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Abstract

High amplitudes in the 8-15 Hz frequency band over sensorimotor areas (sensorimotor
rhythms, SMR) have been correlated with better sensorimotor processing and hypothe-
sized to be due to higher inhibition to external inputs. In this study, we analyze data
acquired during motor imagery of the right and left hands in an SMR based BCI setting
and show that trials with higher SMR amplitude in the 1000 ms preceding the cue could
be better classified than trials with lower amplitude. We also report that this increase
in accuracy can be attributed to a higher level of SMR amplitude over the ipsilateral
hemisphere. Finally, we conducted an online study in which the pre-stimulus SMR level
controlled the timing of cue presentation. Preliminary results from this study are pre-
sented here and technical issues for future designs incorporating the monitoring of users
ongoing SMR activity are discussed.

1 Introduction

1.1 Mental state and performance

Quantification of oscillatory brain activity in different frequency bands has been widely used
in the investigation of mental states. More precisely, the influence of these rhythms pre-
ceding task begin on the outcome performance has been extensively studied and different
effects have been reported. A first body of evidence links lower amplitudes in the « fre-
quency band (8-14 Hz) over occipital areas to better perception in visual discrimination tasks
(Ergenoglu et al., 2004; Hanslmayr, Klimesch, et al., 2005; Dijk, Schoffelen, Oostenveld, &
Jensen, 2008). Similar effects are also reported for rhythmic activity in this frequency band
over the perirolandic areas (labeled p-rhythm or sensorimotor rhythms/SMR). However, in
this case, several studies report a U-shaped relationship between amplitude in the p-band and



somatosensory perception (Palva & Palva, 2007; Zhang & Ding, 2010). As high activity in
this frequency band has been linked to idle of the cortical structures i.e. no active processing
(Klimesch, Vogt, & Doppelmayr, 1999; Hummel, Andres, Altenmuller, Dichgans, & Gerloff,
2002), smaller amplitudes may reflect cortical activation and would mean that the sensory
cortices involved in the task need to be in an appropriate excitation stage to process extrenal
stimuli.

On the other side, a-band activity over frontal and posterior sites during resting state,
have been demonstrated to correlate with performance in tasks requiring memory or higher
cognitive processing (see (Klimesch, 1999) for a review). Going even further, some studies
demonstrated that cognitive performance could be increased if the amplitude of the pre-
stimulus a-band activity in parietal and frontal electrodes was enhanced artificially, e.g. by
external stimulation (flickering of a target on a screen or repetitive Transcranial Magnetic
Stimulation, rTMS) or operant conditioning (Hanslmayr, Sauseng, Doppelmayr, Schabus, &
Klimesch, 2005; Klimesch, Sauseng, & Gerloff, 2003). This suggests that a high level of
cortical activation will be helpful to analyze external inputs (e.g. visual, or somatosensory),
but that this activation can be detrimental in the case of higher cognitive tasks, as it may
interfere with (or even suppress) the high selectivity that is required for these processes.

In line with the previous findings, higher SMR amplitudes have been linked to better
sensorimotor processing (Del Percio et al., 2007), but also to less accurate inhibition of mo-
tor responses (Mazaheri, Nieuwenhuis, Dijk, & Jensen, 2009). This supports the assumption
that higher amplitudes in the a-band represent cortical deactivation, leading to inhibition
of inputs from other areas. Hence accurate sensorimotor processsing seems to benefit from
this inhibition. We expect this to result from the straight-forward porcessing of the motor
programs, while abrupt changes of these motor programs (for inhibiting motor responses for
example) is impaired due to the inhibition of external inputs inducing those changes.

1.2 Link to Brain Computer Interface Technology

Amplitude modulations over the sensorimotor cortices in the a-band and sometimes 13-28 Hz
B-band (corresponding to the SMR) induced by motor imagery are commonly used in EEG
based Brain Computer Interface (BCI) technology. Typically, due to topographical arrange-
ment in the motor and somatosensory cortices, a decrease in amplitude, labeled event-related
desynchronization (ERD), is observed over the cortical area corresponding to the used limb
in the contralateral hemisphere; while an increase in amplitude, labeled event-related syn-
chronization (ERS), is observed over the corresponding area in the ipsilateral hemisphere
as well as the non-corresponding areas in both hemispheres (Pfurtscheller & Silva, 1999;
Neuper & Pfurtscheller, 2001). This is described as the ”focal ERD/surround ERS phe-
nomenon (Suffezynski, Kalitzin, Pfurtscheller, & Silva, 2001; Pfurtscheller & Silva, 1999).
Using modern machine learning techniques, the imagery of a subset of limbs (including the
right and left hands, both feet and the tongue) can be discriminated (Pfurtscheller, Neuper,
Flotzinger, & Pregenzer, 1997) and have been used in laboratory environments to control
different types of assistive technologies like spellers (Blankertz et al., 2006, 2007), navigation
systems (Millan, Renkens, Mourinio, & Gerstner, 2004; Pfurtscheller et al., 2006) and neu-
roprosthetics (Pfurtscheller, Guger, Miiller, Krausz, & Neuper, 2000; Enzinger et al., 2008).
Figure 1 describes the amplitude modulations in the SMR band observed after motor imagery
of the right and the left hand.
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Figure 1: Event related desynchronization (ERD) during motor imagery of the left (purple) and the
right hand (green). The left and right panels show the attenuation of the spectral power in the SMR
band(s) (8-14 and 13-28 Hz) following motor imagery in two Lapacian filtered channels over the left
(C4 lap) and the right (C3 lap) hemisphere. The central panel shows scalp topographies of these
spectral attenuations. After imagery of the left hand, an ERD is observed over the right hemisphere
and the opposite is observed for the right hand. Note that in this case no ipsilateral ERS is visible,
which might be due to the baseline used.

Still, performance can vary extensively between sessions and even trials for the same user.
We hypothesize that part of this variability could be attributed to ongoing fluctuations of
the SMR, leading to more or less inhibition of the task-unrelated motor areas. The idea is
that a higher SMR amplitude over the whole motor cortex preceding motor imagery would
lead to spectral modulations over the task related limb area only, inducing a clear focal
ERD/surround ERS pattern (Suffczynski et al., 2001; Pfurtscheller & Silva, 1999; Neuper &
Pfurtscheller, 2001), which are easier to categorize. Supporting this assumption, Blankertz
et al. developed a predictor showing a positive correlation of the SMR amplitude in a rest
condition with BCI feedback performance (Blankertz et al., 2010). Following this, our study
aims at demonstrating that there is a link between the actual state the user is in (mental
state, (pre-) disposition, concentration, etc..) and his/her performance in a BCI setting and
that this link could be exploited to boost performance.

2 Methods

2.1 EEG recording and preprocessing

Brain activity was recorded from the scalp using 119 Ag/AgCl electrodes, and sampled at
100 Hz.

Subject-specific frequency band and time interval were selected on calibration data using an
automatic procedure comparing signed r-squared scores for each electrode over the motor
cortex, for each frequency and time point. This method is described in (Blankertz, Tomioka,
Lemm, Kawanabe, & Miiller, 2008). The continuous EEG data was band-pass filtered and
segmented into epochs according to the chosen frequency band and time interval. A vari-
ance based automatic artifact rejection was used to reject trials and channels with evident
amplitude abnormalities.



2.2 Quantifying the SMR level

In order to investigate the effect of the ongoing SMR activity on the spectral modulations
induced by motor imagery in a BCI setting, we use two different methods to quantify the
SMR level:

e Log SMR Band Power (SMR Pow)
The SMR Pow value is computed by averaging the log power in the subject-specific SMR
frequency band over the two electrodes (one positioned over each motor area) exhibiting
the highest discriminative score between the two classes. This is the standard method
by which the SMR level is mostly quantified. We use this in the offline analysis.

e Extracted SMR Ratio (SMR Ratio)

In order to achive a robust quantification of the ongoing SMR in an online BCI set-
ting, we developed an SMR extractor to extract the SMR Ratio value directly from the
recorded EEG signal. This consists of several several steps. Using a separate rest mea-
surment, we first determine several subject-specific parameters (electrodes, frequency
band and SMR range). The higher SMR peak in the p (6-18 Hz) or in the 5 (15-35 Hz)
defines the start band. 1t is then iteratively increased and decreased until the measure
quantifying the peak area relative to its width does not increase anymore and yields the
SMR peak-band. After this calibration, the mean power over the 2 Hz preceding and
3 Hz immediately following the SMR peak-band is subtracted from the power in this
band. These power ratios are then averaged over the two chosen electrodes displaying
the highest relative SMR-peak area values and normalized to the subject-specific SMR
range. The SMR Ratio consists of this value averaged over a long (7500 ms) or a short
(750 ms) time scale.

Figure 2 illustrates the electrode and frequency band selection process.

2.3 Common Spatial Pattern Analysis and its use for classification

Common spatial pattern (see (Koles, 1991; Fukunaga, 1990; Blankertz et al., 2008)) is a dis-
criminiative algorithm used to analyze multichannel EEG data recorded from two conditions
(classes). It has shown to be a highly valuable tool for single trial classification of SMR
modulations induced by motor imagery.

CSP analysis operates in a data driven supervised manner, allowing the identification of
spatial filters, which maximize the variance of the signals in one condition, while minimizing
it for the other condition. Since the variance of a band pass filtered signal equal to band
power, CSP filters are well suited to detect spatiotemporal amplitude modulations of the
SMR induced by motor imagery. The CSP algorithm decomposes band-pass filtered data in
the sensor space, yielding as many spatial filters as sensors. The filters which have the best
discriminative values are then selected based on their generalized eigenvalue. This is relative
to the sum of the variance in both conditions. An eigenvalue near 1 corresponds to a high
variance in the data for class 1, while an eigenvalue close to 0 means a small variance for
class 1. Figure 3 illustrates the computation of the CSP filters based on data from two classes
of motor imagery (left and right hand). Commonly, the two or three CSP filters with the
highest discriminative value are determined for each class.
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Figure 2: Illustration of the electrode and frequency bands selection for monitoring the SMR in
one participant. The spectra are shown for the pre-defined electrodes the algorithm could select
from.The algorithm choses one electrode per hemisphere with the highest SMR peak and then selects
the frequency band around the peak (SMR peak-band in green), the neighboring bands (the low-band
([-2 0] Hz) and the higher-band ([0 3] Hz), in red). Note that this selection is performed on a performed
on a separate rest measurment where the participant rests with open eyes and watches an animation
gradually changing color and shape on a screen.
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Figure 3: In this example, CSP analysis operates on band-filtered multi-channel EEG data recorded
from two conditions of motor imagery (left and right hand colored in green, sepectively red). The
analysis yields a sequence of spatial filters among which some have a high discriminative value between
the two classes and others (most of them) do not. The filters with the highest discirminative value
correspond to the ones with the extreme eigenvalues A (top and bottom filters), while the filters with A
around 0.5 (central filter) have very little dicriminative power. Commonly, the two or three CSP filters
with the highest discriminative value are selected for each class. Figure modified from (Blankertz et
al., 2009).
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Figure 4: Timing and description of a calibration and a feedback trial in a standard motor imagery
paradigm. Top panel: a calibration trial. In this type of trial, a baseline is shown for 2 seconds, followed
by the presentation of a cue in form of an arrow indicating the hand the motor imagery should be
performed with. The users performs motor imagery without feedback until the cue disappears. Bottom:
a feedback trial. In this case, the cue is shown for 5 seconds and after one second, feedback is provided
in the form of a purple cross moving according to the classifier output. After 4 seconds, the cross
turns black and stops moving, which signifies the end of the trial. The end position of the feedback is
shown for 2 seconds, followed by the start of the next trial.

Using CSP for classifying SMR modulations linked to different mental states starts with
the computation of the CSP filters. To do this, the frequency band and time intervals in which
the CSP filter should maximize, respectively minimize the variance for each class are selected
beforehand (see 2.1). Then, CSP analysis is applied and two to three filters are selected for
each class. Further, the log-variance of the CSP projections on the data corresponding to
the selected filters are calculated and used as features to classify with a (regularized) linear
discriminant analysis [(R)LDA] classifier. Note that CSP analysis uses label information,
which means that CSP filters can only be calculated from calibration data, but can then be
used for real-time feedback application.

The classification of SMR modulations induced by motor imagery based on CSP analysis
comport many advantages including dimension reduction (less channels), high accuracy per-
formance of a simple linear classifier and interpretability of the solutions.

2.4 Offline analysis of SMR based BCI Data

We took data from a large scale BCI study (Blankertz et al., 2010), selecting 23 naive par-
ticipants who reached at least 70% accuracy in left vs. right hand BCI feedback (15 females;
mean age 26.7+12.2 years). For each participant, data was acquired from a single BCI ses-
sion consiting of a calibration phase (motor imagery without feedback) and a feedback phase
(motor imagery with feedback). Figure 4 describes a typical trial from both phases.

For each trial, the SMR Pow value of the prestimulus interval -1000 to 0 ms was computed.
Two groups of trials were created according to the 60" and 40" percentiles of the SMR Pow
averaged over all trials: the high-group displayed an SMR Pow value higher than the 60"
percentile and the low-group, a value lower than the 40" percentile. A subject-specific



classifier based on CSP analysis (see section 2.3 and (Blankertz et al., 2008)) was trained
on the calibration data and applied to windows of 1000 ms duration sliding over the motor
imagery period of the feedback trials.

2.5 Online setting incorporating user’s SMR level

10 subjects (5 females) of mean age 28.5 £+ 3.2 years underwent a single BCI session con-
sisting of an online calibration (CB) phase, a feedback (FB) phase (both consisting in motor
imagery with feedback) and four intermittent Neurofeedback training (NFT) runs where the
SMR Ratio was monitored and fed back to the participants in both time scales. The session
also included three rest measurements where the participant had to sit quietly with open eyes
and watch an animation gradually changing color and shape. Data from this measurement
was used to select the subject-specific features (frequency bands, electrodes and SMR range)
in order to train the SMR extractor that was used to monitor the SMR, during the NFT and
the feedback runs.

The classifier was adapted after each trial using a co-adaptive learning method following
(Vidaurre, Sannelli, Miiller, & Blankertz, 2010). This allowed us to provide the user with
feedback from the start of the session. We recorded 160 calibration trials acquired in two runs
of 80 trials (15 seconds break every 20 trials) and 180 feedback trials acquired in 3 blocks
with 2 runs of 30 trials (15 seconds break every 15 trials). The feedback trials differed from a
the standard cued motor imagery paradigm in one point: the participant’s actual SMR Ratio
(averaged over the short time scale) controlled the timing of cue presentation by exceeding,
respectively falling below, a high, repectively low threshold. This introduced a variable waiting
time before the trial start. The thresholds were determined by the 15" and 85" percentiles
of the extracted SMR Ratio during the NFT period precending the feedback block, yielding
the high and low conditions and were updated three times through the session. To avoid too
long waiting times, thresholds were decreased /increased after 20 seconds reaching zero or one
after 30 seconds. In total, we recorded 120 trials (4 runs) for the high condition and 60 trials
(2 runs) for the low condition. Figure 5 describes the different steps and phases of the online
BCT setting.

3 Results

3.1 Offline study

Figure 6 displays the grand average classification error computed in each 1000 ms window
for both trial groups. A Wilcoxon signed rank test is performed to assess the differences in
classification rates for both groups at each point in time and the obtained p-values are grad-
ually represented with a pink scale. We found that the classification error was lower for the
high- compared to the low-group over the whole trial length. This decrease was significant
in an interval ranging from approximately 500 to 3200 ms (p < 0.05) after the apparition of
the cue. However, the main effect was observed in a smaller interval (approximately 500 to
2500 ms).

In order to quantify the effect of the trial-separation using the SMR Pow methods on the
classification performance, figure 7 shows the correlation between the classification gain and a
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Figure 5: Schematic description of our online BCI experiment incorporating the user’s current SMR
level. The whole session consisted of 3 Rest measurement runs of 5 minutes each (gray), 4 NFT runs
of 3-5 minutes (red), 2 calibration (CB) runs of 80 trials each (green) and 3 feedback (FB) blocks

(blue) each consisting of 2 feedback runs of 30 trials each. The timing (in minutes) and the number
of trials (tr.) is indicated in brackets.

End of classification window [ms]
500 v 1000 2090 3q00 4q00 5q00

\k —— low prestim. SMR
5 high prestim. SMR

401

35r

W
S
T

N
o
T

N
=]
T

Classification error [%)]

00208 ©
0.01
o

Figure 6: Monitoring of grand average classification error over the whole trial in 1000 ms windows (50

ms overlap) for both trial groups (high: green, low: purple). The pink scale represents the p-values
obtained from a Wilcoxon signed-ranked test for difference in classification error.
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Figure 7: Correlation between the average classification gain in the post-stimulus window (500-2500
ms) and separation index according to pre-stimulus log band power value. The green dots represent
the values for the single participants and the red dotted line shows the result of a linear regeression.
The correlation value (r) and the corresponding p-value (p) are displayed in red.

separation index. The classification gain is calculated by subtracting the average classification
error for the low trial group in the post-stimulus interval (500-2500 ms) from the one for the
high trial group and is quantified in %. The separation index represents the distance between
both trial group means compared to their standard deviation using the SMR Pow method
and is calculated in the following way:

Hhigh — Hiow
$(stdnigh + stdiow)

(1)

1 being the mean of the specific trial group and std its standard deviation.

We report a significant correlation between the separation index and the classification gain
(r = 0.61, p = 0.001). The corresponding linear regression is shown as a red dotted line.
This means that a strong difference in pre-stimulus SMR level is linked to a higher gain in
classification accuracy.

The right panel of figure 8 shows the temporal evolution of the SMR amplitude modu-
lations following motor imagery in the best CSP-channels for each class. These curves were
computed by calculating the envelope of the band-passed signal using a Hilbert Transform,
which was then smoothened with a moving average (200 ms window). The four trial groups
(two per class) are represented in both channels: left-low (light blue), left-high (dark blue),
right-low (light red) and right high (dark red). We report that the main different between the
high and the low trial groups can be seen in the channel-non-specific class (shaded in yellow).

The left panel of figure 8 represents scalp topographies of the p-values for the null hypoth-
esis of zero biserial correlation between SMR, band amplitude and trial group membership in
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Figure 8: Left panel: p-values for the hypothesis of no correlation between SMR band amplitude and
trial group membership in the grand average for each class: Left low vs. Left high and Right low vs.
Right high. Scalp topographies are shown for the signed correlation p-values averaged over the post-
stimulus (500-2500 ms) interval. Note the SMR amplitude is higher over the ipsilateral hemisphere
for the high trial group. Right panel: Grand average SMR amplitude evolution over the whole trial in
the two best CSP channels (one for each class). These curves are displayed for the four trial groups:
left-low (light blue), left-high (dark blue), right-low (light red) and right high (dark red). Note that
the highest difference occurs in the channel-non-specific class (colored in yellow).

the grand average. The correlations are computed on the envelope (see above) of the band-
passed and spatially filtered (with local average reference) signals. These scalp topogrpahies
are shown for the post-stimulus interval (500-2500 ms) and the high and low trial groups
within each class: Left low vs Left high and Right low vs Right high.

We observe a highly significant correlation between SMR, amplitude in the post stimulus
interval and group membership in the ipsilateral hemisphere (p < 1079).

Altogether, figure 8 demonstrates that the main effect of the two different background
states high and low on the motor imagery period refers to the ipsilateral motor area: the SMR
level remains higher in the high prestimulus state, while the difference on the contralateral
side only persists weakly.

3.2  Online setting incorporating user’s SMR level

From our ten participants, six performed very well (> 85%). But the other four either did
not achieve BCI control or did not display neurophysiological patterns. Therefore, these four
participants had to be removed from the analysis, which left us only with six participants
with very good BCI feedback performance.

Figure 9 shows the correlation between classification gain in the post-stimulus window

10
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Figure 9: Correlation between the classification gain in the post-stimulus window ([500 3000] ms) and
separation index based on the SMR Ratio (in blue). The dots represent the values for the single par-
ticipants and the dotted line shows the result of a linear regression. For comparison, the corresponding
points for the SMR Pow are shown in green. The correlation values (r) and the corresponding p-value
(p) for both methods are displayed in the appropriate group color.

([500 3000] ms) and separation index based on the SMR Ratio (in blue). For comparison, the
corresponding SMR Pow values are shown in green. We report a correlation between classifi-
cation gain and separation index computed with the SMR Ratio (r=0.59). Furthermore, we
observe that this correlation is much weaker using the standard SMR Pow measurment (r=
0.09).

In order to compare the two SMR quantification measures further, figure 10 shows the
mean and standard deviation SMR Ratio (top) and SMR Pow (bottom) for the trial groups
corresponding to each condition. We observe that the SMR Ratio methods yields a stable
and high separation between the trial groups for each participants and that updating the
thresholds account for the small jitter in SMR level over the experiment, allowing to adapt
to the participants’ rest SMR level. However, when applying the SMR Pow measure to both
trial groups, we observe discrepancies between users and a very low separation distance.

Furthermore, similar effects as shown in Figure 8 for the offline study were replicated in
the online study (not shown here).

4 Discussion

4.1 Ipsilateral hemisphere idling boosts classification

We demonstrated that trials with higher SMR, amplitude preceding motor imagery can be
better classified than trials with lower SMR amplitude during this period. This effect was

11
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Figure 10: Average Pre-stimulus ([—750 0] ms) extracted SMR ratio and SMR Pow for the high(red)
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significant in the time interval corresponding to the ERD and suggests that the ongoing SMR
amplitude has an effect on the ERD/ERS patterns induced by motor imagery.

Further investigation provided more insights into the spatiotemporal evolution of the SMR
fluctuations. Surprinsingly, they did not attribute the increase in classification for trials with
higher pre-stimulus SMR level to a stronger attenuation of the SMR (ERD) in the contralat-
eral hemisphere, but to the persistance of a higher SMR. level over the ipsilateral hemisphere.
Based on evidence that an increase in SMR amplitude is preceded by muscle tone reduction
(Chase & Harper, 1971), we expect this effect to be due to a better relaxation state of the
sensorimotor system. In addition, (Mazaheri et al., 2009) showed that high power in the «
frequency band over the motor cortex makes it immune to external inputs by increasing its
excitation threshold. Hence, we hypothetize that a better state of relaxation in the motor cor-
tices leading to higher SMR amplitude, will result in an ERD focalized to the task relevant
(contralalteral) cortical area accompagnied by an ERS (idling) over the other areas. This
hypothesis is in line with (Neuper, Schlogl, & Pfurtscheller, 1999), who observed that the
ipsilateral localized ERS often develops as the number of BCI training sessions with feedback
increase and is further associated with and increase in the classification accuracy. This could
be an effect of the subject getting used to the task and/or developing a skill and hence could
be linked to both motor cortex and cognitive relaxation. Further supporting our findings,
(Neuper et al., 1999) also observed that the development of this contralateral ERD / ipsilat-
eral ERS pattern is associated with an increase in classification accuracy.

Due to the well documented attenuation of rhythmic activity in contralateral motor areas
following unilateral upper-limb motor intentions (Pfurtscheller & Aranibar, 1979; Pfurtscheller
& Neuper, 1997), research on SMR based BCIs has mainly focused on the contralateral hemi-
sphere. However, here, we provide evidence that the ipsilateral hemisphere also contains
valuable information for decoding mental states. In line with our results, an Electrocor-
ticography (ECoG) study by Gangly et al. (Ganguly et al., 2009) reported cortical field
potentials that correlated with ipsilateral kinematics. Recent studies have also demonstrated
that chronic stroke patients with limb paralysis can use nonivasively recorded ipsilateral SMR
modulations to achieve BCI control (Buch et al., 2008) and that the ones who achieve a high
level of recovery often display increased ipsilateral activation during movement (Riecker et
al., 2010). Alltogether, this supports the idea that alternative signals can be used for BCI
control, when the regular signals cannot be recorded.

4.2 Including SMR monitoring in a SMR-based BCI setting

The main idea behind manipulating the cue presentation was to restrict participants’ motor
imagery performance to the opportunity window where their motor cortex is relaxed enough
and thus in the best state to yield good classifiable ERD/ERS patterns. The goal of this
manipulation was to avoid users to produce unappropriate activation patterns due to mus-
cular tension (leading to desychronization of task unrelated motor areas) or difficulties when
switching between tasks as was reported by (Sannelli, Braun, & Miiller, 2009). However, this
would only be useful for medium BCI performers users who do not already have high control
on the timing and localization of their (de)synchronization. As none of the ten participants
belonged to the target group of users, it was difficult to assess the effect of our manipulation
on classification performance. Nevertheless, we still identified the same increase in ipsilateral
hemisphere SMR activity between the high and low pre-stimulus SMR conditions. The aver-
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age effect over the six selected participants is of course smaller than in the offline analysis, but
when looking more in detail, we report that the participants exhibiting the highest increase in
classification accuracy are also the ones displaying the highest difference in ipsilateral hemi-
sphere activity in the post-stimulus interval. This makes sense, as the users with very good
control over their ERD/ERS might not display this asymmetry in ipsilateral activity between
the two conditions, because they are able to induce balanced ERD/ERS patterns even when
their motor cortex is not in the most adequate state.

Online quantification of the SMR level can suffer extensively from the non-stationarities
of the EEG signal. These include inter-subject variability and artifact sensitivity of the EEG
spectrum (Barlow, 1986; Berkhout & Walter, 1968; Oken & Chiappa, 1988), which results in
single participant’s spectra having both different baseline activity levels and shapes.

For example, if one individual’s spectrum has a generally high overall power, even a big
SMR peak will not contribute much to the SMR amplitude compared to the overall activity.
When we then compare the amplitude in the SMR, band, the difference between the trials can
be very small although an important peak to peak difference is observed. Consecutively, it is
difficult to attribute an observed difference to a real variation in peak amplitude, as it could
as well be attributed to a variation in overall activity.

By developing an algorithm to extract the SMR Ratio, we hoped to prevent the non-
stationarities of the EEG signal to affect our quantification of the SMR level by extracting
only the SMR peak amplitude. This was successful, as we achieved the same high separation
distance between trial groups for all participants, compared to the SMR Pow method which
yielded inhomogeneous results. Furthermore, the classification gain between the two condi-
tions in the online experiment correlated better with the SMR Ratio, than the SMR Pow for
these trials groups, which means that our new SMR quantification measure is more stable
and reflects neurophysiological mechanisms.

5 Conclusion

In this study, we showed that the mental state of a BCI user can influence performance in
an SMR-BCI setting. More precisely, higher SMR amplitudes over the motor areas linked
to motor relaxation induce better classifiable brain patterns. Interestingly, this increase in
performance can be attributed to the ipsilateral, rather than the contralateral hemisphere.
Here we present an approach to use this information in an online setting, in order to boost
classification. However, as none of the ten participants belonged to the target group of
medium BCI performers, a large scale study is required for evaluation.
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