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Editorial

From the Editors-in-Chief of the 								      
CNS Journal

Dear Reader,

We are pleased to present the second issue of  the sixth volume of  the Proceedings of  the Master’s Programme 
Cognitive Neuroscience of  the Radboud University. The increase in high quality research being conducted in 
the Master’s programme in the 2010/2011 academic year, has resulted in the publication of  a second issue. 
We are very proud to have contributed to this new milestone and to present for the first time in the history of  
the CNS journal a second issue published in a single academic year. This journal is unique not only because it 
is exclusively run by students but also because it strives to follow the publishing procedures of  highly-ranked, 
professional scientific journals.

This issue continues a tradition that was introduced six years ago by students in the Research Master’s 
Cognitive Neuroscience at Radboud University. The journal is an important outlet for the research conducted 
by students in the Master’s programme and gives them the opportunity to develop writing, editing and 
reviewing skills. This experience with academic publishing is an important asset for young researchers 
entering the scientific community and complements the first-rate training in cognitive neuroscience and 
valuable hands-on research experience offered by the interdisciplinary Master’s programme at Radboud 
University.

In this issue you will find articles that cover a variety of  scientific topics and methodologies: genetics, 
immunohistochemistry, brain-computer interface and pharmacology. This selection of  theses showcases the 
diversity of  neuroscientific research carried out at Radboud University. In addition, in this issue you will find 
the abstracts of  all articles submitted this year. A complete version of  these articles can be found on our 
website: www.ru.nl/master/cns/journal.

This issue is the culmination of  the dedication and hard work of  the authors, reviewers, and all members 
of  the journal committee. We would like to thank them cordially for their contribution to the realization 
of  the journal you are now holding in your hands. We hope that you will share our excitement and pride 
after reading it. We wish you a pleasant journey through the pages of  this journal and through the world of  
cognitive neuroscience!

On behalf  of  the CNS Journal board we thank you for your interest in the CNS Journal.

Klodiana-Daphne Tona & Flora Vanlangendonck
Editors-in-Chief
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Editorial

From the Director of the Donders Centre 
for Neuroscience

Dear Reader,

You are holding the newest issue of  the Proceedings of  the Master’s Programme Cognitive Neuroscience 
in your hands. This serious scientific journal, which already pre-published numerous influential articles in 
high-profile journals over its six years of  existence, is initiated and edited by students only. The educational 
aim is to understand scientific publishing as a comprehensive process. It entails not only the side that an 
ordinary scientist sees when writing, submitting, and revising a manuscript, it also includes the side of  the 
editor covering reviewer selection, assessing response letters, selecting the articles, and handling the entire 
production process. Beside this crucial educational emphasis, each and every issue of  this journal is an 
achievement that all authors and editors are rightly proud of. There is a nice tradition that editorial board 
members hand over a copy or two of  the Proceedings to guests of  the Donders Institute. The responses are 
overwhelmingly positive. For instance, John Gabrieli (MIT) told me later that he was truly impressed by the 
professionalism of  the journal and the quality of  the research published therein.

And now the second issue of  the sixth volume is published. It is again a pleasure to see how it continues to 
strive for scientific quality while showing the diversity of  neuroscientific research at the Donders Institute. 
The research presented pulls research fields into the focus of  cognitive neuroscience that where recently 
still at its periphery at best. This issue contains papers reporting neurocognitive research on brain-computer 
interfaces, pharmacology, genetics, and mitochochondrial biology . Neuroscience is by its nature multi- and 
interdisciplinary, but this breadth of  approaches with a stringent focus on our four research themes is a 
unique feature of  the Donders Institute and its Graduate School perfectly presented in this issue of  the 
Proceedings. However, it is important to note that scientific publishing is a selection process and many 
manuscripts that were rejected from this journal describe also high-quality research that will be visible in 
other scientific journals soon.

Finally, I would like to congratulate and thank every author, referee and editor. You are making an important 
contribution to the distinguished esteem that the Donders Institute and its Graduate School has achieved.

Enjoy reading this “preview” - coming soon to a top journal near you! 
All the best,

Guillén Fernández
Director of  the Donders Centre for Neuroscience
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Brain-Computer Interfaces with User Chosen Features 
- A Free BCI

	 Jörn M. Horschig
Supervisors: Rutger Vlek 1,2, Peter Desain 1,2

	 1 Donders Institute for Brain, Cognition and Behaviour, Centre for Cognition, Nijmegen, The Netherlands
2 Radboud University, Nijmegen, The Netherlands

In brain-computer interface (BCI) research, two approaches can be distinguished. Either the experimenter 
explicitly instructs the user to perform a certain mental task that evokes a known brain activity, or the user 
has to implicitly learn how to control a feedback signal that represents aspects of  his brain activity. Both 
these approaches suffer from inter-subject and inter-session variability. A particular case of  inter-subject 
variability is BCI illiteracy, the problem that some subjects cannot produce the brain activity needed to 
control conventional BCI paradigms. We will show an approach that aims to improve current BCI approaches 
in these regards. In a single session experiment, users are presented rich feedback representing a manifold 
feature space. Users can freely find controllable aspects in this complex feedback environment without 
explicit task instruction. This is statistically verified with a binary regularized kernel logistic regression and 
yields classification rates significantly different from chance for five out of  eight users (p<.01). However, we 
also show that subjectively important aspects of  the feedback do not match objectively important aspects in 
the feature space, leading to the necessity of  mutual adaptation for future studies. Freeing users from rigid 
task instructions, and hence allowing dynamic and mutual interaction within the system, might be a way to 
overcome BCI illiteracy.

Keywords:	free bci, user centered, user-customized, rich feature bci, brain-computer interface, self-regulation, neurofeedback, user adaptation, 
operant conditioning
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1. Introduction
 
Learning to control a brain-computer interface 

(BCI) means learning to voluntarily produce 
detectable patterns of  brain activity without using the 
peripheral nervous system (cf. Wolpaw et al., 2000). 
Brain activity is recorded invasively or non-invasively 
using techniques like electrocorticography (ECoG) 
or electroencephalography (EEG), respectively. 
While invasive methods have a much better signal-
to-noise ratio, thus a better signal to work with, there 
is a risk of  tissue damage, and hence impairing brain 
functioning (see Haselager, Vlek, Hill & Nijboer, 
2009). This paper and all cited papers are on non-
invasive BCIs using EEG unless stated otherwise. 

In both approaches, the recorded brain activation 
patterns are sent to a computer that processes and 
interprets this data to produce some control signal. 
Various external output devices can be connected 
to that computer, like a robot arm (Bell, Shenoy, 
Chalodhorn & Raod, 2008), a computer screen 
visualizing the control signal for example as done in 
a P300 speller (Farwel & Donchin, 1988) or in form 
of  a mouse cursor (McFarland, Krusienski, Sarnacki 
& Wolpaw, 2002). Patients who have lost or will lose 
control of  their muscular system, as for example in 
amyotrophic lateral sclerosis, may benefit most from 
brain-computer interfacing as a new communication 
channel. 

In contrast to learning other, more natural skills 
like body movements, there is no inner sense for 
producing detectable brain patterns. Therefore, 
perceptual senses such as vision or audition have 
to be exploited here: Through extrinsic feedback 
provided by the experiment the user can understand 
when his brain patterns are detected. This way, users 
can successfully learn to control a BCI and adapt 
their mental strategy according to the extrinsically 
provided feedback. 

Learning and adaptation can both be explained 
using a reinforcement model, that is, by computing 
an error signal that compares the result of  an action 
with the goal to be achieved. The human body 
utilizes feedback control systems that control for 
the status of  the current behavior and the goal in an 
online manner, that is, correcting for errors during 
performance (see Desmurget & Grafton, 2000). 
For example, in neuromuscular control feedback is 
provided by internal muscle senses (proprioceptive 
feedback and kinesthesis) as well as visual feedback. 
In contrast to visual feedback, proprioceptive 
feedback and kinesthesis exclusively use pathways 
within the central nervous system and are therefore 

considerably faster than pure visual feedback, leading 
to improved learning and faster adaptation. For a 
more detailed description of  the neuromuscular 
system see Scott (2003).

From early life on, people learn and adapt to 
their environment and its behavior by making use 
of  feedback signals. One popular example is how 
babies learn to speak. Infants learn to produce 
speech sounds by imitating perceived sounds – a 
process that is called babbling (Oller & Eilers, 1988). 
A very similar mechanism applies when infants learn 
to control body movement through body babbling 
(Meltzoff  & Moore, 1997). Here, a key claim is 
that the infant performs imitation with the help of  
an active feedback loop. This feedback serves as a 
matching-to-target process by an error signal, that is 
encourages the infant to imitate as good as possible.

In brain-computer interfacing, extrinsically 
provided feedback is the only source of  information 
for the users about their performance. In learning to 
control a device with brain activity, two approaches 
can be distinguished: Explicit and implicit paradigms. 
The implicit paradigm is also called neurofeedback. 
In the neurofeedback approach, a feedback signal 
is based on some single feature of  the recorded 
signal, for example, a horizontal bar that extends 
or contracts according to the ratio of  power in 
frontal theta-band (4-8 Hz) and frontal beta-band 
(12-20 Hz) (Leins et al., 2007). The subject has no 
explicit task except trying to control the presented 
feedback. This means that the user implicitly learns 
to create a pattern of  brain activity that evokes a 
suitable response in the presented feedback. In this 
approach, subjects learn to regulate their electrical 
brain activity in as few as five to seven sessions 
(Walker, 2010). A session usually lasts between one 
hour and half  a day. After learning, subjects can 
voluntarily and reliably control the feedback signal. 
Such implicit learning of  control over an output 
signal related to own (mental) actions resembles a 
very intuitive way of  learning – similar to babies 
learning through (implicit) babbling.

In contrast to the neurofeedback approach, the 
experimenter can also specify a mental task explicitly. 
Such mental tasks are known to elicit reliable patterns 
of  brain activity, though with individual difference. 
For example, an imagined arm movement usually 
elicits a two-folded pattern in the beta-band. On 
the hemisphere contralateral to the movement side, 
an event-related desynchronization (ERD) occurs, 
that is a decrease in power in this frequency band. 
In contrast, on the ipsilateral hemisphere, there is 
an event-related synchronization (ERS), that is 
an increase in power. Both the ERD and the ERS 
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are located around the subject’s motor cortex 
(Pfurtscheller & Lopes da Silva, 1999). Most users 
can learn to control an ‘explicit’ BCI in a single 
session due to explicit task instructions and machine 
learning algorithms that adapt to the user specific 
brain activity pattern. 

Few approaches combining the explicit with the 
implicit approach to BCI have been attempted so far. 
In Wolpaw and McFarland’s study (2004), users had 
to implicitly learn to control a mouse cursor on a 
computer screen. The cursor position was controlled 
by explicit experimenter-defined features of  the 
user’s brain activity. However, this control signal was 
based on features usually obtained from imagined 
movement. Accordingly, subjects reported that they 
exploited imagined movements in the beginning 
of  the experiment, but could control the cursor 
implicitly during the course of  the experiment, 
without giving a clear report on how they were doing 
this. This study consisted of  two to four half  hour 
sessions a week, in total 22 to 68 sessions. Congedo, 
Lubar and Joffe (2004) presented a feedback signal 
based on a complex function of  the raw power 
measurements of  the alpha and beta bands. These 
two features can be modulated by explicit tasks, i.e. 
relaxation and motor related behavior. Users were 
trained with an implicit learning paradigm and were 
able to enhance beta and slightly suppress alpha 
activity near the anterior cingulate cortex in as few 
as six sessions. 

While extracranial EEG BCI experiments 
focus on learning a single feature in isolation or a 
combination of  two features, more complex feature 
spaces were investigated using invasive approaches. 
Miller et al. (2007) and Lachaux et al. (2007) found 
direct correlates of  behavioral paradigms and 
acoustic perception on real time estimates of  the 
frequency spectrum of  brain activity recorded by 
ECoG and intracranial EEG, respectively. Thus, 
time-frequency estimations of  brain oscillations can 
be used as real-time feedback signals in BCI as they 
represent correlates of  (mental) actions– although 
they might be very complex. By feeding back 
comprehensible aspects of  such time-frequency 
correlates, BCI users can learn about the influence 
of  their (mental) actions on the feedback. 

Despite huge advances in recent years, research 
in brain-computer interfacing is still confronted by 
two problems: inter-subject variability and inter-
session variability. Inter-subject variability describes 
the issue that brain activity patterns vary significantly 
across subjects for a specific mental task. This also 
leads to a significant performance difference across 
subjects, even after more than twenty sessions (e.g. 

Wolpaw et al., 2004). Furthermore, in all known 
BCI approaches, a substantial group of  users 
cannot produce reliable patterns of  brain activity 
– a problem generally termed BCI illiteracy, which 
is a particular case of  inter-subject variability. 
Recently, Vidaurre and Blankertz (2009) claimed 
that BCI illiteracy could be solved by applying 
adaptive machine learning algorithms to reduce 
inter-subject variability. However, the reliability of  
current paradigms is further diminished by inter-
session variability. This variability describes the fact 
that nearly all subjects are unable to reliably produce 
stable brain patterns across sessions. They may 
perform well one day while being unable to produce 
detectable patterns another day. Both these problems 
show that the relation between brain activity patterns 
and mental activity is not fully understood in current 
BCI approaches.

The free BCI presented here tackles the problem 
to either make the (explicit) tasks or (experimenter-
chosen) features more suitable and robust. A 
feature can be any mathematically transformed 
electrophysiological phenomenon; feedback 
represents a set of  features or a feature space. In 
both the explicit and the implicit approaches, the 
user is not involved in selecting the features to 
control the BCI. In a free BCI, users are free  in 
selecting a personal subset of  the presented feature 
space or personal (mental) tasks. They can adapt their 
strategy and decide to focus on a different feature or 
task if  some other strategy does not work. This way, 
users are confronted with their own variability by 
the perceived feedback – a problem similar to those 
naturally faced in life. 

To give users such a high degree of  freedom, 
the feedback must be intuitively understandable and 
cover a high dimensional feature space. We present 
the user with such a rich feedback signal in the 
form of  a color surface-shape (Figure 1). The color 
surface-shape can reflect a multitude of  features, 
varying from induced or evoked responses to higher 
order features like phase coherence. Colors represent 
feature strength. There has been extensive research 
on the validity and influence of  color on task 
performance (Maier, Barchfeld, Elliot & Pekrunn 
2009; Mehta & Zhu, 2009) and quality attainment 
(Elliot, Maier, Moller, Friedman & Meinhardt, 2007). 
The study presented here uses induced power in 
the time-frequency domain over specific frequency 
bands as features. Without any specific instruction 
the user learns to control aspects of  this intuitive but 
complex feedback by changing the shape or  color 
of  areas. He can learn implicitly in a neurofeedback 
manner - but personally select controllable features 
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- or learn explicitly what influence his mental task 
has on the feature space. The user has to recognize 
a stable and regular pattern in the feedback. In later 
stages of  the free BCI project, adaptive machine 
learning algorithms could be applied to adapt the 
feature space to the detected pattern of  brain activity 
of  the user in order to increase quality and usability 
of  the feedback. Note that making the feature space 
more appropriate to the individual user has recently 
been tackled in the BCI2000 project (Schalk, 
Brunner, Gerhard, Bischof  & Wolpaw, 2007). In that 
study, Gaussian mixture models were used to model 
the frequency distribution of  the signal in order to 
obtain user specific features for classification. In the 
free BCI experiment presented here, we leave out 
the machine learning side. We apply a fixed set of  
features and a spatial filter with a fixed topology. 
The here presented study investigates solely how the 
user adapts to a rich feedback space and whether the 
system converges to a stable - and hence usable - 
state.

In this paper, we show results testing the feasibility 
of  the free BCI project. We will test the following 
four hypotheses by a single session experiment:

1.	 We expect all users to gain control over 
the feedback in two distinct ways (two classes) by 

thoughts alone i.e. that users are able to evoke two 
distinct feedback color patterns. We will measure 
this statistically and by subjective user rating. 

2.	 However, the features that the users utilize 
for getting informed about their performance will 
match only partially with statistically important 
aspects of  the feedback. This hypothesis is based 
on Bayliss’ finding (2003) that users’ subjective 
rating of  quality does not necessarily meet objective 
performance criteria.

3.	 In the motor control domain, the guidance 
hypothesis (Maslovat, Brunke, Chua & Franks, 2009) 
states that feedback is necessary to maintain a high 
level of  performance when feedback was provided 
during the training period. Thus, when users are 
not provided with feedback in the testing phase, we 
expect both the subjective performance rating and 
the statistical performance to drop. 

4.	 The predefined feature space reflects user-
specific class information only suboptimally. We 
assume that the statistical difference between the 
two classes will significantly increase when using 
a larger set of  features. Thereby we will show that 
users may benefit from having applied machine-
learning adaption online, which might help the user 
in making the two distinct feedback representations 
maximally different.

In a formal experiment, users, from now on also 
referred to as subjects, start with freely exploring 
how to influence the feedback by mental activity. 
When the subject reports control over the feedback 
in two distinct ways, the experiment continues with 
an instructed part. Here, the subject has to reproduce 
one or the other mental activity and so the feedback 
representation. Subjects report what aspects of  the 
feedback they think they are able to control, which is 
statistically verified in an offline analysis. 

 

2. Methodology
 

2.1 Apparatus and equipment

All experiments took place in an electrically 
and acoustically shielded room to minimize 
environmental noise. We used a Biosemi (BioSemi, 
Amsterdam, The Netherlands, http://www.biosemi.
com) ActiveTwoAD-box amplifier to record 64 Ag/
AgCl active electrodes according to the international 
10-20 system (Klem, Luders, Jasper & Elger, 1999) 
at a sampling frequency of  2048 Hz. Electrode 
offsets were kept below 25mV at the beginning 
of  the experiment. In addition we recorded 
vertical electrooculographic (EOG) activity from 

Fig.1 Feedback presented to the free BCI user. Presented 
features are induced power in the time-frequency domain 
over the last eight trials. The outer ring shows amplitude 
in the time domain of the last trial. Blue means high 
activity, red means low activity. A near-zero or highly 
variable feature value is shown as black color. The 
feedback is updated every second - at the onset of a new 
trial - synchronously to an acoustic stimulus. Time runs 
clockwise starting at 12 o’clock. Low frequencies are on 
the inside of the surface shape. Frequencies increase with 
farther distance from the centre. For detailed information 
see Methodology.
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below and above the left eye and horizontal EOG 
activity at the outer canthi of  the left and right eye. 
Electromyographic (EMG) activity was recorded 
with a bipolar pair at the glottis, similar to the setup 
by Jorgensen, Lee & Agabone, 2003. Additionally, 
an accelerometer for detecting head movements was 
attached between the central channels labeled ‘Cz’, 
‘CPz’, ‘CP1’ and ‘C1’ according to the international 
10-20 system. 

As recording software ActiView (BioSemi, 
Amsterdam, The Netherlands) was used. All other 
analyses were carried out in Matlab, with toolboxes 
BrainStream (http://www.brainstream.nu) for 
experiment management, Psychtoolbox (Brainard, 
1997; Pelli, 1997) for stimulus presentation and 
FieldTrip (Oostenveld, 2010) for data analysis. 
BrainStream and FieldTrip are open source toolboxes 
for Matlab developed at the Donders Institute for 
Brain, Cognition and Behaviour, Nijmegen, The 
Netherlands.

2.2 Subjects

We recruited eight subjects, five male and three 
female between 23 and 54 years. All subjects were 
right-handed and had normal or corrected to normal 
vision. All but one subject were free of  neurological 
disorders and medication. Subject 8 had an attention 
deficit hyperactivity disorder and was medicated 
by methylphenidate. He had no previous BCI 

experience, while all other subjects had BCI research 
experience of  a few months up to several years. 
2.3 Subject instructions

Before the experiment started, all subjects asked 
to fill out a form with general details about age, 
handedness, possible disorders, medication and BCI 
experience. Next, they were comfortably seated in 
the experiment room on a chair placed at a distanced 
of  approximately 50 cm from a 17 inch computer 
screen. During the cap fitting procedure, subjects 
viewed a tutorial that explained the setup and goal 
of  the experiment. They were instructed to create 
patterns in the feedback color representation that 
were as distinct as possible. The goal was to gain 
control over the presented feedback in two different 
ways (classes) using thoughts alone.

2.4 Experimental procedure

The experiment consisted of  one session, 
subdivided into five blocks; one free exploration 
block, the length of  which was decided by the 
subject, and four verification blocks lasting 
approximately 7.5 minutes (see Figure 2). A trial 
lasted one second and its beginning was indicated 
by an acoustic stimulus (metronome click). For the 
first five subjects, a baseline recording of  32 trials 
preceded every block. For all other subjects, there 

Fig. 2 Experimental setup. Subjects began a free exploration phase and indicated when they were able to control some 
of the features, i.e. a new class was found. Then, we instructed the subject to reproduce two found classes in a specific 
randomized order (‘sequence’). This allowed verifying that they could indeed intentionally control the newly discovered 
mental task. After each sequence, the participant had to report his subjective sense of control. 
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was only one baseline recording preceding the free 
exploration block. In the free exploration block, the 
subject got acquainted with the feedback and then 
had to find two methods that made the feedback 
as distinct as possible. When the subject found 
a way (class) to control the feedback, he or she 
indicated this by pressing a button. When the subject 
ended the block, we presented screenshots of  the 
representations of  the found classes in which the 
subject had to indicate the major areas of  difference 
in the two chosen classes.

The verification blocks consisted of  randomly 
instructed sequences of  either one of  the individual 
classes. A sequence lasted 32 trials. As an additional 
factor, the feedback was turned off  in half  of  
the sequences, resulting in a 2x2 factorial design 
(mental task x feedback on/off). Each of  these four 
conditions was tested three times per block. Thus 
per block 384 trials were collected, that is 96 trials 
per condition. In total, 1536 trials were collected, 
384 per condition. Due to technical problems, the 
data for Subject 1 consists of  only 352 trials per 
condition, so one sequence less.

After every block, subjects had to fill out a 
questionnaire, in which they reported their level of  
arousal, excitement and motivation. Additionally, 
they had to indicate which areas of  the feedback 
they believed they were controlling and reported 
their feeling of  control on a scale from 1 to 5, where 
1 meant total randomness and 5 meant total control 
over some aspects of  the feedback 

2.5 Timing

Accurate timing was guaranteed by using 
Psychtoolbox, optimized for precise timing in 
psychophysical experiments using OpenGL (www.
opengl.org) for graphic representation and OpenAL 
(http://connect.creativelabs.com/openal) for audio 
playback. Corresponding to the trial length of  one 
second, the feedback was fully updated once every 
second. The beginning of  a trial was indicated by 
an auditory cue (a metronome click), synchronized 
with the visual update. The onset of  a new trial, and 
so of  the metronome click, corresponded to the 12 
o’clock position in the feedback representation. 

2.6 Signal preprocessing

The signal preprocessing steps leading to the 
visual feedback presentation (Figure 3) were based 
on the work of  Vlek and colleagues (Vlek, Schaefer, 
Gielen, Farquhar and Desain, 2011). Bad channels 

were identified from the raw EEG signal for each 
trial with an algorithm sensitive to four properties. 
Initially, any channel with a DC offset exceeding 30 
mV was marked as ‘bad’, as well as channels with a 
power exceeding 3500 µV2 in the 50 Hz band (45 
to 55 Hz) or a maximum derivative larger than 200 
µV/sample. Horizontal and vertical EOG channels 
were band-pass filtered between 0.2 and 15 Hz and 
decorrelated from the EEG (Schlögl et al., 2007), 
thus removing eye drifts or blinks if  present. The 
raw EEG signal, originally sampled at 2048 Hz, was 
temporally downsampled to a sampling frequency 
of  256 Hz. Additionally, as a fourth property for 
identification of  bad channels, within-trial variance 
was computed and channels exceeding a variance 
of  2000 µV2 were marked ‘bad’. Bad channels were 
reconstructed by interpolation from the remaining 
good channels with a spherical spline interpolation 
algorithm (Perrin, Pernier, Bertrand & Echallier 
1989). The interpolation step was motivated by 
the intention to provide continuous feedback at 
all times with a stable number of  channels. Data 
was re-referenced to a common average reference 
and linearly de-trended. The same preprocessing 
was used for all subsequent analyses. Finally, we 
constructed two virtual channels by applying a 
Laplacian spatial filter, which reduces the signal’s 
sensitivity to noise. The location of  the filter was 
motivated by successful piloting and a previous 
imagined movement paradigm. One filter with 
positive weights was located posterior to the channel 
labeled ‘C3’ in the international 10-20 and one with 
negative weights was located around the channel 
‘C4’. These will be referred to as virtual channels 
(Figure 4). The width of  the spatial filter was defined 
as two average electrode distances. 

2.7 Feature space 

The feature space consisted of  two components: 
induced power in the time-frequency representation 
(TFR) and signal amplitude in the time domain. The 
first component is computed as the difference between 
the two virtual channels in the Fourier transformed 
time-frequency data. The transformation used 32 
evenly spaced frequency bins between 4 Hz and 32 
Hz in 8 time windows (Hanning window). The size 
of  a time window depended on the corresponding 
frequency bin and was chosen such that four full 
cycles of  that frequency fit into one window. The 
feature space consisted of  induced power in the TFR 
over the last eight trials. The second component was 
the difference in the event-related potential (ERP) 
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Fig. 4 The location of the applied spatial filter around 
channel C3 with positive weighting (red color) and around 
C4 with negative weighting (blue color). The location of 
the spatial filter was based on an imagined movement 
paradigm. Channel labels conform to the international 
10-20 naming convention.

Fig. 3 Data processing. The raw signal with a trial length one second is first preprocessed and spatially filtered (see 
Section 2.6). Spatial filtering results in two virtual channels that are then used for computing the difference event-related 
potential (ERP) and the difference time-frequency representation (TFR, see Section 2.7). For estimating the induced 
power in the time-frequency domain, a trial history of size n is used (here n=8). From the trial history a pseudo mean 
and pseudo standard deviation is computed (Section 2.8), with which a single feature space for this trial (trial N) is built. 
The feature space consists of induced power in the time-frequency domain over the last n trials and the event-related 
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between the virtual channels, i.e. the difference in 
magnitude per recorded sample in the time domain 
filtered between 0.5 Hz and 20 Hz. This feature was 
a single trial measurement. 

2.8 Visual feedback

Any set of  features (or feature space) can be 
visualized in form of  a spectrogram, with feature 
represented on the y-axis, time on the x-axis, 
and feature power as color. Here, we presented 
visual feedback as a polar transformation of  
such a feature space spectrogram (Figure 5). The 
resulting circle represents time running clockwise 
starting at the 12 o’clock position that serves as 
trial start and endpoint. Analogous to a regular 
spectrogram, individual features were binned that 
were represented as ring segments on the circle. 
Originally in a polar representation, ring segments 
near the centroid have a small radius, which increases 
with increasing distance to the centre. To make 
information distribution more similar independent 
of  segment location, the frequency axis was scaled 
in a logarithmic fashion, such that the outer quarter 
of  rings represents only half  of  the feature space. 
Frequencies were sorted such that low frequencies 
were on the inside and frequency increases towards 
the outside. The ERP feature was visualized as an 
additional ring segment with doubled width to make 
it more salient.

Values in the feature space were mapped to the 
interval of  the color scale. A color scaling in 256 
hues served to indicate feature power. The color 
scaling ranged from light red for low feature power 
(RGB value: 1/1/0.7 on a scale from 0 to 1) to 
black for zero-power (0/0/0) to light blue for high 
feature power (0.7/1/1). While the mapping of  the 
ERP was linear and accordingly straight forward, 
the mapping of  the TFR was more complex. When 
showing TFR power averaged over the last trials, an 

outlier (a single high power value that makes the TFR 
estimation unreliable) can drastically influence the 
feature value. Therefore, we applied a feature value 
transformation that penalizes a high variance over 
the last trials, thereby reinforcing smooth transitions 
and stability in brain activity. 

The TFR feature matrix consists of  all frequency 
bins f  in all time windows t. The final TFR feature 
value is calculated by the inverse of  an exponential 
function. This exponential function (Equation 3) 
depends on two parameters: The pseudo mean   
and pseudo standard deviation   of  the current 
trial N and the frequency bin f  and time window 
t. This function is symmetrical along the x-axis for 
positive and negative pseudo means and converges 
to half  the range of  the color scale, i.e. a black 
color, for high pseudo standard deviations (Figure 
6). The pseudo mean (Equation 1) is obtained by 
a normalized linearly weighted average over the 
last eight trials of  the feature power contrasted 
with the average baseline power of  that feature. As 
normalization factor the sum of  the average baseline 
power and its standard deviation over all frequency 
bins and time windows in the baseline is used. The 
pseudo standard deviation (Equation 2) is obtained 
in a similar way, except we did not weigh individual 
trials and the normalization factor was three times 
the baseline standard deviation over all features. The 
exact mathematical description is found below.

Equation 1 
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Fig.5  (A) A regular spectrogram with time on the x-axis, features (e.g. frequency bands) on the y-axis and feature power 
as colors. Red colors indicate high feature power, blue colors low feature power, green represents zero power.  (B) Polar 
visualization of this feature space. The inner half of the polar representation contains three quarter of all the features 
(roughly the red part). (C) The free task visualization of this feature space. Note how near-zero power values become 
nearly black, high power is blue and low power is red.
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Equation 1 describes the calculation of  the 
normalized weighted mean   of  the feature power   
for time window t, frequency bin f  in trial N. The 
weights were linearly distributed so that the weight   
of  the current trial N is weighted n-th time the weight 
of  trial N-n. As already stated, we used the last eight 
trials for all our calculations, i.e. n=8. The weighted 
mean was contrasted with the average baseline  of  
that tf-feature, where b denotes the baseline. The 
result was then normalized by the sum of  the mean 
of  the baseline   over all features and its standard 
deviation   over all features. 

Equation 2 explains the calculation of  the 
normalized standard deviation   of  trial N by the 
standard deviation of  the feature   and the standard 
deviation of  the baseline  . Only the latest 8 trials 
were used for calculating the feature space and 
thus also for the standard deviation for trial N. We 
normalized by three times the standard deviation of  
the baseline  . 

After this step, parameter values below 0 and 
above 1 were cut to 0 and 1, respectively, denoted as 
pseudo mean  and pseudo standard deviation  . These 
two parameters served as input for Equation 3. The 
formula penalizes a high variance by converging 
exponentially to one half  that is black color (Figure 
6). A low variance had little or no influence on 
the final feature value. The resulting feature value   
decided the color hue of  that feature in time window 
t, frequency bin f  for trial N. 

2.9 Offline analysis

Offline analysis was based on Vlek et al. (2011). 
Matlab and the Fieldtrip toolbox (Oostenveld, 2010) 
served as tools for offline analysis. For EOG and 
EMG channels (referred to as EXG) as well as for 
the EEG channels nearly the same preprocessing 
steps as in the online case were used. If  – according 
to the four properties mentioned on page 8 – more 
than 20 % of  the channels in a trial were bad, the 
trial was excluded from further offline analysis. 
Here, we used a 50 Hz cutoff  value for marking 
trials as bad of  5000 µV instead of  3500 µV. This 
was because the data from Subject 4 suffered from 
50Hz noise, leading to dismissing most of  the trials 
due to this noise. With a higher cutoff  value the data 
from this participant could be used, while other data 
remained mainly unaffected. The signal from the 
head movement sensor was only linearly de-trended. 

For EEG channels, the same transformation 
to the time-frequency domain as in the online 
experiment was used, which will be referred to as 
predefined features. In addition to the TFR settings 
used for the online experiment, we also calculated 
power in the time-frequency domain from 4 Hz to 
64 Hz in 2 Hz steps in 51 Hanning windows of  size 
200 ms each (referred to as all features). EOG and 
EMG channels and the head movement signal were 
analyzed in the time domain after being bandpass 
filtered between 4 Hz and 64 Hz.

Fig. 6 The influence of variance of a feature on the feature value. The final value (color) of a feature was determined by 
its weighted mean feature power and the feature variance. High variance penalized the final value towards 128, i.e. a 
black color. Colors of the lines indicate what color the mean feature power would have represented. 
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Logistic regression (denoted as KLR) was 
used for classification (Tomioko, Aihara & Müller. 
2007), which was further L2-regularized to prevent 
overfitting (Farquhar, 2009). Due to the experimental 
block design, we used a blockwise leave-one-out 
validation method. The reported classification 
rates and standard errors correspond to the mean 
classification rate over all folds and the standard 
error over all folds for the regularization parameter 
with the highest performance. Statistical analyses 
were performed with 95 % and 99 % confidence 
intervals and a two-sided t-test. 

After having applied the classifier, the obtained 
weight matrix was compared with the subject’s report 
about which aspects of  the feedback they believed 
they were controlling. We assumed the weight matrix 
of  the classifier to be an objective measure of  class 
information. Features that are weighted with extreme 
values are statistically more important than features 
weighted around zero. For this analysis only weights 
with a magnitude of  at least a third of  the maximal 
weight in absolute terms were used. Subjectively 
important features were obtained at the end of  each 
experimental block. This analysis was carried out by 
eye without statistical analysis. 

In order to assess whether class information 
from one type of  sensor (EOG/EMG, EEG, head 
movement sensor) leaked into another type, we 
correlated the classifier output (or decision values) 
of  one sensor type with the decision values from 
another type using Pearson’s correlation coefficient 
and a 95 % confidence bound. We speak of  leakage 
of  class relevant information if  there is a significant 

correlation between the decision values.

 3. Results
 

3.1 Behavioral Results

The free BCI project allows users many degrees 
of  freedom in interacting with the feedback system. 
After a period of  approximately ten to fifteen minutes, 
subjects got acquainted with the feedback and then 
searched for reliable ways to control aspects of  the 
presented feedback. Subjects found two classes and 
thus ended training phase after approximately 48 
minutes on average. The length of  the training phase 
could not be related to performance measures that 
have been computed. Table 1 provides an overview 
of  subject specific mental tasks. Note that although 
the naming of  some tasks might be similar, subjects 
performed similar mental tasks in a different manner.

Although subjects reported that the feedback 
was reliable in the majority of  trials (average rating 
2.8/5), feedback quality dropped for four of  the 
first five subjects towards the end of  the experiment 
(Subject 1, 2, 3 and 5, average rating at the end of  
the experiment 1.9/5). In this respect, it was fairly 
apparent that the feedback representation changed 
drastically with every new baseline recording. An 
example of  such a change and hence of  subjectively 
important features is given in Figure 7. This example 
is representative for Subject 1, 3 and 5. For Subject 
6, 7 and 8, we decided not to  record additional 
baseline periods but contrasted the features with 

Table 1. Overview of the individual mental tasks and task descriptions per subject. Subjects used a variety of different 
mental tasks to gain control over the feedback.

Subject Task 1 Task 2

S1 Imagined Counting
Imagining counting from 1 onwards to the metronome

Imagined Right Hand Movement
Imagining playing drums time-locked to the metronome

S2 Verbal Imagination 
Saying ‘Bonjour’ time-locked to the metronome	

Acoustic Imagination 
Hearing a siren sound syncopated to the metronome

S3 Mental Arithmetic
Adding 7 to some starting number, time-locked to the 
metronome

Imagined Tongue Movement
Time-locked with the metronome

S4 Mental Arithmetic
Counting back from 100 in steps of  7

Imagined Dancing
Exercising ballet

S5 Imagined Hand Movement
Boxing against a boxing ball, time-locked to metronome

Imagined Feelings
Thinking about happy feelings and events in the past

S6 Imagined Finger Movement
Playing a piece of  Vivaldi on the flute

Imagined Foot Movement
Imagining playing a fast rhythm on a bass drum with the 
right foot

S7 Implicit Learning
Letting a yellow blob appear, later associated to gentle 
and relaxed feelings and positive coaching

Implicit Learning
Letting a blue blob appear, later related with restlessness 
and distraction and subdividing the metronome

S8 Visual Imagination
Imagining a candle burning, learnt in meditation class

Imagined Visual Rotation
Imagining the same candle rotate downwards/sagitally
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Fig. 7 Example of the effect of introducing a new baseline to subjectively important features. All shown drawings are 
from the same individual class of Subject 5 but from different blocks. (A) After the free exploration phase, Subject 5 was 
relatively sure to be able to reliably control the feedback (3/5). (B)-(E) Although the feedback representation, and by such 
subjectively important features, changed continuously in every verification block, Subject 5 reported no major loss of 
reliability (rating 3/5 for the first two blocks, rating 2/5 for the last two blocks). The feedback still responded reliable, but 
the effect on the feedback changed with every block.

Fig. 9 Average classification rates of trials within a sequence across subjects (pooled for both sets of EEG features). The 
classification rates are obtained using the predefined features in the feedback condition. The trial number is on the 
x-axis, the average classification rate on the y-axis. The dotted line indicates a moving average over the last four trials. 
There is a significant difference in classification performance between the first four trials and the last four trials of a 
sequence across subjects (t(727)=-3.08, p<.01).

Fig. 8 Classification rates on single trial basis of the individually found classes per subject using the predefined feature 
in the feedback condition. Error bars indicate standard error. For five out of eight subjects, classification rates were 
significantly different from chance (p<.01).
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the baseline recorded at the beginning of  the 
experiment. These subjects reported a very stable 
feedback representation (rating 3.3/5), also at the 
end of  the experiment (rating 3.1/5). 

Subject 3 complained about problems with her 
back during the experiment and Subject 7 reported a 
loss of  concentration at the end of  the experiment. 
There were no other behavioral results worth 
mentioning.

3.2 Controllability of the feedback

Per subject, we trained a binary classifier on the 
two individually found classes. The classifier input 
consisted of  only the predefined time-frequency 
features, which were fed back to the subject. The 
classification rate was significantly different from 
chance for five out of  eight subjects (p<.01; Figure 
8). However, trials in the beginning of  a sequence 
yielded lower classification rates than trials near the 
end of  a sequence, see Figure 9. So, some sequences 
started with a transient period until classification 
performance reached a stable level. This was verified 
by a significant difference across subjects between 
the classification rate of  the first four trials of  a 
sequence and the last four trials (t(727)=-3.08, 

p<.01).
Figure 12 shows the difference TFR (right panel) 

and difference in the frequency domain (left panel) 
between the two individual classes per subject. 
Whilst the TFR of  Subject 1, 2, 4, 6 and to a lesser 
extent also of  Subject 3 and 5 mainly reveals activity 
in the alpha and low beta band around 10 Hz (Figure 
12 a, b, d, f  and c and e, respectively), the main 
activity in Subject 7 and 8 is less clear (Figure 12 g 
and h, respectively). These two subjects achieved a 
modulation of  the high beta- and low gamma-band. 
Furthermore, there is little structure in the time 
domain in higher frequencies for Subject 3, 5, 7 and 
8 (Figure 12 c, e, g and h, respectively).

3.3 Reliability of subjective reports

Previous BCI studies have shown that subjective 
ratings of  performance do not always match 
objective performance criteria (Bayliss, 2003). This 
part of  the analysis compares statistically important 
features with subjectively important features. We 
overlaid a representation of  individual subjective 
patterns with objective classifier weights. In order 
to do so, the weight matrix was transformed into 
the free BCI polar representation. The analysis was 
complicated by the fact that the online feedback 
representation was dependent on the baseline 
recording. We recorded a new baseline for the first 
five subjects at the beginning of  every block, which 
changed the respective feedback drastically for 
most subjects (see also Section 3.1). In the further 
analysis, we excluded Subject 1, 3 and 5 due to their 
changing report on which aspects of  the feedback 
were subjectively important. 

The remaining five subjects reported a stable 
feedback representation and thus similar patterns Fig. 10 Overlap between subjectively important features 

and objectively important features obtained from 
classifying on the predefined features in the feedback 
condition. The polar representation corresponds to the 
free BCI visualization. Blue color blobs indicate a high 
feature weight of at least a third the highest weight in 
absolute terms; red blobs indicate a low feature weight 
of maximally a third of the additive inverse of the highest 
weight in absolute terms. Line drawings and written 
text is scanned in from the behavioral questionnaire. 
(A) Example of a subject with a high classification rate 
of above 70% (Subject 6). The left area labeled ‘red’ 
represents subjectively important features for class 1. 
The area labeled ‘blue’ indicates subjectively important 
features for class 2. There is a partial overlap for area ‘red’, 
but the objectively important areas extend up to the ‘blue’ 
area. (B) Example of a subject with a low classification 
rate around 50% (Subject 7). The area on the top labeled 
‘blue’ represents subjectively important features for 
class 1. The area labeled ‘yellow’ indicates subjectively 
important features for the other class. Neither of the two 
areas overlaps grossly with objectively important areas.

Fig. 11 Classification rates for the feedback and the no 
feedback condition. Error bars indicate standard error. 
There is no significant difference (p>.05) between the 
two conditions for all but one subject (slight significance, 
p<.05). For Subject 6, receiving no feedback decreases 
class discriminability.
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Fig. 12 Time-frequency representation of the difference between the subject-specific mental classes. Left panel per 
subfigure shows the power in the pure frequency domain, the right panel consists of a spectrogram showing induced 
power in the time-frequency domain. Subfigures (A) to (H) show data from Subject 1 to 8, respectively.

Fig. 13 The effect of feature selection on classification performance. Error bars show the standard error. When all 
features are used, classification rates for two subjects increase significantly (p<.01). The classification rate for Subject 2 
has a tendency towards significance (p<.1). All other comparisons show no significance (p>.05).
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for their individual classes across all experimental 
blocks. Here, two cases can be distinguished. On the 
one hand, Subject 4 and 6, who performed very well 
in terms of  classification rate, created a brain activity 
pattern that was suited very well for the used features, 
because the activity overlaps with the location of  the 
applied spatial filter. But, their subjectively important 
features only marginally overlapped with statistical 
weighting (See for example Figure 10a). Still, these 
subjects were very sure about the reliability of  the 
feedback (average rating 3.5 on a scale from 1 to 5). 
On the other hand, subjects with low performance 
showed an even stronger mismatch. This was 
the case for Subject 2, 7 and 8. Here, subjective 
reports on feature importance had almost no 
correspondence with objective weights (see Figure 
10b for an illustration). These subjects also reported 
the feedback to respond reliably to their mental 
tasks in most cases (average rating 3.2/5), with small 
doubts near the end of  the experiment (average 
rating 2.8/5). 

 
3.4 The effect of feedback

The setup of  the experiment also aimed to 

test whether receiving feedback facilitates task 
performance (guidance hypothesis). We compared 
the feedback with the no-feedback condition (Figure 
11). There was a significant difference between the 
two conditions for only Subject 6 (p<.05), but not 
for any of  the other subjects (p>.05). After having 
found the individual classes using the feedback, 
seven out of  eight subjects were able to reproduce 
the classes equally well, whether or not they 
received feedback. This speaks against the guidance 
hypothesis with our experimental setup.

 
3.5 Class information in the feedback 
feature space

We hypothesized that the predefined set of  
features reflects class information only suboptimally. 
Therefore, we compared the classifier performance 
using only the predefined features with the 
performance of  a classifier using all TFR features 
from all EEG channels, see Figure 13. The latter 
features included higher frequency bins up to 64 Hz 
as well as a more precise time windowing (see Section 
2.9). For two out of  eight subjects, classification 
rates were significantly different from each other 

Fig. 14 Topographic distributions for all subjects (S1 to S8) of power in the time-frequency domain (left part per subfigure) 
and weights of the KLR classifier (right part per subfigure). Different frequency bands (theta, alpha, beta, and gamma) run 
down the y-axis. Grey shadings indicate the main foci of the predefined spatial filter around C3 and C4. Arrows highlight 
topologies, in which main activity coincides with the spatial filter. For most other subjects, it matches only partially the 
main activity or classifier weights, though there only is a significant difference in terms of classification performance 
between the predefined and all EEG features for Subject 3 and Subject 5.



Nijmegen CNS | VOL 6 | ISSUE 2 19

Brain-Computer Interfaces with User Chosen Features - A Free BCI

(p<.01).  For Subject 2, the difference was close to 
significance (p<.1). 

Figure 14 shows the subject-specific topographic 
distributions of  the four major frequency bands 
per subject. Subject 1, 4 and 6 could achieve a brain 
activity pattern that is matched very well by the 
predefined spatial filter. Contrary, Subject 2 shows 
occipital activity and Subject 3, 5, 7 and 8 show very 
lateralized activity, which is matched only marginally 
by the spatial filter.

The topographic distributions of  the classifier 
weights differ from those of  the TFR power 
especially near the most posterior and anterior as 
well as lateral sides. The classifier utilizes activity 
there that was not picked up by the predefined 
spatial filter. However, keep in mind that comparing 
the classification on the predefined features with 
all channels and features yielded only a significant 
difference for Subject 3 (Figure 14c) and Subject 5 
(Figure 14d).

3.6 Confounding factors analysis

In the analysis of  the EOG and EMG signals 
(together referred to as EXG signals), classification 
rates for the individual classes were significantly 
different from chance for seven out eight subjects. 
This especially constitutes a worry for Subject 7, 
because he obtained a classification rate around 
70 % for classifying on the EXG channels, which 
was significantly better than when classifying on the 
EEG channels (p<.01). A correlation analysis was set 
up to test whether class relevant EXG information 
leaked into the EEG signal. 

In the following, we argue that EXG movement 
signals are no confounding factor for the reported 
EEG classification results. There was no significant 
correlation between the EXG features and the 
predefined EEG features (p>.05), but between the 
EXG features and all EEG features for Subject 7 
and 8 (p<.01). So, information leaked into some 
EEG channels, but class relevant information from 
the EXG channels has not improved classification 
rates on all EEG features, because there is no 
significant difference between the classification rates 
of  the predefined and the one of  all EEG features 
for these subjects (p>.05). Therefore, we consider 
the possible leakage of  class relevant information 
not to be a confounding factor of  our analysis. A 
similar analysis of  the classification results obtained 
from the head movement sensor led to no significant 
correlations (p>.05). 

 4. Discussion
 

4.1 Behavioral Results

Within one block, the first five subjects reported 
the feedback to be stable and reliable. The feedback 
changed drastically once a new baseline recording 
was used for calculating feature power as done at 
the beginning of  every block. So, per subject, a 
new baseline period resulted in different features. 
Although we found no explanation coming from 
recorded behavioral factors (level of  arousal, 
excitement and motivation), the change in baseline 
may be caused by many other factors, for example 
task engagement. Since the influence of  the baseline 
was so high, we decided to change the experimental 
protocol to using the same individual baseline period 
for all experimental blocks for Subject 6, 7 and 8. 
As expected, the feedback representation was much 
more stable and reliable when using a fixed baseline. 
Subjects benefitted from using only one baseline 
recording as shown by their subjective rating: The 
feedback appeared more stable during the whole 
experiment. 

In future experiments, we propose to keep using 
the same baseline period for the whole experimental 
session. An extension of  the length of  this baseline 
period might lead to further improvements. This 
way, random fluctuations will be more likely to be 
averaged out, and hence the TFR estimation will be 
even more reliable. In other words, subjects will get 
a better estimate of  their mental activity, which is 
especially useful in the free exploration phase when 
subjects need to rely on the feedback.

4.2 Controllability of the feedback

Five out of  eight subjects were able to achieve 
classification rates significantly different from 
chance. This result confirms that BCI users can 
adapt to an extrinsically provided and very rich 
feedback signal, even if  they are not informed about 
precisely what the feedback represents. Users can 
reliably control personal aspects of  the feedback and 
reproduce stable patterns by relating their thoughts 
to a task known from everyday life or by implicit 
actions. Note however, that although classification 
rates are significantly different from chance, the 
achievable bit rates are hardly usable for an everyday 
BCI. 

A BCI for daily use needs an instantaneously 
high performance. Our experimental setup used a 
block design, which is not suited for such usage. We 
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found that - on average - the first trials of  a sequence 
yielded a significantly lower classification rate than 
trials near the end of  the sequence, thus after various 
repetitions of  the mental task. This effect is not 
constant for all subjects, but it is possible that some 
mental tasks might need a longer preparation time - 
for example emotion modulation - than other mental 
tasks such as imagined movement. Nevertheless, the 
range of  mental tasks that could possibly be used 
to control a BCI is much wider than the currently 
used tasks. A free BCI can also be used for rapid 
prototyping to find and test novel mental tasks. 
However this comes with the risk of  testing mental 
tasks that are not suitable for controlling a BCI, as 
happened to some subjects here.

There were three subjects who could not achieve 
a performance different from chance, nevertheless 
these subjects reported controllability of  the 
feedback using their individual mental strategies. A 
reason for this may be that these subjects detected 
patterns that were not always stable, but showed 
some reoccurrence. Especially when the feedback 
pattern did not resemble the expected pattern, it 
might have been that they changed their mental 
strategy and by so created a different brain activation 
pattern. However, if  subjects detected patterns that 
were not reliable and stable, one would assume 
that their subjective rating would drop constantly 
throughout the experiment. This was not the case, 
as we will discuss in the following. 

4.3 Reliability of subjective reports

Bayliss (2003) found that subjective performance 
criteria do not always match objective performance 
criteria. Our comparison of  subjective and objective 
measures goes one step further by showing that 
subjectively important features do not match 
objectively important features. So, subjects believed 
that they had achieved control over some aspects 
of  the feedback, which in fact they had, statistically 
measured, no control over. As already stated, 
recording a new baseline constituted a major problem 
for the reliability of  the feedback representation. But 
even when all relevant factors for the computation 
of  the feedback signal, including the baseline, were 
kept constant, subjects were not able to give a 
reliable report on what aspects of  the feedback they 
could control. Especially surprising is that subjects 
performing at or near chance level also reported that 
they could control the feedback. 

There are several possible reasons for such an 
observation. A psychological account might be 

that subjects wanted to see an influence of  their 
performance on the feedback – a placebo effect. This 
could have happened because of  impatience, low 
level of  concentration and especially the expectation 
to see controllable, reoccurring patterns during the 
experiment. A different account could be that this 
difference comes from humans having different 
capabilities to recognize patterns than statistical 
methods have. From this, a critical question emerges: 
Did subjects see patterns that did not exist, or did the 
statistical analysis not reveal all important patterns? 
Making the subjects rely on statistical importance 
could reduce a possible placebo effect and as such 
shed light on the two mentioned hypothesis. As 
machine-learning algorithms detect statistically 
important features, we will propose how an adaptive 
algorithm could hint the user to features that are of  
class relevance in two possible ways.

First, improving visualization of  class 
importance in the feedback. Subjects reported 
mostly features in the inner or middle part of  the 
circle to be of  importance. This was maybe because 
higher frequencies have lower amplitude than low 
frequencies have.  We applied baseline contrasting to 
account for the 1-over-f  power law. Still, changes in 
high frequencies might not have become apparent. 
By using a frequency dependent normalization 
method, subjects might have detected patterns in 
high frequencies. Future experiments should include 
a normalization method that normalizes individual 
frequency bins separately, for example by sphering 
and centering the data. Centered data is zero-average 
and the covariance of  sphered data is equal to 1. 
This will hence eliminate power differences across 
frequency bins. Another possible explanation for 
subjects reporting mainly low frequency features to 
be of  importance might be that the field of  view 
focused on the inner circle. In the inside of  the 
feedback, information is more condensed in less 
space. Therefore, rearranging how the feedback 
displays the feature space might help subjects to 
find controllable aspects in the feature space, for 
example by allowing important features to take 
more space and shrinking space for less important 
features. Additionally, features could be rearranged 
by moving statistically important features to the 
centre of  the feedback. In future experiments of  the 
free BCI project, more important features should be 
in the inside of  the circle and occupy more space 
while less important feature should be moved to the 
outer part of  the circle and occupy less space.

Second, adapting the feature space. Applying a 
statistical weighting to adapt the feature space can 
help visualize class relevant features, similar to what 
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cognitive tasks were not complex enough for having 
the need to rely on feedback, and thus do not need 
to be learnt – a concern raised by explanation 2. 
To test whether subjects rely on the feedback in 
the verification phase (as proposed by hypothesis 
1), longer sequences without feedback are needed. 
If  a degradation of  performance over time occurs 
in no-feedback blocks but not in feedback blocks, 
the guidance hypothesis can be claimed valid. The 
other hypothesis (hypothesis 2) can only be tested 
by a multi-session experiment. If  there is a learning 
effect, thus performance is increasing in later 
sessions, then the cognitive tasks can be learnt and 
hence the experimental setup is valid to test for the 
guidance hypothesis. Else, the guidance hypothesis 
does not apply in this free BCI setup.

4.5 Class information in the feedback 
feature space

We found that classification performance using 
the predefined features did not differ from using all 
channels and features for six out of  eight subjects. 
Three subjects, Subject 1, 4 and 6, could find ways 
to strongly modulate their brain activity nearly 
exclusively around the location of  the spatial filter 
(see Figure 14a, d and f). This can be explained 
by the location around the motor cortex and the 
parietal lobe. These areas are highly engaged in 
motor planning and imagined execution of  motor 
movements. For all these subjects, at least one if  not 
both strategies to control the feedback was related 
to planning of  coordinated movements. It is rather 
common to use a motor-related task to control 
a BCI. Nevertheless, an explicit experimenter-
defined task execution might not have resulted in 
such strong brain activation patterns. The subjects 
tried BCI tasks that are closer to conventional BCI 
tasks as well, but did not succeed in finding reliable 
feedback. Subject 4 explicitly reported that imagined 
arm movement did not result in a stable and reliable 
pattern. This might be related to the fact that the 
spatial filtered was located more posterior than an 
ideal motor imagery spatial filter would be. However, 
Subject 4 managed to find a very stable and reliable 
pattern using a different mental motor task – this is 
also confirmed by the high classification rate around 
80 %. Note that we did not optimize our processing 
pipeline for imagined movement classification.

Subject 2 used auditory imagery and language 
production imagery and was able to induce alpha-
band desynchronization at a centro-occipital 
location that was marginally picked up by the spatial 

has recently been done in the BCI2000 project (Schalk 
et al., 2007). This way, a new spatio-spectral feature 
space will evolve, making the features more suitable 
for the subject-specific mental tasks. However, the 
explicit mapping of  several statistically important 
features to a class label might be complicated for 
subjective interpretation, in particular for multiclass 
problems. Such an approach also raises the question 
of  whether a mutual adaptive system, consisting of  
man and machine will converge to a stable state. In 
order to study this approach thoroughly, a step-by-
step procedure is recommended. Future experiments 
should first incorporate discrete steps of  machine 
adaptation, so that machine and man adaptation do 
not occur simultaneously but turn after turn. This 
may improve objective and subjective performance 
criteria, because they can rely more on the feedback 
that reflects objective performance criteria directly.

4.4 The effect of feedback

The guidance hypothesis, originally coming from 
the realm of  motor control, states that a task learnt 
through feedback can not be reproduced as good in 
the absence of  feedback.. In other words, feedback is 
necessary to maintain the same level of  performance. 
We tested this hypothesis in the free BCI setup but 
could not verify it. We found that visual input does 
not deteriorate class performance, but also does not 
improve it as the guidance hypothesis states. Only 
for one subject we found a decrease in performance 
in the no-feedback condition compared to the 
feedback condition. Since we found no effect in the 
opposite direction, feedback does also not have a 
distracting effect. Two different explanations might 
account for this disagreement with the guidance 
hypothesis:

1.	 As subjects received feedback in a later 
sequence about the same mental task, this discrete 
feedback was sufficient to be informed how to 
reproduce the expected feedback pattern. 

2.	 The free exploration phase does not reflect 
a learning phase but only a search for appropriate 
ways to produce a reliable pattern using well-known 
mental tasks.

So, on the one hand, our experimental setup might 
not be valid for testing the guidance hypothesis – a 
concern raised by explanation 1. In case of  doubt, 
subjects could verify their performance by waiting 
for a later sequence that showed feedback again. 
On the other hand, it might be that the individual 
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filter. Such activity has most often been related 
to memory related processes (Jensen, Gelfand, 
Kounios & Lisman, 2002). There is evidence that 
music imagery exposes brain activity in fronto-
central areas (Vlek et al., 2011), but rarely in the 
occipital lobe. The predefined spatial filter did not 
operate on this centro-occipital locus of  activity, 
but classifying on all channels and features showed 
no significant improvement than classifying on 
the predefined features. Still it yielded a result 
significantly different from chance, which was not 
the case for classification on the predefined features, 
i.e. a small but important improvement. Applying 
advanced machine learning techniques that focus on 
this centro-occipital difference might improve class 
performance even more.

For Subject 3 and 5, the predefined feature space 
was not reflecting the difference in class information 
optimally. Subject 3 used mental calculation and 
imagined tongue movement to control the feedback. 
Subject 5 used imagined hand movement and 
happy feelings. For these subjects, classification 
performance could be significantly improved when 
using the full range of  available EEG channels and 
features. Both these subjects showed lateral gamma 
band activity that was not matched by the spatial 
filter. Although it might be tempting to conclude 
a considerable improvement in classification rate 
would be possible when using more suitable features, 
it is important to rule out confounding factors 
beforehand.

4.6 Confounding factors analysis

Confounding factors in BCI experiments can 
arise from two sources: environmental noise or 
subject movement. Our setup already aimed at 
reducing environmental noise, but the bigger 
source of  artifacts is the subject himself. Especially 
muscle movements can disturb the signal. Although 
explicitly instructed to not use any muscle to 
control the feedback, subconscious movements 
might have occurred and leaked into the EEG. 
Therefore we analyze eye movements and glottis 
muscle movements by EOG and EMG (EXG) and 
head movements by an accelerometer separately. 
Our correlation analysis serves as evidence that 
class relevant information from these did not 
improve EEG classification results. It is noteworthy 
nonetheless that Subject 7 achieved a much higher 
classification rate on the time domain data of  the 
EXG than on the EEG features.

Movement measurements using additional 

sensors are limited to experimenter-defined locations. 
In the last years, there has been increasing interest 
in identifying EEG signal characteristics caused by 
movements (e.g. Gonchorova, McFarland, Vaughan 
& Wolpaw, 2003). It has been proposed that high 
frequencies near the gamma range on frontal and 
temporal electrodes may be corrupted by movement 
artifacts. In our analysis, we could identify such 
characteristics in signals from three subjects:

Subject 1 showed high gamma activity around 
the frontal electrodes (Figure 14a). As Yuval-
Greenberg et al. (2008) pointed out, microsaccades 
could lead to activity in the gamma range around 
this area. In this subject, class difference in the 
gamma-band was fairly stable in the grand average 
over all trials. However, there was no increase in 
classification performance when using all features 
compared to when using the predefined feature 
space and therefore this frontal activity had no 
influence on our results. Still, future work should 
also deal with investigating further improvements 
of  algorithms that dismiss non-brain activity caused 
by eye movements from the EEG signal.The EOG 
decorrelation used here works only on frequencies 
below those affected by microsaccades. 

Subject 3 showed high gamma activity at the 
outer temporal electrodes T7 and T8; see Figure 
14c. Also, the 1-over-f  power law did not apply here 
(Figure 12c). As Goncharova et al. (2003) pointed 
out, contraction of  facial muscles can lead to activity 
in the gamma range near the temporal lobe. It should 
also be noted that Subject 3 complained about back 
problems and did not sit comfortable during the 
course of  the experiment. This may have caused her 
to be unsettled and disturbed, and thereby producing 
movement artifacts. But on the other hand, studies 
using magnetoencephalography (MEG) (e.g. Kissler, 
Müller, Fehr, Rockstroh & Elbert, 2000) found left-
lateralized gamma band activity around the frontal 
lobe for mental arithmetic tasks – a task that Subject 
3 used. Functional-magnetic resonance imaging 
(fMRI) studies also find left and right lateralized 
activity in mental arithmetic (e.g. Rivera, Reiss, 
Eckert & Menon, 2005). Thus, the cause of  the 
gamma-band activity in Subject 3 can be debated, 
but no safe conclusion about its origin can be made 
at this point.

A similar reasoning can be applied to the 
discussion about lateralized activity from Subject 5. 
Again, there was strong lateral gamma band activity. 
Subject 5 modulated her emotions to control the 
feedback. The effect of  emotion modulation in the 
gamma-band in the temporal lobe has been shown 
by MEG and fMRI studies (e.g. Luo et al., 2009), 
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and is also described in EEG studies (e.g. Aftanas, 
Reva, Varlamov, Pavlov & Makhnev, 2004). Facial 
muscle movements might also have caused this 
lateral activity.

In Summary, data from the latter two subjects 
show EEG classification rates that may be 
influenced by movement artifacts. For Subject 3 and 
5, the classifier picked up the possibly contaminated 
temporal channels as class relevant. By assuming that 
this gamma-band activity comes from facial muscle 
movements as explained by Goncharova et al. (2003), 
the subjects controlled a hybrid brain-computer 
interface, which means that the control signal was 
a mixture of  unconscious muscle movements and 
pure brain responses. Note that this gamma-band 
susceptibility is not specific to our approach, but in 
fact to any EEG recording. Mathematical methods 
such as beamforming or independent component 
analysis (Onton & Makeig, 2009) can help to identify 
and filter out activity coming from sources outside 
of  the brain. Apart from a mathematical solution to 
this problem, there are the following three choices 
how to deal with such noise:

1.	 Exclude the most temporal and frontal 
channels from the analysis. Frontal and temporal 
channels are most susceptible to saccadic or facial 
muscle artifacts that cannot be filtered out. Channel 
exclusion constitutes the most conservative way to 
deal with artifacts.

2.	 Exclude frequency bands in the high-beta 
and gamma range, because these frequency bands 
are most susceptible to muscle artifacts due to their 
low power in EEG recordings. 

3.	 Allow for such unconscious muscle use that 
cannot be decorrelated or filtered out, but admit that 
the patterns in the feedback might have occurred 
due to use of  the peripheral nervous system, similar 
to a hybrid BCI.

All three options have their downsides. 
Removing the most temporal and frontal channels 
is not necessarily enough due to volume conduction. 
Specific electrical activity is not picked by one channel 
alone – it spreads over several electrodes. Although 
this way, the danger that muscle artifacts will leak 
into the analysis will be reduced, it is unlikely that 
all artifacts are removed. In fact, by relying on this 
method the danger to conclude unjustified insights 
from data is higher as one could assume that muscle 
artifacts were no matter of  concern anymore. 
Excluding high frequencies from the analysis will 
reduce the amount of  ways to control the feedback, 
because many high and low-level processes in the 

human brain correlate with activity in these bands. 
Especially gamma-band activity has been shown to 
be a crucial mechanism for neuronal communication 
(Fries, 2005).

For the free BCI we propose to allow the usage 
of  a hybrid BCI. This, however, is subject to two 
conditions: First, in the data analysis possible muscle 
artifacts have to be identified and reported. It is 
of  great importance to be aware of  such muscular 
contributions – also in order to research the influence 
of  (unconscious) muscle movements on the EEG 
signal. Thereby, advanced detection and filtering 
algorithms can be developed that might detect or 
remove muscle artifacts by using additional sensors 
near facial muscles. Second, muscle contribution to 
the EEG signal must occur subconsciously. Subjects 
must still have the impression of  controlling the 
feedback patterns without using the peripheral 
nervous system. Otherwise, they might exploit tasks 
that elicit muscle movement on purpose, making the 
experiment unrelated to brain-computer interfacing.

5. General discussion and future 
work
 

The results of  the present study show that subjects 
are able to find personal strategies to control aspects 
of  a rich feedback space. Subjects used a learning-
by-doing approach – an approach that could be 
called neurobabbling. When they found reoccurring 
patterns, they tried to reproduce them until they 
were sure that they were reliably controlling certain 
aspects of  the feedback. The subject’s cognitive 
system was able to find controllable regularities in 
its own response, therefore showing that a free BCI 
can be successful. 

This finding is, however, impaired by the fact 
that subjectively important features are not of  
statistical importance – machine adaptation is 
therefore crucial. Subjects and statistical methods 
need to optimize similar aspects of  the feature 
space to achieve an optimal result. When statistically 
important aspects become more salient in the 
feedback space, subjects might be tempted to try to 
control these aspects. Moreover, we used a fixed set 
of  features that did not represent subject specific 
brain activity patterns optimally. If  subjects are 
presented with more appropriate features for their 
personal mental strategies, a better representation of  
class performance by the feedback can be expected. 
In such a mutual adaptation setting the subjectively 
perceived, as well as the objectively measured 
performance might increase. However, whether such 



Nijmegen CNS | VOL 6 | ISSUE 224

Jörn M. Horschig

a system converges to a stable state is still a subject 
of  great concern and needs thorough investigation. 

Implementing online machine adaptation might 
lead to a great benefit for subjects to find reliable 
ways to control the feedback and to create patterns, 
but the susceptibility to high-frequency artifacts 
might steer the machine-based adaptation in the 
wrong direction. These artifacts can be filtered 
away only to a certain extent. Caution has to be 
taken when there is high-frequency activity in EEG 
channels that cannot be guaranteed to arise from 
muscle artifacts as it has also been shown that pure 
brain responses induce gamma-band activity in a 
number of  tasks (Fries, 2005, Kissler el al., 2000, 
Onton & Makeig, 2009). In future experiments, 
we therefore suggest to decorrelate or filter those 
components out that can be identified as artifacts, 
but leave in the components that might be either 
muscle artifact or brain activity. In such a system, 
similar to a hybrid BCI, muscle movements will not 
be made conscious. It should also be kept in mind 
that signal classification rates might then be lower 
for patients who cannot exploit unconscious muscle 
artifacts, but also note that we could only identify a 
few subjects which might have benefitted from such 
muscle movement.

When it has been shown that a mutually adaptive 
system converges to a usable state, future studies 
can focus on multiple session experiments, testing 
the reliability of  mental tasks over time. Until now, 
subjects used the free BCI only in a single session, 
yielding stable results for most subjects. The free 
BCI project also aims to deal with inter-session 
variability so that subjects can control similar aspects 
of  the feedback by the same mental strategies, 
independent of  non-stationarity of  the signal across 
sessions. This can only be tested in a multi-session 
experiment. Likewise, an adaptive system makes it 
possible that subjects achieve similar classification 
rates across sessions – at least a classification rate 
above chance. If  this is shown, subjects that were 
unable to control BCIs using conventional tasks, so 
called BCI illiterates, can be tested. We hypothesize 
that they can find personal mental tasks to gain 
control over aspects of  the feedback independent of  
their performance in other BCI setups. Freeing users 
from rigid task instructions, and hence allowing 
dynamic and mutual interaction within the system, 
might be a way out to overcome BCI illiteracy and 
improve future work on brain-computer interfacing.
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Stress adaptation is a plastic process that requires considerable energy. Mitochondria provide the energy 
required through oxidative phosphorylation. Inhibition of  the activities of  the respiratory chain complexes 
has been implicated in the pathogenesis of  stress-related brain diseases, such as major depression. 
Furthermore, mitochondria undergo continuous cycles of  fission and fusion. This determines mitochondrial 
morphology, which is tightly linked to function, including electron transport. We hypothesize that chronic 
stress will influence mitochondrial morphology and functioning in various stress-sensitive brain areas. 
Immunohistochemistry was used to determine the effect of  chronic stress on mitochondrial morphology, 
i.e. fission and fusion, and functioning in various stress-sensitive brain areas. Also, a genetic meta-analysis 
was conducted to determine the association between genes coding for OXPHOS complexes and depression. 
And, the prevalence of  depressive symptoms in pediatric patients with a mitochondrial disease was evaluated 
using questionnaires. The data show a clear association between genes and depression and there was an 
increased incidence of  depressive symptoms in children with mitochondrial dysfunction compared to the 
norm population. Furthermore, OPA1 was significantly down-regulated after chronic stress. We argue that 
this could result in a loss of/damaged mtDNA, which eventually could lead to a significant dysfunctioning 
of  the OXPHOS complexes. When this reaches a certain threshold, this will lead to an insufficient energy 
production and as such impairs stress adaptation. Together these findings support a mechanism whereby 
stress-induced alterations in mitochondrial functioning might contribute to stress-related psychopathology. 

Keywords: stress adaptation, depression, mitochondria, oxidative phosphorylation, fission, fusion
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1. Introduction

Major depressive disorder (MDD) is a stress-
related brain disorder. There is a clear association 
between stressful life events and depression. 
Successful adaptation to these stressful events, 
coordinated by the CRF-corticosteroid system, is a 
plastic process (De Kloet et al., 2005; Bale & Vale, 
2004; Kozicz, 2007). When a situation is perceived as 
stressful, the brain activates various limbic-forebrain 
and brainstem neuronal networks, regulating mood, 
that modify their structures and communication to 
adapt to the demand. Van Wijk et al. (unpublished 
data), for instance, showed an activation of  the non-
preganglionic Edinger-Westphal nucleus (npEW; e.g. 
upregulation of  UCN1 and mRNA production) in 
addition to signs of  plasticity (e.g. increased secretion 
and number of  excitatory synapses) in rats after 
chronic stress. Besides the npEW other neuronal 
networks include the hippocampus, prefrontal 
cortex (PFC), central nucleus of  the amygdala 
(CeA), bed nucleus of  the stria terminalis (BNST), 
hypothalamic paraventricular nucleus (PVN), 
and the dorsal raphe nucleus. When this neuronal 
circuitry fails to successfully adapt (maladaptation), 
i.e. there is impaired plasticity, this increases the risk 
for stress-induced brain disorders like MDD (de 
Kloet et al., 2005; Reul & Holsboer, 2002; Kozicz 
et al., 2008).  

Several theories exist as to the cause of  such 
impaired plasticity, including reduced levels of  
neurotrophic factors and glutamate toxicity (Nestler 
et al., 2002; Carlson et al., 2006). Another possibility 
could be insufficient energy. The mitochondria 
are the main energy providers of  cells and their 
dysfunctioning could result, among others, in 
insufficient production/availability of  adenosine 
triphosphate (ATP). Neurons, being high-energy 
requiring cells, are especially dependent on these 
organelles for normal functioning and survival. 
This is evidenced by the fact that mitochondrial 
diseases mainly involve neuronal tissue. Moreover, 
mitochondrial dysfunctioning has been implicated 
in aging and neurodegenerative diseases like 
Alzheimer’s disease (Calabrese et al., 2001). 
Specifically, mitochondria are critically important in 
synaptic development and plasticity; many of  the 
proteins and processes that are involved in plasticity 
require ATP (Mattson et al., 2008; Mattson, 2007). 
Interestingly, mitochondria also appear to mediate 
some of  the effects of  glutamate and BDNF on 
synaptic plasticity (Bindokas et al., 1998; Burkhalter 
et al, 2003). 

Mitochondria produce ATP mainly through 

oxidative phosphorylation (OXPHOS). This process 
involves the action of  five multi-subunit complexes 
(complex I - V) embedded in the inner mitochondrial 
membrane. These complexes form the electron 
transport chain. Electrons are fed into this chain 
and transferred across the different complexes. This 
transference releases energy which is used for the 
translocation of  protons from the mitochondrial 
matrix to the intermembrane space. The generated 
proton gradient is subsequently used by the ATP 
synthase (complex V) to produce ATP through the 
phosphorylation of  adenosine diphosphate (ADP).

Mitochondria are dynamic organelles that 
undergo continuous cycles of  fission and fusion, 
mediated by specific proteins (Chen & Chan, 2005). 
Fusion is mediated by mitofusins 1 and 2 (Mfn1, 
Mfn2) and optic atrophy protein 1 (OPA1). Fis1 and 
dynamin-related protein 1 (Drp1) regulate fission. 
Mitochondrial morphology, which constitutes a 
tubular network, is determined by the balance 
between these events. Disruption of  fusion causes 
mitochondrial fragmentation, whereas disruption 
of  fission causes excessively elongated and 
interconnected mitochondria. Both morphologies 
have been implicated with impaired energy 
production (Benard et al., 2007; Amati-Bonneau et 
al., 2005), indicating that mitochondrial morphology 
plays a role in OXPHOS. Fission and fusion also 
appear to be involved in mitochondrial movement, 
which is essential for synaptic plasticity (Li et al., 
2004; Verstreken et al., 2005).

There is increasing evidence for the involvement 
of  mitochondrial dysfunctioning in MDD.  For 
instance, Madrigal et al. (2001) showed an inhibition 
of  the mitochondrial respiratory chain in rat brain 
after chronic stress, an animal model for depression. 
POLG-mutant mice, an animal model for 
mitochondrial DNA depletion, have been shown to 
display depressive-like behaviors (Kasahara, 2006). 
Koene et al. (2009) found an increased incidence 
of  MDD in children with a genetic defect of  
OXPHOS. Furthermore, recent studies found an 
increased frequency of  certain mitochondrial DNA 
mutations and biochemical signs of  insufficient 
energy production in patients with MDD (Kato, 
2007; Shao et al., 2008).

The present study aims to further explore the 
involvement of  mitochondria in depression. It is 
hypothesized that psychological stressors and/or 
genetic factors affect the body’s energy expenditure, 
which could eventually result in exhaustion of  energy 
stores. This will ultimately lead to disturbances in the 
functioning of  the stress system. Such dysregulation 
of  the stress adaptation response will consequently 
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increase vulnerability to depressive-like phenotype. 
In order to test this hypothesis, an animal model 

for depression will be used to evaluate the effects 
of  chronic stress on mitochondrial functioning 
and morphology. Specifically, the expression of  a 
protein (COX4I1) involved in complex IV activity 
will be explored as well as the expression of  several 
fission and fusion proteins. This will be done in 
various stress-sensitive brain areas, i.e. the npEW, 
PVN, amygdala and BNST. Furthermore, the 
prevalence of  depressive symptoms in children with 
a mitochondrial disease will be assessed using several 
questionnaires and the occurrence of  mutations 
in genes coding for the OXPHOS complexes in 
depression will be evaluated through a genetic meta-
analysis. 
 

2. Methods

2.1 Animal study

2.1.1 Animals and experimentation
	

Twelve adult (3-months old) male Wistar-R 
Amsterdam rats were used. They were housed under 
standard vivarium conditions (22˚C; lights on at 
6 am, lights out at 6 pm) and food and water was 
available ad libitum.

The rats were divided into two groups, i.e. control 
rats (n=6) and chronically stressed rats (n=6). 
The chronically stressed rats were exposed daily 
to a series of  unpredictable variable mild stressors 
(CVMS; Marin et al., 2007) for 14 days (table 1). 
Control rats were handled in exactly the same way 
as stressed animals but were not exposed to stress. 
All rats were sacrificed after the last exposure to a 
stressor, between 10 and 11 am. 

All animal procedures were conducted at 
the Anatomy Department of  Pécs University in 
accordance to the Declaration of  Helsinki and the 
animal use guidelines from the Medical Faculty 
Committee for Animal Resources of  Pécs University, 
Pécs, Hungary. All efforts were made to minimize 
the number and suffering of  rats. 

2.1.2 Fixation

Rats were deeply anesthetized with Nembutal 
(sodium-pentobarbital; Sanofi, Budapest, Hungary; 
100 mg/kg body weight), their chest cavity 
opened, and a small incision was made in the left 
ventricle. A blood sample of  1 ml was collected 
in an EDTA-containing tube, centrifuged at 3,000 
rpm for 10 min, and stored as 50 μl serum aliquots 
at -20˚C until further use. Meanwhile, rats were 

transcardially perfused with 50 ml of  0.1 M sodium 
phosphate-buffered saline (PBS; pH 7.4) for 2 min, 
followed by perfusion with 250 ml of  ice-cold 
4% paraformaldehyde in 0.2 M Millonig sodium 
phosphate buffer (pH 7.4) for 20 min.  All blood 
samples were taken and perfusion was initiated 
within 5 to 10 min after the first touching of  the 
animals’ cage. After perfusion, rats were rapidly 
decapitated, their brains quickly removed and post 
fixed in the same fixative solution. The brains were 
then transferred to 30% sucrose in 0,1 M PBS. 
When they were completely submerged, 25-µm 
coronal sections were cut through the brain using a 
HM 440 E freezing microtome (Microm, Walldorf, 
Germany). The sections were subsequently saved in 
sterile antifreeze solution (0.05 M PBS, 30% ethylene 
glycol, 20% glycerol), at -20 °C, until histological 
processing.  
 

Table 1. Chronic variable mild stress (CVMS) paradigm

2.1.3 Physiological measurements

Body weights of  control and CVMS rats were 
determined at day 0 and day 14. The adrenal glands 
and thymus, including capsule, were removed after 
decapitation and placed into a physiological saline. 
They were subsequently dried on the outside with 
paper and fat tissue was removed. The organs were 
weighed on a Sartorius L2200P scale and normalized 
to total body weight. 

Corticosterone radioimmunoassay was 
performed with 5 μl of  a blood serum sample, as 
described previously (Gaszner et al., 2004), using 

Day Stress

1 swim stress, 2 min (4°C); humid sawdust, 3 h

2 food/water deprivation, permanent

3 lights on, overnight; humid sawdust, permanent

4 lights off, 180 min; swim stress, 2 min (4°C)

5 food/water deprivation, overnight; isolation, 

6 cold isolation (4°C), 15 min; lights off, 120 min

7 swim stress, 4   min (12°C); food/water depriva-
tion, overnight

8 inverted light/dark cycle; humid sawdust, over-

9 constant light, overnight; food/water deprivation, 
overnight

10 lights off, 180 min; humid sawdust, permanent

11 isolation, overnight; food/water deprivation, 

12 restraint stress, 60 min; lights on, overnight

13 inverted light/dark cycle; food/water deprivation, 
overnight

14 restraint stress, 60 min
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3H-corticosterone (12,000 cpm; 90-120 Ci/mmol, 
NET-399; Perkin-Elmer, Boston, MA) and CS-
RCS-57 antiserum (Jozsa et al., 2005). The inter- and 
intra-assay co-efficient of  variation was 9.2% and 
6.4%, respectively.

2.1.4 Double Immunohistochemistry

Only sections containing the BNST, PVN, CeA 
or npEW were selected. After 6 x 10 min rinses in 0.1 
M PBS, the Heat-Induced Epitope Retrieval (HIER) 
method was used in order to improve the reactivity 
of  the antigens. The sections were transferred to 
0.01 M citrate buffer (pH 6.0) and heated to 90°C 
by means of  a microwave (10 min) or a water bath 
(15 min). Afterwards, they were slowly cooled down 
in the buffer for 30 min. Following a 15 min rinse 
in 0.1 M PBS, the sections were treated with 0.5% 
Triton X-100 (Sigma Chemicals, St. Louis, CA, 
USA) in 0.1 M PBS for 30 min in order to increase 
cell permeability. Then they were rinsed 3 x 10 min 
and incubated in 2% normal donkey serum (NDS; 
Jackson Immunoresearch Laboratories) in 0.1 M 
PBS with 0.5% TSA blocking reagent (PSB-B 
TSA; NEN Life Science Products, Boston, MA, 
USA) for 60 min, followed by a 3 night incubation 
in (a mixture of) primary antisera in 2% NDS in 
PBS-B TSA at 4°C. The following sera were used: 
polyclonal (rabbit) anti-CRF (1:700; gift from Dr. 
W. W. Vale), polyclonal (goat) anti-UCN1 (1:200; 
R-20; sc-1825; Santa Cruz Biotechnology Inc., Santa 
Cruz, CA, USA), or polyclonal (rabbit) anti-UCN1 
(1:2000; gift from Dr. W. W. Vale) with polyclonal 
(rabbit) anti-FIS1 (1:100; IMG-5113A; Imgenex, San 
Diego, CA, USA), polyclonal (chicken) anti-MFN1 
(1:75; NB110-58853; Novus Biologicals, Littleton, 
CO, USA), monoclonal (mouse) anti-OPA1 (1:25; 
612607; BD Biosciences), monoclonal (mouse) 
anti-DRP1 (1:100; 611112; BD Biosciences), or 
(rabbit) anti-COX4I1 (1:100; HPA002485; Sigma, 
St. Louis, MO, USA). After 3 x 10 min rinses in 0.1 
M PBS, the section were incubated in (a mixture of) 
secondary antisera in PBS-B TSA  for 2 hours. The 
following sera were used: Cy3-conjugated donkey-
anti-rabbit IgG (1:100; Jackson Immunoresearch 
Laboratories, West Grove, PA, USA), donkey-
anti-rabbit biotinylated IgG (1:100; Jackson 
Immunoresearch Laboratories, West Grove, PA, 
USA), donkey-anti-mouse biotinylated IgG (1:100; 
Jackson Immunoresearch Laboratories, West Grove, 
PA, USA), or donkey-anti-chicken biotinylated IgG 
(1:100; Jackson Immunoresearch Laboratories, 
West Grove, PA, USA). A third incubation in a 
mixture of  Cy3 –conjugated streptavidin (Jackson 

Immunoresearch Laboratories, West Grove, PA, 
USA) and secondary antisera in 2% NDS in PBS-
BTSA  for 2 hours followed after 3 x 10 min rinses, 
with exception of  the anti-FIS1 incubation;  these 
sections were mounted. The following sera were 
used: Cy2-conjugated donkey-anti-rabbit IgG (1:100; 
Jackson Immunoresearch Laboratories, West Grove, 
PA, USA), or Cy2-conjugated donkey-anti-goat IgG 
(1:100; Jackson Immunoresearch Laboratories, West 
Grove, PA, USA).  Finally, after 3 x 10 min rinses in 
0.1 M PBS, the sections were mounted on gelatin 
coated glass slides.

2.1.5 Image analysis

Fluorescence images were taken with a confocal 
laser scanning microscope (Leica microsystems). 
When necessary, brightness and contrast of  the 
images was adjusted using Adobe Photoshop 11.0.1. 
For quantification of  the different proteins in the 
npEW, cell bodies that showed a co-localization 
with UCN1 were counted. For quantification in the 
BNST, PVN and CeA, all immunoreactive cells were 
counted. In order to determine the amount of  the 
different proteins per cell, the specific signal density 
(SSD) was measured for 10 random cells. Both cell 
count and SSD was determined using the ImageJ 
software (NIH, Bethesda, MA, USA). Number of  
cells and SSD was determined in 3-5 sections per 
animal, and the outcomes averaged. Furthermore, 
percentage increase/decrease between groups was 
determined. 

2.1.6 Statistical analysis

The data were analyzed in Excel 2003, using a 
Student’s t-test for independent samples (α=5%), 
and are expressed as mean ± standard error of  the 
mean (SEM).

2.2 Clinical study 

2.2.1 Patients

Twenty-three pediatric patients with a 
mitochondrial disease, 13 males and 10 females 
aged 2-17 years (mean ± SEM: 7.4 ± 0.9), were 
evaluated for depressive symptoms. The control 
group consisted out of  14 pediatric patients with 
a non-mitochondrial metabolic disease, e.g. GSD 
IX, MELAS, hypoglycemia. This group consisted 
out of  7 males and 7 females aged 3-18 years (8.7 
± 1.2). Besides patient data, norm data was also 
used. The questionnaires were filled in separately by 
both parents of  the patients. The parents/patients 
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were approached for participation within a period 
of  9 months during their regular standard outpatient 
clinics follow-up at the UMC St Radboud and by way 
of  telephone. In total 37 patients were evaluated. For 
5 patients only one of  the two questionnaires was 
scored as they did not meet the age requirement for 
the other questionnaire (see below). From 9 patients 
only one set of  questionnaires was obtained, filled in 
by the mother.    

2.2.2 Questionnaires

In order to evaluate the prevalence of  depressive 
symptoms two questionnaires were used, i.e. the 
Dutch version of  the child behavior checklist (CBCL) 
and the sociaal-emotionele vragenlijst (SEV). The 
CBCL (Achenback, 2000) is a screening tool used 
to evaluate emotional and behavioral problems in 
children. There are two versions, i.e. one for children 
aged 1.5-5 years and one version for children aged 
6-18 years. The CBCL contains several subscales, e.g. 
competence scales, internalizing, externalizing. Only 
the syndrome scales and the DSM-oriented scales 
are of  interest for the current study. Within these, 
the T-scores for anxious/depressed, withdrawn (/
depressed) and affective problems were used for 
statistical analysis. The norm data for this test is a 
T-score of  54 for all the scales evaluated. 

The SEV (Scholte & van der Ploeg, 2005) is also 
a screening tool that evaluates problems in social-
emotional development in children (aged 4-18 years). 
Subscales include ADHD and autism. The scores on 

the anxious/depressed scale were used for statistical 
analysis. Unfortunately, no norm data was available. 

2.2.3 Statistical analysis

Data was analyzed using SPSS for windows 
15.0.1 software (SPSS Inc., Chicago, IL, USA). An 
independent-samples t-test was used in order to 
determine the difference between the two patient 
groups. A one-sample ANOVA was used to compare 
the two groups with the norm data. 

2.3 Genetic meta-analysis

In order to assess the occurrence of  genetic 
mutations of  the OXPHOS complexes in depression, 
the SLEP database was used (https://slep.unc.edu/
evidence/). This database only contains information 
for nuclear-encoded genes and thus mitochondrial 
DNA was not included in the search. All genes 
coding for one of  the 5 mitochondrial complexes 
were evaluated. Both primary studies and meta 
analyses were included in the search. Mutations 
were evaluated with respect to bipolar and major 
depression. Furthermore, the following settings 
were used:  GWL 1 mb, GWA 100 kb, MA 5 kb, 
CNV 100 kb, SignPost 50 kb. GWL studies yielding 
a linkage score below 3, or below 2 when a meta 
analysis, were disregarded. Furthermore, the gene 
had to be within the linkage interval. In case of  GWA 
studies, only p-values ≤ 10-4  were of  interest and 
the finding had to be within 100 kb of  the gene. For 

Fig 1. HPA-axis activation. A. Measurements of body weight gain. B. Corticosterone levels. C. Left adrenal weight relative to body 
weight. D. Right adrenal weight relative to body weight. Mean values ± SEM are shown. *p < 0.01; **p < 10-6.
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Fig 2. Expression of COX4I1 in the npEW. A. Number of cells 
expressing COX4I1. B. The average amount of COX4I1 per 
expressing cell. Mean values ± SEM are shown.

Fig 3. Expression of fission and fusion proteins. A. Number of cells expressing the different fission and fusion proteins in the npEW. 
B. The average amount of the different fission and fusion proteins per expressing cell in the npEW. C. Number of cells expressing the 
different fission and fusion proteins in the PVN. D. The average amount of the different fission and fusion proteins per expressing cell 
in the PVN. Mean values ± SEM are shown. *p < 0.05; **p < 0.01; ***p < 0.001. 

CNV studies, the gene had to be present in the CNV. 
All microarray studies were included, SignPosts were 
disregarded. 

3. Results

3.1 Chronic variable mild stress paradigm

3.1.1 Physiological measurements

In order to establish the occurrence of  chronic 
stress, several physiological measurements were 
taken (figure 1). There was a significant difference (p 
< 0.01) between control (531.7 ± 54.8) and CVMS 
(282 ± 1.2) rats with respect to corticosterone values 
at 120 min after the initiation of  the last stressor. 
Furthermore, chronic stress resulted in a significant 
difference (p < 0.01) in weight gain (control: 13.2 
± 1.2 vs. CVMS: 2.5 ± 0.4). In addition, the total 
weight of  the adrenals showed an approximately 
50% increase in CVMS rats compared to control 
rats.

3.1.2. Non-preganglioninc Edinger-Westphal 
nucleus

The expression of  COX4I1 was not significantly 
different (p > 0.05) between the control and the 
CVMS rats (figure 2A+B). Both number of  cells 
(control: 5 ± 1.0 vs. CVMS: 3.7 ± 1.2) and SSD 
(control: 126.9 ± 12.4 vs. CVMS: 99.2 ± 20.1) 
showed no change.
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Fig 4. CBCL scores. A. Scores from the mother. B. Scores from the father. Mean values ± SEM are shown. *p < 0.05; **p < 0.01; 

As shown by figure 3A+B, the levels of  the 
fusion proteins OPA1 and Mfn1 were significantly 
different between the two groups. With respect to 
OPA1, there were 93% fewer neurons expressing 
this protein in the CVMS rats (0.5 ± 0.3) than in the 
control rats (6.9 ± 2.3; p < 0.05). Furthermore, the 
SSD decreased with 98% in the chronically stressed 
group (29.0 ± 15.0) compared to the control group 
( 110.4 ± 24.2; p < 0.01). For Mfn1 the number of  
cells did not change (control: 3.7 ± 2.4 vs. CVMS: 
10.4 ± 2.9; p > 0.05). However, there was an increase 
of  approximately 395% in the SSD in the CVMS rats 
(127.9 ± 15.0) compared to the control rats (25.8 ± 
16.3; p < 0.001 ). 

Figure 3A+B also shows the results for the fission 
proteins Fis1 and Drp1. Neither protein displayed a 
significant change with respect to their expression. 
There was no significant difference with respect to 
the number of  cells expressing Fis1 (control: 12.0 ± 
3.2 vs. CVMS: 7.6 ± 3.0; p > 0.05) or Drp1 (control: 
0.4 ± 0.3 vs. CVMS: 0.1 ± 0.1; p > 0.05), nor was 
there for the SSD of  Fis1 (control: 169.5 ± 25.3 vs. 
CVMS: 161.5 ± 28.2; p > 0.05) or Drp1 (control: 
15.9 ± 10.3 vs. CVMS: 34.4 ± 20.7; p > 0.05)

3.1.3 Hypothalamic paraventricular nucleus

With respect to the fusion proteins (figure 
3C+D), only OPA1 expression was significantly 
different after chronic stress.  The SSD was 
decreased with 30% in the CVMS rats (87.5 ± 
18.6) compared to the control rats (125.0 ± 6.2: p 
< 0.05). Also, there were a 68% lower number of  
cells expressing OPA1 in the CVMS rats (29.3 ± 6.0) 
compared to the controls (9.4 ± 4.5; p < 0.05). The 
number of  cells expressing Mfn1 in the CVMS rats 
(18.7 ± 8.1) was not significantly different from the 
control rats (10.9 ± 5.2; P > 0.05). There was also no 
significant difference between controls (17.3 ± 35.3) 
and chronically stressed rats (180.2 ± 33.0; P > 0.05) 
with respect to Mfn1 SSD. 

The levels of  the fission proteins were also not 
significantly different in the PVN (figure 3C+D). 
The number of  cells expressing Fis1 or Drp1 did not 
increase/decrease in the CVMS rats (Fis1: 4.1 ± 1.9; 
DRP1: 6.6 ± 4.1) compared to the control rats (Fis1: 
8.9 ± 4.8; p > 0.05; DRP1: 11.8 ± 5.8; p > 0.05). The 
SSD was also the same between the groups for both 
Fis1 (control: 60.6 ± 22.6 vs. CVMS: 54.3 ± 19.0; p 
> 0.05) and Drp1 (control: 130.4 ± 24.2 vs. CVMS: 
71.4 ± 28.3; p > 0.05). 
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Mean SEM

Mother Father Mother Father

Anxious/
depressed 
(SEV)

2.1 0.38 1.1 0.3

Anxious/
depressed 

55.5 54.8 2.7 2.4

With-
drawn/
depressed

58.0 60.6 2.3 2.8

Affective 
problems

59.3 60.7 2.3 3.4

Table 2. Mean and standard error of  the mean (SEM) for the 
CBCL and SEV 

3.1.4. Amygdala and bed nucleus of the stria 
terminalis

The immunofluorescent staining in these regions 
was such (diffuse) that no reliable quantification 
could be made. 

3.2 Questionnaires 

Figures 4A+5A show the results from the mother. 
The patients with a mitochondrial disorder scored 
significantly higher on the withdrawn/depressed (t = 
3.8, p < 0.01) and affective problems scales (t = 5.4, p 
< 0.01) of  the CBCL than the norm population. The 
metabolic group only showed a significant higher 
score on the affective problems scale (t = 2.4, p < 
0.05). There was no difference with respect to the 
withdrawn/depressed scale between the metabolic 
group and the norm population, nor was there for 
the anxious/depressed scale of  both the SEV and 
CBCL for both groups. Furthermore, there was no 
significant difference between the metabolic group 
and the mitochondrial group on any of  the scales. 
Table 2 shows the mean and SEM for the two groups 
across the different scales. 

The results from the father were similar to that 
of  the mother (figure 4B+5B). Both the patients 
with a mitochondrial disorder as the metabolic 
group scored significantly higher on the withdrawn/
depressed scale (mitochondrial: t = 3.7, p < 0.01; 
metabolic: t = 2.3, p < 0.05) compared to the norm 
population. However, only the mitochondrial group 
scored higher on the affective problems scale (t = 
5.2, p < 0.01). There was no significant difference 
between the metabolic group and the norm 
population on this scale. Also, both groups scored 
the same as the norm population on the anxious/
depressed scale of  both the CBCL and SEV. 
Moreover, no differences were found between the 
mitochondrial and metabolic group on the different 

scales. Table 2 shows the mean and SEM for the two 
groups across the different scales. 

3.3 Genetic review study

The search in the SLEP database yielded 
a number of  interesting associations between 
polymorphisms in various mitochondrial complex 
genes and depression. Table 3 shows which genetic 
polymorphisms met the criteria. With respect to 
MDD, three polymorphisms were identified. Two 
were in genes coding for complex V, i.e. an assembly 
factor and a subunit, and one polymorphism in a 
gene coding for a subunit of  complex I. 

4. Discussion

The present study was aimed at exploring the 
possible role of  mitochondria in the development 
of  MDD. It was hypothesized that chronic stress 
results in insufficient energy, leading to a dysfunction 
of  the stress system and subsequently increasing 
the risk for a depression. Figure 6 shows a model 
of  this hypothesis. This model was adapted from 
the LEARn model for disease progression (Lahiri 
et al., 2009). Figure 6A shows the natural decline 
in mitochondrial function that occurs with age in 
every healthy individual. However, if  someone 
were to experience a significant stressful event (hit), 

Fig 5. SEV scores. A. Scores from the mother. B. Scores from the 
father. Mean values ± SEM are shown. 
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Table 3. Polymorphisms in mitochondrial complex I, IV and V genes associated with depression. Chr = chromosoom, PMID = 
PubMed ID, MDD = major depressive disorder, BIP = bipolar disorder, GWA = genome-wide association study, GWL = genome-
wide linkage study, MA = microarray.

Gene Function Chr Gene 
Region

Location Disorder Study 
Type

Study 
Method

Score 
Stat

P-value PMID

NDUFB3 Subunit  
Complex I

2 201,644,706-
201,658,718

201,677,185-
201,763,557

MDD Primary GWA - 0.00002405 19065144

ATPAF2 Assembly 
factor 
Complex 
V

17 17,862,058-
17,883,205

17,205,258-
36,247,990

MDD Primary GWL 2.1 -  18615541

ATP6V1G2 Subunit     
Complex 
V

6 31,620,218-
31,622,606 

31,628,405-
31,650,461

MDD Primary GWA - 0.0006673  19065144

this could damage the mitochondria, resulting in 
a decline in functioning (figure 6B). At a certain 
point this will go below the normal range, meaning 
there is an insufficient energy production. This will 
subsequently increase the risk for depression. 

In order to test this hypothesis, rats were 
chronically stressed using the CVMS paradigm. 
This model was successful in generating stress given 
the fact that all physiological parameters point to a 
chronic activation of  the HPA-axis. This model also 
leads to depressive behavior as evidenced by the 
forced swim test (Van Wijk et al., unpublished data). 

The chronic stress led to a change in the 
expression of  the fusion proteins in both the npEW 
and the PVN. OPA1 was reduced in both areas, 
whereas Mfn1 was increased in the npEW. There 
was no change with respect to the expression of  the 
fission proteins. 

Another aspect investigated was the link between 
mitochondria related genes and depression. A 
variety of  genetic studies were analyzed and it was 
shown that various polymorphisms in genes coding 
for the OXPHOS complexes were associated with 
mood disorders. Furthermore, a clinical study with 
pediatric patients was conducted. This confirmed 
an increase in depressive symptoms in children with 
a mitochondrial dysfunction compared to a healthy 
population.  

4.1 Increased incidence of depressive 
symptoms in mitochondrial dysfunction

	 Although there was an increase in depressive 
symptoms in children with a mitochondrial 
dysfunction, there was no difference between these 
children and the pediatric patients with a different 
type of  metabolic disorder. This could indicate that 
the increase in depressive symptoms is primarily 

caused by the fact that these children are chronically 
ill. However, this does not support our hypothesis, 
or the literature. A study by Morava et al. (In Press), 
for instance, showed that there was a difference 
between children with a mitochondrial disorder 
and children with Sotos syndrome, which is also a 
chronic disease. It is believed that, although being 
chronically sick will increase the prevalence of  
depressive symptoms, a mitochondrial dysfunction 
would add to this increase due to its proposed role 
in stress adaptation. 

Fig 6. Model for progression of mitochondrial function. A. Normal 
situation with age associated decline in mitochondrial function. 
B. Decrease in mitochondrial function (red line) after a hit. 
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	 Looking at the data, the problem probably 
lies within the number of  patients used for this study, 
i.e. in total and per group. For the mitochondrial group 
there were 24 patients, whereas for the metabolic 
group there were only 13 patients. This means 
that there is data from only 37 patients. A power 
analysis actually revealed that at least 50 patients per 
group were needed in order to obtain a statistically 
meaningful result. Thus, more questionnaires need 
to be collected before any meaningful conclusions 
can be drawn from these questionnaires. 

	
4.2 Genetic complex alterations in 
depression

As said, a number of  interesting polymorphisms 
within genes coding for the mitochondrial 
complexes were found to be associated with mood 
disorders. This is indicative of  an involvement of  
mitochondria in stress-induced brain disorders. The 
majority of  the polymorphisms were associated 
with a bipolar disorder. Although this is very 
interesting, this disease does not represent a pure 
depression in the sense that it also includes mania. 
Looking at MDD, only three polymorphisms were 
associated. However these associations are quite 
weak. It is believed that the current methods, used 
in the studies analyzed, are successful in identifying 
common genes that have a relatively large effect 
(e.g. Saxena et al., 2007). However, they often fail to 
identify the less common genes and genes that have 
small effects for the more complex traits (Maher, 
2008). A better strategy would be to collectively test 
genes involved in specific biological pathways, such 
that the combined effects of  genetic variants with a 
small effect can be examined (Torkamani et al., 2008; 
Ruano et al., 2010). 

In the current study only the nuclear-encoded 
genes that code for the five complexes were 
evaluated. Given the results from the animal study 
(see below), it would be interesting to also analyze 
the genes coding for the different fission and fusion 
proteins, as well as the mtDNA. 

4.3 Effects of chronic stress on 
mitochondrial fission and fusion
	

The chronic stress clearly had an effect on the 
morphology of  mitochondria in various stress-
sensitive brain areas, by way of  changing the balance 
between fission and fusion. As stated previously, the 
balance between these events has been found to play 
a crucial role in the functioning and distribution of  

mitochondria.                                                                     
Fusion plays a crucial role in maintaining the 

health of  the mitochondrial population, in that 
it allows for the mixing and exchange of  small 
molecules, proteins and mtDNA (Chen & Chan, 
2004).  Disruption of  this process has been associated 
with a loss of  mitochondrial membrane potential and 
OXPHOS dysfunction, caused probably by the loss 
of  mtDNA or metabolic substrates (Chen & Chan, 
2005; Amati-Bonnea et al., 2005; Chen et al., 2007; 
Chen et al., 2003). Furthermore, fusion has also 
been associated with a disruption of  mitochondrial 
distribution, which is essential for synaptic plasticity. 
Mfn2 deficient cells, for instance, display a clustering 
of  mitochondria in the cell body together with a 
reduction in number of  spines (Chen et al., 2007). 

Fission is required for the elimination of  
dysfunctional mitochondria and it appears to be 
involved in apoptosis (Twig et al., 2008; Suen et 
al., 2008) and the redistribution of  mitochondria 
in response to local changes in the demand for 
ATP (Skulachev, 2001). Disruption of  the fission 
process has similar effects to disturbed fusion. First 
of  all, given its role in distribution, it has also been 
implicated in mitochondrial movement. Mutation 
in Drp1 has been shown to negatively influence 
distribution and thus, as such, the morphology and 
plasticity of  spines and synapses (Li et al., 2004; 
Verstreken et al., 2005). In addition, Benard et al. 
(2007) demonstrated that disruption of  fission also 
leads to an impaired energy production. Parone 
et al. (2008) showed similar results. Furthermore, 
they describe an inhibition of  cell proliferation, 
an increase in ROS levels, autophagy and loss of  
mtDNA. Whether the increased ROS levels or the 
loss of  mtDNA is the causal factor here, is still 
unclear. 

The current study showed an increase in Mfn1 
in the npEW, which would indicate an increase 
in fusion. Various studies have shown that this 
represents an adaptive response to changed cellular 
energy demands (Hackenbrock, 1966; Hackenbrock, 
1968; Hackenbrock et al., 1971; Rossignol et al., 
2004; Jakobs et al., 2003). Upon activation of  the 
OXPHOS system for ATP production, there 
appears to be a transformation from the so-called 
“orthodox” to a “condensed” configuration, i.e. 
they become elongated, strongly branched and 
interconnected. Furthermore, Tondera et al., (2009) 
found that exposure to apoptotic stimuli resulted in 
the same reconfiguration. They state that this might 
represent an adaptive pro-survival response to stress. 
Although there is an important difference between 
the stimuli used, the same might be occurring here, 
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as several studies have shown that stress is also an 
apoptotic stimulus (Lee et al., 2006; Lowy et al., 
1995). On an important note, fusion cannot occur 
without Mfn2 (Chen et al., 2003). Unfortunately 
there is no data available for this protein. Future 
studies should include this mitofusin in order to 
obtain a complete picture. 

Based on the Mfn1 data it would seem that the 
mitochondria within the npEW display an adaptive 
response to the chronic stress. However, in the PVN 
such a response is not seen. Furthermore, in both 
regions the expression of  OPA1 is decreased. Both 
OPA1 and mitofusins mediate fusion. However, 
what this decrease in OPA1 means for this process 
is unclear. Based on the literature there are three 
possibilities, i.e. no fusion, incomplete fusion or 
transient fusion. 

There is conflicting data as to whether fusion 
can occur without OPA1. Some studies show that 
a disruption of  OPA1 blocks fusion and results in a 
fragmented network (Chen et al., 2005; Olichon et 
al., 2003). However, several other studies have shown 
that the mitofusins and OPA1 regulate sequential 
steps in the fusion process (Song et al., 2009; Malka 
et al., 2005). Mfn1 and Mfn2 regulate fusion of  
the outer membrane and OPA1 that of  the inner 
membrane. Fusion of  the outer membrane does not 
require the presence of  OPA1. Thus, mitochondria 
depleted of  OPA1 are still capable of  fusion, albeit 
incomplete fusion. Such an incomplete fusion would 
prevent the exchange of  mtDNA, and leads in many 
instances to mitochondria with multiple matrix 
compartments (Song et al., 2009). 

As said a third possibility is that of  transient 
fusion. Liu et al., (2009) have recently shown that 
there are two distinct fusion events, i.e. transient and 
complete fusion. Transient fusions are of  extremely 
short duration and maintain the original shape of  the 
participating mitochondria. Importantly, transient 
fusion seems to display a distinct dependency on 
OPA1. Whereas complete fusion decreases and 
disappears with either low or extremely high levels 
respectively, transient fusion increases. Furthermore, 
transient fusion promotes mitochondrial motility and 
appears to be sufficient to support mitochondrial 
metabolism. However, due to its fast nature, it does 
not allow for the exchange of  slow moving proteins 
and mtDNA. 

In order to determine which scenario is occurring 
here, morphometric data on the (ultra)structure of  
these organelles is required. Furthermore, as said, 
the expression of  Mfn2 needs to be established to 
determine whether transient or incomplete fusion is 
a possibility for this paradigm. 

Whichever type of  fusion occurred, all are 
associated with a lack of  protein and mtDNA 
exchange, resulting in depletion and/or damage. 
Chen et al. (2007) propose that under normal 
circumstances depletion also occurs, but it is rare due 
to the transient nature resulting from mitochondrial 
dynamics. However, during long-term periods of  
fusion-deficiency mitochondria lacking mtDNA, 
and thus respiratory activity, accumulate. (Chen et 
al., 2007). Furthermore, mtDNA mutations and 
deletions will no longer be ‘repaired’, resulting in 
a rapid accumulation of  mutations and deletions 
in the mitochondrial genome (Chen et al., 2010). 
When these reach a certain threshold this can affect 
OXPHOS (DiMauro & Schon, 2003; Taylor & 
Turnbull, 2005).  

Although the current study did not find a change 
in complex IV activity within the npEW, this does 
not say anything about the overall functioning of  the 
OXPHOS system as it is only one of  five complexes. 
An animal study by Madrigal et al. (2001), using 
immobilization stress, also found that complex IV 
activity in the cortex was not affected by chronic 
stress. The activity of  complexes I, II and III was, 
however, significantly reduced. The finding that 
complex II activity was reduced is interesting, in that 
it is the only complex fully encoded by the nuclear 
genome and therefore a clear indication that other 
factors besides mtDNA alterations are involved. 
Rezin et al. (2008), using the chronic stress model, 
found similar results, i.e. reduced complex I and III 
activity. However, they also showed a reduction of  
complex IV activity, but not of  complex II activity. 
Furthermore, they only obtained these results 
within the cortex and cerebellum, not within the 
hippocampus. Rodenburg et al. (unpublished data), 
however, did find changed complex activity within 
the hippocampus. Using the CVMS paradigm to 
induce chronic stress, he looked at complex I and IV 
activity within the hippocampus, PVN, BNST and 
CeA. He found a significant reduction of  complex 
1 activity within the hippocampus and CeA, and 
decreased complex IV activity within the BNST. 
No changes with respect to PVN were found, but 
activity of  complex II, III and V was not examined. 
Unfortunately no data is available for the npEW. 
These studies show a clear effect on the OXPHOS 
system after chronic stress.  

Interestingly, Madrigal et al. (2001) did not find a 
reduction in the ATP production. This is surprising 
given the reduced complex activity, and the increased 
mtDNA mutations and reduced ATP production 
found in patients with depression (Videbech, 2000; 
Gardner et al., 2003; Shao et al., 2008). However, it 
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appears that energy production is not affected until 
a certain threshold of  reduced complex activity has 
been reached (Davey & Clark, 1996; Madrigal et al., 
2001). 

To conclude, the present study strengthens 
our hypothesis, i.e. there are clear indications that 
mitochondria play a role in stress-induced brain 
disorders. The data fit nicely with the model for the 
progression of  mitochondrial function (figure 6). 
The chronic stress represents the hit, which causes a 
defiency in the fusion process. This results in a loss 
of  and/or mutations and deletions in mtDNA and, 
when this reaches a certain threshold, subsequent 
dysfunctioning of  the OXPHOS system (red line). 
When this again reaches a specific threshold (dotted 
line), this will lead to insufficient energy production 
(abnormal range), a dysfunction of  the stress system 
and subsequently an increased risk for depression. 
An interesting question that warrants further study 
is whether this damage is reversible or not.
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1. Introduction

Midbrain dopamine (DA) is involved in a wide 
range of  cognitive functions including working 
memory (Brozoski, Brown, Rosvold, & Goldman, 
1979), task-switching (Cools, Barker, Sahakian, & 
Robbins, 2001), motivation (Berridge & Robinson, 
1998), and reinforcement learning (Hollerman & 
Schultz, 1998). Current models of  dopamine’s role 
highlight its contribution to driving behavior by 
reward, through effects on learning, motivation, 
overcoming effort, or more generally, behavioral 
activation (Berridge & Robinson, 1998; Robbins & 
Everitt, 2007; Salamone, Correa, Mingote, & Weber, 
2005). The predominant view in computational 
and systems neuroscience holds that DA serves to 
promote reinforcement learning (RL), that is trial-
and-error instrumental learning to choose rewarding 
actions (Houk & Wise, 1995; Montague, Dayan, 
& Sejnowski, 1996; Paton, Belova, Morrison, & 
Salzman, 2006; Samejima, Ueda, Doya, & Kimura, 
2005; Schultz, Dayan, & Montague, 1997). This idea 
was derived from electrophysiological recordings 
from neurons in the midbrain dopaminergic nuclei 
of  primates performing simple tasks for reward 
(Hollerman & Schultz, 1998; Ljungberg, Apicella, & 
Schultz, 1992; Waelti, Dickinson, & Schultz, 2001), 
together with the insight that the phasic firing of  
these neurons quantitatively resembles a ‘reward 
prediction error’ signal used in computational 
algorithms for RL to improve action choice so as 
to obtain more rewards (Bayer & Glimcher, 2005; 
Frank, 2005; Montague, et al., 1996; Montague, 
Hyman, & Cohen, 2004; Sutton & Barto, 1998). 
Consistent are recordings in both nonhuman 
primates (Hollerman & Schultz, 1998; Schultz, 1998) 
and humans (Zaghloul et al., 2009), which show that 
the phasic response of  DA neurons in the midbrain 
is proportional to the difference between expected 
and actual outcome.

Supporting evidence for a role of  dopamine 
in human RL comes from controlled medication 
withdrawal studies in Parkinson’s disease. Parkinson’s 
disease (PD) is associated with dopaminergic cell 
loss in the substantia nigra pars compacta (Hassler, 
1938), which projects to the basal ganglia through 
mesolimbic and nigrostriatal projections. PD is 
commonly treated by alleviating DA depletion 
through DA enhancing drugs (levodopa and/or DA 
receptor agonists) and the role of  DA in human 
cognition can be analysed by examining the effects 
of  withdrawing dopaminergic medication in PD. 

Studies employing this approach have revealed 

effects of  DA on reinforcement learning by showing 
effects on value-based choice (e.g. Frank, Seeberger, 
and O’Reilly (2004) and Rutledge et al. (2009). For 
example, Frank and colleagues (2007; 2004) have 
shown that dopaminergic medication in PD alters 
the relative tendency to learn from appetitive versus 
aversive feedback. However, one major problem 
with this approach is that performance on the 
tasks used to assess RL depends not only on the 
gradual learning of  associations between stimuli and 
responses based on reinforcement, but also on the 
expression of  such learning on choice. Accordingly, 
effects on learning may partly reflect effects on the 
expression of  learning, i.e. value-based choice rather 
than on learning per se. In the present study, we aim 
to disentangle effects of  DA on value-based choice 
from those on reinforcement learning.

Dissociating dopamine’s role in choice from 
learning is pertinent, because dopamine is increasingly 
recognized to be involved less in acquisition and 
more in the performance of  motivated behavior. 
Indeed, the most pronounced effects of  causal DA 
manipulations tend to be on performance rather 
than learning, with DA promoting behavioral 
vigor or activation more generally (Berridge, 2007; 
Ikemoto & Panksepp, 1999; Robbins & Everitt, 
2007; Salamone, Correa, Farrar, & Mingote, 2007). 
Two current interpretations characterize these 
effects as arising via dopaminergic modulation of  
incentive motivation (Berridge, 2007) or cost/benefit 
tradeoffs (Salamone, et al., 2007). Other authors 
writing from a similar tradition have provided 
a more general activational account (Robbins 
& Everitt, 1982, 1992, 2007), stressing both a 
performance-based energetic component to DA as 
well as reinforcement-related functions more akin 
to those posited in the computational RL models, 
e.g. conditioned reinforcement and stamping-in 
of  stimulus-response habits (Wise, 2004). Indeed, 
early experimental work by Gallistel et al. (1974) 
argued for both reinforcing and activational effects 
of  (putatively dopaminergic) brain stimulation 
reward, distinguished as progressive and immediate 
effects of  contingent versus non-contingent self-
stimulation. 

To disentangle effects of  DA on learning from 
those on choice, we designed an adapted version 
of  the probabilistic selection task by Frank et 
al. (2004). Like the original version, the adapted 
version also consisted of  a learning phase and a 
test phase. However, unlike the original learning 
phase, our learning phase required subjects to learn 
a series of  associations between affectively neutral 
cues and affectively neutral outcomes, rather than 
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a series of  associations between affectively neutral 
stimuli and reward or punishment. In the adapted 
version, reward and punishment values were 
assigned to the outcomes only after learning and 
prior to testing. The implication of  this adaptation 
is that  any valence-specific effect of  medication on 
approaching rewards versus avoiding punishments 
must be due to an effect of  medication on value-
based choice rather than on reinforcement learning. 
If  value-based choice on our adapted task is not 
altered by dopaminergic medication, then this would 
suggest that previously observed valence-specific 
effects on probabilistic selection tasks (Frank, et 
al., 2004) are more likely due to modulation of  
learning rather than choice. However, if  we do find 
an effect of  dopaminergic medication on value-
based choice, then this would support a role for DA 
in driving behavior independent of  reinforcement 
learning. Such a result would help refine current 
models of  DA by emphasizing a role in behavioral 
control that is independent of  learning. We expect 
to find that dopaminergic medication improves 
performance on trials involving reward while at the 
same time impairing performance on trials involving 
punishment. Withdrawing medication should 
have the opposite effect: low dopamine impairs 
performance on trials involving reward, but improves 
performance on  trials involving punishment.

2. Methods

2.1 Subjects

Eighteen patients with PD and 13 age- and 
education-matched healthy controls participated 
in the study. The clinical and demographic 
characteristics of  the subjects are shown in table 1, 
the in- and exclusion criteria are shown in S1 (see 
online edition for supplementary material).

All patients were diagnosed by a neurologist 
(BRB or Dr R. Esselink) at the general neurology 
clinic at the Department of  Neurology of  the 
Radboud University Nijmegen Medical Centre as 
having idiopathic PD, according to the UK Brain 
Bank criteria. Clinical disease severity was assessed 
at the start of  each session using the motor subscale 
(part III) of  the Unified Parkinson’s Disease Rating 
Scale (Fahn, Elton, & Others, 1987). All patients 
were taking dopaminergic medication (levodopa 
and/or DA receptor agonists; details, including the 
levodopa equivalent daily dose (Wenzelburger et al., 
2002) are summarized in S2 (see online edition)).

2.2 General procedure

Patients were tested both on and off  their 
dopaminergic medication, at least seven days apart. 
The order of  on/off  testing was counterbalanced (9 

n sex ratio 
m:f

age 
(years)

education 
(years)

UPDRS 
ON

UPDRS 
OFF

L-dopa 
equivalent 
dose (mg)

disease 
duration 
(years)

patients 18 12:6 55.4 (2.2) 5.2 (1.2) 20.8 (1.7) 29.9 (1.9) 555.8 (119.3) 4.8 (0.7)
controls 14 9:5 58.8 (3.3) 5.8 (1.5)

Table 1. Demographic variables and neuropsychological test scores. (A) Demographic and disease characteristics of  participants. 
UPDRS: Unified Parkinson’s Disease Rating Scale. (B) Background neuropsychological tests. Asterisks indicate significance level 
of  p < 0.05 in two-tailed control versus patient student t-tests, uncorrected for multiple comparisons. DART: Dutch Adult Reading 
Test; BDI: Beck Depression Inventory; FAB: Frontal Assessment Battery; MMSE: Mini-Mental State Examination; BIS: Barratt 
Impulsivity Scale. For relevant references on the tests, see methods. Values in A and B represent Mean(SEM). 

DART* MMSE BIS 
total

BDI* FAB Digit span Block 
completion

Number 
cancellation

on off on off on* off* on* off*
patients 79.3 

3.1)
28.6 
(0.4)

62.7 
(1.5)

8.5 
(1.0)

17.4 
(0.2)

16.5 
(0.3)

6.0 
(0.3)

5.7 
(0.2)

108 
(6)

112 
(7)

315 
(7)

314 
(10)

controls 90.3 
(2.4)

28.6 
(0.3)

60.9 
(1.7)

3.7 
(0.9)

17.2 (0.2) 6.2 (0.3) 81 (8) 260 (16)

 A

 B
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patients were tested ON medication first). In the ON 
condition patients took their regular second dose of  
the day (around 12pm) 45 minutes before the start 
of  the experiment. Prolonged release medication 
was taken at the regular time, commonly early in the 
morning. In the OFF condition, all dopaminergic 
medication was withheld for at least 21 hours (or 
51 hours for prolonged release medication such as 
Requip Modutab, Sifrol, and Sinemet controlled 
release) at the time of  the experiment. Healthy 
controls were tested twice to estimate test-retest (e.g. 
practice) effects.

All subjects provided informed written consent 
prior to their participation in the study. All 
procedures were approved by the Committee for 
the Protection of  Human Subjects (CMO region 
Arnhem Nijmegen; protocol number 2008/159).

The experiment was performed as part of  a larger 
study for which patients and controls were scanned 
using functional magnetic resonance imaging (results 
reported elsewhere). Disease severity, demographics 
and background neuropsychological performance 
were assessed prior to scanner entrance. The 
experimental paradigm of  interest for the current 
paper was administered approximately 60 minutes 
after subjects were scanned.

2.3 Background neuropsychological tests

A battery of  tests was used to probe a range 
of  neuropsychological functions. For details of  
the tests, readers are referred to the appropriate 
references. Depression using the Beck Depression 
Inventory (BDI) (Beck, Ward, Mendelson, Mock, 
& Erbaugh, 1961), dementia using the Mini-Mental 
State Examination (MMSE) (Folstein, Folstein, & 
McHugh, 1975), frontal executive function using the 
Frontal Assessment Battery (Dubois, Slachevsky, 
Litvan, & Pillon, 2000) and cognitive processing 
speed using the box completion task (Salthouse, 
1994) were assessed to provide background 
data. The Dutch version of  the National Adult 
Reading Test (DART) (Nelson & O’Connell, 1978; 
Schmand, Bakker, Saan, & Louman, 1991) provided 
a measure of  premorbid intelligence levels. The 
BIS-11 (Barratt, 1985) was used to assess cognitive 
impulsiveness, motor impulsiveness and non-
planning impulsiveness. A number cancellation 
task was used to assess sustained attention and 
concentration. The results were analysed using 
independent samples t-tests. Except for the DART, 
the neuropsychological profile was consistent with 
the mild pattern of  cognitive impairments seen in 
previous studies.

2.4 Task 

A modified version of  the probabilistic selection 
(PS) task was used (Frank, et al., 2004). The task 
was programmed using Presentation 14.1 (Neurobs, 
Inc., Albany, California, USA; www.neurobs.com) 
and presented on a Windows XP SP2 computer. 
Subjects sat in front of  a computer screen in a lighted 
room. The instructions as given to the subjects are 
described in S5 (see online edition).

Like the original task, the current task consisted 
of  two phases: an initial training phase and a 
subsequent testing phase. Unlike the original learning 
phase, our learning phase required subjects to learn 
a series of  associations between affectively neutral 
cues and affectively neutral outcomes, rather than 
a series of  associations between affectively neutral 
stimuli and reward or punishment. Here, reward and 
punishment values were assigned to the outcomes 
only after learning and prior to testing (see Figure 1). 

In the learning phase, three different pairs of  
Hiragana characters (AB, CD, EF) were presented 
in random order, with the assignment of  Hiragana 
characters to elements A-F randomised between 
subjects. Each character represented a cue and was 
associated, stochastically, with one of  two affectively 
neutral outcomes, represented by two coloured 
shapes. For example, cue (Hiragana character) A was 
associated with outcome (coloured shape) 1 on 80% 
of  trials, while cue B was associated with outcome 
1 on 20% of  trials. Cue A was thus associated 
with outcome 2 on 20% of  trials, while cue B was 
associated with outcome 2 on 80% of  trials (Fig. 1). 
Hiragana characters were presented in white (8 cm 
height on-screen) and outcomes in colour on a black 
background (5 cm height on-screen), ~ 80 cm from 
the subject.

During the learning phase, the subject’s task 
was to learn the associations between cues and 
affectively neutral outcomes through observational 
learning. In a single trial, a pair of  cues was presented 
(right/left location randomized). Subjects had eight 
seconds to respond with the left or right key—to 
choose between the two cues—and to observe the 
outcome. Upon choosing a cue, a white box was 
shown around that cue and the outcome was shown 
in between the two cues for 0.5 s. After a jittered 
fixation period of  500 to 1500 ms, a new pair of  
cues was shown. Subjects learned to associate cues 
with outcomes by keeping track of  the outcomes of  
their choices. Subjects were informed that the cue-
outcome contingency was reversed between the two 
cues of  each pair.
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The learning phase consisted of  4 blocks, each 
block consisting of  60 trials. Each pair was shown 20 
times per block, providing 80 trials per pair during 
the whole learning phase. The order of  pairs was 
pseudo-randomised per three trials within each block 
of  60 trials, the outcome was pseudo-randomised 
per ten trials of  each pair. 

During the learning phase there is no way 
to assess learning performance from the choice 
pattern because there is no ‘right’ or ‘wrong’ choice. 
Learning was assessed using a visual analogue scale 
(VAS) questionnaire after every 60 trials (yielding 
4 measurements over the course of  learning) 
and once after the testing phase. Using the arrow 

keys, subjects first estimated the ratio of  the two 
outcomes for each cue in 10% steps, and then 
indicated how certain they were of  this estimate (for 
illustration, see S3 in the online edition). The cues 
were shown one by one, in random order. Learning 
performance was determined for each questionnaire 
as error on the cue A and B estimates, expressed 
in arbitrary unit length distance on the scale. This 
allowed a comparison of  learning performance 
between medication states, and between patients and 
controls. After the VAS questionnaire, subjects had 
a 15-second break and text on the screen reminded 
them to learn the cue-outcome associations.

After completion of  the learning phase, the 

Fig. 1 Description of the probabilistic task with delayed valuation. During the acquisition phase subjects gradually 
acquire an association between cues, represented by Hiragana characters, and two possible outcomes, represented 
by coloured shapes. During each acquisition trial, participants are shown one of the pairs, which are presented in 
pseudorandom order. After choosing one of the cues within 8 seconds, one of two possible outcomes is shown, chosen 
randomly based on the contingencies shown in the table (in %). Over the course of acquisition, participants learn to 
associate cue A, C and E with neutral outcome 1, and cue B, D and F with neutral outcome 2. Note that acquisition of 
these associations does not involve reinforcement learning, as the participants have not yet been told the value of both 
outcomes. After 60 trials with each pair, subjects are then explicitly told what the value of each outcome is: outcome 
1 yields money, whereas outcome 2 will lead to loss of money. This money is not actually paid, but participants are 
informed they will see their score at the end of the experiment. During the testing phase, all 15 possible combinations 
of cues are shown 6 times and the participant is instructed to maximise their gains, using their experience from the 
acquisition phase. No feedback is given to prevent on-going learning, but a reminder of outcome values is shown at the 
top of the screen. 
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outcomes were assigned values; subjects were 
instructed that outcome 1, most strongly associated 
with cue A, would yield €100, while outcome 2, 
most strongly associated with cue B, would yield a 
loss of  €100 (for literal instructions, see S6 in the 
online edition). During the test phase, which was 
identical to that used by Frank et al. (2004), subjects 
were shown novel combinations of  the previously 
learned cues, with a reminder of  the outcome 
values at the top of  the screen (see S4). They were 
instructed to maximize their profits by choosing 
the best cue in each pair, based on the outcomes 
associated with them and their instructed values (for 
literal instructions, see S6 in the online edition). In 
total, 15 pairs were shown in random order 6 times. 
There was no limit on response time, and testing 
was conducted in extinction; i.e. no feedback was 
provided. Subjects were informed that the score 
was recorded and would be shown to them after 
task completion. There was a 500 to 1500 ms jitter 
between response and presentation of  the next pair.

All subjects, with the exception of  2 control 
subjects, were tested on two separate occasions. 
Both sessions used a unique set of  stimuli for the 
cues and outcomes.

2.5 Data analysis

All statistical tests were performed in SPSS 
for Windows (2007). The first set of  analyses 
was aimed at revealing any test-retest effects on 
performance (log-transformed reaction times (RTs) 
and arcsine-transformed accuracy). Group (PD 
versus controls) was included as a between-subject 
factor, and testing session (first versus second) as a 
within-subject factor. These analyses revealed that 
there were no significant test-retest effects, nor was 
there any difference in test-retest effects between 
groups (see results). This enabled us to conduct the 
second set of  analyses, aimed at elucidating effects 
of  dopaminergic medication on performance, 
irrespective of  session order.

We performed two repeated measures ANOVAs 
on the patient data. In the first model we examined 
the effect of  the within-subject factors medication 
status (ON versus OFF) and valence (approach-A 
versus avoid-B) on test phase accuracy. In this model, 
the critical dependent measure was the number 
of  times the reward-associated cue A was chosen 
(approach-A) when a pair was shown during the 
test phase that included A (but not B). Conversely, 
avoid-B represented the number of  times B was 
avoided (i.e. not chosen) when a pair was shown 
that included loss-associated cue B (but not A). In 

the second model we examined the effect of  within-
subject factors medication status and valence on 
RTs of  successful approach-A and avoid-B trials. 
Any RTs <200 ms were excluded as these could not 
reflect a value-based choice.

Both models included a covariate that captured a 
bias for choosing visual cue A or B during the learning 
phase. We reasoned that if  subjects happened to 
choose one of  the two cues more often, then this 
might lead to improved learning of  that specific 
cue-outcome relation. This would add variance of  
no interest to the data, which in turn would reduce 
power to detect effects of  interest. The covariate was 
calculated by taking the proportion of  trials in which 
cue A was chosen in AB-pairs during the learning 
phase of  each session (a value between 0 and 1). The 
covariate represented the difference in bias between 
the on and off  session (a value between -1 and 1).

Post-hoc simple tests of  accuracy and RT 
measures were conducted to compare controls with 
PD patients ON and OFF medication respectively. 
For these analyses, data was averaged over both 
sessions for 12 controls or duplicated for 2 
controls who participated only once, such that all 
comparisons between controls and patients involved 
identical control data. The learning bias covariate 
was also included.

3. Results

Medication significantly decreased UPDRS 
scores in patients (F(1,17) = 35.79, p < .0001). One 
patient did not make any successful avoid-B trials 
when ON medication and was therefore excluded 
from RT analyses involving avoid-B. 

Supplementary analyses  were performed on a 
subset of  the patients and controls, excluding all 
subjects that did not choose cue A in the A-B test 
pair >50% of  the time in either of  the sessions. This 
was the criterion used in the original task(Frank, et 
al., 2004). The results are described in S7 (see online 
edition).

3.1 Background neuropsychological tests

Data from the neuropsychological tests are shown 
in table 1B. Independent samples t-tests revealed a 
significant main effect of  group for the following 
background neuropsychological tests: controls 
scored higher on the DART, indicating higher verbal 
IQ (t(30) = 2.66, p = .01); patients scored higher 
on the BDI (t(30) = 3.41, p = .002); patients were 
slower on the box completion task both ON (t(30) 



Nijmegen CNS | VOL 6 | ISSUE 2 47

Dopaminergic medication effects in Parkinson’s disease on probabilistic selection reflect value-based 
choice rather than learning 

47

= 2.82, p = .008) and OFF (t(30) = 2.92, p = .007) 
medication; and patients were also slower on the 
number cancellation tasks both ON (t(30) = 2.59, p 
= .02) and OFF (t(30) = 2.93, p = .01) medication. 
All other scores were matched between patients and 
controls. Elevated depression scores and slowing on 
cognitive tasks are common in PD. A difference in 
pre-morbid IQ as measured by the DART was not 
expected, but it is not obvious how differences in IQ 
could explain any valence-specific effects in this task

3.2 Learning of cue-outcome relationships 

Both patients and controls understood the 
task and learned the cue-outcome associations. 
We assessed learning performance based on VAS 
accuracy on cue A and B estimates (Fig. 2). 

In terms of  the VAS ratings, there was a main 
effect of  medication (F(1,16) = 10.56, p = 0.01) and 
a main effect of  time (F(3,48) = 3.80, p = 0.02). 
Medication did not improve learning rate, as shown 
by the non-significant medication x time interaction 
(F(3,48) = 1.13, p = 0.35). Control subjects showed 
no difference in learning over time compared to 
patients ON medication (F(3,87) < 1) or OFF 
medication (F(3,87) = 1.32, p = .27). Learning 
differences between groups or medication conditions 
most likely influenced overall performance in the 
test phase. However, impaired or improved learning 
does not discriminate against cue A or B, so any 
general effect will not invalidate valence-specific 
effects (i.e. differences between approach and avoid 
conditions). Also, whereas learning rates are not 
influenced by dopaminergic medication, medication 
does improve observational learning of  stimulus-
stimulus associations.

3.3 Session effects

All patients and most of  the controls were tested 
twice on the same task. For a fairly complex task 
like the adapted PS task, subjects might improve in 
the second session compared to the first. This was 
not the case: over all subjects, there was no effect of  
session on test accuracy (F(1,28) = .10, p = .76) and 
there was no session x valence interaction on accuracy 
(F(1,28) = .15, p = .70). These findings allowed us 
to 1) average control data over both sessions and 
2) examine medication effects regardless of  whether 
patients were tested ON or OFF their medication 
first.

3.4 Accuracy on approach-A and avoid-B

The classic behavioral measures of  the PS 
task are approach-A and avoid-B accuracy. In our 
adaptation of  the PS task, we set out to test whether 
dopaminergic medication affects value-based choice 
accuracy, independent of  the incremental learning of  
reward-related associations (Fig. 3). There was a main 

Fig. 2 Inaccuracy of cue-outcome estimates on the VAS 
questionnaires during the learning phase. Lower scores 
on the y-axis indicate a smaller error in the estimate. 
There was no significant difference in learning over time 
between groups. Error bars indicate twice the standard 
error of the mean.

Fig. 3 Dopaminergic medication improves accuracy 
on approach, but not avoid trials. Medication did not 
improve overall performance (main effect of medication: 
F(1,16) = 2.66, p = 0.12). Patients did perform better on 
approach trials than avoid trials (main effect of valence: 
F(1,16) = 5.75, p = 0.03). The crucial medication X 
valence interaction was not significant; however, a 
trend is evident (F(1,16) = 3.78, p = 0.07). This trend 
is mainly driven by a medication-induced improvement 
on approach trials (effect of medication on approach 
accuracy: F(1,16) = 7.19, p = 0.02), similar to previous 
studies involving value-based choice (e.g. Frank et al. 
2004). However, unlike previous studies, medication 
had no effect on accuracy on avoid trials (main effect 
of medication on avoid accuracy: F(1,16) = 0.48, p = 
0.50). Although these results are not conclusive due to 
the lack of a significant interaction, they provide a strong 
indication that dopaminergic medication in PD has a 
similar valence-specific effect on accuracy as reported in 
previous studies (Frank et al., 2004, 2007, Cools et al., 
2006). All F-tests included a covariate for acquisition bias 
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effect of  valence on accuracy in PD patients (F(1,16) 
= 5.75, p = .03), but no main effect of  medication 
(F(1,16) = 2.67, p = .12). The crucial interaction, 
medication x valence, trended towards significance 
(F(1,16) = 3.78, p = .07). Simple effects analyses 
revealed that medication in PD patients significantly 
improved approach-A accuracy (F(1,16) = 7.19, p = 
.02), but  had no effect on avoid-B (F(1,16) < 1). The 
trend in the interaction and significant simple effect 
resemble results from the original PS task in which 
DA could influence performance through both RL 
and value-based choice (Frank, et al., 2004). Control 
subjects had similar accuracy on approach-A and 
avoid-B (F(1,12) = 2.08, p = .18). Approach-A 
accuracy in controls versus patients ON medication 
was not significantly different (F(1,30) < 1). These 
results indicate that dopaminergic medication 
affects value-based choice only for the approach-A 
condition, but not for avoid-B. However, because the 
interaction was not significant, and approach-A was 
not different between PD patients ON medication 
and controls, caution is warranted in interpreting 
this result.

3.5 Reaction times on approach-A and 
avoid-B

Dopamine not only affects accuracy, but also 
response vigor (Niv, Daw, Joel, & Dayan, 2007; 
Salamone & Correa, 2002). We examined RTs on 
successful approach-A and avoid-B trials (Fig. 4). 

There was a main effect of  valence on RTs (F(1,15) = 
12.83, p = 0.003), but no main effect of  medication 
(F(1,15) = 3.20, p = 0.09). A significant medication 
x valence interaction for RTs was found (F(1,15) = 
5.48, p = .03). This interaction was driven by faster 
responses of  patients ON medication compared 
to OFF medication in approach-A trials (F(1,16) = 
10.68, p = .01). There was no such difference between 
avoid-B RTs ON versus OFF medication (F(1,15) < 
1). There was a valence x disease interaction between 
controls and patients ON medication (F(1,28) = 
10.76, p = 0.003) but not between controls and 
patients OFF medication (F(1,29) < 1). These results 
show that dopaminergic medication in PD patients 
causes faster RTs to obtain reward without affecting 
RTs on trials in which punishment must be avoided.

4. Discussion

4.1 Summary of results

The adapted version of  the original probabilistic 
selection task (Frank, et al., 2004) presented in 
this article specifically examines the role of  DA 
in value-based choice independent of  DA’s role in 
reinforcement learning. Dopaminergic medication 
in PD patients was associated with a valence-specific 
speeding of  reaction times. Specifically, medication 
decreased RTs on trials to obtain reward, whereas 
trials to avoid punishment were unaffected. The 
results also suggest that dopaminergic medication 
increases accuracy in choosing cues associated with 
reward. However, the crucial interaction between 
medication and valence was trending, but not 
significant. 

In the last decade DA’s role in motivation, 
vigor, and effort has gained increased attention 
in the literature. The current debate concerns the 
distinct role of  DA in 1) reinforcement learning, 
i.e. the gradual acquisition of  stimulus-response 
associations based on appetitive/aversive outcomes, 
and 2) a collection of  constructs (e.g. motivation, 
effort, activation) all related to performance and 
behavioral output. This distinction has been called 
learning vs. ‘wanting’(Berridge, 2007; Robinson, 
Sandstrom, Denenberg, & Palmiter, 2005). Other 
theorists have attempted to bridge the gap between 
RL and motivational accounts of  DA (Niv, et 
al., 2007). Our results emphasize a role of  DA in 
performance and motivation. First, we will relate 
our findings to theories that consider a causal 
relationship between DA and motivation, vigor 
and effort. Second, implications of  our findings for 

Fig. 4 Medication speeds up responses to obtain rewards, 
but does not affect reaction speed on avoid trials. Reaction 
times on successful test trials showed a significant 
medication X valence interaction (F(1,15) = 5.84, p = 
0.03). This interaction was driven by medication speeding 
up approach trials (main effect of medication on approach 
RTs: F(1,16) = 10.68, p = 0.005), but not avoid trials 
(main effect of medication on avoid RTs: F(1,15) = 0.07, 
p = 0.79). This result indicates medication speeds up 
responding to appetitive, but not aversive, stimuli. Patients 
on medication were also faster than controls on approach 
trials (F(1,29) = 4.86, p = 0.04). Note that this speed 
increase did not lead to reduced accuracy (see figure 3). 
Error bars indicate standard error of the mean.
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previous work on dopaminergic modulations of  
choice will be discussed. 

4.2 DA and response vigor

The finding that dopaminergic medication leads 
to faster responding for reward-related cues is in line 
with empirical and theoretical work on performance 
effects of  DA (Berridge, 2007; Berridge & Robinson, 
1998; Niv, Daw, & Dayan, 2006; Niv, et al., 2007; 
Salamone, et al., 2005). Despite the fact that subjects 
did not have a response deadline, or were in no other 
way extrinsically motivated to make fast responses, 
medication still induced reward-specific speeding. 

In recent years, a number of  hypotheses have 
been put forward to capture DA’s diverse role in 
reward-driven behavior. Niv et al. have proposed 
that striatal tonic DA represents opportunity 
cost—the cost of  doing nothing—and controls 
response vigor (Niv, et al., 2007). Given a high-
reward environment, characterized by many positive 
prediction errors, the cost of  doing nothing is high 
(Niv, Daw, et al., 2006). Niv et al. argue that in such 
a situation, it would be advantageous to expend 
energy and effort to work fast, so as to maximize 
rewards. Such a ‘running average of  reward’ would 
also explain why animals sometimes work hard 
even for non-relevant outcomes (Niv, Daw, et al., 
2006; Niv, Joel, & Dayan, 2006). In the adapted PS 
task, there is no direct reinforcement to alter vigor. 
However, such changes in vigor can also be caused 
by other manipulations such as dopaminergic drugs, 
which is the case in this paper. Indeed, we find 
that a medication-induced increase in striatal DA 
levels is associated with increased response vigor. 
However, based on the opportunity cost hypothesis 
and associated results (Niv, Daw, et al., 2006; Niv, 
et al., 2007; Niv, Joel, et al., 2006), it is surprising 
that dopaminergic medication only speeds up 
responses to cues associated with reward, but not 
cues associated with punishment. This implies that 
response vigor is modulated on a trial-by-trial basis 
dependent on midbrain DA firing (Berridge, 2007; 
Satoh, Nakai, Sato, & Kimura, 2003), rather than 
over larger timescales as suggested by Niv et al. 
(2007). The incentive salience hypothesis (Berridge, 
2007; Berridge & Robinson, 1998) does explain an 
approach-specific speeding of  RTs for PD patients 
ON medication versus OFF (Peciña, Cagniard, 
Berridge, Aldridge, & Zhuang, 2003). However, 
the incentive salience hypothesis almost exclusively 
concerns salience attribution to rewarding cues, 
without making specific predictions on incentive 
salience attribution to aversive cues. Ikemoto et al. 

(1999) suggested that DA mediates both aversive 
and appetitive motivation, but they do not provide 
a clear explanation for the valence-specific effect 
presented in this paper.

Robbins and Everitt (1982, 2007) proposed that 
DA mediates an ‘activational state’ which modulates 
behavioral output. Similar to incentive motivation, 
activation of  target structures—such as the 
striatum—acts to ‘enhance behavior’ and increase 
responsiveness to cues paired with reinforcement 
and to cues paired with aversive outcomes. In our 
results, we do not find such a general activation due 
to increased DA levels in the striatum: the decrease 
in RT is restricted to the appetitive cue, and does 
not extend to the aversive cue. The authors do 
mention that high DA levels can have deleterious 
effects on performance, but make no mention of  
such a deleterious effect being specific to approach 
or avoid behaviour (Robbins & Everitt, 2007).

If  one assumes that ‘aversive salience’ is not 
modulated by DA, then a valence-specific effect such 
as the one presented in this article can be explained by 
the incentive salience hypothesis. Regarding vigor in 
avoid behavior, a number of  authors have suggested 
that serotonin mediates punishment-related behavior 
much in the same way as DA mediates reward-related 
behaviour (Daw, Kakade, & Dayan, 2002). Serotonin 
may act to inhibit actions when punishment is likely 
to occur (Cools, Nakamura, & Daw, 2011). Applying 
a tryptophan depletion manipulation to causally 
reduce serotonin to the adapted PS task, RTs on 
avoidance of  punishment-related cues should 
become faster, as response inhibition is lifted.

Localisation of  the drug effect on approach RTs 
is inherently difficult because of  the use of  drug 
administration, which is a brain-wide manipulation.  
The nucleus accumbens has been suggested to 
mediate effects of  DA on motivation and vigor 
(Ikemoto & Panksepp, 1999; Niv, et al., 2007; 
Salamone & Correa, 2002) and this view is supported 
by work in the animal literature (Robbins & Everitt, 
1982; Salamone et al., 1996; Salamone et al., 1991; 
Satoh, et al., 2003; Taylor & Robbins, 1984). 

4.3 Accuracy on the PS task

Our finding that dopaminergic medication seems 
to differentially affect approach and avoid accuracy, 
although only based on a significant simple effect 
and a trending valence x medication interaction, 
could provide additional insight into other studies 
examining approach and avoid accuracy. In the 
original PS task it was also found that medication 
improves approach performance (Frank, et al., 2004). 
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This finding, based on a significant medication x 
valence interaction, was interpreted as a DA-induced 
bias in learning from positive versus negative 
feedback. This bias in learning then carries over to 
the testing phase, during which these associations 
are ‘probed’ and the bias in learning is revealed. In 
our study, however, there can be no valence-specific 
effect of  dopaminergic medication on learning the 
positive cues, because subjects are not informed 
of  the values of  the (previously neutral) outcomes 
until after learning. However, we still see a simple 
effect of  medication on approach accuracy and 
an – admittedly trending – differential effect of  
dopaminergic medication on approach and avoid 
accuracy, despite no RL taking place. This indicates 
that at least part of  the effect of  DA on the original 
PS task might not be on RL, but on value-based 
choice, as is acknowledged in computational models 
of  DA function (Frank, 2005).

Many studies show an essentially similar effect 
to Frank et al. (2004) (Bodi et al., 2009; Cools, 
Altamirano, & D’Esposito, 2006; Cools, et al., 2009; 
Frank, et al., 2007; Shohamy, Myers, Kalanithi, & 
Gluck, 2008; Voon et al., 2010) and have supported 
the hypothesis that DA in the striatum underlies 
learning from positive and negative feedback. More 
specifically, low levels of  DA in the striatum, caused 
by a low baseline, PD, DA antagonists, or DA 
depletion, are associated with improved learning 
from negative feedback. High levels of  DA in the 
striatum, caused by a high baseline, dopaminergic 
medication, DA agonists, drugs of  abuse, or 
microstimulation, are associated with improved 
learning from positive feedback. However, a caveat 
in these types of  RL studies is that RL is assessed 
by subsequent choice accuracy, as is the case in the 
studies mentioned above. This paper shows that 
choice accuracy itself  might be under the influence 
of  DA in much the same pattern that was found in 
studies on RL, i.e. dopaminergic medication seems 
to improve value-based choice on rewarded cues, 
but not on cues associated with punishment. The 
implications of  this finding for a number of  RL 
paradigms warrant further investigation into DA-
dependent modulation of  accuracy in value-based 
choice.

So what might be the underlying neural mechanism 
causing a valence-specific effect in our adapted PS 
task? Since our adaptation excludes a valence-specific 
modulation of  learning, dopaminergic medication 
must be directly biasing value-based choice. 
According to the incentive salience hypothesis, the 
incentive value of  cues is carried by DA, such that 
when a cue predicting a reward is shown, midbrain 

DA neurons dynamically generate the motivation 
or ‘wanting’ signal that drives behavior to obtain 
the reward (Berridge, 2007; Berridge & Robinson, 
1998). For example, when a cue is shown that 
predicts a small reward, the corresponding DA burst 
will be small. But when a cue is shown that predicts 
a large reward, the corresponding DA burst will be 
large. This corresponds to electrophysiological work 
which shows that midbrain dopaminergic neuron 
firing rates at the onset of  a conditioned stimulus 
code the predicted reward associated with the CS 
(Hollerman & Schultz, 1998; Satoh, et al., 2003; 
Zaghloul, et al., 2009). Through this mechanism, 
midbrain DA might act to translate stored cue-
reward associations into appropriate behavior. PD 
patients ON medication have increased levels of  DA 
in the striatum, most notably the ventral part (Cools, 
et al., 2001; Gotham, Brown, & Marsden, 1988; 
Kish, Shannak, & Hornykiewicz, 1988; Maruyama, 
Naoi, & Narabayashi, 1996). Increased levels of  
DA in the striatum may further increase incentive 
salience attribution to cues associated with reward 
(e.g. cue A) without affecting incentive salience 
of  cues associated with punishment (e.g. cue B). 
Increased striatal DA levels when ON medication 
may cause PD patients to be strongly motivated to 
obtain rewards compared to when patients are OFF 
medication. This is reflected in their accuracy scores 
and RTs on the adapted PS task. 

Concluding, the increase in accuracy for 
approaching cues associated with reward for patients 
on dopaminergic medication lines up with theories 
that posit a motivational role for DA. Specifically, 
DA in the striatum might increase motivation 
to obtain rewards without affecting accuracy on 
avoidance of  cues to avoid punishment. However, a 
closer examination of  DA’s distinct roles in approach 
and avoidance behavior, specifically regarding 
value-based choice, is warranted as our results are 
inconclusive. Also, given the overwhelming evidence 
in favour of  DA’s role in incremental acquisition of  
stimulus-response associations based on reward and 
punishment, we think the elucidation of  DA’s role 
in value-based choice will complement, rather than 
substitute, current theories on DA and RL.

4.4 Observational learning and PD

Our data provide evidence for a role of  DA in 
observational learning, i.e. incremental strengthening 
of  stimulus-stimulus associations, by showing that 
PD patients performed significantly more poorly 
on the learning phase of  the task when they were 
OFF relative to ON their medication. Previous work 
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has shown that PD is associated with decreased 
performance in learning from feedback (Knowlton, 
Mangels, & Squire, 1996; Shohamy et al., 2004), 
possibly caused by a disruption of  dopaminergic 
transmission by levodopa medication (Cools, et al., 
2001; Shohamy, Myers, Geghman, Sage, & Gluck, 
2006). This effect of  levodopa on learning from 
feedback has been contrasted with a lack of  effect 
of  levodopa on observational learning (Shohamy, 
et al., 2004). Based on these results, Shohamy et al. 
have suggested that observational learning is most 
likely mediated by the medial temporal lobe (MTL), 
which is classically involved in explicit memory 
(Poldrack et al., 2001). This conflicts with our finding 
that dopaminergic medication affects observational 
learning. A recent fMRI study confirmed MTL-basal 
ganglia interactions for explicit learning (Sadeh, 
Shohamy, Levy, Reggev, & Maril, 2010), which could 
explain a dopaminergic modulation of  stimulus-
stimulus learning.

5. Conclusion

To tease apart DA’s role in reinforcement 
learning from its role in value-based choice we 
tested PD patients ON and OFF their dopaminergic 
medication on a probabilistic selection task. 
Specifically, the task was adapted in such a way that 
medication could not cause a valence-specific bias 
in learning cue-outcome associations. Using this 
adapted task, we have shown that medication in 
PD patients increases accuracy on trials involving 
approach of  reward, but not on trials involving 
avoidance of  punishment. In the original PS task, 
improved accuracy on approaching cues associated 
with reward was attributed to a medication-induced 
bias in learning in favour of  learning from positive 
feedback. We now show that such a bias might be 
caused by an effect of  dopaminergic medication on 
value-based choice, rather than on RL. However, 
further experiments should confirm these findings, 
as the results on accuracy presented in this paper do 
not provide conclusive evidence on the matter.

	 Dopaminergic medication also caused 
patients to respond faster to cues associated with 
reward compared to cues associated with punishment. 
This is in line with findings that DA mediates 
response vigor, incentive salience or motivational 
aspects of  behavior. Although a number of  recent 
theories provide subtly different explanations for 
this phenomenon, it is clear that DA influences the 
expression of  learned associations in a valence-
specific manner. Future experiments will need to 

show under what conditions DA is responsible for 
response vigor in punishment conditions and to what 
extent associated systems, such as the serotonergic 
system, are involved.
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BDNF plays a critical role in brain development. A common single nucleotide polymorphism in the gene 
encoding BDNF (rs6265, Val66Met) affects its release and has been associated with altered brain morphology, 
disease vulnerability and learning and memory performance. Research shows that these effects of  BDNF 
and BDNF Val66Met activity might be modulated by sex and female sex hormones like estrogen. BDNF 
has recently also been shown to influence motor learning and performance. However, the relationship 
between BDNF and sex in the motor domain remains uninvestigated.   In the current study we investigate 
the relationship between BDNF genotype and sex in the motor system. Because of  the role of  BDNF in 
brain development, we used a bimanual motor control task to include contributions of  both processes related 
to motor function and inter-hemispheric connectivity.  Seventy-six healthy participants were genotyped 
and performed a task in which the participant drew lines at different angles of  varying difficulty. Subjects 
controlled the horizontal and vertical movement of  the line on a computer screen by rotating two cylinders 
(Preilowski’s task). We found that BDNF genotype interacts with sex to influence the motor performance of  
healthy participants in this bimanual motor control task. The BDNF genotype by sex interaction was present 
in the more difficult trials only, which is in line with earlier findings that genetic effects may become apparent 
only when a system is challenged. Our results emphasize the importance of  taking sex into account when 
investigating the role of  BDNF genotype in the motor system.
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1. Introduction

Brain – Derived Neurotrophic Factor (BDNF) 
plays an important role in the development and 
maintenance of  neurons and neuronal connections 
in the central and peripheral nervous system (Cohen-
Cory, Kidane, Shirkey, & Marshak, 2010). Activity-
dependent secretion of  BDNF is a necessary 
component for long term potentiation (LTP) and 
depression (LTD) processes, which are regarded as 
key-elements of  neural plasticity underlying learning 
and memory (Minichiello, 2009). A common 
functional single nucleotide polymorphism (SNP) in 
the gene (rs6265), leading to an amino-acid change in 
the pro-domain of  BDNF at codon 66 (Val66Met), 
occurs in about 30% of  the human population of  
Caucasian ancestry (Egan et al., 2003; Hariri et al., 
2003; Sen et al., 2003). The substitution of  Val to 
Met in BDNF affects the intracellular trafficking 
and secretion of  the BDNF protein and impairs 
the ability of  BDNF to undergo activity-dependent 
release (Chen et al., 2004; Egan et al., 2003; Hariri et 
al., 2003). Most research has focused on the effects 
of  BDNF Val66Met on memory processes and 
related brain structures. Here Met-carriership has 
been associated with smaller hippocampal volumes 
(Bueller et al., 2006; Frodl et al., 2007; Pezawas et al., 
2004; Karnik, Wang, Barch, Morris, & Csernansky, 
2010), decreased hippocampal activity and lower 
declarative memory performance (Egan et al., 2003; 
Hariri et al., 2003).  

Research on the effects of  BDNF in the brain 
has recently been extended into the motor system 
and motor learning. Using Transcranial Magnetic 
Stimulation (TMS) it was shown that BDNF Met-
carriers do not show the expansion of  motor cortex 
surface area that is typically observed after a motor 
learning episode (Kleim et al., 2006). Cheeran, Ritter, 
Rothwell, and Siebner (2009) further elaborated on 
this study by showing that the LTP/LTD-like motor 
excitability induced with various TMS protocols is 
modulated by BDNF genotype, with Met-carriers 
showing less motor cortex excitability. Met-carriers 
were also shown to be more error-prone when 
learning new motor skills during a delayed driving 
task (McHughen et al., 2010). Together these TMS 
and behavioral studies provide strong evidence that 
BDNF genotype indeed affects motor performance 
and motor learning.

In addition to studies on the association of  
BDNF Val66Met with brain structure and function, 
there is emerging evidence that the effects of  BDNF 
genotype may be influenced by the activity of  sex 

hormones like estrogen. It has been shown that 
estrogen can induce BDNF gene expression but 
also that estrogen can interact with BDNF signal 
transduction. This interaction is possible due to the 
convergence of  estrogen and BDNF-related signal 
transduction pathways (Scharfman & MacLusky, 
2006). Thus, the effects of  BDNF Val66Met on brain 
structure, function and plasticity may be modulated 
by sex, as has been found in for example disease 
vulnerability (Fukumoto et al., 2010; Verhagen et al., 
2010). 

 In the current study we tested such an interaction 
between BDNF and sex in the motor domain. As 
BDNF Val66Met has been shown to influence 
brain connectivity as observed with resting-state 
fMRI (Thomason, Yoo, Glover, & Gotlib, 2009), 
we use a bimanual motor task to capture possible 
contributions from both primary motor and inter-
hemispheric motor connectivity-related processes.

2. Materials and Methods

2.1 Subjects

Seventy-six highly educated (bachelor student 
level or higher) subjects between 18 and 35 years 
of  age (mean = 23.3, standard deviation= 3.2, 39 
females) of  Caucasian origin participated in this study. 
All participants reported no history of  psychiatric or 
neurological disorders and had normal or corrected-
to-normal  vision. All participants gave written 
informed consent and the study was approved by 
the local ethics committee. This study is part of  the 
Brain Imaging Genetics (BIG) project running at 
the Radboud University Nijmegen (Medical Centre) 
(Franke et al., 2010).

2.2 Genotyping

Saliva samples were collected from all subjects 
using Oragene (DNA Genotek, Kanata, Canada) 
and DNA extracted from these samples was used 
for genotyping of  the BDNF (rs6265, Val66Met) 
SNP as described by Franke et al., (2010). The 
experiment leader was blinded for the genotype of  
the participants until after data analysis. 

2.3 Experimental procedure

We used a digital adaptation of  Preilowski’s Task 
(Preilowski, 1972) conceptually similar to the task 
used by (Mueller, Marion, Paul, & Brown, 2009). 
In this task participants have to draw a line at a 
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predetermined angle by simultaneously rotating two 
cylinders. The ability to accurately draw these lines 
depends on the coordination of  the rotation speed 
of  both cylinders by the participant. Participants 
were seated in a dimly lit room in front of  a 
computer screen and the task controller. Following 
instruction, the experiment consisted of  15 trials 
(3 blocks of  5 trials) in which the participant had 
to draw a right-bound line at one of  five possible 
angles (20, 30, 45, 60 and 70 degrees). To indicate 
the predetermined angle at which the participants 
had to draw, a 10 pixel wide example line was shown 
on the computer screen during each trial. The order 
of  the angles was pseudo-randomized, such that 
each angle was shown once randomly in a block of  5 
consecutive trials and the same angle never appeared 
twice in a row. The order of  the angles was the same 
for each participant. In order to make the task more 
challenging for healthy participants (the original 
Preilowski’s task was designed for patients) we 
included a strict time limit of  25 seconds in which 
the 800-pixel line had to be completed, after which 
a 5 second break followed. Subjects were instructed 
to finish drawing in time (see Figure 1 for example 
data).

2.4 Data processing

First, any line drawing data located outside of  
the endpoints of  the example line was removed. 
Subsequently, the area under the curve (AUC) for 
each line was calculated using MATLAB (MATLAB 
2009a, Seattle: The Mathworks Inc., USA) by 
summation of  the differences between the example 
line and the line drawn by the subject for each point 
on that line. The resulting AUC scores were analyzed 
in SPSS 16.0 (SPSS Inc., Chicago, IL, USA). 

Because it has been shown that the 45 degree 
angle requires less bimanual motor control compared 
to the other angles (Mueller et al., 2009), we used 
these lines as a baseline measure of  performance.  
To exclude possible learning effects and to keep the 
number of  trials with a particular angle equal, the 
first 5 trials of  the experiment were removed from 
the analysis. In the remaining 10 trials results of  the 
two occurrences of  the same angle were averaged. 
Because of  the symmetry of  the rotation movements 
necessary for the 60 & 30 and 70 & 20 degree angles 
the scores for these angles were combined into a 
single score. Finally, all scores were divided by the 
baseline score of  that subject. This resulted in two 
baseline corrected measures for each subject, one 

Fig. 1 Example data of a representative subject. Data is shown for each of the angles (20, 30, 45, 60, and 70 degrees) 
present in the experiment. The graph represents the computer screen with the pixels in horizontal and vertical direction 
indicated on the x and y axis. The gray lines are the example lines the subject had to mimic by simultaneously rotating 
two cylinders that controlled the horizontal and vertical movement.
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measure for accuracy on trials of  the easier (60 & 
30 degree angles) and one measure for the more 
difficult angles (70 & 20 degree angles). 

 In this experiment we used the baseline-corrected 
performance on the easier and more difficult angles 
as within-subject variables with BDNF genotype 
and sex as between subject factors. This resulted 2 
x 2 x 2 mixed within-subject design. The between 
subject factors together resulted in 4 experimental 
cells, male and female homozygous for the BDNF 
Val-allele and male and female Met-carriers. For 
post-hoc testing a split-file procedure from SPSS 
was used which organized the output according to 
sex. 

Data quality was ensured by applying the 
following procedure. Participants who failed to 
pass an average completion of  90% of  all the lines 
were rejected. In contrast to the participants who 
had finished the lines in time, these participants 
may have focused more on accuracy. In order to 
remove outlier trials, AUC scores more than 4 times 
the standard deviation away from the mean of  that 
trial over all subjects were rejected as unreliable 
data. Visual inspection of  the resulting data showed 
that all trials suffering from these outlier artifacts 
were successfully removed by this procedure. 
Subsequently, trials in each of  the experimental 
cells whose scores differed by more than 2.5 times 

the standard deviation from the mean for that trial 
within that genotype group were removed from the 
analysis. 

 3. Results

Of  the 76 individuals entering the experiment, 
four subjects that had completed less than 90% of  
the lines and three other subjects with too many 
outlier data had to be excluded from the analysis. 
In the resulting sample of  69 participants (age 18 
- 35; 34 females):  17 were males, homozygous for 
the Val-allele, 16 were Val-homozygous females and 
there were 18 Met-carrier males and females. 

 	 Because of  the role of  BDNF in brain 
maturation we controlled for age by using age as 
a covariate. The between-groups BDNF by sex 
interaction was borderline significant (F (1, 65) = 
3.95, p = 0.05. The BDNF genotype by sex by angle 
interaction in the mixed within and between subjects 
2x2x2 repeated measures ANOVA however was 
significant (F (1, 65) = 4.01, p < 0.05). To explore 
this interaction further, the split-file analysis revealed 
a significant between group difference between Val-
homozygous females and Met-carrier females (p < 
0.05; see Figure 2).  Such effects were not observed 
in the male groups.  Furthermore, there was no 
main-effect of  BDNF genotype on angle (F (1, 

Fig. 2  Relative Area under the Curve (AUC) compared to baseline. The AUC relative to the baseline is shown for 45 
(baseline), 60 & 30 (intermediate difficulty), and 70 & 20 (difficult) degree angles. A higher score indicates less accuracy 
relative to baseline. For difficult angles we show a significant interaction of BDNF genotype and sex.
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65) = 1.87, p = 0.17) nor did we observe a main-
effect of  sex (F (1, 65) < 1, p = ns) in the repeated 
measures ANOVA. 

4. Discussion

We show that BDNF genotype and sex interact 
to influence the motor performance in a bimanual 
motor control task in females, but not in males. These 
results are in line with evidence of  an interaction 
of  BDNF with estrogen (Scharfman & MacLusky, 
2006), which may also affect the motor domain. The 
current findings show the importance of  taking sex 
into account when investigating the role of  BDNF 
genotype. The BDNF by sex interaction was only 
apparent in the more difficult conditions of  the task. 
This is particularly interesting considering earlier 
work by (Cousijn et al., 2010), which showed that 
genotype effects may only become apparent under 
circumstances in which the system is particularly 
challenged.

Currently most of  the literature on BDNF and 
the motor domain consists of  various measurements 
of  motor learning, such as cortical map size 
(Kleim et al., 2006), motor cortex excitability 
(Cheeran et al., 2009) and long-term motor learning 
(McHughen et al., 2010). This line of  research 
may have emerged from earlier studies on BDNF 
and learning and memory processes (Egan et 
al., 2003; Hariri et al., 2003; Pezawas et al., 2004). 
However, together with McHughen et al. (2010) we 
show that BDNF genotype may influence motor 
performance independent of  LTP/LTD-related 
processes and that these differences may already be 
present without a learning episode. In line with the 
finding of  McHughen et al. (2010) we show that 
BDNF genotype influences one’s immediate motor 
performance and not just motor learning.

The present study also fits with findings of  
BDNF genotype by sex interactions in other areas 
of  research. For example, BDNF genotype effects 
on various aspects of  behavior in female rats 
are dependent on the phase of  the estrus cycle 
confirming the notion that sex steroid hormones 
modulate BDNF action in females (Spencer, Waters, 
Milner, Lee, & McEwen, 2010). BDNF genotype 
by sex interactions are also found for disease 
vulnerability. Recently, Fukumoto and coworkers 
(2009) found that elderly female Met-carriers are 
more vulnerable to developing Alzheimer’s disease 
in the later stages of  life compared to males and 
Val homozygous females. BDNF genotype also 
seems to be a risk factor for developing depression, 
in this case specifically in men (Verhagen et al., 

2010). While the precise mechanisms underlying 
these effects of  BDNF on disease vulnerability are 
currently unknown, the role of  BDNF in neuronal 
development and its interaction with estrogen 
suggest that changes in brain structure and function 
may be involved. 

A mechanism that could explain both the findings 
in the present study and the findings of  McHughen 
and coworkers (2010) originates from the idea 
that individual differences in bimanual motor 
performance are related to the structural properties 
of  the corpus callosum (CC). The CC is the largest 
inter-hemispheric communication pathway and 
plays a central role in the transfer of  information 
from one hemisphere to the other. The integrity 
of  the CC has been shown to be important for a 
variety of  bimanual tasks such as Preilowski’s task 
(Preilowski, 1972), other bimanual tasks (Gerloff  & 
Andres, 2002), and simultaneous finger movements 
(Bonzano et al., 2008). Individual differences in CC 
fiber density are also associated with bimanual motor 
performance (Johansen-Berg, Della-Maggiore, 
Behrens, Smith, & Paus, 2007). Recently it was shown 
that there is no main effect of  BDNF genotype on 
CC fiber density (Montag, Schoene-Bake, Faber, 
Reuter, & Weber, 2010). However findings others 
have reported indicate a BDNF genotype by sex 
interaction in the fiber density of  the anterior part 
of  the CC (Rijpkema et al., 39th Annual Meeting of  
the Society for Neuroscience, Chicago, USA, 2009). 
Thus, the present results may be explained by the 
BDNF genotype by sex interaction that influences 
inter-hemispheric connectivity which becomes 
apparent in bimanual tasks such as the one used here. 
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Motivational Compensation of Cognitive Decline in Parkinson’s 
Disease: Preliminary Results from a

Pharmacological fMRI Study
Abraham.A.M. Nusselein, Roshan Cools, Esther Aarts, Ivan Toni

Dopamine (DA) depletion in Parkinson’s disease (PD) not only affects motor function, but also cognitive flexibility, 
associated with the DA-depleted dorsolateral (DL) circuitry, while relatively sparing the separate ventromedial (VM) 
frontostriatal circuitry necessary for reward processing. We employed a rewarded switching task and fMRI to assess 
whether early PD patients OFF medication can compensate for switch deficits with anticipated monetary reward. 
Furthermore, we investigated the effects of  DA medication on this motivation-cognition interface. Results showed 
that PD patients OFF medication exhibit a task-switching deficit in the proportion of  errors on low reward trials, but 
not on high reward trials, accompanied by an increase of  switch-related BOLD signal in the dorsal anterior cingulate 
cortex (dACC) on high relative to low reward targets. PD patients ON medication did not show abnormal cognitive 
inflexibility, and did not use
anticipated reward to reduce their switch cost. These findings concur with our hypothesis that motivational processing 
can be used by PD patient OFF medication to overcome cognitive inflexibility, and implicate a crucial role of  the 
dACC in this compensation process.

Effects of aging on cerebral oxygenation during working memory 
performance: A functional Near-Infrared Spectroscopy study

Anouk Vermeij, Arenda H.E.A. van Beek, Jurgen A.H.R. Claassen, Roy P.C. Kessels

Background
Aging is accompanied by a decline in working memory performance in both the verbal and visuospatial domain. 
Evidence exists that compensatory neural activity is apparent in older adults during working memory tasks, but the 
underlying neurocognitive mechanisms are unclear. Functional Near-Infrared Spectroscopy (fNIRS), a noninvasive 
neuroimaging technique, may provide a way to elucidate the neurophysiological mechanisms of  compensation. This 
study examined brain activation by using fNIRS in young and older adults during working memory performance.
Methods
18 healthy young (21-32 years) and 18 older adults (64-81 years, MMSE=29.2±0.9) performed a verbal and spatial 0- and 
2-back task. Oxygenated (O2Hb) and deoxygenated hemoglobin (HHb) changes, as indices of  brain activation, were 
registered by two fNIRS channels located over the left and right dorsolateral prefrontal cortex.
Results
High verbal working memory load led to declined accuracy in comparison to the control condition in older adults, while 
the young had the same level of  accuracy in both conditions. fNIRS results demonstrated an increased concentration 
of  O2Hb during the 2-back condition in both groups and a decrease of  HHb in older adults. After the beginning 
of  the verbal 2-back task, a significant increase in brain activation was reached earlier in older adults than in the 
young and the same held true for the maximum level of  activation. The spatial n-back task did not induce significant 
concentration changes of  O2Hb and HHb in comparison to the baseline period in either of  the groups, although 
increased working memory load led to declined behavioral performance in both older and young adults.
Discussion.
Older adults showed a stronger recruitment of  prefrontal areas during verbal working memory performance in 
comparison to young adults, suggesting an attempt to compensate for age-related decline. Also, our study indicates 
that age effects on the time course of  hemodynamic processes must be taken into account in the interpretation of  
neuroimaging studies that rely on blood oxygen levels, such as fMRI.
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Using Microelectrode Arrays to Explore the Somatosensory System in 
the Freely Moving Rat 

Han Langeslag, Eric Maris

In this paper we describe a new method of  chronically obtaining neurophysiological data in the awake and freely 
moving rat. The method involves placing a flexible microelectrode array (32 electrodes on a 6 by 5 mm polyimide foil) 
epidurally onto the rats neocortical somatosensory system. Furthermore, we describe a somatosensory discrimination 
task which we intend to use to study the neurophysiological mechanism behind pattern recognition in the rat as 
measured by local field potentials from the surface of  the neocortex. The new microelectrode array showed relatively 
artifact free brain signals and is less correlated then extra-cranial EEG recordings. Moreover, using a multiway 
decomposition method we can unveil a spatial pattern in the ongoing neurophysiological activity of  the awake rat as 
measured by the microelectrode array. The pattern consists of  a phase-amplitude coupling (PAC) between the phase 
of  a 2-4 Hz oscillatory component and the amplitude of  a 30-50 Hz oscillatory component. While we are still in the 
process of  optimizing the methods, we think that the use of  polyimide microelectrode arrays will provide an excellent 
opportunity to chronically study large scale neural activity in the awake and freely moving rat.

Emotional Context and Time in a Memory Retrieval Paradigm
Different Involvement of Insula and Amygdala

Frauke van der Ven, Atsuko Takashima, Guillén Fernández

Arousing events are usually remembered better than non arousing events. Investigating brain mechanisms underlying 
this emotional memory enhancement might be fruitful for treatment of  patients who are disturbed by recurring 
retrieval of  distressing thoughts. In this study, we wanted to establish the effects of  arousing context (at encoding) 
over time on memory retrieval and in particular on analogous brain activity. Twenty four healthy subjects studied 
picture-sound pairs on two different time points (72 hr difference), with the picture (item) always being non arousing 
and the sound (context) being either arousing or non arousing. After the second encoding block, retrieval of  the 
picture-sound pairs took place inside the scanner, where only the non arousing picture items were presented. Pictures 
associated to an arousing context and arousing contexts themselves were remembered more often and faster, and 
were accompanied by enhanced
activation of  the insula, amygdala and hippocampus. Insula activity reflected the influence of  arousing context 
at encoding, whereas amygdala and hippocampus activity was due to the thought of  arousing context. Both the 
emotional memory enhancement and associated brain activity changes sustained over time. In addition, we found 
support for lasting involvement of  thehippocampus in retrieval of  aging episodic memory.

The influence of DHA enriched diets on vascular factors in mouse 
models for Alzheimer’s Disease

Daan van Rooij, Amanda J. Kiliaan, D. Jansen

AD is one of  the most common neurodegenerative diseases in the industrialized world, and at the moment there is 
no available cure for the disease. In recent years preventive interventions have come into focus. In specific, dietary 
interventions utilizing polyunsaturated fatty acids such as Docosahexanoic acid (DHA) have booked promising 
results. Given the close relation between AD risk factors and development and other neurovascular disorders, it is 
hypothesized that the influence of  DHA enriched diets works primarily by improving cerebral blood vessel health. 
In this experiment, the influence of  putative diets supplemented with either DHA or cholesterol on cognitive 
performance and cerebral perfusion are investigated for both the classical AD model, APP/PS1 mice, as well as for 
two models of  vascular factors in AD, the ApoE4 and ApoE KO mice at 10-12 months of  age. Our results show the 
predicted cognitive impairments of  APP/PS1 and ApoE4, but not for ApoE KO mice. Cerebral perfusion is found 
to be impaired in all three transgenic genotypes, most notably in the APP/PS1 and ApoE KO mice. No consistent 
effects of  our dietary intervention are found. From this we conclude that ApoE4 and ApoE KO mice are a valid model 
for vascular AD factors. We also conclude that  the effects of  preventive dietary interventions are not yet visible at the 
early stages of  disease progression.
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Event related potentials (ERPs) show specificity of psychopathic 
attention enhancement and externalizing attention deficit associations 

to different subgroups
Bart Brouns, Inti Brazil, Ellen de Bruijn, Katinka von Borries, Erik Bulten, Robbert Jan Verkes

Previous research has found P3b abnormalities in psychopathy, although findings are inconsistent. Importantly, one 
study has found an enhanced P3b in psychopathy. In addition, psychopathic abnormalities on other ERPs, such as 
the CNV, have been found. In the present study, a psychopathic and non-psychopathic group of  patients were used to 
investigate whether enhanced amplitudes of  the P3b, NoGo-P3, CNV, and N2pc could be explained by a sensation-
seeking account, using the AX-continuous performance task (AX-CPT). However, recent research suggests that 
psychopathy and externalizing have opposite correlations with the P3b that may suppress group effects. Therefore, 
additional correlation analyses were performed between ERPs on the one hand and Psychopathy Checklist-Revised 
(PCL-R) Factor scores and Behavioural Inhibition System / Behavioural Approach System (BIS/BAS) scores on the 
other hand to investigate whether psychopathy and externalizing had different associations with ERP amplitudes. 
Psychopathy was operationalized by low BIS and high PCL-R Factor 1 scores, while externalizing was operationalized 
by high BAS and high PCL-R Factor 2 scores. Although psychopathic patients showed higher N2pc amplitudes than 
non-psychopathic patients, no P3b group effect was found. However, correlation analyses did reveal group-specific 
correlations with several ERPs, including the P3b. Psychopathy correlated positively with P3b, NoGo-P3 and CNV 
amplitudes, but only in the psychopathic group. Externalizing correlated negatively with P3b, CNV, and N2pc 
amplitudes in the non-psychopathic group, but positively with N2pc amplitudes in the psychopathic group. The results 
are interpreted in terms of  an association between level of  psychopathy and generalized attention enhancement, and an 
association between level of  non-psychopathic externalizing and attention deficits. The results stress the importance 
of  studying psychopathy and externalizing in different subgroups.

Leptin induced inhibition and stimulation of action current firing 
of nonpreganglionic Edinger-Westphal neurons is dependent on 

Phosphatidylinositol-3 kinase
Goedarz Karimi, Wim J.J.M. Scheenen, Eric W. Roubos

Non-preganglionic Edinger-Westphal (npEW) neurons are involved in stress regulation and adaptation, and are the 
main source of  Urocortin1 (Ucn1) in the central nervous system. Urocortin 1, besides its important function in the 
stress response, is also known for its potent food suppressing actions. Recent evidence suggests an interaction between 
the feeding circuitry and the stress axis at the level of  the npEW. Confirming this role, functional receptors for leptin, 
the ObR-b, have been found in npEW-Ucn1 neurons. Leptin is a satiety factor produced by adipocytes. It regulates 
neurons in the central nervous system through activation of  ObR-b, inducing multiple intracellular signal transductions 
pathways controlling gene expression and membrane excitability. Our previous studies have shown that leptin directly 
inhibits membrane excitability of  npEW neurons. The mechanisms by which leptin regulates excitability of  these 
neurons is not known. Therefore, in the present study, using patch-clamp electrophysiology, we tested the hypothesis 
that leptin regulates npEW neuron excitability via a phosphatidylinositol-3 kinase (PI3-kinase) dependent pathway. Our 
results show that treatment of  acute npEW brain slices with 100 nM leptin reduces the action current firing frequency 
of  the npEW neuron population by 58%, and that the selective PI3-kinase antagonist wortmannin (200 nM) prevents 
this inhibition. Surprisingly, at the single neuron level leptin induces an excitation in some npEW neurons, which 
is also PI3-kinase dependent. Confirming the opposing action of  PI3-kinase on excitability of  npEW, wortmannin 
inhibits the majority of  leptin-nonresponsive npEW neurons, but induces activation in some cases. Finally, treatment 
with the Katp channel blocker Tolbutamide (200 μM) activates npEW neurons suggesting the presence of  functional 
Katp channels in these neurons. Taken together our results indicate that leptin induces both excitation and inhibition 
of  npEW neurons through activation of  PI3-kinase. We suggest that alternative signaling pathways downstream of  
PI3-kinase determine whether the leptin action on excitability of  npEW is stimulatory or inhibitory. 
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Genetic and Pharmacological Animal Models of Schizophrenia  - 
Focus On Attention and Vigilance

Nathalie Buscher, Thomas Steckler, John Talpos, Indira Tendolkar

The continuous performance task is a powerful tool for studying schizophrenia, reliably detecting attentional deficits 
associated with the disorder. This test can be easily adapted for use in a variety of  species, including the mouse. 
Pharmacological (PCP, amphetamine) and genetic (inducible DISC1 – transgene) models of  schizophrenia were 
tested in the continuous performance task for the mouse. Scopolamine was assessed in this same assay to contrast 
the specific, schizophrenia – related, attention-disrupting effects of  amphetamine and PCP. Testing has revealed 
distinct and dissociable profiles of  these models. Amphetamine has resulted in effects on Go trials only, reflecting 
a possible role of  the dopaminergic system in executive function, strategy formation and sustained attention. The 
profile of  PCP was characterized by effects on NoGo trials only, reflecting the probable role of  the glutaminergic 
system in response inhibition, cognitive flexibility and vigilance. Scopolamine resulted in a non-specific profile of  
full attentional disruption. These results suggest that there is a complex interaction between the contributions of  
dysfunctional dopaminergic and glutaminergic neurotransmitter systems to the development of  the attentional 
deficits of  schizophrenia. Targeting these two systems simultaneously will possibly constitute a new target pathway 
for drug development.

Age related improvement in visuospatial working memory 
is associated with increased activity in task relevant areas: 

corroborating evidence from longitudinal and cross-sectional data
Pär Flodin, Chantal Roggeman, Fiona McNab, Torkel Klingberg

Visuospatial working memory (VSWM) is central for a wide range of  cognitive functions and continues to develop 
throughout childhood and adolescence. The neural processes supporting VSWM development have previously 
mainly been studied cross-sectionally. A limitation of  developmental cross-sectional findings is potential confounds 
by inter-individual differences unrelated to age. Here we performed both longitudinal, cross-sectional and mixed 
model analysis of  fMRI data to detect developmental changes of  the neural underpinnings of  VSWM . 138 subjects 
between 6 and 27 years were scanned while performing a VSWM task. 56 subjects were scanned twice, two years 
apart. Overlapping results of  longitudinal and cross-sectional analyses revealed increased working memory (WM) 
activity in frontal and parietal regions with increasing age. Additionally,WM capacity correlated with increased activity 
in a largely overlapping set of  regions. Age related WM improvements are associated with increased WM related 
brain activity in a subset of  the areas where both age and WM capacity predict WM activity. These include bilateral 
superior parietal- and intraparietal cortex, bilateral superior frontal sulci and anterior caudate nucleus. Neither age 
nor WM capacity were correlated with decreased WM activity anywhere in the brain, supporting the idea that VSWM 
maturation is associated exclusively with increased WM activity.

Exploiting the relation between users’ mental state and performance 
in a Brain Computer Interface setting

Cecilia Maeder, Benjamin Blankertz, Peter Desain, Claudia Sannelli, Stefan Haufe

High amplitudes in the 8-15 Hz frequency band over sensorimotor areas (Sensorimotor rhythms, SMR) have been 
correlated with better sensorimotor processing and hypothesized to be due to higher inhibition to external inputs. In 
this study, we analyze data acquired during motor imagery of  the right and left hands in an SMR based BCI setting 
and show that trials with higher SMR amplitude in the 1000 ms preceding the cue could be better classified than 
trials with lower amplitude. We also report that this increase in accuracy can be attributed to a higher level of  SMR 
amplitude over the ipsilateral hemisphere. Finally, we conducted an online study in which the pre-stimulus SMR level 
controlled the timing of  cue presentation. Preliminary results from this study are presented here and technical issues 
for future designs incorporating the monitoring of  users ongoing SMR activity are discussed.
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The effect of foreign accent on processing morphosyntax: An ERP 
study

Merel van Goch, Adriana Hanulíková, Petra van Alphen

Previous studies have shown that morphosyntactic errors elicit a P600 effect (Hagoort, Brown & Groothusen, 1993; 
Osterhout & Holcomb, 1992, 1993). Evidence from several studies in Dutch suggests that nonnative speech contains more 
(morpho)syntactic errors than native speech, e.g. gender agreement errors (Orgassa & Weerman, 2008; Orgassa, 2009). 
The current study explored the effect of  foreign accent on the online processing of  gender agreement, by investigating 
whether the same gender agreement violations in native and nonnative accents elicit similar ERP responses in listeners. 
The study showed a difference in the P600 effect for morphosyntactic violations in native speech versus nonnative 
speech. A semantic control condition revealed that the two accents did not elicit different N400 effects. The results 
suggest that listeners make inferences about the speaker and about the probability of  grammatical errors. Additionally, 
listeners’ morphosyntactic processing is sensitive to different accents and this processing is modulated with respect to 
the accent of  the speaker.
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