 
of  >3 in the related conditions as a cut-off  point 
to exclude items. This point coincided with 2SD 
from the mean of  the +Comp/-ID primed targets. 
Thirteen items were removed from the stimulus list 
as a result (all on the basis of  the +Comp/-ID prime 
relation), leaving a total of  208. Once these items 
were removed, no further statistics were performed 
on the results. Visualisation of  the mean scores after 
exclusion indicated a clear separation between the 
related and unrelated conditions (Fig. 3). 

Scrambling. After the two sentence lists 
(+Comp/+ID and +Comp/-ID primes), scramble 
primes for each target were generated (-Comp/+ID 
and –Comp/-ID). Two non-compositional prime 
lists were created, where one contained the identity 
prime and one did not. To create these lists, the 
+Comp/+ID prime lists were randomly divided 
into two groups. Each group was converted into a 

string array, where each prime was represented as 
a row vector. Individual strings in each array were 
first jumbled within columns. Gaps formed within 
rows. To repair these gaps, all strings were moved to 
the top of  the array, and empty values were inserted 
between strings so that each row was of  the same 
length as it was previously, matching the length of  
its associated compositional prime. Then all prime 
content items were jumbled within rows, and all 
strings were aligned to the left to remove any gaps. 
Identity tokens were swapped back to their original 
row and column, so that they matched the location in 
the original primes. Each resulting group was copied, 
and for each copy the identity token was replaced 
with the prime-matched token in the non-identity 
prime condition (e.g., verdrinking with stroming 
in Table 1). Some primes contained split verbs in 
the -ID condition but not in the +ID condition. 
Missing words in these non-identity scrambles were 
added to the prime at a location that matched the 
number of  words between the prime-matched token 
and the target in the non-identity sentence. Each 
non-compositional prime was checked with snaut 
again (Mandera et al., 2017). In case of  a violation 
(rank nearest neighbour <40), items were manually 
swapped between primes. The result was four non-
compositional prime groups, each matching half  
of  the compositional primes. These consisted of  
two -Comp/+ID prime groups, with two matching 
-Comp/-ID prime groups. 

Next, all four prime conditions for each target 
were divided into presentation lists. Each list was 
created by combining non-compositional primes for 
one half  of  the targets with compositional primes 
for the other half. For both prime-types, half  of  the 
stimuli included an identity prime, and half  did not, 

Figure 2. The correlation between the mean valence score for each sentence and their attributed target 
words, ρ = 0.81.
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so that each subject saw all four conditions. This 
resulted in four unique, counter-balanced lists (see 
Supplementary information for the final lists used 
in the fMRI experiment). At this point, duplicate 
targets were still present in the stimulus list. Duplicate 
targets were removed to avoid between-trial identity 
priming. A final run-through of  the stimuli revealed 
15 items that still needed to be removed, leaving 
the final count at 193 prime-target pairs. The final 
number of  Lai et al. (2015)-based stimuli was 102.

Behavioural experiment

Design. The behavioural experiment was 
still part of  the pre-piloting, designed to see if  a 
behavioural priming effect could be detected before 
attempting to find it in an fMRI experiment. The 
experiment consisted of  a lexical decision task in 
order to provide participants with a task that did not 
explicitly draw attention to the different prime types. 
For this purpose, the main study design was extended 
to a 2*2*2 design, where a word-pseudoword 
factor was added. For each list, half  the targets for 
all four conditions were replaced with a matched 
pseudoword. Pseudowords were constructed using 
Wuggy (Keuleers & Brysbaert, 2010). Verbal and 
written consonant-vowel structures as well as 
assumed stress patterns were maintained based on 
native speaker intuition. In addition, transitional 

probabilities were maintained where possible . This 
resulted in a total of  eight unique, counter-balanced 
lists. Items were initially ordered randomly, before 
being reordered manually to avoid identity priming 
of  targets by earlier unrelated primes. That is to say, 
specific primes would only appear once a particular 
target had already been presented. Some of  these 
cases survived for the behavioural experiment but 
were filtered out in subsequent experiments.

The experiment was performed using 
Presentation® software (Version 20.2, 
Neurobehavioral Systems, Inc., Berkeley, CA, www.
neurobs.com). Primes were presented word-by-word 
in white text on a black background, with an on-
time of  300ms and an off-time of  150ms. After each 
prime, a fixation cross was presented for 1000ms, 
before a 6000ms presentation of  the target. Finally, a 
fixation cross was presented again for 1500ms before 
the next trial began. The task was divided into 13 
blocks, between which short breaks were planned. 

Data acquisition. Participants were recruited 
using the Max Planck Institute for Psycholinguistics 
participant database, and subjects received a 
reimbursement for 45 minutes of  their time. The 
study was conducted according to the institutional 
guidelines of  the local ethics committees. Written 
consent was collected before the start of  the 
experiment. Participants were instructed to indicate 

Figure 3. Histogram of the spread of mean semantic relatedness scores between sentences and targets. 
Purple and yellow indicate the condition in which an unrelated target was presented. Blue and orange 
show the Compositional/Non-identity and Compositional/+Identity relatedness scores respectively. 
Items in the relatedness condition with a score of < 3 were removed.
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upon target presentation whether the target was an 
existing Dutch word or not with a button press, and 
participants were informed that there was a time limit 
involved. A total of  33 healthy, right-handed native 
Dutch-speakers, aged 18-40 without diagnosed 
reading or language disorders, were recruited for this 
experiment. One subject was excluded due to a pre-
screening error. One subject showed an error-rate 
well below chance (85-100% per condition), and their 
responses were taken to be inverted. This subject 
was still included in the analysis after reversing their 
responses. Consequently, we collected four complete 
responses for each stimulus list.

Analysis. For the analysis, responses were filtered 
to only include correct responses to real-word trials, 
leaving only the original two factors (+Comp prime 
vs. -Comp prime * +ID prime vs. -ID prime). Data 
were analysed in R (R core team, 2018) using a 
linear mixed effects (LME) model from the LME4 
package (Bates et al., 2015). Our model included the 
fixed interaction effect between the two factors, as 
well as random effects of  subject and stimulus/trial 
number. Contrasts for both factors were set to -0.5 
and 0.5. This was the most complete model we could 
use for the analysis. Adding random slopes to the 
model prevented convergence and were therefore 
not included.

FMRI experiment

Design. For the fMRI experiment, we utilised 
the original 2*2 design (+Comp prime vs -Comp 
prime * +ID prime vs -ID prime). The pseudo-
word condition was dropped, which meant that 
the amount of  trials for the remaining conditions 
doubled, and thus the statistical power of  the 
experiment was increased. The experiment was 
performed using Presentation® software (Version 
20.2, Neurobehavioral Systems, Inc., Berkeley, CA, 
www.neurobs.com). Primes were presented word-
by-word in white text on a black background, with 
an on-time of  300ms and an off-time of  150ms. 
After each prime, a fixation cross was presented 
for an amount of  time that extended the prime 
duration to the next multiple of  650ms  plus 650 
or 1300ms. Afterwards, the target was presented for 
1300ms. Finally, a fixation cross was presented again 
for 1000-2000ms (in steps of  50ms) before the next 
trial began. The task was divided into seven runs, 
between which short breaks were planned. During 
each break, a light-blue screen was presented to 
reduce participant fatigue. Catch trials were added 
every 6-8 trials. During catch trials, a question mark 

was presented, and participants had to indicate by 
means of  button press whether the preceding prime 
was a sentence or a scramble. The motivation behind 
this task was to ensure participants read our primes 
as intended. Catch trial duration was intended to be 
2600ms, but due to a programming error, catch trial 
duration was 3000ms for eleven of  twelve subjects. 
This difference was accounted for in data analysis. 
Stimuli were projected with an EIKI LC-XL100 
beamer at a resolution of  1024x768 (4:3 aspect 
ratio) and a refresh rate of  60Hz on a 451x338mm 
screen. Participants viewed stimuli at the back of  
the scanner through a mirror mounted on the head 
coil. Before the start of  the experiment, subjects had 
an opportunity to adjust this mirror for full view of  
the projection. All four lists that resulted from the 
stimulus creation described above were included. 
Items were reordered again after target order 
concerns remained after the behavioural experiment. 

Data acquisition. The experiment was 
conducted using a Siemens Prisma 3T MRI scanner 
at the Donders Institute for Brain, Cognition, and 
Behaviour. For each participant, we collected a 
0.8mm isometric anatomical map using MP2RAGE 
(Marques et al., 2010) with a FoV of  256mm and a flip 
angle of  8˚. A TR of  2400ms, TE of  2.22ms, and TI 
of  1000ms, as well as a GRAPPA acceleration factor 
of  2 meant a full anatomical image was acquired in 
just under seven minutes.

Functional data was not acquired with a laminar 
analysis in mind during the pilot. As such, only 
1.3mm isometric fMRI data was collected. Our 
protocol entailed a 3D-EPI sequence based on 
Stirnberg et al. (2017) with a FoV of  210mm and a 
flip angle of  20˚. The TR was 2600ms, TE1 32ms, 
multi-echo dTE 60ms, and TI 900ms. Acquisition 
was accelerated with CAIPIRINHA at a factor 6. 
SPAIR fat-saturation was enabled. FoV positioning 
was determined by means of  a head-scout. The full 
scan-time was approximately 45 minutes, excluding 
breaks. 

Heart rate and respiratory data were collected with 
a BrainProducts BrainAmp system and were added 
as regressors in the fMRI analysis. Heart rate was 
collected using a pulse sensor made MRI-tolerable, 
and respiratory data by means of  a respiration belt. 
Physiological data were converted to workable files 
before they were checked and cleaned using HERA 
(Hermans, 2018), and finally converted to regressors 
using RETROIcorplus (Glover et al., 2000). The 
first through fifth order sine and cosine heart rate 
and respiratory regressors, as well as the first order 
sine and cosine interactions between heart rate and 
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respiration were modelled. Eye-tracking was on 
during scanning to monitor participant drowsiness, 
but eye-movements were not recorded.

Thirteen healthy, right-handed native Dutch-
speakers, aged 18-30 without diagnosed reading 
or language disorders, were recruited for this 
experiment. One subject was excluded due to a pre-
screening error. The study was conducted according 
to the institutional guidelines of  the local ethics 
committees, and subjects were reimbursed for 90 
minutes of  their time. Written informed consent was 
collected before the start of  each experiment. For 
each stimulus list, three responses were taken into 
the analysis.

Pre-processing. Pre-processing was performed 
using AFNI tools (Cox, 1996; all AFNI programmes 
discussed are prefixed with 3d). Pre-processing 
consisted of  realignment of  the functional volumes 
using 3dvolreg to a base of  the fifth volume of  the 
first run. Motion correction parameters were also 
collected from this realignment. The anatomical 
images were skullstriped using 3dSkullStrip. A mask 
was applied to the base volume of  each subject using 
3dautomask, and the anatomical image was aligned 
to this mask using the 3dallineate tool with a quintic 
interpolation. 

For one participant, FoV was shifted for the first 
run compared to the other runs. In this participant, 
the base volume for motion correction was taken 
from the second run. For five participants, the FoV 
was shifted for the last two runs compared to the 
rest. An extra pre-processing step was added for 
these runs. Transformation matrices were calculated 
by catenating the transformation matrices of  an 
initial large realignment shift to bring the volumes 
into the same space as the base (AFNI 3dallineate) 
and a subsequent small motion correction shift 
(AFNI 3dvolreg). This matrix was then applied 
to the original NIfTIs using 3dallineate to reduce 
the number of  interpolation steps by one. For 
all participants except one, this resulted in good 
realignment. Runs six and seven were excluded from 
analysis for the remaining participant. Heart rate 
data for run three in one participant were unusable. 
The design matrix for this participant was adjusted 
by only including the respiratory regressors for run 
3, and adding the regressor arrays of  runs 1-2, 3, and 
4-7 separately.

For group-level comparisons, our data were 
aligned to MNI152 space. The anatomical scan of  
each subject was normalised using 3dUnifize in 
AFNI, and brain extraction was performed with the 
mri_watershed program in freesurfer (Ségonne et al., 

2004; Fischl, 2012). For each subject, eleven brain-
extracted images were generated where the height 
parameter of  mri_watershed varied between ten and 
20. For each subject, the best brain-extracted image 
was selected and manual improvements were applied 
as necessary. A non-linear transformation was 
then applied to these brain-extracted anatomicals 
to align them in MNI152 space using 3dQwarp. 
The align_epi_anat.py script in AFNI (Saad et al., 
2009) calculated the affine transformation matrices 
for the automasked functional data to the brain-
extracted anatomical, which were then catenated 
with the non-linear transformation parameters to 
bring the functional data to MNI152 space. The 
resulting images were then smoothed using an 8mm 
smoothing kernel in 3dmerge (Cox, 1996).

Analysis. Design matrices for the group-level 
analysis were modelled so that the first four columns 
matched conditions between subjects (column one: 
+Comp/+ID, column two: +Comp/-ID, etc.). These 
models were fitted within the GLM framework, and 
beta-maps and residual-maps were calculated for 
each subject. Fitting was performed with in-house 
MATLAB code and an open source fMRI analysis 
toolbox (https://github.com/TimVanMourik/
OpenFmriAnalysis). 3dANOVA3 (Cox, 1996) 
was used to compare the resulting beta maps in 
a repeated measures ANOVA. To compare the 
+Comp/+ID condition to the -Comp/-ID activity 
patterns (the full priming effect vs. no priming) and 
the +Comp/-ID vs -Comp/+ID activity patterns 
(composition priming only vs. identity priming only), 
separate pairwise comparisons were performed 
using 3dttest++. To estimate the smoothness of  the 
data, the spatial autocorrelations of  the residual time 
series were calculated with 3dFWHMx and averaged 
over all runs and subjects. The resulting correlation 
parameter averages were entered into 3dClustSim 
to estimate the minimum cluster size required to 
exclude noise clusters with a likelihood of  α < 0.05. 
The uncorrected p-value threshold was set to P < 
0.001. 

Partial η2 maps were calculated from the F-maps. 
These were calculated voxel-wise on the basis of  
voxel-specific F-values and the degrees of  freedom 
(Cohen, 1973). Effect size-maps for pair-wise effects 
were also calculated using a version of  Hedge’s g 
(Hedge, 1981) that accounted for low sample sizes. 
Average beta-maps and standard deviation-maps for 
each condition across subjects were calculated using 
3dMean (Cox, 1996). A voxel-wise calculation was 
performed over these maps based on voxel-wise 
betas and standard deviations per condition, and 
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sample size. All effect size maps were then masked 
with a mask of  the MNI template dilated by one 
level in 3dmask_tool to generate the final effect size 
maps.

Results

Behavioural experiment

The results from the LME analysis indicate a 
robust difference in lexical decision reaction time 
as a function of  identity prime type compared to 
non-primed targets, and a potential difference as a 
function of  compositional prime types. The LME 
showed a robust effect for subjects recognising 
identity primed words (+ID) 37.21 milliseconds 
faster than non-identity primed words (-ID) (SE 
= 7.71, t = 4.83). Additionally, the LME showed a 
potential effect where compositionally primed words 
(+Comp) were recognised 20.10 milliseconds faster 
than non-compositionally primed words (-Comp) 
(SE = 7.71, t = 2.61). There was no evidence for 
an interaction of  ID-effect * Composition-effect 
(β = 0.80, SE = 15.42, t = 0.05). T-statistics were 
not subjected to significance testing owing to the 
challenges in assessing the degrees of  freedom in 
LME analysis (Luke, 2017). T-to-z conversion is a 
common method to derive p-values for LMEs but is 
anti-conservative (as are most alternative methods; 
see ibid.). Not reporting p-values prevents marginal 
effects from being interpreted as significant, but the 

t-values still offer some insight into the robustness 
of  the effects. See Figure 4 for a visualisation of  the 
reaction time results (Allen et al., 2018; Wickham, 
2009). See Table 2 for an overview of  the main 
effects.

Subsequent pairwise comparisons were performed 
using the emmean package in R (Fig. 4; Lenth, 2019) 
in order to gain further insight into the potential 
additive effects of  the compositional priming effect. 
The comparisons revealed a significantly faster 
reaction time of  37.6ms for identity-only primed 
(-Comp/+ID) targets compared to non-primed 
(-Comp/-ID) targets (SE = 10.9, P < 0.005), and 
a 36.8ms decrease in reaction times for identity and 
compositional primed (+Comp/+ID) targets versus 
compositional-only primed (+Comp/-ID) targets 
(SE = 10.9, P < 0.005). A significant advantage for 
identity-and-compositional primed (+Comp/+ID) 
words compared to non-primed (-Comp/-ID) 
words of  57.3ms was also found (SE = 10.9, P < 
0.001). The direct comparison of  these conditions 
did not inform us as to whether the additive effect 
of  composition priming was significant, however, so 
this effect was not further explored behaviourally. 
Other pairwise comparisons did not show significant 
differences between conditions (P > 0.2). All 
p-values were adjusted using the Tukey method for 
comparing a family of  four estimates (Tukey, 1949). 
For an overview of  the pairwise comparison results, 
see Table 3.

Figure 4. Reaction times are plotted against ID and Comp conditions. Significance bars indicate pairwise 
comparison effects (** p < 0.005; *** p < 0.001). Twenty data points were cut-off from the top for visibility 
purposes. Red dots indicate mean reaction times per condition.
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fMRI experiment

A three-way ANOVA was used to assess the 
main effects of  the priming conditions in this study. 
Composition priming and identity priming were 
modelled as fixed effects, and subject was modelled 
as a random effect. The ANOVA results were 
corrected for multiple comparisons   with Puncorr 
= 0.001; α = 0.05. A cluster size > 703 voxels was 
determined to be significant. Functional data were 
mapped onto MNI space, and corresponding region 
labels are based on the Talairach-Tournoux Atlas 
(Talairach & Tournoux, 1988). Separate F-statistics 
were calculated to assess the main effects of  
Compositional and Identity priming. These were 
thresholded for multiple comparison correction to a 
value of  F = 19.69 (1,11), Puncorr < 0.001. The left 
MTG, left superior and inferior frontal gyri (S/IFG), 
and left basal ganglia were sensitive to compositional 
priming manipulations (Fig. 5). Significant clusters 
sensitive to identity priming manipulations were 
found at the right middle frontal gyrus (MFG) and 
the right lentiform nucleus (see Fig. 6). There was no 
evidence for an interaction effect after correction. 
See Table 4 for an overview of  the clusters in the 
main effects.

Group level t-statistics were calculated to assess 
significance of  several additional contrasts. Due to 
the small sample size and associated Type II error 
rate inflation, it is challenging to observe small 
(ηp2 > 0.02) to medium-sized effects (ηp2 > 0.13; 
values based on Draper, 2011). When comparing the 
effect size maps to the ANOVA results, it becomes 
apparent that some large estimated effects (ηp2 > 
0.26) were not found either under the current sample 
size (Fig. 7). Focus remained on the results that 
survived the initial correction at Puncorr < 0.001, 
but we endeavoured to improve our qualitative 
understanding of  the results and potentially 
inform future work related to this pilot study by 

also exploring the results at less stringent P-value 
thresholds (Puncorr < 0.005 and Puncorr < 0.01). 
Differences in conditions found in this exploration 
might become statistically significant with a better-
powered sample. The minimum cluster size was 
kept at 703 voxels at these lower P-thresholds. For 
an overview of  all clusters that survived any of  the 
corrections, see Table 5.

Identity-and-compositional versus non-
primed. Significant differences in activation were 
found in response to identity-and-compositional 
primed versus non-primed targets (+Comp/+ID 
vs -Comp/-ID) at Puncorr < 0.001 (Fig. 8, orange). 
Clusters over left S/MTG and bilateral basal ganglia 
were significantly more active in the identity-and-
compositional primed condition over the non-
primed condition. At a correction of  Puncorr < 
0.005 positive clusters over left supramarginal gyrus 
and IFG also survived correction (Fig. 9, orange).

Compositional-only versus non-primed. 
Significant differences in activation were found 
in response to compositional-only primed versus 
non-primed targets (+Comp/-ID vs -Comp/-ID) 
at Puncorr < 0.001 (Fig. 8, green). A cluster over 
the left S/MTG showed significantly more activity 
in the compositional-only primed condition over the 
non-primed condition. At a correction of  Puncorr < 
0.005 a negative cluster over left SFG also survived 
correction, and the positive cluster over the left 
MTG extended over to the left IFG (Fig. 9, green). 
At a correction of  Puncorr < 0.01 a positive cluster 
over the left basal ganglia survived (Fig. 10, green).

Compositional-only versus identity-
only. Significant differences in activation were 
found in response to compositional-only primed 
versus identity-only primed targets (+Comp/-
ID vs -Comp/+ID) at Puncorr < 0.001 (Fig. 11). 

Table 2. Overview of the main effects of the mixed model analysis.

Table 3. Overview of the pairwise comparisons between the behavioural conditions. Ordered by 
significance. Italics indicate a significant difference between conditions.
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Positive clusters over the left MTG and the IFG 
indicated significantly higher activity in response 
to compositional-only primed targets compared to 
identity-only primed targets. Negative clusters over 
the right AG and the bilateral S/MFG suggest higher 
activity in these regions in response to identity-only 
primed targets compared to compositional-only 
primed targets. At a correction of  Puncorr < 0.005 
negative clusters over the bilateral MFG dorsal to the 
significant clusters also survived correction (fig. 12, 

left). At a correction of  Puncorr < 0.01 a negative 
cluster over the left inferior temporal gyrus (ITG) 
survived (fig. 12, right).

Identity-and-compositional versus identity-
only. No clusters survived the initial correction 
when comparing activity in response to identity-
and-compositional primed targets and identity-only 
primed targets (+Comp/+ID vs. -Comp/+ID). 
At Puncorr < 0.005, a positive cluster over the left 
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Z = 59 Z = 69

76

0

F-value

Z = 66 X = 105

F-map Identity main effect

Figure 5. F-map of the Composition priming 
main effect. Clusters were corrected for multiple 
comparisons and were significant at Puncorr < 
0.001, α = 0.05. Significant clusters after correction 
appeared over the left MTG, the left IFG, the left 
SFG (left), and the left basal ganglia (right).

Table 4.  Overview of significant clusters of the main effects from the rmANOVA, and the locus region 
of each cluster based on the Talairach-Tournoux Atlas (Talairach & Tournoux, 1988). Hemisphere is 
given in the third column (L=left, R=right). Peak F-values are given in the fourth column. Peak xyz-
coordinates are given in MNI space. No significant clusters were found for the interaction.

Figure 7. Partial η2 maps for the three main effects. Focussing on the left AG, we see that for the Identity 
priming main effect (left) and interaction effect (middle), we have a small effect size (~0.25). For the 
Composition priming effect, we see around a medium effect size (~0.5). N=12 is not enough to reliably 
detect a potential effect in this region.
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Figure 6.  F-map of the Identity priming main 
effect. Clusters were corrected for multiple 
comparisons and were significant at Puncorr < 
0.001, α = 0.05. Significant clusters after correction 
appeared over the right lentiform nucleus (left) 
and the right MFG (right).
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Table 5. Overview of surviving clusters in pairwise comparisons. Locus region of the cluster based on the 
Talairach-Tournoux Atlas (Talairach & Tournoux, 1988) is given in the second column and hemisphere 
in the third column (L=left, R=right). Peak t-values are given in the fourth column. Peak xyz-coordinates 
are given in MNI space. The uncorrected P-value thresholds to find the cluster are reported in the last 
column.

Z = 58

+Comp/+ID vs -Comp/-ID
A  B

+Comp/-ID vs -Comp/-ID
A  B

Z = 60

A > B

A < B

Figure 8. T-maps of the +Comp/+ID vs -Comp/-ID (left; orange) and +Comp/-ID vs -Comp/-ID (right; 
green) contrasts. Clusters were corrected for multiple comparisons and were significant at Puncorr < 
0.001, α = 0.05.  Significant clusters appear over the left MTG for both contrasts. In addition, there is a 
significant cluster over the bilateral basal ganglia in the +Comp/-ID vs -Comp/-ID contrast.

Figure 9. T-maps of the +Comp/+ID vs -Comp/-ID showing the clusters surviving correction at Puncorr 
< 0.005, α = 0.05 over the left IFG and the SMG (left; orange), +Comp/-ID vs -Comp/-ID showing clusters 
over the left SFG and the IFG (middle; green), and +Comp/+ID vs -Comp/+ID showing clusters over 
the left MTG (right; yellow) contrasts.

+Comp/+ID vs -Comp/-ID
A  B

+Comp/+ID vs -Comp/+ID
A  B

+Comp/-ID vs -Comp/-ID
A  B

Z = 60Z = 63Z = 84

A > B
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MTG survived correction (Fig. 9, yellow), and at 
Puncorr < 0.01, a negative cluster over the left SFG 
survived (Fig. 10, yellow).

Identity-and-compositional versus composi-
tional-only. No clusters survived the initial 
correction when comparing activity in response 
to identity-and-compositional primed targets and 
compositional-only primed targets (+Comp/+ID vs. 
+Comp/-ID). Only at Puncorr < 0.01 two positive 
clusters survived over the posterior cingulate cortex 
and the right MFG (Fig. 13).

Discussion

Behavioural experiment

	 In the lexical decision task we observed 
faster reaction times to items that were identity 

primed compared to items that were not identity 
primed, both as a main effect (Table 2) and as 
simple effects (Table 3). These results indicated that 
the paradigm was successful in eliciting a priming 
response consistent with previous literature (for 
an overview, see Segaert et al., 2013). A separate 
effect was found when comparing items primed by 
sentences to those primed by scrambled sentences, 
though this effect was less pronounced (see Table 2). 
The effect could indicate an effect of  compositional 
priming, where the compositional meaning of  the 
sentence semantically primed the target. As such, it 
shows promise of  the expected BOLD response. 
However, this reaction time effect could also 
arise from processing difficulties in interpreting 
scrambles, rather than from the compositional 
priming effect. Reaction times might be shorter after 
any sentence than after any scramble. Scrambles may 
be harder to process, and any subsequent processes 

Figure 10. T-maps for +Comp/+ID vs -Comp/+ID (left; yellow) and Com/-ID vs -Comp/-ID contrasts 
(right; green) corrected at Puncorr < 0.01, α = 0.05. At the left, we see a surviving cluster over left SFG. At 
the +Comp/-ID vs -Comp/-ID contrast, we see a new cluster over the left basal ganglia.

+Comp/-ID vs -Comp/-ID
A  B
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A  B

A > B

A < B

Z = 59 X = 114
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A  B
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Figure 11. Transversal and sagittal view of the 
t-map for the +Comp/-ID vs -Comp/+ID contrast 
(blue). Clusters were corrected for multiple 
comparisons and were significant at Puncorr < 
0.001, α = 0.05.  Significant clusters appear over the 
left MTG, the left IFG, the bilateral STG (left), and 
the right AG (right).

Figure 12. T-maps of +Comp/-ID vs -Comp/+ID 
contrast corrected at Puncorr < 0.005, α = 0.05  (left) 
and Puncorr < 0.01, α = 0.05  (right). At Puncorr 
< 0.005 we see bilateral S/MFG activity that was 
not present at Puncorr < 0.001 at a more dorsal 
Z-slice. At Puncorr < 0.01, we see a cluster over 
right ITG. In both images, we can also see the right 
AG cluster from Puncorr < 0.001.
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could require more time. Further testing is required 
to comprehend the effects arising from processing 
hurdles of  random word lists to subsequent word 
processing and compositional priming fully. We 
believe that, here, we have been able to lay the 
groundworks for a paradigm that can be utilised to 
compare the various priming effects that may occur 
between sentence primes and single-word targets, 
and could be expanded to study differences between 
sentence and word-list processing in general.

fMRI experiment

First, it should be noted that any conclusions 
drawn from this pilot experiment are preliminary 
and require support from the full experiment. 
Additionally, the results section discussed findings 
for corrections at both Puncorr < 0.001 and less 
stringent P-thresholds. For the discussion, we 
will primarily focus on the regions that showed 
significant differences in the pairwise comparisons 
with a correction at α = 0.05 and Puncorr < 0.001.

When looking at the compositional priming 
effect, we see that the left MTG strongly responds 
to the presentation of  a target after a compositional 
prime compared to a non-compositional prime 
(Fig. 5, 7right, 8 & 11). This is accordance with 
our prediction that the MTG would be sensitive to 
compositional priming given its prominent role in the 
language network (as outlined in the introduction). 
Responses in the MTG were not sensitive to identity 
priming (see Table 5), suggesting that this result is 
more likely attributable to the compositional prime. 
What is interesting to note is the presence of  an 
enhancement effect in response to compositionally 
primed targets, rather than a suppression effect. This 
effect may be similar to the repetition enhancement 
found in masked prime studies, as explained by 
Segaert et al. (2013). Schnyer et al. (2002) proposed 
that a masked prime may lead to enhanced fMRI 

signal if  “activation from the masked prime continues 
to spread until the target is identified” (Segaert et 
al., 2013). Segaert et al. (2013) then propose that the 
response to the prime and the response to the target 
are additive, resulting in enhancement. A similar 
principle may be a at play here, where the spread 
of  activation from the priming sentence increases 
the fMRI signal related to the target, in addition 
to the target activation itself, indicating successful 
compositional priming.

Somewhat surprisingly, we found little evidence 
for the identity priming effect in the left temporal 
cortex. There was no main effect in left MTG of  
+ID vs -ID (Table 4), or a pairwise effect (row 5 
& 6 in Table 5). Since repetition priming is quite a 
well-established effect (e.g., Bergerbest et al., 2006; 
Schnyer et al., 2002; Elger et al., 1997), we expected 
that this response would be stronger in the identity 
comparisons than in the composition comparisons. 
Especially since the effect is absent from the 
-Comp/+ID with -Comp/-ID comparison, where 
no other priming effects should attenuate the 
identity priming effect, it seems that the current 
setup is unable to catch both the perceptual and 
semantic aspects of  the identity priming effect. It 
could be that the task redirected the attention of  the 
subjects away from the identity tokens, and as such, 
there were no differential responses to the identity 
tokens (for the effects of  attention on visual priming, 
see Vuilleumier et al., 2006; Thoma & Henson, 
2011). For example, Schnyer et al. (2002) found 
an identity priming effect at the word-level using a 
lexical decision task, which required lexical access to 
perform, whereas our task did not necessarily.  If  
subjects had been asked during catch trials whether 
the target was present in the preceding string, 
perhaps a stronger identity priming effect would 
have been found. While a different task for the fMRI 
experiment should be considered for the main study, 
it should be pointed out that a task drawing attention 

Z = 56 Z = 82

+Comp/+ID vs +Comp/-ID
A  B

A > B

A < B

Figure 13. T-maps for +Comp/+ID vs +Comp/-ID corrected at Puncorr < 0.01, α = 0.05. Surviving 
clusters appear over right MFG and PCC.
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to target words might consequently reduce attention 
to the unity within the primes, and as such potentially 
eliminate the compositional priming effect. A task 
like the lexical decision task would also reduce the 
power of  the experiment by reducing the number 
of  trials of  interest. The challenge lies in finding a 
task that requires attention to both elements of  each 
trials without disqualifying trials from subsequent 
analysis.

The left IFG also appeared to respond more 
strongly to the compositionally primed targets 
than the non-compositionally primed targets (Fig. 
5; Table 4). If  theleft IFG activity is related to the 
composition of  linguistic input, and if  the output 
of  the IFG is subsequently relayed back to the left 
MTG, then it stands to reason that the IFG activates 
when a semantically related target to the complex 
prime is presented. No effect was expected for the 
identity vs non-identity comparisons in the IFG.

Somewhat surprising was the reduced response 
in the left S/MFG to compositionally primed targets 
vs non-compositionally primed targets (Table 5, 
rows 2-4). The S/MFG have been associated with 
working memory demands and cognitive control (Du 
Boisgueheneuc et al., 2006; Li et al., 2013; Emch et 
al., 2019). This could indicate that a reduced S/MFG 
activity in response to a compositionally primed 
target may be due to reduced demands to retrieve 
an item from working memory, as seen in all but one 
+Comp vs -Comp contrast (Table 5). Given that our 
task did not require overt attention to the presence 
of  identity primes, it seems that this is an automatic 
response. In other words, if  the prime is incoherent, 
the brain automatically allocates more resources to 
remembering its contents and retrieving it, whether 
task-relevant or not. Here, this effect is found to be 
bilateral and mostly seen in the compositional vs. 
non-compositional comparison. However, we also 
see this effect in the right MFG when comparing 
+Comp/+ID to +Comp/-ID. Here it appears that 
the right MFG responds stronger when an item may 
be present in working memory than when it is not, 
and may as such reflect a recollection process related 
to verbal working memory (Emch et al., 2019). The 
right MFG has also been associated with redirection 
of  attention (Japee et al., 2015), which might indicate 
that the presentation of  the target causes subjects to 
reprioritise the focus of  the prime.

An unexpected result from this pilot was that 
when comparing the response to an exclusively 
compositionally primed target with the response to 
an exclusively identity primed target (+Comp/-ID vs. 
-Comp/+ID), we found evidence for the right AG 
and the ITG response (Fig. 11). While AG activity 

was expected in this condition, we expected it in 
the left hemisphere, as the left hemisphere is usually 
more strongly associated with linguistic processing. 
What is also surprising is that activity appears 
to be stronger for the identity primed condition 
than the compositionally primed condition. Since 
compositional priming has led to enhancement of  
the BOLD response in the other comparisons, it 
might be expected here. It is perfectly possible that 
different brain regions respond to the same prime 
differently, or it might be that this is an effect driven 
by the identity prime. Since this response does not 
show up for any of  the other comparisons, it is 
difficult to tell to which condition the right AG is 
sensitive. It may also be, given the ‘pure’ priming 
conditions in our experiment, that the right AG 
responds to a condition only if  the other priming 
stream is absent, and that once multiple paths of  
relating input become available, its involvement in 
the process is affected.

Right ITG activity may be a result of  the 
predictability of  the target word. Bonhage et al. 
(2015) found a correlation between the right ITG 
activity and word predictions in semantically rich 
contexts. Contrary to our results however, Bonhage 
et al. (2015) found that the right ITG was more 
active for a sentence condition compared to a 
jabberwocky condition where only word category 
could be predicted. It is unclear how these results 
may be reconciled with our findings. Right ITG 
activity may also be related to a type of  repetition. 
Schweinberger et al. (2002) found that right ITG 
responses related to familiar face repetitions in 
an ERP study. Similarly, Li et al. (1993) found an 
inferior temporal response to familiarity of  stimuli 
in rhesus monkeys. Perhaps this effect could be 
extended to familiar word repetitions, but this effect 
does not seem to be reported in linguistic contexts. 
It would be interesting to see if  in a follow-up this 
effect might pop up in different conditions.

Basal ganglia activity was found bilaterally 
in the +Comp/+ID vs. -Comp/-ID and left 
lateralised in +Comp/-ID vs. -Comp/-ID.  Basal 
ganglia involvement was expected, but no strong 
predictions were made because basal ganglia have 
been found to be involved in a number of  linguistic 
(Copland et al., 2000; Bacon Moore et al., 2013) and 
non-linguistic tasks (Rao et al., 1997; Haaland et al., 
1997). The effect that was found may be a verbal 
working memory process (Bacon Moore et al., 2013) 
involved in complex input processing. Interestingly, 
the main effects show that left and right basal 
ganglia are responsive to only compositional and 
identity priming respectively (Fig. 5 & 6). These 
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main effects are not reflected in the pairwise 
comparisons, however. This makes it difficult to 
draw any conclusions about basal ganglia activity, as 
it is unclear which condition drives the basal ganglia 
effects in our analysis.

An alternative interpretation for our results arises 
not from a compositional priming effect, but rather 
simply due to participants processing sentence level 
information while reading the primes. We see that 
the language network responds in a fashion similar 
to on-line sentence processing (e.g., as modelled by 
Hagoort, 2016 or Friederici, 2011). The question is 
whether the response to the compositionally primed 
targets should be any different from the activity in on-
line sentence processing. We presented participants 
with a one-word compositional summary of  a 
sentence they previously read. Readers may relate 
this word back to the previous context, similar to 
how new words in an input are inserted into the 
previous context in Hagoort (2016) and Friederici 
(2011), involving comparable neural processes. For 
future analyses, it may be worthwhile to model prime 
presentation as a nuisance regressor to eliminate 
potential effects from the prime processing. We 
intend include this regressor in the study based 
on this pilot, but we do not expect this to have a 
detrimental effect on the results.

Through this pilot study, we were able to 
establish brain regions that likely play a role in 
semantic composition. The regions responsive to the 
manipulations in this study provide a starting point 
for a more thorough study on semantic composition 
processes. The left MTG and the IFG were expected 
candidates, but we also found bilateral S/MFG 
responses and potentially right AG and ITG activity 
related to processing primed targets. In the follow-
up laminar study, these regions will hopefully show 
depth-dependant interactions with one another 
that would further increase our understanding of  
sentence processing. It remains to be discovered at 
what cortical depth the haemodynamic responses 
originate that drive the IFG and the MTG signal in 
this study, but the prediction that left IFG activity 
shows a correlation to deep-bin MTG activity still 
holds. If  this correlation is found in the follow-up 
laminar fMRI study, it would be indicative of  the 
predicted semantic composition process and top-
down priming effect (as proposed by Hagoort, 2016), 
and would suggest that this stream of  information is 
important for the conceptualisation of  composed 
semantics. Any effect of  right AG and bilateral S/
MFG correlated to the compositional and especially 
identity priming effects would support a model for 
a bilateral language network that involves the right 

hemisphere at the word-level. 

Conclusion

We have conducted a pilot study to see if  it is 
possible to examine the processes involved in 
compositional meaning extraction of  sentences. 
We used a priming paradigm in order to do so, 
where the target was either compositionally primed, 
identity primed, both, or neither. We found a strong 
effect of  identity priming in a behavioural lexical 
decision task, as well as a smaller potential effect 
of  compositional priming. We generated effect-size 
maps for each factor and pairwise contrast in our 
fMRI analysis, which can be utilised to estimate the 
sample needed for ROI selection in a follow-up 
laminar fMRI experiment. We found evidence for the 
existence of  a neural compositional priming effect in 
left MTG, IFG and S/MFG. We also found an effect 
that could suggest a right-lateralised identity priming 
effect in S/MFG, AG and ITG. These findings will 
be taken as a starting point into a follow-up laminar 
fMRI experiment focussed on studying directed 
connectivity between these regions. 
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Alzheimer’s disease (AD) and stroke are both diseases that have a very high impact on the current society. 
Prevalence of  both conditions is expected to rise due to the increasing life expectancy of  the population. There 
is a close relation between stroke and AD (e.g., prevalence of  stroke is increased in AD patients and stroke 
increases the risk of  AD). In the current longitudinal study, the interaction of  stroke and AD was investigated 
in the APPswe/PS1dE9 mouse model with a 30 minute-induced middle cerebral artery occlusion in the right 
hemisphere. This study focused on the Aβ burden and synaptic density, via synaptophysin expression in the 
APP model, the stroke model and the combined APP/stroke model. Both male and female mice were used 
because there are differences in risk factors and pathology in both AD and stroke between the two sexes. An 
increased Aβ burden, especially visible in the cortex, hippocampus, thalamus and basal ganglia, combined 
with higher Aβ concentrations in the anterior part of  the brain were observed in female compared to male 
APP mice. Eight months after stroke induction, male APP mice showed a lower Aβ burden in the cortex of  
the affected hemisphere compared to the unaffected hemisphere. Furthermore, between the hemispheres, 
asymmetrical expression of  synaptophysin was observed in wildtype sham animals. Male mice had a higher 
synaptophysin expression in the affected hemisphere, while female mice had a decreased synaptophysin 
expression in the affected hemisphere. Lastly, female APP mice showed lower synaptophysin expression in 
the affected hemisphere than males. Overall, stroke affected the Aβ burden differently in male and female 
mice. These gender differences are most likely also the cause of  the observed differences in synaptic density. 
More research into other AD markers, especially vascular pathology, is required to further determine the 
long-term effects of  stroke on AD. 

Keywords: Alzheimer’s disease, ischemic stroke, neuropathology, animal models, amyloid beta, synaptic density
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List of abbreviations

AD		  Alzheimer’s disease
APP		 Amyloid beta precursor protein
Aβ		  Amyloid beta 
B2M		 Beta-2 microglobin
CAA	 Cerebral amyloid angiopathy
CBF		 Cerebral blood flow 
CCA		 Common carotid artery
CSF		 Cerebral spinal fluid
ELISA	 Enzyme-linked immune sorbent 		

		  assay
EpoE	 Epolipoprotein E 
GLUT-1	 Glucose transporter 1
IHC		 Immunohistochemical staining
MCA	 Middle cerebral artery
MCAO	 Middle cerebral artery occlusion
MCI		 Mild cognitive impairment
PBS		 Phosphate-buffered saline
PSD-95	 Post synaptic density marker 95
qPCR	 Quantitative polymerase chain 		

		  reaction 
SPB		 Systolic blood pressure
SYP		 Synaptophysin
WT		  Wildtype

Due to increasing life expectancy, dementia 
has developed into one of  the major public health 
problems worldwide. In America alone it is estimated 
that 5.8 million people were living with Alzheimer’s 
disease (AD) in 2019 (Association, 2019). AD is the 
most common form of  dementia and starts with 
occasional problems with episodic memory, referred 
to as mild cognitive impairment (MCI). Ultimately 
MCI can develop into dementia with profound 
memory impairments, disorientation, and deficits in 
motor function (D. J. Selkoe & Schenk, 2003). From 
a neuropathological perspective AD is characterized 
by the accumulation of  amyloid beta (Aβ) plaques, 
neurofibrillary tau tangles, and the loss of  neurons 
and their synapses (Dennis J Selkoe, 2002). The 
cognitive decline observed in AD is most closely 
associated with the synaptic loss that is observed 
in the brain (Dennis J Selkoe, 2002). Hippocampus, 
amygdala and the frontal, temporal, and parietal lobes 
undergo significant synaptic loss (DeKosky S.T., 
1996). Previous studies have found that a reduction 
in synaptic density (indicated by synaptophysin 
(SYP) expression), and overall synaptic degeneration 
play a critical role in the progression of  AD 
(Robinson et al., 2014; Wuwongse et al., 2013; Zeng 
et al., 2015). This synaptic dysfunction, along with 
neuroinflammation, apoptosis, and dysregulation of  
neurons, is partially mediated by Aβ and tau proteins 

(Goedert & Spillantini, 2006; Klyubin, Cullen, Hu, 
& Rowan, 2012; Shankar & Walsh, 2009). 

The accumulated Aβ proteins (plaques) are 
another characteristic of  AD. These plaques are 
specific to AD and are not present in other types of  
dementia, or directly linked to dementia symptoms 
(Jarrett, Berger, & Lansbury Jr, 1993). The Aβ 
protein is commonly present in two lengths: Aβ40 
and Aβ42. Aβ42 is more prone to aggregation, 
leading to the formation of  the Aβ plaques (Jarrett et 
al., 1993). These protein aggregations are primarily 
present in the hippocampus, amygdala and cortices 
of  the frontal, temporal and parietal lobes (Gouras 
et al., 2000; D. J. Selkoe & Schenk, 2003). AD can 
be divided into two types: familial and sporadic AD. 
Most AD patients have no genetic predisposition 
and are classified as sporadic. The smaller group, 
familial AD, is autosomal dominant and strikes most 
often before the age of  65. This familial variant of  
AD is driven by mutations in Aβ  precursor protein 
(APP), apolipoprotein E (EpoE) or presenilin 1 
or 2, which cause elevated levels of  Aβ40, Aβ42 
and the ratio between them (Cacace, Sleegers, & 
Van Broeckhoven, 2016; Holtzman et al., 2000). 
One hypothesis, the Aβ hypothesis, states that Aβ 
deposits are also the causal factor in the sporadic 
form of  AD. However, the Aβ hypothesis is under 
heavy debate, since Aβ does not directly cause 
dementia symptoms (de la Torre, 2004). Increasingly 
more evidence points to a direct involvement of  the 
cerebral vasculature in the development of  AD (de 
la Torre, 2004). Therefore, the vascular hypothesis 
was introduced, wherein vascular factors contribute 
significantly to the development of  dementia and 
AD.

Vascular hypothesis

Multiple vascular factors have been proven 
to contribute to the risk of  developing AD (R. 
Kalaria, 2002; R. N. Kalaria, Akinyemi, & Ihara, 
2012). In total, 60 to 90% of  AD patients show 
cerebrovascular pathology at autopsy (R. N. Kalaria 
et al., 2012). In the first documented case of  AD 
in 1906 by Alois Alzheimer arteriosclerotic changes 
in cerebral blood vessels already were mentioned 
(Drouin & Drouin, 2017). Changes in cerebral 
vasculature are closely linked to AD and Aβ 
accumulation, since efflux transporters located in the 
cerebral vessels and drainage through perivascular 
pathways into the cervical lymph nodes are mainly 
responsible for the clearance of  Aβ out of  the brain 
(Ueno, Chiba, Matsumoto, Nakagawa, & Miyanaka, 
2014). Aβ deposits have also been observed 



Nijmegen CNS | VOL 16 | ISSUE 196

Minou Verhaeg

inside the blood vessels in the brain, known as a 
condition called cerebral amyloid angiopathy (CAA)
(Lewis et al., 2006; McGowan et al., 2005). There 
is a significant association between certain vascular 
risk factors, such as hypertension in midlife, and 
development of  AD or other forms of  cognitive 
decline later in life (Kivipelto et al., 2001; Skoog 
et al., 1996). Hypertension leads to atherosclerotic 
changes in the arteries, lowering the cerebral blood 
flow (CBF) (Skoog et al., 1996). A lower CBF can 
cause ischemia, increases the production of  Aβ and 
reduces Aβ clearance, leading to an overall higher 
concentration of  Aβ in the brain (Nelson, Sweeney, 
Sagare, & Zlokovic, 2016; Ramanathan, Nelson, 
Sagare, & Zlokovic, 2015; Ueno et al., 2014). The 
onset of  hypertension can already appear decades 
before the onset of  AD (Skoog et al., 1996). 

Ischemic stroke

Hypertension is also a major risk factor for further 
vascular complications, including stroke. Stroke can 
be divided into two types: ischemic stroke, in which 
an artery is occluded, and hemorrhagic stroke, in 
which an artery bursts (Amarenco, Bogousslavsky, 
Caplan, Donnan, & Hennerici, 2009). During a 
stroke, the CBF to the afferent brain areas of  the 
affected vessels is severely lowered. Ischemic stroke 
is the most common variant, which most often 
occurs in a specific artery. Over 90% of  ischemic 
stroke cases involve the middle cerebral artery 
(Roger et al., 2011). The affected area can be divided 
into an area of  irreversible injury, the ischemic core, 
and an area of  damaged but salvageable tissue, the 
penumbra. The penumbra is hypo-perfused, but 
cells still maintain basic cerebral metabolic rate and 
can be salvaged when reperfusion to the brain area 
occurs (Marchal et al., 1996). Due to the loss of  
CBF and the drop in clearance, accumulation of  Aβ 
is seen in the regions directly affected by the stroke.

There is a clear link between AD and stroke. 
Stroke has been proven to double the prevalence of  
AD in elderly (Honig et al., 2003; Sun et al., 2006). 
Furthermore, AD patients with stroke seem to have 
more severe dementia compared to those who do 
not suffer from stroke (Leys et al., 1999; White et 
al., 2002), due to the tissue and vascular damage 
caused by the stroke. The interaction between 
vascularity, especially stroke, and AD pathology 
works both ways. A stroke does not only strengthen 
AD symptoms, but people with AD also have a high 
risk of  suffering from a stroke (Chi, Chien, Ku, Hu, 
& Chiou, 2013). Stroke and AD also share a lot of  
the same risk factors such as aging (Sahathevan, 

Brodtmann, & Donnan, 2012), hypertension, 
diabetes, hypercholesterolemia, smoking and obesity 
(de Bruijn & Ikram, 2014; Nelson et al., 2016). 
More and more studies start to question the clear 
diagnostic separation between vascular dementia 
and AD (Agüero-Torres, Kivipelto, & von Strauss, 
2006; de la Torre, 2004). Due to the significant 
contribution of  these vascular factors a model 
on the development of  dementia was developed 
by Sweeney et al. (Fig. 1) (Sweeney, Sagare, & 
Zlokovic, 2015). This model takes both vascular 
damage and the contribution of  Aβ into account. 
It also includes the interaction of  the two factors, 
possibly through the interaction between stroke and 
APP, as this link has been proven in animal models 
(Jendroska, Hoffmann, & Patt, 1997; Jendroska et 
al., 1995; Nakamura, Takeda, Niigawa, Hariguchi, & 
Nishimura, 1992). The precise mechanism behind 
this interaction however, is still not well understood 
(de la Torre, 2004).

Gender differences

One highly significant risk factor which needs 
to be studied in more detail is the effect of  gender. 
Both in AD and stroke sex differences play a 
profound role in prevalence and progression of  the 

Figure 1. Multifactorial model of developing 
dementia or AD.  Illustrating two pathways, the 
Aβ dependent and independent pathway, that 
are triggered by avariety of risk factors. These 
pathways interact and together cause neuronal 
dysfunction and neuronal loss leading to AD [37].
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disease. In the case of  AD, females seem to have a 
higher susceptibility to the disease compared to age-
matched males (Azad, Al Bugami, & Loy-English, 
2007; Launer et al., 1999). The higher incidence of  
AD in females might be explained (partly) by the 
higher susceptibility to AD risk factors. Females 
over the age of  75 have a higher prevalence of  
hypertension, hyperlipidemia and diabetes compared 
to age-matched men. These are all factors that are 
associated with the development of  AD (Azad et al., 
2007). In APP mice, females have a higher level of  
Aβ40 and Aβ42 in the hippocampus at four months 
of  age. Female mice also have a higher plaque 
number and heavier Aβ burden at both 12 and 17 
months of  age (Wang, Tanila, Puoliväli, Kadish, & 
van Groen, 2003).

Compared to age-matched females males have 
a higher incidence rate for stroke, but women have 
an overall higher prevalence rate and more severe 
strokes (Kim, Lee, Roh, Ahn, & Hwang, 2010). Age 
is an important risk factor for stroke (Sahathevan et 
al., 2012). Women live longer and are therefore more 
likely to suffer from stroke (Appelros, Stegmayr, 
& Terént, 2009). Furthermore, a division between 
pre and post menopause should be made. Studies 
have shown that premenopausal women experience 
fewer strokes than men, but postmenopausal 
women experience more strokes than age-matched 
men. Estrogen has proven to protect against 
AD (Haast, Gustafson, & Kiliaan, 2012). After 
menopause, estrogen levels will drop and the chance 
of  developing AD increases. This postmenopausal 
phenomenon, and the fact that the women on 
average live longer, lead to the fact that the onset of  
the stroke and therefore the severity and mortality 
of  the stroke is higher in women (Haast et al., 
2012). Furthermore, men seem to be more prone to 
ischemic stroke then women, while women are more 
prone to subarachnoid hemorrhage, regardless of  
age (Appelros et al., 2009). Unfortunately, only few 
studies on AD, vascular factors, and the interaction 
use both male and female models. A lot is still unclear 
about the consequences of  sex on either AD, stroke, 
or the combination of  both. 

Although a lot of  research has been done on 
the development of  AD (de la Torre, 2004), there 
is much still unclear about the sex differences and 
the interaction of  AD and stroke. Animal research 
plays an important role in better understanding the 
interaction between AD, stroke, and gender. One 
animal model that is widely used to study AD is the 
APPswe/PS1dE9 (APP) mouse model (Jankowsky 
et al., 2001). These mice contain human transgenes 
for both APP and PSEN1 (Goodwin et al., 2019), 

which are not naturally expressed in mice. Both Aβ42 
and Aβ40 levels increase with age, but Aβ42 levels 
are especially elevated in these mice (Jankowsky et 
al., 2003). Amyloid deposits appear first in the cortex 
at 6 weeks of  age, in the hippocampus at 3 months 
of  age and finally in the striatum, thalamus and brain 
stem at around 4 or 5 months of  age. The specific 
Aβ burden differs per sex. Female mice reach the 
maximum level of  deposits around 9 months of  
age, while male mice reach this maximum at around 
12 months of  age (Ordónez-Gutiérrez, Antón, 
& Wandosell, 2015). Dendritic spine loss appears 
around the plaques approximately 4 weeks after 
plaque formation and eventually at 7 months of  age, 
mice start showing cognitive impairments. A gradual 
reduction in GLUT-1 between 8 and 18 months of  
age has been reported in this model too (Hooijmans 
et al., 2007). 

Current study

This study focused on the long-term relationship 
between AD and vascular risk factors, both in male 
and female mice. The current study will investigate 
the effects of  stroke, AD and gender on synaptic 
density and Aβ plaques in the mouse brain, both 
markers for AD pathology. The precise relation 
between stroke and AD is still unclear. Studies on 
this topic are limited and often not of  a longitudinal 
nature (Kemppainen, Hämäläinen, Miettinen, 
Koistinaho, & Tanila, 2014).

To do this, a mouse model of  AD, expressing Aβ, 
was subjected to a transient middle cerebral artery 
occlusion in the right hemisphere of  the brain to 
mimic a stroke. Since the left hemisphere did not 
suffer from any reduced blood flow, a within-subject 
control (left compared to right hemisphere) can 
be used next to the overall control group. Animals 
were sacrificed 8 months after stroke induction to 
investigate the long-term effects of  AD and stroke.

Via quantitative polymerase chain reaction 
(qPCR), synaptophysin was analyzed as an indicator 
for synaptic density, and Aβ was analyzed via 
enzyme-linked immune sorbent assay (ELISA) and 
immunohistochemical stainings (IHC). Multiple 
areas will be analyzed via Aβ staining. 

It is important to investigate the effect of  
stroke and AD in both males and females, since sex 
differences play an important role in both AD and 
stroke. It is expected that the stroke will have an 
aggravating effect on the AD mouse model, shown 
by increased Aβ deposits. 

Synaptic density could be decreased in APP 
animals as a result of  AD pathology. It is expected 



Nijmegen CNS | VOL 16 | ISSUE 198

Minou Verhaeg

that the synaptic density is further decreased by stoke 
induction, which will present as a further decrease 
in synaptic density in the combined AD-stroke 
mice. When comparing male and female mice, it is 
expected that the female mice will have a stronger 
reaction to the stroke, represented by decreased 
synaptic density, since females seem to recover less 
than age matched controls over time (Kim et al., 
2010). Furthermore, female APP mice are expected 
to have a heavier Aβ burden compared to male APP 
mice, as shown before in other studies (Wang et al., 
2003).

Methods

Animals

This study involved the use of  two strains of  
mice: the APPswe/Ps1dE9 (APP) mice as a model 
for AD and the C57B1/6 wildtype (WT) littermates. 
For both strains, male and female mice were 
included. The APPswe/PS1dE9 founder mice were 
obtained from John Hopkins University, Baltimore, 
MD, USA (Jankowsky et al., 2003). A colony was 
bred at the Central Animal facility at the Radboud 
University medical center in the Netherlands. 
Originally, the line was maintained on a hybrid 
background by backcrossing to C3HeJxC57BL/6J 
F1 mice. For this study, the desired mice were created 
by backcrossing the breeder mice to C57BL/6J for 
fifteen generations. At 3 months of  age, the APP 
mice start to express amyloid beta plaques in their 
brain (Radde et al., 2006).

Mice were housed at 21°C, at an artificial 12:12h 
light-dark cycle (lights on at 7 a.m.) and were housed 
with a maximum of  six animals per cage. After 
surgery, mice were housed individually in digital 
ventilated cages (DVC) for 24/7 activity monitoring 

(Tecniplast, Buggiate, Italy). 
Water and food (Sniff  rm/h V1534, Bio 

Service, Uden, The Netherlands) were available 
ad libitum. Experiments were performed according 
to Dutch federal regulations for animal protection 
and were approved by the Veterinary Authority of  
Radboud University medical center in Nijmegen, 
the Netherlands, and the Animal Experiment 
Committee of  the Radboud University in Nijmegen, 
the Netherlands (dierenexperimentencommissie, 
DEC, 2012-248 & 2015-0079). 

Study design

Animals were divided in eight groups, depending 
on genotype, surgery, and sex (Table 1). A total of  
144 mice were included in the study. Ninety-two 
mice completed all experiments. An estimation of  
14 animals per group was made to reach sufficient 
power. All animals were randomly divided between 
stroke and sham, considering an equal division of  
sex.

During postmortem procedures and all data 
analyses, researchers remained double blinded for 
experimental groups.

Due to the large number of  animals, and the 
longitudinal aspect of  this study, the experiment 
was divided in multiple cohorts, each containing the 
same experimental structure and design. Animals 
from each experimental group were distributed 
evenly over the different cohorts. The cohorts were 
distributed over 2 years (cohort 1&2: May 2016-May 
2017, cohort 3&4: February 2017-April 2018, cohort 
5&6: September 2017-August 2018).

Different tests were performed before and after 
stroke induction, to assess health and behavior of  
the mice (Fig. 2). At three and a half  months of  age 
general health parameters body weight and systolic 

Figure 2. Overview of the current study design. A timeline of the study. Baseline SBP and behavior were 
assessed at 2.5 months. Stroke was induced at four months of age. At 4.5, 8 and 12 months, behavior, 
cognition, motor skill and locomotor activity were assessed by performing the pole test, grip test and 
open field. At the same timepoints, MRI was performed. At 12 months of age, rotarod and MWM were 
performed. After the last tests at 12 months of age animals were sacrificed, and their brains were obtained 
for IHC and BCA. SPB: systolic blood pressure. MWM: Morris water maze. IHC: immunohistochemistry. 
BCA: biochemical analysis.
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blood pressure (SPB) were measured. Baseline 
behavior and motor skills were assessed for all mice 
via the pole test, grip test and open field test. 

At four months of  age either the stroke or 
sham operation was performed. Two weeks after 
the operation all behavioral tests were repeated and 
imaging was conducted (resting state functional 
magnetic resonance imaging (rsfMRI), diffusion 
tensor imaging (DTI) and flow-sensitive alternating 
inversion recovery-arterial spin labeling (FAIR-
ASL), to assess the effects of  the surgery. SBP 
measurements were repeated every month. Imaging, 
motor skill, and behavioral assessments were 
repeated at eight and 12 months of  age. At 12 
months of  age, the rotarod test and the Morris water 
maze were performed in addition to the other tests. 
All behavioral procedures were performed during 
daytime. Afterwards, all animals were sacrificed via 
transcardinal perfusion and tissues were collected 
for postmortem analyses. 

Postmortem analysis was done after tissues of  all 
cohorts were collected. The order of  all postmortem 
analyses was randomized for cohort numbers.  

Transient occlusion of the middle 
cerebral artery 

At four months of  age, ischemic stroke was 
induced via a 30 minute transient occlusion of  
the middle cerebral artery (MCAO) in the right 
hemisphere (Fig. 3, (Bertrand, Dygert, & Toborek, 
2017)). 5 mg/kg Rimadylwas injected before surgery, 
to prevent inflammation and pain during recovery. 
Animals were anesthetized with 2-3% isoflurane 
(Abbott Animal Health, Abbott park USA) and 
maintained on 1,5% isoflurane during the surgery. 
The monofilament (Doccol corporation, Sharon 
USA, 7-0 monofilimanet, 190-200 µm diameter, 2-3 
mm coating) was inserted via the common carotid 
artery (CCA), through the internal carotid artery 
(ICA) up to the middle cerebral artery (MCA). 
Cerebral blood flow was monitored with a Laser 
doppler flow probe (moorVMS-LDF2, Moor 

Instruments). Occlusion was maintained for 30 
minutes and the surgery was deemed successful if  
an 80% drop in regional cerebral blood flow was 
reached. For the control group the filament was 
introduced shortly, but was retracted immediately 
after reaching the MCA. During the first week 
after surgery mice were checked daily for signs of  
discomfort or stress.  

Biochemistry

At 12 months of  age, the mice were sacrificed 
via transcardinal perfusion using 0.1M phosphate-
buffered saline (PBS) followed by a solution of  
4% paraformaldehyde in 0.1M PBS. Tissues from 
the ears, eyes, brain, heart, aorta, and CCA were 
collected, as well as some cerebral spinal fluid (CSF). 
The brains were cut in a transversal plane, such that 
part of  the stroke was present in both the frontal 
and ventral part. The frontal brain half  was divided 
in the left and right hemisphere and used to isolate 
deoxyribonucleic acid (DNA), ribonucleic acid 
(RNA), and proteins. 

RNA was collected and prepared for qPCR 
(Supplementary protocol 1-4). Next to the RNA 
concentrations Nanodrop measures also provides 
measurements which can be used as quality control 
and purity check. There were some samples that 
were outside of  the advised range. These samples 
were checked for abnormalities regarding the 
qPCR results, both for primary outcomes and 
melting curves. For the cDNA synthesis, 400 ng of  
total RNA was used. QPCR was performed using 
SYBRGreen as a reagent, for glucose transporter 1 
(GLUT-1), synaptophysin (SYP) and housekeeping 
gene beta-2 microglobin (B2M) (Supplementary 
protocol 5). Supplementary protocol 2 to 4 were 
redone for samples which had abnormal values for 
the housekeeping gene B2M. Thresholds for the Ct 
values were set at 0.08. 

DNA was collected either via an ear clip or 
via postmortem isolation of  the brain tissue 
(Supplementary protocol 6). Genotyping was 

Table 1. Animal groups. An overview of the animal groups with all differential characteristics, including 
group size (n). APP = APPswe/PS1dE9 mice model for AD. WT = wildtype.
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performed on an agarose gel (Supplementary 
protocol 7).

The protocol for protein isolation was derived 
from Simões et al. (2013) and adjusted to fit this 
study (Supplementary protocol 7). Proteins were 
only isolated from APP mice, since the WT mice 
do not express the proteins of  interest, amyloid 
beta. Protein concentrations were adjusted to each 
hold 25 ng in 50 µL. ELISA was performed for the 
amyloid beta 40 and 42 proteins, using the protocols 
Human Aβ42 ELISA kit (KHB3441, invitrogen) and 
Human Aβ40 ELISA Kit (KHB3481, invitrogen). 
Concentrations were determined via calibration 
samples and calculated to the unit of  pg/ng. 

Immunohistochemistry

The posterior brain halves were postfixed 
in 4% paraformaldehyde overnight at 4°C. The 
next day, brains were separately transferred to a 
solution containing 0.1M PBS and 0.01% sodium 
azide. Brains were cryoproctected in 30% sucrose 
in phosphate buffer for 24h before cutting. This 
part of  the brains was used for immunostaining of  
GLUT-1 and Aβ. Brains were cut in eight series of  
30-μm-thick coronal sections using a freezing sliding 
microtome (Microm HM 450, Walldorf, Germany). 
Brain sections were stored in 0.1M PBS with 0,01% 
sodium azide at 4°C before immunohistochemical 

staining. In total two immunohistochemical stainings 
were performed using standard free-floating labelling 
procedure at room temperature. For each staining, 
one subseries of  brain sections per animal was used. 
After every incubation step, brain sections were 
rinsed 3 times for 15 minutes in 0.1M PBS for the 
GLUT-1 staining. For the Aβ staining, brain sections 
were rinsed in tris Buffered Saline + 0,5% Triton 
(TBS-T).

All free-floating brain sections were rinsed with 
0.1M PBS for 15 minutes and treated with 0.3% 
H2O2 in 0.1M PBS for 30 minutes. Next, brain 
sections were pre-incubated in 2 ml 0.1M PBS-BT 
for 30 minutes. For Aβ staining, the brain sections 
were pre-incubated in 2 ml 0.05M Tri-sodium 
citrate solution at 85°C for 30 minutes. After this 
pre-incubation step, primary anti-bodies (GLUT-1: 
rabbit anti-GLUT-1 [1:40.000; Millipore, Billerica, 
MA, USA] or WO-2: mouse anti-human Aβ4-10 
[1:10.000; Centre for Molecular Biology, University of  
Heidelberg, Germany]) were added overnight. After 
rinsing, secondary anti-bodies (GLUT-1: donkey 
anti-rabbit [1:1500; Jackson ImmunoResearch, West 
Grove, PA, USA], WO-2: donkey anti-mouse biotin 
[1:1500; Jackson ImmunoResearch, West Grove, PA, 
USA]) were added for 1.5 h followed by incubation 
with ABC-Elite (1:800; GLUT-1in PBS-BT, Aβ in 
TBS-T) for 1.5h. Afterwards, all brain sections were 
pre-incubated in DAB-Ni for 10 minutes followed 
by incubation in DAB-Ni with 30% H2O2 for 10 
minutes. Brain sections were mounted on gelatine-
coated slides (0.5% gelatine and 0.05% chrome-
alum) and dried at 37°C overnight. The slides were 
dehydrated with alcohol, cleared with xylol and 
coverslipped with Entellan. 

Quantification

The stained sections were viewed with a 5x 
objective Axio Imager A2 (Zeiss Germany), and 
ZEN software was used for image acquisition. 
Brain sections were preselected according to the 
mouse brain atlas of  Franklin and Paxinos [66].
The regions of  interest (ROIs) for Aβ contain the 
cortex, hippocampus and thalamus (bregma: -1.94), 
as reference areas which do not directly get blood 
supply from the MCA, and the cortex, corpus 
callosum and basal ganglia (bregma: 0.62), areas 
which are partially or directly supplied by the MCA. 
The analysis of  all images was performed using 
ImageJ (National Institute of  Health, Bethesda, MD, 
USA). For the Aβ staining the average plaque size, 
relative positive Aβ area, and number of  plaques per 
area (mm2) were calculated. 

Figure 3. Induction of ischemic stroke.The incision 
was made in the neck of the animal (surgery area). 
The filament was inserted in the right common 
carotid artery and pushed up to the middle 
cerebral artery (the occlusion area). The filament 
was held in place for 30 minutes.
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Data analysis

All statistical analyses were preformed using IBM 
SPSS 25 software (IBM Corporation, New York, NY, 
USA). Data were split on genotype, surgery, and sex 
and checked for outliers. Two animals were excluded 
for the analyses of  the ELISA for Aβ40 and Aβ42, 
because of  extremely deviant values.

Differences between sex (male/female), surgery 
(sham/stroke), and hemispheres (left/right) were 
determined. Repeated measures ANOVA with 
Bonferroni corrections were used to determine 
significant differences between the left and right 
hemispheres. Multivariate ANOVA with Bonferroni 
corrections to determine significant differences 
between surgery and/or sex. Data were checked 
for interaction between the variables, and further 
split if  necessary. GraphPad Prism (6.01, GraphPad 
Software, La Jolla California, USA) was used to 
create all presented figures. All data are presented 
as mean ± SEM. Data were considered significant 
if  p ≤ 0.05. 

# 0.08 ≥ p ≥ 0.05, * p ≤ 0.05, ** p ≤ 0.01, *** p 
≤ 0.001.

Results

An overview of  the various results can be found 
in Supplementary table 1. 

Genotype

All animals were genotyped at the start and the 
end of  the experiment. The PrP gene is present in 
all mice, while the hAPP gene is only present in 
the APP mice. WT mice only show one band at 
750 bp, while the APP mice show two bands, at 
750 bp and 400 bp. No abnormalities were seen 
regarding genotypeandall expression patterns were 
complementary to the ‘assumed’ genotype (APP vs 
WT) of  the individual animals (Fig. 4). 

Amyloid beta burden in the frontal 
brain

To determine the level of  Aβ, proteins were 
isolated from the frontal part of  the brain, including 
parts of  the ischemic core and the penumbra. 
Proteins were isolated from the brains of  all APP 
mice. ELISA for Aβ40 and Aβ42 were performed 
and the ratio between the two Aβ proteins was 
determined. No significant differences between 
the left and right hemisphere were found regarding 
Aβ40, Aβ42 or the Aβ42/Aβ40 ratio (Fig. 5).

Female APP mice showed a higher concentration 
of  Aβ40 in both the left (p<0.006) and right 
(p<0.024) hemisphere compared to male APP mice 
(Figure 6A). No significant differences between 
females and males were found regarding Aβ42 or 
the Aβ42/Aβ40 ratio (Figure 6B-C). No significant 
difference between stroke APP and sham APP 
mice were found regarding Aβ40, Aβ42 or the ratio 
Aβ42/Aβ40 (Figure 6A-C). 

Amyloid beta burden in ischemic and 
unaffected regions

To further determine the level of  Aβ brain 
sections  of   APP  mice  were  immunohistochemically 
stained for Aβ at bregma 0.62, close to the ischemic 
core and at bregma -1.94 further away from the 
ischemic region. At bregma -1.94 the cortex (Fig. 
7A), hippocampus (Fig. 7B), and thalamus (Fig. 7C) 
were analyzed for differences in the average plaque 
size, relative Aβ positive area, and the number of  
Aβ plaques per area (mm2). A trend was visible in 
the cortex in male sham (p<.067) and female stroke 
(p<.075) mice, in which the right hemispheres seems 
to have a higher average plaque size compared to 
the left hemisphere. No significant differences 
were found between the left and right hemisphere 
in the cortex regarding relative Aβ area or number 
of  Aβ plaques per area (mm2). No significant 
differences were found between the left and right 
hemisphere in the hippocampus regarding average 
plaque size. Female stroke mice showed a significant 
increase (p<.032) in relative Aβ area in the right 
hemisphere compared to the left hemisphere in the 
hippocampus. A trend (p<.07) was visible in the 
female stroke mice, in which the right hemisphere 
tended to have an increased number of  Aβ plaques 
per area (mm2) compared to the left hemisphere 
in the hippocampus. Female sham mice showed 
a significant increase in average plaque size in the 
right hemisphere compared to the left hemisphere 
(p<.003). No significant differences were found 
between the left and right hemisphere in the thalamus 
in relative Aβ area or number of  Aβ plaques per area 
(mm2). 

Brain sections of  APP mice were also 
immunohistochemically stained for Aβ at bregma 
0.62, close to the ischemic core. At bregma 0.62, the 
cortex (Fig. 8A), corpus callosum (Fig. 8B) and basal 
ganglia (Fig. 8C) were analyzed for differences in the 
average plaque size, relative Aβ positive area and the 
number of  Aβ plaques per area (mm2). Male stroke 
mice showed a significant decrease in average plaque 
size (p<.03), relative Aβ area (p<.004) and number 
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of  Aβ plaques per area (mm2) (p<.038) in the right 
hemisphere compared to the left hemisphere in 
the cortex. No significant differences were found 
between the left and right hemispheres in the corpus 
callosum regarding average plaque size or relative Aβ 
area. Male sham animals showed a significant increase 
in number of  Aβ plaques per area (mm2) in the 
right hemisphere compared to the left hemisphere 
(p<.032) in the corpus callosum. No significant 
differences were found between the left and right 

hemispheres in the basal ganglia regarding average 
plaque size. Female stroke mice showed a significant 
decrease (p<.042) in relative Aβ area in the right 
hemisphere compared to the left hemisphere in the 
basal ganglia. No significant differences were found 
between the left and right hemispheres in the basal 
ganglia in number of  Aβ plaques per area (mm2).

Data from bregma -1.94, the cortex (Fig. 9A), 
hippocampus (Fig. 9B), and thalamus (Fig. 9C) 
were further compared for sex (male vs female) and 

Figure 4. Genotyping by agrose gel. Representative photo of samples of the genotyping performed on an 
agrose gel. Other gels were performed in a similar way. WT animals only show one band at 750 bp (top 
band, PrP gene), the APP mice have two bands, at 750 bp (top band, PrP gene) and 400 bp (lower band, 
APP gene). Numbers refer to the animal number. L: left hemisphere, R: right hemisphere, +: positive 
control, -: negative control. 

Figure 5. Concentration of Amyloid beta in the frontal part of the brain, L vs R effects. All data are 
presented as mean ± SEM. No significant differences between the left and right hemisphere were found 
regarding the concentration of Aβ40 (A), Aβ42 (B) or the ratio of Aβ42/Aβ40 (C).
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surgery (sham vs stroke) differences. No significant 
differences were found in the cortex between 
males and females regarding average plaque size, 
relative Aβ area, or number of  Aβ plaques per area 
(mm2). No significant differences were found in the 
hippocampus between males and females regarding 
average plaque size. Female mice showed a significant 
increase in relative Aβ area in both left (p<.044) 
and right (p<.012) hemisphere compared to males 
in the hippocampus. Female mice also displayed a 
significant increase in number of  Aβ plaques per 
area (mm2) in both left (p<.025) and right (p<.019) 
hemisphere compared to males in the hippocampus. 
A significant increase in average plaque size (p<.042) 
in the right hemisphere and in relative Aβ area in 
both left (p<.012) and right (p<.003) hemisphere 
was found in female mice compared to male mice in 
the thalamus. And furthermore, a significant increase 
in number of  Aβ plaques per area (mm2) (p<.030) 
in the left hemisphere of  the thalamus was seen in 
female mice compared to male mice. No significant 
differences between stroke and sham APP mice 
were found regarding relative Aβ area or number of  
Aβ plaques per area (mm2). No interactions were 
found between sex and surgery. 

Differences in sex and surgery were also 

analysed in the cortex (Fig. 10A), hippocampus 
(Fig. 10B) and thalamus (Fig. 10C) on bregma 0.62. 
No significant differences were found in the cortex 
between males and females regarding average plaque 
size. In the cortex, the relative Aβ area in the right 
hemisphere (p<.003) and in number of  Aβ plaques 
per area (mm2) in both the left (p<.031) and right 
(p<.001) hemisphere was significantly increased in 
female mice compared to male mice. No significant 
differences were found in the corpus callosum 
between males and females regarding average plaque 
size, relative Aβ area, or number of  Aβ plaques per 
area (mm2). Female mice presented with a significant 
increase in the basal ganglia in average plaque size 
(p<.033) in the right hemisphere. A trend was visible 
in the basal ganglia in the right hemisphere, in which 
stroke mice seem to have a lower average plaque 
size compared to sham mice (p<.073). A significant 
increase in relative Aβ area in the left hemisphere 
(p<.004) was found in female mice compared 
to male mice. A trend (p<.069) was visible in the 
right hemisphere where female mice seem to have 
an increased number of  Aβ plaques per area (mm2) 
compared to the left hemisphere. Female mice 
showed a significant increase in number of  Aβ 
plaques per area (mm2) in both the left (p<.001) and 

Figure 6. Concentration of Amyloid beta in the frontal part of the brain, sex, and surgery effects. All data 
are presented as mean ± SEM. The concentration of Aβ40 was increased in female mice compared to 
male mice in both the left (p<.006) and the right (p<.024) hemisphere (A). No significant sex or surgery 
differences were found regarding the concentration of Aβ42 (B) or the ratio of Aβ42/Aβ40 (C).
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Figure 7. Average plaque size, relative Aβ positive area and number of Aβ plaques per area (mm2) in the 
cortex, hippocampus, and thalamus (bregma -1.94) of APP mice, L vs R effects. All data were normalized 
against the left male sham group and presented as mean ± SEM. A representative photo of the Aβ staining 
of the right hemisphere of the cortex is shown (A1). A trend was visible in the average plaque size in the 
cortex in which the right hemisphere has a higher average plaque size than the left hemisphere in both 
male sham (p<.067) and female stroke animals (p<.075) (A2). No significant differences between the left 
and right hemispheres were found in the cortex regarding relative Aβ positive area (A3) or number of 
Aβ plaques per area (mm2) (A4). A representative photo of the Aβ staining of the right hemisphere of 
the hippocampus is shown (B1). No significant differences between the left and right hemispheres were 
found in the hippocampus regarding average plaque size (B2). Relative Aβ positive area was increased 
in the hippocampus in the right hemisphere compared to the left hemisphere (p<.032) in female stroke 
mice (B3). A trend was visible in number of Aβ plaques per area (mm2) (p<.070) in the hippocampus, 
in which the right hemisphere has a higher amount of Aβ plaques than the left hemisphere (B4). A 
representative photo of the Aβ staining of the right hemisphere of the thalamus is shown (C1). Average 
plaque size was increased in the thalamus in the right hemisphere compared to the left hemisphere 
(p<.003). In female sham mice (C2). No significant differences between the left and right hemisphere 
were found in the thalamus regarding relative Aβ positive area (C3) or number of Aβ plaques per area 
(mm2) (C4).
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Figure 8. Average plaque size, relative Aβ positive area and number of Aβ plaques per area (mm2) in 
the cortex, corpus callosum, and basal ganglia (bregma 0.62) of APP mice, L vs R effects. All data were 
normalized against the left male sham group and presented as mean ± SEM. A representative photo of 
the Aβ staining of the right hemisphere of the cortex is shown (A1). Average plaque size was decreased 
in the cortex in the right hemisphere compared to the left hemisphere (p<.030) in male stroke mice 
(A2). Relative Aβ positive area was decreased in the right hemisphere compared to the left hemisphere 
(p<.004) in male stroke mice (A3). Number of Aβ plaques per area (mm2) was decreased in the cortex in 
the right hemisphere compared to the left hemisphere (p<.038) in male stroke mice (A4). A representative 
photo of the Aβ staining of the right hemisphere of the corpus callosum is shown (B1). No significant 
differences between the left and right hemisphere were found in the corpus callosum regarding the 
average plaque size (B2) or relative Aβ positive area (B3). Number of Aβ plaques per area (mm2) was 
increased in the corpus callosum in the right hemisphere compared to the left hemisphere (p<.032) in 
male sham mice (B4). A representative photo of the Aβ staining of the right hemisphere of the basal 
ganglia is shown (C1). No significant differences between the left and right hemispheres were found 
in the basal ganglia regarding average plaque size (C2). Relative Aβ positive area was decreased in the 
basal ganglia in the right hemisphere compared to the left hemisphere (p<.042) in female stroke mice 
(C3). No significant differences between the left and right hemisphere were found in the basal ganglia 
regarding the number of Aβ plaques per area (mm2) (C4). 
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Figure 9. Average plaque size, relative Aβ positive area and number of Aβ plaques per area (mm2) in the 
cortex, hippocampus, and thalamus (bregma -1.94) of APP mice, sex and surgery effects. All data were 
normalized against the left male sham group and presented as mean ± SEM. Representative photo of the 
Aβ staining of the right hemisphere of the cortex is shown (A1). No significant differences between sex 
or surgery were found in the cortex regarding average plaque size (A2), relative Aβ positive area (A3) 
or number of Aβ plaques per area (mm2) (A4). A representative photo of the Aβ staining of the right 
hemisphere of the hippocampus is shown (B1). No significant differences between sex or surgery were 
found in the hippocampus regarding average plaque size (B2). Relative Aβ positive area was increased 
in the hippocampus in female mice compared to male mice in both the left (p<.044) and right (p<.012) 
hemisphere (B3). Number of Aβ plaques per area (mm2) was increased in the hippocampus in female 
mice compared to male mice in both left (p<.025) and right (p<.019) hemisphere (B4). A representative 
photo of the Aβ staining of the right hemisphere of the thalamus is shown (C1). Average plaque size 
was increased in the thalamus in female mice compared to male mice (p<.042) in the right hemisphere 
(C2). Relative Aβ positive area was increased in the thalamus in female mice compared to male mice in 
both the left (p<.012) and right (p<.003) hemisphere (C3). Number of Aβ plaques per area (mm2) was 
increased in the thalamus in female mice compared to male mice in the left hemisphere (p<.03) (C4). No 
significant differences were found between surgery in any of the regions nor parameters.
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Figure 10. Average plaque size relative Aβ positive area and number of Aβ plaques per area (mm2) in 
the cortex, corpus callosum and basal ganglia (bregma 0.62) of APP mice, sex and surgery effects. All 
data were normalized against the left male sham group and presented as mean ± SEM.  A representative 
photo of the Aβ staining of the right hemisphere of the cortex is shown (A1). No significant differences 
between sex or surgery were found in the cortex regarding average plaque size (A2). Relative Aβ positive 
area was increased in the cortex in female mice compared to male mice in the right (p<.003) hemisphere 
(A3). Number of Aβ plaques per area (mm2) was increased in the cortex in female mice compared 
to male mice in both left (p<.031) and right (p<.001) hemisphere (A4). A representative photo of the 
Aβ staining of the right hemisphere of the corpus callosum is shown (B1). No significant differences 
between sex or surgery were found in the corpus callosum regarding average plaque size (B2), relative 
Aβ positive area (B3) or number of Aβ plaques per area (mm2) (B4). A representative photo of the Aβ 
staining of the right hemisphere of the basal ganglia is shown (C1). Average plaque size was increased 
in the basal ganglia in female mice compared to male mice (p<.033) in the right hemisphere (C2). Also, 
a trend was visible in the average plaque size in the basal ganglia, in which stroke animals have lower 
average plaque size in the right hemisphere than sham animals (p<.073).  Relative Aβ positive area was 
increased in the basal ganglia in female mice compared to male mice in the left hemisphere (p<.004) (C3). 
A trend was visible in the relative Aβ positive area (p<.069), in which the female mice showed a higher 
relative Aβ positive area in the right hemisphere than male mice. Number of Aβ plaques per area (mm2) 
was increased in the basal ganglia in female mice compared to male mice in both the left (p<.001) and 
right (p<.024) hemisphere (C4). No other significant differences were found between surgery in any of 
the regions nor parameters. 
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right (p<.024) hemisphere compared to male mice. 
No other significant differences between surgeries 
were found regarding average plaque size, relative 
Aβ area or number of  Aβ plaques per area (mm2). 
No interactions were found between sex and surgery.

Synaptic density in affected ischemic 
area

Male WT sham mice showed an increased in 
relative synaptophysin mRNA expression in the 
right hemisphere (Fig. 11), compared to the left 
hemisphere (p<.024). Relative synaptophysin mRNA 
expression was decreased in the right hemisphere 
compared to the left hemisphere in the female WT 
sham group (p<.026). 

Data of  synaptophysin mRNA expression 
were split according to genotypeor sex (Fig. 
12). A significant decrease (p<.004) in relative 
synaptophysin expression was shown in the right 
hemisphere in female WT sham mice compared to 
male WT sham mice (Fig. 12A). Furthermore, relative 
synaptophysin expression was decreased (p<.024) in 
female APP mice compared to male APP mice in the 
left hemisphere (Fig. 12B). No significant differences 
were found regarding genotype or surgery in either 
male (Fig. 12C) or female mice (Fig. 12D). 

Discussion

The overall aim of  this longitudinal study was to 
elucidate the long-term effect of  vascular damage, 

caused by stroke, on AD. This report focused on the 
Aβ burden and changes in synaptic density resulting 
from stroke and/or AD. Furthermore, the study used 
both male and female animals to further investigate 
the sex differences present in both AD and stroke. 
Many aspects about the effect of  stroke and AD on 
each other remain unclear, especially regarding the 
long-term effects after the stroke. Therefore, it is 
very important to further investigate the effect of  
stroke and AD markers, such as the Aβ burden.  

Sex differences Aβ burden 

Female APP mice had a higher Aβ burden 
than male APP mice that is present in many brain 
areas, including the thalamus and basal ganglia. 
Furthermore, the protein levels of  Aβ40 were also 
elevated in the anterior part of  the brain, which 
became apparent by the ELISA analysis. These 
results were largely as expected, as an increased Aβ 
burden in the hippocampus in female APP/PS1 
mice has been reported in AD mice studies before 
(Callahan et al., 2001; Wang et al., 2003). Wang et 
al. (2003) reported an increase of  Aβ protein levels 
and Aβ burden in the hippocampus of  12-month-
old female APP/PS1 mice. Callahan et al. (2001) 
demonstrated a similar effect in both enzyme levels 
and senile plaques in a different APP aging mouse 
model in both the hippocampus and neocortex. 
Wang et al. (2003) demonstrated elevated protein 
levels of  Aβ40 and Aβ42, but not the Aβ42/Aβ40 
ratio, in the hippocampus. The current results 

Figure 11. Relative expression of synaptophysin, L vs R effects. All data were normalized against the 
left male WT sham group and presented as mean ± SEM. Relative expression of synaptophysin was 
increased in the right hemisphere compared to the left hemisphere in the male WT sham group (p<.024) 
and decreased right compared to left in the female WT group (p<.026).
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Figure 12. Relative expression of synaptophysin, sex and genotype effects. All data were normalized 
against the left male WT sham group and presented as mean ± SEM. Data were split on either 
genotype (A-B) or gender (C-D). Relative expression of synaptophysin was decreased (p<.004) in the 
right hemisphere in female mice compared to male mice regarding the WT sham group (A). Relative 
expression of synaptophysin was also decreased (p<.024) in the left hemisphere in female APP mice 
compared to male APP mice (B). No significant differences were found between genotype or surgery in 
either male (C) or female mice (D).

showed that the gender effect in Aβ is not limited to 
the hippocampal area, and possibly the cortex, but 
widely spread throughout different brain areas. No 
significant differences in sex regarding Aβ42 were 
found in the current study. Whether this is due to the 
mixture of  tissues that are affected and unaffected 
by the stroke in this analysis or due to an insufficient 
power (alpha = 0.05, power = 0.56) caused by high 
variation in the experimental group, remains unclear. 
But overall, such increased Aβ concentration and Aβ 
burden in female APP mice was found in many brain 
areas and is not restricted to the hippocampus and 
cortex.

The effects of stroke on Aβ burden

The Aβ concentration and Aβ burden did not 
significantly differ between the stroke and sham 
groups, suggesting that the stroke operation had 

no effect on the Aβ burden in APP mice. Notably, 
there was a trend found in the right hemisphere 
of  the basal ganglia, which indicated a decrease in 
the averageplaque size in stroke mice compared to 
sham mice. This effect is most likely due to the high 
amount of  atrophy in the area. The basal ganglia are 
mostly effected by the occlusion of  the MCA, since 
they are directly supplied of  oxygen and glucose 
by this artery (De Reuck, 1971). Supply of  oxygen 
and glucose is severely decreased for a substantial 
amount of  time, resulting in a high rate of  cell 
death and atrophy in this area. The trend found in 
this region could therefore be associated with the 
atrophy and cellular apoptosis in this area.

With exception of  this trend in the basal ganglia, 
the Aβ concentration and Aβ burden did not seem 
to be affected by the stroke and sham operations 
implying that stroke had no direct effect on the Aβ 
burden in the surrounding brain areas at bregma 
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of  0.62. But this conclusion cannot be drawn only 
from this comparison, since there were 2 controls 
present in this study. As mentioned before, next to 
the sham group serving as control, there was also a 
within-subject control, namely the left hemisphere 
of  the mice. In each group only the right MCA 
was targeted, therefore the left hemisphere was not 
directly affected by the stroke operation. When the 
left and right hemispheres were compared with each 
other, stroke effects became visible. Male stroke 
mice showed a significant decrease in the Aβ burden, 
average size and number of  plaques in the cortex of  
the affected hemisphere compared to the unaffected 
left hemisphere.This result was not expected, since 
studies on short-term effects reported an opposite 
effect of  the stroke on the Aβ  burden (Garcia-
Alloza et al., 2011; Thiel, Cechetto, Heiss, Hachinski, 
& Whitehead, 2014) due to disruptions in amyloid 
clearance pathways the Aβ burden increased (Garcia-
Alloza et al., 2011). However, mice in these studies 
were sacrificed days or weeks after stroke induction 
(Garcia-Alloza et al., 2011; Thiel et al., 2014). In the 
current study, mice had 8 months of  recovery time. It 
could be that the disruption in the amyloid clearance 
pathway was not only minimized, but even increased 
due to ongoing inflammatory processes. These 
inflammatory processes are still present 8 months 
after stroke, indicated by the increased activity 
of  reactive microglia in the male stroke animals 
compared to the male sham animals, that was not 
represented in the female animals. The expression 
patterns of  the reactive microglia are very similar 
to the decrease in Aβ plaque patterns, indicating 
a correlation between the two. An interaction 
between microglial activity and Aβ plaques has been 
established before. However, the precise effect of  
microglial activity on Aβ clearance is very complex 
and can easily shift between a stimulating or inhibiting 
effect (Merlo, Spampinato, Caruso, & Sortino, 2020). 
Both positive and negative influences of  microglia 
on Aβ clearance have been found, depending on the 
balance between pro- and anti-inflammatory activity 
of  the microglia and the overall phenotype of  the 
microglial cells (Merlo et al., 2020). In our case, the 
microglia possibly have increased the Aβ clearance 
in the affected hemisphere. This would explain why 
the effect was visible only in male stroke mice, since 
only the male mice showed an increase in microglial 
activity in the cortex of  the affected hemisphere after 
stroke. To be sure about the effects of  microglial 
activity on Aβ clearance a more in-depth analysis of  
the inflammatory response is necessary.

Areas not directly supplied by the MCA and 
therefore not directly affected by the stroke, showed 

different patterns of  Aβ burden. Female stroke mice 
showed an increase in Aβ burden in the hippocampus 
of  the affected hemisphere, coupled with a trend in 
the number of  plaques in the hippocampus and a 
trend in the average plaque size in the cortex (bregma 
-1.94).

Taken together, the Aβ burden was decreased in 
regions directly supplied by the MCA, while being 
increased in other brain areas. It remains unclear 
how stroke affects these brain regions in different 
manner and what role microglial activity might play 
in the Aβ clearance in this case.

Effects sham operation on Aβ burden

Next to the observed stroke effects, the sham 
groups also showed some significant differences. 
The female sham group showed a significant increase 
in average plaque size in the thalamus and there 
was a trend towards a higher average plaque size in 
the affected hemisphere of  the male sham mice. A 
possible explanation for the observed results might 
be that the sham operation actually had a significant 
effect on the animal and the affected hemisphere. 
This could be possible since the filament is shortly 
introduced during the sham operation, blocking 
blood flow for a couple of  seconds. Furthermore, in 
both sham and stroke animals after the ‘occlusion’, the 
right common carotid artery is permanently tied off  
and it is not clear if  this effects the brain. The effect 
and resulting stress of  the sham operation might be 
large enough to cause differences between the two 
hemispheres of  the sham animals. The animals and 
the vascular system did undergo significant levels of  
stress during the surgery. Stress has been reported 
to contribute to the formation of  Aβ plaques before 
(Han et al., 2017; Huang et al., 2015). The stress 
caused by the short blockage of  blood flow and the 
overall stress of  the anesthesia and operation, could 
possibly contribute to the formation of  the Aβ 
plaques (Eckenhoff  et al., 2004; Marques & Lapa, 
2018) and therefore the differences between the 
hemispheres in the sham animals.

Along the same line, the effect of  the sham 
operation might also explain the lack of  significance 
between the sham and stroke animals. If  the sham 
operation truly affects the brain in a significant 
manner, similar to the effect of  stroke, then the 
lack of  significance between the sham and stroke 
groups would be logical. It is very important to 
consider all factors in these sham and within-subject 
control models before drawing any conclusions 
regarding the effects or lack of  effects of  stroke 
on the Aβ burden. Ideally, an extra control group 
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without operation would have been added to further 
determine the effects of  stress and stroke on the 
brain. Unfortunately, due to the already large nature 
of  the study, this was not possible. 

Furthermore, neither a sham/stroke nor a within-
subject control effect was found in the results of  the 
ELISA analyses of  the anterior part of  the brain. 
This could be caused by the chosen methodology. In 
the ELISA analyses, no division was made between 
affected and unaffected tissue because the amount 
of  tissue was very small per animal and it was not 
possible to make a clear division. The effect of  the 
stroke operation might be masked because both 
ischemic regions and unaffected regions are taken 
together for the ELISA analyses. This would weaken 
the differences between the different hemisphere 
explaining the lack of  significance in this analysis 
compared to the IHC.

Overall, the multiple control groups and methods 
for analyzing Aβ give multiple perspectives on the 
research question. However, the opposing results 
require critical evaluation of  different controls and 
methods used. 

Asymmetric synaptic density

Next to the Aβ burden, this study also 
investigated synaptic density via determining 
synaptophysin mRNA expression. In this qPCR 
analysis an asymmetry between the two hemispheres 
was found in the WT sham animals. Asymmetrical 
expression of  genes has been reported before in 
many animal species and in humans (Vallortigara, 
Chiandetti, & Sovrano, 2011). Asymmetry of  
synaptophysin expression specifically, has also been 
reported in some species, e.g. developing chicken 
(in both via pre and post-synaptic markers) (Roy, 
Nag, Upadhyay, Mathur, & Jain, 2014) and aging 
chimpanzees (Sherwood et al., 2010). Although 
asymmetry of  synaptophysin has not been found 
before in mice, they do show some brain asymmetry 
and for example, paw preference (Waters & 
Denenberg, 1994), indicating that the mouse brain 
has asymmetrical properties and hemispheres are 
not identical. Therefore, asymmetrical expression 
of  synaptophysin could be a possibility. However, 
the observed asymmetry in synaptophysin has an 
opposite direction in female compared to male mice: 
female WT sham mice showed lower synaptophysin 
expression in their right hemisphere compared to 
their left hemisphere, while male WT sham mice 
showed higher synaptophysin expression in their 
right hemisphere compared to the left one. This 
opposing effect in different genders has not been 

reported before. Furthermore, this asymmetry is not 
present in any of  the other experimental groups, in 
which the mice suffered from stroke and/or AD 
pathology. The sham/stroke operation and the AD 
pathology could influence synaptic density to such 
an extent that the asymmetry would be hidden. 
However, this would mean that the effect of  stroke 
on synaptic density would have an opposing effect on 
male compared to female mice, otherwise the effect 
could not be concealed in both genders of  the other 
experimental groups. To determine the true nature 
of  this possible asymmetry, it would be beneficial 
to include mRNA analyses of  post synaptic density 
marker PSD-95. A pattern of  PSD-95 expression 
similar to the synaptophysin expression would 
strengthen the observed asymmetry, while a lack 
of  similarity could suggest a false positive in the 
synaptophysin analyses.  

Effect of AD on synaptic density

In APP mice, the effect of  gender was seen in 
the left unaffected hemisphere. Female APP mice 
showed decreased expression of  synaptophysin in 
the left hemisphere compared to male APP mice, 
regardless of  stroke or sham operation. This effect is 
most likely related to the AD pathology, since AD is 
also associated with synaptic loss, and the observed 
differences here were not present in the WT animals. 

As mentioned before, female APP mice show 
a higher Aβ burden than their male counterparts, 
as shown both in the ELISA analyses and the 
immunohistochemical staining. This indicates a 
heavier AD pathology in female mice. Important to 
note, the Aβ burden is just a marker for AD, it is not 
a direct comparison for AD pathology. The exact 
contribution of  the Aβ plaques to AD pathology 
remains unclear, but it is known that there are 
correlations between the amount of  Aβ plaques and 
other factors associated with AD (Hooijmans et al., 
2007). Hooijmans et al. demonstrated that Aβ plaques 
are related to decreased GLUT-1 and hippocampal 
atrophy in 18-month-old mice (Hooijmans et al., 
2007) and both Aβ plaques and AD directly affect 
synaptic density negatively (Goulay, Romo, Hol, & 
Dijkhuizen, 2019; Dennis J Selkoe, 2002). Taken all 
together, a cautious link can be made to the high 
of  Aβ burden and the overall weight of  the AD 
pathology. Therefore, a more severe AD pathology 
indicated by a higher Aβ burden could explain the 
reduction in synaptic density in female mice, since 
AD negatively effects the synapses. 

It would be beneficial to look at other AD 
markers such as vascularity and neuroinflammation 
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that may also differ between sexes to confirm the 
correlation between the synaptic density and heavier 
AD pathology. This could shed light on the question 
whetherthe observed effect is solely driven by Aβ 
burden or by the overall AD pathology. 

Future perspective 

Longitudinal studies on the combination of  AD 
and stroke have never been done before. This study 
is the first step to elucidate the long-termeffects of  
stroke on AD pathology. Both the AD and stroke 
model have been widely used in research and have 
also been combined to determine short-term effects 
of  stroke and AD on each other.  There are some 
considerations to be made for the stroke model 
and its controls, both within and between subjects. 
Especially, differences of  the two control models 
should be closely considered for their implications. 
Both controls can be influenced by the surgeries 
done, and it is vital to keep this in mind when 
comparing experimental groups. 

To investigate the effect of  sex, both male and 
female mice were used. In humans, females are 
protected via estrogen against the development, as 
well as the severe adverse effects of  stroke (Reeves 
et al., 2008). Therefore, postmenopausal women 
are more prone to suffer a stroke. The current 
mouse model does not take this postmenopausal 
group into account. Future research could benefit 
from including groups that represent both pre- and 
postmenopausal women. 

The mice used in this study also underwent 
multiple other tests, including behavioral studies and 
MRI analyses. It was not possible to include all data 
in this report. However, correlation analyses between 
behavioral studies, MRI data and postmortem 
analysis are crucial to elucidate the overall effect of  
stroke on AD. Markers for neuronal andsynaptic 
density could be correlated to previously performed 
cognitive test results. Also, neuroinflammatory 
factors should be corelated to Aβ burden. Originally, 
neurogenesis was planned to be further investigated 
by means of  qPCR analysis of  BDNF mRNA 
expression. However, due to the age of  the mice 
and the low level of  DCX-positive cells found in the 
hippocampus (other data from current study, not 
published yet), the concentrations were too low to 
be properly analyzed. 

A crucial factor in AD pathology is the vascularity 
of  the brain. GLUT-1 transporters in the blood 
vessels are vital for Aβ clearance in the brain (Ueno 
et al., 2014) and most AD patients show vascular 
pathologies postmortem (R. N. Kalaria et al., 2012). 

A previous study already found a correlation between 
GLUT-1 and Aβ plaques in the mouse model that 
was used in the current study (Hooijmans et al., 
2007). Postmortem analyses of  GLUT-1 and overall 
architecture of  the vascularity should be done and 
correlated to Aβ burden, MRI data and behavioral 
test. 

Lastly, cell death should be considered 
as an influencing factor. By looking at the 
immunohistochemical staining, cell death and 
atrophy were seen in the basal ganglia, however, the 
full extent of  this atrophy should be further analyzed 
by MRI. The degree of  atrophy could also be 
correlated to the behavioral tests, especially focusing 
on memory tests and e.g. hippocampal atrophy. 
Overall, many factors are still to be considered in 
future research. 

Conclusions

Due to the growing life expectancy, AD and 
stroke prevalence are expected to rise even more 
in the coming years (Association, 2019). Studies 
on the direct interaction but also the long-term 
effects of  stroke and AD are important to improve 
treatment of  the conditions and eventually reduce 
the prevalence of  both. Sex is an important factor 
in many diseases and disorders, including AD and 
stroke. Therefore, including both sexes in research 
is vital for understanding the different presentation 
of  the disorders.

The current longitudinal study replicated the sex 
differences found in Aβ plaques in the hippocampus 
and showed that this increased Aβ burden in 
females also extends to other brain areas such as 
the thalamus and basal ganglia. Eight months after 
stroke induction male mice showed a decrease in Aβ 
plaques in the areas directly affected by the stroke 
compared to the unaffected hemisphere, possibly 
due to increased microglial activity in the affected 
hemisphere. This effect of  microglial activity 
between the two hemispheres was not present in the 
female mice. Differences between male and female 
mice were also present in synaptic density, specifically 
in asymmetrical expression between hemispheres. 
Furthermore, female APP mice showed an overall 
lower synaptic density than their male counterpart. 
This is most likely caused by the increased Aβ 
pathology in the female mice. Overall, the effects of  
stroke on AD are profound, but varying between the 
sexes. More research on AD pathological markers 
other than Aβ burden and synaptic density should 
shed more light on the long-term effects of  stroke 
on AD.
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Supplementary information 

Supplementary protocol 1: RNA 
isolation 

The protocol is done in the fume hood. Always 
wear gloves and clean them regularly with 70% 
ethanol. Make sure that there are enough sterile 
pipette tips and autoclaved 1,5 ml Eppendorf  
tubes, and enough DEPC-treated milliQ, TRIzol, 
chloroform, and 2-propanol and 75% ethanol. All 
pipette tips and tubes that have come into contact 
with TRIzol have to be collected in a glass container 
and disposed of  in the chemical waste container. 
The protocol is used to isolate RNA from frozen 
(-80°) tissue, which is placed in a 2 ml Eppendorf  
tube. The tubes with MQ and ethanol used for 
cleaning the homogenizer and the 2-propanol and 
ethanol supernatants from steps 24 and 28 need to 
be collected in a 50 ml tube and disposed of  in the 
chemical waste container.

1.	 Switch on the centrifuge, set it to 4°. Get a 
bucket of  ice. Place the tissue homogeniser in the 
fume hood. Switch on the thermomixer and set it to 
60°.

For each 4 samples you have, fill one marked test 
tube half  full with 70% ethanol and one marked test 
tube half  full with MQ (DEPC-treated).

2.	 Take the tissue samples from the freezer 
and put them in the ice bucket 

3.	 In the fume hood, add 1 ml of  TRIzol to 
each sample 

4.	 Dip the tip of  the homogenizer into the test 
tube with 70% ethanol 

5.	 Clean the tip of  the homogenizer with a 
tissue paper 

6.	 Put the homogenizer into the tube with 
TRIzol and your sample, push the tissue down, 
switch on the homogenizer for 10 seconds, move 
the tube up and down during the homogenizing

7.	 Close the tube and put it back in the ice 
8.	 Put the homogenizer into the test tube with 

MQ and switch on the machine for about 3 seconds
Clean the tip of  the homogenizer with a tissue 

paper
Dip the tip of  the homogenizer into the test tube 

with 70% EtOH
Clean the tip of  the homogenizer with a tissue 

paper
9.	 Homogenize the next sample (steps 6-8) 
10.	 Switch to new test tubes with MQ and 

EtOH, and tissue paper, after each 4 samples 
11.	 Store the samples at RT for 5 minutes

12.	 Add 200 µl of  chloroform to each sample 
13.	 Shake the tubes vigorously for 15 seconds
14.	 Store the samples at RT for 5 minutes
15.	 Centrifuge at 12.000 g at 4° for 10 minutes
16.	 Make a new labeled, sterile 1,5 mlEppendorf  

tube for each sample 
17.	 Carefully put the centrifuged tubesback into 

the ice 
18.	 In the fume hood, pipette the top, clear 

layer (500 µl) into the new tube. Be careful not to 
touch the intermediate layer with your pipette tip.

It’s more important that what you pipette off  is 
clean than that you get the whole 500 µl

19.	 Add 500 µl of  2-propanol to eachtube 
20.	 Shake the tubes vigorously for 15 seconds
21.	 Store the samples at RT for 15 minutes
22.	 Centrifuge at 12.000 g at 4° for 10 minutes
23.	 Carefully put the tubes back intothe ice. 

Most of  the times, a white pellet is visible at the 
bottom of  the tube 

24.	 Set the pipette to 600 µl, and carefully 
pipette off  the supernatant in two steps. Do not 
touch the pellet or the place where the pellet should 
be. Discard the supernatant into the 50 ml tube

25.	 Add 1 ml of  75% EtOH to each tube. Flick 
the tubes 

26.	 Centrifuge at 7.500 g at 4° for 5 minutes
27.	 Carefully put the tubes back into the ice 
28.	 Set the pipette to 600 µl, and carefully 

pipette off  the supernatant in two steps. Do not 
touch the pellet or the place where the pellet should 
be. Discard the supernatant into the 50 ml tube. 
Set another pipette to 50 µl and pipette out the last 
remaining ethanol

29.	 Take the tubes out of  the ice, open the 
tubes and let the RNA dry for 10 minutes

30.	 Add 25 µl of  MQ (DEPC-treated) to each 
sample. Pipette up and down a few times 

31.	 Put the tubes in the thermomixer (no 
shaking) for 10 minutes

32.	 Flick the tubes with your fingers and spin 
them down 

33.	 Store the tubes at -80°C or continue with 
the protocol for measuring the RNA concentration 
using the NanoDrop

Supplementary protocol 2: Measuring 
RNA/DNA with the Nanodrop 2000

Using this protocol, you can measure the 
concentration and purity of  your RNA or DNA 
samples, using the NanoDrop spectrophotometer. 

Many proteins absorb at 280 (aromatic rings 
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absorb this wavelength) and DNA/RNA absorbs 
at 260. 260/280 ratio should be 1.80-2.00, 260/230 
1.80-2.20. When working with RNA isolated with 
TRIzol, the 260/230 values are going to be lower 
(0.3-0.8) because of  the high salt concentrations.

1.	 Switch on the computer and screen. The 
NanoDrop machine is always on. When working 
with RNA, get a bucket of  ice, and wear clean gloves 
throughout the protocol

2.	 Thaw your samples (if  needed) 
3.	 Flick your samples using your fingers, spin 

them down 
4.	 When working with RNA, put your samples 

on ice 
5.	 Run the NanoDrop 2000 program on the 

computer 
6.	 Select ‘Nucleic acids’ on the menu screen 
7.	 Make sure the arm of  the NanoDrop is 

down, click OK 
8.	 In the top right corner of  the screen, select 

if  you want to measure DNA or RNA 
9.	 Pipette 1 μl of  the solution your DNA or 

RNA is dissolved in (usually 1x TE or DEPC-MQ) 
onto the pedestal, put the arm down, and click the 
‘Blank’ button in the program

10.	 Put the arm up when the blank measurement 
is done and, using a tissue paper, gently wipe off  the 
liquid from the pedestal and the arm 

11.	 Pipette 1 μl of  your DNA/RNA sample 
onto the pedestal, put the arm down, fill in your 
sample number in the field in the top right, and click 
the ‘Measure’ button in the program

12.	 Put the arm up when the measurement is 
done and, using a tissue paper, gently wipe off  the 
liquid from the pedestal and the arm 

13.	 When working with RNA, measure your 
sample again (duplo) with a new 1 μl

14.	 Repeat steps 11-13 for all your samples 
15.	 After the first sample, you get a pop-up 

asking you where you want to save your data 
16.	 After the last sample is measured, click 

the ‘Reports’ button in the lower left corner of  the 
screen. Click ‘Export’ to export your data to an .xml 
file you can use later on

17.	 Close the NanoDrop program and switch 
off  the computer and screen 

18.	 Store the tubes at -80°C or continue with 
the next protocol 

Supplementary protocol 3: DNA 
treatment of RNA

Get a bucket of  ice. Thaw the RNA samples (if  

needed). Flick them and spin them down and put 
them on ice. Get the DNase, DNase buffer, and 
DNase stop solution from the -20° freezer. Set the 
Thermomixer to 37°C (no shaking). All steps are 
done on ice, unless stated otherwise.

1.	 Take an autoclaved Eppendorf  vial (1,5 ml) 
for each RNA sample and label it. 

2.	 Add up to 1 μg of  RNA to the vial, add MQ 
to 8 μl. 

3.	 Add 1 μl of  DNase buffer to each vial. 
4.	 Add 1 μl of  DNase enzyme to each vial. 
5.	 Flick the tubes, spin them down. 
6.	 Put the vials in the 37° Thermomixer for 30 

minutes.
7.	 Take the tubes out of  the Thermomixer, 

put them back on ice. Set the Thermomixer to 65°. 
8.	 Add 1 μl of  Stop solution to each vial. 
9.	 Flick the tubes, spin them down. 
10.	 Put the vials in the 65° Thermomixer for 10 

minutes.
11.	 Take the tubes out of  the Thermomixer, 

put them back on ice. 
12.	 Measure the RNA concentration with the 

NanoDrop and store the RNA in the -80° freezer. 

Supplementary protocol 4: cDNA 
synthesis

This protocol can be used to generate 
cDNA from RNA. The main idea is that one 
absolute amount of  RNA is added to the cDNA 
synthesis reaction and that this amount is the 
same for all the samples. The preparation that 
needs to be done for this protocol is that for all 
your samples you have to calculate how many 
μl of  RNA you have to add to the reaction mix 
to get the absolute amount. The equation for 
calculating how many μl you have to add is 

(absolute amount you want) / (RNA 
concentration of  the sample)

The reaction mix per sample consists of:
•	 x μl RNA
•	 (7.5 - x) μl of  RNase-free water
•	 2 μl of  5x reverse transcription reaction 

mix
•	 0.5 μl of  reverse transcriptase enzyme

So, the maximum volume of  RNA that 
can be added is 7.5 μl. Calculate the absolute 
amount of  RNA you want to add based on the 
sample in your collection with the lowest RNA 
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concentration.
The maximum amount of  RNA that can be 

added to this 10 μl reaction is 500 ng.
1.	 Calculate how many μl of  RNA you need to 

pipette to get the absolute amount of  RNA (400 ng), 
and calculate how many μl of  RNase-freewater you 
need to add to that to get to 7.5 μl end volume.

2.	 Get a bucket of  ice 
3.	 Thaw your RNA samples and the 5x reverse 

transcription reaction mix, flick them with your 
fingers and put them in the ice 

4.	 Put the reverse transcriptase enzyme directly 
on ice, it is not frozen 

5.	 Prepare 8-tubestrips 
6.	 Add the RNase-free water to the strips, then 

the RNA. The total volume in each tube should be 
7.5 μl

7.	 Add 2 μl of  5x reverse transcription 
reaction mix to each tube, then add 0.5 μl reverse 
transcriptase enzyme 

8.	 Close the tubestrips, flick them with your 
finger and spin them down 

9.	 Put the strips in the PCRmachine and run 
the ISCRIPT program 

10.	 Spin the strips down and dilute the cDNA 
1:10 using MQ. Tap the strips to mix 

11.	 Spin the strips down, store them at 4º (short 
term) or -20º (long term)

Supplementary protocol 5: qPCR

Use this protocol to prepare a QPCR plate, 
configure the ABI Prism 7900HT or StepOne Plus 
machine, and run the QPCR protocol. Read up on 
the background & principles of  QPCR using the 
attached qRT-PCR_Basics PDF file. We use the 
SYBR Green method here. To make the QPCR 
master mix (see below), use the Bio-Rad iTaq SYBR 
Green mix. Use the MicroAmp Optical 96-Well 
plates. To make the QPCR master mix (see below), 
use theBio-Rad iTaq SYBR Green mix. Use the 
MicroAmp Fast 96-Well plates. 

First, design the layout of  the QPCR plate. All 
samples must be run in triplicates, so select three 
adjacent wells for each sample. Three wells are 
used for the no template control (NTC), a reaction 
in which MQ will be added instead of  a sample. 
This NTC is used to check whether no cDNA 
contamination is present in the QPCR master mix. 

If  you have multiple primer sets in one plate, 
make a master mix for each pair. Calculate how much 
master mix you need to make ((number of  samples 
+ 1 NTC) x 3). Because of  pipette errors and dead 

volumes of  pipettes, make some extra master mix. 
When you have 24 samples, add 3 samples.

For each well you need these components:
• 5 μl SYBR Green mix (Bio-Rad iTaq) 
• 0.4 μl forward primer 
• 0.4 μl reverse primer 
• 2.2 μl MQ
This is 8 μl in total.

1.	 Get a bucket of  ice. 
2.	 Made the mix in reverse order, so add the 

SYBR Green mix last. When pipetting this, pipette 
a few times up and down to mix everything. Master 
mixes cannot be vortexed. Put the master mixes on 
ice. Defrost the cDNA (if  needed), flick the strips 
and spin them down. They can be kept at room 
temperature.

3.	 Get a plate, put it in a black plate holder 
(base plate) and put it on ice. 

4.	 Use a manual pipette set to 8.0 μl or the 
electric repeater pipette set to 8.0 μl aliquots to 
pipette the master mix into the plate. 

5.	 Use the manual P2 pipette to add 2 μl of  
cDNA to the correct wells. Add 2 μl of  MQ to the 
NTC wells. 

6.	 Take the plate out of  the ice. 
7.	 Affix a cover sticker to the plate, using the 

gray applicator. Press down the sticker on all sides 
and corners. Use your fingers to press down the 
sticker on each well. Spin down the plate using the 
plate spinner. 

8.	 Take your plate to the StepOne Plus. Switch 
on the machine and the computer

9.	 Designing the plate is done on your own 
zero client. Then you save this and take it to the 
QPCR machine to run it

10.	 Start StepOne Software v2.3
11.	 Click OK
12.	 Click File -> New Experiment -> Advanced 

Setup
13.	 Fill in Experiment Name and Username
14.	 Click SYBR Green Reagents button & 

Standard (~ 2 hours to complete a run) buttons
15.	 Click the Plate Setup button in the top left 

of  the screen
16.	 Fill in the target name (the name of  your 

gene of  interest). If  there are more than 1 on your 
plate, click Add New Target

17.	 Fill in the names of  the samples. Click Add 
New Sample button for each sample. Also add the 
NTC as a sample

18.	 Click the Assign Targets and Samples 
button

19.	 Design the plate layout according to your 
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scheme, selecting the appropriate Target and Sample 
for each well. When selecting the NTC, click the N 
button under Task. All other samples are set to U.

20.	 Click the Run Method button in the top left 
of  the screen

21.	 Change the first step to 30 seconds 95° 
instead of  10 minutes. First change the seconds to 
30, then change the minutes to00

22.	 Change Reaction Volume Per Well to 10
23.	 In the top left of  the screen, click the save 

icon and save your file on your USB stick
24.	 Take the plate and the USB stick to the 

StepOnePlus machine at Internal Medicine
25.	 Switch on the computer if  necessary
26.	 Put your USB stick in the computer, copy 

your .eds file to the Anatomy folder in the Users 
folder (located on the desktop)

27.	 Start the StepOne Software
28.	 Open the tray of  the StepOnePlus machine, 

put your plate in and close the tray
29.	 In the top left of  the screen, click the Open 

button and find your file in the Users -> Anatomy 
folder. Open it

30.	 Click the START RUN button in the top 
right corner of  the screen

31.	 After about 2 hours the run is done
32.	 Click the Save button
33.	 Open the tray of  the machine and remove 

the plate. Close the tray
34.	 Copy the .eds file to your USB stick
35.	 Close the StepOne software
36.	 Open the .eds file on your zero client
37.	 Uncheck the Auto box next to Threshold in 

the bottom om the screen
38.	 Fill in 0.2 and press Enter
39.	 Click the Export button in the top of  the 

screen
40.	 Click the Customize Export tab
41.	 Uncheck everything except Well, Sample 

Name, Target Name, Task, Ct, Ct Threshold, Tm1, 
Tm2, Tm3

42.	 Click the Export Properties tab
43.	 Change the Export File Location to your 

folder
44.	 Check the Open file(s) when export is 

complete box
45.	 Click the Start Export button
46.	 Do data analyses in Excel

Supplementary protocol 6: gDNA 
isolation with Trizol

Step 1 to 18 from the RNA isolation protocol 

(Labguru, Bram Geenen), 
1.	 Pipette off  the RNA phase
2.	 Add 500 µl 100% Ethanol to the phenol 

and interphase of  the sample
3.	 Carefully shake until you see the DNA 

appear
4.	 Centrifuge at 7.500g for 5 minutes at RT 
5.	 Discard supernatant (with pipette) 
6.	 Add 700 µl Sodium citrate in 10% Ethanol, 

pH 8,5 
7.	 Wash pellet by carefully moving the tube 

upside down a few times
8.	 Centrifuge at 7.500g for 5 minutes at RT
9.	 Discard supernatant (with pipette) 
10.	 Add 700 µl 70% Ethanol 
11.	 Wash pellet by carefully moving the tube 

upside down a few times
12.	 Centrifuge at 7.500g for 5 minutes at RT
13.	 Discard supernatant (with pipette) 
14.	 Let the pellet dry for ca. 10 minutes
15.	 Add 500 µl MQ
16.	 Vortex and spin tubes down
17.	 Measure gDNA with Nanodrop with the 

‘Measuring RNA/DNA with the NanoDrop 2000’ 
protocol (Labguru, Bram Geenen) 

18.	 Samples are stored at -20oC until further 
analysis will be performed 

Note: concentration of  the DNA has to be 
below 100 ng/µl for successful genotyping. Dilute 
if  needed. 

Sodium citrate:
1.	 Dissolve 1.455 g sodium citrate (2 H20) in 5 

ml 100% ethanol 
2.	 Add MQ to a total of  40 ml
3.	 Adjust pH to 8,5
4.	 Add MQ to a total of  50 ml  

Supplementary protocol 7: running a 
agarose gel

1.	 Set up the gelelectrophoresis system 
2.	 Combine 100 ml of  1x TBE and 1.0 gram 

of  agarose powder in a medium flask. 
3.	 Mix gently. 
4.	 Microwave on HIGH until the mixture 

starts to boil. Gently mix the contents. Beware of  
delayed boiling! Repeat another 2 times until agarose 
is completely dissolved.

5.	 Allow the contents in the flask to cool until 
it stops steaming. 

6.	 Avoid introducing any additional air 
bubbles. 
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7.	 Add 10 µl of  SYBR Safe DNA stain to the 
flask using a pipette. 

8.	 Mix gently and carefully pour gel. 
9.	 Remove any air bubbles in gel lanes by 

gently pushing the bubbles off  to the sides with 
pipette tip. 

10.	 Allow gel to harden at RT for 20 minutes
11.	 Put gel and TBE buffer in agarose system. 
12.	 Add 5 µl of  loading buffer to each sample. 
13.	 Load 5 µl of  TrackIt 100 bp ladder into the 

first slot. 
14.	 Carefully inject 5 µl of  each sample into the 

slots in the gel. 
15.	 Run gel at 100V. for 30 minutes
16.	 Take a picture of  the gel using the GelDoc

Solutions:
• Invitrogen SYBR Safe DNA Gel Stain (400 µl) 

Life Technologies #S33102
• Invitrogen TrackIt 100 bp ladder (500 µl) Life 

Technologies #10488-058
• Invitrogen UltraPure™ TBE Buffer, 10X (1 L) 

Life Technologies #15581-044
• Invitrogen UltraPure™ Agarose (100 gram) 

Life Technologies #16500-100

Supplementary protocol 8: Protein 
isolation 

 
Day 1 RNA isolation
1.	 Step 1 to 18 from the RNA isolation 

protocol (Labguru, Bram Geenen)
Day 2 DNA en Protein isolation o/n 4oC
1.	 Pipette of  the RNA phase 
2.	 Add 500ul (1:1) 100% Ethanol to precipitate 

DNA and mix 
3.	 Incubate for 5 minutes by 4°C
4.	 Centrifuge 7,500xg at 4°C for 5 min
5.	 Supernatent 1ml (phenol/ethanol fase) to a 

2ml eppendorf  tube for protein isolation
6.	 (Pellet can be used for gDNA isolation)
7.	 Add 1 mL (1:1) of  isopropanol to the 

phenol-ethanol
8.	 Mix and Incubate for 10 minutes at RT
9.	 Centrifuge for 10 minutes at 12,000 × g at 

4°C to pellet the proteins
10.	 Discard the supernatant
11.	 Wash the pellet in 1.5 mL of  wash solution 

(0.3 M guanidine hydrochloride in 95% ethanol)
12.	 Incubate for 20 minutes ad RT. (with 

shaking)
13.	 Centrifuge for 5 minutes at 7500 × g at 4°C
14.	 Discard the supernatant. By poring

15.	 Repeat step 6 step 9 twice (wash three times 
in total)

16.	 Air dry the protein pellet for 5–10 minutes
17.	 Add a tablet Complete protease inhibitor to 

10 ml of  5M Guanidine buffer
18.	 Resuspend the pellet in 500 μL of  5M 

guanidine hydrochloride in Tris-HCl, pH8) by 
pipetting up and down

19.	 Vortex to complete suspension
20.	 Centrifuge for 10 minutes at 10,000 × g at 

4°C to remove insoluble materials
21.	 Transfer the supernatant to a new 1.5 ml 

tube (Guanidine Soluble Fraction)
22.	 Samples are stored at -80oC until the ELISA 

will be performed

0.3M Guanidine buffer:
Dissolve 7.164 gr guanidine HCl in 250ml 95ml 

Ethanol.

 5M Guanidine buffer:
Dissolve 119.4 gr guanidine HCl and 1.5 gr 

Trizma base in 200 ml MQ
Adjust pH to 8.0
Add MQ to a total of  250 ml (expiration date 2 

years)
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Supplementary table 1. Overview of all results. Summary of all significant results found in Aβ and 
synaptophysin expression. 0: no significant results, ↑: significant increase, ↓: significant decrease, ↑#: 
trend which shows an increase, ↓#: trend which shows a decrease.
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Minou Verhaeg

Supplementary figure 1. Atrophy in the basal ganglia. Representative photos of the left and right 
thalamus in male sham, female sham, male stroke and female stroke mice.



Nijmegen CNS | VOL 16 | ISSUE 1 123

ALZHEIMER’S DISEASE, STROKE AND GENDER COMBINED

Supplementary figure 2. Neuroinflammation in male mice in the cortices, corpus callosum, caudate 
putamen, hippocampus and thalamus. All data are presented as mean ± SEM. At bregma 0.62 the 
percentage of IBA-1 positive area was significantly increased in stroke mice compared to sham mice in 
the cortex in both the left (p<0.036) and right (p<0.008) hemisphere (A), in the corpus callosum in both 
the left (p<0.004) and right (p<0.014) hemisphere (B) and in the caudate putamen in the right hemisphere 
(p<0.003) (C). The percentage of IBA-1 positive area was also significantly increased at bregma -1.94 in 
the cortex in both the left (p<0.027) and right (p<0.010) hemisphere (D) and the hippocampus in both the 
left (p<0.032) and right (p<0.001) hemispheres (E). No significant differences were found in the thalamus 
(F).
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Minou Verhaeg

Supplementary figure 3. Neuroinflammation in female mice in the cortices, corpus callosum, caudate 
putamen, hippocampus and thalamus. All data are presented as mean ± SEM. No significant differences 
in the percentage of IBA-1 positive area were found in the cortex (A) and corpus callosum (B) at bregma 
0.62. The percentage of IBA-1 positive area was significantly increased in stroke mice compared to 
sham mice in the caudate putamen (C) in the right hemisphere (p<0.006). A trend was visible in the 
cortex at bregma -1.94 (D) in which the stroke animals seemed to have an increased percentage of IBA-1 
positive area compared to sham animals in the right hemisphere (p<0.077). In the hippocampus (E) a 
trend was visible in the left hemisphere in which the stroke animals seemed to have in increased in the 
percentage of IBA-1 positive area compared to sham animals (p<0.078). In the right hemisphere of the 
hippocampus, a significant increased in stroke mice compared to sham mice was found (p<0.047). No 
significant differences were found in the thalamus (F).
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Changes in Resting-State Functional Connectivity in Patients 
With Neuralgic Amyotrophy

Melissa Bakkenes

Neuralgic amoytrophy is a peripheral nervous system disorder, where the brachial plexus is affected. Neuralgic 
amyotrophy starts with an acute phase, which is likely caused by an acute auto-immune reaction against 
the brachial plexus. After the acute phase, patients with neuralgic amyotrophy often have motor problems, 
such as persisting abnormal posture and movement patterns of  the scapula in the chronic phase. There are 
some indications that there could be a central nervous system problem, underlying the persisting long-term 
consequences of  NA. Therefore, the aim of  this project is to determine whether there is a difference in 
resting-state networks between neuralgic amyotrophy patients and healthy controls by comparing the brain 
activity of  several resting-state brain networks between neuralgic amytrophy patients and healthy controls. 
To test this, we have performed a dual regression analysis with 41 neuralgic amyotrophy patients (mean 
age 43 ± 11 years, 16 females) with lateralized symptoms in the right upper extremity and 24 age and sex 
matched healthy controls (mean age 43 ± 8 years, 10 females). In addition, we assessed the specificity of  a 
possible sensorimotor network resting-state fMRI difference in neuralgic amyotrophy patients compared to 
healthy controls, by considering the functional relevance of  this difference on the motor impairments of  NA 
patients. Furthermore, we wanted to evaluate if  there are structural changes in the brain of  patients with NA 
compared to healthy controls. In addition, we also wanted to evaluate whether possible resting-state fMRI 
changes in neuralgic amyotrophy patients are (partially) explained by structural changes in the brain. For 
these questions, a voxel based morphometry analysis was conducted. We have found that there is a difference 
in connectivity in the sensorimotor network and left frontoparietal network for neuralgic amyotrophy patients 
compared to healthy controls. There is no significant correlation between the sensorimotor network and 
capability of  the upper-limb in neuralgic amyotrophy patients. There are also no significant group differences 
in grey matter volume. This study concludes that a short inflammation of  the brachial plexus can lead to task-
independent functional reorganization of  the central nervous system in patients with neuralgic amyotrophy. 
This finding could aid in the treatment for the persisting motor deficits in patients with neuralgic amyotrophy.

Laminar fMRI at 3T: A Replication Attempt of Top-Down and 
Bottom-Up Laminar Activity in the Primary Visual Cortex

J. Karolis Degutis

The emerging field of  laminar functional MRI (fMRI) has the capability of  non-invasively measuring depth-
dependent activity within regions of  the neocortex. Most previous studies using laminar fMRI have been 
done at ultra-high field (7T and above) as it allowed for higher spatial resolution; yet, recent innovations in 
MR sequences have enabled submillimeter functional resolution at 3T. This study aimed to replicate two 
previous 7T laminar fMRI findings while using a 3T MRI scanner and thus tested whether laminar fMRI 
could be used for cognitively-relevant research questions when scanning at a lower field strength. A data 
quality comparison between the current findings and a previous 7T dataset (Lawrence et al. 2018) found 
lower tSNR and lower functional t-contrast activation at 3T. Additionally, the study failed to replicate the 
two previous results: the bottom-up stimulus-contrast yielded non-specific agranular compared to granular 
layer activation, while the top-down visual working memory main effect could not be replicated due to lower 
functional t-contrasts. This study provides evidence against the feasibility of  laminar fMRI at 3T.

Abstracts
Proceedings of  the Master’s Programme Cognitive Neuroscience is a platform for CNS students to publish 
their Master theses. Given the number of  submissions, we select the articles that received the best 
reviews, under recommendation of  our editors, for the printed edition of  the journal. The abstracts 
of  the other articles are provided below, and for interested readers a full version is available on our 
website: www.ru.nl/master/cns/journal.
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Cocaine Self-Administration and Social Behaviour in 
Extremes of the Sensory Processing Sensitivity Trait in Rats

Sophie Fennema

Sensory processing sensitivity (SPS) is a trait defined by sensory information processing, emotional reactions, 
and susceptibility to overstimulation. Individuals scoring high on this trait are differentially susceptible to 
positive and negative environments. In this study, 22 rats were selected on extremes on the SPS trait. High 
and low SPS-like rats either underwent cocaine self-administration trials or remained drug naïve. After a 
training period, where rats had access to self-administration boxes for 1 hour per day, long access exposure 
trials began, where they were allowed to self-administer cocaine for 6 hours per day. Social interaction and 
memory was scored before drug exposure, after training, and after long access exposure to the drug. High 
SPS animals show a greater escalation in cocaine intake compared to low SPS animals, and show more social 
and less non-social behaviour on the social interaction test. After long access exposure to cocaine, rats show 
more non-social behaviour compared to naïve rats. This study provides a deeper insight into the nature of  
addiction in susceptible individuals.

Searching Near and Far:
Investigating Depth-Dependent Adaptation of Search 

Template Size in Naturalistic Visual Search

Maëlle Lerebourg

When searching for an object, current theories of  visual search posit that we form a visual representation or 
template of  the target by pre-activating neurons tuned to target features. Within naturalistic scenes, visual 
features of  the target may however change drastically depending on its location in the scene, e.g. its retinal 
size depends on distance. Across two experiments, we investigated a potential mechanism for template-based 
search in the real world and its neural basis. We developed a search paradigm requiring participants to take 
into account depth-dependent size changes and investigated whether the visual system may account for these 
by creating differently-sized templates based on depth.
In a first experiment, we used breaking continuous flash suppression (b-CFS) to probe the template and test 
whether size-matching probes were detected faster. Suppression times to probes were however generally not 
by their match with target features.
Using fMRI, we found overlapping activation patterns for seeing objects of  varying retinal and preparing 
to search for these objects near or far specific to LOC, suggesting depth-dependent templates, an effect 
which was however not specific to the search instructions per se. Distance-information from scene-selective 
areas PPA or OPA did not contribute to template-size, but we found a potential contribution of  early visual 
cortex and low-level visual features. While further research is needed to understand whether our findings 
indeed reflect rescaled templates or a more general process as e.g. distance processing to rescale the object 
representation itself, these likely still contribute to our ability to account for changes in visual features during 
search.
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Stress and Motivation:
A fMRI Study to the Effects of Stress on Effort-Based 

Decision-Making

Tim Vriens

Reaching desired goals generally requires effort. In daily life, we often face important decisions on whether 
to engage in effortful yet very rewarding actions (e.g., studying hard to obtain a university degree, accepting a 
demanding job with a great salary). These decisions are often taken under considerable stress (such as when 
having financial uncertainty). Previous studies have shown that effort-based decision-making implicates 
a cortico-subcortical network involving the prefrontal cortex and midbrain catecholamine (noradrenaline 
and dopamine). Stress is known to affect both prefrontal activity and catecholamine levels. Despite these 
commonalities, the effect of  stress on effort-based decision-making, and its neural correlates, are surprisingly 
understudied. In this study, the effects of  stress on effort-based decision-making are investigated, focusing 
on behavior, neural activity, and noradrenergic release measured by pupil dilation. Using a within-subjects 
design with acute stress induction, we hypothesized that stress would decrease the willingness to engage 
in mental effort, and that this would be linked with alterations in prefrontal activity and pupil dilation. 
Participants performed an effort-based decision-making task in the fMRI scanner during control or during 
experimentally-induced acute stress. The results showed that stress reduced the willingness to engage in 
effort. Pupil dilation tracked task difficulty during calculation, but did not change under stress. Unexpectedly, 
no difference was observed between stress and control at the whole-brain level. An a-priori region-of-interest 
analysis based revealed no significant effect of  stress on effort or reward coding in the anterior cingulate cortex 
(ACC). We did observe a significant decrease in effort coding under stress in the dorsolateral prefrontal cortex 
(DLPFC). However, this was specific to the high reward condition and for participants who experienced the 
control session first.  Overall, these results suggest that acute stress reduces the willingness to engage in 
mental effort, with preliminary evidence of  alterations in DLPFC.

A, B, or Contrasting: The Influence of a Learning Task on 
Neurophysiological Correlates of Feedback Processing

Leonie Weindorf

Contrasting similar items has been proposed to enhance learning by increasing the specificity of  
mental representations. Since feedback is an important component of  such tasks, the learning effect of  
contrasting might be partially related to the neurocognitive mechanisms of  feedback processing. Previous 
electroencephalography (EEG) studies have demonstrated that the P300 and the feedback related negativity 
(FRN) can indicate whether an instance of  feedback leads to successful learning. To investigate whether 
contrasting influences the effectiveness of  feedback processing, we manipulated the orthographic similarity 
between the answer options on a three-choice vocabulary learning task. EEG was recorded, while participants 
learned 50 pseudo-translations to Italian words over six blocks. The learning outcome was determined via 
an immediate and a one-week delayed posttest. Results show better performance during the task for words 
that were presented with dissimilar distractors (shuffled condition), whereas posttest performance was 
higher for words that had been studied with similar answer options (sorted condition). The parietal P3b was 
larger for the sorted compared to the shuffled condition. A larger P3a and smaller FRN to negative feedback 
were associated with error correction. A larger P3a and smaller FRN to positive feedback were correlated 
with accuracy on the delayed recognition test. Most of  these learning effects were only found for the sorted 
condition. This indicates that the similarity training might elicit improved memory encoding and attention 
reflected by the P300 amplitude, as well as enhanced utilization of  valence feedback, reflected by the FRN 
amplitude. Taken together, the results suggest that the memory advantage of  contrasting might partially 
be due to enhanced feedback processing. However, due to the limited sample size (as a result of  the corona 
crisis), no definite conclusions can be drawn, and additional research is needed to corroborate these findings.
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