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The object of  this study was to design a Brain Computer Interface (BCI) based on auditory selective attention 
(ASA). ASA is a promising paradigm for a BCI, as focusing attention does not requite a lot of  training, whereas 
the possibility of  offering a large number of  possible targets facilitates a high bit rate. In this study subjects 
focused attention on one tone out of  two. The two tones were separated in space and pitch, and each tone 
was frequency tagged by means of  amplitude modulation (AM). AM tones are known to evoke an auditory 
steady state response (ASSR) at the am frequency, and previous research has demonstrated that the power of  
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1. Introduction

1.1 Brain computer interfaces

In 1973 Vidal proposed the idea to build a Brain 
Computer Interface (BCI) : a system that facilities 
direct communication between one’s brain and a 
computer. [25] Thirty years later, more than twenty 
research groups all over the world are working on 
it. The general idea of  a BCI-system is depicted in 
figure 1.

Signals of  the brain are picked up, processed 
and used to control to a device. A Brain Computer 
Interface can serve several purposes. The most 
promising is to (partially) restore functionality in 
locked-in patients. In this scheme the BCI can serve 
as a communication prostheses.

1.2 Current systems

1.2.1 EEG

Many BCI’s focus on the use of  
electroencephalography (EEG). EEG is the 
neurophysiological measurement of  the electrical 
activity of  the brain by recording from electrodes 
placed to the scalp. EEG is generally believed to 
reflect the weighted summation of  post-synaptic 
potentials. It is based on synchronized activity from 
aligned neurons. The first recordings were reported 
by Hans Berger in the 1920s.

EEG has several limitations, of  which the poor 
spatial resolution can be seen as the most important. 
This poor spatial resolution arises from broad 
variances in the conductance of  the skull. Single 
trial based interferences are difficult because of  a 
poor signal to noise ratio. Another problem lies in 
the artifacts that can arise from eye-, and muscle-
movements. 

However EEG has a lot of  advantages as well. 
EEG is characterized by an outstanding time 
resolution, compared to neuro-imaging methods as 
fMRI and PET and the ease of  use, portability, and 
low cost of  set-up makes it attractive for BCI’s.

The potential role for EEG as a basis for BCI 
has been further encouraged by recent basic and 
clinical research. Several studies have shed light on 
specific aspects of  EEG rhythms and a variety of  
evoked potentials. The sites and mechanisms of  
origin and the relationship with specific aspects of  
brain function are made clearer. Numerous studies 
have demonstrated correlations between EEG 
signals and actual or imagined movements and 
between EEG signals and mental tasks. [26] These 
results have inspired BCI researchers to consider 
which EEG signals might be used for control and 
communication, and how they might best be used.

1.2.2 Examples: SCP’s, sensorimotor-rhythms, 
P300

Most of  current BCI-research focuses on slow 
cortical potentials, sensorimotor rhythms, and the 
P300 potential.

Slow cortical potentials (SCP’s) are potential 
shifts in the scalp-recorded EEG that occur over 
0.5–10 s. They reflect the level of  excitability of  
the underlying cortical areas. Functions that involve 
cortical activation (deactivation) elicit positive 
(negative) SCP’s. SCP’s are detectable in every human 
brain, even if  the motor periphery is completely 
disconnected from the central nervous system. 

People can learn to control SCP’s, as has been 
proved in studies of  Birbaumer and colleagues. They 
has used this phenomenon to develop a thought 
translation device (TTD). They tested the system in 
patients with late-stage ALS and the device turned 
out to be helpful in restoring basic communication 
capabilities. [7]

Sensorimotor rhythms are rhythms in the EEG 
recorded over primary sensorimotor cortices. A 
typical rhythm of  8–12 Hz arises on the primary 
sensory or motor cortical areas when people are not 
engaged in processing sensory input or producing 
motor output. The amplitude of  the sensory rhythms 
is related to the amount of  sensory input and/or 
movement that is performed. Movement imagery 
can also bring about modifications in the rhythms. 
These findings led to the idea that BCI’s can be 
constructed on the idea of  control on the rhythm 
amplitudes. Indeed several sensorimotor rhythms 
based BCI’s have proved to be successful. [8],[26]

The P300 is a positive wave that shows up in 
the time period between 250 and 800 milliseconds 
after the onset of  a meaningful stimulus. The P300 
is usually elicited in the so-called oddball paradigm. 
Subjects are presented with a series of  stimuli, each 

Figure 1. Basic design and operation of any BCI system. 
Signals from the brain are acquired by electrodes on the 
scalp or in the head and processed to extract specific 
signal features that reflect the user’s intent. These features 
are translated into commands that operate a device.
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belonging to one of  two classes, with one class much 
more frequent than the other. The Oddball effect 
refers to the larger P300 elicited by stimuli in the 
infrequent class. [19].

Farwell and Donchin developed a BCI based 
on the P300. They presented the user a matrix of  
6x6 filled with letters. The subject was instructed to 
choose one item of  the matrix. Then the columns 
and rows were flashed one in a time. The EEG 
following each flash was recorded and scanned for a 
P300 signal. Combining the P300-identified column 
with the P300-identified row yields the chosen 
item.[1] Due to the high amount of  items a subject 
can choose from (64) a lot of  information can be 
communicated by one single trial.

1.2.3 Evaluating current systems

In evaluating the different BCI-methods one 
can select several relevant criteria. The first to be 
considered is the speed with which the system can 
operate, which can be expressed as the bit rate. In 
BCI research multiple definitions of  the bit rate 
exist, however the definition of  Wolpaw et al. is most 
accepted. [6] This definition integrates the accuracy 
of  the signal-classification and the number of  classes 
one trial can code for by the following equation:

� 

B = log2 N( )+ P * log2 P( )+ 1− p( )* log2
1− P
N −1

 
 
 

 
 
  (1) 	

Table 1 provides an insight in the bit rates that 
can be expected for the different BCI-systems. bit 
rates ranges from 7 to 50 bits/min; pretty low if  
compared to the 900 bits/min a typist can afford.

It is important to notice that the bit rate does not 
only depend on the intrinsic properties of  the signal-
class that is used, but also on the way it is processed. 
For instance, a couple of  modifications in the P300 
BCI (i.e. better classification techniques and more 
electrodes) increased the bit rate from 10 bits/min 
to almost 50 bits/min. [14].

Next to evaluating the communicating 
capabilities of  a certain BCI, one has to look at the 
user friendliness. A parameter of  special interest is 
the amount of  training that is needed for a good 
result. Training schedules range from no training 

in P300 evoked potentials, to weeks or months of  
training for SCP’s. Especially in patients with short 
life expectancies training should be reduced to the 
minimum.

1.3 Our approach: auditory selective 
attention

This project focuses on the use of  auditory 
selective attention as a means for a BCI. Main 
advantage of  this paradigm is that focusing attention 
does not require a lot of  training. Moreover a high 
bit rate can be expected as, in one trial, the subject 
can select a class from a large set of  alternatives. 
Previous research has shown auditory selective 
attention to be a promising paradigm for a BCI. In 
2004 Hill et al used a dichotic listening task in which 
the stimuli were separated by their position in space, 
acoustic properties, and periodicities.

A linear support vector machine was trained 
to detect the direction of  the subject’s attention. 
Preliminary results were not as good as the existing 
BCI systems (4-7 bits/min); however, in the opinion 
of  the authors much room was left for improvements 
by modifying the stimulus. [3]

In the present system we use a related design, 
however we make use of  a different type of  stimuli: In 
our experiment, subjects has to focus their attention 
on one tone out of  two, which are separated in space 
and pitch.

1.4 Frequency tagging

In order to make sure that the tones are coming 
through in the EEG, each tone is watermarked with 
a tone-specific frequency-tag. The ”tagging” occurs 
by means of  Amplitude Modulation.

Amplitude Modulation means that the amplitude 
of  a tone (carrier wave) is modulated by an envelope. 
In figure 2 this principle is clarified. Amplitude 
Modulation can be expressed in the following 
equations:

Signal-class Training Bit-rate Problems
Slow Cortical Potentials Extensive 7-12 bits/min -
P300 evoked potentials No training 12 bits/min Habituation?
Mu and Beta rhytms Moderate 20-25 bits/min -

Table 1. valuation of current BCI systems

where B=bit rate, P=proportion correct, 
N=number of  classes.
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� 

c t( )= sin 2πt * fc( )  			    (2)	

� 

m t( )=1− mi * 0.5* cos 2πt * fm( )+1( ) (3)

� 

s t( )= c t( )* m t( ) 			    (4)
where c(t)=carrier, fc=carrier frequency, 
m(t)=modulator, mi=modulation index,
fm=modulator frequency, s(t)=signal; 0 ≤ mi ≥ 1.

The concept of  am-frequency tags stems from 
recent developed hearing tests. These hearing test all 
rely on the Auditory Steady State Response (ASSR), 
a brain-oscillation that is evoked by Amplitude 
Modulated tones. The interesting point of  the ASSR 
is that its frequency corresponds to the frequency of  
the am-wave in the stimulus. The hearing tests benefit 
from this principle by presenting subjects several 
tones, which are than each coupled to a unique am 
frequency. The presence of  absence of  the ASSR at 
the frequency of  the am-tag now reveals whether or 
not the tone is processed by the brain.

The ASSR was first described by Moller et al. 
in 1974. [15] Since then a lot of  research has been 
done on its main characteristics and the processes 
that leads to its generation.

Currently two theories exist on the origins of  the 
ASSR on the macroscopic level.

The first states that the ASSR reflects a phase 
resetting of  ongoing brain-oscillations at am 
frequency. This phase reset leads to an increased 
power in the ERP, as oscillations of  neurons add up 

over trials. On a single trial level, however no effect 
is seen in the power of  the signal, as only the phase 
of  the oscillation is changed. [13]

A second theory states that the ASSR reflects 
induced activity. According to this theory the ASSR 
reflects a separate neural oscillation, in addition 
to ongoing brain activity. The induced oscillation 
is facilitated by the rhythmic stimulation at best 
responding frequencies of  the underlying neural 
network [21]

On the neuronal level models are developed that 
deal with the frequency of  the ASSR. In fact it is not 
trivial that the ASSR is elicited at the ASSR-frequency. 
If  we look at the pure stimulus, no energy is present 
at the am-frequency: the am-frequency manifests 
itself  as a sideband to the carrier-frequency. The 
brain is apparently able to function as a demodulator, 
capable of  extracting the am frequency from the 
signal.

Two models have been proposed that can account 
for this brain’s competence to demodulate the signal: 
the first one is based on the cochlear transducer, the 
second on am-encoding neurons. The cochlear hair-
cells and the auditory nerve form the first elements 
that comes into play, when a tone is presented to 
the ear. These elements, in assembly known as 
cochlear transducer, have properties that make 
them suitable to demodulate an am-tone. In figure 
3 the working mechanism is explained: Vibrations 
of  the air, induced by the tone, are captured by the 
hairs on the inner hair cells of  the cochlea, thereby 
causing polarization and depolarization of  the hair 
cells. Only depolarization causes the auditory nerve 

Figure 2. Amplitude Modulation. Blue (c) = carrier wave with frequency fc;  
green(m)=modulator with frequency fm. Pink (s)=am-tone. The AM-tone is constructed 
by the multiplication of the carrier wave with the modulator.
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fibers to transmit action potentials. The output of  
the cochlea thus contains a rectified version of  the 
acoustic am stimulus. As a result the neural code 
now has a spectral component at the am frequency, 
thereby confirming the demodulating capabilities of  
the cochlea. [12],[10]

Neurons located in the auditory cortex, might 
also account for the demodulating capabilities of  the 
brain. Figure 4 describes the so called am-encoding 
neurons. These neurons fire an action-potential 
burst in a phase-locked fashion to the envelope of  
the stimulus, while the firing rate within the bursts 
is matched to the carrier frequency. As a result the 
resulting spike train carries the am frequency.[10]

ASSR’s are elicited along a wide range of  am 
frequencies. However it has been suggested that 
for low (25-55Hz) and high (80-100Hz) modulation 
frequencies, distinct generators are responsible, 
residing in the cortex and the brainstem respectively. 
The ASSR has a maximum amplitude at am 
frequencies near 40Hz. [5],[12],[20]

The ASSR is characterized by an initial linearly 
rising slope during the first 200 ms after the am 
onset, then an interval of  enhanced ASSR amplitude 
around 300 ms, followed by a steady state interval 
with constant amplitude, and finally a fast decay 
after stimulus offset. [22]

1.5 Effect attention on the ASSR

Until now five studies are done on the effect of  
attention on the ASSR.

Linden et al. performed the first EEG-
experiments in 1987. In their study two paradigms 
were used: a dichotic listening task, in which subjects 
had to ignore one stream of  tones in one ear, while 

paying attention to the stream in the concurrent 
ear; and a general auditory attention task, in which 
subjects either had to attend to the stimulus or ignore 
the stimulus by performing a distractor task, such as 
reading a book. In both cases, subjects had to count 
deviants that were based on carrier frequency or 
intensity, in the attending condition.

The stimuli consisted of  500 Hz-tone bursts 
which were presented at the rate of  around 40 Hz. 
The data was analysed by averaging over trials of  
500 ms duration. In the evoked potential, effects of  
attention were found; however no effect of  attention 
was found on the amplitude and phase of  the ASSR. 
[9] 

Ross et al replicated parts of  the Linden-study 
with MEG. They performed a general auditory 
attention task, in which the distractor task consisted 
of  counting slideshow-pictures in three categories, 
whereas the attention task consisted of  detecting a 
deviant in which a sudden change in am frequency 
was hidden. In contrast to Linden et al., they found 
an increase of  the ASSR-amplitude between 200 to 
500 ms after stimulus onset, to attended stimuli as 
compared to non-attended stimuli. They attributed 
the difference in findings between them and Linden 
to the type of  deviant detection. They argued that 
the discrimination task used in Linden et al distracts 
the subjects attention from the am-frequency and 
therefore canceled the effect. However, it might 
also be the case that their improved brain imaging 
methods (MEG, dipole source analysis), unmasked 
the effect.[22]

The finding of  an increased ASSR amplitude 
was found as well by Tiitinen et al.[24] and Gander 
et al. [2] in similar paradigms. Until now no clear 
explanation is available for the raised ASSR-
amplitude. There used to be a claim that addressed 
the increase in amplitude to induced gamma band 

Figure 3. Demodulating by the cochlear transducer. By 
the vibration of the air, induced by the tone, the hairs 
on the inner hair cells bend, causing polarization and 
depolarization of the hair cells. Only depolarization causes 
the auditory nerve fibers to transmit action potentials. The 
output of the cochlea thus contains a rectified version 
of the acoustic am stimulus, which now has a spectral 
component at the AM frequency. (adapted from Lins et 
al. 1995)[10]

Figure 4. AM-encoding neurons are neurons that fire an 
action-potential burst in a phase-locked fashion to the 
envelope of the stimulus, while the firing rate within the 
bursts is matched to the carrier frequency. As a result the 
resulting spike train carries the am frequency. (adapted 
from Luo et al. 2006)[11]
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oscillations, however Muller et al did three odd-ball 
experiments that suggested that this was not the case. 
According to them the effect of  attention is located 
in the primary auditory cortex, where it influences 
the ASSR in a direct manner. [17]

1.6 Hypothesis

This study aims to exploit the found effects 
of  attention on the ASSR. We hypothesize that a 
classification based on the amplitude or phase of  the 
ASSR is able to reveal the direction of  the subjects 
attention.

2. Material and methods

2.1 Subject

This study describes the results of  one subject, 
who was a 50 years old, righthanded man. The 
subject was untrained on auditory selective attention 
and amplitude modulated tones.

2.2 Design

Subjects performed an auditory selective attention 
task, in which they had to focus attention on one 
out of  two streams. The streams, which consist of  a 
sequence of  amplitude modulated tones, were both 
separated in pitch (ie. carrier frequency) and space.

Subjects accomplished three sessions of  43 trials. 
Each trial consisted of  four stages. (see fig 5). In 
the first stage (perception/instruction) the subjects 
were presented with one stream (either of  high or 
low pitch), which tells the subjects to focus attention 
on that particular pitch during the whole trial. In 
the second stage (fade-in) the second, concurrent 
stream faded in, which the subjects were instructed 
to ignore. In the third stage (selective-attention) 
both streams were present with equal intensity and 
in this stage the subjects had to maintain their focus 

on the instructed pitch/stream. In the fourth, and 
last, stage a deviant was presented in one of  the two 
streams. The subjects had to indicate by a button 
press whether or not they heard a deviant in the 
attended stream.

Subjects were told to keep their eyes fixated on a 
fixation cross. Furthermore they were instructed to 
abstain from movements till the end of  the trial. In 
between the trials there was a self-paced pause. 

A trial had an average duration of  33 seconds: 
Each trial consisted of  8 instruction tones, 2 fade-
in tones and 8 to 10 test tones. Each tone had a 
duration of  1.5 seconds; there was no pause between 
the tones of  a stream. In one in four trials no deviant 
occured, while in the rest of  the trials the deviant 
was placed on the 8th, 9th or 10th tone.

2.3 Stimuli

The stimuli consisted of  amplitude modulated 
tones: Carrier-frequencies were 1000 and 463 Hz 
(ie. a separation of  13.3 semitones), modulating 
frequencies were 42 and 32 Hz. The modulation 
index was set to one (see equation 2.3). The 
deviant differed from the standard tones by a raised 
amplitude (+1.3 dB).

Stimuli were generated in Matlab (The Mathworks) 
with a sample rate of  44.1 kHz. Audio was presented 
by passive loudspeakers at a distance of  0.75 m from 
the subject at +45 and -45 degrees.

2.4 Data acquisition

EEG was recorded using a 256 electrode system 
with active Ag/AgCl electrodes (BioSemi). Active 
electrodes are known to be efficient in keeping 
impedance level low. Before the start of  the 
measurement it was made sure that the offset was 
kept below a threshold. Gel was inserted underneath 
each electrode using a semi-automatic procedure 
driven by air pressure. The data was digitized with a 
samplerate of  256 Hz.

2.5 Data-analysis

Data-analysis is done in three steps. First the 
EEG-signal is preprocessed, eliminating artifacts 
resulting from EOG and EMG. Next the features 
are extracted, and finally these features are used to 
classify the data.

Figure 5. Stimulus. Each trial consists of five stages. In this 
trial subjects should focus attention on the low tone and 
detect the deviant at the end of the trial.
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2.5.1 Preprocessing

Preprocessing of  the data is applied using the 
open source Matlab-toolbox Fieldtrip (F.C. Donders 
Centre, Radboud University Nijmegen). Detection of  
artifacts is based on thresholding of  z-transformed 
data. Z-values are calculated by concatenating the 
signals over trials for each channel individually. The 
algorithms first bandpass-filter the data; the EOG 
channel is filtered with a bandpass filter between 1 
and 15 Hz , the EMG channel is filtered between 110 
and 128 Hz. Trials in which outliers occur that have 
a value larger than five times the standard deviation 
are removed. (22.8 % of  the data) Next to artifact 
detection, preprocessing comprises detrending of  
the data, which removes the mean and a slope in 
each trial. 

2.5.2 Feature extraction

Detection of  the ASSR: the importance of  phase-
information As stated in the introduction there is an 
ongoing debate on the nature of  the ASSR: Some 
authors claim that the ASSR stems from a phase 
resetting of  the ongoing oscillations, where others 
claim that the ASSR results from an additive neural 
response.

This debate is very important in the selection 

and extraction of  the features that detect an ASSR. 
If  one assumes that the phase-resetting hypothesis 
holds, one should select a feature that tracks the 
phase of  the oscillation, whereas if  one supports 
the additive-response hypothesis one should design 
a feature that measures the power of  the oscillation.

Figure 6 clarifies this process. In the upper 
panel the event related potential (ERP) of  the E17-
electrode is depicted for two conditions. In condition 
one the subject was stimulated with a 42 Hz am-tone, 
in condition two the subject listened to a 32 Hz am-
tone. In the ERP we can see that, after the period 
of  P1-and N1 waves, a sustained field arises. This 
period, which last from 500 ms to the end of  the 
tone, is now further processed by means of  spectral 
analysis.

First a Fourier transform is applied to the selected 
data, than the real and imaginary parts are selected in 
the bins that represents the ASSR-frequencies. In this 
figure we zoom in on the 42 Hz-ASSR, so we look 
at the 42 Hz bin and compare the real and imaginary 
parts from the 42 Hz-ASSR condition with the real 
and imaginary parts from the 32 Hz-ASSR condition. 
This comparison reveals the characteristics of  the 
42Hz-ASSR: The 32 Hz-ASSR condition does not 
evoke an ASSR at 42 Hz; so it can serve as a good 
baseline to the 42 Hz-ASSR evoked in the 42 Hz-
ASSR condition.

Figure 6. The importance of phase information in ASSR detection. Upper panel: ERP of 42Hz ASSR and 32 Hz 
ASSR; the steady state is reached after 500 ms. Middle panel: polar plot at 42Hz; ASSR phases are more clustered 
than non-ASSR phases. Lower panel: mean 42Hz-power plotted after two different methods of averaging.
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If  we now have a closer look at the polar plot in 
the second panel by looking at the distributions of  
the data points, two main findings can be extracted: 
First it can be seen that in the the 42 Hz condition 
the phases are less uniformly distributed as compared 
to the 32 Hz condition (Rayleigh test: p 0.003 vs p 
0.600).

Second it can be seen that the powers are equal 
among conditions. As the difference between the 
two conditions reflects the pure ASSR, one may 
state that at least partly, the 42 Hz ASSR represents 
a phase-reset of  the 42 Hz oscillations. 

This finding has two important consequences. 
The first deals with the intERPretation of  mean-
power spectra reported in the literature; the second 
deals with the design of  the features we want to 
use.

Figure 7 shows two methods that can be used 
to calculate the power spectra of  a signal. The first 
method corresponds with first averaging in the time 
domain, the second correspond with averaging in the 
frequency domain. If  we calculate the mean power 
spectra by means of  the first method an effect of  
ASSR will be seen, as in the no-ASSR condition 
the oscillations will cancel out each-other, while in 
the ASSR-condition the oscillations will add up. 
However, if  we use the second method, no effect 
will be seen as the amplitude of  the spontaneous 
oscillations are equal in both conditions.

2.5.3 Selecting features

In the previous section we saw that an ASSR can 
be partly interpreted as a phase reset of  ongoing 
oscillations. In the classification of  the ASSR phase 
information may thus serve as an important feature.

Table 2 sums up the features that were examined. 
Two sets of  features were created; in the first set 
the output of  the FFT is kept in the complex plane, 
whereas in the second set the output is transferred 
to phase and power.

2.5.4 Classification

Classes
This project aims to classify the direction of  

the subjects selective attention. However, we also 
like to classify perception data as a simpler case 
and reference. At the perception side, two types 
of  classification are interesting; The first concerns 
detecting of  the ASSR. The second deals with 
detecting and classifying the stimulus that is 
presented to the subject.

Table 3 shows the contrasts that were examined: 
in the ASSR detection set four contrasts are 
explored and in the tone detection set two. For the 
classification of  the attention data two contrasts are 
available.

Discriminant Analysis
Classification is done by applying discriminant 

analysis. To distinguish between both classes the 
algorithm fits a quadratic curve to the data. The 

Feature Description
R & I real and imag. parts of  FT at bins of  

interest
Rn & In real and imag. parts of  FT at bins of  

interest normalized to unit-circle (ie. phase)
Po Power of  FT at bins of  interest
Phi & Po Phase and power at frequency of  interest
Phi Phase at frequency of  interest

Table 2. Overview of the features that were examined.

Figure 7. Two methods of calculating power spectra: averaging in the time domain 
vs averaging in the frequency domain.
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calculation of  the parameters of  the curve occurs by 
fitting multivariate normal densities with covariance 
estimates stratified by class. After calculation of  the 
parameters likelihood ratios are calculated to assign 
observations to a class. 

To prevent overfitting a leave-N-out cross-
validation is used. This method works as follows: 
First the data is split randomly in 85% training-data 
and 15% testdata. Then the classifier is trained with 
the training-data, which is followed by classifying 
the test-data by the trained classifier. Then the error 
rate is calculated, by calculating the percentage 
of  misclassified samples. To obtain a robust 
classification-rate the whole procedure is repeated 
twenty times, delivering twenty classification-rates. 
The mean of  these classification-rates is than taken 
as the crossvalidated-error-rate.

Combining trials
To improve the accuracy of  the classification 

multiple trials can be combined. In table 4, three 
methods for combining trial data are proposed.

The first method constructs a mini ERP by 
averaging the data over multiple trials. Main advantage 
of  this method is that it has increased sensitivity for 
evoked oscillations. By the process of  averaging, 
oscillations which are not phase-locked cancel out 
each other, while phase locked oscillations persist. 
Detection of  the ASSR might benefit from this 
method as the ASSR implies phase locking.

The second method concatenates the data. In this 
case only the interval in which the ASSR is at steady 
state is used. As the length of  the signal increases the 
frequency resolution can improve.

The third method combines the single-trial 
output of  the classifier. The classification algorithm 
calculates for each single trial the probability that 

the sample stems from one of  the classes. These 
probabilities are multiplied over trials and the class 
with the highest probability is selected. 

2.6 Statistics

To test whether the classifier performed above 
chance level a statistical test was introduced. 
Statistical testing is complicated because we have to 
deal with a multiple comparison problem, as there 
are 256 electrodes.

The null-hypothesis (H0) we tested stated that 
none of  these electrodes had a classification rate 
that exceeded chance level (e.g. 0.5). The alternative 
hypothesis stated that there was at least one electrode 
that performed better than chance level, thereby 
implying that the best electrode we found performed 
above chance level. These hypotheses lead us to take 
the maximum classification rate as test-statistic.

In the next example this principle will be 
explained: Suppose the maximum classification rate 
over all electrodes is c. How likely is this finding 
under the null-hypothesis? 

The probability that we find, in one electrode, 
a maximum classification rate (c) that does not 
exceed x can be found by calculating the value of  
the cumulative distribution function at x: 

� 

p c < x( )= P x( )	 (5)

where 

� 

P x( )= p y( )dy
−∞

x

∫ , which is known as the 
   	 		
cumulative distribution function (CDF).

The probability that none of  the 256 electrodes 
have a maximum classification rate that exceed c can 
be calculated as:

� 

p max
i∈(1,256)

ci < x( )= P x( )256
 	 (6)

If  we take the complement of  this value, we 
find the p-value that is associated with a maximum 
classification rate of  x or higher. Unfortunately the 
calculation of  P(x) is complicated. The cumulative 

Perception Attention
ASSR  detection Tone detection Attention detection
c1m1 vs c1m2 (f1 Hz)
c1m1 vs c1m2 (f2 Hz)
c2m1 vs c2m2 (f1 Hz) 
c2m1 vs c2m2 (f2 Hz)

c1m1 vs c2m2
c1m2 vs c2m1
 

a1c1m1c2m2 vs a2c1m1c2m2
a1c1m2c2m1 vs a2c1m2c2m1

Table 3. Contrasts used in the classification. In total, two carriers and two 
modulators were examined. c=carrier frequency (c1=1000 Hz, c2=463 
Hz), m=modulator frequency (m1=42 Hz, m2 32 Hz), f=analysis-frequency 
(f1=42 Hz, f2=32 Hz), a=attention (ax=attention on carrier x) (e.g. c1m1=a 
1000 Hz tone, modulated with 42 Hz).

Method Characteristics
Mini-ERP Not phase locked oscillations cancel out
Concatenate Improved frequency resolution
Probabilities Applicable for any classification method
Table 4. Methods of combining trials.
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distribution function (CDF) under the null-
hypothesis is not very trivial. One would assume 
that classification of  random data (as is done under 
the null-hypothesis) would generate a binomial 
CDF; however this turned out to be not the case. 
Apparently the training of  the classifier, as was done 
in the crossvalidation procedure, contradicts the 
standard assumptions. Therefore we estimated the 
H0-CDF by repeating the classification 5000 times 
with random data.

3. Results

3.1 Classification

The main goal of  this study was to classify the 
direction of  the subjects auditory selective attention. 
However, in order to examine the proper analysis-
protocol we first investigated the classification of  
the perception data.

3.1.1 Perception

ASSR detection
First we examined the detection of  the presence 

of  the ASSR. Table 5 shows the results of  this 
ASSR-detection, for the two ASSR-frequencies used 
in this study.

The table represents single-trial classification. 
For each feature the percentage of  correct classified 
trials is given for the best channel. 

From the table multiple findings can be extracted:
First one can say that single trial-ASSR detection is 
good: For the best feature, classification rates range 
from 0.625 to 0.816 percent correctness. Overall, 
detection of  the ASSR is best at the low carrier-
frequency, and interestingly there is an interaction 
effect of  carrier and ASSR. At the low carrier, the 42 
Hz ASSR is equally detectable as the 32 Hz ASSR, 
whereas at the high carrier the 42 Hz ASSR carrier is 
better detectable than the 32 Hz ASSR.

Second one can see that R&I is the best feature. 

Classification with phase information leads to better 
results than classification on power. Detection with a 
feature that combines phase and power information 
is superior. Figure 8 shows the details of  the 
classification of  the 42Hz ASSR in one channel 
(D18, on top of  the auditory cortex). The upper plot 
shows the classification based on feature R&I, the 
lower panel shows Phi&Po. The algorithm assigns 
the red surface to c2m1 and the blue to c2m2. As 
expected the curvature that splits the surfaces is a 
parabola.

The dotted lines in figure 8 represent the border 
of  the four quadrants in a polar plot. It can be clearly 
seen that the red dots are more clustered than the blue 
dots. That is, the phases of  the ASSR oscillation are 
more tightly locked to the stimulus than the phases 
of  the non-ASSR oscillation. The classifier uses this 
information by assigning 1.5 quadrant to the ASSR 
while assigning the rest of  the quadrants to the non-
ASSR-oscillations. Also power information is used 
by the classifier. In general oscillations with low 
power are classified as non-ASSR, while oscillations 
with a large power are classified as ASSR. 

Figure 9 shows a topoplot of  the classification 
rates of  the two different ASSR’s on the two different 
carriers. For carrier 1 (463 Hz, left subplots) no clear 
location pops out, however for carrier 2 (1000 Hz, 
right subplots) classification is best in rightfrontal 
regions.

As explained in the Material and Method section 
combining information over trials may raise the 
accuracy of  classification. In this study three methods 
of  combining trials were investigated. In figure 10 
the performance of  these methods are plotted. It 
can be seen that all methods are effective in raising 
the performance of  classification. Classification-
rates of  the ASSR on carrier 2 even almost get to 
100%. That means that only six trials are needed to 
detect whether or not there is an ASSR elicited. The 
methods are almost equal in performance. 

ASSR Contrast Features
R & I Rn & In Phi & Po Phi Po

42 Hz c1m1 vs c1m2 0.696* 0.684* 0.700* 0.705* 0.636*
c2m1 vs c2m2 0.816* 0.782* 0.795* 0.780* 0.729*

32 Hz c1m1 vs c1m2 0.625 0.623 0.618 0.604 0.593*
c2m1 vs c2m2 0.807* 0.764* 0.795* 0.775* 0.730*

Table 5. Classification rates of the perception data. c=carrier frequency (c1=1000 Hz, 
c2=463 Hz), m=modulator frequency (m1=42 Hz, m2 32 Hz), (e.g. c1m1=a 1000 Hz 
tone, modulated with 42 Hz)( * p < 0.05).



Nijmegen CNS | VOL 2 | NUMBER 1 11

Michiel Kallenberg

Figure 8. Details of the classification of the 42 Hz ASSR in channel D18 (above the auditory cortex).

Figure 9. Topoplots of the accuracy of the classification of the ASSR. On the left side carrier 1 (463Hz) is 
showed, on the right side carrier 2 (1000Hz). For carrier 1 no clear location pops out, however for carrier 2 
classification is best in rightfrontal regions.
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Tone detection
Next to ASSR detection, detection of  the tone 

is interesting. In tone detection two contrast are 
available. In each contrast two ASSR’s are present, 
one on the first tone and one on the second tone. 
Therefore in classification one can select features on 
three levels: either from one of  the two ASSR’s or 
from both. 

Table 6 shows the single-trial performance of  the 
tone detection for the best channel. In both contrasts 
the tones are correctly classified in approximately 
80 percent of  the cases. In contrast c1m1 & c2m2 

tones are best classified if  one uses the parameters 
of  both ASSR’s. However in the contrast c1m1 & 
c2m2 classification is best if  one only looks at the 
42 Hz ASSR, which is on carrier 2. R&I is the best 
feature.

3.1.2 Attention

Table 7 shows the results of  the classification 
of  the attention data. The table shows single 
trial classification for the best channel. Overall 
performance is moderate. For the best feature 
classification rates ranges from 0.571 to 0.691.
Interestingly the combination c1m2&c2m1 yielded 
better results than c1m1& c2m2. Classification rates 
are highest when the features are selected for both 
ASSR’s. For the combination c1m1&c2m2 n. R&I is 
the best feature. This feature represents the phase of  
the oscillation, plotted in the complex plane. For the 
combination c1m2&c2m1 R&I is the best feature. 

Figure 11 shows the topoplot of  the classification 
rates of  the best feature for the two different 
contrasts. For the combination c1m1&c2m2 no clear 
location pops out. For the combination c1m2&c2m1 
however, clusters are detectable. High classification-
rates are found in the electrodes located above the 
auditory cortices.

Figure 10. Combining trials. Three methods of combining 
trials were investigated. All methods are effective in 
raising the performance of classification.

Tone Freq Features
R & I Rn & In Phi & Po Phi Po

c1m1 vs 
c2m2

42 Hz (c1) 0.709* 0.689* 0.689* 0.678* 0.631*
32 Hz (c2) 0.780* 0.756* 0.750* 0.752* 0.693*
42, 32 Hz 0.791* 0.776* 0.817* 0.769* 0.726*

c1m2 vs 
c2m1

42 Hz (c2) 0.797* 0.771* 0.788* 0.755* 0.733*
32 Hz (c1) 0.666* 0.655* 0.621 0.669 0.609
42, 32 Hz 0.784* 0.788* 0.779* 0.771* 0.719*

Table 6. Single-trial-performance of the tone detection (perception data). c=carrier 
frequency (c1=1000Hz, c2=463 Hz), m=modulator frequency (m1=42 Hz, m2=32 Hz) 
(* p < 0.05). 

attention
a1 vs a2

freq Features
R & I Rn & In Phi & Po Phi Po

c1m1&c2m2 42 Hz 0.571 0.605 0.595 0.592 0.586
32 Hz 0.588 0.600 0.585 0.582 0.585
42,32 Hz 0.582 0.611 0.580 0.597 0.556

c1m2&c2m1 42 Hz 0.647* 0.642* 0.635* 0.644* 0.610
32 Hz 0.592 0.613 0.610 0.584 0.603
42,32 Hz 0.679* 0.653* 0.621 0.629 0.626*

Table 7. Accuracy of single trial-classification of attention data. a=attention, c=carrier 
frequency, m=modulator frequency (* p < 0.05).



Nijmegen CNS | VOL 2 | NUMBER 1 13

Michiel Kallenberg

3.2 Bit rate

Figure 12 shows the bit rates that we achieved 
in a BCI. For single trial classification the bit rate is 
3.78 bits/min, for c1m2&c2m1 and 0.78 bits/min, 
for c1m1&c2m2.

As described in the Materials and Method 
section combining trials may raise the bit rate. Three 
methods of  combining trials were investigated: the 
mini-ERP, concatenation, and probabilities.

For each contrast combining trials raised the 
accuracy of  the classification; however the effects 
on the bit rate are mixed, due to the longer time it 
takes to classify. For c1m2&c2m1 combining trials 
decreased the bit rate, whereas for c1m1&c2m2 
combining trials had a positive effect on the bit rate. 
For this combination, the best result was reached 
when the method of  combining probabilities was 
chosen. The combination of  three trials yielded a 

classification rate of  71%, which results in a bit rate 
of  1.62 bits/min.

4. Conclusion and discussion

This study focused on the use of  auditory 
selective attention as a method for a Brain Computer 
Interface. Our hypothesis was that in the EEG, 
amplitude and/or phase of  a frequency tagged tone 
alters if  a subject focuses on this tone.

As a result we can classify on which of  two tones 
a subjects focuses. Frequency tagging is done by 
amplitude modulation.

Before we examined the effect of  attention, we 
examined the perception data as a reference. The 
results will be discussed in the same order. Finally, 
we will discuss the resulting BCI. 

Figure 11. Topoplots of the classification-rate of the attention-data. For the combination c1m1&c2m2 no clear location 
pops out. For the combination c1m2&c2m1 a cluster is detectable above the auditory cortices.

Figure 12. Bit rates. Combining over trials has a positive effect on c1m2&c2m1; for c1m1&c2m2 the bit rate drops.
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4.1 Perception

On the perception data we performed two 
analyses: the first considered the detection of  the 
ASSR, the second considered the classification of  
the perceived tone. Detection of  the ASSR was best 
at the low carrier frequency (463 Hz), while the 42 
Hz am-frequency performed better than the 32 Hz 
am-frequency. The latter finding was not surprising: 
similar results were reported in the literature.

However, the role of  the carrier frequency 
is more controversial. Ross et al [20] showed that 
the amplitude of  the ASSR is maximal at higher 
carrier frequencies, while John et al [5] showed the 
opposite.

The best feature was the real and imaginary 
parts of  the FFT in the am-bin. Features based 
on phase information were (slightly) better than 
features based on power, thereby suggesting a role 
of  the phase-resetting hypothesis in the generation 
of  an ASSR. Electrodes above right-frontal regions 
performed best in the classification of  the ASSR. 
IntERPretation of  this finding is difficult as 
classification rate does not simply reflect potentials, 
or power of  an oscillation, thereby making source 
estimation less trivial. However in figure 4.1 it was 
argued that a good electrode-performance reflects 
the detection of  an increase in power or the phase 
reset of  an ongoing oscillation. If  we model the 
ASSR as a dipole, electrodes that picks up currents 
that results from this dipole will therefore show 
a good classification rate. Therefore one could 
argue that the source of  the ASSR lies underneath 
the electrodes that performed well, although the 
orientation of  the dipole is of  importance. 

Often the ASSR is modeled as a dipole originating 
in the primary auditory cortex. Regardless of  whether 
a tone is presented to one ear or both, the ASSR 
is elicited in both hemispheres. Our data differed 
slightly from this finding, because topological 
symmetry was not complete. However, deviations 
were small.

Tone detection was best if  one extracts the 
features from carrier 2.

4.2 Attention

Classification of  the attention data was much 
harder than classification of  the perception data. 
Maximum classification-rate was 0.691 for single trial 
classification in the best channel. The combination 
c1m2 & c2m1 yielded better results than the 
combination c1m1 & c2m2.

Interestingly, a parallel between perception and 
attention can be seen here: In perception data we 
saw that the best results were obtained by the ASSR 
on the low carrier (c2). Besides, the 42 Hz ASSR 
(m1) was better detectable than the 32 Hz ASSR 
(m2). Now, in the (superior) combination c1m2 & 
c2m1 the best carrier (c2) carried the best am (m1), 
whereas in the combination c1m1 & c2m2 the best 
carrier (c2) carried the weakest am (m2). Apparently 
an attention effect is best detected when an ASSR 
effect is strongest.

Attention effects were largest in electrodes on 
top of  the auditory cortex. This finding supported 
results found by Muller et al. [17] and Ross et al. 
[21].

4.3 Evaluating the BCI

As stated in the introduction the most important 
criterion to compare BCI-systems is the bit rate. If  
our experiment is implemented in a BCI, we expect 
a BCI a bit rate of  3.78 bits/min.

This bit rate is moderate compared to state-
of-the art-BCI-systems –which operates with a bit 
rate of  20 bits/min– 3.78 bits/min. However as we 
will show later, in this system there is room left for 
improvement.

To date there is only one more BCI system that 
uses auditory selective attention. [3] In this system 
a bit rate of  the same range was found. A second 
criterion to evaluate the BCI-system is the amount 
of  training that is needed. Pilot studies showed that 
directing attention on one tone does not require a lot 
of  training. In this study, subjects were not trained.

4.4 Recommendations

As stated before, there may be enough room 
left to improve current BCI-system, although doubt 
is raised whether the effect of  attention will be 
large enough to be classified at a signal trial level. 
Improvements can be made by adjusting the stimuli, 
the classification methods and the system.

4.4.1 Stimuli

In the current experiment stimuli were presented 
by passive loudspeakers at some distance and angle 
from the subject. As a result, even tough tones were 
separated in space, each tone could reach both ears. 
Consequently, the brain was confronted with both 
an am tone and a phase delayed copy of  that am 
tone. Possibly these signals could interfere thereby 
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obscuring the ASSR. Presenting the stimuli by a 
headphone would overcome this issue.

The deviant that subject had to detect differed 
from their standards by means of  its amplitude. As 
suggested by Ross et al. [22] this type of  deviant might 
distract the subjects attention from the modulation. 
As a result ASSR effects might be diminished. Better 
results might be obtained if  one designs a deviant 
that differs in amplitude modulation.

Another option to improve the bit-rate of  the 
BCI system is to present more concurrent stimuli 
in one trial, or to use shorter tones. By increasing 
the number of  tones the subjects can select from, 
the amount of  information that can be transferred 
in a single trial will increase. It is important however 
that classification rate does not drop. From previous 
experiments it is known that am-tones with carrier 
frequencies separated more than an octave do 
not interfere. If  the am frequency is in the higher 
frequency bands (80 Hz) the carrier frequencies 
can even be separated less. am frequencies are less 
susceptible to interference, however it is advisable to 
keep them well separated. If  the am frequencies are 
too close, one has to design sharp bandpass-filters of  
inferior quality. Moreover the frequency resolution 
has to be high, which can only be established by 
analyzing over long time periods, which drops the 
bit-rate. In stead, the aim is to use shorter tones 
thereby increasing bit-rate.

4.4.2 Feature extraction and classification

In the current experiment features were extracted 
by taking the FFT of  the ASSR’s steady-state-
period after which the real and imaginary parts were 
selected in the am-frequency-bin. However in this 
approach temporal information is lost, as we used 
a fixed, non sliding time window. Time-frequency 
analysis (TFA) is able to solve this problem. In the 
ASSR-literature mainly two TFA-methods are used: 
complex demodulation and the Hilbert transform. 
Applying those methods might lead to better 
feature-design and therefore bit-rate may improve. 
Better results can also be obtained by combining 
data of  multiple channels. Currently, features and 
classification are solely based on data of  one channel. 
Channel-data can be combined on three different 
levels: the signal, the feature and the classification 
level. An improvement on the signal level would 
be source analysis. This could be done by dipole-
modeling, as has been successful in other ASSR-
studies. Applying beamforming methods, as has 
been done in tactile frequency tagging experiments, 
might not function for auditory experiments, as 

we are dealing with correlated sources. Combining 
channels on the feature level would imply a feature 
like inter-channel correlation. Channel combination 
on the classification level refers to methods in which 
for instance a certain number of  channels should 
have classified the trial as class A to assign class A 
to the trial.

4.4.3 System

The current BCI-system may be improved by 
using more modalities. For instance one can combine 
the system with a tactile paradigm. Recently a tactile 
BCI was developed by Hupse et al.[4]. The BCI 
they developed also operated with frequency tagged 
stimuli.

A combination with visual stimuli may also 
function. Also in this domain it has been shown that 
(spatial) selective attention has an effect on frequency 
tagged stimuli [16],[18].

4.5 Conclusion

To conclude, in perception data classification of  
the ASSR was possible at a single trial level. Best 
feature was the real and imaginary parts of  the FFT 
at the bin in which the frequency of  the frequency 
tag was represented. Best classification rates were 
found in midfrontal regions. For attention data 
classification rates were moderate, resulting in a bit 
rate of  3.78 bits/min.

Auditory selective attention on frequency tagged 
tones therefore seems to be a moderate method for 
a BCI, however there are possibilities left to improve 
the system. To draw final conclusions, though, these 
possibilities should be tested in a follow up study 
including more subjects.
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