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Abstract: 

Contrasting similar items has been proposed to enhance learning by increasing the specificity of mental 

representations. Since feedback is an important component of such tasks, the learning effect of contrasting might 
be partially related to the neurocognitive mechanisms of feedback processing. Previous electroencephalography 

(EEG) studies have demonstrated that the P300 and the feedback related negativity (FRN) can indicate whether an 

instance of feedback leads to successful learning. To investigate whether contrasting influences the effectiveness 

of feedback processing, we manipulated the orthographic similarity between the answer options on a three-choice 

vocabulary learning task. EEG was recorded, while participants learned 50 pseudo-translations to Italian words 

over six blocks. The learning outcome was determined via an immediate and a one-week delayed posttest. Results 

show better performance during the task for words that were presented with dissimilar distractors (shuffled 

condition), whereas posttest performance was higher for words that had been studied with similar answer options 

(sorted condition). The parietal P3b was larger for the sorted compared to the shuffled condition. A larger P3a and 

smaller FRN to negative feedback were associated with error correction. A larger P3a and smaller FRN to positive 

feedback were correlated with accuracy on the delayed recognition test. Most of these learning effects were only 
found for the sorted condition. This indicates that the similarity training might elicit improved memory encoding 

and attention reflected by the P300 amplitude, as well as enhanced utilization of valence feedback, reflected by 

the FRN amplitude. Taken together, the results suggest that the memory advantage of contrasting might partially 

be due to enhanced feedback processing. However, due to the limited sample size (as a result of the corona crisis), 

no definite conclusions can be drawn, and additional research is needed to corroborate these findings.  
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INTRODUCTION 

Although research has shown that making errors can be 

very beneficial to learning, the avoidance of errors is a 

common and encouraged practice in schools and other 

educational settings (Metcalfe, 2017). Receiving corrective 

feedback is an essential part of learning from mistakes (Hattie, 

1999; Hattie & Timperley, 2007) and whether we learn from 

feedback has been shown to relate to the way we process it 
(e.g., Ernst & Steinhauser, 2012; Muller-Gass, Duncan, 

Tavakoli, & Campbell, 2019). A better understanding of the 

underlying neurocognitive mechanisms is essential in the 

process of finding new ways to actively and effectively 

integrate this aspect of learning into teaching techniques.  

This project used Electroencephalography (EEG) to assess 

feedback processing during a vocabulary learning task. Second 

language (L2) learning is a well-suited context for such an 

investigation because it can create a relatively realistic setting 

(Bultena et al., 2017) and at the same time provides room for 

manipulation. In the current study we took advantage of this 

by manipulating the orthographic similarity between the 

answer options of a multiple-choice word-learning task.  

Contrasting similar items to enhance specificity of mental 

representations 

It has been proposed that similar stimuli are represented 

closely together in so-called “cognitive spaces” (Bellmund, 

Gärdenfors, Moser, & Doeller, 2018). In these cognitive 

spaces, “spatially specific cells provide a continuous code” 
that maps items along certain dimensions of characteristics 

(Bellmund et al., 2018, p.8). Via this code, stimuli can be 

represented at different scales, which allows for the 

representation of individual details as well as generalization. 

In a language context, this is conceptualized as the mental 

lexicon, where the dimensions along which similar words are 

organized are orthography (spelling), phonology (speech 

sounds), and semantics (meaning). Lexical quality describes 

the specificity with which orthographic forms are represented 

and connected to associated semantics and phonology 

(Perfetti, 2007).  

Contrasting similar words during the learning process 
could be a helpful strategy to improve vocabulary learning by 

building detailed cognitive representations. Fully specified 

orthographic representations with constant (rather than 

variable) letters are important for reading skills (Yang, as cited 

in Perfetti, 2007) and also seem to play a role in the acquisition 

of new words (Hart, 2006). Similarity between different words 

(in terms of form or meaning) has been shown to affect lexical 

quality (Hart & Perfetti, 2008) and to influence the ease with 

which these words are learned (e.g., Reder, Liu, Keinath, & 

Popov, 2016). A common mistake in L2 learning is the 

confusion of words that are similar in orthographic or 
phonological form, for example “effect” and “affect”, or 

“quite” and “quiet” (Llach, 2015). To avoid such mistakes, it 

can be helpful to contrast small differences during the learning 

process. “Lexical specificity training”, a method during which 

new L2 words are taught in phonologically similar pairs, can 

lead to improved phonological awareness in both first and 

second language learners (Janssen et al., 2015; van de Ven et 

al., 2019). Contrasting of orthographically similar words has 

also been shown to be beneficial for learning (Baxter et al., 

2020). Additionally, contrasting has also been observed to be 

beneficial in contexts outside of language learning. A study 

during which subjects had to learn information about specific 

topics (e.g., the solar system) showed that contrasting similar 

compared to dissimilar (or less competitive) answer options 

during a multiple-choice task lead to better performance on a 

subsequent test (Little & Bjork, 2015).    

Llompart and Reinisch (2020) propose that a task requiring 
the contrasting of similar items over several training blocks 

increases the attention towards the relevant differences. This 

enhanced attention might then lead learners to incorporate 

these detailed differences in the newly acquired mental 

representations. In the current study, we were specifically 

interested whether contrasting would influence feedback 

processing during learning. Generating errors that are similar 

to the correct answer have been shown to lead to increased 

retention of word pairs, compared to errors that are not related 

to the target (Huelser & Metcalfe, 2012). Since learning from 

errors depends on feedback, the effect contrasting similar 

words has on the detail of mental representations might not 
only be due to enhanced attention during the action of 

contrasting, but also during the processing of feedback. 

ERP components related to feedback processing 

Behaviorally, it is difficult to determine whether 

contrasting influences the processing of feedback, because 

feedback processing effects are difficult to distinguish from 

general task benefits. Event-related potentials (ERPs) have 
been the method of choice when it comes to investigating 

feedback-related learning, firstly because they can be 

measured non-invasively and have a very high temporal 

precision (Jongsma et al., 2012). Secondly, ERPs can be 

selectively averaged to compare, for example, items that were 

later remembered to those that were not remembered, in order 

to find so-called subsequent memory effects (Sanquist, 

Rohrbaugh, Syndulko, & Lindsley, 1980). This allows for the 

assessment of which neural processes are related to learning 

from feedback and what influences them. Exploring the 

influence of a similarity manipulation on feedback processing 

could not only lead to insight about the benefit of contrasting 
but also provide further evidence regarding the relationship 

between certain ERP components with learning from 

feedback.  

Mainly two ERP components have been associated with 

the processing of feedback in the literature: the P300 and the 

feedback related negativity (FRN). These components will be 

discussed in the following sections. 

 

The P300 

 

The P300 component is a positive deflection peaking 
around 300–600 ms post-stimulus (Figure 1A). This 

component has previously been researched in many contexts 

other than feedback processing, and a subsequent memory 

effect of this component was already found in the 1980s (e.g., 

Karis, Fabiani, & Donchin, 1984). A larger P300 amplitude is 

in general thought to reflect successful encoding of stimuli 

(Polich 2007). This successful encoding is related to both 

attentional and explicit memory processes (Ernst & 

Steinhauser, 2012), where the P3a (sometimes also referred to 

as frontocentral positivity; Themanson et al., 2019, or early 
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Figure 1. “A schematic representation of ERP waveforms typically elicited by outcomes” (taken from San Martín, 2012, p. 2, without 
permission). 

 

 

frontal positivity; Ernst & Steinhauser, 2012) indicates frontal 
attention allocation and the parietal P3b reflects memory 

encoding (Jongsma et al., 2012; Polich, 2007). During 

feedback presentation these two responses together lead to the 

subsequent correction of an error (Butterfield & Mangels, 

2003) by enabling the evaluation of a response. In a 

reinforcement learning paradigm this involves “context 

updating”, where a previous expectation, based on a model of 

the environment, is evaluated and updated (Ernst & 

Steinhauser, 2012; Jongsma et al., 2012; Muller-Gass et al., 

2019). In a declarative learning context this updating refers to 

a utilization of the feedback to evaluate the previous stimulus 

representation or response held in working memory (Ernst & 
Steinhauser, 2012). The P300 thus reflects the “processing [of] 

the current stimulus to the degree that it was previously 

uncertain, index[ing] the cumulative knowledge thereby 

gained” (Steinemann, Moisello, Ghilardi, & Kelly, 2016, p. 

152). The “informative value” of the feedback hence also has 

an influence (Johnson, 1986; Muller-Gass et al., 2019).  

Most studies on feedback processing, including declarative 

learning studies, report a correlation of the P300 amplitude 

with successful learning (e.g., Arbel & Wu, 2016; Bultena et 

al., 2017; Butterfield & Mangels, 2003; Ernst & Steinhauser, 

2012; Muller-Gass et al., 2019). For example, in a word-
learning study by Ernst and Steinhauser (2012) and in a 

gender-assignment study by Bultena et al. (2017), a higher 

first-round P300 amplitude to negative feedback was 

correlated with a subsequent correction of the error. Further, a 

visual categorization study by Muller-Gass et al. (2019), who 

split their participants into successful and less successful 

learners based on performance accuracy, showed a higher 

feedback-locked P300 amplitude for more successful learners. 

The P300 amplitude increased throughout the learning process 

for the more successful group of learners but not for the less 

successful one. The P300 amplitude thus seems to reflect 
individual differences in the effectiveness of feedback 

processing. 

In summary, the P300 can indicate how well feedback is 
being processed and predict whether this processing will lead 

to learning. Further, this component is thought to be related to 

attentional processes, with more attention leading to a higher 

P3a amplitude (Hillyard, 1985). The P3a and P3b are therefore 

useful tools in the investigation of attention to detail and 

feedback processing effectiveness.  

 

The feedback related negativity (FRN) 

 

The FRN is a negative deflection usually observed at 

fronto-central electrodes around 200–300 ms after receiving 

feedback (Figure 1B). Initially, this component was mostly 
investigated in reinforcement learning studies. Many scholars 

have found a difference in FRN amplitude to negative 

compared to positive feedback in this context, usually with a 

larger FRN to negative feedback (e.g., Holroyd, Hajcak, & 

Larsen, 2006; Ludowicy, Czernochowski, Weis, Haese, & 

Lachmann, 2019; Luu, Tucker, Derryberry, Reed, & Poulsen, 

2003). This “FRN effect” (difference between positive and 

negative feedback) has been observed to decrease with 

learning (Arbel & Wu, 2016; Bellebaum & Daum, 2008; 

Butterfield & Mangels, 2003; Heldmann et al., 2008; Muller-

Gass et al., 2019). Sometimes the FRN has also been found to 
be larger for positive feedback, which led to doubts that the 

FRN amplitude solely reflects feedback valence (Themanson 

et al., 2019).  

Several studies have observed higher FRN values for a 

larger violation of expected outcome (e.g., Chase, Swainson, 

Durham, Benham, & Cools, 2011; Holroyd & Krigolson, 

2007; Themanson et al., 2019; Walsh & Anderson, 2012). In 

the gender-assignment study by Bultena et al. (2017), a larger 

difference between the FRN to positive compared to negative 

feedback was associated with higher certainty ratings, whereas 

a recent study investigating uncertainty in sensory 
discrimination found no clear association between FRN 

amplitude and certainty (Ludowicy et al., 2019). Nevertheless, 

several scholars suggest that the FRN reflects the difference 
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between expected and actual outcome (e.g., Ernst & 

Steinhauser, 2012; Hajcak, Moser, Holroyd, & Simons, 2007; 

Themanson et al., 2019), as well as an implicit learning process 

associated with the evaluation of this difference (Bellebaum & 

Daum, 2008; Chase et al., 2011; Ernst & Steinhauser, 2012).  

Whereas several reinforcement learning studies have 

reported that the FRN amplitude to negative feedback 

correlates with subsequent correction or change of behavior 
(e.g., Cohen & Ranganath, 2007; Luu et al., 2003; Philiastides, 

Biele, Vavatzanidis, Kazzer, & Heekeren, 2010; Van Der 

Helden, Boksem, & Blom, 2010), such effects are not found 

by most declarative learning studies (Bultena et al., 2017; 

Butterfield & Mangels, 2003; Muller-Gass et al., 2019). 

However, several studies by Arbel and colleagues did find 

learning effects of the FRN. In a study where subjects had to 

learn paired associations between non-words and novel objects 

(pictures) during three rounds of a two-choice task, a 

correlation between the FRN to positive feedback and the 

learning outcome was observed (Arbel, Murphy, & Donchin, 

2014). During a similar task (with five rounds), Arbel and Wu 
(2016) reported an interaction between the learning curves and 

slopes of the FRN to negative feedback, namely a steeper 

learning slope correlated with a steeper decrease in FRN 

amplitude throughout learning. Further, they found a 

correlation between successful learning and a large FRN 

following positive feedback, as well as a small FRN following 

negative feedback.  

Arbel and colleagues proposed a utilization theory, 

suggesting that the FRN reflects the extent to which feedback 

is utilized by the learner (Arbel et al., 2014). They also propose 

that the FRN may account for individual differences in the 
degree to which relevant information is extracted from 

feedback (Arbel & Wu, 2016). Related to this utilization 

theory, Bultena et al.'s (2017) findings suggest differences in 

the FRN for “more proficient and more perseverant learners” 

(p.13).  

To sum up, the FRN can indicate the detection as well as 

the expectation of feedback valence (Butterfield & Mangels, 

2003), usually with a higher amplitude for negative and 

unexpected feedback. The FRN also could be related to the 

utilization of feedback, although this effect has only been 

found in a very limited number of studies. Since the attention 
to detail is likely to influence the utilization of feedback, the 

similarity manipulation in this study could lead to interesting 

insights in relation to the utilization theory. 

 

The current study 

 

The current study investigates the influence of contrasting 

during learning on the effectiveness of feedback processing. 

For this we applied a multiple-choice vocabulary learning task 

during which participants learned pseudo-words of which each 

was orthographically similar to a group of other pseudo-words. 

Half of the words the participants had to learn were presented 
with similar answer options (we will call this the sorted 

condition) and thus required detailed attention for contrasting 

of small differences. The other half of the words were not 

presented with the words they were similar to, but instead 

shuffled in such a way that answer options were always 

dissimilar (shuffled condition). This design was adapted from 

a previous related study (Baxter, 2020). To study contrasting 

in the context of feedback processing, we assessed the 

differences in feedback-related ERP components between the 

two conditions. Since the P300 (and less often the FRN) has 

been shown to be related to learning, we were particularly 

interested in differences between the two conditions with 

regards to correlates of successful learning from feedback. To 

assess this effectiveness of feedback processing we looked 

both at whether an instance of negative feedback lead to a 

subsequent correction of the error on the next trial of that word, 

and whether it lead to the recollection of the correct translation 
during the posttests. The aim was to gain a better 

understanding of the underlying mechanisms of the learning 

task and the learning benefit of contrasting similar items. 

Specifically, we investigated the following questions: 

 

1. What is the effect of contrasting on learning (accuracy 

during the task) and on the learning outcome (accuracy 

on the immediate and delayed posttests)? 

2. Is there an effect of condition on feedback processing, 

reflected in amplitudes of ERP components (P3a, P3b, 

and FRN) elicited by negative or positive feedback, 

and in the change in amplitudes throughout the 
learning task? 

3. Is the amplitude of feedback related ERP components 

correlated with error correction and learning outcomes 

and does this effect differ between the two conditions? 

 

Behaviorally we expected to find a higher accuracy during 

learning and a steeper learning curve for the shuffled condition 

(with dissimilar answer options), since the task is a little easier 

and less confusing (H1a). At the same time, however, the 

contrasting of similar options in the sorted condition should 

lead to a more detailed encoding. We therefore predicted a 
higher accuracy in the immediate and delayed posttests for the 

sorted compared to the shuffled condition (H1b).  

Regarding ERP amplitudes, the sorted condition was 

expected to show a higher P3a amplitude to both negative and 

positive feedback (H2a) due to the increased attention to detail, 

as well as a higher P3b amplitude due to more detailed memory 

encoding (H2b). Additionally, if contrasting leads to more 

utilization of feedback for learning, we expected higher FRN 

amplitudes in the sorted condition (H2c).  

With regards to a correlation with learning, we expected a 

correlation with error correction and a subsequent memory 
effect (i.e., later remembered versus later forgotten) of the 

P300 in both conditions based on previous research (H3a). We 

expected these effects to be stronger in the sorted condition, if 

more detailed attention to feedback is triggered by contrasting 

and is related to learning (H3b). If this detailed attention also 

leads to more utilization of feedback, we additionally expected 

a correlation of the FRN amplitudes with error correction and 

learning outcomes in the sorted condition (H3c). In the 

shuffled condition we did not expect a subsequent memory 

effect of the FRN because no such effects were found in most 

similar studies (H3d).  

 
METHODS 

 

The effect of the corona crisis on this project 

 

For full disclosure, we will briefly report how this project 

was affected and changed due to the corona pandemic. At the 

time of lockdown (March 16, 2020), the first subjects were 

about to be tested. Since on-campus research was suspended, 

a few changes had to be implemented. Originally, we had 
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planned to test 30 Dutch native speakers on campus. The full 

explanation of the original methodology can be viewed in 

Appendix A and we plan to carry out the original plan once it 

is possible again. For the sake of finishing this master thesis 

however, a different approach had to be implemented. A 

portable TMSi EEG system was used in order to test subjects 

off campus. This system enabled data collection in line with 

corona regulations, however these regulations restricted the 
possible participant pool to two participants. Since these 

participants were native Italian speakers, the stimuli had to be 

Italian instead of Dutch. Fifty Italian words were selected 

based on frequency and word-length, and some of the pseudo-

words were changed due to their similarity or equivalence with 

existing Italian words. Finally, the preprocessing of the EEG 

data was shifted from BrainVision Analyzer (BrainVision 

Analyzer, Version 2.2.0; Brain Products GmbH, Gilching, 

Germany) to FieldTrip (Vers. 2020-0607, Oostenveld et al., 

2011; Donders Institute for Brain, Cognition and Behaviour, 

Radboud University, the Netherlands. See 

http://fieldtriptoolbox.org) in Matlab (Version 2020a; 
MATLAB, 2020), due to off-campus accessibility. Given the 

greatly reduced number of participants, results are hence 

preliminary. 

 

Participants 

 

Two female subjects between 26 and 27 years of age 

participated in the study. Both participants had normal or 

corrected-to-normal vision and reported no colorblindness, 

psychiatric diagnosis, or previous head injury. The subjects 

were native speakers of Italian. All subjects gave written 
informed consent and received 10 € per hour as compensation.  

 

Stimuli 

 

The stimulus material consisted of 50 Italian words and 50 

pseudo-words, with each pseudo-word as a “translation” for 

one of the Italian words. The Italian words were concrete 

nouns, four to seven letters long, and their frequency (per 

million in SUBTLEX-NL; Keuleers, Brysbaert, & New, 2010) 

was between 0.40 and 70.03 (M = 16.03). To guarantee 

dissimilarity between the Italian words, the Levenshtein 
distance (indicating the smallest number of single-character 

changes needed to transform one word into the other; 

Levenshtein, 1966) between Italian words was kept at a 

minimum of two. None of the Italian words were semantically 

similar to each other, based on inspection of their English 

translations.  

The pseudo-words were generated in wuggy.org (Keuleers 

& Brysbaert, 2010), with Spanish as a base-language. Another 

native Italian person proofread all of the pseudowords in order 

to ensure that none of them were real words in Italian or very 

similar to an Italian word. Nevertheless, all trials with “sale” 

as a target had to be excluded from the analysis later on, 
because one of the subjects noticed that it was actually a 

conjugated form of the Italian verb “salire”. We created ten 

groups of five orthographically similar words each (e.g., 

“taiwi”, “taiwe”, “tainu”, “taibu”, “taibi”; see Figure 2). We 

will call these groups the “sorted-groups”. The Levenshtein 

distance between words within one sorted-group was between 

1 and 2, whereas the Levenshtein distance between words of 

two different sorted-groups was minimally 3.  

 

Figure 2. Illustration of grouping into sorted-groups and shuffled-
groups. Half of the participants were in participant group 1 and the 
other half in participant group 2. 

 

 

For the control condition, the same 50 words were sorted 

into a second grouping of ten groups, the “shuffled-groups”. 

For this reorganization, the ten sorted-groups were first split 

up into two sets of five groups each, set I and set II. Taking set 

I, five new groups were generated by selecting one word from 

each sorted-group. This resulted in five new shuffled- groups, 

each consisting of five words that were all not orthographically 

similar to each other. The same reorganization was applied to 
set II. To reduce the influence of nuisance variables, the 

frequency and length of the Italian words were matched 

between all sorted-groups. The frequency was also matched 

between the two sets.  

 

Design  

 

The similarity manipulation was applied as a counter-

balanced, within-subject condition. In one condition, the three 

pseudo-word answer options were orthographically similar to 

each other (taken from the same sorted group), called the 

“sorted condition”, and in the other condition, the pseudo- 
words were not similar to each other (taken from the same 

shuffled-group), called the “shuffled condition”. All 

participants were presented with the same 50 words. However, 

for half of the participants, the sorted-groups of set I were used, 

and the shuffled-groups of set II. For the other half of the 

participants, the shuffled-groups of set I were used and the 

sorted-groups of set II. For a given participant the words 

remained in the same condition throughout the whole task. 

 

Procedure 

 

The subjects participated in two separate sessions. In the 

first session they performed the vocabulary learning task – 

during which EEG was recorded – and the immediate posttest. 

Additionally, participants filled out a general questionnaire 

and a language experience questionnaire. The delayed posttest 

took place one week later. No EEG was recorded during this 

second session. Both the delayed and the immediate posttest 

consisted of a translation recognition and a translation 

http://fieldtriptoolbox.org/
http://fieldtriptoolbox.org/
http://fieldtriptoolbox.org/
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production task. All tasks were programmed in PsychoPy3 

(Peirce, 2007). The participants sat in front of a 14” HP 

EliteBook 840 G3 Windows 10 laptop with a 1680x1050 

resolution screen and used the laptop keyboard to respond 

during all tasks.  

 

Learning task 

 
During the learning task, the participants were asked to 

learn the pseudo-translation for each of the 50 Italian words. 

Each of the six blocks consisted of 50 trials, such that all Italian 

words were tested once per block. To minimize strategies other 

than contrasting, we instructed the participants to focus on 

comparing the three answer options and not use mnemonics or 

any other memorizing techniques. Since the participants were 

not previously exposed to the pseudo-words, they had to guess 

in the beginning of the task. Before the first block, participants 

could familiarize themselves with the task and the type of 

feedback during six practice trials. To avoid any unwanted 

effects of the practice trials, these trials did not include any real 
stimuli, but used placeholders instead, such as “Italian word”, 

and “Option 1”. 

During each trial (for an example see Figure 3), 

participants first saw a fixation cross for 500 ms, followed by 

the Italian probe and the three response options underneath 

each other. The participants then had 4000 ms to select one of 

the options via a button press (number key 1, 2, or 3). If they 

did not respond in time, a message reading “too slow” was 

displayed, after which the trial continued. After the response, 

the Italian word remained on the screen as a fixation and to 

help the subjects remember the Italian word of the current trial. 
This was followed by a 300 ms blank screen (for the baseline 

window) and 2500 ms of feedback. The feedback consisted of 

the correct pseudo-translation, which was presented either in 

red following incorrect (or too slow) responses, or in green 

following correct responses. The participants were instructed 

not to blink during the presentation of feedback. The feedback 

was followed by a 1000 ms blank screen. 

Since there were five words per word-group, this resulted 

in six possible combinations of answer options per Italian word 

(the target translation plus six possible pairings of the 

remaining four words in the group). Each of these options were 

presented in one of the six blocks, such that each pseudo-word 

appeared exactly once as a target and twice as a distractor per 

block. The order of the trials within each block was pseudo-

randomized with the software Mix (Van Casteren & Davis, 

2006) with a minimum distance of five trials between trials of 

the same sorted-group (for words the given participant saw in 

the sorted condition) or shuffled-group (for words the given 
participant saw in the shuffled condition). The second Mix-

constraint was a maximum repetition of three trials of the same 

condition. The order of the blocks and the answer options was 

randomized within the experiment script in PsychoPy. 

 

Posttests 

 

The translation production test consisted of 50 Italian 

probes presented one-by-one (in a random order). The 

participants were instructed to type the correct pseudo-

translation of the word. They were told to type as much as they 

remembered and encouraged to guess if they were not sure. 
During the translation recognition task, the participants 

were presented with 50 translation pairs and had to decide 

whether they were correct or not via a button press (key “n” 

for no, or key “y” for yes). Nine words from each condition 

were presented with the correct and 16 words with an incorrect 

translation. The order of the trials was randomized. The 

selection of incorrect pairs was pseudo-randomized in 

PsychoPy with a specific algorithm that ensured 

counterbalancing of conditions, groups, and similarity of the 

pairings (see Appendix B for a full explanation of the pair 

selection). For each condition there was thus an equal number 
of “similar” (referring to the similarity between the presented 

– incorrect – translation and the correct translation) and 

“dissimilar” pairs.  

 

EEG measurement and preprocessing 

 

The EEG signal was recorded with a TMSi porti system. 

Twenty-eight electrodes (Fp1, Fp2, F8, F4, Fz, F3, F7, FC5, 

FC1, FC2, FC6, T8, C4, Cz, C3, T7, CP5, P3, CP1, CP2, P4, 

CP6, P8, Pz, P7, POz, O1, and O2; Figure 4) were mounted on 

 
 

    

Figure 3. Trial sequence during the learning task. Stimulus: The upper screen represents a trial in the shuffled condition, and the lower screen 
is an example of the sorted condition. Feedback: The upper screen is an example of incorrect feedback.  In this case the participant selected an 
incorrect option (“taiwi” or “leba”). The lower screen represents correct feedback, where in this case the participant correctly selected “bosmi” 
as the translation for “noce” (English translation: “nut”). There was no difference in feedback screens between the two conditions.
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Figure 4. Illustration of the electrode layout. 
 
 

an elastic cap according to a 10-20 configuration. Electrodes 

were online averaged to an additional electrode attached to the 

wrist with an elastic wristband. The sampling rate was 400 Hz 

and a high cutoff filter of 108 Hz (0.27*sampling frequency) 

was used. To ensure good signal quality, the overall value of 

the signal viewer was kept between -20 mV and 20 mV during 

the recording.  

The EEG data was preprocessed with the Matlab (Version 

2020a; MATLAB, 2020) based FieldTrip software (Version 

2020-0607; Oostenveld et al., 2011). The signal was offline re-
referenced to an average of all electrodes and a low-pass filter 

of 30 Hz was applied. The signal was detrended and 

demeaned. Artifacts were removed via visual inspection of the 

signal. Feedback-locked epochs were set to 500 ms before and 

1500 ms after feedback onset. A time window between 300 ms 

and 100 ms before feedback onset was used for baseline 

correction. Trials without responses and practice trials were 

excluded from the analysis. Single trial ERPs (mean 

amplitudes) were extracted for statistical analysis in R 

(Version 4.0.0; R Core Team, 2020). The electrodes for each 

ERP component were chosen based on previous literature 
(e.g., Ernst & Steinhauser, 2012; Muller-Gass et al., 2019) and 

visual inspection of the individual waveforms of all electrodes 

(similar to e.g., Jongsma et al., 2012). The time windows were 

chosen based on inspection of the grand averages and 

individual waveforms of the selected electrodes (e.g., Bultena 

et al., 2017; Ernst & Steinhauser, 2012). As a result, the FRN 

was analyzed between 210–270 ms post-feedback at Cz and 

Fz, the P3a between 365–425 ms post-feedback at Fz and Cz, 

and the P3b between 460–760 ms post-feedback at Pz. 

 

Data Analysis 

 

The statistical analysis was performed by means of mixed 

effects models in R with the lme4 package (Bates et al., 2014; 

Version 1.1-23). With regards to model fitting and reporting 

we mainly followed the recommendations by Meteyard and 

Davies (2020) and Winter (2013). A separate set of models 

was used to answer each of the three sub-questions outlined in 

the introduction. 

Model fitting 

 

The fixed and random effects and interaction terms of the 

initial models were selected based on consideration of study 

design and factors of interest. All fixed effects were fit as 

categorical factors, except for learning blocks, which were fit 

as a continuous variable in the analysis of the behavioral data. 

The random effects included random intercepts and slopes for 
item (variation between different stimuli, i.e., words) and 

participants (variation in performance and ERP signals 

between participants). Random effects were fitted first, to find 

a maximal random effects structure that converged (Barr et al., 

2013; Meteyard & Davies, 2020). For this we started out with 

a model including all fixed and random effects of interest, but 

no interactions. When a model did not converge, random 

slopes and intercepts explaining zero variance were dropped 

first. For consistency and comparability, random effects were 

removed from all models of a subset, if the random effect only 

converged for some of the models (given the effect explained 

little variance and did not improve model fit). For models that 
did not converge with any random effects, regular linear 

models with only fixed effects were used.  

After the model converged, we tested for interactions of 

interest between fixed effects. Significant two-way 

interactions were added to the final model if they showed to 

improve the model fit based on the Akaike Information 

Criterion (AIC; a reduction by two units was considered as an 

improvement of fit; Burnham & Anderson, 2004). In case of 

fixed effects models, the R-squared value was used for model 

comparison, because no AIC is computed in these models. 

Significant interactions were followed up on by additionally 
fitting nested models in both directions, to assess the effects of 

a factor at each level of the other factor (based on an approach 

developed by Frömer, Maier, & Rahman, 2018). R Markdown 

(Allaire et al., 2020) scripts of the selection procedure, 

including outputs and parameters for all fitted models, can be 

viewed in the supplementary material. 

 

Behavioral data 

 

The behavioral data consisted of the accuracy of each 

response (correct or incorrect response). To address the first 
research question, three models were fit to the mean proportion 

correct during the task, the production, and recognition 

posttests. Due to the binomial accuracy data, the behavioral 

analysis was conducted with generalized linear mixed models 

(glmer function), with “logit” link and “bobyqa” optimizer. 

The p-values and z-values for the behavioral analyses were 

extracted from the output of the glmer function. For glmer 

models, the directional interpretation of estimates is not very 

straightforward (Frömer et al., 2018) and we therefore focused 

on the data plots when reporting directions of significant 

effects. 

 
ERP data 

 

The specific procedure of the statistical analysis of single-

trial ERPs was inspired by a method outlined by Frömer et al.  

(2018). The EEG data was analyzed using the lmer function in 

R. The p-values for the ERP-models were obtained via 

Satterthwaite approximations for degrees of freedom, using 

the lmerTest package in R (Version 3.1-2; Kuznetsova, 

Brockhoff, & Christensen, 2017). For lmer models the 
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direction of effects was directly read out from the estimates of 

the models, as suggested by Frömer et al. (2018).  

To compare feedback processing components between the 

two conditions (question 2), separate models were fit to the 

amplitude at each electrode of interest per component. This 

approach was chosen because regional differences was not a 

main variable of interest, and to avoid overly complex models. 

Besides an effect of condition, fixed effects of feedback type 
and block were included because they have been shown to 

affect signals substantially and meaningfully in similar studies 

(e.g., Bultena et al., 2017; Ernst & Steinhauser, 2012; Muller-

Gass et al., 2019) and should not be collapsed. Additionally, 

these factors might yield interaction effects with the effect of 

condition. For the effect of blocks, the blocks were grouped 

into three different learning phases, namely early (block 1 and 

2), middle (block 3 and 4), and late (block 5 and 6). This was 

done to avoid having too few trials per condition on some 

blocks. The condition used for the computation of each model 

was a minimum of seven trials per level (e.g., at least seven 

positive feedback trials in the sorted condition and early 
learning phase for each participant).  

To assess the correlation between ERP amplitudes and 

successful learning, we applied two separate approaches. In 

the first approach we split the negative feedback trials into 

trials that led to a subsequent correction of the mistake 

(determined by the response to that same word on the next 

block) and trials that lead to a repetition of the same mistake. 

We will call this factor the “subsequent correction effect”. This 

factor was then fit to the data as a fixed effect. Further, 

independent of the significance of interactions, we fit a nested 

model of subsequent accuracy within condition for each 
component. This nested model approach was implemented 

uniquely in this case because we were unsure if all subsequent 

correction effects would be detected when looking at the two 

conditions combined. This is because the correction of a 

mistake is not easily comparable between the two conditions 

since the mistakes differ substantially in size. We were 

therefore concerned that differences in underlying 

mechanisms of error correction might obscure the results in a 

regular model.  

The second measure of feedback processing effectiveness 

was the association of an ERP component amplitude with the 
accuracy at one of the posttests. For this subsequent memory 

effect, the trials were split up into those words that were later 

answered correctly and those answered incorrectly on each of 

the four posttests separately. The delayed production posttest 

had to be excluded from this analysis because there were not 

enough trials (per subject). Further, were there not enough 

trials of positive feedback on the immediate recognition test. 

For this posttest we thus only analyzed the negative feedback 

trials.  

 

RESULTS 

 
Behavioral results (Research Question 1) 

 

To assess whether contrasting had an effect on learning we 

compared the accuracy during the task as well as during the 

posttests between conditions. The mean proportion correct 

during each of the learning blocks is illustrated in Figure 5A 

and was .62 (SD = 0.49) in the shuffled condition and .53 (SD 

= 0.50) in the sorted condition. Performance was already above 

chance level in the first block. This is most likely due to the 

fact that within one block a single word appeared twice as a 

distractor and could therefore be excluded as a target, if it had 

been the target in a previous trial. A mixed effects model 

including an interaction of two fixed effects (condition and 

block) showed an effect of condition and an effect of block, as 

well as a significant interaction of both (see Table 1). To 

follow up on this interaction we fitted a model of block nested 

within condition. This revealed a significant effect of block for 
the sorted (p = .031) and the shuffled condition (p < .001).  

The mean performance on all posttests was higher in the 

sorted condition compared to the shuffled condition (see 

Figure 5B). For the production task, a model including fixed. 

effects of condition and time (immediate or delayed) revealed 

a significantly lower performance for the shuffled condition as 

well as a significant effect of time, with a lower performance 

on the delayed production test. 

For the recognition task data, a fixed effects model was 

used (because all random effects explained zero variance), 

including an interaction of condition and time. This model 

revealed a significant effect of condition and a significant 
effect of time. Although a model with an interaction showed 

to be a better fit for the data (based on a lower R-squared 

value), the interaction between condition and time was not 

significant. 

 

Interim discussion 

 

In sum, the behavioral data showed that although 

performance was higher in the shuffled condition during the 

task (H1a), the sorted condition successfully enhanced 

learning, as shown in the higher posttest results in both 
recognition and production tasks (H1b). These findings are in 

line with our behavioral hypotheses and previous findings 

(Baxter et al., 2020). 

 

Electrophysiology during learning (Research Question 2) 

 

Next, we employed ERP-measures (P3a, P3b, & FRN) to 

determine how the neurocognitive processing of feedback 

differs with condition, type of feedback, and learning phase. 

The grand average of the signal at the midline electrodes is 

illustrated in Figure 6A. Since the amplitude differences are 
sometimes difficult to see with this many factors, plots of the 

mean amplitudes grouped by different factors can be viewed 

in Figure 6B and Appendix C. Linear mixed models with a 

fixed effect of condition, and an interaction of feedback type 

(positive, negative) and learning phase (early, middle, late), as 

well as random intercepts of participants were fit to the data 

for each component at each electrode (Table 2). 

 

P3a amplitude  

 

The P3a amplitude was significantly larger for positive 

feedback at Cz, but this effect was not found to be significant 
at Fz (Figure 6B). A significant effect of learning phase was 

found at both Fz and Cz, with a higher P3a amplitude at later 

learning phases (Figure 6C). Additionally, an interaction of 

feedback and learning phase at both electrodes was revealed.  

To follow up on these interaction effects, we computed 

models with nested effects in both directions. Looking at the 

interaction between learning phase and feedback valence, 

models of feedback type nested within learning phase revealed 

a significantly higher P3a amplitude to positive compared to
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Figure 5. Mean accuracies. Error bars depict 95% confidence intervals. A: Mean task accuracy (proportion correct) during each of the six 
blocks comparing sorted and shuffled conditions. The dashed line indicates chance level performance. B: Mean accuracy on the immediate 

and delayed production test. C: Mean accuracy on the immediate and delayed recognition test. 

 

Table 1. Effects of condition and block on task accuracy, as well as condition and time on posttest accuracy. 

 
 

 

negative feedback during the early learning phase at Cz (b = 

1.55, p = .041), a lower amplitude to positive feedback during 

the middle learning phase at Fz (b = -2.43, p = .027) as well as 

a lower amplitude to positive feedback during the late phase at 

both electrodes (Fz: b = -4.16, p < .001; Cz: b = -2.61, p < 
.001). A model of learning phase nested within feedback 

valence showed a significant increase of P3a amplitude from 

early to middle phase (Fz: b = 2.91, p = .011; Cz: b = 1.60, p 

= .030) and from middle to the late phase (Fz: b = 4.42, p < 

.001; Cz: b = 2.92, p < .001), for negative feedback. A plot of 

mean amplitudes grouped by feedback and learning phase 

showed that for positive feedback the P3a amplitude actually 

decreased throughout the task (Appendix C, Figure C1A), but 

this effect did not reach significance. 

Furthermore, an interaction of learning phase and 

condition was found for the P3a amplitude at Cz. This 

interaction did not improve the model fit enough to be included 

in the final model (reduced the AIC by 1.8), but since the 

interaction was significant, we nevertheless followed up on it. 

A model of learning phase nested within condition revealed a 

higher P3a amplitude during later blocks (middle-early: b = 

2.03, p = .005; late-middle: b = 1.55, p = .030) in the sorted 
condition but not in the shuffled condition. Upon visual 

inspection of the grand averages, the P3a amplitude during the 

middle phase seems to be higher for the sorted compared to the 

shuffled condition (also at Fz), whereas the opposite effect can 

be seen in the late learning phase. Neither of these effects were 

significant in a model of condition nested within learning 

phase, however.  

In summary, the P3a was revealed to change from a larger 

amplitude to positive feedback to a larger amplitude to 

negative feedback as learning progressed. An increase in P3a 

amplitude to negative feedback throughout learning was more 

strongly supported for the sorted condition. 
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Figure 6. Mean ERP amplitudes compared between positive (pos) and negative (neg) feedback as well as between sorted and shuffled 
conditions. A: The grand averages of the EEG signal plotted at each electrode over a time window of 300 ms before and 800 ms after feedback 
presentation. The grey boxes represent the time windows over which the mean amplitudes were calculated for statistical analysis. B: Mean 
amplitudes of each of the components at the respective electrodes, depicted separately for positive and negative feedback. C: Grand averages 
of the mean EEG signal plotted separately for each block pair and each channel.a 

 
a In order to be able to spot any differences between conditions, the scale had to be adjusted in such a way the signal for positive feedback in the sorted 

condition of Fz in the early block pair is not entirely visible (top left panel). This is due to the fact that the signal for this condition showed much more 

negative values compared to the other conditions and blocks (probably caused by the very noisy signal of one subject on the first two blocks, and the very 

small amount of trials remaining after cleaning). 

C 

A B 
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Table 2. Effects of condition, block, and feedback type on ERP amplitudes 

 
 
 

P3b amplitude  

 

Neither the condition nor the feedback valence had a 

significant effect on the P3b amplitude at Pz. We observed a 

significantly larger P3b amplitude for later learning phases. A 
significant interaction of feedback type and learning phase, as 

well as an interaction of condition and learning phase was 

found.  

As a follow-up on the interaction of feedback type and 

learning phase, a nested model of feedback type within 

learning phase showed a lower P3b amplitude for positive 

compared to negative feedback trials during middle (b = -1.80, 

p = .006) and late (b = -3.11, p < .001) learning phases. Further, 

a significantly higher P3b amplitude on later compared to 

earlier blocks (middle-early: b = 1.79, p = .009; late-middle: b 

= 2.47, p < .001) was found for negative feedback, but not for 

positive feedback.  
To follow up on the interaction of condition and learning 

phase, nesting condition within learning phase revealed 

significantly lower P3b amplitudes (b = -1.80, p = .005) for the 

shuffled compared to the sorted condition during the late 

learning phase. Significantly higher P3b amplitudes on the late 

compared to middle learning phase (b = 1.86, p = .005) were 

found for the sorted condition only. 

To sum up, the P3b to positive feedback was found to be 

larger in the sorted compared to the shuffled condition, 

although only later in the learning process. The P3b amplitude 
was higher to negative feedback compared to positive 

feedback and the amplitude to negative feedback increased 

throughout the task.  

 

FRN amplitude 

 

The FRN was found to be maximal at Fz and Cz electrodes, 

with a maximal difference between positive and negative 

feedback at Cz. The FRN amplitude at Cz was significantly 

larger (i.e., more negative) for negative feedback compared to 

positive feedback. Note that the FRN is a negative component, 

and negative estimates hence reflect an increase in FRN 
amplitude. Neither the effect of condition nor of learning phase 

were significant at this electrode. The FRN at Fz was found to 

be significantly larger for the late compared to the middle 

learning phase. In summary, the FRN was larger to negative 

feedback and increased throughout learning. 
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Interim discussion 

 

In this section we assessed the influences of different 

factors on the amplitudes of feedback related ERP components 

to investigate whether feedback processing differs between the 

sorted and shuffled condition. The P3b amplitude was found 

to be larger in the sorted condition compared to the shuffled 

condition. This finding is in line with our hypothesis of a 
higher P300 amplitude in the sorted condition (H2b). 

However, this effect was only found with regards to positive 

feedback in the late learning phase and no such effect was 

found for the earlier P3a component (contrary to H2a). No 

effect of condition was found with regards to the FRN 

amplitude (contrary to H2c).  

We also assessed the effects of feedback type and learning 

phase on the ERP components, as well as interactions between 

these effects and condition. The P3a had a higher amplitude 

for positive compared to negative feedback in the early 

learning phase, whereas in the later phases the P3a and P3b 

were larger on negative feedback trials. Implications of this 
finding will be addressed in the general discussion. The FRN 

was larger for negative compared to positive feedback. This is 

in line with previous literature (e.g., Holroyd et al., 2006; 

Ludowicy et al., 2019; Luu et al., 2003) and confirms the 

valence sensitivity of the FRN in our task. Both the P300 and 

FRN amplitudes to negative feedback increased throughout 

the task, while for the P3a at Cz and the P3b this increase in 

amplitude was only found for the sorted condition. This again 

suggests an effect of condition on the P300 amplitude, with an 

enhanced P300 in the sorted condition (H2a and H2b). 

  
Effectiveness of feedback processing (Research Question 3) 

 

Next, we assessed the correlation of ERP amplitudes with 

successful learning to investigate whether this effect differed 

between conditions. For this, we looked for subsequent 

correction effects (correlation of amplitudes to negative 

feedback with accuracy on the next trial of the same word) and 

subsequent memory effects (correlation of ERP amplitudes 

with accuracy on the posttests).  

 

Correlation of ERP amplitudes with subsequent correction 
 

To assess the subsequent correction effect (correlation of 

amplitudes to negative feedback with accuracy on the next trial 

of the same word), models with condition and subsequent 

accuracy as fixed effects and subject random intercepts were 

fit to the amplitude of each component at the corresponding 

electrodes (see Figure 7A and Table 3). For the P3a, a 

significant effect of subsequent accuracy, with a higher P3a 

amplitude for subsequently corrected trials, was found at Cz. 

An interaction between condition and subsequent 

correction was not significant for the P3a (p = .968). A nested 

model of P3a amplitudes at Cz was not significant for the 
sorted nor the shuffled condition (sorted trials: b = 1.67, p = 

.103; shuffled: b = 1.74, p = .120). Upon visual inspection of 

the grand averages the subsequent accuracy effect appears to 

be present at Fz, but only in the sorted condition. However, a 

model of subsequent accuracy nested within condition for P3a 

amplitudes at Fz was not significant for either condition 

(sorted: p = .299, shuffled: p = .913). No significant effect of 

subsequent accuracy on P3b amplitudes was found.  

A significant effect of subsequent correctness was found 

for the FRN at Cz, where a lower FRN amplitude was 

associated with a subsequent correction of an error. The 

interaction between condition and subsequent accuracy was  

not significant (p = .238), nevertheless in a nested model of 

subsequent accuracy within condition the effect was only 

significant for the sorted condition (p = .017). At Fz no 

significant effect was found for the FRN amplitude. 
To summarize these findings, a larger P3a and a smaller 

FRN were associated with the subsequent correction of an 

error. The FRN (subsequent correction) effect was only 

significant in the sorted condition.  

 

Subsequent memory effects  

 

To look for subsequent memory effects (correlation of ERP 

amplitudes with accuracy on the posttests), models included 

feedback type, posttest accuracy, and condition as fixed 

effects, as well as subject random intercepts (see Table 4).  

A significant effect of accuracy during the delayed 
recognition test was found for the P3a amplitude at Fz (see 

Figure 7B). A higher P3a amplitude was revealed for trials of 

items that were answered correctly at the delayed recognition 

task, compared to those answered incorrectly. A three-way 

interaction was significant, and a follow-up nested model 

showed a significant effect in the sorted but not the shuffled 

condition. This effect revealed a higher P3a amplitude to 

positive feedback for sorted-condition items that were 

answered correctly at the delayed recognition task compared 

to sorted-condition items that were answered incorrectly (b = 

2.72, p = .039).  
Further, a significant three-way interaction was revealed 

for the FRN at Fz. In a nested model, a lower FRN amplitude 

for correct compared to incorrect responses at the posttest (b = 

2.30, p = .036) was found for positive feedback in the sorted, 

but not in the shuffled condition. Further, this model showed a 

lower FRN amplitude to positive feedback for the shuffled 

compared to the sorted condition (b = 3.08, p = .009). No 

significant subsequent memory effects were found for the 

other posttest (for results of the immediate production and 

immediate recognition models see Appendix D).   

In summary, the P3a to positive feedback was revealed to 
be larger for items correctly recalled at the delayed recognition 

task. This effect was only found for the sorted condition. A 

smaller FRN to positive feedback was also associated with 

correct recall at the delayed recognition task in the sorted 

condition only. 

 

Interim discussion 

 

This section assessed the correlation of feedback-

processing related ERP components with learning in the two 

conditions. The subsequent correction and subsequent 

memory effects of a larger P3a were in line with our hypothesis 
(H3a). In our predictions, we did not specify a direction of 

effects regarding a correlation of the FRN amplitudes with 

successful learning. Nevertheless, in light of the utilization 

theory of the FRN, it is a little surprising that a smaller 

amplitude rather than a larger amplitude was associated with 

error correction and subsequent memory (H3c). This will be 

further discussed in the general discussion. The learning 

effects with regards to the FRN were only found in the sorted 

condition and not in the shuffled condition (H3d), which 



13 

 

 

 

Figure 7. Leaning effects. A: Negative feedback trials that were followed by a correction of the error on the next block (corrected) compared 
to negative feedback trials that were followed by another instance of negative feedback on a trial for the same word on the next block (not 
corrected). B: ERPs at Fz of correct compared to incorrect items at the delayed recognition task. Upper: positive feedback trials, lower: negative 

feedback trials.  
 

 
Table 3. Effects of subsequent correction on ERP amplitudes 

 

A 

B 
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Table 4. Effects of delayed recognition accuracy on ERP amplitudeb 

 
 
 

supports our hypothesis of the enhancement of feedback 

utilization in this condition. 

 

GENERAL DISCUSSION 

 

The present study investigated feedback processing during 

a word-learning task that was aimed at manipulating the 

attention to detail required during learning. For this 

manipulation, words in the sorted condition were presented 

with similar answer options, and words in the shuffled 
condition with dissimilar ones. The main goal was to elucidate 

whether contrasting would influence feedback related ERP 

components and to explore whether successful learning during 

such a contrasting task is related to feedback processing.  

Performance during the task and the posttests differed 

between conditions. During the task, the performance was 

higher and the learning curve steeper for the shuffled 

condition. The performance on the immediate, as well as the 

one-week delayed posttests on the other hand, was higher in 

the sorted condition. Although the task was thus more difficult 

with similar answer options, this manipulation lead to an 

improved memory of the words right after the task as well as 
long-term.  

 
b Including fixed effects of condition and feedback in the posttest models, automatically lead to repeated analyses of these effects and it has to be noted that 

some of these results were different to those of the previously reported models (electrophysiological results section). Effects that were different from those 

previously reported are briefly described here. The P3a was found to be significantly smaller for positive feedback (b = -1.51, p = .021) at Fz in the immediate 

production model. Whereas the P3a at Cz was not significantly modulated by feedback type in the immediate production, nor the delayed recognition model. 

The P3b at Pz was found to be significantly smaller for positive feedback in both the model with immediate production accuracy (b = -1.48, p = .002) and in 

the model with delayed recognition accuracy (b = -1.50, p = <0.001). 

To assess whether and how this memory benefit of the 

similarity manipulation might be related to a difference in the 

processing of external feedback, we assessed the amplitude of 

relevant ERP components during feedback presentation. In the 

following sections, we discuss the identified differences in 

these ERP components between the two conditions in terms of 

valence and learning phase effects on the amplitudes as well 

as their correlation with learning. The small sample size of the 

study substantially limits the validity of our findings, 

nevertheless in the following we discuss possible explanations 
and potential implications of our findings. 

 

Feedback processing 

 

Examination of the EEG signal revealed a P300, which was 

observed as an earlier fronto-central P3a and a later parietal 

P3b component. Additionally, a fronto-centrally peaking FRN 

component was visible around 210–260 ms post-feedback.  

 

Condition effects on ERP amplitudes 

 

The only direct comparison yielding a difference of ERP 
amplitudes between sorted and shuffled condition was a higher 

P3b in the late learning phase. This finding supports the 
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hypothesis that in the sorted condition, more feedback 

evaluation and context updating resources might be recruited 

(H2b). Since the P3b component is thought to be related to 

memory processing, this could also partially explain the higher 

performance on the posttest, although in this current study no 

direct relationship between P3b amplitude and posttest 

performance was found.  

The current data suggests that there might be additional, 
more complex differences in ERP amplitudes between 

conditions, which did not reach significance in the small 

sample. In fact, when looking at the signal of both participants 

separately, there seem to be substantial, but opposite effects of 

the two conditions on P3a and FRN amplitudes (see Appendix 

E). In a larger study, this effect might also on average be zero, 

or it might be stronger in one direction. These (potential) 

differences could also be related to performance or some 

control variable. 

 

Feedback valence effects on the P300 

 
In the early learning phase, the P3a was larger for positive 

compared to negative feedback, whereas in the latter two 

phases both the P3a and the P3b had a higher amplitude on 

negative feedback trials. In previous research the P300 is 

sometimes found to be larger for positive feedback (e.g., Ernst 

& Steinhauser, 2012) and sometimes larger for negative 

feedback (e.g., Bultena et al., 2017). Interestingly, Arbel, 

Hong, Baker, and Holroyd (2017) also report a larger P3a for 

positive feedback in the early learning phase and a larger P3a 

to negative feedback for the middle and late learning phases. 

This shift might be related to stimulus probability, since 
several other studies have reported a higher P300 to less 

probable stimuli (e.g., Arbel & Wu, 2016; Ernst & 

Steinhauser, 2012; Jongsma et al., 2012). A support for this 

reasoning can be observed in the behavioral data of the present 

study, where the occurrence of positive feedback switches 

from below to above 50%, exactly at the transition between 

early and middle learning phase (between block 2 and 3).  

Possibly, this is also related to a rise in confidence 

throughout the task. A large P3a amplitude has previously 

been reported for trials of high “meta-memory mismatch” 

(meaning “high-confidence errors and low-confidence 
corrects”; Butterfield & Mangels, 2003, p. 804). Relatively 

high P300 amplitudes to positive feedback for the early phase 

could thus be due to a low confidence in the beginning of the 

task, and relatively high P300 amplitudes to negative feedback 

could be related to a rising confidence as learning progresses.  

Another reason for the switch from a higher P3a amplitude 

following positive feedback to a higher P3a amplitude 

following negative feedback, could be an increase in 

contextual updating throughout the learning task. In the 

beginning of the task, the words are unknown to the learner, 

and an instance of negative feedback thus cannot trigger an 

evaluation of the previous stimulus representation. In fact, not 
even the response might be remembered well enough to 

evaluate its content. As the words become more and more 

familiar to the learners throughout the task, feedback 

processing might become more focussed on comparing 

response and feedback, as well as updating the mental 

representation of the word, rather than solely processing the 

correctness of the response.  

It is important to note that the results with regards to the 

P300 are not as clear as one would hope, which is at least 

partially due to the small number of participants. The effect of 

feedback valence on P3a amplitude was not found in all 

posttest models. This is probably due to the changing 

directionality of the relationship between amplitude and 

feedback valence throughout the task, which is not taken into 

account in these posttest models. 

 

Learning phase effects and their interactions with condition 
  

Both the P300 and FRN amplitudes to negative feedback 

increased, rather than decreased throughout the task. This is 

similar to a finding by Bultena et al. (2017), who argue that 

this is the case when feedback continues to be relevant to the 

learner (see also Heldmann et al., 2008). In terms of the P3a, 

the increase in amplitude was more strongly supported for the 

sorted than for the shuffled condition. This could also be 

related to an increase in attention and updating. As elaborated 

above, the attention to and evaluation of negative feedback 

might increase as words become more familiar. This could 

especially be the case in the sorted condition, because even 
more attention is needed to compare the small differences 

between the selected response and the correct answer 

presented by the informative feedback. An increasing P300 

amplitude throughout the learning process has also been 

associated with better learning performance in general, since 

such an increase was only observed for more successful 

learners by Muller-Gass et al. (2019). The increase in P300 in 

the current task could thus also be related to the learning 

benefit of the sorted condition.  

The FRN is often associated with expectancy (e.g., Bultena 

et al., 2017; Chase et al., 2011; Holroyd & Krigolson, 2007; 
Themanson et al., 2019; Walsh & Anderson, 2012). It is 

possible that the increase in FRN amplitude is due to a 

decreasing expectancy of negative feedback as performance 

improved throughout the task.  

 

Correlation of feedback processing and learning 

 

Lastly, we investigated the correlation of ERP amplitudes 

with successful learning. During this task, a larger P3a and a 

smaller FRN to negative feedback were found on trials that 

lead to a correct response in the next block. Further, the P3a to 
positive feedback was larger, and the FRN smaller for words 

that were recalled during the delayed recognition task. Both 

components were thus associated with the correction of errors 

and the learning from positive feedback. 

 

The P300 and successful learning 

 

Our subsequent correction finding of the P3a confirms that 

the well-studied association of the P300 amplitude with 

successful encoding applied to the present task as well. It 

should be noted that most studies focus on the amplitude 

during the first round of learning and its correlation with the 
performance on the next block or the posttest. In the present 

study this focus on the first round was not possible, due to too 

few trials per condition per block. Instead we divided trials of 

all blocks into ones that led to positive versus negative 

feedback on the next block (subsequent correction; similar to 

a design by Steinemann et al., 2016) and in a separate analysis 

into items with a correct versus an incorrect response on one 

of the posttests (subsequent memory). The effect of subsequent 

correction for negative feedback is similar to that found in 
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other declarative and L2-learning studies (e.g., Bultena et al., 

2017; Ernst & Steinhauser, 2012). It suggests that more 

attention to negative feedback leads to an evaluation of the 

response and a correction of the error.  

The finding of a higher P3a amplitude to positive feedback 

being associated with the performance on a delayed posttest is 

more novel in a declarative learning context, however. Several 

studies focus solely on negative feedback when assessing 
correlation with learning (e.g., Bultena et al., 2017; Butterfield 

& Mangels, 2003; Ernst & Steinhauser, 2012), sometimes 

because there are not enough trials of positive feedback. Arbel 

& Wu (2016) assessed both types of feedback but only found 

a correlation with learning outcome for the P3a to negative 

feedback.  

Additionally, this delayed recognition result of the present 

study contrasts that of Butterfield and Mangels (2003), who 

report a correlation of P3a amplitude with immediate retest 

performance, but not with delayed retest (also one week). Our 

finding thus challenges their conclusion that the P300 is not 

related to memory consolidation. If this holds true in future 
studies with more participants, this would, to our knowledge, 

be the first evidence suggesting that the P300 to feedback 

might not only be involved in working memory and encoding, 

but also have a long-term memory effect. It is possible, that 

this was not found by Butterfield and Mangels (2003) because 

they only looked at negative feedback. We suggest that this 

long-term effect of a higher P3a amplitude might reflect more 

attention to positive feedback resulting in the strengthening of 

already learned information. 

No strong evidence was found for a difference between 

conditions regarding the subsequent memory or subsequent 
correction effect of the P300. One exception is that the P3a 

amplitude correlation with delayed recognition accuracy was 

only significant for the sorted condition. It is possible that the 

effect is still present in the shuffled condition and was too 

small to reach significance in the current sample, but it does 

not appear so based on a mean amplitude plot (see Appendix 

C, Figure C3C). The findings indicate a stronger effect of P3a 

amplitude on learning in the sorted condition, possibly due to 

increased attention to detail. As mentioned above, there might 

be more differences in the P300 amplitude that we were not 

able to uncover in the small sample. A future study might find 
a larger P3a in the sorted condition, as weakly suggested by 

visual inspections of the signals and by the finding regarding 

an increase in the P3a amplitudes to negative feedback. Taken 

together with the association of P3a amplitude and successful 

learning, an enhanced P3a or enhanced P3a benefit could 

potentially be involved in the learning advantage of the sorted 

condition. Further, as we did find an effect of condition on the 

P3b amplitude, this could also point towards a beneficial 

feedback processing difference, since other studies do report a 

higher P3b amplitude to be correlated with better learning 

outcomes (e.g., Bultena et al., 2017; Ernst & Steinhauser, 

2012). 
 

The FRN and feedback utilization 

 

Although the results show a correlation between FRN 

amplitude and learning, it is difficult to identify why a smaller 

FRN seems to be related to subsequent correction and better 

posttest performance. Two previous studies also report a 

similar effect: Ernst and Steinhauser (2012) found a lower 

FRN amplitude to subsequently corrected negative feedback 

trials, and Arbel and Wu (2016) reported a smaller FRN to 

negative feedback correlated with learning outcomes. Ernst 

and Steinhauser (2012) concluded that learning on their task 

did not depend on the FRN, whereas Arbel and Wu (2016) 

view their finding as support of the utilization theory.  

Since the FRN overlaps with the P300 (San Martín, 2012), 

it is possible that a smaller negativity associated with 

subsequent correction of an error is simply due to a larger 
positivity of the P3a, which is also associated with subsequent 

correction and subsequent memory. This is especially 

concerning since in the present study both associations of a 

lower FRN with learning are accompanied by a larger P3a.  

When inspecting the grand average of the signal, in both 

instances the P3a might have an influence on the FRN 

differences (especially for the delayed recognition effect), but 

there also seems to be a difference in the FRN trough 

independently of the P3a. Although this possibility of the FRN 

difference being due to a superimposed P3a effect cannot be 

rejected on the basis of this data, our results do suggest that the 

FRN amplitude plays a role in the effectiveness of feedback 
processing in our task.  

Previous research suggests that the feedback utilization 

theory applies to reinforcement effects of valence feedback 

(Ernst & Steinhauser, 2012) and not to the encoding of 

corrective feedback (Butterfield & Mangels, 2003). In the 

studies by Arbel and colleagues (Arbel et al., 2014; Arbel et 

al., 2017; Arbel & Wu, 2016), the subjects received only 

valence feedback (indicating the correctness of the response). 

This was possible because they used a two-choice task, and the 

valence feedback alone was thereby enough for the subjects to 

learn the correct associations, as opposed to tasks with more 
choices. This could explain why no learning effects of the FRN 

are found in most other declarative learning studies (e.g., 

Bultena et al., 2017; Butterfield & Mangels, 2003; Muller-

Gass et al., 2019). In tasks that also include corrective 

feedback, the informational value of the valence feedback 

might be relatively less relevant to the learner, resulting in 

undetectable FRN effects. 

As expected, the FRN correlation with subsequent 

correction and with accuracy on the delayed recognition test 

were only found in the sorted condition (H3c and H3d). It is 

again possible that it did not reach significance in the shuffled 
condition, due to the small sample size. Based on the current 

data, however, this effect could suggest that the FRN 

difference – potentially reflecting more effective processing of 

the feedback –, is only present or stronger in the sorted 

condition. In the sorted condition, learning might depend more 

on reinforcement learning processes involving the utilization 

of valence feedback, because conscious processing and 

encoding of the informative feedback is more difficult and 

confusing. The increased utilization of valence feedback might 

then contribute to an enhanced recall on the posttests, even if 

no immediate effect – in terms of performance during the task 

– is visible in the behavioral data.  
A possible explanation for the directionality of the FRN 

correlation with learning would be the account by Arbel and 

Wu (2016) proposing that faster learners use less processing 

resources to extract information from negative feedback, 

which leads to a smaller FRN amplitude as learning 

progresses. In light of this theory, our finding of a smaller FRN 

amplitude associated with subsequent correction and 

subsequent memory could be interpreted as more efficient 

processing of feedback. Possibly, we observed these correlates 
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of efficient processing only in the sorted condition because 

feedback in the sorted condition provides more specific 

information to the learners, since it reflects smaller 

orthographic mistakes in the case of negative feedback. The 

findings of the present study could thus be viewed as an 

additional piece of evidence suggesting that the FRN reflects 

not only the processing of valence feedback but also its 

utilization for learning.  
 

Limitations 

 

In general, the most prominent limitation of our study was 

doubtlessly the small sample size of two subjects. This not 

only affected the statistical significance and value of the 

findings, but on top of that decreased the quality of the data. 

The EEG signal of one of the subjects was rather noisy, and 

this subject would have likely been excluded from the ERP 

analysis under different circumstances. Moreover, our signal 

was already noisy overall. With the mobile EEG system that 

was used, we experienced more high-frequency noise than 
would be expected in a laboratory. Further, it should be noted 

that the p-value method that was used (Satterthwaite 

approximation) is thought to be rather anti-conservative, 

especially with small sample sizes. Additionally, many models 

were computed (partially to avoid collinearity of fixed effects) 

without a correction of multiple comparison. Even so, effects 

are often found only at one electrode, which could also be due 

to the small number of participants. Further, the estimates 

calculated by the models are not very robust under these 

circumstances. In a few cases of models including interaction 

effects, the estimates are very different from what the 
visualized data suggests, likely due to the multiple factors 

influencing them, but also to the small sample size. The small 

number of participants also meant that mixed models with 

random intercepts for participants only had two levels for this 

factor, which can cause instability in the model. Further, the 

small sample size made it difficult to evaluate whether the 

model assumptions were met. Taken together, the statistical 

results of this study should thus be taken with a grain of salt 

and seen more as an inspiration for potential future studies. 

Another important point is the measurement ambiguity of 

the FRN component. Because of the temporal overlap between 
the FRN and the P300, as well as latency differences between 

participants, the FRN is often assessed as a peak-to-trough 

measurement (Bultena et al., 2017). In the current study 

however, a mean amplitude approach was used because it 

seemed a more robust measure when extracting single-trial 

ERPs. Further, the latencies of both participants were so 

different in our study (see Appendix E) that even with a peak-

to-trough measure it would have been impossible to pick a 

time window that would ensure the right trough and peak to be 

found in both participants. We therefore decided that choosing 

a slightly larger time-window for mean-amplitude extraction 

would be the best option for capturing the FRN. Future studies 
should test whether the FRN effect on learning success can be 

replicated with a peak-to-trough measure. In addition to the 

latency difference between participants there was also a 

substantial difference in FRN latency between Fz and Cz 

electrodes. Further, the identification of the FRN component 

was not trivial in the present sample, as there were two 

negative peaks in the typical time window of 200–300 ms post 

feedback. Taken together, this unfortunately makes a 

comparison of the present study to others less straight forward.  

Lastly, in light of heightened attention being related to a 

larger P3a as well as possibly involved in contrasting 

(Llompart & Reinisch, 2020), it would have been interesting 

to assess attention via a time-frequency analysis in addition to 

the ERP analysis. Unfortunately, this was not possible due to 

a technical difficulty in applying a high-pass filter to the data. 

 

Future directions and relevance 

 

This study can be seen as a pilot providing some first 

tentative evidence for a potential benefit of similarity training 

on feedback processing. In the future it will first of all be 

interesting to see if the results can be replicated with a larger 

sample, and whether possibly more robust evidence for a 

difference between the sorted and the shuffled condition can 

be found in terms of ERP components. Further, it would be 

interesting to see if a larger sample would reproduce our 

findings of ERP correlations with learning being mostly only 

significant for the sorted condition. In terms of the P300 it 

should be examined further in which direction the relationship 
between its amplitude and the similarity manipulation goes 

and whether this might be influenced by individual 

performance or by some control variables (e.g., general 

language learning abilities). Especially in terms of the FRN it 

is possible that its correlation with learning is not always found 

because the FRN effects might be obscured by less 

experienced or less successful learners. The study by Arbel et 

al. (2014), for example found a correlation with learning 

outcomes by investigating individual differences, while a 

study by Themanson et al. (2019) reported that FRN (learning) 

effects were only found in expert learners. Further 
investigations are needed to assess why a smaller FRN 

amplitude was associated with learning in this and previous 

studies. Since we also proposed that the differences between 

conditions might be due to expectancy or certainty, future 

studies might also assess confidence regarding responses. To 

investigate whether attention to detail is indeed enhanced by 

contrasting and related to learning success, an assessment of 

time-frequency parameters or eye-tracking would be of 

interest.  

Studies such as these cannot only uncover more about 

general feedback processing mechanisms, but they could also 
in the future be used in the evaluation and improvement of 

effectiveness of learning paradigms and tools. The ERP 

components investigated and discussed in this study are well 

suited for this, because differences can be observed before they 

become behaviorally visible. For example, the benefit of the 

similar answer options was only visible in the posttests, but not 

during the learning task itself, whereas the ERP differences 

were observed during the task. To our knowledge there has 

only been one study that investigated potential practical 

applications in education. This study (Anderson et al., 2018) 

yielded promising results, showing that feedback-related ERPs 

can be useful for tracking learning and feedback utilization in 
pre-classroom learning tools. Since these ERP components can 

even be used to detect individual differences in the feedback 

processing effectiveness, such studies could be used to 

evaluate and create individualized learning support.  

 

Conclusion 

 

In the present study contrasting similar words during a 

multiple-choice vocabulary learning task led to slower 
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learning but improved performance at immediate and delayed 

posttests. A comparison of ERPs between the sorted and 

shuffled condition revealed a higher P3b amplitude in the 

sorted condition, suggesting improved memory processes to be 

associated with contrasting, although the P3b was not 

associated with performance in this study. The results on the 

P3a support its reflection of an evaluation of the response and 

memory updating based on feedback. Further, this study 
provides first tentative evidence that a higher P3a to positive 

feedback might be related to better long-term memory 

encoding. The ERP results also provide support for the theory 

of the FRN being related to the utilization of valence feedback 

for learning. This effect was only found in the condition of 

similar answer options, suggesting more effective processing 

of valence feedback when the task involves contrasting similar 

words. Overall, although we found only limited evidence 

suggesting that contrasting similar items influences feedback 

processing, the results suggest that a study of larger sample 

size and a better controlled experimental environment might 

still uncover an association between the benefit of contrasting 
and the effectiveness of feedback processing. 
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APPENDIX A 

Description of the Original Design / Plan for a Future Continuation of the Project 

 

Participants 

All subjects will be native speakers of Dutch. The participants will be recruited online via the Radboud Research Participation 

System (SONA) and receive course credits or 10€ per hour.  

 

Stimuli 

The stimulus material consists of 50 Dutch words and 50 pseudo-words, each as a translation for one of the Dutch words. 

The Dutch words are concrete nouns, four to six letters long, and their frequency (per million in SUBTLEX-NL; Keuleers, 

Brysbaert, & New, 2010) was between 0.5 and 65.13 (M = 19.11). None of the Dutch words are semantically or orthographically 

similar to each other (minimum Levenshtein distance: 2). The Pseudo-words are the same as in the Italian-word study, except 

for one sorted group (“abid”, “abet”, “abec”, “abic” , “abit”; preplaced by “gero”, “veco”, “vero”, “vemo”, “gemo”) and one 

additional word (“mulir”; replaced by “mugir”). The Levenshtein distance between words within a sorted-group is between 1 

and 2, whereas the Levenshtein distance between words of different sorted-groups is minimally 3. The similarity manipulation 

is implemented in the same way as described in the paper. 

Design and procedure 

Testing will take place in the lab. There will be two session, as described above. During the tasks, the participants are seated 

in front of a computer monitor with 1920x1080 resolution. For the learning task and the translation recognition task, an in-house  

designed (https://www.ru.nl/socialsciences/technicalsupportgroup/) button box with three horizontally aligned buttons will be 

used. During the translation production task, the subjects respond by typing on a computer keyboard. The learning task and the 

posttests are the same as described in the paper.  

EEG measurement  

EEG signals will be recorded during the learning task at a sampling rate of 500Hz. Thirty-two active electrodes will be 

mounted on an elastic cap according to a 10–20 configuration. Additionally, electrooculogram (EOG) will be recorded with four 

electrodes from below and above the right eye and on the temples. Electrodes will be online averaged to left mastoid. A low 

cutoff filter of 10 s (frequency 0.016 Hz) and high cutoff filter of 125 Hz will be used.  

Data analysis 

The EEG signal will be preprocessed in BrainVision Analyzer. The statistical analysis will be carried out in the same way as 

described above. 

 

 

  

https://www.ru.nl/socialsciences/technicalsupportgroup/
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APPENDIX B 

Translation recognition task: Selection procedure of translation pairs 

For a participant seeing set I in the sorted condition, one entire sorted-group of set I was randomly selected to be presented 

as correct pairs. Further, from each of the remaining four sorted-groups, one additional word was pseudo-randomly selected to 
be presented as a correct pair. The same was done for set II, but with the shuffled-groups.  

For the remaining 16 words in set I, in each sorted-group two Italian words were selected, and their pseudo-translations were 

exchanged. This resulted in eight Italian words that were presented with an incorrect pseudo-translation that was similar to the 

correct translation and had been presented as an alternative answer option of that Italian word during the task. The remaining 

eight Italian words of set I were pseudo-randomly paired with a pseudo-word from another sorted-group of set I – a word their 

correct translation was neither similar to nor presented with during the learning task.  

For set II, two Italian words of each of the four remaining shuffled-groups were selected and their pseudo-translations 

exchanged, resulting in eight words paired with an option they were not similar to, but one that had been presented as an 

alternative option during the learning task. The remaining eight Italian words of set II were paired with pseudo-words from other 

shuffled-groups, but from the same similar-groups – such that they would be similar to the correct translation, but had not been 

presented as alternative options of the given Italian word before.  

Overall, this resulted in nine correctly paired words in the shuffled condition, and nine correctly paired in the sorted condition. 
Further, there were eight paired with a translation similar to the correct target that were an alternative option during the learning 

task.  Eight words were paired with a translation that was dissimilar to the correct target and that had never been presented as an 

alternative option for that word. Another eight were paired with a pseudo-word that was dissimilar to the correct translation but 

that had been presented as an alternative option. Lastly, eight words were paired with a pseudo-word dissimilar to the correct 

translation and that had not been presented as an option for this word. 
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APPENDIX C 

 

Mean ERP amplitudes of each component grouped by fixed effects 

 

 

 

 

 

  

Figure C1. A: Mean amplitudes grouped by learning phase and feedback type. B: Mean amplitudes grouped by condition and learning phase.  

 

 

 

 

Figure C2. Mean amplitudes grouped by condition and subsequent correction. 
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Figure C3. A: Mean amplitudes grouped by immediate production accuracy, condition, and feedback type. B: Mean amplitude grouped by 

immediate recognition accuracy, condition, and feedback type. C: 1. Mean amplitude grouped by delayed recognition accuracy, condition, 

and feedback type. 
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APPENDIX D 

Results of immediate production and recognition models 

 

Table D1. Immediate production model 

 

 

Table D2. Immediate recognition model 
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APPENDIX E 

Individual mean amplitude plots 

 

 

Figure E. Mean ERP amplitudes depicted separately for the two subjects, comparing positive and negative feedback, as well as sorted and 

shuffled conditions. Note the differential scaling of the y-axis per participant. 

 


