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Although brain signals measured under the skull (electrocorticogram, ECoG) and signals measured 
on top of  the scalp (electroencephalogram, EEG) stem from the same brain activity, they are different. 
We investigated how we can produce EEG when we know ECoG (“forward problem”) and how 
we can produce ECoG when we know EEG (“inverse problem”). We modeled the head as three 
concentric spheres, representing the brain, skull and scalp. Brain activity is simulated by a dipole.
The forward method links the ECoG potentials on the inner sphere to the EEG potentials on 
the outer sphere via a transfer matrix, based on the geometries and the conductivities of  tissues 
involved. Results showed that the error between analytically computed EEG and EEG produced 
from analytically produced ECoG with the forward method, is smaller at electrodes close to the 
source, compared to electrodes far away from the source. The higher the resolution of  an ECoG 
electrode grid, the better the forward model works. Another finding was that the forward model is 
more accurate or surface sources, compared to deep sources. This result is of  practical importance, 
since most cognitive interesting sources stem from the cortex (the outermost layer of  the brain). 
In the inverse model, the transfer matrix is inverted and additional regularization constraints are 
applied to compute ECoG from simulated EEG. We showed that the inverse model gives good results. 
The forward method is tested with data measured from an epileptic patient at the University of  Freiburg. 
Results show that the forward model gives better results at the EEG electrode overlying the ECoG grid 
compared to the electrode posterior to the grid. Further research is needed to make errors smaller. 
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1. ������������Introduction

Many different disorders, such as Amyotrophic 
Lateral Sclerosis (ALS) and spinal cord injuries, can 
disrupt the communication between the brain and 
the peripheral motor system. People most severely 
affected may lose all voluntary muscle control, 
including eye movements and respiration. They are 
totally locked-in to their bodies and are not able to 
communicate at all. One way to give these patients 
the possibility to communicate is by a direct brain-
computer interface (BCI), which translates brain 
signals into messages and commands to the external 
world. 

These brain signals can be measured by a 
variety of  methods, e.g. electroencephalography 
(EEG), invasive electrophysiological methods (like 
electrocorticogram), magnetoencephalography 
(MEG), positron emission tomography (PET) and 
functional magnetic resonance imaging (fMRI). The 
most common way is to use EEG (e.g. Birbaumer 
et al., 1999). It has the advantage over the other 
methods that it is non-invasive, it has a high time-
resolution, and it is relatively inexpensive, which 
makes it is useful for a practical BCI.

1.1 How does a BCI work?

A BCI consists of  several parts (Wolpaw et 
al., 2002). The signal-acquisition part consists of  
a set (typically between 19 and 128) of  recording 
electrodes that acquire the input (e.g. EEG). 
These signals are then amplified and digitized. 
The digitized signals are preprocessed to remove 
artefacts like line noise and muscle activity. 

Then the signals are subjected to one or 
more feature extraction procedures. A feature 
is a particular characteristic of  the signal, which 

Figure 1  Several single trial EEG signals shown in black, with on top a white signal representing the time 
locked average of the black trials. This average has a much smaller amplitude than single trials, showing 
that there is much stimulus unrelated brain activity (noise) in single trials. 

contains information about the intention or 
action of  the subject. For example, a task could be 
designed in which imagining movement of  the left 
hand corresponds to “no” and imagining movement 
of  the right hand means “yes”. These two conditions 
correspond to EEG activity in different parts of  
the brain, which can be considered as different 
features. 

Methods to extract features from EEG are 
for example spatial filtering, spectral analysis and 
advanced pattern recognition techniques. BCI can 
use signal features in the time domain (e.g. evoked 
potential amplitudes (Farwell & Donchin, 1988)) or 
in the frequency domain (e.g. mu or beta-rhythm 
amplitudes (Wolpaw et al., 1991)) or a combination 
of  both. It is also possible to use features like 
autoregressive parameters that correlate with 
the user’s intention but do not necessarily reflect 
specific brain events (Wolpaw et al., 2002). 

1.2 Classification

The extracted features are usually classified into 
one of  many possible categories. The classified 
category is translated into device commands that 
reflect the user’s intent. In the example above 
the features are related to a different topography 
corresponding to imagining moving the right 
or the left hand. This is reflected in two classes 
corresponding to “yes” or “no” or a probability for 
either class.

Because of  the poor signal-to-noise ratio 
of  EEG signals, the classification is usually not 
perfectly accurate. In a single trial the noise (i.e. the 
brain signals due to many other processes unrelated 
to the stimulus) is usually much larger in amplitude 
than the actual signal (i.e. the brain signals evoked 
by the stimulus) (figure 1).

Most current BCIs have a computer screen 
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as output device, and the output can be the 
selection of  targets, letters or icons presented on 
it or a cursor moving on the screen. In addition, 
there are pilot studies exploring BCI control of  a 
neuroprosthesis. For example, Mehring et al. (2003) 
showed that hand movement target and velocity 
can be decoded from multiple local field potentials 
(LFPs), multiunit activity (MUA), or multiple 
single-unit activity (SUA), for trial-averaged activity 
as well as single trial data. These signals can be 
used to reconstruct purposeful arm movements, 
which can then be used for controlling neuronal 
motor prostheses. A recently published article by 
Hochberg et al. (2006) showed another example of  
the possibility to use neuromotor prosthetics. They 
describe the implantation of  a 10x10 electrode 
array into the primary motor cortex arm area of  
a paralyzed man. These electrodes allowed him to 
move a cursor on a computer screen. With this 
cursor he could draw, read email, remote control 
the television, play computer games. Furthermore 
he could open and close a prosthetic hand. He also 
performed rudimentary actions with a multi-joint 
robotic arm. 

1.3 Electroencephalogram

As explained above, most BCI applications 
use EEG-signals. For example, Birbaumer et al. 
(1999) have developed a communication device that 
uses slow cortical potentials (SCPs) for electronic 
spelling. Two locked-in patients with ALS were 
trained to voluntarily produce changes in their 
SCPs. The spelling program started with dividing 
the alphabet in two halves, presented successively 
on a screen. The subject could select one of  the 
two-letter banks by generating a particular SCP. 
This bank was split in two and the procedure was 
continued until only one letter remained selected. 
When during the procedure a mistake was made, 
there was the possibility to go back one step by 
not choosing any bank. Error rates in free spelling 
were 71.3 and 86.2% in correct selections and 75.0 
and 73.7% in correct rejections in two subjects, 
respectively.

The authors conclude that this study indicates 
that patients who lack muscular control can learn to 
control their SCP sufficiently accurately to operate 
a spelling device with a typing rate of  2 characters 
per minute.

1.4 Electrocorticogram

Another potential candidate for BCI signal 
acquisition is electrocorticogram (ECoG). In this 
technique brain activity is measured directly from 
the surface of  the brain with a grid of  electrodes 
implanted under the skull. Although the signals 
measured with EEG and ECoG stem from the 
same activation in the brain, there are several 
differences between them. Compared to EEG, 
ECoG:

• has a higher amplitude (50-100 µV versus 
10-20 µV)

• has a better signal-to-noise ratio
• has a broader bandwidth (0-200 Hz versus 0-60 

Hz)
• has a higher spatial resolution (tenths of  

millimetres versus centimetres)
• is less vulnerable to artefacts, like muscle 

artefacts 
(Leuthardt et al., 2004). Thus we expect the 
classification to work better on ECoG signals than 
on EEG signals. It might also be possible to find 
different features in the ECoG signals than in EEG. 

The major disadvantage of  using ECoG for BCI 
purposes is that ECoG is invasive. 

Leuthardt et al .  (2004) were the first to 
demonstrate that ECoG activity recorded from the 
surface of  the brain can enable users to control 
a one-dimensional computer cursor rapidly and 
accurately. They used the fact that sensorimotor 
beta, mu and gamma oscilla tions change in 
amplitude in association with actual or imagined 
movements relative to a condition at rest. ECoG 
was measured in four epileptic patients when they 
were either performing or imagining to perform 
opening or closing the left or right hand, protruding 
the tongue or saying the word ‘move’. Over a brief  
training period the subjects could use these signals 
to master closed-loop control. Success rates were 
between 74 and 100% for actual movements and 
between 83 and 97% for imagined movements. 

I n  addi    t i o nal    o p en  - l o o p  e x p eri   m en  t s 
Leuthardt et al. demonstrated that ECoG signals 
at frequencies up to 180 Hz encoded substantial 
information about the direction of  two-dimensional 
joystick movements. They conclude that their 
results suggest that an ECoG-based BCI will be 
more powerful than an EEG-based BCI and more 
stable than BCIs that used electrodes implanted in 
the brain. 
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1.5 Aim of this study

In the field of  electrocardiology much research 
has been done on the relation between the 
potentials on the heart surface (epicardium) and 
those on the body surface.

In previous papers Barr et al. (1977) showed 
that the potential at the epicardium can be 
computed from measured potentials on the 
body surface. The relation between potentials at 
particular points of  the heart surface and potentials 
at points on the body surface can be related by 
a linear transformation, the so-called “forward 
problem”. By inverting this relation (the “inverse 
problem”) and applying additional regularization 
constraints, which is necessary since the relation is 
mathematically ill posed, the heart potentials can be 
computed from measured potentials on the body 
surface with reasonable accuracy (Ramanathan et 
al., 2004).

We hypothesize that the same method can be 
used to compute ECoG from measured EEG. 
This hypothesis will be tested in several steps. First 
the differences between EEG and ECoG will be 
calculated with help of  the three-sphere model and 
artificially produced potentials coming from moving 
dipole sources in the brain (inner sphere). Then the 
relation between EEG and ECoG will be expressed 
in terms of  transfer coefficients following Barr et 
al. (1977) to compute EEG from simulated and 
measured ECoG. Next, this relation will be inverted 
and additional regularization constraints will be 
applied to compute ECoG from simulated EEG. 
The theoretical predictions will be compared to the 
simulated dipole data, as well as to measurements 
of  ECoG and EEG obtained in an epileptic patient 
at the University of  Freiburg.

2. Methods

2.1 Theory

2.1.1 Source model

A current dipole is an adequate source model 
for the electric current generated by a small part of  
the brain. When more parts of  the brain are active, 
the superposition principle holds and each active 
part may be represented by a separate dipole. Since 
EEG is most sensitive to radial dipoles, simulations 
are done for radial dipoles. 

2.1.2 Three-sphere model 

A common way to model the head is by a 
three-concentric-sphere model (figure 2). This 
model represents the brain, skull and scalp as three 
concentric spheres, with radii of  7.5, 8.0 and 8.5 cm 
respectively. Each region has its own conductivity 
with ratios 1, 1/15,1 respectively (Oostendorp et 
al., 2000). The centre of  the spheres is placed in the 
origin, with the z-axis pointing upwards and the x-y 
plane is perpendicular to the z-axis.

Figure 2 Three-concentric-sphere model. The 
brain, skull and scalp are represented by three 
concentric spheres of R1 =7.5 cm, R2 = 8.0 cm 
and R3 =8.5 cm, with conductivity ratio between 
the three compartments of  1 : 2 : 3 = 
1:1/15:1

Potentials at particular points of  the spheres due 
to a current dipole at a specific place in the inner 
compartment, the brain, are calculated analytically 
with the function compute_leadfield in the fieldtrip 
matlab toolkit�. The theory implemented in this 
function is described in Appendix 2. All potentials 
will be calculated relative to the potential at a 
reference point as far from the source as possible, 
i.e. the point where the sphere crosses the negative 
z-axis. 

2.1.3 Infinite medium

The potential generated by a dipole in an infinite 
medium, i.e. a theoretical homogeneous medium 
extending to infinity, is given by:

			 

	           
(1)

1 Fieldtrip toolbox for EEG/MEG-analysis. FC Donders 
Centre for Cognitive Neuroimaging, Nijmegen, The 
Netherlands. http://www.ru.nl/fcdonders/fieldtrip 
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with  the conductivity of  the medium,    the 
dipole moment,  the distance from the dipole to 
t h e  p o in  t  a t which the potential is calculated 
and   the angle between  and  (see figure 3).

Figure 3  Dipole on x-axis in an infinite medium

Suppose that there is a dipole on the x -axis 
in an infinite medium (see figure 3), the potential 
at position (0,y) due to the dipole at (x,0) can be 
calculated by transforming equation (1) into the 
following equation:

             (2)     

where we used that   and

2.1.4 Fourier transformation

The frequency components of  a sampled signal 

 can be computed by taking the discrete Fourier 

transform of  this signal:

         (3)
where N is the number of  samples. The power 
spectrum of  this signal is:

                           (4)

where  is the complex conjugate of  

2.1.5 The forward problem

In this study the forward problem consists 
of  computing the EEG, given a certain ECoG 
potential distribution. The derivation in Appendix 3 
gives the potentials at a certain surface (e.g. EEG), 
due to potentials at another surface (e.g. ECoG), 
following Barr et al. (1977). This method is called 
the Boundary Element Method (BEM). 

The relation between the potentials on the brain 

( ) and the potentials the scalp ( ) can be given 

by (see Appendix 3):
                                                     (5)

The transfer matrix T ref lects the transfer 
coefficients ( ) between the potential at location j   

on the brain ( ) and the potentials at location i 

on the scalp ( ).  This matrix is governed by the 
laws of  electrical volume conduction and depends 
on the volume conductor model, in particular on 
the geometries and inhomogeneities involved.

2.1.6 Inverse problem

Above we have seen a method to predict EEG 
from ECoG. The opposite can also be done, which 
is called the inverse problem. This inverse problem 

is an ill-posed problem, since the 

transfer matrix T is close to singular. The most 
frequently used solution to this problem is to use 
the Moore-Penrose inverse. This inverse finds the 
least-squares solution. However, there are more 
solutions to the problem and the least-squares 
solution does in general not correspond to the true 
solution. For example, two small dipoles next to 
each other will give a different ECoG than one 
larger dipole in the middle of  these two. The EEG 
is a more attenuated and spatially broader signal 
than the ECoG. Thus the differences between the 
EEG signal of  two configurations will be small. 
This makes it difficult to compute the ECoG from 
the EEG. To solve this ill-posed problem, prior 
knowledge about the solution has to be used and 
some anatomical or functional constraints on the 
infinite solution space have to be imposed. In this 
study we assume that discontinuities should be 
avoided. Therefore, we are looking for a smooth 
solution. By using regularization techniques, the 
conditioning of  the problem can be improved.

2.1.7 Regularization

If  a solution should be smooth, the usual 
regularization implies using the surface Laplacian. 
This is a restriction of  the Laplacian operator to 
2-dimensional flat space or to a curved surface in 
3 dimensions. In the present study, we take as a 
regularization operator the surface Laplacian of  the 
function f:

                         (6)
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where x and y are local surface coordinates. 
For a triangulated grid, Oostendorp et al have 

developed a method to approximate the Laplacian 
(Oostendorp et al., 1989).

2.1.8 Inverse solution

The brain potentials ( ) must obey the relation               
 and:

				             (7)
The regularized relation between the potentials on 
top of  the scalp ( ) and the brain potentials ( ) 
is then given as:

                                        (8)
in which the amount of  smoothing can be regulated 
by the parameter . 

2.1.9 Triangulations

The Boundar y Element Method (BEM) 
can be applied to volume conductors that are 
piecewise homogeneous, i.e. consist of  a number 
of  compartments with homogenous, isotropic 
conductivity.

To be able to apply the BEM technique, all 
boundaries between the compartments involved 
have to be discretized. Conceptually, it works by 
constructing a grid over the modelled surface. In 
this study a triangulated grid is chosen and the 
potentials are determined only on the vertices of  
this grid. 

Figure 4   Triangulated spherical surface of dipole position (0,0,0.060) (left) and the same surface refined 
with a worst variation criterion of 25% (right). 

First a regularly triangulated sphere with 162 
vertices, with the centre being the dipole location, is 
projected onto the innermost sphere. The BEM 
assumes the potential differences to change linearly 
within each triangle. When the potentials change 
rapidly in space, this assumption is not valid. For 
this reason, the triangles of  this sphere are refined 
in such a way that the edge of  a triangle is divided 
in two when the variation between  of  the 
two vertices is more than a certain percentage 
(worst variation criterion), with r the distance 
between the dipole and the vertex. This inner 
sphere is inflated to make the other two spheres. 
Example triangulations are given in figure 4. In this 
figure the z-axis points to the front upper right. 

2.1.10 Interpolation

When the ECoG is only known at some 
locations on the inner sphere, an interpolation 
has to be made to estimate the potentials on all 
points of  the inner sphere. The solution of  this 
interpolation is assumed to be a smooth function. 
One way to construct such a smooth interpolation 
is to put constraints on the Laplacian of  the 
function. 

The estimate of  the Laplacian for a triangulated 
surface can be used (see above), which is expressed 
in matrix form (Oostendorp et al., 1989):

				             (9)

where   is   a  vector  containin  g ele ments 
, L the Laplacian and  the function 

values, i.e. all potentials on the inner sphere. Not all 



�Nijmegen CNS | VOL 2 | NUMBER 1

Denise van Barneveld

these function values are known. The vector can 

be split in two parts, one with the known values, , 

 and  with the values that have to be interpolated. 
In the same way,  can be divided in two parts. 
The Laplacian matrix can be split in four parts:

			          (10)
To solve the interpolation, i.e. to find the unknown 
values , the following equation has to be solved:  

			          (11)
This equation is based on the assumption that 

  at all points were  is not given. This 

method will give an interpolation, which is smooth 
at unknown points and has sharp peaks at the 
known points. Minima and maxima are located at 
points with known potentials (figure 5). In this 
study this is allowed, under the prior assumption 
that the extrema of  the potentials are located at 
known points.

Figure 5   Interpolation. The circles are the known 
data points and the lines are the interpolation. 
The interpolations are smooth and there are sharp 
edges at points were we know the function value, 
since we assume  to be zero only at all points 
were f is not given.  

2.1.11 Quality measure

A measure for the quality of  the forward or 
inverse method is the relative difference between 
the potentials calculated with the one of  these 
methods and the analytically computed potentials:

                            (12)

where  and  are, respectively, the analytical 

and the modelled potentials at point i of  the brain. 

2.2 Experiment – Data collection

2.2.1 Participant

The subject in this study was a patient with 
intractable epilepsy who underwent temporary 
placement of  subdural electrode arrays to localize 
the seizure focus prior to surgical resection. She was 
a right-handed, 19 years old female with no musical 
background. The subject had no hearing problems. 
There was no reason to assume cerebral damage. 

2.2.2 Electrodes

The patient had a 32-electrode grid (A1 to D8) 
placed over the left temporal cortex (figure 6) and 
several electrode strips over the rest of  the brain, 
such that the total number of  subdural electrodes 
was 82. The grid had an inter-electrode distance 
of  10 mm. The electrodes were made of  steel and 
had a contact diameter was 4.0 mm. Simultaneously 
EEG was recorded from all 19 standard locations 
of  the standard 10-20 system of  electrode 
placement. Eye movements and muscle activity 
were also measured. 

2.2.3 Data collection/setup

The patient sat in a hospital bed about 75 cm 
from a laptop screen, and about 75 cm from a 
loudspeaker (Yamaha MS20). The volume was 
adjusted to a comfortable level. 

The setup consists of  a laptop running software 
called “Presentation”� for presenting the stimuli and 
a standard EEG recording equipment (Neurofile, 
IT-Med, Usingen, Germany) with a sampling rate 
of  1024 Hz. These two computers are synchronized 
via TTL (transistor-transistor logic) pulses triggered 
at the start and end of  the stimuli.

2.2.4 Stimuli

The stimuli were programmed in POCO (D&H) 
and the resulting MIDI file was converted to audio 
by Quicktime Musical Instruments using general 
MIDI commands for low bongo (key 61), velocity 
0.7x127 as the metronome and high wood block (key 
76), velocity 0.8x127 as the beat.

In  the  experi  men t  a  sub j ec t  heard   an 
isochronous rhythm of  a drum that defined the 
tempo (figure 7). It continued throughout a trial and 
functioned as the time-lock metronome. Another 
�  Presentation, http://nbs.neuro-bs.com 
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Figure 6   Electrode locations seen in a axial MRI slice (left) and on the outer surface of the brain (right) of 
the subject. 

higher drum was heard once every two, three or 
four beats and gave an accent to the beats. After 
three repeats there was one accent played softer and 
eventually there were no accents played anymore. 
The subject had to imagine that the accent was 
still there. At the end of  the sequence an accent 
tone (probe) sounded. The subjects had to indicate 
whether this probe was on an imagined accent or 
not. This task was to control attention and to check 
whether the subject was still on-track.

Per block, the stimuli were randomly played one 
after each other. The next rhythm started when the 
subject hit a button (self-paced). We recorded three 
blocks of  36 stimuli, all with the same order of  
stimuli. 

Before the real experiment started, there was 
a practice part. In this part the rhythms were 
easier. There were more accents played before the 
higher drum fades, this fading lasted longer and 
the imagery part was shorter. It was important to 
make sure that the subject understood the task. To 
account for this, the end of  the practice block was

Figure 7   An example stimulus. The horizontal line is the time axis. The lower row shows the metronome 
ticks. Thick black blocks represent accented tones and grey blocks the imagined accents. The black oval 
represents the response that has to be given. 

  

determined as follows. We set a counter, which 
counted the correct answers. Whenever the subject 
made a mistake, the counter was set two back. The 
practice block ended when the counter had a value 
of  five.  

2.2.5 Event related potential

In a single trial, data contains much brain activity 
unrelated to the stimulus, which we will call noise. 
To reduce this noise, an event related potential 
(ERP) is produced. This ERP is constructed 
from perception data from an accented tone of  
a two beat rhythm. We used data from 100 ms 
before this tone until 500 ms after this tone, which 
we will call trials for brevity. First all trials with 
artefacts (like eye movements) are removed. In the 
resulting 87 trials we removed the line noise of  
50 Hz. Then we performed baseline correction to 
remove differences in impedance of  electrodes, by 
subtracting the mean of  the 100 ms period before 
the stimulus. Last the trials are averaged to produce 
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Figure 8   The left panel shows the potentials at different normalized distances y, due to a normalized 
dipole running with v =1 s-1 along the x-axis of an infinite medium of conductivity 1S. The right figure 
gives the normalized power in the frequency domain of the potentials from the left figure.

an ERP. Averaging cancels out brain activity 
unrelated to the stimulus. 

All event related potentials are referenced to 
electrode O1. This electrode is situated at the 
backside of  the head, far away from the grid and 
the auditory cortex. 

3. Results

3.1 Potentials in infinite medium

Figure 8 shows the simulated potentials due to
 

Figure 9  Simulated ECoG (left) and EEG signal (right) from running dipole   with   m and   s-1 in the inner 
sphere of the three-concentric sphere head model. 

a dipole with a normalized dipole moment 
moving along the x-axis of  an infinite medium 
with a conductivity of  1 S for different positions 
on the y-axis. The larger the distance from 
the dipole, the smaller the amplitude of  the 
signal and the broader the peak of  the signal. 
This results in a higher frequency content 
in  si gnals    a t  po ints  c loser  to  the  source.

3.2 Differences between EEG and ECoG 

The simulated ECoG and EEG potentials 
measured  on  (0 ,0 ,0 .075)  and  (0 ,0 ,0 .085) , 
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Figure 10  Power spectra of the signals in figure 9. 

res   p e c t ivel   y,  d u e  t o  t h e  m ovin   g  di  p o le  

   with =(0, -0.017, 0.073) 

and s-1 are given in figure 9. 
There are two important differences between 

these signals. The EEG signal is broader in time 
and about 80 times smaller in amplitude than the 
ECoG signal. This has two reasons. The distance to 
the dipole is larger at the EEG electrode compared 
to the ECoG electrode. The second reason, that has 
the largest influence here, is the large resistance of  
the skull that causes the potentials to attenuate and 
to smear. 

Figure 11  The influence of the skull conductance on the topography of the EEG. The left figure shows 
EEG potentials for a dipole at (0,0,0.060) in a.u. with a skull conductance of 1S, the same as the brain and 
the scalp. The right figure shows the same for a skull conductance of 1/15S, the actual conductivity of the 
skull (Oostendorp et al., 2000)

3.3 Influence of the skull on EEG 

Figure 11 shows the smearing properties of  the 
The broader the signal, the less high frequencies 
are present in the frequency spectrum of  the signal. 
This is made visible in the power spectra of  the two 
signals (see figure 10). 

skull due to its low conductance. In the left 
figure the skull conductance was taken the same 
as the conductance of  the brain and scalp. This 
resulted in a smaller region with high potentials 
than when the skull conductance was taken 1/15 of  
the brain and scalp conductance (right figure). This 
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figure also shows the attenuation of  the signal due 
to the lower conductivity, in the right figure versus 
the left one (notice the scale differences).  

3.4 Forward problem – Predicted EEG 
from simulated ECoG

In the next section, EEG on all vertices of  
the triangulated outer sphere is calculated from 
simulated ECoG with the forward method. 
Simulation data is obtained for four dipole 
locations:  (0,0,0) ,  (0,0,0.020),   (0,0,0.040),  
(0,0,0.060).  All dipoles are of  unit strength and 
pointing in the z-direction.

For the four dipole locations, the following 
worst variation criteria were used 4%, 12%, 20% 
and 25%, which resulted in spheres with 162, 366, 
442 and 839 vertices, respectively. 

For brevity we define the analytically produced 
potentials according to equation (20) as “true 
EEG potentials” and we will refer to the potentials 
calculated with the forward method according 
to equation (5) as “predicted EEG potentials”. 
Figures 12 to 15 show true values (upper left), 

Figure 12   Predicted EEG from simulated ECoG data (upper right, in a.u.) compared to true EEG (upper 
left, in a.u.) from dipole at (0,0,0), relative difference is 7.5%. The differences between the predicted and 
the true values (in a.u.) and these differences relative to the true EEG are given in the lower left and right 
figure, respectively.

the predicted EEG potentials (upper right), the 
differences between the predicted and the true 
values (lower left) and these differences relative to 
the true potentials (lower right) colour coded on 
the outer sphere, for the four dipoles respectively. 
Red colours mean high values and blue colours 
mean low values, as given in the colour bar at 
the right side of  the spheres values. The z-axis is 
pointing towards the reader. The potentials are 
referenced to the electrode on the negative z-axis. 

The topography of  the true values and the 
predicted potentials are very similar. They both 
start at zero at the negative z-axis (this part is not 
visible in the figures) and increase to positive at the 
positive z-axis. For all dipoles the predicted values 
are slightly larger than the true values. This results 
in relative differences between the analytically 
computed values and the values produced with 
the forward method of  7.5, 6.6, 7.9 and 11% 
for dipoles at (0,0,0), (0,0,0.020), (0,0,0.040) and 
(0,0,0.060) respectively. 

The forward method is not completely accurate. 
This has two reasons. First there is an error in the 
analytically calculated ECoG. By computing the 
ECoG, we represented the brain as a sphere in a 
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Figure 13  Predicted EEG from simulated ECoG data (upper right, in a.u.) compared to true EEG (upper 
left, in a.u.) from dipole at (0,0,0.020), relative difference is 6.6%. The differences between the predicted 
and the true values (in a.u.) and these differences relative to the true EEG are given in the lower left and 
right figure, respectively.

Figure 14  Predicted EEG from simulated ECoG data (upper right, in a.u.) compared to true EEG (upper 
left, in a.u.) from dipole at (0,0,0.040), relative difference is 7.9%. The differences between the predicted 
and the true values (in a.u.) and these differences relative to the true EEG are given in the lower left and 
right figure, respectively.
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Figure 15  Predicted EEG from simulated ECoG data (upper right, in a.u.) compared to true EEG (upper 
left, in a.u.) from dipole at (0,0,0.060), relative difference is 11%. The differences between the predicted 
and the true values (in a.u.) and these differences relative to the true EEG are given in the lower left and 
right figure, respectively.

non-conducting medium ignoring the skull and 
the scalp. This results in an overestimation of  the 
ECoG potentials, which results in the end in an 
overestimation of  the predicted EEG potentials 
Another reason for the relative difference is 
the numerical implementation. The surface is 
discretized, which causes small discrepancies in the 
potentials. These discrepancies are larger with more 
complex and non-symmetrical geometries. Dipoles 
further from the origin of  the spheres have more 
complex triangulated spheres, which results in larger 
errors in the predicted EEG potentials. 

The lower left panels of  figures 12 to 15 
show that the absolute differences are larger at 
points overlying the source, than at points far 
away from the source. The explanation is that the 
true potentials as well as the predicted potentials 
are referenced to the electrode furthest from the 
source. This makes the potentials at this point the 
same at the two surfaces by design. 

Another way to look at the differences is the 
difference relative to the true values (lower right 
panels of  figures 12 to 15). These are larger at 
points further from the source than at points

overl y ing the source.  This  means that  the 
predictions are better at points overlying the source, 
which are the most interesting points to predict for 
BCI purposes. 

Another observation is that more eccentric 
dipoles have smaller areas with large potentials. 

3.5 Forward problem – Predicted EEG on 
grid from ECoG on grid

In the previous section, ECoG potentials were 
simulated at all vertices of  the inner sphere. In 
reality ECoG cannot be measured all over the 
brain. It will be measured with a grid of  electrodes 
over a small part of  the cortex. This setup is 
simulated in this section. We analytically calculate 
ECoG potentials only on a square grid placed 
on the triangulated inner sphere. This is used in 
the forward model to produce EEG on a similar 
grid on the outer sphere, via a transfer matrix. We 
investigate how the relative difference between 
analytically produced EEG potentials and the 
predicted EEG potentials depends on the size of  
the EEG and ECoG grids, the ECoG electrode 
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distance and the dipole position.

3.5.1 ECoG grid construction

A square ECoG grid is placed on the inner 
sphere with the middle electrode placed on the 
positive z-axis. We constructed ECoG grids of  
different sizes: a small sized grid of  0.030 x 0.030 
m, a medium sized grid of  0.050 x 0.050 m and a 
large sized grid of  0.060 x 0.060 m. Within each of  
these grids we varied the electrode distance. The 
grids with the largest electrode distance (0.030, 
0.050, 0.060, for the small, medium and large sized 
grids, respectively) consist of  five electrodes, placed 
on the four edges of  the grid and one electrode 
in the centre. A more refined grid consists of  3x3 
electrodes on these same small, medium and large 
sized grids, with an inter electrode distance of  0.015, 
0.025 and 0.030 respectively. Grids with smaller 
electrode distances consist of  5x5, 7x7 and 9x9 
electrodes placed on these small, medium and large 
sized grids, with electrode distances as given in 
Table 1.

Table 1   ECoG grid sizes
Amount of 
Electrodes

Small 
Electrode distance 
(m)

Medium
Electrode distance 
(m)

Large
Electrode distance 
(m)

2x2 plus middle 0.030 0.050 0.060
3x3 0.015 0.025 0.030
5x5 0.0075 0.013 0.015
9x9 0.0038 0.0063 0.0075
17x17 0.0019 0.0031 0.0038

3.5.2 EEG grid construction

The EEG grid size is varied too. First one 
electrode is placed at the outer sphere right above 
the centre of  the ECoG grid, thus on the positive 
z-axis. A larger EEG grid consists of  a row of  
electrodes placed around the EEG electrode, 
resulting in a 3x3 grid of  0.020 x 0.020 m. The 
middle electrode of  this grid is still located right 
above the middle of  the ECoG grid. Then this 
grid is expanded by one row of  electrodes placed 
around the 3x3 grid, resulting in a 5x5 grid of  0.040 
x 0.040 m. This procedure is repeated to create a 
7x7 grid of  0.060 x 0.060 m and finally a 9x9 grid 
of  0.080 x 0.080 m. 

3.5.3 Interpolation

The ECoG is produced analytically only at the 
electrodes of  the square ECoG grid. The forward 
model needs potentials at all vertices of  the whole 
inner sphere. The unknown potentials have to be 
estimated by interpolation (see Method section). In 
these interpolations we assume the potential at the 
electrode on the negative z-axis to be zero. 

Figure 16 gives an example of  interpolation for 
a medium sized ECoG grid and a dipole at (0,0,0). 
The left panel shows the analytically produced 
ECoG values, which we will refer to as “true values 
ECoG”, projected on a sphere, with the z-axis 
pointing towards the reader. The middle panel 
shows the interpolated ECoG potentials for an 
ECoG grid of  only five electrodes with an electrode 
distance of  5.0 cm. The right panel shows the 
interpolated values estimated from an ECoG grid 
of  17x17 electrodes with an electrode distance of  
0.31 cm. The higher the ECoG grid resolution, the 
better the interpolation: the topography of  the right 
figures look much more like the true values than the 

topography of  the middle figure. 
Figure 17 show the same for a small sized 

ECoG grid and a dipole placed at (0,0,0.060). The 
potentials are estimated more accurately with a 
higher resolution ECoG grid, because the Laplacian 
cannot describe the rapid potential changes on 
the grid. The middle and right panel show that the 
decay in potential to zero from the edge of  the grid 
to the backside of  the sphere is not fast enough. 
This is due to the applied Laplacian, which assumes 
a smooth interpolation between successive points 
and maxima at points with known potential. 

Figure 18 shows the relative differences between 
the interpolated potentials and the ECoG potentials 
analytically calculated on all vertices as function of  
ECoG electrode distance, for different ECoG grid 
sizes and different dipoles. In general, interpolations 
are better for dipoles closer to the origin. The 
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Figure 16  An example of two interpolations. Medium grid, ECoG electrode distance of 5.0 cm (middle, 
in a.u.) and 0.31 cm (right, in a.u.) for a dipole at (0,0,0) compared to true values (left, in a.u.).

Figure 17  An example of two interpolations. Small grid, ECoG electrode distance of 3.0 cm (middle, in a.u.) 
and 0.19 cm (right, in a.u.) for a dipole at (0,0,0.060) compared to true values (left, in a.u.).

closer the dipole to the origin, the smoother the 
potential surface, and the better it can be described 
by the Laplacian (compare figure 16 and 17). The 
electrode distance has a large influence if  the 
potential changes rapidly over the grid, like for a 
dipole at (0,0,0.060). These rapid changes cannot 
be described by the Laplacian and thus cannot be 
interpolated well (compare the middle and left panel 
of  figure 17). 

The grid size has not much influence on 
the relative difference, except for the dipole at 
(0,0,0.060). Here the interpolation with a large grid 
is more accurate than with smaller grids. The reason 
for this is that the potentials at the edge of  the large 
grid are closer to zero than at a smaller grid. This 
results in a smaller overestimation of  the potentials 
from the edge of  the grid to the backside of  the 
sphere for large grids compared to small grids. 

3.5.4 Results EEG 

The interpolated potentials are used in the 

forward method to predict the corresponding 
EEG potentials. For brevity we will refer to the 
analytically produced EEG with equation (20) as 
“true EEG potentials” and to the EEG potentials 
computed with the forward method (equation (5)) 
as “predicted EEG potentials”. 

Figure 19 shows the relative difference between 
the true values and the predicted EEG potentials 
for different dipole positions as a function of  the 
ECoG electrode distance and EEG grid size. In 
general, the further the source is from the surface, 
the larger the relative difference. For deeper 
sources, the interpolated potentials at points at the 
backside of  the ECoG sphere, around the negative 
z-axis, are too high. This causes the EEG potentials 
at points at the backside of  the EEG sphere to be 
overestimated. Afterwards, potentials are referenced 
to the EEG electrode on the negative z-axis, which 
causes the potentials on the grid to drop more than 
needed. This effect is less for surface dipoles, since 
the interpolated ECoG potentials at the backside of  
the sphere are close to zero. 
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Figure 18  Relative difference between the true values of ECoG and the interpolated ECoG, for different 
ECoG electrode distances (in cm), for four different dipoles: (0,0,0) in red, (0,0,0.020) in black, (0,0,0.040) 
in green and (0,0,0.060) in blue and three different grid sizes: small (left), medium (middle) and large 
(right). 

This is illustrated in figure 20 and 21. These 
figures show the true EEG potentials (left panel) 
and the predicted EEG potentials (right panel) 
from simulated ECoG data on a medium size grid 
from a dipole at (0,0,0.040) and a small sized grid 
with dipole position (0,0,0.060) respectively. The 
x,y-plane represents the 9x9 EEG grid and the z-axis 
the potentials on the points of  the grid. In the right 
panel of  figure 20, the middle EEG electrode has 
a lower potential than the analytically computed 
potential on that electrode (left panel). Whereas 
in figure 21, the predicted potential at the middle 
electrode has only a small difference compared to 
the analytical value. This shows that the surface 
dipole is less influenced by overestimation of  the 
reference electrode. 

Another observation in figure 19 is that the 
relative error decreases only slightly with increasing 
ECoG electrode resolution. Especially for a dipole 
at (0,0,0.060) this parameter has a large influence 
on interpolation, whereas its influence on EEG 
prediction is small. The reason can be that due 
to the smearing of  the skull, the differences in 
predicted EEG due to these different ECoG 

configurations are small. 
 For the small ECoG grid with electrode 

distance 0.0019m and dipole (0,0,0.060), we 
see an enormous increase in relative difference 
with increasing EEG range (figure 19). The 
corresponding EEG potentials of  this example are 
given in figure 21. In the middle of  the grid (which 
corresponds to an EEG grid with one electrode) 
the predictions are accurate, whereas on the edge 
the predicted potentials are far too high (which 
corresponds to an EEG grid with 9x9 electrodes) 
compared to the true EEG potentials. This is due 
to the overestimated ECoG potentials from the 
edge of  the grid to the backside of  the sphere (figure 
17, right). 

3.6 Inverse problem – Predicted ECoG 
from simulated EEG

In this section ECoG on all vertices of  the 
innermost sphere is calculated from the EEG 
on the outer sphere via a transfer matrix with 
additional regularization constraints. The four same 
dipoles as before are used, with worst variation 
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Figure 19  Relative difference between true values EEG on the grid and predicted values from simulated 
ECoG data on different grids: small (left), medium (middle) and large (right), for different dipoles (0,0,0) in 
red, (0,0,0.020) in black, (0,0,0.040) in green and (0,0,0.060) in blue as function of the ECoG electrode 
distance (in cm) and EEG grid size.

Figure 20  An example of true EEG potentials compared to potentials predicted from simulated ECoG data 
on a medium grid for a dipole at (0,0,0.040). The x,y-plane is the grid, with the potentials on places on 
this grid set on the z-axis.

criteria of  4%,  20%, 30% and 35%. This resulted 
in spheres with 162, 162, 177 and 465 vertices, 
respectively. 

Good smoothing parameters ( , equation (8)) 
have to be found. Large parameters will give 
smoother potential surfaces than small parameters, 
but a smooth potential surface is not always the 
best. In this part best results were obtained with 
regularization parameters of  10-6, 10-6, 10-7 and 10-5 

for dipoles at (0,0,0), (0,0,0.020), (0,0,0.040) and 
(0,0,0.060) respectively.

Like in the forward method section, we will 
refer to the analytically produced potentials by 
equation (20) as “true ECoG potentials” and to 
the potentials produced with the inverse method 
according to equation (8) as “predicted ECoG 
potentials”. 

Figures 22 to 25 show the true ECoG potentials 
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Figure 21  An example of true EEG potentials compared to potentials predicted from simulated ECoG data 
on a small grid for a dipole at (0,0,0.060). The x,y-plane is the grid, with the potentials on places on this 
grid set on the z-axis. 

(upper left), the predicted ECoG potentials (upper 
middle) and the differences between the predicted 
and the true values (true-prediction) (upper 
right) colour coded on the inner sphere, for the 
four different dipoles successively. The z-axis is 
pointing towards the reader. Red colours mean high 
potentials and blue colours mean low potentials, 
corresponding to the colour bar at the right side 
of  the spheres (note the scale differences between 
the different plots). Potentials are referenced to the 
electrode on the negative z-axis. 

Like with the forward method the topographies 
of  the true values and the predicted potentials 
look rather similar. They both start at zero at the 
negative z-axis (the part that is not visible in the 
figures) and increase to positive at the positive 
z-axis. Different from the forward method, in 
the inverse method the predicted values are in 
general slightly lower than the true values (note 
the scale differences between (upper left) and 
(upper middle)). This results in relative differences 
between the analytically computed values and the 
values produced with the inverse method of  4.1, 
5.8, 7.5 and 7.7% for dipoles at (0,0,0), (0,0,0.020), 
(0,0,0.040) and (0,0,0.060) respectively. The 

differences between the predicted and true values 
ECoG (upper right) are small compared to the 
potentials. The absolute differences are higher at 
points overlying the source compared to points far 
away from the source, but the difference relative to 
the true potentials has no general topography like 
we have seen in the forward method. The reasons 
for these relative differences are the same as we 
have seen in the forward method: the numerical 
implementations and the error in the analytically 
produced ECoG. 

The predicted ECoG values are used in the 
forward method to give a control EEG. If  no, too 
low or too high regularization parameters are used, 
the relative difference between the true EEG and 
control EEG will be large, whereas in the ideal 
case both are exactly the same. The lower panels 
of  figures 22 to 25 show the potential distributions 
over the spheres of  true EEG (left) and control 
EEG (middle). Relative differences between the 
control EEG and true EEG are below 10-5 % for 
dipoles at (0,0,0), (0,0,0.020), (0,0,0.040). These 
differences are due to numerical implementations. 
The relative difference between the control EEG 
and true EEG for the dipole at (0,0,0.060) is 0.01%. 
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Figure 22  Predicted ECoG from simulated EEG data (upper middle, in a.u.) compared to true ECoG from 
dipole at (0,0,0) (upper left, in a.u.) and the difference between these two potentials (upper right, in a.u.). 
Predicted control EEG from predicted ECoG (lower middle, in a.u.) compared to true EEG (lower left, in 
a.u.).

Figure 23  Predicted ECoG from simulated EEG data (upper middle, in a.u.) compared to true ECoG from 
dipole at (0,0,0.020) (upper left, in a.u.) and the difference between these two potentials (upper right, in 
a.u.). Predicted control EEG from predicted ECoG (lower middle, in a.u.) compared to true EEG (lower 
left, in a.u.).
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Figure 24  Predicted ECoG from simulated EEG data (upper middle, in a.u.) compared to true ECoG from 
dipole at (0,0,0.040) (upper left, in a.u.) and the difference between these two potentials (upper right, in 
a.u.). Predicted control EEG from predicted ECoG (lower middle, in a.u.) compared to true EEG (lower 
left, in a.u).

Figure 25  Predicted ECoG from simulated EEG data (upper middle, in a.u.) compared to true ECoG from 
dipole at (0,0,0.060) (upper left, in a.u.) and the difference between these two potentials (upper right, in 
a.u.). Predicted control EEG from predicted ECoG (lower middle, in a.u.) compared to true EEG (lower 
left, in a.u).
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These small differences show that the regularization 
parameters are chosen correctly. 

3.7 Forward problem – Predicted EEG 
from real data ECoG

In this section we will test the forward method 
on real data, measured from an epileptic patient at 
the University of  Freiburg. We do this by calculating 
EEG from event related ECoG data (see Method 
section), via a transfer matrix.

Figure 26 shows a side view of  a sphere 
representing the head, with the ECoG (grey circles) 
and EEG (red circles) electrodes projected on this 
sphere to illustrate their relative position. Notice 
that these electrodes are in fact located one two 
different spheres. Electrode T7 is lying directly 
above the ECoG grid. Electrode P7 is located near 
the grid, posterior to T7. We compare the results of  
the forward at these two locations. Like is shown 
from theoretical results, we expect the electrode 
overlying the grid to be predicted more accurate 
than the electrode posterior to it. 

The data we used to test the forward model is an 
event related potential (ERP) from 100 ms before 
a presented accented tone (see Methods) until 500 
ms after this tone. The right panel of  figure 27 
shows this ERP. The left panel of  figure 27 shows 
the corresponding potential distribution over the 
ECoG grid at the minimum of  this ERP (black 
asterisk, 116 ms). The measured EEG potentials at 
the same time are given in the left panel of  figure 
28. This is a top view of  the left half  of  the head 
with the potentials colour coded as given in the 
colour bar at the right. When the ECoG potentials 
are used in the forward method, this results in the 
predicted values given in the right panel of  figure 
28. The relative difference between the measured 
EEG potentials and the predicted EEG potentials 
is 60% at electrode T7 and 120% at electrode P7. 

If  ECoG potentials of  a random set of  30 
times are used in the forward method, the relative 
differences at electrode T7 are between 15% and 
84%, with a mean of  63%. The relative differences 
at electrode P7 are between 62% and 200% with 
a mean of  130%. Predicted potentials at electrode 
P7 are always worse than predicted potentials at 
electrode T7.

Figure 29 shows an example. The measured 
EEG potentials at time 96 ms are given in the left 
figure. The predicted values from the corresponding 
measured ECoG data are given in the right figure. 
The relative difference between these potentials 

at electrode T7 are 15% and at electrode P7 
82%. Again, electrode P7 is predicted worse than 
electrode T7. 

Although the potentials at the electrode 
overlying the grid are always predicted more 
accurate than the electrode posterior to the grid, the 
predicted potentials are not accurate enough. The 
relative differences are large, with a mean of  63%. 
Reasons for this are given in the discussion. 

Figure 26  A side view of a head to illustrate the 
relative locations of ECoG electrodes (grey circles) 
and EEG electrodes (red circles) shown on one 
sphere. 

4. Discussion

4.1 Differences ECoG and EEG

Simulations of  EEG and ECoG show two 
important differences. EEG has a smaller amplitude 
and is broader in time with smaller high-frequency 
components than the ECoG signals. This has two 
reasons. The distance from the EEG electrode to 
the dipole is larger than the distance between the 
ECoG electrode and the dipole. The second reason, 
that has the largest influence, is the large resistance 
of  the skull, which attenuates the signal amplitude.

4.2 Forward method – Simulated data

Results in this manuscript show that the forward 
method has relative differences between 6.6 and 
11 %,for ECoG potentials known at all vertices of  
the inner sphere. This has two reasons. First the 
calculated ECoG is not accurate. Analytically the 
potentials can only be computed at the outermost 
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Figure 27  The right figure gives the time course of the event related potentials from the grid electrode B3. 
At time 116 ms (given by the black asterisk) the potential distribution over the grid is shown in the left 
figure, with on the x,y-plane the grid electrodes A1 to D8 and on the z-axis the potential at that specific 
electrode. 

Figure 28  The EEG potentials (in V) measured at time 116 ms (left panel) and the predicted potentials (in 
V) from the corresponding ECoG (right panel). The relative difference between the potential at electrode 
T7, which is positioned right over the grid (see figure 28) is 60%. This is lower than the relative difference 
of 1.2 102 % from electrode P7, which is situated near the grid, posterior of the grid.

surface. The ECoG can only be approached by 
ignoring the skull and the scalp. This results in an 
overestimation of  the ECoG potentials, which 
results in the end in an overestimation of  the 
predicted EEG potentials.

Another reason for the relative difference is the 
numerical implementation. The discretization of  

the surfaces causes discrepancies between the 
potentials calculated analytically and with numerical 
methods. These discrepancies are generally between 
1 and 5% and are larger for more complex and 
non-symmetrical geometries. Dipoles further from 
the centre of  the spheres have more complex 
triangulated spheres, which results in larger errors 
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Figure 29  The EEG potentials (in V) measured at time 96 ms (left panel) and the predicted potentials (in 
V) from the corresponding ECoG (right panel). The relative difference between the potential at electrode 
T7, which is positioned right over the grid (see figure 28) is 15%. This is lower than the relative difference 
of 82% from electrode P7, which is situated near the grid, posterior of the grid.

in the predicted EEG potentials (e.g. 11% for a 
dipole at (0,0,0.060) compared to 7.5% for a dipole 
at (0,0,0)). 

To solve the numerical discrepancies a refined 
triangulated grid can be taken. This results in more 
triangles projected on the spheres. A disadvantage 
of  taking a refined grid is the loss of  computational 
power, since there are more points at which the 
potential has to be computed and the transfer 
matrix becomes larger. 

Further the results show that the forward 
method is more accurate for points close to the 
source, compared to potentials calculated at points 
far away from the source.

4.3 Forward method – ECoG grid and EEG 
grid

In reality potentials are measured with electrodes 
placed at some locations of  the brain and at some 
locations of  the scalp. This setup is simulated by 
an ECoG grid placed on the inner sphere and an 
EEG grid on the outer sphere. Results show that 
the forward method is more accurate at electrodes 
close to the source, for a higher resolution ECoG 
grid and for surface dipoles. This last finding is 
of  practical importance, since most cognitive 
interesting sources for BCI applications are located 
in the cortex and the cortex is the outermost layer 
of  the brain.

The forward model  constr ucted in this 
manuscript needs potentials on all vertices of  the 
inner surface. If  the potentials are only simulated or 
measured at certain electrodes on the inner sphere, 
the potentials at the rest of  the vertices have to be 
interpolated. In this manuscript we interpolated 
by putting constraints on the Laplacian of  the 
potential surface (see Methods). This method 
assumes a smooth interpolation between successive 
points and maxima at points with known potentials. 
Using the Laplacian is not the best method, since 
it cannot describe the rapid potential changes in 
space of  surface dipoles. Further it causes too slow 
a decay in potential to zero from the edge of  the 
grid to the backside of  the sphere. This results in 
an overestimation of  the potentials outside the grid. 
For surface dipoles this causes an overestimation of  
the potentials at the edge of  an EEG grid, whereas 
for deeper sources the potential of  the reference 
EEG electrode is overestimated, which causes all 
potentials to drop with rereferencing. This results in 
an underestimation of  the EEG grid potentials.  

4.4 Inverse method – Simulated data

The results in this manuscript show that the 
inverse method has relative differences between 
4.1 and 7.7%. This is due to the overestimation of  
the analytically produced ECoG and the numerical 
implementations, like in the forward method. 
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The fact that these relative differences are 
smaller than the ones from the forward method can 
be explained by the fact that the spheres consist of  
different triangulated grids. Different triangulations 
result in different numerical errors. 

4.5 Forward method – Real data 

EEG electrodes are distributed all over the 
head. They reflect brain activity generated all over 
the brain. Whereas the ECoG grid situated at the 
left side of  the brain, reflects only the activity in 
the neighbourhood of  the grid. With these ECoG 
potentials only the EEG potentials above of  the 
grid can be predicted. We expected the potentials at 
the electrode overlying the grid (T7) to be estimated 
more accurately than the electrode posterior to the 
grid (P7). Relative differences are indeed between 
15% and 84%, with a mean of  63% for electrode 
T7 and between 62% and 200% with a mean of  
130% for electrode P7. 

Unfortunately errors are large. A reason for 
this is that to place the electrodes onto the brain 
of  our subject, the skull was opened. When the 
electrodes were placed and the skull and scalp were 
closed, there were still gaps in the skull, which 
cause the conductivity of  the skull to be larger 
than implemented here and anisotropic throughout 
the skull. These distortions cannot be modelled 
in the transfer matrix, since we don’t know these 
distortions exactly. 

Another reason is the fact that we have 
referenced to electrode O1. This electrode is the 
best in our setup. It is located far from the auditory 
source, but still reflecting some brain activity. More 
convenient would be to measure and reference to 
an electrode on the mastoid bone, which reflects 
less brain activity. 

A third reason is the fact that we modelled the 
head by three concentric spheres. It would be more 
convenient to implement realistic geometries for 
brain, skull and scalp in the forward model. These 
geometries can be extracted from an MRI scan of  
the subject’s head. This will change the transfer 
matrix, which can result in more accurate potentials.

To reduce the brain activity unrelated to the 
stimulus, we took the event related potential 
(ERP) of  the measured signals and used potentials 
at several times to calculate the corresponding 
potential distribution of  the EEG at the same 
times. A disadvantage of  averaging data is that you 
need more than one trial. Implementation in BCI 
will slow down the algorithm.

4.6 Inverse method with real data 

In this manuscript we did not investigate the 
inverse model with measured data. The electrode 
placement was unsuitable for this problem. The 
EEG electrodes were distributed all over the head, 
whereas the ECoG electrode grid was very small 
and located at the left side of  the brain, with only 
one EEG electrode overlying the grid and three 
electrodes in the neighbourhood. To get good 
inverse results a denser EEG electrode placement 
should be used, especially at locations over the 
ECoG grid.  

5. Conclusion

We think that the forward method will work 
better on measured data, when some changes, like 
implementing realistic geometries of  the head, 
are implemented. Especially since theoretical 
results show that the method is more accurate for 
surface dipoles than for deeper sources. Cognitive 
interesting sources stem from the outermost layer 
of  the brain.

Further research is needed to see whether the 
inverse method can be implemented in BCI. 
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