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Abstract 
When searching for an object, current theories of visual search posit that we form a visual 

representation or template of the target by pre-activating neurons tuned to target features. Within 

naturalistic scenes, visual features of the target may however change drastically depending on its 

location in the scene, e.g. its retinal size depends on distance. Across two experiments, we investigated 

a potential mechanism for template-based search in the real world and its neural basis. We developed 

a search paradigm requiring participants to take into account depth-dependent size changes and 

investigated whether the visual system may account for these by creating differently-sized templates 

based on depth.  

In a first experiment, we used breaking continuous flash suppression (b-CFS) to probe the template 

and test whether size-matching probes were detected faster. Suppression times to probes were 

however generally not by their match with target features.  

Using fMRI, we found overlapping activation patterns for seeing objects of varying retinal and 

preparing to search for these objects near or far specific to LOC, suggesting depth-dependent 

templates, an effect which was however not specific to the search instructions per se. Distance-

information from scene-selective areas PPA or OPA did not contribute to template-size, but we found 

a potential contribution of early visual cortex and low-level visual features. While further research is 

needed to understand whether our findings indeed reflect rescaled templates or a more general 

process as e.g. distance processing to rescale the object representation itself, these likely still 

contribute to our ability to account for changes in visual features during search. 

 

Introduction 
Throughout most of our waking lives, our visual 

environment is highly complex and consists of 

a multitude of objects. We are seldomly 

passive observers, but instead have specific 

goals (e.g. wanting to go home) or questions 

regarding our environment (e.g. “where is my 

bike?”), that dynamically shape the immediate 

relevance of the different objects surrounding 

us. To locate relevant objects (our bike in this 

case) among the abundance present in our 

visual field and competing for processing 

resources, we engage in visual search. This 

entails selectively processing only parts of the 

momentary visual input, on the basis of their 

match with top-down goals. 

Searching our environment requires a 

description of what to look out for (e.g. the bike 

with red flowers on the handlebar). All 

influential theories of visual search therefore 

state that search preparation involves creating 

a representation of the search target, 

commonly referred to as search- or attentional 
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template. Processing of incoming visual input is 

subsequently biased in favour of objects 

matching the template over non-matching 

input. Competition between different objects 

present within our visual field can thereby be 

resolved and processing resources efficiently 

allocated to likely search targets (Duncan & 

Humphreys, 1989; Eimer, 2014; Kastner & 

Ungerleider, 2001; Wolfe, 1994; Wolfe & 

Horowitz, 2004). When searching for our bike 

with the red flowers, we may e.g. be distracted 

by another bike with a red bell but fail to notice 

a friend wearing a blue pullover waiving at us.  

On a neural level, the search template is likely 

instantiated by selective pre-activation 

(increase in baseline firing rate) of those 

neurons in visual cortex tuned to the target’s 

features as e.g. its shape, colour or size. Once 

visual input, potentially representing the 

search target, is presented within their 

receptive fields, target-matching input 

becomes more effective in driving the neuron’s 

response, at the expense of non-matching 

input (Desimone & Duncan, 1995). Such 

preparatory activation has been found both in 

monkey inferotemporal cortex (IT) (Chelazzi, 

Duncan, Miller, & Desimone, 1998; Chelazzi, 

Miller, Duncan, & Desimone, 1993; Desimone, 

1998), as well across the human ventral visual 

stream and for features of varying complexity 

(see Battistoni, Stein, & Peelen, 2017 for a 

review). These findings provide important 

empirical evidence for template-based 

theories of visual search.  

Visual search in naturalistic scenes 

To date, much of the research and evidence on 

visual search is however still based on rather 

simplistic stimuli. In many experiments, targets 

and distractors are defined by relatively low-

level features and the objects bear no 

meaningful spatial or contextual relationship 

with each other. One example of such a 

laboratory task would be searching for a red 

horizontal bar presented in a search array, 

among green horizontal and red vertical bars. 

This is clearly different from most real-life 

situations, where we are searching for more 

complex and visually ill-defined targets with 

apparent ease. Despite this, searches for 

objects in naturalistic scenes are often more 

efficient than in these artificial settings (Wolfe, 

Alvarez, Rosenholtz, Kuzmova, & Sherman, 

2011).   

The efficiency and relevance of real-world 

search has led to growing interest in search 

within naturalistic scenes. In contrast to simple  

search arrays, the relation between objects 

and the real-world scenes in which they are 

placed is meaningful and the visual system can 

make use of these regularities for object 

identification (Bar, 2004). A growing number of 

studies have investigated how scene-based 

information can constrain search. The general 

gist of a scene (coarse information about e.g. 

scene category such as indoor vs. beach and its 

basic spatial layout) can be extracted within 

around 100 ms and used to inform search, e.g. 

by guiding attention and eye movements 

towards likely target locations (e.g. Castelhano 

& Henderson, 2007; Eckstein, Drescher, & 

Shimozaki, 2006; Ehinger, Hidalgo-Sotelo, 

Torralba, & Oliva, 2009; Neider & Zelinsky, 

2006; Wolfe, Võ, Evans, & Greene, 2011) 

Another line of research has focused on the 

content of the search template for natural 

category-level search  (e.g. for people or cars) 

in complex natural scenes (Reeder & Peelen, 

2013). Template-related preparatory activity 

for such targets, less well defined in terms of 

simple features, was found in object-selective 

areas as LOC (Peelen & Kastner, 2011).  

Depth-dependent size changes in naturalistic 

scenes 

There are however still many open questions 

regarding search in naturalistic settings and 

especially how constraints imposed on the 

target by the scene interact with the search 

template. An often-overlooked issue is that the 

target’s appearance may change drastically 
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depending on where it is located within and 

across scenes, due to various factors as lighting 

or viewing angle. In that sense, scenes do not 

only determine an object’s likely location, but 

also likely appearance and specific visual 

features given that it is placed at a particular 

location. One important factor in that regard is 

that for any object, its retinal size is inversely 

proportional to its distance from the observer. 

The very same object placed nearby will thus 

have a larger retinal size compared to when it 

is far away, leading to vastly different retinal 

images. On the other hand, objects with 

different physical sizes may have the same 

retinal size when placed at different distances. 

This creates an obvious problem for the visual 

system during search, as it needs to account for 

the specific scene context and position an 

object is placed in to determine whether it is 

the target (Gayet & Peelen, 2019).  

Current theories of visual search do not 

generally address how the visual system either 

creates a template or matches it to such 

varying retinal input. Essentially, whether or 

how these template-based theories can indeed 

reflect an ecologically plausible account of 

visual search thus remains an important 

empirical question.  

When looking at human search behaviour, it 

seems clear that the relation between an 

objects size and location is generally taken into 

account. Intuitively, we would not be strongly 

distracted by a nearby bonsai when searching 

for a full-grown tree. Indeed, human observers 

may sometimes fail to detect even giant targets 

if their size is incongruent with their 

surroundings, such as a toothbrush spanning 

the entire width of the bathroom sink 

(Eckstein, Koehler, Welbourne, & Akbas, 2017). 

Note also that, in many real-world scenarios, 

accounting for scene context, and thereby 

constraining search to objects of realistic size, 

will improve search performance. Since most 

objects have canonical sizes and the relation 

between an objects distance and retinal size is 

entirely predictable, attending only to 

congruently-sized objects while ignoring others 

represents less of a bug than a feature, likely 

contributing to search efficiency in naturalistic 

scenes (Wolfe, 2017).  

Aim of the current thesis 

Given this behavioural evidence, how may 

template-related mechanisms account for 

depth-dependent size changes during real-

world search? One potential solution is to 

rescale the search template based on where in 

depth we are currently searching (Gayet & 

Peelen, 2019).  

Therefore, the overarching aim of this thesis is 

to investigate (1) whether we are indeed 

searching for larger objects (in terms of retinal 

size) when searching nearby compared to far-

away and, if that is the case, also (2) which 

neural mechanisms are underlying integration 

of scene context with the template during 

search and subsequent template-rescaling. 

We conducted two experiments to answer 

these questions. In both we used a cued visual 

search task asking participants to search for 

target objects (melons and boxes, embedded in 

naturalistic scenes) at two different 

distances/depths (near or far). 

Before investigating any neural representation 

of the search template, we first designed a 

behavioural  paradigm requiring participants to 

take into account depth-related changes in 

retinal size and aimed to probe the content of 

the search template created using breaking 

continuous flash suppression (b-CFS, 

Experiment 1). In a b-CFS paradigm, one eye is 

presented with a high-contrast dynamic mask 

while the other eye is  presented with a probe 

image  of increasing  intensity (Jiang, Costello, 

& He, 2007). The time it takes for this probe 

image to be released from interocular 

suppression by the mask and become 

reportable  can then be compared for different 

stimulus classes or on their basis of their match 

with other consciously accessible information 
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(see Gayet, Van Der Stigchel, & Paffen, 2014; 

Stein, 2019 for reviews). If the probe image 

matches the content of visual working 

memory, suppression times are generally  

shorter (Gayet, Paffen, & Van der Stigchel, 

2013; Gayet, van Maanen, Heilbron, Paffen, & 

Van der Stigchel, 2016; Liu, Wang, Wang, & 

Jiang, 2016; Pan, Lin, Zhao, & Soto, 2014). This 

method has not yet been applied to study 

search templates in naturalistic scenes. Holding 

online a search template however presumably   

relies strongly on visual working memory 

(Carlisle, Arita, Pardo, & Woodman, 2011; 

Desimone, 1995; Gunseli, Meeter, & Olivers, 

2014). There is also further evidence that these 

b-CFS working memory effects reflect selective 

increase in baseline firing rate of neurons 

tuned to the memorandum, similar to the 

mechanisms thought to underlie template-

based visual search (Gayet et al., 2016). We 

therefore reasoned that template-matching 

probes would similarly show reduced 

suppression times compared to non-matching 

probes. Specifically, we hypothesized that if 

search template is indeed rescaled based on 

depth, size-matching probes should be 

released from interocular suppression earlier 

and detected faster than probes of incongruent 

size.  

In a second experiment, we used fMRI and 

multivariate pattern analysis (MVPA) to 

investigate the neural basis of the search 

template created in this search task and test 

whether retinal size information was 

represented and used during search 

preparation.  

We focused our analyses of template activity 

on the object-selective lateral occipital 

complex (LOC), an area previously found to 

encode search templates for complex shapes 

(Soon, Namburi, & Chee, 2013) and category-

level search within naturalistic scenes  (Peelen 

& Kastner, 2011). While LOC typically encodes 

real-world rather than retinal size of objects 

(Konkle & Oliva, 2012; Sawamura, Georgieva, 

Vogels, Vanduffel, & Orban, 2005), TMS or 

lesions to LOC can also hinder processing of 

retinal size (Chiou & Ralph, 2016) and impair 

integration of retinal size and depth 

information to correctly estimate physical size 

(Cohen, Gray, Meyrignac, Dehaene, & Degos, 

1994; Zeng, Fink, & Weidner, 2020). This all 

suggests neurons in LOC can process an 

object’s retinal size and that this information 

may be usable during search.  

In addition to LOC, we also tested for template-

related activity in early visual cortex (EVC), 

comprising V1 and V2. Neural representations 

in these early sensory areas are generally less 

invariant and clearly modulated by factors as 

retinal size. In terms of efficient processing, it is 

also evidently beneficial to identify and select 

likely targets at the earliest possible stage. 

However, given the variability of target 

appearance in real-world search, a template 

held in such early sensory regions may not be 

well suited to distinguish between targets and 

non-targets and effectively even hinder search 

in naturalistic scenes as used in our task 

(Peelen & Kastner, 2011).  

Rescaling the template based on depth would 

also require rapidly acquiring information 

about the scene’s depth layout. Behavioural 

evidence suggests this can be done remarkably 

fast and efficiently, with less than 50 ms of 

stimulus exposure needed for humans to 

reliably extract information about global 

distance-related properties such as a scene’s 

mean depth or  presence of bounding elements 

in the scene (Greene, Michelle & Oliva, Aude, 

2009).     

Such distance-related information is likely 

processed in visual areas devoted to the 

processing of scenes, as the parahippocampal 

place area (PPA, R. Epstein & Kanwisher, 1998) 

and occipital place area (OPA, also called 

transverse occipital sulcus (TOS), (Grill-Spector, 

2003)). These areas are  sensitive to various 

distance-related aspects of a scene’s spatial 
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layout, such as perceived distance to objects 

(Amit, Mehoudar, Trope, & Yovel, 2012), 

arrangement and presence of spatial 

boundaries (Ferrara & Park, 2016; Henriksson, 

Mur, & Kriegeskorte, 2019; Kamps, Julian, 

Kubiliius, Kanwisher, & Dilks, 2017; Kornblith, 

Cheng, Ohayon, & Tsao, 2013) and in case of 

the PPA also by objects’ retinal size (Konkle & 

Oliva, 2012). The timecourse of depth-

processing in these areas is not very well 

investigated, but recent work suggests a 

representation of scenic layout emerges 

relatively early (after around 100 ms) and is 

based on the feedforward sweep of visual 

information, especially in OPA (Bonner & 

Epstein, 2017a; Henriksson et al., 2019).  

Once coarse information about distance in the 

scene is extracted and processed in scene-

selective regions, this may shape the size of the 

template held in object selective areas. In the 

current experiment, we therefore also 

analysed encoding of depth in PPA and OPA 

and related it to search template size in LOC. If 

depth information encoded in scene-selective 

areas modulates the size of the template, held 

in object-selective regions, we expect both to 

correlate on a trial-by-trial basis.  

Together, the two experiments investigate a 

potential mechanism for template-based 

search in the real world, taking into account the 

demands naturalistic scenes impose on our 

visual system.

Experiment 1: breaking 

continuous flash 

suppression (b-CFS) task 
In the first experiment, participants performed 

a difficult cued search task, searching for 

objects of two different categories (boxes and 

melons) either far away or nearby in scene 

photographs. The task required them to take 

into account depth-related changes in retinal 

size, as distractor objects with the same shape, 

but different size as the targets, could also 

appear in the same depth plane.  To probe the 

template formed by participants, we combined 

the search task with a b-CFS paradigm. We 

introduced a delay period of unpredictable 

duration, during which participants had to hold 

in mind the category and expected retinal size 

of the target, while dynamic masks were 

presented and after which the search scene 

would appear briefly in half of the trials. In the 

other half of the trials, a probe image of a small 

or large melon or box was shown in the delay 

period (thus matching or mismatching the 

current search target in shape, size or both), 

intraocularly suppressed by the masks and to 

which participants had to respond as fast as 

possible. Importantly, both trial types were 

intermixed, such that participants could only 

determine which task they had to perform 

after either perceiving the search scene or the 

b-CFS probe and had to prepare for the search 

task in all trials. We hypothesized that, if 

participants adjusted their template in size 

based on where they were searching, size-

matching probes and especially those for which 

both shape and size matched the target, would 

overcome interocular suppression and be 

detected faster than non-matching ones.  

Methods 

Participants 

35 participants (23 females, mean age: 24 (sd = 

3.68)) constitute the final sample for this 

experiment. Based on a power analysis, we had 

chosen to test until reaching a total of 34 

participants with above-chance performance 

(allowing to find a medium-sized effect with 80 

% power) and exceeded this number by one 

participant. A total of 56 participants (39 
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females, mean age: 24 (sd = 5.43)) took part in 

the first experiment, but only those performing 

above chance in the search task (determined 

by a one-sided binomial test with an alpha-

level of 0.05) were included, as their 

performance necessarily indicates successful 

search preparation. 

Participants were recruited from the Radboud 

University participant pool (SONA Systems). 

They participated for either monetary reward 

(10 €) or course credit and provided written 

informed consent prior to the experiment. All 

had normal or corrected to normal vision and 

reported themselves free of epilepsy.  

Procedure  

When coming into the lab, participants were 

first familiarized with the different conditions 

of the task using a click-through demo and 

practice trials. During this training, they were 

also shown the specific box depicted in the 

search scenes, to have an estimate of its real-

world size. Thereafter, participants completed 

a total of 256 trials, broken up into 16 blocks of 

16 trials, lasting 2-3 minutes each. Participants 

could take a break after every block and the 

entire experimental session lasted around one 

hour.  

Each trial began with the presentation of a 

letter-cue (M or B for melon or box), indicating 

the current search target. This letter was 

Figure 1: Timeline of a trial in the b-CFS experiment. Each trial began with the presentation of a category cue, indicating 

whether participants had to search for either a melon or box. Thereafter, an empty scene provided information about the 

target’s expected retinal size as participants fixated within one of two depth-planes (near or far). Both size and shape 

information needed to be maintained over a delay period of random duration during which dynamic masks of gradually 

decreasing opacity were presented and after which a search scene would appear in 50% of trials. In other trials (b-CFS trials), 

randomly intermixed with search trials, a probe image matching size, shape, both or neither of the current target was 

presented to one eye, interocularly suppressed by the mask. Participants had to report which side of the fixation dot this 

probe image appeared as soon as they detected it. Reaction time to these probes were analysed as a function of their match 

with the target, to investigate the search template created by participants. Both eyes were always stimulated individually 

using a stereoscope but individual input to each eye only shown here when differing between the two eyes. 
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presented either above or below the centre of 

the screen, requiring participants to make an 

up - or downward eye movement to fixate it. 

This was followed by the presentation of an 

empty search scene for 1.6 s, providing depth 

information. Due to the previous eye 

movement, participants were now fixating in 

the centre of the currently relevant depth 

plane (either nearby or far away). They were 

explicitly told they could use this information 

and prepare to search for a larger object when 

searching nearby compared to far away, as 

distractor objects in the search scenes may 

share shape or size with the search target but 

never both. The near depth plane could be 

either in the lower or upper visual field (see 

“near below” and “near above” scene types in 

Stimuli & Setup). Therefore, the scene preview, 

but not the direction of the earlier eye 

movement, were predicting the retinal size of 

the target object (with 100% validity). 

The scene preview was then replaced by 

dynamic visual masks, initiating a delay period 

during which participants had to keep actively 

preparing to search for the current target by 

holding in mind both its retinal size and shape. 

Subsequent visual stimulation and task differed 

between the two possible trial types (b-CFS and 

search, see Fehler! Verweisquelle konnte 

nicht gefunden werden.). Trial type, search 

target category and depth plane were 

counterbalanced across groups of two blocks. 

Scene type (“near below” or “near above”) was 

counterbalanced within the whole experiment 

and the prevalence of specific scenes (taken 

from 1 out of 8 scene families per scene type) 

equated as much as possible, but not fully 

counterbalanced. 

Search trials 

In the search trials, masks of gradually 

decreasing opacity were presented to both 

eyes. The duration of the delay period was 

randomly drawn from a uniform distribution 

between 0.5 and 5.8 s, requiring participants to 

be prepared for search at all times. After the 

mask stimuli were switched off, the search 

scene, containing the target in half of trials, was 

briefly presented for 200 ms. Participants were 

then asked to report whether the target had 

been present or absent by pressing the up-

/down arrow keys. Instructions stressed 

accuracy rather than speed, but participants 

were made aware that they had to provide an 

answer within a timeframe of 2 s. Participants 

then received feedback on their performance 

in this trial through a colour change of the 

fixation dot and the next trial began after an 

intertrial interval (ITI) of 1s.  Feedback on 

general search accuracy within a block was 

presented at the end of each. Search accuracy 

was staircased to an upper bound of 65 % 

correct using an Accelerated Stochastic 

Approximation (ASA) staircase algorithm. If 

performance exceeded this threshold, 

grayscale pixels of pink (1/f) noise were 

blended into the search scene with an alpha-

value controlled by the staircase. Together 

with the short presentation time of the search 

scene and unpredictable time of scene onset, 

this ensured active search preparation was 

required to succeed.  

Target presence and distractor type (sharing 

either shape or retinal size of the target) were 

counterbalanced across groups of two blocks. 

The side on which the target appeared was 

counterbalanced within the experiment. 

B-CFS trials 

B-CFS trials were identical to search trials up 

until the delay period. During this period, only 

one eye was presented with the visual masks 

(refreshed at 10Hz), while the other eye was 

presented with a probe picture either matching 

or mismatching the current search target in 

size and/or shape. More specifically, when 

searching for e.g. a small box, the probe could 

also be a small box (shape & size match), a large 

box (shape match only), a small melon (size 

match only) or a large melon (shape & size 

mismatch). 
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The probe could appear on either the left or 

right of the fixation dot, at the same locations 

at which target objects would appear in the 

search scene. Participants had to report the 

side of fixation on which the probe appeared as 

fast as possible using the left and right arrow 

keys. The probe image was presented from 

mask onset and gradually increased in intensity 

over a period of 1 second, in order to minimize 

immediate release from interocular 

suppression by abrupt stimulus onset. Mask 

opacity was ramped down starting after 1 s and 

over a period of 4 seconds. One b-CFS trial had 

a maximal duration of 6 s, with the probe being 

presented without any masking during the last 

second. B-CFS stimulation ended after the 

subject either responded to the probe or this 

maximal delay was reached. Feedback was 

again given after each trial and no search scene 

appeared after the delay period.  

Probe object category and size were 

counterbalanced across groups of two blocks. 

Eye and hemifield (left or right side of fixation) 

for probe presentation were counterbalanced 

within the experiment. For each combination 

of object category and size, three different 

probe images were used (cut out from different 

scene images). Their prevalence was equated 

but not fully counterbalanced within the 

experiment. 

Stimuli & Setup 

Stimuli were presented using a BenQ XL24040Z 

monitor with a native resolution of 1920 x 1080 

pixels and refresh rate of 120 Hz. Individual 

stimulation of each eye was achieved using a 

mirror stereoscope. A chinrest kept the 

effective viewing distance at 61 cm. To 

facilitate binocular fusion, all stimuli were 

surrounded by a frame of Brownian (1/f²) 

Figure 2: Example search scenes and search accuracy for each of the 16 scene families. A small white ping -
pong ball indicates the centre of the currently relevant depth plane. Accuracy values are averaged separately 
for near and far within participants. 
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noise. Masks and scene images subtended 20 x 

14.434° visual angle. Experimental scripts for 

stimulus presentation and data acquisition 

were coded using Matlab and Psychtoolbox 

(Brainard, 1997). 

The search scenes were grayscale photographs 

taken on Radboud university campus, depicting 

everyday objects (including the melon and box 

target objects) arranged on two depth planes, 

at equal distance from the image centre. To 

avoid confounding our depth-related effects of 

interest with any general effects of stimulus 

presentation in either upper or lower visual 

field, the near depth plane was in the upper 

half of the image in 50% of the scenes (“near 

above” scenes) and in the lower half for the 

other scenes (“near below scenes”) (see 

Fehler! Verweisquelle konnte nicht gefunden 

werden.). “Near above” scenes were created 

by placing near objects on an elevated surface 

(e.g. a table), far objects below and further 

away as well as varying the camera angle. For 

each scene type, photographs were taken at 

eight different locations, resulting in a total of 

16 distinct scene families.  

In target present scenes, the search target was 

placed at one of four different locations (either 

left or right in the near or far plane). Retinal size 

of target objects (1.5 and 3° respectively) and 

the two possible locations at which they could 

appear within each depth plane (3,27° 

eccentricity) were kept equal across scenes. 

Near targets were always twice as large in 

terms of retinal size compared to far ones and 

the retinal size of box and melon targets equal. 

If the target was placed on the left side, either 

a size or shape distractor object was placed on 

the right at the eccentricity and vice versa. 

Shape distractors had the same shape as the 

search target, but the wrong retinal size given 

this depth plane (e.g. a large basketball far 

away with the same retinal size as the melon in 

placed in the near plane or vice versa). Size 

distractors shared the retinal size of the target 

object but had the shape of the other target 

object (e.g. a small ball when searching for a 

small box). Distractor and target objects were 

both flanked by other objects on each side to 

induce visual crowding.  

Target absent scenes were identical to target 

present scenes except that they contained 

both a shape and size distractor in order to fill 

the two potential target locations within a 

depth plane. Scene previews showed the exact 

same scenes without objects in either depth 

plane.  

B-CFS probe stimuli were created by cutting 

out the target objects from different scenes. 

These isolated objects were placed on a grey 

background, at the same position at which 

targets could appear in both depth planes. To 

reduce the influence of pixelwise correlations 

between mask and probes on suppression 

times, different probe images were used for 

every combination of target object and size. A 

total of 12 different probe images was used (3 

for both objects of each retinal size).  

Black and white noise masks were created by 

smoothing pink (1/f) noise with a Gaussian 

filter (σ =3) and binarizing the resulting image. 

Results 

Search Task Trials 

Participants overall accuracy in the search trials 

was 64.54% (sd 4.85), reflecting the threshold 

set by the staircase. To analyse whether this 

accuracy differed between conditions, we 

conducted a 2x2x2 repeated measures ANOVA 

with factors Depth Plane (near, far), Scene Type 

(“near below”, “near upright”) and Target 

Object (melon, box). There was a significant 

effect of depth plane (F(1,34) =  9.37, p = 

0.004), reflecting that participants were better 

at searching nearby (i.e for larger objects) 

compared to far away (near: 66.81% (sd 5.53) , 

far: 62.25%  (sd7.40)). Accuracy did not differ 

between scene types (p = 0.08) or target 

objects (p = 0.20) and there were no significant 

interactions between factors (all p’s > 0.41).  
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Accuracy did also not differ between individual 

scenes, as indicated by a second repeated 

measures ANOVA with single factor Scene 

(F(1,34) =  1.28, p = 0.21) (see Fehler! 

Verweisquelle konnte nicht gefunden 

werden. for accuracy for individual scenes), 

suggesting participants were able to successful 

extract depth-information from each of them.  

Given the long delay period during which the 

search scene could possibly appear, we also 

asked whether participants were able to 

sustain active search preparation across this 

entire time range. We computed accuracy as a 

function of search scene onset using a rolling 

time window of 1s within each participant (see 

Fehler! Verweisquelle konnte nicht gefunden 

werden.) We then fitted a linear model to test 

for changes in accuracy over time, which 

indicated a small increase (slope: 1.02, p < 

0.00001). Importantly however, accuracy was 

above 50% at every timepoint (all p’s < 0.0001 

after threshold free cluster enhancement (tfce) 

for multiple comparison correction).  

Figure 3: Search accuracy across the delay period as function of mask-search scene onset asychrony. Average 
accuracy over time was computed using a 1s rolling window within participants. Participant average is shown. 
Shaded area reflects 95% CIs. 

Figure 4: Hits and false alarms across experimental blocks. Error bars are 95% CIs. 
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False alarms were common mistakes, with a 

false alarm rate of 45.79% (sd  8.71) and hit rate 

of 74.89% (sd 9.68).  Fehler! Verweisquelle 

konnte nicht gefunden werden.  shows the 

development of both false alarm and hit rate 

across the individual experimental blocks. 

Fitting linear models for both false alarms and 

hit rates revealed a slight decrease of false 

alarms over blocks, suggesting learning (slope: 

-0.84, p = 0.008), while hit rates remained 

stable (slope: -0.15, p = 0.48).  

Since  target-absent scenes contained both a 

shape- and size-based distractor and the size-

based distractor objects in some (but not all) 

scenes were search targets in other trials, hits 

and false alarms cannot meaningfully be 

computed separately for distractor types.  

B-CFS trials 

Participants responded to the b-CFS probes in 

99.71% of trials (sd 0.61), and correctly 

reported the side on which the probe appeared 

in 99.62% of those (sd 0.61). Trials with 

responses faster than 300 ms were excluded 

from this analysis, as these could not reflect 

meaningful responses to the probes. Median 

suppression time was 1.24s on average (sd 

0.51).  

To analyse suppression times as a function of 

their match with the target (Fehler! 

Verweisquelle konnte nicht gefunden 

werden.), we used a latency-normalization 

procedure as proposed by Gayet & Stein 

(2017), since suppression times remained non-

normally distributed even after log-transform 

or z-scoring. This method generally tends to 

give both sensitive estimates, by taking into 

account inter-individual variability in overall 

suppression times, as well as normally 

distributed measures. Normalized RT 

differences were computed on the raw 

suppression times of every participant as 

follows: 

∆𝑅𝑇𝑠𝑖𝑧𝑒 𝑚𝑎𝑡𝑐ℎ =

((
𝑚𝑒𝑑𝑖𝑎𝑛 𝑅𝑇 𝑠ℎ𝑎𝑝𝑒 𝑚𝑎𝑡𝑐ℎ 𝑜𝑛𝑙𝑦 − 𝑚𝑒𝑑𝑖𝑎𝑛 𝑅𝑇𝑠ℎ𝑎𝑝𝑒  & 𝑠𝑖𝑧𝑒 𝑚𝑎𝑡𝑐ℎ

𝑚𝑒𝑑𝑖𝑎𝑛 𝑅𝑇 𝑜𝑣𝑒𝑟𝑎𝑙𝑙
) 2⁄ +

(
𝑚𝑒𝑑𝑖𝑎𝑛 𝑅𝑇 𝑠ℎ𝑎𝑝𝑒 & 𝑠𝑖𝑧𝑒 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ − 𝑚𝑒𝑑𝑖𝑎𝑛 𝑅𝑇𝑠𝑖𝑧𝑒 𝑚𝑎𝑡𝑐ℎ 𝑜𝑛𝑙𝑦

𝑚𝑒𝑑𝑖𝑎𝑛 𝑅𝑇 𝑜𝑣𝑒𝑟𝑎𝑙𝑙
) 2⁄ ) ×

100    

∆𝑅𝑇𝑠ℎ𝑎𝑝𝑒 𝑚𝑎𝑡𝑐ℎ =

((
𝑚𝑒𝑑𝑖𝑎𝑛 𝑅𝑇𝑠𝑖𝑧𝑒 𝑚𝑎𝑡𝑐ℎ 𝑜𝑛𝑙𝑦 − 𝑚𝑒𝑑𝑖𝑎𝑛 𝑅𝑇𝑠ℎ𝑎𝑝𝑒  & 𝑠𝑖𝑧𝑒 𝑚𝑎𝑡𝑐ℎ

𝑚𝑒𝑑𝑖𝑎𝑛 𝑅𝑇 𝑜𝑣𝑒𝑟𝑎𝑙𝑙
) 2⁄ +

 (
𝑚𝑒𝑑𝑖𝑎𝑛 𝑅𝑇𝑠ℎ𝑎𝑝𝑒 & 𝑠𝑖𝑧𝑒 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ − 𝑚𝑒𝑑𝑖𝑎𝑛 𝑅𝑇𝑠ℎ𝑎𝑝𝑒 𝑚𝑎𝑡𝑐ℎ 𝑜𝑛𝑙𝑦

𝑚𝑒𝑑𝑖𝑎𝑛 𝑅𝑇 𝑜𝑣𝑒𝑟𝑎𝑙𝑙
) 2⁄ ) ×

100   

∆𝑅𝑇𝑠ℎ𝑎𝑝𝑒 & 𝑠𝑖𝑧𝑒 𝑚𝑎𝑡𝑐ℎ  =

(
𝑚𝑒𝑑𝑖𝑎𝑛 𝑅𝑇𝑠ℎ𝑎𝑝𝑒 & 𝑠𝑖𝑧𝑒 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ− 𝑚𝑒𝑑𝑖𝑎𝑛 𝑅𝑇𝑠ℎ𝑎𝑝𝑒  & 𝑠𝑖𝑧𝑒 𝑚𝑎𝑡𝑐ℎ 

𝑚𝑒𝑑𝑖𝑎𝑛 𝑅𝑇 𝑜𝑣𝑒𝑟𝑎𝑙𝑙
) ×

100  

As also the distribution of those latency 

normalized RT differences remained non-

normal, we resorted to bootstrap tests which 

do not rely on any assumptions regarding the 

Figure 5: Median raw RTs to probes of the different target-match conditions. Grey lines are 
individual participants, the black line represents mean over participants. 
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underlying distribution of the metric of 

interest.  

We first asked whether in general, probes 

whose size matched the current search target 

were detected faster than incongruently sized 

ones. Contrary to our hypotheses, we found no 

reduction of suppression times for size-

matching probes (size match: bootstrapped 

mean: 1.14%, 90% CI: [-1.09, 3.88], p = 0.25) 

(Fehler! Verweisquelle konnte nicht gefunden 

werden.). There was also no general effect of 

shape-match (0.51%, [-1.28, 2.55], p = 0.34).  

Arguably, the largest template-related effects 

are expected when comparing RTs to probes 

for which both shape and size match the 

current search target to those for which 

neither matches. However, also this 

comparison indicated no difference in 

suppression times (size & shape match: 1.37%, 

[-2.18, 6.15], p = 0.34). Thus, whether or not 

the probe matched any feature of the current 

search template did not significantly alter 

suppression times. 

Discussion 
We tested a novel behavioural paradigm 

combining a visual search task, in which 

participants had to  take into account changes 

in retinal size based on depth, with breaking 

continuous flash suppression to probe the 

search template created when searching either 

far away or nearby.  The task was clearly 

challenging, as indicated by the large number 

of participants not significantly performing 

above chance. Our subgroup of participants 

was however able to correctly account for 

depth-dependant size changes and ignore 

similarly shaped distractor objects of 

incongruent size present in the same depth 

plane. Aside from a general advantage in 

detecting larger objects, participants were 

equally accurate across scenes and scene 

types. This indicates they successfully used all 

scene previews as cues for the expected retinal 

size of objects, validating the general stimuli 

and search task used. Further, above chance 

performance across the entire delay period at 

least suggests participants maintained an 

active search template throughout the entire 

time in which the b-CFS probes were 

presented. 

Despite this, even for those participants  whose 

performance necessarily indicated successful 

search preparation and comparing probes that 

Figure 6: Effect of target match on suppression times as normalized latency differences between feature- 
matching and non-matching probes. Grey dots represent individual participants, black dot and error bars 
bootstrapped mean and 90% CIs. Positive values reflect shorter suppression times for target-matching compared 
to non-matching ones. 
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exactly matched the search target in both size 

and shape to others for which both features 

were mismatching, no template-related 

reduction in suppression times was found.  

Given previous findings of reduced suppression 

times for probes matching the content of visual 

working memory and evidence the search 

template relies on visual working memory, this 

seems surprising. What may be the reason(s) 

for matching effects found in previous working 

memory tasks but not in the current search 

task?  

In general, working memory match effects on 

suppression times have been found using 

simple stimuli as colours (Gayet et al., 2013), 

but also more complex ones as shapes (Gayet 

et al., 2016) and human faces (Pan et al., 2014). 

This makes it unlikely the category of our 

chosen stimuli or specific visual areas in which 

different working memory - or search 

templates are maintained can explain the null 

effects found in the current study.  

In spite of the apparent similarities between 

search and general working memory content, 

the template formed in this task could however 

have been qualitatively different from the ones 

in previous working memory studies. In 

comparison to those studies, we used a rather 

limited set of memoranda and the task did not 

require fine-grained within category 

discrimination (e.g. between different shades 

of the same basic colour or individual faces). 

Further, in previous studies specific 

memoranda were presented as image cues 

whose visual representation the participants 

could maintain online or reactivate during the 

delay period. In our task, the specific template 

needed to be generated internally by correctly 

estimating depth-information from the scene 

and combining the inferred target size with the 

symbolic shape cue. Both of these factors could 

have resulted in a more abstract and less visual 

template, not able to interact with the probes 

before they overcame interocular suppression 

and were consciously processed on a more 

conceptual level.  

One previous study using a detection instead of 

working memory task found feature-based 

attention (i.e. creating an attentional template 

for a particular feature) based on symbolic cues 

was not sufficient to facilitate conscious access 

and reduce suppression times (Gayet, Douw, 

van der Burg, Van der Stigchel, & Paffen, 2018). 

However, in this study target and probes were 

also visually distinct and probes matched only 

one feature (colour). Moreover, an effect of 

feature-based attention was found when the 

target was defined more broadly, potentially 

increasing the overlap of probes and template. 

The previously mentioned differences may 

therefore not entirely explain why even probes 

exactly matching the search target were not 

detected faster than non-matching ones.  

It is also possible that the template-related 

activity in our search task was qualitatively 

similar to previous studies, generally able to 

interact with the probes, but still weaker and 

our paradigm not sensitive enough to probe it. 

One reason may be the task’s difficulty. Even 

though the task was generally designed to 

require effortful search preparation and strong 

template activation, the task may simply have 

become too difficult, reducing any template-

driven effect. The participants may e.g. have 

been less engaged in the search task on 

individual trials. If they began generally 

focusing more on detecting any kind of object 

in the much easier b-CFS task, this could have 

reduced the bias in favour of template-

matching objects. The fact that the template 

needed to be internally generated could also 

have made template creation more difficult, 

and participants therefore created wrong or no 

templates on individual trials, reducing overall 

matching effects. 

Besides potentially weaker neural activation, 

another relevant factor to consider is that 

suppression times in this study were generally 
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low. Median suppression time was 1.24s (note 

that the probe reached its full contrast only 

after 1s), while response times around 1.7 - 2s 

or longer are common in other studies. 

Interocular suppression was therefore likely 

shallower in our study, independent of 

matching condition. This is of particular 

relevance as RT differences between 

conditions  typically become more pronounced 

with longer overall RTs in the b-CFS paradigm 

(Gayet & Stein, 2017). Reasons for this shallow 

suppression may be visual characteristics of the 

specific mask and probe stimuli used, the 

decision to present probes already from mask 

onset, the fact that probes were repeated 

more often or a combination thereof. 

Overall, while (at least a subset of) participants 

successfully interpreted depth-information in 

the scene and likely engaged in sustained 

search preparation across the entire delay 

period, we were not able to probe any 

template due to either general differences in 

the preparatory mechanisms involved or 

insensitivity of our paradigm. Whether 

participants adjust their search template in size 

could thus not be conclusively answered with 

the present experiment. We reasoned that a 

more direct neural measure using fMRI and 

MVPA, previously used successfully to study 

search templates in naturalistic scenes, may 

provide more insight into the specific template 

created when searching at a particular depth. 

For this second experiment, we also adapted 

the search task in order to ease some of its 

difficulty. As an additional advantage, using 

fMRI allowed to probe the template without 

the need for a dual task and therefore more 

similar to visual search in naturalistic settings.  

Experiment 2: fMRI 
In this second experiment, we aimed to probe 

the neural basis of the template created when 

searching at different depths and mechanisms 

to integrate distance information with the 

template, focusing on object-selective LOC, 

scene-selective areas OPA and PPA as well as 

early visual cortex (EVC). The search task was 

similar to the previously used one. To probe the 

template, we introduced trials in which 

participants prepared to search for an object 

either near or far, but only the empty search 

scene was shown (catch – trials, randomly 

intermixed with search trials). These allowed us 

to isolate neural activity solely reflecting search 

preparation, in the absence of actual objects. In 

addition to neural activity patterns related to 

merely searching for either large or small 

objects, we also extracted activity patterns 

related to seeing those large or small target 

objects in isolation within a different task and 

tested for an overlap in these patterns. This 

was done by training classifiers on decoding 

the retinal size of these isolated objects and 

test whether they could also correctly classify 

the size of objects participants were searching 

for (cross-decoding). Successful (i.e. above-

chance) cross-decoding accuracy for size in this 

approach would suggest participants created 

differently sized templates during search, 

resembling the neural activity evoked by seeing 

target objects. We specifically hypothesized to 

find such template-related activity in LOC.  

In a similar manner, we isolated and analysed 

the depth-representation in the search task. To 

this end, we extracted activity patterns related 

to fixating and attending near and far in the 

scenes to cross-decode and isolate scene-

based distance information when participants 

were searching for target objects in these 

depth planes. 

This allowed us to derive two measures for 

every catch-trial in the search task, reflecting 

template size and depth-information. We 

correlated these on a trial-by-trial basis to test 

whether depth-information in scene-selective 

areas PPA and OPA may modulate the size of 

the template in LOC. 
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Methods 

Participants 

30 participants (14 females, mean age: 24 

years, sd 3.28) participated in the fMRI study. 

They were recruited through the Radboud 

university participant pool (SONA systems) and 

participated for monetary reward (20 or 25 €). 

All provided written informed consent and 

reported having normal (or corrected to 

normal) vision. Two additional participants 

were excluded as they stated having difficulties 

to see the isolated target objects presented in 

the object localizer task, required for any 

meaningful cross-decoding of the search 

template. For these participants, the 

stimulation > baseline contrast in this localizer 

(used for defining early visual cortex) also 

yielded less than 6 active voxels in V1. As in the 

previous experiment, we aimed for a total 

number of 34 participants based on a power-

analysis, but this number was not reached 

before completion of the thesis. 

Procedure 

During the experimental session, participants 

took part in eight runs of the search task, as 

well as in two runs each of three different 

localizer tasks. Search task and localizer runs 

were intermixed. All tasks were briefly 

explained and practiced outside the scanner. 

During training, participants also saw the 

original box used for creating the search 

scenes, to ensure they could estimate its real-

world size. The whole experimental session 

lasted around 2 hours. One subject only 

completed 6 runs of the search task and 

another one only 7. 

Search task 

Each search task run consisted of 32 trials, 

yielding a total of 256 trials. The task was 

similar to the one in experiment 1, adapted to 

the fMRI paradigm (Fehler! Verweisquelle 

konnte nicht gefunden werden.). To decrease 

task difficulty, target category was now 

blocked per run, making retinal size (the main 

feature of interest) the only relevant target 

feature changing on a trial-by trial basis and 

decreasing working memory demands. In 

addition to a prompt at the beginning of every 

run, a letter cue (M or B) at the beginning of 

each trial reminded participants of the current 

target category. This letter was presented 

either above or below the centre of the screen, 

requiring participants to make an eye 

movement to fixate it. The category cue was 

followed by a depth cue, provided by the 

empty search scene. Due to the previous eye 

movement, participants were now fixating in 

the middle of the currently relevant depth 

plane, indicated by a green horizontal bar at 

fixation. A second red bar marked the centre of 

the other (currently irrelevant) depth plane. 

Again, participants were told they could use 

this distance information to anticipate the size 

of the target and about the presence of 

distractors sharing either shape or retinal size 

of the target. As previously, only the search 

scene itself, but not the direction of the earlier 

eye movement, was predicting the targets 

retinal size. In contrast to the b-CFS 

experiment, the empty scene remained on 

screen until objects appeared or the trial 

ended, to minimize evoked responses by 

stimulus onsets. 

In half of all trials (search trials), objects briefly 

appeared in the scene for 150 ms, after a 

randomly varying cue-target onset asynchrony 

of 2.8, 3.3 or 3.8 s. This was followed by a 

100ms backward mask. Once the search scene 

disappeared, participants were asked to report 

whether the target had been present or 

absent, by pressing a button with either their 

left or right hand within a response deadline of 

1.5s. Feedback was given by a colour change of 

the fixation dot and the next trial began after 

an intertrial interval of 1.5 s. Cumulative 

feedback about performance in the current 

block was provided at the end of each run.  

In the other trials (catch-trials), no objects 

appeared and the empty scene remained on 
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screen until a total delay of 4.03s had passed. 

These were the trials of interest for our 

analysis, as they allowed to isolate neural 

activity solely related to search preparation 

and thus to the search template. No response 

was required.  

Trial type (search or catch-trials), target 

presence, distractor type (size or shape based), 

depth plane and scene type (“near below” and 

“near above” scenes) were fully 

counterbalanced per run. Prevalence of scene 

family (scenes taken at one of 16 locations), 

target side (left or right of fixation) and the 

duration of cue-target asynchrony (2.8, 3.3, or 

3.8 s) were equated as far as possible within 

runs, but not fully counterbalanced.  

Localizer tasks 

For all localizer tasks, a miniblock based design 

was used. Within each miniblock, 20 images 

belonging to the same condition were 

presented in rapid succession (for 450 ms 

each). One run consisted of 16 miniblocks (4 

repetitions of 4 conditions), lasting 14.7 s and 

interspersed with baseline fixation blocks. 

Participants had to either respond to oddball 

stimuli or 1-back repetitions, appearing twice 

per miniblock, by pressing a button with either 

hand. 

Scene training runs 

Scene training runs were used to isolate scene-

based distance information, specifically voxel 

activity patterns related to fixating and 

attending either near or far away. The same 

Figure 7: Timeline of a trial in the search task and overview over all fMRI tasks. A) In the search task, each trial 
began with a category cue reminding participants of the target category (melon or box) in the current run. After 
fixating the letter cue, an empty search scene appeared and participants fixation was now in the center of one 
depth plane, providing information about the retinal size of the target objects. In half of the trials, objects briefly 
appeared in the search scene and participants reported whether the target was present. In the other half, which 
were randomly intermixed with search trials, participants prepared to search but the scene remained empty of 
objects. These catch-trials were used to probe neural activity solely related to search preparation (i.e. the search 
template). In addition to the search task, three types of localizer tasks were included in the experimental session. 
B) the scene training task was used to extract voxel activity pattern reflecting scene-based distance information 
and fixating in either depth plane. Participants attended to oddball targets (light patches appearing left or right 
in the depth plane). C) In the object training tasks pair of target objects were shown in isolation, to capture voxel 
activity patterns related to seeing those large and small objects. Participants attended to size-oddballs in which 
one of the two presented objects was slightly larger or smaller than the other. D) The functional ROI localizer 
was used to locate object- and scene-selective areas and included photographs of objects, scenes, faces and 
scrambled objects. Participants reported 1-back image repetitions. 
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empty scenes as used in the main search task 

were shown. To create a miniblock, scenes 

were grouped by attended depth plane and 

scene type. Oddballs were small oval light 

patches appearing either to the left or right of 

fixation (the centre of one depth plane).  

Object training runs 

With object training runs we aimed to isolate 

neural activity related to the retinal size of the 

targets in the search task. Per miniblock, 

images of two isolated objects of the same 

category and size were presented left and right 

of a central fixation dot, at the same 

retinotopic positions at which targets would 

appear in the search scene. Since participants 

always fixated within a given depth plane, 

there were four different locations, but 

effectively only two retinotopic locations at 

which targets would potentially appear in the 

search task. For oddball stimuli, one of the two 

objects was 30% larger or smaller than the 

other.  

Functional ROI localizer 

A functional ROI localizer was used to locate 

both object- and scene-selective regions. 

Participants were shown grayscale images of 

faces, scenes, objects and scrambled objects. 

They performed a 1-back task, reporting 

immediate repetitions of the same image. 

Stimuli & Setup 

Stimuli were presented on a 1920 x 1080 pixel 

IPS LCD BOLDscreen (120 Hz refreshrate) and 

backprojected into the scanner bore. 

Participants viewed the stimuli through a 

mirror placed on the head coil. 

Scene stimuli for the main search task and 

scene training runs were the same as used in 

Experiment 1. The scene localizer only used the 

empty scenes. Scenes subtended 20 x 14.434°. 

Light patches were created by blending 2D 

Gaussians (σ = [12°, 0°, 3.96°, 0°]) into the 

scene images. These did not change in size 

dependent on depth. 

For the object training runs, isolated images of 

the target objects were used. Two objects of 

the same object category and size were 

presented left and right of a central fixation 

dot, at the same retinotopic positions (3,27° 

eccentricity) and with the same retinal size (1,5 

and 3°) as in the search task. For the size-

oddball stimuli, size was changed to 130% or 

70% of the original size, making large objects 

even larger and small ones even smaller. Target 

objects were cropped out from all 16 scenes 

and mean luminance of the isolated objects 

equated before placing them on an 

equiluminant grey background, having the 

mean luminance of the search scenes (RGB 

104, 104, 104).  

For the functional ROI localizer, greyscale 

images for each of the four categories (faces, 

scenes, objects and scrambled objects) were 

used.  

Experimental code for stimulus presentation 

and response collection was run using Matlab 

and Psychtoolbox (Brainard, 1997).  

Data Acquisition and Preprocessing 

Data were acquired on a 3T Siemens Prismafit 

Scanner using a 32-channel head coil. A T2-

weighted gradient echo EPI sequence was used 

for acquisition of functional data (TR 1 s, TE 34 

ms, flip angle 60°, 2 mm isotropic voxels, 66 

slices). For the search task, 295 images were 

acquired per run and 318 per run for all 

localizer runs. A high-resolution T1-weighted 

anatomical scan was acquired prior to the 

experimental runs, using an MPRAGE sequence 

(TR 2.3 s, TE 3.03 ms, flip angle: 8°, 1 mm 

isotropic voxels, 192 sagittal slices, FOV 256 

mm).  

Preprocessing  

Data preprocessing was performed using 

SPM12 (www.fil.ion.ucl.ac.uk/spm). 

Preprocessing steps included spatial 

realignment, co-registration of functional and 

anatomical scans and normalization to MNI 

http://www.fil.ion.ucl.ac.uk/spm
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152 space. A Gaussian filter (FWHM 3 mm) was 

then applied to smooth the images.  

General Linear Model (GLM) Estimation 

Subject level GLMs were estimated on the 

preprocessed images. For the search task, 

boxes and melons runs were modelled 

individually as separate GLMs. Regressors 

included the two possible sizes of the individual 

search targets, modelled as boxcar functions 

across the duration of the distance cue (empty 

search scene) presentation (4.03 s) and 

convolved with the canonical SPM 

hemodynamic response function. Only catch-

trials, in which no objects appeared in the 

scene, were modelled for the search template 

analysis. Single-trial beta estimates were  

obtained by modelling a separate GLM for each 

trial, including one regressor for the trial of 

interest and  another common one for all other 

trials to reduce collinearity, following Mumford 

et al. (2012). 

GLMs for the scene training runs included 

regressors for fixations in the near and far 

depth plane (collapsing across scene type), 

modelled individually for each miniblock within 

a run as boxcar functions over the duration of 

a miniblock (14.7 s) and convolved with the 

canonical SPM hemodynamical response 

function.  

The object training GLM included regressors for 

each of the four size and shape combinations 

(large and small melons and boxes). As for the 

scene training runs, each miniblock within a 

run was modelled individually.  

For the functional ROI localizer, miniblock-

based regressors for the four object categories 

(faces, scenes, objects and scrambled objects) 

were included.  

All GLMs also included the estimated head 

motion parameters as nuisance regressors and 

GLM estimation included temporal high-pass 

filtering (cutoff: 128 s) to remove low-

frequency drift in the signal.  

ROI definition 

We defined functional ROI masks of different 

sizes for LOC, PPA, OPA and EVC (early visual 

cortex) for every subject by intersecting 

anatomical or functional masks with the x most 

active voxels of the relevant contrast map 

(thresholded at 0.05). We first determined the 

maximum number of active voxels within each 

ROI across participants, before creating smaller 

ROIs of varying voxel counts going up this 

maximum in 20 equidistant steps.  

LOC was defined on the basis of the objects > 

scrambled objects contrast in the functional 

localizer runs (range of included voxels: 14 -

534, median: 189). Scene selective regions PPA 

and OPA were defined as being more strongly 

activated by scenes than other objects in the 

functional localizer (contrast: scenes > objects 

+ faces; PPA: 24 – 388 voxels, median: 186; 

OPA: 17 – 237 voxels, median: 88). All were 

intersected with bilateral functionally defined 

masks in MNI space.  

EVC was defined as voxels responsive to visual 

stimulation in the object training runs [objects 

> fixation baseline contrast], intersected with 

Brodmann areas (BA) 17 and 18 (253 - 2634 

voxels, median: 1109). This ensured we 

specifically included those voxels sensitive to 

stimulus presentation at the retinotopic 

locations at which targets appeared in the 

search task.  

For a small subset of participants, intersecting 

contrast maps with the functional masks 

yielded less than 6 active voxels (for LOC 

definition in three participants, and OPA 

definition in three participants). In this case, 

the threshold of the contrast map was lowered 

to 0.10 before intersecting. 

Multivariate Analyses 

Multivariate analyses were conducted using 

linear support vector machines (SVMs) and the 

single-trial (for the search task) or miniblock- 

(for the two training tasks) based beta 

estimates within an ROI. Classification was 
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performed using the decoding toolbox (TDT) 

(Hebart, Görgen, & Haynes, 2015) and the 

libsvm library 

(https://www.csie.ntu.edu.tw/~cjlin/libsvm/).  

For within-run type classification, a leave-one-

run-out cross-validation design was used. For 

the two training tasks, each miniblock was 

effectively considered a run. 

For cross-classification, we trained SVMs on all 

betas of either the object or scene training task 

and used either all beta estimates from the 

search task or from the other training task as 

testing set (or vice versa for reverse cross-

decoding). Individual SVMs were trained for 

every participant, ROI and voxel count. To take 

into account potential classifier bias, arising 

using different training and testing sets, we 

also recomputed accuracy after creating a 

median decision hyperplane, in which those 

testing betas closest to one label (e.g. near or 

large, determined by their distance to the 

decision boundary) were relabelled as such.  

Above chance-classification performance was 

determined by two-sided t-tests against 0. To 

correct for multiple comparisons when training 

and testing SVMS of the same general ROIs 

across different voxel counts we used 

threshold-free cluster enhancement (tfce). 

Decoding accuracy across voxel counts was 

tested against a null distribution created by 

randomly permuting test labels within each 

SVM (using 10000 bootstrap iterations). 

Searchlight Analyses 
In addition to our planned ROI analyses, we 

also tested whether retinal size-information 

was present during search preparation 

(reflecting depth-dependent templates) in 

other brain areas. We conducted a whole-brain 

searchlight analysis using spheres with a radius 

of 5 voxels (corresponding to approximately 

523 voxels enclosed in the sphere). Within each 

sphere, we calculated accuracy for cross-

decoded retinal size (training on the object 

training task and testing on the search task). 

Subject-level searchlights (in MNI space) were 

combined to a group map, testing for 

consistent above-chance decoding accuracy in 

individual voxels across participants and using 

tfce to correct for multiple comparisons.  

Univariate Analyses  
Complementing the multivariate analysis, we 

further analysed univariate responses in our 

search and localizer tasks, which may influence 

cross-classification. We computed mean 

responses to large and small objects and near 

and far scene-fixations by averaging all beta 

estimates within an ROI (including all active 

voxels per participant, i.e. the highest voxel 

count) and collapsing across the two separate 

shape GLMs created for the search task.  

Trialwise correlations of size and 
distance-decoding between ROIs 
For every trial in the search task, our design 

allowed us to have both an estimate of 

template size and the representation of depth 

in this trial, by comparing how classifiers 

trained on either the object or scene task 

labelled it. To analyse whether template size in 

object-selective areas was informed by 

distance information in scene-selective 

regions, we extracted the distance to the 

decision boundary of all betas in the search 

task after cross-classification of size or distance 

for each SVM. These provided us with a 

continuous measure jointly reflecting the 

predicted label (near or far and large and small) 

and classifier certainty (with large distances 

reflecting greater certainty a particular trial 

belonged to one class rather than the other). 

Next, those distance measures were converted 

to ranks and averaged across voxel counts with 

unique results within an ROI. Near and far trials 

were correlated separately before averaging 

them to an estimate we named τsplit. This was 

done to avoid finding correlations simply based 

on above-chance classification of both size and 

distance or different classifier bias. 

Correlations were computed within 

participants before calculating the mean 

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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correlation for each ROI pair. Put simply, the 

resulting τsplit reflects whether, on a particular 

search trial, if this trial is classified as small (i.e. 

a smaller template was formed), it is also 

represented as further away in either the same 

or another ROI, independent of its true label.  

Results 

Behavioural Performance 

Search Task 

Participants performed above chance in the 

search task, with a mean accuracy of 62.54% 

(sd 9.75, t(29) = 7.04, p < 0.00001). As in the 

first experiment, a 2x2x2 repeated measures 

ANOVA with factors Scene Type, Depth Plane 

and Target Object revealed that searching 

nearby and therefore for larger objects was 

easier compared to far away (F(1,29) = 4.21, p 

= 0.0494, near: 64.66% (sd 10.54) , far: 60.41% 

(sd 12.00)). No other factors or interactions 

were significant (all p’s > 0.14).  

Participants detected 68.53% of targets (sd 

11.98) and false alarm rate was 43.46% (sd 

13.06). Both hits and false alarms remained 

stable across experimental blocks (hits: slope 

0.004, p = 0.55, false alarms: - 0.81, p = 0.35) 

(see Fehler! Verweisquelle konnte nicht 

gefunden werden.). 

 
1 Chance level for all multivariate analyses was 50% 
and results always reported as deviation from 
chance. 

Six participants did not individually perform 

above chance level, as determined by a one-

sided binomial test (alpha level 0.05). These 

were included in all analyses, but main findings 

also remained consistent when excluding 

them. 

Localizer Tasks 

In the object training task, general hitrate was 

69.74% (sd 12.75) and false alarm rate 1.67% 

(sd 2.12). In the scene training task, 

participants responded to 93.49% of oddballs 

(sd 8.03) and incorrectly responded to non-

targets in 1.67% (sd 2.12) of trials. For the ROI 

localizer task, hitrate was 89.74% (sd 7.47) and 

false alarm rate 0.60% (sd 0.53).  

Decoding within localizers 
Before investigating template-size and depth 

representation in the search task, we first 

ensured our ROIs generally encoded size- and 

distance information by decoding the retinal 

size of objects participants saw or depth plane 

in which they  fixated within the two training 

tasks.  

When large or small target objects were 

present on screen and in isolation, their size 

could be decoded above chance-level1 from all 

chosen ROIs and across all ROI sizes (all p’s = 

 

Figure 8: Hits and false alarms across experimental blocks in the fMRI search task. Error bars are 95% CIs. 
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0.0002 after tfce) (see Fehler! Verweisquelle 

konnte nicht gefunden werden. a)).  

Decoding which depth plane participants 

fixated in the scene training showed a similar 

pattern of consistent decoding across ROIs, 

independent of their general selectivity (all p’s 

= 0.0002).  

Cross-decoding of size  
To test whether participants formed depth-

dependent search templates in the search task, 

we trained classifiers to decode the size of 

Figure 9: Decoding of A) retinal size of isolated target objects within the object training task and  

B) distance within the scene training task across ROIs and ROI sizes. Asterisks indicate significant difference from 

chance-level (50%) after threshold free cluster enhancement. Shaded areas are 95% CIs. 
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objects participants saw in the object training 

task and then applied these classifiers to 

decode the retinal size of objects participants 

prepared to search for (see Fehler! 

Verweisquelle konnte nicht gefunden 

werden. A)). 

Consistent with the notion of depth-dependent 

templates, size information could be 

successfully cross-decoded in LOC across all 

voxel counts (all p’s < 0.001 after tfce). Within 

scene-selective regions, no such information 

was present (all p’s > 0.99). In EVC, decoding 

accuracy was even significantly below chance 

Figure 10: A) Cross-decoding of retinal size within different ROIs and ROI sizes. Classifiers were trained on 

decoding the retinal size of target objects when these were present on screen in the object training task and 

tested on the search task to decode the retinal size of objects participants were searching for, when these were 

not present on screen (or vice versa). Asterisks indicate significant above-chance cross-decoding after tfce. 

Colour of the arrows and lines reflect decoding direction (blue: training on object training task and testing on 

search task, red: training on search task and testing on object training task). Shaded area represents 95% CIs. B) 

Cross-decoding of retinal size and distance across localizer task. Classifiers were trained on the object training 

task to decode retinal size and tested on the scene training task to decode whether participants fixated near or 

far (or vice versa, blue: training on object localizer, testing on scene training task; red: training on scene training 

task, testing on object training task).  
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across nearly all ROI sizes (18/20, all p’s <= 

0.056). This may reflect a stronger low-level 

visual similarity between small objects and 

near parts of the scene in which participants 

were fixating during search (or vice-versa). 

Further, this suggests successful size-decoding 

in LOC was not driven by a simple overlap in 

low-level visual features, but related to object 

size on a more abstract level. Decoding in LOC 

did however not correlate with general search 

accuracy across participants (τ = 0.02, 95 % CIs 

[-0.25, 0.29], p  = 0.39).  

Reversing the cross-decoding direction 

(training on the search task and testing on the 

object localizer) also yielded equivalent results, 

with exception of the negative decoding in EVC. 

To further investigate whether the effects 

found in LOC and EVC were specific to the 

search task, we also attempted to cross-classify 

size and distance between the two training 

tasks (Fehler! Verweisquelle konnte nicht 

gefunden werden. B)). We trained classifiers 

on decoding object size and tested whether 

they would correctly classify whether 

participants were fixating near or far in the 

scene training task, which did not require 

taking into account depth-dependent size-

changes (or vice versa). Surprisingly, we found 

above-chance decoding in LOC across most 

voxel counts (all p’s <= 0.15 in both cross-

decoding directions)2. Decoding accuracy was 

not significantly below chance-level in EVC 

(range p’s: 0.99 – 0.13 across decoding 

directions) and remained at chance for scene-

selective areas (all p’s > 0.8).  

Univariate Analyses  
Given these surprising results, we asked 

whether general univariate differences might 

explain our findings in LOC (Fehler! 

Verweisquelle konnte nicht gefunden 

werden.). Generally, a stronger univariate 

 
2 Due to the different types and numbers of testing 
betas (mini-block vs single trial ones and 32 vs 128 
testing betas) for training and search task, a direct 

response to nearby objects and of larger retinal 

size has been previously found in LOC (Amit et 

al., 2012; Cate, Goodale, & Köhler, 2011). Such 

a preference could potentially even translate 

to stronger responses to nearby parts of scenes 

in the absence of objects, as LOC can be 

sensitive to general scene-based information 

and e.g. shows a bias towards small spaces 

(Park, Konkle, & Oliva, 2015). A congruent 

univariate response pattern for large vs. small 

objects and near vs far fixations may lead to 

successful cross-decoding, without necessarily 

indicating overlap in more fine-grained voxel 

activity patterns.  

numerical comparison between decoding 
accuracies for different cross-decoding approaches 
is not immediately meaningful. 
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Larger objects indeed evoked stronger 

activation across all ROIs in the object training 

task (EVC: t(29) = 12.5, p < 0.0001; LOC: t(29) = 

10.24, p < 0.0001, OPA: t(29) = 5.20, p < 0.0001; 

PPA:  t(29) = 5.93, p < 0.0001). This could e.g. 

be partly driven by the larger extent of cortex 

they activated in retinotopically organized 

areas. A corresponding difference between 

near and far fixations was however not 

significant in LOC for either scene training or 

search task (scene training: t(29) = 1.76, p = 

0.09; search: t(29) = 1.88, p = 0.07). Although 

general univariate differences related to object 

size and distance tended to go in the same 

Figure 11: Univariate responses in the search and training tasks. Error bars represent 95% CIs. 

Figure 12: Whole-brain searchlight for size-cross decoding. Map is thresholded at an alpha-level of 0.05. 
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direction in LOC, they are thus unlikely to 

explain successful cross-decoding of size.  

For EVC however, an opposed pattern of 

univariate responses for object size and scene 

locations was found, which could account for 

the negative cross-decoding from object 

training to search task. Fixating far away in 

empty scenes yielded larger responses 

compared to near fixations (scene training: 

t(29) = -6.02, p < 0.0001; search: -6.00, p < 

0.0001). After inspecting the scenes, this higher 

activation may be reflecting higher local spatial 

frequency content in far-away parts of the 

scenes, which seem less visually uniform than 

the near-parts (often blank surfaces).  

Searchlight analyses for size 
Using a searchlight approach, we tested 

whether further brain regions may encode size-

information during search (and potentially also 

more exclusively in the search task) (Fehler! 

Verweisquelle konnte nicht gefunden 

werden.). Our whole-brain searchlight for 

cross-decoding of size revealed a large occipital 

cluster showing negative decoding accuracy 

(overlapping with EVC, 203828 mm3, centre of 

mass MNI coordinates : 1.39, -88.5, 6.94) and 

smaller bilateral clusters showing above-

chance decoding within the occipito-temporal  

lobe, overlapping with LOC (left: 33496 mm³, 

centre of mass -37, -81.5, -6.03; right: 160 mm3, 

centre of mass: 26.4 , -86.7, -6.6). No further 

areas were found to represent retinal size 

during search, confirming our a priori ROI 

selection.  

Cross-decoding of distance and trial-
wise correlations  
Since no simple visual or univariate differences 

would easily explain size decoding in LOC, it 

instead seemed to reflect a more genuine link 

between the representation of an objects size 

and distance, albeit unspecific to the search 

task itself. We therefore still asked whether 

distance information from scene-selective 

areas contributed to it. To isolate distance-

information from all ongoing brain activity 

Figure 13: Cross-decoding of distance. Classifiers were trained on decoding whether participants fixated in the 

near or far depth plane in the scene  training task and tested on the search tasks in which participants were also 

fixating in these depth planes to search for objects of varying size. Asterisks indicate above-chance cross-decoding 

after tfce. Shaded areas are 95% CIs. 
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within the search task, we trained classifiers on 

distinguishing whether participants were 

fixating near or far within the empty scenes in 

the scene training task and tested these on the 

search task. The distance at which participants 

were searching could be successfully cross-

decoded within all ROIs. For EVC, LOC and OPA 

this was also consistent across all ROI sizes (all 

p’s = 0.0002) and across most for PPA (p (100 

voxels) = 0.33, all other p’s <= 0.058).  

Next, we correlated cross-decoding of size and 

distance for every trial in the search task 

(Fehler! Verweisquelle konnte nicht gefunden 

werden.). Intriguingly, we found that size 

decoding in LOC correlated negatively with 

distance decoding in all other areas (EVC: τsplit = 

-0.04, [- 0.07, -0.01], p = 0.027; OPA: τsplit = - 

0.07, [- 0.10, - 0.04], p = 0.001) and was also not 

correlated with distance information in LOC 

itself (τsplit  = 0.05, p = 0.2).  Negative-going 

correlations between size and distance 

decoding were a general pattern observed 

across almost all ROIs, strongest when 

correlating both within EVC (τsplit = - 0.11, [-

0.17, -0.05], p = 0.002). This seemed in line with 

the previously observed opposed univariate 

responses to isolated objects and their 

corresponding positions within scenes across 

different visual areas and a tendency for 

below-chance decoding when training on the 

object localizer in EVC. As this may therefore 

reflect low-level differences still influencing 

size-decoding on individual trials, we 

attempted to account for them by regressing 

out the ranks of EVC distance to boundary 

measures from those of other ROIs in size-

decoding before re-computing τsplit. This 

revealed a positive correlation of size decoding 

in LOC with the representation of distance in 

EVC (τsplit = 0.06, [0.1, 0.11], p = 0.018), but no 

association with scene-selective areas (OPA: 

τsplit = 0.01, [-0.01, 0.03], p = 0.5, PPA: τsplit = - 

0.01, [-0.01, 0.04], p = 0.298) and also not with 

distance-decoding within LOC itself (τsplit =  

0.04, [-0.01, 0.10], p = 0.14). While distance 

information based on relatively low-level visual 

Figure 14: Trialwise correlations between size- and distance cross-decoding in the search task. Correlations 
between distance-to-bound measures were calculated within participants and separately for searching near and 
far before calculating the average correlation for each ROI pair. Correlations in non-transparent squares are 
significant at an alpha-level of 0.05. 
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features may therefore inform size decoding in 

LOC, scene-selective areas did not seem to 

contribute to it.  

Discussion 
We investigated neural mechanisms allowing 

the visual system to account for depth-

dependent changes in retinal size, testing 

whether participants held differently-sized 

templates based on where they were searching  

in object-selective or early visual areas and 

modulation of template-size by distance-

information processed in scene-selective 

areas.  

Generally in line with our hypotheses, we 

found robust cross-decoding between voxel 

activity patterns elicited by searching for 

objects of varying retinal size and viewing those 

objects, exclusively within LOC and consistent 

across ROI definitions and decoding directions. 

Unexpectedly, this was however not specific to 

the search task but also found in the scene 

training task, in which participants similarly 

fixated near or far in the scenes but there were 

no explicit instructions to search for objects of 

varying size.   

Besides putative size information in LOC, we 

also found negative or negative-going decoding 

of size within the search task. This was however 

not consistent across decoding directions and 

presumably explained by univariate and visual 

differences that classifiers trained on the 

object localizer task capitalized on.  

Even though not specific to the search task, the 

effects found in LOC were unlikely to be due to 

overlap in low-level features or univariate 

responses. Instead, they seemed to reflect a 

more genuine link between locations in the 

scene and object size.  

Given that this link was also found without 

explicit instructions and need to search for 

objects of varying size, it is possible our findings 

do not reflect template-related activity but 

instead a process unspecific to search per se. In 

the object localizer, we presented objects of 

varying retinal size, which were closely tied to 

a particular depth plane and of know n physical 

size. This may have incited a representation of 

distance even in the absence of specific depth 

cues. This depth-representation may then have 

been successfully cross-decoded across all 

three tasks. Given the explicit instructions in 

the search task, it cannot be entirely ruled out 

this represents an artifact of the strong 

contextual link between object size and 

respective scene locations within the task 

context. It may however also reflect more 

automatic mechanisms, estimating an object’s 

size and distance based on object knowledge 

and/or depth cues. In that case, smaller objects 

may truly have been represented as further 

away and LOC likely played an active role in this 

process. To create object representations 

reflecting real-world size and independent of 

retinal size changes (Grill-Spector & Malach, 

2001; Konkle & Oliva, 2012), LOC may be 

actively involved in estimating the distance of 

isolated objects and scene parts and 

integrating this distance information with the 

retinal input. It has generally been implicated 

in size-constancy, allowing us to perceive an 

object as having the same size independent of 

where it is placed (see Sperandio & Chouinard, 

2015 for a review) and lesions to LOC or its 

monkey homologue IT lead to impairments to 

correctly judge the physical as well as retinal 

size of objects (Chiou & Ralph, 2016; Cohen et 

al., 1994; Humphrey & Weiskrantz, 1969; 

Ungerleider, Ganz, & Pribram, 1977; Zeng et al., 

2020). Distance processing as such is not well 

investigated in LOC, but this area has e.g. also 

been found to be sensitive to scene-based 

information in the absence of objects, as the 

overall size of space (Park et al., 2015). This 

combined evidence suggests an important role 

for LOC in processing retinal size information 

and integrating size and depth cues to estimate 

an objects’ true size and distance. By rescaling 

object representations and making them 

independent of retinal size, such mechanisms 
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may clearly also help to account for scene 

context and changing visual features during 

object recognition or search. 

Another potential interpretation is however 

that we indeed found depth-dependent 

templates in both the search and scene training 

task. Given that the search task was 

undoubtedly challenging, participants may 

have tried to practice in the scene localizer task 

by extracting depth-information from the 

scenes and explicitly preparing to search for 

objects of a particular size, even though they 

never appeared as targets within that task. It is 

also important to note that the scene task still 

required participants to actively detect targets 

within either depth plane (even though these 

were not changing in size based on depth). 

Even more interesting from the point of view of 

naturalistic visual search, this may potentially 

reflect a more general preparatory mechanism 

expecting larger targets when searching 

nearby.  

Dissociating between these accounts based on 

the current data is unfortunately not easily 

possible. Further studies may test whether 

similar effects are found without any explicit 

instructions to detect targets and consider 

depth-dependent size changes. This may reveal 

whether these effects reflect automatic 

mechanisms tuned to regularities in 

naturalistic scenes and search in a broader 

context. To this end, it may also be relevant to 

vary retinal size on a more fine-grained scale, 

as well as testing for the shape-specificity of 

these effects3 . On the one hand, this would 

further reduce or eliminate any potential 

 
3 Generally, both size and shape information was 
required to correctly identify targets and therefore 
likely part of the template created in this task. 
Within our experiment however, size-information 
per se was emphasized as the main feature of 
interest. Our decoding scheme focused on general 
size-information, not tied to specific object shape.  
In fact, shape in general could not be reliably 
decoded. As shape was blocked per run, different 
run-based GLMs needed to be created for the 

remaining influence of the visual overlap or 

simple conceptual associations between target 

objects and scene locations on size-decoding. 

Further, shape-specific effects (i.e. better 

decoding of the shape of the sought-for object 

when it also has the appropriate size) would 

indicate participants indeed formed templates 

reflecting the specific target objects in the 

search task. Ultimately however, independent 

of the specific processes involved, our findings 

likely reflect LOC’s involvement in mechanisms 

helping to account for varying object 

appearance and accounting for scene context, 

underlining its importance in object 

recognition and search within naturalistic 

scenes.  

In the current experiment there was however 

no evidence that scene-selective areas were 

involved in accounting for depth-related 

changes. Although above chance and 

consistent, decoding accuracy for depth in both 

OPA and PPA was rather low compared to early 

visual cortex and did not correlate with size-

decoding on a trial-by-trial basis. This may 

potentially be due to our specific depth-

manipulation. To facilitate decoding of retinal 

size, depth in our experiment was dichotomous 

and did not require a very fine-grained 

estimate of distance. Further, searching near or 

far away did not change the overall depth-

layout, navigational affordances or identity of 

the scenes, which are all known to strongly 

influence responses of scene-selective areas 

(Bonner & Epstein, 2017b; R. A. Epstein, 2005). 

Therefore, fixating near and far within the 

same scene may have elicited rather similar 

different target objects. Thus, shape-information 
was likely captured by the general intercept of the 
GLMs rather than specific regressors, preventing 
shape-decoding. Further, if a target feature is kept 
constant across repeated searches, attentional 
capture and neuronal activation indicating active 
maintenance in visual working memory decrease 
rapidly after only a few trials (Carlisle et al., 2011), 
suggesting transition to long term memory.  
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activation patterns compared to near fixations 

across scenes, leading to lower accuracy in 

depth across scenes. The fact that PPA 

generally showed the numerically lowest and 

slightly less consistent decoding may be in line 

with previous findings suggesting global and 

more identity-based scene-representation in 

PPA. In comparison, scene representations in 

OPA tend to be more sensitive to local aspects 

of a scene but generalizing better across 

different scene-identities (Bonner & Epstein, 

2017b; Kamps et al., 2017).   

Since the same scenes were used in the scene 

and search task, our cross-decoding captured 

scene-based distance information, but not 

necessarily an abstract representation of 

depth. Within our study, relatively low-level 

properties, as e.g. the spatial frequency 

content present in different parts of the 

scenes, could have reliably dissociated near 

from far fixations, explaining the high decoding 

accuracy in EVC. Such low-level features, 

processed by early visual regions may have 

been sufficient to inform the representation of 

retinal size or distance in LOC, as suggested by 

their trialwise correlation (at least after 

accounting for potential influences of EVC and 

low-level scene-properties on size-decoding 

itself). Within even more complex and variable 

naturalistic environments, scene-selective 

areas may however still have a stronger 

contribution to visual search. 

General discussion 
Depending on where objects are located in 

depth, their retinal size varies strongly, making 

it more difficult to anticipate the specific image 

they will project on our retinae and create a 

template that will reliably dissociate between 

an object we are searching for and other 

distractor objects.  With two experiments, we 

aimed to investigate mechanisms underlying 

search in naturalistic scenes in which target 

size is modulated by distance. In both, 

behavioural evidence showed participants 

successfully took retinal size changes into 

account during search. Using b-CFS, we were 

however not able to probe the template 

formed by participants, potentially due to a 

generally less visual nature of the template or 

insufficient sensitivity of our paradigm. Within 

our fMRI study, we found a consistent 

association between smaller objects and 

searching and fixating far away (and vice 

versa), specific to LOC. These effects were 

however not specific to our search instructions 

and can therefore not interpreted as rescaled 

templates with certainty. They may however 

still reflect another mechanism through which 

the visual system could potentially account for 

depth-dependent size changes in template-

based visual search.  

Instead of rescaling the template and matching 

it to varying visual input as investigated here, 

an alternative mechanism would be to rescale 

an object representation based on its distance 

before comparing it to a template of fixed 

depth. A recent study indeed found evidence 

that scene context modulated the 

representation of object size already before 

this object representation interacted with a 

memory template (Gayet & Peelen, 2019). Our 

current findings may generally in line with 

either of these two, reflecting differently-sized 

search templates formed also in the absence of 

search instructions or computing the distance 

of isolated objects and their respective scene-

locations to rescale the perceptual input during 

object recognition. More research will be 

needed to fully understand which processes 

our findings in LOC reflect. Both mechanisms 

may also be flexibly used during real-world 

search, depending e.g. on how constrained the 

target location is by the scene. In both cases, 

LOC is likely involved, and our results again 

highlight this areas relevance in recognizing 

and searching for objects despite their varying 

appearance.  
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