Processing grammatical gender in Dutch: Evidence from eye movements

Susanne Brouwer a,*, Simone Sprenger b, Sharon Unsworth a

a Radboud University Nijmegen, 6500 HD Nijmegen, The Netherlands
b University of Groningen, 9712 CP Groningen, The Netherlands

A R T I C L E  I N F O

Article history:
Received 4 September 2016
Revised 18 January 2017

Keywords:
Grammatical gender
Eye tracking
Online sentence processing
Language development
Gender production

A B S T R A C T

Previous research has demonstrated that grammatical gender in Dutch is typically acquired late. Most of this work used production data only, and consequently children’s knowledge of Dutch gender may have been underestimated. In this study, therefore, we examined whether 49 4- to 7-year-old Dutch-speaking children (and 19 adult controls) were able to use gender marking in the article preceding the object label during online sentence processing to (a) anticipate the upcoming object label or to (b) facilitate the processing of that label as it is presented. In addition, we investigated whether children’s online processing and production of gender marking on articles were related. In an eye-tracking task, participants were presented with sentences and visual displays with two objects, representing nouns of either the same gender (uninformative) or different genders (informative). Children were divided into a non-targetlike group and a targetlike group on the basis of their scores for neuter nouns in the production task. Our analyses examined whether participants could use gender marking anticipatorily (i.e., before the onset of the noun) and facilitatively (i.e., from noun onset). Results showed that Dutch-speaking adults and children who were successful in production used gender marking anticipatorily. However, children who did not systematically produce gender-marked articles used gender marking only facilitatively. These findings reveal that successful online comprehension may in part be possible before targetlike production is completely in place, but at the same time targetlike production may be a trigger for online comprehension to be completely successful.

© 2017 Elsevier Inc. All rights reserved.

* Corresponding author.
E-mail address: s.brouwer@let.ru.nl (S. Brouwer).

http://dx.doi.org/10.1016/j.jecp.2017.01.007
0022-0965/© 2017 Elsevier Inc. All rights reserved.
Introduction

Studying how children process language can help us to better understand children’s linguistic development. During the past 15 years, the focus on explaining children’s production data has shifted to new techniques allowing us to access children’s online processing (Snedeker & Huang, 2015). The link between production and online processing, however, remains poorly understood. The goal of the current study, therefore, was to use both production and online processing techniques to better understand the acquisition of grammatical gender in Dutch-speaking children.

In many languages across the world, nouns have grammatical gender. For example, in Spanish and French, masculine articles precede masculine nouns, whereas feminine articles precede feminine nouns. Some languages, such as German and Russian, have a third category, neuter, and other languages even have four or more noun classes (Corbett, 1991). Dutch has a two-way gender system and makes a distinction between common and neuter gender. In this language, grammatical gender is marked on a number of agreeing elements accompanying the noun or referring to it; these include definite and demonstrative articles, relative pronouns, and adjectives (see Blom, Polišenská, & Weerman, 2008, for an overview). The focus in the current study was on definite articles. Common nouns are preceded by the definite article *de* (as in *de schoen* ‘the shoe’), whereas neuter nouns are preceded by the definite article *het* (as in *het huis* ‘the house’).

Most of the previous work on Dutch grammatical gender has relied exclusively on production data and has shown that grammatical gender in Dutch is acquired relatively late by monolingual children (e.g., Blom et al., 2008; Bol & Kuiken, 1988; Van der Velde, 2003). More specifically, Dutch-speaking children continue to make production errors with neuter gender until at least age 6 years, overgeneralizing common gender forms of the article (*de* ‘the’) to neuter nouns (*de huis* instead of *het huis* ‘the house’) (Bol & Kuiken, 1988; Polišenská, 2010; Van der Velde, 2003). This is in stark contrast to the acquisition of gender marking in other languages, such as Spanish, French, and German, where children have been shown to produce targetlike article–noun combinations from an early age (e.g., Hawkins & Franceschina, 2004; Karmiloff-Smith, 1978; Lew-Williams & Fernald, 2007; Pérez-Pereira, 1991; Van Heugten & Shi, 2009).

To better understand this cross-linguistic difference, research is needed to establish whether Dutch-speaking children really are so slow in acquiring grammatical gender1 or whether this apparent delay is modality specific. So far, however, nearly all of the studies investigating Dutch gender acquisition (e.g., Bol & Kuiken, 1988; Polišenská, 2010; Van der Velde, 2003) have relied exclusively on production data. There are a few studies that have collected non-production data in Dutch, but as we show below, these studies are limited in the age ranges of the children tested (either very young or very old) and techniques used (mostly offline).

Johnson (2005) tested 28-month-old children using a preferential looking paradigm. Children listened to sentences containing correct article–noun combinations (e.g., *het*<sub>NEUTER</sub> *huis*<sub>NEUTER</sub> ‘the house’) or incorrect ones (e.g., *de*<sub>COMMON</sub> *huis*<sub>NEUTER</sub> ‘the house’) while viewing two objects (a target and a distractor) on a screen. The names of the two objects had either different genders (in which case the gender-marked article was informative) or the same gender (in which case the gender-marked article was uninformative). Results showed that children shifted from distractor to target noun more quickly in contexts where gender was informative than when it was uninformative, but only for nouns preceded by a common *de*. Thus, whereas toddlers at this age may be sensitive to articles (Van Heugten & Johnson, 2011), they are not yet sensitive to the grammatical gender-marking instantiated on both articles.

Unsworth and Hulk (2010) used a forced-choice grammaticality judgment task with 4- to 6-year-olds. Children were asked to choose between the descriptions of a picture given by two different puppets, one consisting of the correct article + noun combination (e.g., *het*<sub>NEUTER</sub> *boek*<sub>NEUTER</sub> ‘the book’) and the other consisting of an incongruent counterpart (e.g., *de*<sub>COMMON</sub> *boek*<sub>NEUTER</sub> ‘the book’). The results showed that children accepted the incongruent combination for neuter nouns more frequently than

---

1 A number of explanations have been given as to why gender is acquired comparatively late in Dutch, including frequency, saliency, and transparency (see Polišenská, 2010, for a detailed discussion).
for common nouns and that although some children were better on judgment than on production, the average scores on the judgment task, at around 70%, were still not at ceiling and numerous children performed at chance level (see also Unsworth, 2013b, for further discussion of these data). Another study with non-production data showing ceiling performance for 11- to 13-year-old Dutch-speaking children comes from a study by Brouwer, Cornips, and Hulk (2008), using a similar judgment task in which children evaluated congruent and incongruent article–noun combinations separately from each other.

In sum, the available non-production studies in Dutch have primarily examined whether children can detect errors in article–noun combinations. Children tested so far were either relatively young at 19 to 28 months (Johnson, 2005; Van Heugten & Johnson, 2011) or relatively old at 11–13 years (Brouwer et al., 2008), resulting in effects for common gender only or ceiling effects, respectively. Although the study by Unsworth et al. (2010) targeted an age group where variability is expected (4- to 6-year-olds), it employed a task (grammaticality judgment) that required children to make meta-linguistic judgments about gender incongruency; given that younger children may be unable to complete such a task (cf. Unsworth, 2013a) and older children may rely on explicit knowledge in their responses, this method might lead to an over- or underestimation of children’s gender knowledge. As of yet, we know very little about how Dutch-speaking children make use of grammatical gender in “real-life” language processing.

Grammatical gender in Spanish has, however, been one area of interest in the child processing literature. For example, Lew-Williams and Fernald (2007) used a looking-while-listening task to examine whether gender marking on articles helps monolingual Spanish adults and children (aged 2;10 to 3;6 [years;months]) to identify the referents of upcoming nouns. In a similar vein as the study by Johnson (2005), participants were presented with two scenarios: one where the gender-marked article was informative, distinguishing between two referents with different genders (e.g., la pelota ‘the ball’ vs. el zapato ‘the shoe’), and one where the two referents had the same gender (e.g., la pelota ‘the ball’ vs. la galleta ‘the cookie’) and, hence, the gender-marked article was uninformative. Adults were found to identify the target referent more quickly when the gender-marked article preceding the noun was informative than when it was uninformative. Although children’s processing times were longer, they behaved similarly; that is, in contexts where the gender marking on the article was informative, they were able to make use of it. These results are in line with those for production in Spanish (e.g., Pérez-Pereira, 1991), which show that children produce targetlike gender-marked articles from a very early age, arguably due to this language’s transparent gender system (Harris, 1991).

In the current study, we wanted to use such online processing techniques to better understand the acquisition of grammatical gender in Dutch given that this language is opaque. Because there are only few (online) comprehension studies on gender in Dutch-speaking children, our first research question asked whether Dutch-speaking children use gender marking on articles during online sentence comprehension. Following Lew-Williams and Fernald’s (2007) experimental setup, we tested 4- to 7-year-old Dutch-speaking children as well as an adult control group. We chose this age range for children because previous research has shown that during this period children are in a transition stage, moving from non-targetlike to targetlike production of the (neuter) definite article (e.g., Blom et al., 2008; Unsworth et al., 2010; Van der Velde, 2003). Instead of a looking-while-listening paradigm, we used the visual-world eye-tracking technique (e.g., Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995; see Sedivy, 2010, for an overview of the use of eye tracking in language acquisition research), which requires no hand-coding of gaze allocation. The temporal resolution of this technique allows for real-time precision during spoken language processing. As in a looking-while-listening setup, eye movements are closely time locked to the speech input and are typically taken to be related to underlying activation levels of word candidates.

In the study by Lew-Williams and Fernald (2007), the central question was whether Spanish-speaking adults and children were able to use gender-marked articles as a cue in interpreting sentences. The authors compared the reaction times (RTs) in different-gender versus same-gender trials, calculating RTs to the target noun in those trials on which participants were looking at the distractor at article onset and shifted to the target picture by the end of the noun. The RT was the latency of the first shift to the correct picture measured from article onset until 1000 ms thereafter. Thus, their time window for analysis corresponded to the eye movement pattern while hearing the gender-marked article and during the unfolding of the noun. In other words, their analyses focused on whether the children used this cue facilitatively.
Language processing is not just passively integrating information (i.e., during the unfolding of the noun) but also proactively constructing interpretations by generating predictions on the basis of the information that is being integrated (i.e., during the gender cue) (e.g., Federmeier, 2007; Pickering & Garrod, 2013). This so-called predictive or anticipatory processing has been described as a central ingredient of efficient communication (Altmann & Mirković, 2009; Jaeger & Snider, 2013). For a more complete understanding of how listeners make use of gender marking in online processing, the current study examined predictive as well as facilitative processing. To this end, we presented article–adjective–noun sequences (cf. article–noun in previous work; e.g., Johnson, 2005; Lew-Williams & Fernald, 2007), allowing an analysis of anticipatory looks (i.e., before the noun has been uttered) and facilitative looks (i.e., while the noun is being uttered).

Such article–adjective–noun sequences have been used previously with French-speaking children (Melançon & Shi, 2015) and with Dutch-speaking adults (Loerts, Wieling, & Schmid, 2013). Loerts and colleagues (2013) found a gender effect for common nouns but not for neuter nouns. Perhaps surprisingly, participants appeared to “preselect” neuter targets when the competitor shared gender as opposed to when the competitor differed in gender. It is not clear what exactly the cause of this result is, as the authors themselves acknowledged. In any case, their findings are not entirely unproblematic because of their use of four picture displays with, among others, color (mis)matching competitors. Adding a color condition seems to have overcomplicated their design, and this may have contributed to their failure to find an effect for neuter gender. We return to this issue in the Discussion. In our setup, we remove the effect of color to see how robust their findings are.

Our second research question concerns the relation between the production and comprehension of gender. Unsworth and Hulk’s (2010) study, in which both production and judgment data were collected, suggested that production may underestimate children’s underlying knowledge of grammatical gender, and this has indeed been claimed for similar findings with bilingual children (e.g., Blom & Vasic, 2011; Unsworth, 2013a). To test this “comprehension precedes production” claim, relatively uncontroversial in child language studies (e.g., Clark, 1993; but see Hendriks & Koster, 2010, for the inverse pattern), we divide our children into targetlike and non-targetlike producers using data from an elicited production task (see Method for more details on this division). We then compare the eye gaze patterns of these two groups on our eye-tracking task.

Our predictions were as follows. In informative contexts, we expected adults and targetlike-producing children to successfully use the available gender cue during online sentence comprehension. We predicted that they would use gender information as soon as possible (i.e., anticipatorily), even before the onset of the noun.

The non-targetlike producers may behave in one of two ways. If comprehension does indeed precede production, the eye gaze behavior of the non-targetlike producers should pattern like the targetlike producers. In other words, although non-targetlike children are not able to produce targetlike gender-marked articles, they may be able to use them during online sentence comprehension. This idea that errors in gender are a production-specific performance problem has also been put forward in the second-language acquisition literature in the guise of the Missing Surface Inflection Hypothesis (Haznedar & Schwartz, 1997; Prévost & White, 2000). Thus, this proposal may also hold for monolingual acquisition. If non-targetlike producers indeed show better performance in comprehension than in production, this would also indicate that previous findings showing a comparatively late development of Dutch gender may in part reflect an over-reliance on production data. However, it is also possible that the children in the non-targetlike group might not yet have acquired gender and, thus, are also not able to use gender as a cue during online sentence comprehension.

**Method**

**Participants**

A total of 19 native adult controls (\(M_{\text{age}} = 22;3, \ SD = 0;3, \ range = 19;7 \ to \ 29;0\)) took part in this study. They were students at the University of Groningen who participated in exchange for course credits. They provided written consent. A total of 49 monolingual Dutch-speaking children (\(M_{\text{age}} = 5;8, \ SD = 0;2, \ range = 4;1 \ to \ 7;11\)) participated in this study. Written consent was provided by caregivers for children.
Materials

Eye-tracking task

The speech stimuli were short Dutch sentences spoken by a female native speaker of Dutch. These sentences were questions about the visual display in one of two forms:

1. Zie je [het | de] [adjective] [noun]? Vind je ’m mooi?
   ‘Do you see the [adjective] [noun]? Do you like it?’
2. Waar is [het | de] [adjective] [noun]? Zie je ’m?
   ‘Where is the [adjective] [noun]? Do you see it?’

Each first question ended in a target noun, which was preceded by an article (de or het) and a color adjective (gele ‘yellow’, rode ‘red’, blauwe ‘blue’, or groene ‘green’). The adjective was included for two reasons. First, it extended the period during which possible gender effects from the article could be observed. Second, it allowed us to differentiate between effects of grammatical knowledge and knowledge of co-occurrence probabilities between the article and the noun (Dahan, Swingley, Tanenhaus, & Magnuson, 2000). More specifically, we needed to tease apart these two alternatives to be sure that our effects were really driven by gender information (i.e., grammatical knowledge) and not by the strong tendency for nouns to co-occur with a given article. Thus, an adjective was added because the co-occurrence frequencies between the article and the adjective, on the one hand, and between the adjective and the target, on the other, will be much lower than the co-occurrence frequency between the article and the target noun (see also Loerts et al., 2013; Melançon & Shi, 2015).

After stimulus recording, the onsets and durations of the articles, the adjectives, and the nouns were measured and averaged in Praat (Boersma & Weenink, 2005). The stimuli were then manipulated in Adobe Audition 3.0 to align the onsets and durations of the critical words across stimuli. The purpose of this adjustment was to reduce between-item differences in timing and to ensure that any observed effects were not due to the sentences in question being pronounced at a slower rate. Article onset was set to 433 ms (duration: $M = 113$ ms, $SD = 30$), adjective onset to 547 ms (duration: $M = 320$ ms, $SD = 42$), and noun onset to 866 ms (duration: $M = 726$ ms, $SD = 62$). The resulting stimuli were checked by a native Dutch speaker to confirm that they sounded fluent and natural.

Eight target nouns were selected from a word list for Dutch-speaking 4- to 6-year olds (Damhuis, de Glopper, Broers, & Kienstra, 1992), four of which were inanimate (schoen de ‘shoe’, lamp de ‘lamp’, huis neut ‘house’, bed neut ‘bed’) and four of which were animate (hond de ‘dog’, koe neut ‘cow’, paard neut ‘horse’, schaap neut ‘sheep’ (within-participants factor animacy)). In both categories, half of the items were of common gender and half were neuter (i.e., within-participants factor gender). Inanimate items were used with question type (1), and animate items were used with question type (2).

Each target noun was paired with two pictures on the visual display (see Fig. 1). One of the two pictures always referred to the target noun, whereas the other picture either shared the same gender of the target noun (e.g., $d_{COMMON}$ schoen$_{COMMON}$–$d_{COMMON}$ lamp$_{COMMON}$) or had a different gender than the target noun (e.g., $d_{COMMON}$ schoen$_{COMMON}$–het neuter huis$_{NEUTER}$ (i.e., within-participants factor condition)).

To exclude possible effects of phonological competition, the initial segments of the names of the two pictures did not overlap. In each pair, the first noun served as target and the other served as distractor. Subsequently, each pair was quadrupled and reordered, such that each first noun of a pair appeared four times as the target noun of the question: twice on the right and twice on the left side of the display. Half of them were same-gender trials, and the other half were different-gender trials. This resulted in a set of 32 experimental items. The complete item set was included in both experimental lists, which differed only with respect to the allocation of a color to a specific target–distractor combination. Within lists, each color appeared equally often. The order of the experimental items was pseudorandomized, such that neither the target’s gender and side nor the color of an item was predictable.

The visual images of the eight target objects were line drawings retrieved from Snodgrass and Vanderwart (1980). All images were of comparable visual complexity. Object color was edited in Paint, resulting in four different versions of each image.

In addition to the experimental items, 8 filler items that slightly deviated from the experimental items were created. The images in these items were multicolored and more complex than those in
the target items. The related questions focused on some funny aspect of the display instead of the color (e.g., *Zie je de gekke aap? Leuk, hè?* ‘Do you see the funny monkey? Nice, isn’t it?’). These items were intended to create a short break from the pattern created by the experimental items and to maintain children’s attention.

*Production and vocabulary task*

Children’s productive knowledge of grammatical gender marking on definite articles in Dutch was tested using an elicited production task (for details, see Unsworth et al., 2010; Unsworth et al., 2014; following Blom et al., 2008). This task was used to test children’s gender production of the same eight nouns that were included in the eye-tracking experiment. Children were presented with two pictures on a computer screen (e.g., a white shoe and a pink shoe). The experimenter asked children to name the pictures on the screen using the following prompt, designed to elicit adjectival agreement with indefinite nouns: “Look! Here we see two pictures. This is a _____ [children: white shoe]. And this is a _____ [children: pink shoe].” To elicit definite articles, two additional objects (e.g., a ball and a dog) subsequently appeared in front of or next to one of the shoes. The experimenter then asked children to complete the following prompt: “The ball is in front of _____ [children: the white shoe]. And the dog is next to _____ [children: the pink shoe].” Each of the eight nouns was repeated four times (i.e., two with an indefinite article and two with a definite article) with different adjectives (i.e., white vs. pink, orange vs. purple, or small vs. large). This resulted in a set of 16 definite article items, of which 8 were common nouns and 8 were neuter nouns. In addition, 12 filler items that tested for verb form and placement were interspersed and served as distractors. Two lists were created. The order of the lists was pseudorandomized.

In addition to the production task, children were also tested using a Dutch version of the Peabody Picture Vocabulary Test–Third Edition (PPVT-III-NL; Dunn, Dunn, & Schlichting, 2005).

*Procedure*

Data collection took place in the eye-tracking laboratory at the University of Groningen or at Utrecht University. For children, the three tasks were administered in the following order: production, eye tracking, and vocabulary. The production task always preceded the eye-tracking task because we...
did not want children to hear the correct gender production during the eye-tracking task before they needed to produce the articles themselves.

Before each task, children were given verbal instructions. They were specifically instructed on how to perform an eye-tracking task (e.g., try to reduce body movements, keep your eyes on the screen when you see a picture). Between tasks, they were praised for their performance and provided with the opportunity to ask questions. At the end of the session, they were presented with a small gift (some colorful stickers). The duration of each individual task did not exceed 10 min, so that a typical session lasted approximately 30 min. The group of adults participated in the eye-tracking task only. Adults’ session lasted approximately 10 min.

Production task

Participants were tested individually. In the production task, children were presented with a total of 56 items in one of two lists. Each list was preceded by 5 additional practice items to familiarize children with the task. As noted above, only the definite article data were included in the analysis here. An accuracy score was computed for each gender by dividing the total number of common/neuter nouns produced with the correct article (de/het) by the total number of nouns produced with either definite article.

Eye-tracking task

Participants were tested individually. Prior to the experiment, the experimenter showed participants a picture book with all target and distractor objects. Participants were asked to name the objects in the pictures to check whether they knew the relevant lexical item. If they were not sure about it, the experimenter told them the name of the picture. Each page of the picture book contained two pictures of each object, that is, both versions used in the experiment. Participants were asked to complete the following prompt: “These are two _____ [participants: shoes].” Asking for the plural form avoided any priming effects of the definite article.

Participants were seated at a comfortable distance from the computer screen. A calibration procedure prior to the experiment allowed the eye tracker (Tobii T120) to control for drifts. No headrest was used, which allowed participants to sit in a natural posture in front of the screen. All participants were instructed to keep body movements to a minimum. With respect to the experiment itself, participants were told to listen to the sentences carefully and to look at the object that appeared in the spoken utterance. They were not given an explicit task such as clicking or pointing (cf. Huettig & Altmann, 2005). Following Lew-Williams and Fernald (2007), we presented pairs of images on a visual display, with each image centered in the left or right half of the screen.

The experimental list (two levels) was varied between participants. In each list, 8 filler items (i.e., image pairs) and 32 experimental items were alternated in such a way that a filler item preceded a block of 4 experimental items. The spoken instructions were presented via a set of standard computer speakers shortly after presentation of the images. The volume was adjusted individually during the first practice item. During the complete task, participants’ eye movements were monitored at a sample frequency of 120 Hz.

The structure of an individual trial was as follows. Each item was preceded by a fixation cross that appeared in the middle of the display. To ensure that participants’ attention was on the display, the subsequent presentation of the images was contingent on a minimum gaze duration of 1000 ms on the fixation cross. A given set of images was presented for 2 s before the spoken instructions would start (preview time). The set remained on the screen during the complete duration of the spoken stimuli (~ 3000 ms) plus an additional 2 s (search time).

Vocabulary task

After the eye-tracking experiment, children completed the vocabulary task. The PPVT-III-NL (Dunn et al., 2005) is a standardized receptive vocabulary test requiring children to point to one of four pictures based on a single word given by the experimenter. The procedure and scoring followed the standard outlined in the manual. This task took approximately 10 min.
Results

Production and vocabulary tasks

To understand whether performance in online comprehension is directly related to performance in production, we used the production data to divide our children into two groups for subsequent analysis of the eye-tracking data. Given the previous findings that children primarily experience difficulties with knowledge of neuter gender and not common gender (e.g., Blom et al., 2008; Unsworth & Hulk, 2010; Van der Velde, 2003), we grouped children according to their accuracy scores for neuter nouns in the production task. Given the extensive between-child variability in the acquisition of Dutch gender, this division will likely provide a better picture of the acquisition process than grouping the children according to age.

For this division, we aimed to approximate an equal number of participants in each group. However, using a median split would have meant that some children with the same percentage correct would be categorized in the targetlike group and others in the non-targetlike group. Therefore, we decided to use a cutoff point, such that children with this same percentage all fell within the same group. Thus, the targetlike production group consisted of 26 children with an accuracy percentage of 75% or higher (i.e., minimally 6 of 8 neuter items correct) and the non-targetlike production group consisted of 23 children with an accuracy percentage of 62.5% or lower (i.e., maximally 5 of 8 neuter items correct).

The means and standard deviations on the production task of the two groups are presented in Table 1 along with their ages and standard scores on the PPVT-III-NL (Dunn et al., 2005). An independent-samples t test showed that the two groups significantly differed in their production scores on the neuter nouns, \( t(47) = -4.43, p < .0001 \), and in age, \( t(47) = -16.23, p < .0001 \). The targetlike production group members scored better on the neuter nouns and were older than the non-targetlike production group members. No differences were found on common nouns and PPVT scores between the two groups (\( p > .05 \)). Pearson correlations showed that production scores on the neuter items correlated positively with age, \( r(49) = .60, p < .001 \), and PPVT scores, \( r(49) = .38, p < .01 \). This indicates that the higher the children’s age and vocabulary scores, the better the performance on the production of neuter items.

Eye-tracking task

Figs. 2 and 3 show the time course of fixation proportions to targets from article onset for adults (Fig. 2) and for children in the non-targetlike and targetlike production groups (Fig. 3). The latency to plan and launch a saccade has been estimated at 200 ms (Matin, Shao, & Boff, 1993). This means that the earliest point at which it is expected that fixations are driven by acoustic information from the article is approximately 200 ms after article onset. Therefore, we conducted our analyses from this point onward. We arcsine transformed the mean fixation proportions to targets in our analyses (cf. Cohen & Cohen, 1983).

We conducted four types of analyses on our data. First, to measure whether adults and children are able to anticipate the upcoming noun on the basis of the article, we conducted a 3 (Group) × 2 (Condition) × 2 (Gender) mixed analysis of variance (ANOVA) with the arcsine-transformed mean fixation proportions from article onset until noun onset (taking into account the 200 ms it takes to plan and launch a saccade) as the dependent variable. Group (adults vs. targetlike production vs. non-targetlike production) was included as a between-participants variable, and condition (same vs. different) and gender (common vs. neuter) were included as within-participants variables.

Table 1
Overview of the two child groups, divided according to their production scores on the neuter nouns.

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>Production score</th>
<th>Age (years;months)</th>
<th>PPVT score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>( M_{\text{COMMON}} )</td>
<td>( M_{\text{NEUTER}} )</td>
<td>M</td>
</tr>
<tr>
<td>Targetlike</td>
<td>26</td>
<td>90 (17)</td>
<td>91 (9)</td>
<td>6:3 (0;2)</td>
</tr>
<tr>
<td>Non-targetlike</td>
<td>23</td>
<td>77 (28)</td>
<td>24 (26)</td>
<td>5:0 (0;1)</td>
</tr>
</tbody>
</table>

Note. Standard deviations are in parentheses.
Fig. 2. Time course of gaze allocation to targets in the same-gender and different-gender conditions for adults overall and split by gender (common vs. neuter). The vertical dotted line represents the end of the time window analysis.
Second, to measure whether the recognition of the noun is facilitated by the article in adults and children, we conducted a 3 (Group) × 2 (Condition) × 2 (Gender) mixed ANOVA with the arcsine-transformed mean fixation proportions as the dependent variable. The time window was initiated from noun onset until the time that the same and different gender functions converged. Following Fig. 3.

Non-targetlike group

Targetlike group

Non-targetlike group (common)

Targetlike group (common)

Non-targetlike group (neuter)

Targetlike group (neuter)

Fig. 3. Time course of gaze allocation to targets in the same-gender and different-gender conditions for children overall divided into non-targetlike and targetlike production groups and split by gender (common vs. neuter). The vertical dotted line represents the end of the time window analysis.

Second, to measure whether the recognition of the noun is facilitated by the article in adults and children, we conducted a 3 (Group) × 2 (Condition) × 2 (Gender) mixed ANOVA with the arcsine-transformed mean fixation proportions as the dependent variable. The time window was initiated from noun onset until the time that the same and different gender functions converged. Following Fig. 3.

Non-targetlike group

Targetlike group

Non-targetlike group (common)

Targetlike group (common)

Non-targetlike group (neuter)

Targetlike group (neuter)

Fig. 3. Time course of gaze allocation to targets in the same-gender and different-gender conditions for children overall divided into non-targetlike and targetlike production groups and split by gender (common vs. neuter). The vertical dotted line represents the end of the time window analysis.

Second, to measure whether the recognition of the noun is facilitated by the article in adults and children, we conducted a 3 (Group) × 2 (Condition) × 2 (Gender) mixed ANOVA with the arcsine-transformed mean fixation proportions as the dependent variable. The time window was initiated from noun onset until the time that the same and different gender functions converged. Following Fig. 3.

Note that our facilitation analysis differs in the investigated time window from Lew-Williams and Fernald’s (2007) analysis. They examined eye gaze behavior from article onset until noun offset, whereas we looked from noun onset. However, because their dependent variable is also different from ours (i.e., they included only trials in which participants were looking at the distractor at article onset and shifted to the target picture by the end of the noun, thereby excluding many trials), it is hard to be completely comparable anyway.
Dahan and colleagues (2000), we used visual inspection to decide the endpoint of analysis. Figs. 2 and 3 show that the convergence of the functions was dependent on group; that is, the same and different lines of adults converged earlier than those of children. Therefore, we chose to include the data from noun onset until 1000 ms for adults, from noun onset until 1200 ms for targetlike children, and from noun onset until 1400 ms for non-targetlike children. Note that similar timing differences between adults and children can be found in previous eye-tracking research (e.g., Lew-Williams & Fernald, 2007). In our model, group (adults vs. targetlike production vs. non-targetlike production) was included as a between-participants variable, and condition (same vs. different) and gender (common vs. neuter) were included as within-participants variables. For both of these mixed ANOVAs, effect sizes were computed using partial eta squared ($\eta^2_p$).

Third, we examined the time course of exactly when in time the different groups started using the gender cue for anticipation or facilitation of the target noun. For each group separately, we conducted a $2 \times 2$ repeated-measures ANOVA on the arcsine-transformed mean proportion fixations for condition (same vs. different) and gender (common vs. neuter) at each 100-ms time bin. To minimize the possibility that differences measured by these multiple statistical comparisons might have arisen by chance, we consider the earliest time of anticipation or facilitation when the first window of five consecutive time windows is significant at a level of $p < .05$ (for a similar type of time window analysis, see Borovsky, Elman, & Fernald, 2012).

Fourth, we examined whether children’s performance on the eye-tracking task correlated with their standardized vocabulary scores and with age (in months) using a Pearson $r$ correlation test. Performance on the eye-tracking task was divided into anticipation ability (i.e., arcsine-transformed target fixations in different minus same gender trials in the facilitation window) and facilitation ability (i.e., arcsine-transformed target fixations in different minus same gender trials in the facilitation window).

Anticipation

The analysis on anticipation effects showed a main effect of condition, $F(1, 65) = 5.84, p < .05, \eta^2_p = .08$, and a significant interaction between condition and group, $F(2, 65) = 3.91, p < .05, \eta^2_p = .11$. The main effect of gender and its interactions did not reach significance ($p > .05$). Paired $t$ tests showed an effect of condition for adults, $t(18) = -2.44, p < .05$, Cohen's $d = -0.55$, and for the targetlike production group, $t(25) = -2.56, p < .05$, Cohen's $d = -0.52$, indicating that both groups demonstrated more fixations to the target noun in the different-gender condition (adults: $M_{SAME-DIFF} = -.08, SE = .03$; targetlike group: $M_{SAME-DIFF} = -.08; SE = .03$) than the same-gender condition. The effect of condition did not reach significance in the non-targetlike production group ($p > .05$).

Facilitation

The analysis on facilitation effects showed a main effect of condition, $F(1, 65) = 31.29, p < .0001, \eta^2_p = .33$, a main effect of group, $F(2, 65) = 27.18, p < .0001, \eta^2_p = .46$, and a significant interaction between condition and gender, $F(1, 65) = 8.83, p = .01, \eta^2_p = .12$. Post hoc Bonferroni tests on the effect of group showed that the overall eye gaze pattern (i.e., proportionally more looks to target nouns) differed for adults compared with both child groups (both $p s < .0001$), whereas the eye gaze data of the child production groups patterned similarly ($p > .05$). This indicates that the proportion of adults’ looks to targets was higher in general than that of children. To unpack the condition by gender interaction, a paired $t$ test showed that the facilitation effect of condition is significant for the neuter nouns ($M_{SAME-DIFF} = -.09, SE = .02$) but not for the common nouns ($M_{SAME-DIFF} = .006, SE = .02$), $t(67) = 3.60, p < .01$, Cohen’s $d = 0.28$.

Time course

The results of the time course analysis are reported in Table 2. This analysis showed that adults started using the gender cue to anticipate the upcoming noun approximately 500 ms after article onset. Note that making a saccade takes approximately 200 ms; hence, adults needed to hear only approximately 300 ms of the article and the adjective to anticipate which noun was coming up. The data of the targetlike production group of children showed a similar pattern as the adults. The effect of condition also was initiated at approximately 500 ms.
In addition, gender also seems to play an important role for the targetlike production group. More specifically, as can be seen in Figs. 2 and 3, the effect of condition is larger for the neuter nouns than for the common nouns. Finally, the non-targetlike production group members showed that they were overall slower than the adults and targetlike production group in demonstrating any effects. These children needed approximately 800 ms of the acoustic signal to process, which indicates that they use gender only as a facilitative and not as an anticipatory cue.

Eye movements, vocabulary scores, and age

The results of the Pearson $r$ correlations tests revealed no significant relations between performance in the eye-tracking task (measured as anticipation or as facilitation) and children’s vocabulary scores (all $p$s > .10). This is likely because the children in our sample generally had very high scores on the vocabulary task, within and often above age-appropriate norms ($M = 112$, $SD = 12$; see also Table 1). The correlation between anticipation and age (in months) showed a marginally significant relation, $r(49) = .271$, $p = .061$. However, plotting the data revealed that this marginal relationship was mainly driven by two outliers. When these outliers were removed, the marginal relation disappeared, $r(47) = .172$, $p > .10$. The relation between facilitation ability and age (in months) was not significant ($p > .10$). Thus, overall we conclude that vocabulary scores and age are not the determining factors on our outcome measures (anticipation and facilitation).

Discussion

The aim of the current study was twofold. First, we examined whether Dutch-speaking children and adult controls use grammatical gender during online sentence comprehension. Second, we investigated whether children’s online eye gaze behavior was related to their production of gender marking on articles with the same target nouns. To do this, we tested the same group of children on an elicited production task (following Blom et al., 2008) and an online comprehension task (following the experimental setup of Lew-Williams & Fernald, 2007). The children were divided into two groups (i.e., a non-targetlike production group and a targetlike production group) on the basis of their accuracy scores for the neuter nouns of the production task. Online processing was tested in an eye-tracking task.
task. Dutch sentences were heard in combination with visual displays showing two pictures repre-
senting nouns of either the same gender (uninformative) or different gender (informative). We pre-
predicted that if our participants had knowledge of grammatical gender and, more specifically, how 
this is marked on definite articles, they should be better able to shift their gaze to the target object 
when presented with an informative gender-marked article as opposed to an uninformative 
gender-marked article. This prediction was investigated by examining not only whether participants 
could use the gender cue facilitatively (i.e., from noun onset), as has been done in most previous stud-
ies on grammatical gender processing, but also whether they could use gender to anticipate the 
upcoming noun (i.e., before the onset of the noun).

The results of the native-speaking adults showed, as predicted, that they were able to anticipate the 
upcoming noun on the basis of the article. This result is in line with previous work on gender processing 
with native-speaking adults in other languages (e.g., Dahan et al., 2000; Grüter, Lew-Williams, & 
Fernald, 2012; Lew-Williams & Fernald, 2007). Furthermore, the processing advantage persisted dur-
ning the unfolding of the noun. These findings were supported by our time course analysis, which 
revealed that adults started using the gender cue approximately 300 ms until 800 ms after article 
onset (taking the 200-ms saccade into account).

The behavior of the targetlike producing children, who had high accuracy scores on the neuter 
nouns in the production task, patterned like that of the adults. Before the onset of the noun, this group 
also showed proportionally more looks to the target noun in the different-gender condition, where the 
article was informative, than in the same-gender condition. The time course analysis demonstrated 
that the anticipatory effect for this group was initiated at the same time as the adults (~300 ms) 
and persisted until approximately 1200 ms after article onset. The reason why the effect persisted 
longer in the children than in the adult group is probably due to children's slower speech processing 
speed and cognitive resource limitations (Snedeker & Huang, 2015). Similar delays have been found in 
previous work comparing adult and child data (e.g., Lew-Williams & Fernald, 2007).

The non-targetlike producing children, whose scores on the neuter nouns of the production task 
were poor, behaved differently from the adults and the targetlike production group. These children 
were not able to use the gender cue anticipatorily; that is, they did not make use of gender marking 
before the onset of the noun. However, they were able to use the gender cue in a facilitative way, just 
as the adults and the targetlike production group did; approximately 600 ms after article onset, the 
non-targetlike production group benefitted from the informativeness of the gender cue.

Thus, our first research question, whether 4- to 7-year-old monolingual children can use gender 
during online sentence comprehension, can be answered positively. The results revealed that 
Dutch-speaking children (and adults) are able to make use of the gender cue during online processing. 
This is striking because the evidence available in the input to Dutch-learning children that Dutch has 
grammatical gender, and more specifically how this is marked on neuter nouns, is rather limited 
(Unsworth et al., 2014). Thus, these results indicate that in an opaque system such as Dutch, learning 
to use gender marking during comprehension might not necessarily take as long as previous research, 
based on production data only, has suggested.

Our second research question focused on whether there is a relation between production and 
online processing of gender. This question gives us insight into whether poor gender producers are 
nevertheless able to process gender cues during online sentence processing. Our data revealed that 
children who produced targetlike articles with neuter nouns at a rate of 63% or less were able to make 
use of the gender cue facilitatively but not anticipatorily. How to interpret this discrepancy? If one 
considers facilitation as a successful way of using gender during processing, one could argue that 
the previous production data on the monolingual acquisition of Dutch gender may have underesti-
mated the knowledge of these children. In other words, as for many other aspects of language, target-
like comprehension precedes targetlike production abilities. However, one could also argue that these 
children’s online comprehension abilities are not yet completely targetlike due to the lack of anticipa-
tion skills in this group. In either case, our results extend the previous offline comprehension data 
(Unsworth, 2013a; Unsworth & Hulk, 2010) by showing that children as young as 4 years are able 
to make (at least some) use of gender marking.

Our findings show that children are able to use gender facilitatively before they can actively and 
correctly produce it (the non-targetlike production group). However, once they have mastered this
knowledge (targetlike production group), they can also use gender anticipatorily. These findings give us insight into the developmental path via which Dutch gender is acquired. They reveal that these children do not simply have a production-specific problem, as has been suggested for similar data with bilingual and second-language learners (Blom & Vasic, 2011; Unsworth, 2008a; Unsworth, 2008b; White, Valenzuela, Kozlowska-Macgregor, & Leung, 2004). Rather, the interplay between the development of targetlike comprehension and targetlike production is more complex. More specifically, it seems that whereas targetlike online comprehension may in part be possible before targetlike production is completely in place, targetlike production may be a trigger for online comprehension to be completely successful. Longitudinal data would be necessary to test this claim, but this account is in line with what has been claimed for the relationship between production and online processing of grammatical gender in second-language adults. More specifically, the quality of lexical representation (Perfetti, 2007; Perfetti & Hart, 2001, cited in Kaan, 2014), which includes gender knowledge, has been linked to second-language adults’ ability to use gender marking predictively in online processing (Hopp, 2013). Our data suggest that the same may hold for (monolingual) children. Although a detailed account of the relationship between comprehension and production and how this develops is beyond the scope of the current article, it is worth noting that current models in this area also relate abilities in comprehension to prior experience in terms of both linguistic input and children’s own language production (e.g., Chang, Dell, & Bock, 2006; MacDonald, 2013).

Another interesting finding, which we did not anticipate at the outset of this experiment, is the asymmetry in eye gaze behavior on common versus neuter nouns. This pattern occurred in the facilitative time window for all of our groups. In particular, we found that the neuter article het was more informative than the common article de. As discussed in the Introduction, there are important differences between the distribution and use of de and het that may explain this result. Perhaps neuter gender is a more informative cue because it arguably has fewer form-to-meaning mappings than common gender (but see Roodenburg & Hulk, 2008). In addition, the definite article de, used with singular common nouns, is also used for neuter nouns in the plural, making it a less reliable cue. This means that on hearing the definite article de, the listener will—all things being equal—not yet know whether the upcoming noun will be singular or plural. Even in a context where only single items are displayed, this feature may discourage the active use of de as a cue. However, it is also possible to argue that het is anticipatorily less useful given that het can be used to precede diminutives or as a personal or indefinite pronoun (Loerts et al., 2013; Roodenburg & Hulk, 2008). A final explanation for the (late) interaction between condition by gender in the targetlike production group was given by an anonymous reviewer who suggested that there is a higher proportion of target fixations on same-gender trials in the common gender trials but a higher proportion of target fixations on different-gender trials in the neuter gender trials starting approximately 1000 ms after target word onset.

Note that the difference between de and het that we observe is not consistent with Johnson’s (2005) study, which found that toddlers were only sensitive to common gender marking. This is likely due to the difference in age of the children between studies. Johnson’s study involved much younger children (28 months) who routinely substitute de for het (overgeneralization). Thus, common de might be easier to use or recognize than neuter het at that age. Therefore, we believe that children might first go through a stage in which they can use only de as a gender cue (see, e.g., Cornips & Hulk, 2008; Unsworth, 2008a; Unsworth, 2008b). However, once they get older and start to make use of het in their production, producing fewer overgeneralizations, they are also able to make use of het as a gender cue in their online language processing. First, children can use the neuter gender cue only in a facilitative way, and later, when overgeneralizations in their production hardly occur and production is close to perfect, they are able to use the neuter gender cue anticipatorily.

Our results go against Loerts and colleagues’ (2013) findings. In their study on gender processing in monolingual Dutch adults, these authors found that only common gender marking, and not neuter gender marking, affected the processing of the subsequent noun. As outlined in the Introduction, the setup of their study was more complex than ours because it contained four items in the visual array. We argue, however, that the discrepancy between the two sets of results is not simply an effect of a less/more complex display; the number of additional factors involved in their study (use of definites, indefinites, and color) makes it difficult to explain their findings, as the authors themselves
acknowledge. Thus, it remains unclear whether their setup was truly measuring gender effects, making it hard to compare the results of their study with ours.

In conclusion, this study has shown that Dutch adults and 4- to 7-year-old children are able to use gender marking during online sentence comprehension. Importantly, children use gender facilitatively before they can successfully produce it. However, once production is at the targetlike level, they can also use gender marking anticipatorily. Thus, targetlike production seems to function as a trigger for online comprehension to be successful.

Acknowledgments

We thank Casey Lew-Williams for sharing the experimental setup of Lew-Williams and Fernald (2007). We also thank Elleke Baakman, Laurette Gerts, Jidde Jacobi, Vera Nees, Nathalie Urbanus, Angela van de Weg, and Rosanne Westra for their assistance with running this experiment. Furthermore, we thank Natalie van Eerden for lending her voice for the recordings. Finally, we acknowledge our discussions with Pim Mak at an earlier stage of this project.

References


