
 Parallel M
achines w

ith D
istributed M

em
ory	 M

arco K
esse ler	

1996
T

he Im
plem

entation of Functional L
anguages on

Marco Kesseler

The Implementation of

Functional Languages

on

Marco Kesseler
This digital version of my thesis is almost an exact copy of the 'real' one. I did however take the liberty of correcting some small errors (mostly spelling), and I improved the digital version by adding bookmarks and the like. Anyway, no new data has been added, as I have not been working on this topic since april 30 1996.

may 1, 2001
Marco Kesseler

The Implementation of

Functional Languages on Parallel Machines

with Distributed Memory

een wetenschappelijke proeve op het gebied van de
Wiskunde en Informatica

Proefschrift

ter verkrijging van de graad van doctor
aan de Katholieke Universiteit van Nijmegen,

volgens besluit van het College van Decanen in het
openbaar te verdedigen op maandag 29 april 1996

des namiddags om 1.30 uur precies

door

Marcus Henricus Gerardus Kesseler

geboren op 10 april 1968 te Heumen

Promotor: prof. dr. ir. M.J. Plasmeijer
Co-promotor: dr. M.C.J.D. van Eekelen

Manuscriptcommissie:

prof. dr. R. Loogen Philipps-Universität Marburg
dr. H. Kuchen Rheinisch Westfälische Technische Hochschule Aachen
dr. P. Hartel Universiteit van Amsterdam & University of Southampton

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Kesseler, Marcus Henricus Gerardus

The implementation of functional languages on parallel
machines with distributed memory / Marcus Henricus
Gerardus Kesseler. - [S.l. : s.n.]. - Ill.
Proefschrift Katholieke Universiteit Nijmegen. - Met
Index, lit. opg. - Met samenvatting in het Nederlands.
ISBN 90-9009247-1
Trefw.: implementatie / functionele programmeertalen /
parallelisme

Uproot your questions from their ground and the dangling
roots will be seen. More questions!

Frank Herbert, Chapter House Dune

Contents

Acknowledgements 1

1. Introduction 3
1.1. The limits of software development and hardware development 3
1.2. The promise of functional programming ... 7
1.3. The problem of implementing functional languages 8
1.4. An outline of our research ... 12
1.5. The language that will be implemented: Concurrent Clean 16
1.6. The architecture on which we will implement Concurrent Clean: the

transputer hardware ... 22
1.7. An overview of this thesis ... 24

2. Packet Routing 27
2.1. The need for a routing mechanism on transputer hardware 27
2.2. The original DOOM routing algorithm ... 29
2.3. The modified routing algorithm: the CTR... 33
2.4. Optimising the CTR... 37
2.5. Performance measurements ... 38
2.6. Conclusions.. 47

3. Realising the Components of the Abstract ABC Machine 49
3.1. The basic research issues and the design of the ABC machine 49
3.2. Dealing with speculative parallelism... 51
3.3. Registers and stack .. 54
3.4. The heap... 56
3.5. Processes.. 59
3.6. Nodes ... 62

4. Code Generation for the Transputer Processor 69
4.1. The target language of the code generator... 70
4.2. Sequential code generation .. 72
4.3. Handling stack overflows .. 78
4.4. Handling locks and waiting lists .. 82
4.5. Supporting context switches .. 84
4.6. Performance measurements for sequential programs 85
4.7. Conclusion ... 88

5. Managing Distributed Graphs 89
5.1. Introduction.. 89
5.2. Representing references to remote graphs ... 91
5.3. Transmission of graphs.. 96
5.4. Garbage collection ... 102
5.5. Performance measurements for parallel programs 112

6. The influence of Graph Copying on Runtime Semantics and on
Uniqueness Typing 115
6.1. Uniqueness typing ... 115
6.2. The conflict between lazy graph copying and uniqueness typing 118
6.3. Potential solutions.. 121
6.4. A safe copying strategy ... 123
6.5. Copying of work using lazy normal form copying.............................. 127
6.6. The runtime semantics of some example programs 130
6.7. Conclusions.. 133

7. The Costs of Graph Copying 135
7.1. Introduction.. 135
7.2. Copying costs... 136
7.3. Decreasing conversion costs .. 137
7.4. Distributed copying ... 143
7.5. Overlapping communication and computation.................................... 146
7.6. Conclusions.. 151
7.7. Discussion.. 151

8. Constructing Skeletons 153
8.1. Introduction.. 153
8.2. Auxiliary functions .. 155
8.3. Skeletons for data parallelism.. 156
8.4. Skeletons for parallel I/O... 165
8.5. Skeletons for streams ... 169
8.6. Conclusions.. 173

Conclusions 175
Reasoning about parallel performance... 176
The design of efficient parallel algorithms .. 177
Future Work ... 178

Bibliography 181

Index 189

Samenvatting 193
De beperkingen van de mens en de machine ... 193
Programmeertalen .. 194
Implementatie... 194
De ontwikkeling van parallelle programma’s .. 196

Curriculum Vitae 197

Acknowledgements

These very first words have actually been written the last. I have mixed feelings about
thanking specific people. I would rather not have a little list of names with noisy empty
spaces. But who is going to read a lengthy list? So, I hereby express my appreciation to
anyone who inspired me.

Still, it takes some carefully chosen silences to make some music and some people
suffer the most. John van Groningen and Ronny Wichers Scheur have had to share the
same room with me for the last couple of years. In particular, I thank John for not being
susceptible to any form of hype, and for his skilfully designed software. Ronny I thank for
keeping me sharp - he likes juggling - and for sharing valuable insights in the art of
designing graphical user interfaces. Skills and arts combined in a single room.

Then, there exist some people who actually wanted to be part of the manuscript
committee and read through the whole lot of this thesis. They will tell you it is their job.
Well, do not be fooled, they do have a choice. Rita, Herbert and Pieter, I thank you for all
the hours I have stolen from you.

Rinus, you allowed me to find my own ways. You also carefully prepared me for
military service by giving me two of your cats. They certainly find their ways! Together
with Marko van Eekelen and Henk Barendregt you have created a place far away from
mind-boggling bureaucracies. I do not have to convince you that procedures and creativity
do not mix well. Luckily, we have people like Mariëlle van der Zandt and Jacqueline Parijs
to deal with all the messy imperative details.

And finally, I thank the people that are dearest to me. My parents have always
supported me, but not without warning me that paper stuff has its limits. My sister Sandra
knew that all along. I thank her for showing me that I am not always right. More than I can
possibly say, I thank Monique for her support, patience and understanding during the many
hours that I had my mind set on writing.

1. Introduction

This thesis explores the implementation of functional languages on parallel hardware
with distributed memory. In this chapter we will determine the most interesting
issues, followed by a general outline of our research.

We will start with some observations on the limits of software development and
hardware development. The former is very complex, which puts a strain on
programmers, and the latter has its physical limits, which puts a bound on efficiency.
Functional programming languages have advantages in both areas. They allow the
construction of concise programs that are suited for evaluation on parallel hardware.
The main disadvantage of functional programming languages is that they are difficult
to implement efficiently, in particular on parallel machines. In this thesis, we will
investigate these implementation problems, by building and evaluating a parallel
implementation of the functional language Concurrent Clean on concrete parallel
transputer hardware.

Concretely, the structure of this chapter is as follows. Section 1.1 will focus on
the limits of software development and hardware development. In section 1.2 we will
elucidate the advantages of functional programming. Section 1.3 will show the major
issues for obtaining an efficient implementation of a functional language (in
particular on parallel hardware). Section 1.4 will give a general outline of our
research. Section 1.5 and 1.6 will explain the characteristics of Concurrent Clean and
the transputer processor. And finally, the last section will give an overview of this
thesis.

1.1. The limits of software development and hardware development

The development of correct software is known as a hard problem. Often, the construction
and maintenance of large and complex systems imposes serious problems. In particular
parallel systems are notoriously difficult to program. Much research is devoted to solving
these problems and many different directions can be taken. This thesis focuses on the
development of new - and more powerful - programming languages, more precisely it
investigates functional programming languages. It will limit itself to one aspect, namely
that of programming parallel machines using a functional language. Before we proceed, we
will take a closer look at the problems found in software development.

4 Introduction

1.1.1. The limits of nature

Realising that faster computers lead to a better productivity, hardware manufacturers have
been urged to devise ever faster processors. Over the years, computer hardware has become
increasingly powerful. So far, processor speed has doubled every few years. And although
some have claimed that this development inevitably will stop at some point in the future,
there is no sign that this moment will arrive shortly.

In spite of this, processor manufacturers will have to deal with a fundamental speed
limit: the velocity of light. More and more, not the speed of an operation will be the
limiting factor, but the time it takes to fetch the arguments. At best, these travel with the
speed of light. Apart from this, current technology puts a boundary on the speed at which
switches can operate. In this area there might turn out to be some hard boundary as well.
These limits restrain the possibility of using of ever higher clock frequencies to obtain
higher processor speed.

To deal with these issues (to some extent), processors are emerging that use pipelines
of several simple functional units on a single chip. The simplicity of each unit allows it to
operate at relatively high frequencies, while enough functional power is maintained by
overlapping the operation of several units. For instance, the arguments of some subsequent
arithmetic operation might be fetched while another arithmethic operation is in progress. In
this way the delays that are involved in obtaining the arguments can be hidden.

Similarly, some processors contain independent parallel units for different sorts of
operations, so that various tasks can be achieved simultaneously, superseding the functional
ability of traditional designs. Such a super-scalar processor might perform several
operations in a single clock-tick. These designs also permit instructions to be executed out
of order, which allows critical data paths to become shorter. In the near future, similar
techniques will become increasingly important for achieving the necessary increase in
processor speed.

horizontal parallelism
(e.g. divide-and-conquer and data-parallelism)

ve
rti

ca
l p

ar
all

eli
sm

(e
.g

. p
ipe

lin
es

)

Figure 1-1: Types of Parallelism.

The main drawback of such solutions, is that they assume that a certain level of
parallelism is inherently present in sequential programs and that it is easily detectable. So
far, the required level is quite low and many sequential programs indeed contain this
quantity. It can be transferred to the machine code, provided that compilers schedule

Software development and hardware development 5

instructions in such a way that dependencies between adjacent instructions are avoided.
One may question the viability of these methods when greater processing speeds are to be
achieved. The inherent parallelism in sequential programs may be insufficient to keep the
processor busy. But what is more, a compiler may not even be able to extract enough
information to exploit the parallelism that is available. If greater speeds are to be obtained,
one needs to develop explicitly parallel programs.

These parallel programs on the other hand, may easily exhibit more parallelism than a
single processor chip is able to handle. A single chip can contain only a limited number of
functional units. If we want to exploit more parallelism, so that programs run at greater
speed, we need to construct a machine with multiple chips, each containing one or more
functional units. Speed is not the only reason for constructing such parallel architectures.
In contrast to purely sequential architectures, parallel ones commonly contain large
numbers of identical parts. This can seriously decrease hardware development costs. In
short, we need a parallel architecture that contains a reasonable number of (identical)
functional units.

Concurrently executing functional units appear to be the key feature of a parallel
architecture. But, at a low level, sequential architectures have always incorporated some
form of parallelism. For example, the addition of integers is often implemented by a
number of parallel operations. So, multi-chip parallel machines do not seem fundamentally
different from architectures with only a single ‘sequential’ processor. However, the tasks
that a parallel machine can perform concurrently should be fairly complex, i.e. they should
at least have the complexity of a single assembly level machine instruction. Furthermore,
machines with only a few parallel functional units can hardly be regarded as parallel
machines of much importance. Therefore, we will only consider parallel machines that
contain a fair number of processors (at least 10, preferably more than 100) and that are
suited to be extended to larger numbers.

A number of parallel machines have been constructed in the (recent) past. Each with
its own characteristics, matching the purpose for which it was built. Only few of these
architectures have been truly successful, mainly in areas where the actual problem turned
out to be parallelisable in a relatively easy way (in particular vector machines exploiting
data-parallelism). There are several reasons for the failure of others, but one of the most
significant ones, is that in general, parallel machines are harder to program than sequential
ones. In theory, each of the newly devised parallel machines was far more powerful than
their sequential counterparts, but in practice it proved to be extremely difficult to program it
in such a way that this power became available. It some areas it has turned out to be more
cost-effective to simply wait for a faster processor, than to spend a lot of resources - and
time - on the development of (complex) parallel algorithms.

So, it has become apparent that building machines with many parallel functional units
does not solve all problems. A great challenge lies in programming them. We will take a
closer look at this below.

6 Introduction

problem

descriptive specification

functional specification

efficient functional program

iterative program

requirements engineering

operationalisation

optimisation
(e.g. program transformations)

compilation
(e.g. recursion removal)

code generation

runtime system

machine

machine code

points of
interest

Figure 1-2: The position of research on functional programming languages within the
software development track.

1.1.2. The limits of man: the software crisis

Programmers face an increasing complexity in the problems they have to solve. As the
speed of sequential computation increases, more complex problems can be handled.
Consequently, software becomes ever more complex, or at least it should. Moreover, in
some areas, parallelism needs to be exploited in order to surpass the speed of a single
processor. This introduces a considerable amount additional complexity.

However, developing complex software is hard and often, software products are
unreliable, unmanageable and unprovable. Hardly any software system exists that does not
contain bugs. This situation is known as the software crisis. To deal with this problem, we
need more powerful programming languages, methods, and tools. Over the years these have
indeed improved, but not sufficiently to overcome the software crisis. In contrast, as the
importance of computer systems has grown and their complexity has increased, the
problems have got worse.

Consequently, much research is devoted to solving the following two questions:

• How can we correctly develop large software systems at low cost?

Software development and hardware development 7

• How can we increase processing speed at low cost? In particular, how can we
correctly develop large parallel software systems at low cost?

Many different approaches have been taken to achieve these goals, many of which are
complementary. Examples are the investigation of software engineering techniques, and
research on program transformation techniques. We have chosen to focus on the
development of new programming languages, specifically, the development of functional
programming languages. Figure 1-2 clarifies which part of the software development traject
our research addresses.

1.2. The promise of functional programming

The basic - and only - building block of functional languages are functions. Expressions
can only be constructed by means of function application. As in mathematics, a function
maps objects of a domain to objects of a range. Most elementary however, is that a function
can map its argument objects to at most one object in its range. This object is then called
the image of the object in the domain. This implies that the function result is entirely
defined by its arguments.

Pure functional languages will strictly maintain this property1, and this has an
important consequence: compared to traditional imperative programming languages, pure
functional ones have the advantage of ensuring referential transparency. A certain
(sub)expression always means the same (provided it has a meaning). This is certainly not
the case in imperative languages. A well-known example is the assignment statement
which imperative languages commonly support. A variable v may be assigned various
values over time, so that the expression v gets a different meaning each time another value
is assigned to it. Clearly, functional languages cannot allow assignments, and consequently
they do not have any variables. In contrast, every object has a constant meaning. This has
important advantages.

First of all, the term ‘referential transparency’ is merely indicating that objects in a
functional programming language have the same characteristics as mathematical functions.
Having such functions, we can prove their properties by means of ordinary mathematical
methods (equational reasoning). No additional proof techniques are necessary. This also
implies that it very easy to perform (semi-) automatic program transformations on
functional programs.

Secondly, if referential transparency is ensured it also becomes easier to reason about
programs in more intuitive ways. To derive the meaning of a statement in a functional
language one only has to consider the expression itself, and not various other conditions,
such as the value of global variables. Sentences mean the same in any context. One can
reason about a functional program by splitting it up in parts and then consider these parts

1 Examples of pure functional languages are Miranda (Turner, 1985), LML (Augustsson, 1984),
Haskell (Hudak et al., 1992) and Concurrent Clean (Plasmeijer and van Eekelen, 1993). LISP
(McCarthy, 1960) and ML (Harper et al., 1986) are examples of impure functional languages,
which sometimes allow a function result to depend on other factors than merely its arguments.
One might question whether the adjective ‘functional’ is appropriate for these languages.

8 Introduction

independently of each other. A functional language provides modularity and clear
interfaces in itself.

And finally, referential transparency makes it possible to change the order in which
expressions are evaluated without altering the meaning of the program. Each statement
always means the same, so it does not matter when it is evaluated. This has serious
advantages. On the one hand, this property makes it possible to use lazy evaluation, which
means that functions are only evaluated at the moment they are needed, if they are needed
at all (call-by-need). Apart from avoiding superfluous work, this has the advantage that
infinite structures can be dealt with in a very elegant way, leading to a clear way of
programming. On the other hand, the possibility to safely change the evaluation order
makes it possible to easily introduce parallelism. If a function has multiple arguments, they
all can be evaluated in parallel without changing the outcome of the function. As a result,
functional languages are inherently parallel, in contrast to imperative ones, which depend
on the execution of correctly ordered sequences of instructions. This means that functional
programming is a very promising candidate for solving the problem of programming
complex parallel systems.

In other words, functional programs reduce the over-specification - to a large extent
the unnecessary sequentialisation - that is commonly part of solutions written in imperative
languages. Functional programs are less explicit on how an answer should be computed,
implying that programmers can be less explicit in this respect and concentrate more on the
essence of programming a solution. They only have to specify what the solution should be.
The downside of all this, is that implementing a functional language is relatively complex
compared to implementing an imperative one. A functional language implementation has to
derive the exact way a program should execute, whereas imperative programs specify this
explicitly. We will have a closer look at this in the next section.

1.3. The problem of implementing functional languages

As we have seen above, functional languages have important advantages. Nonetheless, they
have hardly been used by software developers. To explain this, we need to consider the
following aspects of programming:

• Functional languages sometimes have difficulties with interfacing to traditional
hardware and software.

• The use of functional languages suffers from the common imperative background of
programmers. Programmers need to be trained to use functional languages.

• There is a lack of a powerful programming environments for functional languages.
• There has been a serious shortage of efficient implementations of functional

languages for different computer architectures, in particular for parallel hardware.

A few years ago, functional programs executed at least an order of a magnitude
slower than their imperative counterparts. As a result, the advantages of functional
programming were rather hypothetical. This situation has been improving. Sequential
implementations have become available that can be used to develop serious programs. But
still, there are many problems that need to be solved. In particular, the implementation

The problem of implementing functional languages 9

techniques for parallel functional languages have not yet matured. In contrast to sequential
implementations, hardly any usable general purpose parallel implementation exists of a
pure functional language2. This not surprising if we consider the more complex nature of
parallel systems. Therefore, this thesis will mainly focus on implementation techniques for
parallel architectures.

The following subsections will identify the most important implementation problems.
This will make clear that some efficiency problems exist that cannot be solved
automatically. Consequently, the programmer must deal with these. We need to find ways
to control efficient (parallel) programming explicitly. Amongst others, this implies that we
should have a close look at the runtime behaviour of parallel programs.

1.3.1. Sequential implementation issues

Even though we are focusing on the realisation of parallel implementations, we cannot
completely ignore sequential implementation techniques, and in particular sequential code
quality. First of all, one should take into account the significant advances that have been
made in sequential implementation techniques for functional languages. If it is possible to
use similar techniques for parallel architectures, this would greatly reduce the amount of
work. And secondly, parallel machines usually consist of a number of sequential processors
that run concurrently. In the past, parallel architectures typically contained custom
sequential processors that incorporated additional support for communications, such as the
transputer hardware and the CM-2 connection machine. Since then it has become common
practice to construct parallel machines with standard sequential general purpose processors,
interconnected by some high performance network. For instance, the CM-5 connection
machine consists of ordinary Sparc processors that are interconnected by a custom tree-like
network. Likewise, some manufacturers have constructed parallel machines with modern
RISC processors, such as the PowerPC, using transputers [sic!] merely to perform the
communications. In either case, the performance of a parallel implementation will greatly
depend on sequential code quality.

Therefore, we need to know if both sequential and parallel implementation techniques
can be joined into one efficient system. Parallel implementation techniques should not
severely restrict the use of significant sequential techniques and vice versa. We need not
however, concentrate on the development of sequential techniques. Many have already
focused on this topic. Instead, we will investigate how parallel implementation techniques
can be combined with existing sequential ones. To do this thoroughly, we need to
understand the problems that are related to sequential implementations, and the nature of
their solutions.

One of the most interesting aspects in this respect is dealing with state when
referential transparency has to be maintained. An important example of a system with state
is the real world. If some program performs I/O it actually changes the state of the world.
Functional languages find this problematic because an object with some state is just a
variable. Changing its state means that another value has to be assigned to it. Functional

2 Although special purpose languages like SISAL and Erlang have had some success in very
specific area’s. Erlang has been used to program parts of a telephone system, whereas SISAL
supports efficient vector-like processing. Nonetehless, these languages are not widely used.

10 Introduction

languages cannot do this. Instead, they need to create a new object containing the altered
state. This is problematic if the object is large, or if it represents a physical object in the real
world. In contrast, imperative languages can simply update the old object with its new
value. They are able to change objects. Often only a small part of an object needs to be
altered, which is much more efficient than creating a entirely new object.

Many of these efficiency problems can be avoided if more sophisticated
implementation technologies are developed. For instance, the research on uniqueness
typing has made it possible in certain cases to update objects in place on the machine level,
while on the language level it seems that new objects are created. Amongst others. this
enabled the development of a sophisticated I/O system (Achten and Plasmeijer, 1995). In
this thesis, we will demonstrate that uniqueness typing is very important for parallel
implementations as well and we will show how this technique can be incorporated in a
parallel system. Not only does this allow the incorporation of a parallel I/O system, but for
a number of programs this also formed the basis of considerable parallel speed-ups.

With respect to speed deficiencies in sequential code, we do not claim that all can be
cured, but they may very well become acceptable. The gain in ease of programming will
then outweigh some loss of efficiency. In a similar way we accept some loss of efficiency
by using high-level imperative languages instead of assembly languages. This
consideration is important for parallel machines as well, although some might argue that
execution speed is far more important than ease of programming for such machines.
However, it may be more cost-effective to simply add some extra processors, than to
develop a slightly faster parallel program in an imperative language.

1.3.2. Parallel implementation issues

For parallel implementations sequential implementation techniques are important, but one
faces a number of additional problems that need to be solved if an efficient parallel
implementation is to be obtained. Some of these are of a quite technical nature. For
instance, one has to manage processes and - if one uses a machine with distributed
memory- one has to provide reliable communications. This often comes down to picking a
(known) solution and testing it. This is not as trivial as it might seem. The solutions are
often complex, and some have hardly been tested in reality, or at best on different
architectures.

In contrast to these problems, there exist others that are of a more fundamental nature.
For instance, memory management - and in particular garbage collection -, is not only
rather hard to realise on a parallel machine (in particular with distributed memory), but in
addition, the problem has not yet been completely solved. For example, it is not yet known
in what way distributed cyclic structures can be removed efficiently from machines with
distributed memory. Some solutions have been suggested, but these hardly seem to be of
any practical use. Other problems become apparent when considering load balancing
techniques. A number of compile-time and runtime techniques have been developed, but
these only perform well if certain algorithmic conditions are met. In particular, no general
method is known that will automatically split up a computation in several parallel sub-
computations in a satisfactory way. We will take a closer look at this in the following
section.

The problem of implementing functional languages 11

1.3.3. Implicit versus explicit parallelism

It is not yet clear what is the best way to introduce parallelism in functional programs. This
may sound strange, as functional programs are inherently parallel, but the point is that they
actually contain too much parallelism. If one tries to exploit it all, a lot of overheads will be
introduced. So the question is not so much how to introduce parallelism, but rather how to
throttle it in a sensible way.

Unfortunately, there is no known technique that will automatically derive the best
way to split up a program in parallel parts under all circumstances. Basically, it is not (yet)
possible to get accurate information on all relevant aspects in a parallel system. First of all,
one would require details of the implementation itself, and this has not yet been established.
Secondly, a serious problem is formed by a fundamental lack of information on the
complexity of computations. This information usually depends on runtime conditions. As a
result, compile-time analysis is not accurate enough, nor are runtime facilities if future
conditions have to be taken into account. A runtime mechanism additionally, has the
disadvantage that it may need to gather information from various processors in a distributed
system. The required communications not only introduce runtime overheads, but they also
introduce the risk of obtaining outdated information.

Dealing with these problems presents an extraordinary amount of work in addition to
the problems mentioned earlier. It is even questionable whether it is possible at all to find a
mechanism that automatically introduces parallelism properly. Therefore, we will avoid
this problem entirely.

Instead of introducing parallelism implicitly, we will allow the programmer to
indicate it explicitly by means of special constructs. Choosing this approach, we burden the
programmer with extra work. To limit the drawbacks of this method the constructs for
specifying parallelism must be as clear as possible, without requiring too detailed
knowledge of the actual language implementation. Clearly, one should take care not to
sacrifice the benefits of high level programming. Furthermore is becomes necessary to
devise tools for helping the programmer. One could think of semi-automatic
transformational derivation of parallel programs. Ideally, such a system should make it
possible to start with a functional specification and guide the programmer to an efficient
program that contains explicit constructs for parallelism.

To some extent, we will examine the runtime semantics of explicit constructs for
parallelism. We will have a close look at some primitives for starting up parallel processes
and we will see how we can use these to construct skeletons that enable the easy use of
certain parallel programming paradigms. The design of special tools falls outside the scope
of this thesis. Such tools become useful at the moment that it is clear what forms of
parallelism can effectively be exploited in a functional language, but unfortunately, this is
not yet entirely the case.

1.3.4. The runtime behaviour of functional programs

The problems depicted above, are not restricted to parallel implementations only. In
general, it is impossible for a compiler to derive the most efficient code regardless of the
way a solution has been specified. Consequently, two different functional programs that are
equivalent from a formal point of view (delivering the same result), might behave rather

12 Introduction

differently (with respect to the required time and space). A programmer cannot ignore this.
He will need to explicitly program the most efficient solution.

But, as we have seen above, the standard constructs of a functional language might
not be sufficient to accomplish this. Even if a solution has been programmed in the most
efficient way, the implementation may still lack some information that is necessary to
automatically derive the best code. The compiler will have to make assumptions and these
influence code quality. Consequently, the same functional program may exhibit quite
different operational behaviour, depending on the actual implementation of the language.
To avoid such problems, and to increase code quality, one must have additional ways to
explicitly control the efficiency of functional programs.

This implies that one should be able to reason about the runtime behaviour of
functional programs. Unfortunately, the abstract nature of functional languages makes this
rather hard. First of all, functional languages tend to obscure their operational behaviour,
simply because a number of problems are handled automatically by the implementation.
The implicit handling of memory allocation for instance, makes it difficult to understand
the memory demands of certain functions. Likewise - as will become clear later -,
communications may take place implicitly in a parallel implementation. A programmer
may have trouble to extract the size and kind of the information that is transmitted, or even
to determine whether any communication takes place at all.

Additionally, operational behaviour becomes less clear, because of the freedom in the
order of evaluation that functional languages offer. If lazy evaluation is employed it
becomes more difficult to reason about the time - and space - it will take to evaluate a
function. One is forced to take into account the evaluation of previously unevaluated
arguments. It is already hard to figure out which these are, let alone to determine the costs
of evaluating them. Furthermore, if an implementation employs strictness analysis to
introduce eager evaluation at some points this can have serious effects on performance, and
thus, on runtime behaviour. In general, as the implementation decides which evaluation
strategy it uses, it becomes more difficult for a programmer to derive operational
behaviour.

These problems already exist in sequential implementations, but they are worse in
parallel ones, because one has to split up a problem into parallel tasks. The uncertainties
with respect to operational behaviour can make it extremely hard to design efficient parallel
programs. For this reason we will not only consider implementation techniques, but we will
also reflect on some aspects of designing efficient parallel algorithms in a functional
language. We will need to determine the suitability of functional programming languages
to express parallel algorithms. In particular, we need to investigate the expressiveness of
parallel constructs.

1.4. An outline of our research

From the above, it follows that we should basically be focusing on implementation issues
with respect to explicitly parallel constructs in a functional language. In this section we will
give a short overview of questions we will address, and the way we intend to answer them.

An outline of our research 13

1.4.1. The research questions

Two questions need to be answered. First of all, we need to investigate the expressive
power of the parallel constructs. And secondly, we need to know if - and how - they can be
implemented effectively.

1. The expressive power of parallel constructs depends on a number of factors.
a) Firstly, one needs to establish the expressive power of a set of constructs as a

group. Are they suited to describe a large set of parallel systems, or only a
small one? In other words, do they provide a general purpose parallel
language or only a very specialised one?

b) Secondly, one needs to determine the expressive power of each construct on
its own. This influences the number of constructs we need to solve a certain
problem, and therefore the conciseness of the solution.

c) And finally, we need to know if parallel constructs are comprehensible. Is it
easy to reason about their behaviour? This will turn out to be one of the
hardest questions, in contrast to the ones above, which are rather trivial.

2. Still, in a programming language, there is no use for very expressive constructs if
they cannot be implemented effectively. We need to consider two aspects.
a) On the one hand, we need to know how a construct can be implemented most

efficiently on a particular architecture.
b) Once we have established a suitable way to implement a certain construct, we

should determine if the construct behaves as intended in reality. The relation
between theory and practice must become apparent. It will be clear, that in
order to reason about programs, there must be no serious discrepancy. This is
closely related to question 1a.

A serious language must be able to describe real solutions. This means that the
questions above not only must be answered for small systems, but also for non-trivial large
ones. Amongst others, this puts serious demands on execution speed, memory
management, process management and communication mechanisms. This will be reflected
in the implementation techniques we will consider.

At the same time, we will make no concessions with respect to the generality of the
implementation. We will not ignore certain forms of parallelism for the sole reason that
they complicate implementation. We will not limit ourselves to divide-and-conquer style
parallelism, and in particular we will not exclude speculative parallelism. This sharply
contrasts with other research projects in this field, such as HyperM (Barendregt et al.,
1992), and the ZAPP implementation of Concurrent Clean (Goldsmith et al, 1993).

1.4.2. The research plan

The approach we have taken to answer the questions above, is to realise a state-of-the-art
parallel implementation and to test it. This is needed to gain insights in implementation
techniques and to evaluate theories about expected parallel behaviour. Simulations and
theoretical models may not be accurate enough to supply this information.

14 Introduction

To accomplish this we will use an iterative procedure that takes a number of steps.
First we will realise the implementation of some parallel constructs that we deem most
useful. Next, we will develop and run test programs, in order to evaluate the constructs and
their implementation. This will give us some new insights, which we can use to improve
the implementation of current constructs, or to develop new ones. The latter can either be
‘stand-alone’ constructs, or built on top of old ones. This will take us back to the first step
of this paragraph.

1.4.3. The architecture

One cannot possibly develop an implementation for all existing - or future - architectures
simultaneously. For practical reasons we need to limit our focus. Therefore we have
restricted the extent of our research in the following ways.

First of all, we have chosen not to develop a special purpose machine for executing
functional programs. Instead we concentrate on realising an implementation for standard
general purpose machines only. On the one hand, special purpose machines are relatively
expensive, and they are not used by many people (the former implies the latter and vice
versa). This obstructs our goal to get functional programming generally accepted by a large
community. On the other hand, it takes more effort to maintain a system that is based on
specialised hardware, than to accomplish the same using general purpose machines. Not
only does one need to keep up with the latest implementation techniques for functional
languages, but additionally, one needs to adapt the architecture to state-of-the-art hardware
construction techniques. The latter is rather hard, considering the massive efforts that the
major industries continue to put in the development of traditional von Neumann
architectures. These have become tremendously powerful at such a rate that they can easily
take over tasks of more specialised architectures. The end of this development is not yet in
sight. Consequently, using special purpose hardware does not always guarantee that
programs run at the highest possible speed. Indeed, the results of experiments with
implementations of functional languages on specialised hardware have been rather
disappointing so far, and this direction of research has largely been discontinued
(Darlington and Reeve, 1981; Watson and Watson, 1987; Peyton Jones et al., 1987; Hankin
et al., 1985; Richards, 1985; Stoye, 1985; Keller et al., 1984; Anderson et al., 1987; Magó
and Stanat, 1989).

processors

distributed memory shared memory

Figure 1-3: Different types of architectures.

Secondly - as we aim at developing a general purpose language - we decided to focus
on Multiple-Instruction-Multiple-Data (MIMD) machines. These are also known as

An outline of our research 15

asynchronous machines. They are more general than Single-Instruction-Multiple-Data
(SIMD) machines (synchronous machines), which basically only support data-parallelism
well.

The third restriction with respect to the architecture is that we will only consider
parallel machines with distributed memory. These have the advantage that they are more
scalable than shared memory machines, for which memory access constitutes a bottleneck.
Nevertheless, we should note that shared memory architectures have the advantage of
providing an easy programming paradigm, which is far less error-prone than the message
passing model that is commonly used for dealing with distributed memory. Consequently,
it is easier to realise a parallel implementation on an architecture with shared memory than
on a distributed memory machine3. Our goal however is to eliminate the disadvantages of
machines with distributed memory by providing an implementation of a functional
language for these architectures, so that their greater scalability can be exploited in a
suitable way, using the comfortable high-level programming model of functional
languages.

1.4.4. Compilation versus interpretation

The quickest way to obtain an implementation is to construct an interpreter. It conveniently
abstracts from the hardware details. This is its power and its weakness. The abstraction
causes uncertainty about the behaviour of more sophisticated solutions based on code
generation.

This is already problematic for sequential systems. Interpretation distorts the view on
the real costs of computational steps. Not only because interpretation introduces overheads
related to the interpretation itself, but also because interpreters have difficulties taking into
account code optimisations for specific platforms. Consequently, it is difficult to derive the
actual costs from interpretation.

For parallel systems, the problems caused by interpretation are worse. Interpreters
tend to be one or two orders of a magnitude slower than running compiled code (One can
see an example in chapter 4, table 4-5). Not only does this hamper the possibility of
running complex (i.e. time-consuming) programs, but it creates a disparity in costs, as
communication overheads are low compared to processing overheads. Typically, it is easier
to obtain good speed-ups for interpreters running in parallel, than it is for compiled code.
Thus, results from interpretation are easier to obtain, but also less revealing. Therefore we
have chosen to construct a compiler.

3 Examples of shared memory implementations of functional languages are < ν,G> (Augustsson
and Johnsson, 1989), AMPGR (George, 1989), GAML (Maranget, 1991), GRIP (Peyton Jones
et al., 1987, 1989-b), Flagship (Watson et al., 1986, 1987, 1988) and HyperM (Barendregt et
al., 1992). Examples of distributed memory implementations are PAM (Loogen et al., 1989), π-
RED+ (Bülk et al., 1993) HDG (Kingdon et al. 1991) and SkelML (Bratvold, 1993).

16 Introduction

1.5. The language that will be implemented: Concurrent Clean

The language we have chosen to realise all this, is Concurrent Clean. Detailed information
on this functional programming language can be found in the book by Plasmeijer and van
Eekelen (1993). In brief, it is a pure functional programming language that incorporates a
number of features that are commonly found in other lazy, higher order functional
languages. These include a Milner/Mycroft based polymorphic type system. However, as
we will elucidate later, Concurrent Clean is not based on the lambda calculus nor on term
rewriting systems, but on graph rewriting. This distinguishes it from other functional
languages.

Originally, Concurrent Clean was designed as an experimental intermediate language.
Its syntax was kept as simple as possible, allowing to concentrate on the essential
implementation issues. As a result, it was possible to study a number of new concepts in a
rather easy way. Examples of these are term-graph rewriting (Barendregt et al., 1987), lazy
graph copying (van Eekelen et al., 1991), uniqueness typing (Barendsen and Smetsers,
1993, 1995-a, and 1995-b), and strictness analysis by means of abstract reduction (Nöcker,
1993-a).

This resulted in compiler technologies that allowed to generate efficient code for
relatively small machines. The latter is rather exceptional, and as a consequence, people
have started to use the intermediate language Concurrent Clean as a programming
language, even though it was not intended as such. It became necessary to improve the
syntax of Concurrent Clean, so that it conformed to a large extent to languages like Haskell
and Miranda. The new Clean 1.0 system incorporates many high level features that were
not present in previous versions. Examples are infix notation, overloading, type classes, list
comprehensions, and support for arrays and records.

Unfortunately these features were not available at the time the research took place
that is presented in this thesis. We were forced to write and test all programs in version 0.8
of the Clean system. However, to conform to the usual notations and to improve readability
we have decided to use the syntax of version 1.0 for the program listings.

1.5.1. Graph rewriting

A Graph Rewriting System (GRS) represents a program as a set of graph rewrite rules.
Starting with an initial graph, rewriting (reduction) takes place according to these rules. A
part of a graph that matches the pattern of a rewrite rule is called a redex. Such a redex can
be rewritten to Root Normal Form (RNF) by replacing it by an instance of the right-hand
side of the corresponding rewrite rule. At any moment in time there will be multiple
redexes, and therefore a reduction strategy is needed. Sequential strategies will at any point
in time reduce a single redex, as opposed to parallel ones that will reduce multiple redexes
at a time. The main difference with Term Rewriting Systems (TRS’s) is that multiple
occurrences of an identifier indicate sharing in a GRS, and not multiple copies of the
expression itself.

In contrast to other functional languages, Concurrent Clean not only uses graph
rewriting for its implementation, but also as its underlying computational model. In this
way the difference between the implementation and the formalisation of the language is
kept to a minimum. On the language level, we can see an example of this in the possibility

Concurrent Clean 17

to indicate sharing of expressions explicitly. The importance of this becomes clear if we
reconsider the necessity to reason about the operational behaviour of parallel programs in
order to obtain efficient programs. The main drawback of using graph rewriting as a
computational model, is that this field is still very young. Yet, the work of Barendsen and
Smetsers (1992) has indicated that it is possible to reason in this formalism in a convenient
way.

1.5.2. Uniqueness typing

As we already indicated earlier, ensuring referential transparency makes it rather hard to
generate efficient code. In particular, functional languages cannot employ destructive
updates on shared data structures: if one branch of computation would update a shared
object in place, it would affect the outcome of the other branches that refer to the same
object, and thus referential transparency would be lost. In contrast, a non-shared object may
be updated in place, but unfortunately, a compiler cannot detect in general whether data
structures are shared or not.

Concurrent Clean partially solves this problem by using its uniqueness type system
(Barendsen and Smetsers, 1993, 1995-a, and 1995-b) to approximate actual sharing
properties at compile time. This type system is able to derive - or enforce - that functions
have exclusive (i.e. unique) access to certain arguments. If a function has such a unique
argument it can safely overwrite the argument with the function result.

The uniqueness type system uses a unique type attribute to indicate that an object is
not shared. Initially, each objects gets this attribute when it is created: only the creating
function has a single reference to this object then. However, as soon as an object becomes
shared - for instance by referring it twice in some expression - it looses its uniqueness type
attribute forever. To avoid de-uniqueing too many objects, the type system takes into
account the order of evaluation. For example, an object that is referred once in both the
then-part and the else-part of a conditional expression will not loose its unique type
attribute. At the same time, the formal arguments of a function may have a unique type
attribute (this can be indicated by the programmer). If this is the case, the type system will
either reject any application of such a function to a non-unique actual argument, or it will
replace the function by an equivalent one that does not require uniqueness (a more detailed
explanation of uniqueness typing can be found in chapter 6).

1.5.3. Annotations

Concurrent Clean enables the programmer to control parallelism explicitly by means of a
few simple annotations:

• {I} : This annotation starts up a new process on the current processor. It will reduce
the annotated expression to root normal form (RNF). No communication takes place,
instead, the new process shares the annotated expression with other processes.
Processes on the same processor will run interleaved and scheduling is fair.

• {P}: This annotation starts up a new process at some other processor (if there exists
one) that will reduce the annotated expression to RNF.

18 Introduction

• {P at processor}: The same as {P}, only now the expression ‘processor’ evaluates to a
processor-id and the new process will be started at the given processor. Basically, all
annotations are some form of the {P at ...} annotation.

Annotations cannot influence the outcome of a program, they merely change the
order in which redexes are reduced, so one can deviate from the default functional
evaluation strategy. In addition to the ones above, Concurrent Clean features a strictness
annotation (an exclamation mark), which changes the evaluation order from lazy to eager.
For clarity, annotations are distinguished by bold face throughout this thesis.

Clearly, the annotations listed above are very basic. This is their power and their
weakness. On the one hand a suitable combination of these annotations will be able to
describe virtually any parallel computation. So they are very general. On the other hand a
single annotation does not have much expressive power. One may need many annotations
in order to arrive at a useful parallel solution. In theory, the latter is not a very serious issue
in a functional language. Using basic annotations one can construct skeletons, which are
basically higher order functions that enable the easy use of certain parallel programming
paradigms. However, such skeletons may not be generally applicable, nor very efficient, so
they might not offer a very useful solution in practice.

Furthermore, this thesis will make clear that a serious problem lies in reasoning
about the exact behaviour of these annotations. Even though the annotations themselves are
very simple, it can be hard to apply them correctly. This has to do with the implicit
communications in Clean. We will take a closer look at this below.

1.5.4. Lazy graph copying

Parallel implementations of functional languages can roughly be divided into two classes:
those aimed at shared memory architectures, and those suited for architectures with
distributed memory (see figure 1-3). The main difference between the two is that shared
memory implementations will have multiple processors working on a globally accessible
shared graph, whereas distributed implementations have to distribute the graph so that
processors can reduce a private copy. To achieve this, a graph copying mechanism is
needed. Important issues for shared memory implementations are the use of caches and
locks. Conversely, implementations for distributed memory have to deal with the costs of
graph transmissions. These areas of research are related in the sense that they focus on
providing efficient access to graphs. Communication and caching are similar notions in this
respect. On the other hand, transmission of graphs involves duplication, which sharply
contrasts with the concept of sharing.

In principle, all communications in Clean take place implicitly, except for the ones
implied by the annotations above. Whenever a function accesses an argument that is
located at another processor, the corresponding graph will be transported automatically. So,
communication is triggered by evaluation of remote arguments.

Copying a graph from one processor to the other can take various forms. The two
extremes are formed by eager copying and full lazy copying. The former means that a graph
is copied as a whole. This has the advantage that only a single message is needed to
transmit a graph, which can reduce communication overheads. Full lazy copying on the
other hand, will only transmit a node if it is needed at some other processor. Nodes are

Concurrent Clean 19

copied one at a time on a transmit-by-need basis. Clearly, this introduces small messages
and quite some protocol overheads, which can be costly if the whole graph turns out to be
needed. On the other hand, if only few nodes are needed full lazy copying can be
considerably more efficient than eager copying.

The main advantage of full lazy copying, is that it increases the possibilities for
sharing of results as opposed to recomputing them. Full lazy copying retains references to
the original nodes for as long as possible. On the one hand, this increases the chance of
copying results, instead of work. And one the other hand, if a process needs a node that is
being reduced by another process one can simply defer the copying process and resume it
after the result has been computed. Programs that employ processes to consume the results
of other processes rely on this way of copying graphs: instead of copying work back, a
consumer will stop as soon as it hits a node on which a producer is still working.

Lazy graph copying combines aspects of both eager copying, and full lazy copying in
order to avoid the copying of work (to some extent), while retaining the advantage of
copying multiple nodes at a time. In principle, lazy graph copying copies nodes eagerly,
unless it hits a redex that has a defer attribute. These nodes represent work that should not
be copied. Copying stops at such a node and instead, a new reference to the deferred
original is created (see figure 1-4). In this way, graphs can be copied partially. Once a
former deferred redex has been evaluated it looses its defer attribute. Then it can be copied,
but this will only take place on demand. Hence the name lazy graph copying.

copy

g

s

copy of g

original g

s

Figure 1-4: The effect of lazy copying if a graph g is copied that contains a deferred sub-
graph s (rooted by some redex). The sub-graph will not be copied. Instead, the partial
copy of g will contain references to the original sub-graph. The deferred sub-graph
may be copied later, after it has been reduced to Root Normal Form, but this will
only take place if it is actually needed by some process that is working on the copy of
g.

To avoid deadlocks, one needs to ensure that any needed deferred redex will
eventually be evaluated. Implicitly, Concurrent Clean only defers redexes that are being
reduced, or are going to be reduced by a separate process (the latter constitutes the
annotated redexes). It is not very useful to copy these redexes, as one would certainly copy
work, and deferring them does not introduce problems, as they will be reduced. However,
without further measures, one cannot not safely defer other redexes, because this could
result in a deadlock. Therefore, the Clean implementation additionally guarantees that a
new process will be started on any redex as soon as it turns out to be needed at another

20 Introduction

processor. So, if a needed redex is deferred it will certainly be evaluated, and its result will
be transmitted afterwards.

An important question in a lazy graph copying scheme, is which nodes should be
deferred, in addition to the ones listed above. We will see that this greatly influences the
way annotations are used, and that way we reason about parallel functional programs. In
addition, at some level, the defer attribute is indispensable for certain structures that are
part of the underlying operating system (these are commonly accessed by I/O functions).
For these structures special rules apply, as they usually refer to physical objects such as
disk drives, screens, and windows. For sequential programs it is sufficient to assign unique
types to these objects if they should be updated in place (for example when writing to a
disk). For parallel processing some extra rules are needed, because some structures are
fixed to a particular location. Although sharing is possible, one cannot copy objects such as
disk drives to another processor. At the lowest level these devices are immovable; they are
essentially deferred. Using laziness, one can automatically create - and duplicate -
references to such objects, but the objects themselves can be forced to stay at their physical
location.

This indicates a direction that I/O systems may take in parallel implementations of
Concurrent Clean. Operations on remote physical entities will not be able to access such
objects directly, as they only have references to them. However, these references can be
used to start up functions at the location of the remote objects. Chapter 8 presents some
skeletons that may be used to accomplish this in an easy way.

1.5.5. The structure of the Concurrent Clean system

Compilation in Clean takes two phases. First, the functional Concurrent Clean program is
translated to intermediate code for an abstract machine (the ABC machine, more about this
later). This code is virtually the same for all architectures. From here, specialised code
generators produce optimised code for different machines. This thesis will mainly be
concerned with the last phase only - i.e. a code generator for a parallel machine -, because it
is here that the specific problems with respect to a parallel implementation become
apparent.

Code generation is only part of the story. A runtime system is needed as well. First of
all, a runtime system allows easy reuse of code. And secondly, a runtime system offers an
additional abstraction from the underlying architecture. This makes it possible to keep the
code generator less hardware dependent. Consequently, the implementation can be kept
relatively portable by constructing a sophisticated runtime system in a standard high level
language (for technical reasons, this will commonly be an imperative one). Using this
strategy, it turned out to be rather easy to construct a code generator for a parallel machine
from a sequential implementation. The creation of an advanced runtime system on the other
hand, was relatively complex. No such runtime system had been constructed before, so it
had to be constructed from scratch, which turned out to be especially hard, due to lack of
sufficiently powerful tools for the transputer hardware.

Concurrent Clean 21

Code
Generator

ABC
Code

S
e

q
u

e
n

tia
l R

u
n

tim
e

S

ys
te

m

Parallel
Runtime
System

Clean
Compiler

Clean
Program

M680x0 Code

Intel 80x86 Code

Sparc Code

PowerPC Code

Transputer Code

Figure 1-5: The Concurrent Clean compilation traject. The italic type face indicates the
components of the Concurrent Clean system. Plain text represents code. This thesis
will merely address the implementation issues that are related to the bold part.

1.5.6. The abstract ABC machine

Sequential implementations of Concurrent Clean (van Groningen, 1991; Nöcker, 1993-a
and 1993-b; Plasmeijer and van Eekelen, 1993; Smetsers et al., 1991 and 1993) use an
abstract machine that is very similar to the G-machine. This abstract machine - the ABC
machine (Nöcker et al., 1991-b) -, is a stack based graph reduction architecture. It has three
stacks: the Address stack, the Basic value stack, and the Control stack (hence the name).
Furthermore, it contains a heap in which all graph reduction takes place. The use of these
components will be explained below.

Graphs are basically collections of nodes that have some relation. In functional
languages there is only one relation possible: a graph can be the argument of a node.
Furthermore, there are only two types of nodes. They can either be redexes, or nodes in
Root Normal Form. During graph reduction, redexes will be rewritten according to the
reduction rules of the program, and eventually they will be overwritten by the resulting
Root Normal Form. All this takes place in the heap.

The stacks are used to efficiently realise the proper reduction steps in the heap. The
Control stack contains return addresses. It is used in a rather straightforward way to
implement function calls. Both the A stack and the B stack are used for building
expressions, and for passing arguments to functions or returning function results. The A
stack refers to nodes in the heap, whereas the B stack contains values of a basic type, like
integers and reals. The reason for having separate stacks for pointers and for basic values, is
that this allows garbage collection without having to distinguish between both types of
stack elements. Basic values can either be stored inside a node (and accessed via the A
stack), or they can be placed directly on the B stack. Compared to the former, the latter
allows more efficient manipulation of basic values, as nodes introduce more memory
management overheads. Eager evaluation has the advantage that it often allows the B stack
to be used for passing arguments and function results. However, this can only be allowed
for strict arguments.

22 Introduction

So far, we have only focused on sequential graph reduction. In contrast to these,
parallel implementations of Concurrent Clean employ the Parallel ABC machine. This is
basically an ordinary ABC machine with some extensions for parallelism. It is structured as
a set of heaps that are interconnected by some communication mechanism. The graph is
distributed over these heaps and at runtime an arbitrary number of processes (reducers) can
be started to reduce some part of it. Each reducer proceeds as an ordinary ABC machine. It
has an A, B, and C stack, and it is associated with one of the heaps. If it needs a part of the
graph that is located at another heap, this part will be transported automatically (by means
of lazy graph copying). Reducers that share the same heap run interleaved and they share
the part of the graph that is stored locally.

A locking mechanism avoids that multiple processes reduce the same part of the
graph. Each reducer first locks the redex it is going to reduce. As an effect, any reducer that
subsequently accesses the locked node will suspend and put itself in the waiting list of the
node. Later, when the locked node becomes updated with its result all reducers in the
waiting list will be woken up.

1.6. The architecture on which we will implement Concurrent Clean:
the transputer hardware

We have chosen to realise an implementation of Concurrent Clean on transputer hardware.
This decision is based on two considerations. First of all, it was one of the few parallel
architectures we had access to. And secondly, the transputer hardware matched the
requirements we put forward earlier: it is a general purpose MIMD architecture with
distributed memory.

Essentially, a transputer is just a processor (manufactured by INMOS). Several types
of transputers exist. We have based our implementation on the T800 transputer. The main
difference with ‘ordinary’ processors is that the transputer has hardware support for
concurrent processing. It sustains processes at two priorities. Low priority processes are
automatically time-sliced in a round-robin fashion by a hardware scheduler. Conversely,
high priority processes are not time-sliced at all: they either run until completion, or until
they have to wait for communication. Furthermore, each transputer has four hardware links.
Instructions exist that enable a process to communicate with another one over such a link,
or with another process on the same transputer. And finally, a transputer has a few
kilobytes of on-chip memory (static RAM). The access time of the static RAM is 3 to 5
times smaller than the access time to ordinary (external) memory.

The transputer has six registers, but none of them is a general purpose register like the
ones available in more traditional processors. The workspace pointer is a register that
contains a pointer to the workspace of a process, which is just some part of memory.
Addressing takes place relative to this pointer. The instruction pointer indicates the next
instruction to be executed. The operand register is used to construct large operands. The
remaining three registers (Areg, Breg, and Creg) constitute a tiny evaluation stack. They
are the sources and destinations for most arithmetic and logical operations. Loading a value
into this stack pushes B into C and A into B before loading the value into A. The contents

The transputer hardware 23

of C are lost. Conversely, storing a value from A into memory pops B into A and C into B.
The value of C will be left undefined when this happens.

32

32

32 32

32

32

3232

3
2

Floating Point Unit

Link
Interface

Link
Interface

Link
Interface

Link
Interface

Timers

4 Kbytes of
RAM

External
Memory

External
Memory
Interface

32 bit
Processor LinkIn0

LinkOut0

LinkIn1
LinkOut1

LinkIn2
LinkOut2

LinkIn3
LinkOut3

Figure 1-6: The Transputer Processor

One might expect that the transputer hardware would save the contents of this small
register set during an automatic context switch. This however, is not the case. Only the
instruction pointer and the workspace pointer are saved, and only a few instructions exist at
which a context switch is possible. Consequently, context switches are uncommonly fast on
transputer hardware (if we have a closer look, this is not entirely true. Having only a small
evaluation stack one explicitly has to save the contents of registers periodically. In one way
or another, the overheads of context switching remain. Even worse, on the transputer these
overheads are also present during sequential computations. This is reflected in its relatively
poor sequential performance).

An important advantage of the transputer hardware is its extendibility. One can create
huge networks, simply by connecting the required number of processors. Communication
bandwidth will not form a bottleneck compared to computational power, as both will
increase equally fast. The only fundamental disadvantage is the notable delay that is
possible during communications in a large network.

In practice, the transputer has a few additional drawbacks. Firstly, it uses a rather
awkward model for sequential processing. In particular, it does not have any general
purpose registers. This makes it relatively hard to use conventional code optimisations,
which greatly depend on the existence of such registers. Secondly, the transputer does not
have any protection hardware, nor debugging facilities. This makes program development a
precarious task. Thirdly, the transputer primitives for parallelism are of a very low level. A
lot of work is needed to get a sophisticated parallel system running. And finally, only one
company manufactures transputer processors. It has not been able to keep up with the

24 Introduction

ldl offset load (wsp + offset × wordlength) into Areg
stl offset store Areg into (wsp + offset × wordlength)
ldnl offset replace Areg by (Areg + offset × wordlength)
stnl offset store Breg into (Areg + offset × wordlength)
ldnlp offset add offset × wordlength to Areg
ldpi add iptr to Areg
dup duplicate top of evaluation stack
rev swap Areg and Breg
mint load -2(wordlength -1) into Areg
ldc constant load constant into Areg
adc constant add constant to Areg
add add Areg and Breg
sub subtract Areg from Breg
mul multiply Areg with Breg
and logical and of Areg and Breg

cj label jump to label if Areg equals zero
j label jump to label, context switch possible
gcall jump to Areg, and store return address in Areg
runp start a process, of which Areg contains the wsp
stopp stop the current process

gt Test if Breg > Areg and place result in Areg

Figure 1-7: A list of some important transputer instructions and their meaning. In this
list ‘(address)’ stands for the contents of ‘address’. Only the unconditional jump
instruction may cause a context switch. For all instructions holds that loading a
value into Areg pushes the original value of Areg into Breg, and the value of
Breg into Creg. The opposite happens when a value is popped from Areg and
stored into memory: the contents of Breg moves to Areg, the contents of Creg
moves to Breg, and the contents of Creg becomes undefined. Dyadic operations
first pop their operands (Areg and Breg) and push the result in Areg.

leading industries. As a result, the transputer architecture has become rather slow compared
to modern processors.

1.7. An overview of this thesis

In essence, this thesis explains major design decisions and it reports the behaviour of an
implementation of Concurrent Clean that we have realised on transputer hardware. It does
not show the efforts that were involved in developing this implementation. Much hard
labour is not in this thesis, but in source code. This section will give a short overview of the
work we will reveal in the remaining chapters.

This thesis can roughly been divided into two parts. The first part (chapters 2 through
5) mainly focuses on implementation issues in a bottom-up manner, starting with low level
topics, and ending with high level ones. It shows what techniques are needed to support the

An overview of this thesis 25

annotations for parallelism as presented in section 1.5.3. In contrast, the remaining chapters
(chapter 6 and higher) will rather take a look at using these annotations for creating
efficient parallel programs and they will evaluate the techniques that have been presented
earlier.

However, we should keep in mind that such a division is not a very strict one. The
development of efficient implementation techniques requires a constant evaluation of these
techniques, while each evaluation commonly leads to new implementation methods. During
the development of implementation techniques, these become ever more sophisticated, and
the point of interest gradually shifts from machine level issues to language level issues.
Problems shift from technical to fundamental.

Most information in this thesis has been introduced earlier in a number of articles.
These have been presented at international workshops and conferences. Some chapters (2,
6, 7, and 8) are adapted forms of these papers. The others have been written from scratch.
This was necessary as the information in the papers themselves was largely outdated. We
will have a closer look at all chapters below.

1.7.1. Chapter 2: packet routing

Chapter two shows a technique for realising efficient communications between any two
processors in a transputer network. Important aspects are the avoidance of deadlocks and
starvation. This routing mechanism forms the basis of the transputer runtime system we
implemented to support Concurrent Clean. This chapter has been based on two papers: the
Class Transputer Router, presented at the PaCT conference in Obninsk, Russia (Kesseler,
1993-a), and Efficient Routing Using Class Climbing, presented at the World Transputer
Congress in Aachen, Germany (Kesseler, 1993-b).

1.7.2. Chapter 3, 4, and 5: the implementation chapters

Chapter three will explain the basic structures of the implementation. It will show the
realisation of the stacks, the heap, the processes and the nodes. Chapter four is about code
generation. It will make clear that ordinary sequential code generation for register-based
architectures can be extended to parallel code generation for the transputer. Chapter five
focuses on management of graphs. This comprises the implementation of garbage
collection and lazy graph copying. It will become clear that these are rather complex issues.

Part of the information in chapter 3 to 5 can be found in Implementing the ABC
machine on Transputers, which has been presented at the PCA workshop in ISPRA, Italy
(Kesseler, 1990), and in the articles that have been presented at the implementation
workshops of 1991 and 1992 (Kesseler, 1991 and 1992). However, this information is
largely outdated, so we have chosen to write these chapters completely from scratch.

1.7.3. Chapter 6: The influence of Graph Copying on Runtime Semantics and on
Uniqueness Typing

Graph copying is an extension of standard graph rewriting semantics, while uniqueness
typing has been defined for the standard semantics only. It turns out that a conflict exists
between certain forms of graph copying and uniqueness typing. This chapter will identify
the problems and propose a solution that allows the combination of graph copying and

26 Introduction

uniqueness typing. This solution not only allows the use of uniqueness in parallel
programs, but it also provides very clear runtime semantics that make reasoning about
parallel programs much easier. The source of this chapter is formed by Lazy Copying and
Uniqueness - Copyright for the Unique, which has been presented at the implementation
workshop in Norwich (Kesseler 1994-a).

1.7.4. Chapter 7: The Costs of Graph Copying

This chapter shows the importance of uniqueness typing for parallel implementations.
Without it, arrays cannot be used, and these turn out to be very important to reduce graph
copying costs. We will see that the same algorithm can have very different behaviour,
depending on the data structures that it uses. This shows the importance of clear runtime
semantics. Chapter seven has been based on Reducing Graph Copying Costs - Time to
Wrap it up, presented at the PASCO conference (Kesseler, 1994-b) in Linz, Austria.

1.7.5. Chapter 8: Constructing Skeletons

The last chapter shows that efficient skeletons can be constructed from the primitive
annotations that Concurrent Clean provides. Considerable speed-ups have been obtained
this way, while the programs themselves remained simple. However to accomplish this, we
needed thorough knowledge of the runtime semantics of Clean. It also turned out to be
necessary to introduce a new function to allow the precise placement of functional
processes. In this chapter we make elaborate use of the improved runtime semantics that
have been introduced in chapter 6. This chapter has been derived from Constructing
Skeletons in Clean - The Bare Bones. This paper has been presented at the High
Performance Functional Computing Conference in Denver, Colorado (Kesseler, 1995).

2. Packet Routing

Efficient - and reliable - communication forms the basis of a parallel system with
distributed memory. To obtain an implementation of Concurrent Clean one needs to
ensure that arbitrary processes can transmit messages to each other. Unfortunately,
the transputer architecture does not provide this in hardware. A transputer processor
can only communicate directly with its four neighbouring processors. Thus, we need
some message passing software.

This chapter concentrates on a general store-and-forward routing algorithm that is
adaptive and avoids deadlocks and starvation. The algorithm is based on the one used
by the communication processor of the Decentralised Object Oriented Machine
(DOOM) architecture, which uses class climbing to avoid deadlocks. It has been
altered in such a way that it can be used for the transputer hardware. The changes
made to the original algorithm will be presented and their correctness with respect to
avoidance of deadlock and starvation will be clarified. Performance figures clearly
indicate that the resulting class climbing algorithm can compete with - and often
outruns - other solutions.

This chapter has the following structure. Section 2.1 will explain the necessity for
developing a software routing mechanism on the transputer architecture. Section 2.2
will give a description of the original DOOM algorithm, on which we will base our
solution. In section 2.3 will show that this algorithm cannot be used for a network of
T800 transputers unmodified and it will proceed with the presentation of a modified
algorithm, called the Class Transputer Router (or CTR). Section 2.4 will introduce
some optimisations that we employed to improve performance. In section 2.5 we will
present performance measurements for the CTR, and we will relate these to
performance figures of other routing mechanisms for the transputer architecture. And
finally, we will present our conclusions in section 2.6.

2.1. The need for a routing mechanism on transputer hardware

Clean allows processes to be started at arbitrary processors. In addition, - as we will see in
chapter 5, references to remote graphs may travel through the network. As a result, a
reference can point to a graph on any processor. Furthermore, the size of graphs is not
known in general. In theory, it may be anything between a few bytes and the entire memory
space of a processor. In practice their size commonly varies from some bytes to several
kilobytes. Consequently, there is no general pattern for the routes and distances a message
may travel, nor of the size it may have. This implies that we need the possibility to send

28 Packet Routing

messages of any size between arbitrary processors. In addition we need reliable
communications to make debugging possible, and to enable the incorporation of I/O
facilities.

Unfortunately, the transputer does not provide such a communication mechanism in
hardware. The T800 can be connected directly to no more than four others. Thus, networks
of more than five transputers are not fully connected. At the same time it only supports
instructions to communicate with neighbours. Messages between two transputers that are
not directly wired need to be routed via some intermediate transputers by means of some
software solution.

Some routers have been developed for the transputer, but many of them do not
consider problems of deadlock and starvation thoroughly. Those that do sometimes use a
lot of memory, limit network topology - for instance by disallowing cycles in routing paths
-, or they are inefficient at higher network loads. Apart from these drawbacks not all routers
(in particular their sources) are easily obtainable. So, when we started implementing Clean
on the transputer we faced the situation that no routing software existed that fulfilled our
needs. A lot of research has been devoted on a theoretical level to avoidance of deadlock
and starvation in packet switched networks, without designing and testing concrete
algorithms on concrete machines. Consequently, we had to implement a routing mechanism
ourselves. It had to meet the following requirements.

• asynchronous point-to-point communications of messages of any size between
arbitrary nodes (similar to a global block move).

• absence of deadlock
• absence of starvation
• independence of network topology and size
• efficient usage of buffer space
• high data throughput

In a massively parallel system with distributed memory delays will be relatively high.
This cannot be avoided. It is a natural characteristic of a large system, in contrast to good
data throughput, which can be sustained rather well. If we consider a store-and-forward
system like a transputer network, keeping delays constant would require a fully connected
network, which is O(n!) for a network of size n. Conversely, maintaining the data
throughput for a connection between two nodes means we have to reserve (the capacity of)
a link for every hop a message takes. This is related to the diameter of the network, which
can be as low as O(log(n)). On average, for a busy network we need O(n·log(n)) links. A
hypercube satisfies this requirement. In practice, a lower connectivity suffices, as networks
are seldom used continuously at their maximum capacity.

The delay of packets has to be kept as small as possible, but - assuming that delays
are unavoidable - Concurrent Clean has been designed to deal with delays at a higher level,
by means of annotations (see also section 3.1). Delays are part of the costs of delegating
work. The negative effects (i.e. processes waiting for some result) can be dampened by
running multiple processes on the same processor, so that useful work can be done while
some processes are waiting. In addition, strictness and speculative evaluation allow
communications to take place before they are actually needed (in contrast to pure lazy

The need for a routing mechanism on transputer hardware 29

evaluation). We must note however, that it still remains to be seen whether such techniques
are sufficient to avoid the effects of delays in serious programs.

The requirement to send messages of arbitrary size is a little too strong. A well-
known way to deal with large messages, is to split them up in smaller parts that are
transmitted separately and reassembled at the destination. These parts - i.e. packets - will
not exceed a certain maximum size, which makes low level routing less complex. In
addition, it decreases delays as it does not require the whole message to arrive before it can
be passed on. The pieces of a single message are pipelined. Apart from this message
routing and packet routing are essentially the same. We will focus on packet routing,
because of its simplicity.

Various ways exist to implement such a router. We present one using buffer classes.
It is based on the adaptive routing algorithm that was used for the special purpose router
processor of the Decentralised Object Oriented Machine (DOOM) architecture (Annot and
van Twist, 1987). The algorithm had to be altered in order to be usable for a network of
transputers. As it uses a class climbing algorithm to avoid deadlocks we have called our
router the Class Transputer Router (CTR for short). In this thesis we will refer to it as the
Clean Router as well, to avoid confusion between the original algorithm and the new one.

We will see that adaptive routing (also called dynamic or datagram routing) is better
than routing over fixed paths (or virtual circuit routing) when the network load is high. It
not only avoids hot spots, but it also increases the throughput for broken-up messages by
using multiple paths for a single message. Unlike fixed routing, it tends to scatter the pieces
of a message over the network.

2.2. The original DOOM routing algorithm

The algorithm that has been used to implement the Clean router is based on the one
presented in (Annot and van Twist, 1987). It has been developed as part of the DOOM
project and we will refer to it as the DOOM router. It has been proved to prevent deadlocks,
provided that each packet that reaches its destination is consumed within a finite amount of
time. To accomplish this, a fixed number of buffers and a class-climbing algorithm are
used. Starvation is avoided by a mechanism that passes around privileges for buffers. It is
adaptive, i.e. it does not use a fixed path to route packets.

2.2.1. The components of the DOOM router

In the original algorithm each communication processor has a number of connections to
other communication processors. Each connection consists of two physical links (wires)
and each processor has two communication processes per connection: an input process and
an output process. Each output process is connected to an input process on another
processor via a dedicated physical link (see figure 2-1).

Every physical link is able to carry messages in either direction but not in both
directions at the same time. Part of these messages contain control information to regulate
communication; The rest consists of data messages that contain the actual information that
has to be transported. Data messages are not allowed to exceed a certain maximum size and

30 Packet Routing

will be referred to as data packets, or packets in short. Packets always travel from an output
process to an input process.

In addition to normal data, each packet contains its class and its destination. These are
the only two values within a packet that are used by the router. The class is used to avoid
deadlocks; packets with higher class have more privileges. This will be explained later. The
destination is used to determine over which links a packet should be transmitted. The router
uses a routing table for this: it indicates for each destination which links can be used for
transmission.

packet
storage

in out

in

in

in out

out

out packet
storage

in out

in

in

in out

out

out

Figure 2-1: DOOM communication processor overview.

2.2.2. Process interaction

The communication processes repeat a small number of actions infinitely, as depicted in
figure 2-2. They operate quite independently. On a single processor they interact by means
of a shared packet store to which they all have mutually exclusive access (figure 2-1).

The packet store consists of a fixed number of fixed size buffers. The buffers are
structured as a number of output queues. For every output process such a queue exists.
Each is allowed to pick packets out of its own queue to transmit over its link. However,
buffers are not dedicated to a certain queue. The same packet may in fact reside in distinct
queues simultaneously, so that it is shared among several queues; it is not copied
physically. This indicates that the packet can go in different directions to reach its
destination. Whether it will actually be transmitted over several links depends on the kind
of communication. For point-to-point communications it will be sent over just one link,
namely the one that is able to send the packet first. Using broadcast routing it will be
transmitted over several links without replicating it in the packet store.

The communication processes continuously perform the following actions. Whenever
an input process is able to reserve a buffer of a certain class c, it sends a request over its
link. The corresponding output process then starts searching in its own output queue for all
packets that match this request, which are all packets of class ≥ c. From these packets it
takes the one that has arrived first. In other words: the criteria to arbitrate between packets
are time of arrival and class, where the class of the chosen packet is not necessarily the
highest one. After a packet has been chosen the output process removes it from all output
queues it was placed in and sends it over the link to the requesting input process. If no
packet could be found it sends a cancel message. On reception of a cancel message the

The original DOOM routing algorithm 31

input process frees the buffer. Conversely, when a packet arrives it is stored in the reserved
buffer and put in all output queues that are indicated by the routing table.

reserve buffer
send request

receive packet or cancel
store packet or free buffer

receive request
retrieve matching packet
send packet or cancel

input process output process

Figure 2-2: Actions of communication processes.

The initiative for the transport of a packet is taken by the receiving process, not by the
sending one. As a consequence, one can postpone the decision to which neighbour each
packet should be forwarded until it is certain that at least one neighbour is willing to accept
the packet.

2.2.3. Class climbing

Class climbing is a well-known method to avoid deadlocks (Bertsekas and Gallager, 1987,
Stallings 1988). In essence, it uses priorities on packets to avoid deadlocks (packets are put
in a certain class). It can be used for routing algorithms that are able to force a packet to
travel over a path without any cycles, i.e. a packet may travel in cycles temporarily, but in
critical situations it must be possible to reach the destination via a non-cyclic path. Like
some other deadlock-avoiding algorithms class climbing is based on the consideration that
deadlocks are the result of cyclic (buffering) dependencies between different messages.
Unlike others that limit the number of possible physical paths a message may travel it
avoids these dependencies by means of sophisticated buffer management. The DOOM
algorithm uses this method and its correctness has been proved (Annot and van Twist,
1987).

As the name suggests a class climbing algorithm works with classes: at any moment
in time each packet has a certain class. During transportation this class may be increased,
but never decreased. Buffers have a class as well and for every possible class at least one
buffer exists. Packets of class n can pass through buffers of class n or lower only. This
means that packets of a higher class have more buffers available to travel through than
packets of lower class.

In some class climbing algorithms a packet gets a higher class each time it hops over
a link. This implies that the minimum number of buffers that must be allocated is equal to
the distance a packet can travel, which is related to the diameter of the network. The
DOOM router uses a different approach. It superimposes an acyclic graph on the physical
communication network. This means each connection gets a direction. As long as a packet
travels along - respectively against - this direction its class remains the same, but when it
changes direction its class is increased. This means that the number of buffers can be
limited considerably for networks that have few cycles but a relatively large diameter (e.g.
an array, a tree, or a ring).

32 Packet Routing

The number of buffers needed is linear with the network diameter at worst. This may
seem substantial (Son and Paker 1991), but one should keep in mind that large network can
be constructed with a diameter of O(log n). This increase in buffer space does not constitute
any problem in practice. It is rather the size of the routing tables that is more worrying, as
this grows linearly with increasing network size, unless special measures are taken, such as
grouping routing information for certain areas in the topology.

2.2.4. Buffer management

In order for the algorithm to work efficiently the request messages, which have been
mentioned above, should always request packets for as low a class as possible. A rather
intricate administration is used to accomplish this. One of the things that is carefully
avoided is copying the contents of buffers to others, by connecting buffers to a certain class
only logically, never physically.

An example will clarify the disadvantages of buffers that are physically connected to
a certain class. Suppose a processor has two buffers, one of class zero and one of class one.
Both are filled with a class one packet. When the class one buffer is freed the router should
be able to send a request for a class zero packet, but there is no buffer available to store it
in. The router does not solve this by moving the class one packet from the class zero buffer
to the class one buffer, but by adjusting its administration to change the logical association
of the buffers with a certain class. In the rest of this paper we will talk about a buffer of
class x, instead of a buffer that is logically associated with class x.

It is important that buffers are dedicated to certain classes or links as little as possible.
This allows for the most efficient utilisation of resources under all circumstances. Class
zero buffers are most general as they can be used for packets of any class. For this reason
every class other than zero has only a single buffer associated with it, and the remaining
buffers are associated with class zero. This is reflected in the buffer administration, which
is split in two parts: a zero class part and a non-zero one, enabling the use of a more
efficient administration for zero class buffers. Next, we will see the same holds for the
fairness administration that prevents starvation.

2.2.5. Starvation

In addition to deadlock avoidance the DOOM algorithm provides a method to prevent
starvation. This is done in a reasonably straightforward way. As noted above the buffer
administration is split in two parts: for zero class buffers and for non-zero ones. For both
kinds a different method of fairness administration has been devised.

Zero class buffers can be allocated by any input process as long as there are more
zero class buffers available than the number of input processes. When fewer buffers are
available they are distributed according to an array of Booleans. When the nth Boolean is
true input process n may allocate a zero class buffer. If it does so, it should clear the
corresponding Boolean, thereby throwing away its privilege. On freeing a zero class buffer,
a round-robin method is used to reset one of the cleared Booleans.

Each non-zero class buffer is dedicated to exactly one input process at any moment in
time, which means that only this input process may allocate a buffer of that particular class.
After it has used its privilege the input process passes it on to the next input process. It

The original DOOM routing algorithm 33

should be noted that this assumes that each input process never suspends itself, so that
privileges are passed around quickly and never get ‘stuck’ at a sleeping process.

To be clear, these methods to avoid starvation are not needed to ensure absence of
deadlock. The class climbing algorithm alone suffices. This is important, as we will see
later we had to adopt a different fairness administration for the CTR.

2.3. The modified routing algorithm: the CTR

The DOOM algorithm has been designed for a special router processor. It is not possible to
implement it directly on transputer hardware (T800), but we have conformed the CTR to
the original algorithm as much as possible. This section will focus on the problems that are
related to a transputer version of the algorithm and the solutions we have adopted.

2.3.1. The incompatibilities between the original algorithm and the transputer
hardware

Two aspects of the DOOM algorithm need careful consideration. First of all it relies on
inter-processor connections that consist of two independent links each. Secondly the input
process is not blocked ever: when it receives a cancel message it goes on requesting and
when it cannot reserve a buffer it starts polling for one. The output process is blocked only
at moments in which it waits for a request to arrive. In practice this means it waits only
during the time the corresponding input process is polling for buffers. This polling is rather
exceptional: normally both processes are continuously running. These aspects introduce
two important problems when implementing this algorithm for a network of transputers:

• Although each T800 transputer connection consists of two separate links (wires),
these links cannot operate independently and a single link cannot send messages in
both directions: each transputer connection consists of two unidirectional links.
When data is sent over a link, the opposite link is used for acknowledgements. This
imposes a problem as a single link cannot be used by multiple processes
simultaneously. If an input process sends a request and an output process (at the
same transputer) sends a packet over the same link at the same time the transputer
link hardware will not work correctly.

• On the transputer the router processes should run at high priority. Not only does this
facilitate the use of shared data structures - high priority processes are not time-sliced
- but much more important: the use of high priority processes is vital when good
response times have to be achieved, as noted in the ZAPP experiments (Goldsmith,
McBurney and Sleep, 1993). In the original DOOM algorithm the router processes
run without any interruption. Running these processes at high priority on the
transputer would not allow any low priority process to run.

To overcome the problems mentioned above the algorithm has been changed in two
ways. In the first place the messages from the input processes (requests) and the messages
from the output processes (packets and cancel messages) that have to be sent over the same
transputer link are multiplexed over that link. Secondly the router processes will suspend
themselves in certain situations. The latter solution introduces an additional problem that is

34 Packet Routing

related to fairness administration: processes might fall asleep while holding some privilege
and this would prevent others to access certain buffers. We will take a closer look at these
problems below.

2.3.2. Multiplexing of messages

The multiplexing of messages is done as follows. To avoid inappropriate use of transputer
links output processes are not allowed to read from a link and input processes are not
allowed to write to a link. Instead each input process delegates write actions to the
corresponding output process and when it receives a message for an output process it
passes it on (see picture below).

in

out

out

in

in

out

out

in

Figure 2-3: The DOOM links (left) versus the CTR links (right).

As can be seen in the picture above, request messages now have to travel through two
intermediate communication processes to reach their destination. This does not introduce a
performance penalty as messages from an input process to a local output process are not
copied in reality. They are globally known to both processes.

It will be clear that this change of inter-process connectivity may not influence the
original behaviour of the algorithm. Two issues need to be considered. First of all, the ring
of unidirectional links in the picture above should support two entirely separate data
streams. Processes must accept any mixture of messages from the two streams: no
communication process may at any time commit itself to accept only one kind of message.
Secondly, the use of a ring introduces the possibility of a classical store-and-forward
deadlock. Such a deadlock arises when all processes in the ring start to send a message
while none of these processes is able to accept a message. If we examine the original
DOOM algorithm however, we can see that there are never more than two messages
travelling simultaneously through the ring, so a store-and-forward deadlock cannot occur.

2.3.3. Sleeping processes

In DOOM, the router processes are running even when there are no packets to be
transported: the input processes are continuously issuing requests and the output processes
cancel these. As explained above this is a serious problem for a transputer implementation.
One would like to suspend the routing processes when there is no message to be sent.
However, suspended processes do not pass on privileges, so we will abandon the original
fairness administration and introduce a different one later. Now we can suspend processes
at some moments. We have implemented the following solution.

When an input process receives a cancel message for a certain class this means that
the other side of the connection has no packet available that matches the previously issued
request. Because of this it is no use to go on requesting packets of this class or higher. If no
request of lower class can be sent the input process falls asleep instead of issuing useless

The modified routing algorithm: the CTR 35

requests. It will be woken up in two cases: (a) when the input process is able to send a
request of lower class than the one cancelled and (b) when the other side tries to send a
packet that matches the previously cancelled request.

The Clean router realises this as follows. When a cancel message is returned the input
process ‘falls asleep’. It does not really stop itself though, as it should continue reading
messages from the link. In this case ‘falling asleep’ means that it frees the buffer it has
reserved and withholds a new request message, preventing a subsequent cascade of cancels
and requests. There are two ways to reintroduce a request in the network. First of all, on the
processor that contains the ‘sleeping’ input process, each time a buffer becomes available
of lower class than the one that has been cancelled, the output process is notified to issue a
new request on behalf of the input process (as the input process itself might be waiting for
input). Conversely, when the output process on the ‘other side’ gets a packet that matches
the class of the previously cancelled request, it sends a special ‘wake-up’ message (a signal
message) to the ‘sleeping’ input process to make it send a new request. Each signal
contains the highest class of all messages that match the previous cancel. This is used to
avoid sending superfluous requests: when a signal arrives, while no suitable buffer is
available for this higher class either, the input process does not wake up. In effect each
class n signal simulates a request of class n+1 followed by a cancel. It just increases the
class that has been cancelled and only if this means a ‘matching’ request can be sent, the
input process is woken up.

cancel

request

packet(a)

(c)

(b)

request

packet

cancel

request
signal

signal

buffer
availablerequest

packet

cancel

signal

request

Figure 2-4: State transitions of the router processes. ‘Buffer available’ means a buffer can
be allocated of lower class than the one cancelled. (a) represents both the input
process and the output process in the DOOM algorithm. (b) and (c) depict processes
of the CTR. (b) stands for the output process and (c) models the input process. (b) is
an abstraction of (c): signal* · buffer available · signal* is represented by signal* as
freeing a suitable buffer is invisible for the output process. (a) is an abstraction of
(b) - and therefore of (c): signals are non-existent in the DOOM algorithm. Note that
a signal may be sent to an input process that has already been woken up: at some
point a signal is possible while the input process is trying to send a request.

If we abandon the original method to avoid starvation it is easy to show that
suspending the input process does not violate the mechanism of the original algorithm to

36 Packet Routing

avoid deadlock. Two scenarios are conceivable after an input process has fallen asleep: (1)
it will be woken up in the future and (2) it will not. We will take a look at both below.

It is trivial to show that the first scenario is safe: when the input process wakes up it
proceeds at the exact point it had fallen asleep. This can simply be seen as a case where the
input process runs extremely slow for a while. As process speed plays no role in the proof
of the original algorithm, the first scenario is perfectly safe.

Suppose the second scenario occurs, i.e. an input process falls asleep and is never
woken up again. Consider that a suspended process does not hold any shared resources: it
has previously freed the buffer it had reserved, and it does not hold any privileges as no
fairness administration is used. Furthermore, it continues passing messages from other
processes. This means that it does not influence any other process except the output process
on the neighbouring processor, which will not get new requests.

Let us assume that at some point in time the input process stopped due to cancellation
of a request of class n and no signal of a class ≥ n will be received in the future (note such a
class exists). This implies that (a) the processor that contains the input process will never
free a buffer of class < n and (b) the output process at the other side never has a packet
available of class ≥ n. In the original algorithm (a) implies that all future requests will be of
class ≥ n, whereas (b) means these can only be answered by a cancel as there will never be
matching packets at the other side. In other words, the DOOM algorithm would request
packets for an infinitely long time. This is equivalent to never waking up the input process.

2.3.4. Starvation

Although it is possible to build a deadlock free router with the techniques presented above,
they invalidate the DOOM method to avoid starvation. To be more specific: if a privilege is
granted to a sleeping process it might not get passed on to others quickly. Even worse: it
may not get passed on at all. This has led to a different fairness administration for the CTR
that does not allow sleeping processes to have any privileges.

To avoid starvation it suffices to make sure that each process eventually gets buffers
of arbitrary low class within certain needs: sleeping processes need a buffer of lower class
than the one that has been cancelled, whereas processes that are awake are in need of a
buffer of any class. In contrast to the original algorithm. the CTR passes around privileges
for all buffers according to the needs of processes. When a buffer of a certain class is freed
the privilege for this class is passed to the next process that needs a buffer of this class. If a
process is found that already has a privilege, the process keeps the privilege for the lowest
class and passes on the privilege for the other one. If no process needs the buffer it becomes
free to be allocated by any process. If an input process receives a cancel for class n while it
has a privilege for a buffer of a class ≥ n, it passes on this privilege.

This means that a process never has more than one privilege: it keeps the best
privilege it gets. This is sufficient to avoid starvation and it allows to efficiently pass on the
privilege when a process falls asleep (one does not need to pass on many privileges). Note
that a sleeping process cannot get any privileges without being woken up as well, which
avoids the problem of the original fairness administration.

Using induction over the classes it is easy to show the original algorithm avoids
starvation. To prove the new algorithm, one needs to add that while an output process tries

The modified routing algorithm: the CTR 37

to forward a packet of class n, the input process on other side will never get a cancel of a
class ≤ n (respectively n+1 if the class should be increased), and thus will stay eligible for a
privilege of a class n buffer (respectively a class n+1 buffer).

2.4. Optimising the CTR

The routing algorithm that has been presented so far prevents deadlocks and starvation, but
it contains some inefficiencies. In this section a few optimisations will be presented that
improve the execution speed of the router. In general these optimisations work best at
higher loads of the network.

2.4.1. Variable packet size

To avoid having to send a lot of bytes for small packets, packets have variable size up to
some maximum. It is not entirely trivial to implement this on a transputer as the
communication hardware requires both sender and receiver to agree on the number of bytes
that have to be transferred. For this reason the router splits packets in two parts. The first
part has a fixed length and contains four fields: the kind of the message (to distinguish
packets from requests, cancels and signals), the class of the packet, the length of the packet,
and finally a request field, which will be explained below. This header layout is not only
used for packet headers, but also for signals, requests and cancels. In the following we will
use the word ‘header’ to indicate both packet headers and control messages. In contrast to
control messages, packet headers are followed by a body of the exact length that is
mentioned in the header.

2.4.2. Overlapping data and control messages

Having received a packet header, one does not have to wait for the packet body to return a
new request or to issue a signal to another processor. The CTR overlaps the sending of a
new request with the transmission of a packet body. In this way the next request will have
arrived by the time the current packet has been transmitted entirely (if it is not too small).
This minimises the delay between subsequent packets. Signal messages are not (yet)
overlapped with incoming packet bodies. It would impose some problems for large packets.
It will trigger an early request for the packet and this may arrive when the packet body has
not yet been entirely received. This would result in additional cancels and signals unless the
router becomes more complex.

2.4.3. Combination of messages

On the transputer it is more efficient to send a small number of large messages instead of a
large number of small ones. On each connection two opposite data streams are
implemented by the router. Packets, cancels and signals are transported along the direction
of data and request messages go against it. The router uses this to piggy back requests of
one data stream on the non-request messages of the other stream. For this the request field
of each header is used: it contains the class that is requested, in contrast to some special
value if no request is piggy-backed. Due to this optimisation no control messages are
needed when a connection is used continuously in a bi-directional way: only packets

38 Packet Routing

containing piggy backed requests are needed (in contrast to the worst case overhead when
traffic is low: the sequence signal - request - packet - request - cancel may be needed,
which contains four additional - but small - messages)

2.4.4. Traffic control

When a lot of buffers are in use the router is slowed down due to a decrease in the number
of links that can be used simultaneously (and bidirectionally), resulting in sub-optimal
throughput. One can picture such a situation as each processor having only one hole to
receive a packet in (instead of at least one per link). At any moment in time only one
neighbour can fill such a hole, thereby transferring the hole to itself. If no measures are
taken, this situation might persist for a very long time. A slowdown of a factor of 2 has
actually been measured during tests of an early version on a ring where this situation was
created artificially. Due to fairness administration in combination with a heavy load it did
not resolve at all. A heuristic has been used to suppress this problem: fairness
measurements are related to the number of free buffers. When a lot of buffers are in use at
some processor, new packets are accepted less frequently at this processor, favouring
through-routing and delivery of packets. This increases the overall number of routing-holes
in the network.

2.4.5. Potential improvements

Some additional changes to the algorithm may improve performance a little more. These
have not yet been implemented, nor tested, mainly because it is not clear whether these are
worth the implementation effort.

First of all, additional tests for waking up processes might increase performance.
Currently, processes are woken up eagerly, i.e. whenever there is a possibility they can do
something useful. This may not be the case. Sometimes processes are woken up so early
that they fall asleep immediately thereafter. It is not clear whether the costs of starting and
stopping processes outweigh the costs of performing these extra tests.

Furthermore, some techniques may decrease control overheads in case the load is not
extremely high. First of all it may be better to wait a little before returning a cancel
message. A suitable packet might arrive shortly. This avoids an additional cancel - signal -
request sequence. One cannot not wait too long, though. Not only should the requesting
process free its buffer within a reasonable amount of time, but meanwhile, it may have
some lower class buffer available as well. Secondly, when a packet arrives that can be sent
over multiple links, all these links are currently woken up if they are asleep. This means
several signal messages are generated, which is rather superfluous when traffic is low. A
single one is probably sufficient. If this does not result in a suitable request within some
time other links could be signalled after all. For high loads this is somewhat inappropriate
as one would like to activate as many links as possible in this case.

2.5. Performance measurements

In this section we will present the results of some tests that were carried out with the CTR
on a network of transputers. These will be compared with tests of the Helios

Performance measurements 39

communication mechanism and the Parix communication mechanism. Helios and Parix are
both commercial unix-like distributed operating systems for the transputer. It will be shown
that Helios not only is less reliable - it is not deadlock free -, but that it is slower as well, in
particular for larger networks and higher traffic loads. The tests of the Parix communication
primitives had to be carried out on a different transputer architecture - i.e. with different
clock speed and interconnection hardware - and must be treated with some care. Parix is
very fast for small messages, but relatively slow for large messages, especially for larger
networks and more complicated communication patterns. Moreover, we did not succeed in
running all tests with Parix. At the moment of testing, we did not have enough information
about the performance of other routers under the same circumstances to relate these to the
CTR properly.

For the Virtual Channel Router (VCR) some figures about message latency over 1, 2
and 3 hops in a quiet transputer network have been published (Debbage et al., 1991). For
small messages in a quiet network the VCR outperforms the CTR. This is partly caused by
differences in raw link speed. Looking at the latency for messages of different size one can
deduct the raw link speed is approximately 1500 Kbyte/sec for the VCR, while it is about
1330 Kbyte/sec for the machine on which we tested the CTR. Apart from this, CTR has not
been designed to perform best for small messages in quiet networks. Small messages do not
benefit from overlapped requests for instance, which results in relatively large delays. It
remains to be seen how well the VCR performs with high loads on larger networks. What is
more, the VCR needs large amounts of memory. Using default settings (160 bytes per
buffer) the VCR kernel needs about 100 Kbyte plus 6400d bytes of buffer space per node,
where d is the network diameter.

Tiny (Clarke and Wilson, 1991) is able to avoid deadlocks by eliminating cycles from
routing tables. It allows routing without deadlock-avoidance as well. Clarke and Wilson
present the travel times over 1 to 12 hops in a quiet network for messages of 4, 16, 64, and
256 bytes. They does not state whether these figures apply to deadlock-free routing or not,
but this is probably not very important in this case. The raw link speed of the architecture
used is about 770 Kbyte per second. For Tiny the same holds as for the VCR. It is fast for
small messages in a quiet network, but it is not clear how efficient it is for high loads in a
large network. It would be interesting to known if the elimination of cycles from routing
tables affects the efficiency of Tiny in certain situations.

The adaptive router presented by Son and Paker (1991) has been tested on various
network topologies, but the account of its performance is too short to draw any conclusions.
It achieves a maximal average throughput of about 260 Kbyte/sec. The router cannot force
packets to be delivered in the correct order, which can be a problem for some kinds of
communication (I/O might need extensive buffering in certain situation). It does not
necessarily route packets over the shortest path, in fact paths lengths may increase with
network load. It is interesting to see that it performs best on a cross mesh, because this
topology has many - but long - paths between any two processors. In contrast, the cross
mesh is not exceptionally well-suited to the CTR, as the number of different shortest paths
is small.

Except for the tests of the Parix system, all tests presented below were run on a
Parsytec supercluster that contains 64 T800 transputers running at 25 MHz with 4 Mbyte of

40 Packet Routing

5-cycle memory each (with error detection and correction). In this system all transputers
are connected via a network of crossbar switches (Inmos C004 chips) that enable different
network topologies to be used easily. The raw unidirectional link speed is about 1330
Kbyte/sec. For links that have to be set up via multiple cross-bars this number is even
smaller. The tests do not make use of the on-chip memory of the transputer: one usually
needs this for other purposes (see chapter 3). The initialisation code of the CTR takes about
4 Kbyte of code and the router itself about 8 Kbyte (excluding buffers and routing table).
All tests of the CTR use adaptive routing with 10 zero class buffers per processor, except
when stated otherwise. Additionally, a single buffer is allocated for each non-zero class.
The number of classes equals the network diameter, even for topologies where less would
be sufficient. The buffer size equals the maximum packet size. Thus, using buffers of 1
Kbyte and a network with diameter d the amount of buffer space per node equals (10 + d)
Kbyte. All tests are simple loops that asynchronously transmit packets of a certain size to a
particular destination, or to random destinations.

2.5.1. Helios versus CTR

In this section we will compare the performance of the CTR with that of the Helios (version
1.2) communication primitives. We will see that the CTR is significantly faster - especially
for large networks - and that Helios is not entirely reliable.

0

200

400

600

800

1000

1200

1400

0 8 32 256 1K 32K

helios 1 link

CTR all
distances
helios 7 links

helios 15 links

packet size (bytes)

th
ro

u
g

h
p

u
t
(K

b
yt

e
sp

e
r

se
co

n
d

)

0

100

200

300

400

500

600

700

800

900

1000

0 8 32 256 1K 32K

th
ro

u
g

h
p

u
t
(K

b
yt

e
sp

e
r

se
co

n
d

)

packet size (bytes)

helios
1 link

CTR all
distances

helios
7 links

helios
15 links

Figure 2-5: Communication over an array of processors. The figure on the left shows
unidirectional communications, whereas the other shows bi-directional
communications.

The figure above depicts performance measurements on an array of processors. Both
CTR and Helios were tested with 2, 8 and 16 transputers. In the figure on the left all
packets travel in the same direction from one end of the array to the other. In the figure on
the right packets travel from one end of the array to the other end in both directions
simultaneously. The picture shows the throughput in a single direction. The total
throughput of the rightmost figure is twice this value. It can be seen that Helios slows down

Performance measurements 41

when larger arrays of transputers are used. The CTR is not influenced by the network size
in any way (which is actually what one would expect).

The following picture shows information about some tests on a grid and a ring. The
figure on the left shows the throughput from one corner of the grid to the opposite one for
both unidirectional and bi-directional communications between the two corners. The value
for bi-directional communication indicates the throughput for one direction only: the total
throughput is twice this value. The figure on the right shows the throughput from some
source processor to random destinations (the number of bytes the source can send away
randomly per second). This has been measured for a 2-dimensional grid of 16 processors
and for a ring of 16. In case of the grid the source was either a corner processor or one in
the centre. Helios does not take advantage of the network topology here. In contrast, the
CTR is able to increase bandwidth by using multiple paths simultaneously.

0

500

1000

1500

2000

2500

3000

3500

0 8 32 256 1K 32K

packet size (bytes)

CTR
grid middle

CTR ring
CTR
grid corner

helios all

th
ro

u
g

h
p

u
t
(K

b
yt

e
s

p
e

r
se

co
n

d
)

0

500

1000

1500

2000

2500

0 8 32 256 1K 32K

CTR
unidirectional

CTR
bidirectional

helios
unidirectional

helios
bidirectional

packet size (bytes)

th
ro

u
g

h
p

u
t
(K

b
yt

e
s

p
e

r
se

co
n

d
)

Figure 2-6: Communication over a 2-dimensional grid of 16 processors and over a ring of
16 processors. The picture on the left shows communications between opposite
corners of a grid. The picture on the right shows random communications from a
processor on a grid and from a processor on a ring.

The picture below shows the performance of the CTR and Helios when all processors
are sending messages to random destinations, which means communications are frequent
and chaotic. It shows the average throughput of a single processor. To obtain the total
network throughput these values should be multiplied by 16: for the CTR using 1 Kbyte
packets this is about 7 Mbyte per second on a grid, and about 5 Mbyte per second on a ring.
Using a grid of 16 the average distance a packet travels is about 2.7, which means that
about 19 Mbyte of data makes a hop per second, indicating every link transports
approximately 790 Kbyte per second bidirectionally on average. For the ring the average
distance is about 4.27 so that approximately 21 Mbyte traverses a link per second, resulting
in an average bi-directional throughput of 1300 Kbyte per second per link.

42 Packet Routing

0

100

200

300

400

500

600

700

800

900

0 8 32 256 1K 32K

CTR grid

CTR ring

helios grid

helios ring

packet size (bytes)

th
ro

u
g

h
p

u
t
(K

b
yt

e
s

p
e

r
se

co
n

d
)

0
2
4
6
8

10
12
14
16
18
20

0 8 32

CTR grid

CTR ring

helios grid
helios ring

packet size (bytes)

th
ro

u
g

h
p

u
t
(K

b
yt

e
s

p
e

r
se

co
n

d
)

Figure 2-7: Throughput per processor when all processors are sending messages to
random destinations (i.e. the average number of bytes each processor can send away
randomly per second). These results were obtained on a ring of 16 processors and on
a 2-dimensional grid of 16 processors. The picture on the left is an enlarged part of
the one on the right.

In addition to the differences in speed between Helios and the CTR, Helios is not
deadlock-free. Helios allocates routing buffers at runtime. This means that communications
might fail when memory is low on some intermediate processor. According to the Helios
manual messages may get lost due to congestion, which will be detected by an exception
message that is returned to the sender. Unfortunately congestion may cause exception
messages to get lost as well. As a result one needs time-outs on communication primitives,
but there is no guarantee that subsequent tries will succeed. Tests have shown that
programs that allocate a lot of memory at start-up may deadlock at the moment (heavy)
communication takes place.

Looking at the results presented above it is clear that the CTR outperforms Helios.
This may not be very problematic for common Helios applications, as the Helios
programming philosophy is quite different from that of Concurrent Clean. Helios basically
supports UNIX-style programs. For our purposes it is not very well suited. In the next
section we will take a closer look the communication mechanism of Parix.

2.5.2. Parix versus CTR

We have been able to run some tests with the Parix communication mechanism.
Unfortunately this had to be done on a different architecture as Parix was not available on
our machine. In addition, porting the CTR to the Parix machine turned out to be a problem,
due to the amount of work involved. Nonetheless, the following communication figures
give some indication of the relative merits of both communication systems.

The Parix tests have been run on a network of 512 T805 transputers running at 30
MHz each having 4 Mbyte of memory. Only grid networks are possible in this system.

Performance measurements 43

Using Parix one is able to achieve a maximum link bandwidth of about 1100 Kbyte/sec, but
it is not clear whether this is the true hardware limit.

0

200

400

600

800

1000

1200

0 8 32 256 1K 32K

CTR unidirectional
Parix unidirectional

CTR bidirectional
Parix bidirectional

packet size (bytes)

th
ro

u
g

h
p

u
t
(K

b
yt

e
s

p
e

r
se

co
n

d
)

Figure 2-8: Throughput over a single link in a quiet network. Parix is clearly faster than
the CTR. Both unidirectional and bi-directional communication over a link has been
measured.

0

500

1000

1500

2000

2500

0 8 32 256 1K 32K

packet size (bytes)

CTR
unidirectional

CTR
bidirectional

Parix

th
ro

u
g

h
p

u
t

(K
b

yt
e

s
p

e
r

se
co

n
d

)

0

500

1000

1500

2000

2500

3000

3500

0 8 32 256 1K 32K

CTR
middle

CTR
corner

Parix

th
ro

u
g

h
p

u
t

(K
b

yt
e

s
p

e
r

se
co

n
d

)

packet size (bytes)

Figure 2-9: Communication over a 2-dimensional grid of 16 processors. The figure on the
left shows the throughput from one corner of the grid to the opposite one for both
unidirectional and bi-directional communications between the two corners. The value
for bi-directional communication indicates the throughput for one direction only: the
total throughput is twice this value. The figure on the right shows the throughput
from some source processor to random destinations (the number of bytes the source
can send away randomly per second). The source was either a corner processor or
one in the centre.

Parix is based on the use of virtual links. These have to be allocated at runtime. It is
not clear how much memory each virtual link takes. As can be seen in the pictures above,

44 Packet Routing

using grids, Parix is very fast for small messages, about as fast as the CTR for messages
around 256 bytes, and rather slow for messages exceeding 256 bytes. On the one hand
Parix is faster than the CTR for communication over a single link in a quiet network (see
figure 2-8), but on the other hand, performance of Parix decreases with increasing distance
(figure 2-9). We were planning to test how well Parix performs when all processors send
randomly destined messages, but unfortunately we did not succeed in setting up a fully
connected network of virtual links over a grid of 16 transputers, due to limitations of Parix.

Concluding, it depends on the communication pattern needed which kind of routing
mechanism should be used. For the tests presented above Parix is clearly best when small
messages have to be routed. The CTR may be better for large messages. As we have not
been able to test Parix when all processors send messages to random destinations it is not
yet clear how Parix compares with the CTR in this respect. In the next subsection, we will
present some experiments with various parameter settings within the CTR.

2.5.3. The influence of packet storage size

The number of zero class buffers per processor influences the performance of the router.
The more buffers are available the smaller the chance that requests need to be cancelled.
When very few buffers are available it is difficult to use multiple links simultaneously.

The figures below present some tests with packets of 256 bytes on a few simple
topologies. We used arrays of transputers and avoided tiny messages to ensure that data
traffic was high enough for all links. This reduces protocol overheads due to other causes
than lack of buffers. On the other hand, we have not used very large messages, as these
tend to decrease all protocol overheads. These tests - and others on different topologies -
have indicated that about 10 zero-class buffers are sufficient in general. Adding more
buffers will sometimes increase performance slightly for larger topologies, but we have not
yet encountered an example where this resulted in a significant speed-up.

number of zero class buffers

th
ro

u
g

h
p

u
t
(K

b
yt

e
s

p
e

r
se

co
n

d
)

bidirectional 15
links

bidirectional 1 link

unidirectional
all distances

0

100

200

300

400

500

600

700

5 6 7 10 50

Figure 2-10: Performance on arrays of various sizes for different numbers of zero class
buffers (with packets of 256 bytes). For reasons of efficiency the current
implementation requires the number of zero class buffers to exceed the number of
transputer links (4).

Performance measurements 45

2.5.4. Adaptive routing versus fixed routing

For point-to-point communications the CTR allows to use either an adaptive or a fixed
strategy. The former routes packets over an arbitrary shortest path and does not guarantee
packets to be delivered in the same order they were sent. In contrast, the fixed strategy uses
a fixed shortest path to route packets, which keeps packets in the right order. The ability to
keep packets ordered can be very useful for some kinds of communication (file IO for
instance). One-to-all broadcasting is supported as well, but for this no performance figures
are available yet (the Clean runtime system does not yet take advantage of broadcasting,
except for loading program code).

Depending on topology and network load, adaptive routing is able to improve
performance. It does introduce some additional overhead though, so that it will not always
be better to use adaptive routing. The figures below show that adaptive routing is best for
large packets and high loads. Additional tests have shown that the effect of adaptive routing
diminishes when the input load is decreased. When packets are small or the network is not
very busy - which implies that relatively much control information is needed - the link
speed is not the limiting factor and a single path is able to do the job just as well as multiple
paths, sometimes even better as a single reasonably well-used path introduces less useless
control messages (signals followed by cancels) than several barely used paths.

-40

-20

0

20

40

60

80

100

120

8 32 256 1K 32K

random ring

random
grid middle

random
grid corner

bidirectional
grid

unidirectional
grid

packet size (bytes)

-10
0

10
20
30
40
50
60
70
80
90

8 32 256 1K 32K

ring
cross mesh

torus

grid

hypercube

packet size (bytes)

sp
e

e
d

-u
p

 (
%

)

sp
e

e
d

-u
p

 (
%

)

Figure 2-11: Speedups that have been obtained by using adaptive routing instead of fixed
routing. The following tests are shown in the figure on the left: unidirectional
communication between opposite corners on a grid of 16, bi-directional
communication between opposite corners on a grid of 16, randomly destined packets
from a single processor on a ring of 16, randomly destined packets from a corner
processor on a grid of 16, and randomly destined packets from a ‘middle’ processor
on a grid of 16. The figure on the right pictures tests in which all processors
simultaneously send randomly destined messages. This has been done for the
following topologies: ring, cross mesh, torus, 2D grid, and hypercube.

The last observation also explains the slight ‘dip’ for some topologies in figure 2-11.
This temporary decline in efficiency for adaptive routing occurs for packet sizes around

46 Packet Routing

256 bytes. At this point, the protocol overheads decrease for fixed routing because paths
become more heavily loaded. This point arrives later for adaptive routing, so that the
relative efficiency of adaptive routing drops temporarily.

2.5.5. The influence of different topologies

The next pictures show the throughput for different topologies when all processors send
messages to random destinations. All measurements have been performed on networks of
16 transputers. They indicate the number of bytes a single processor was able to send away
per second. For the total network throughput this figure should be multiplied with 16. As
can be seen in this figures, the CTR is able to take advantage of network topology. The
cube and torus perform best for networks up to 16 processors. For larger networks it can be
expected that a cube (diameter of O(log(n))) performs better than a torus (diameter of
O(√n)). Unfortunately, it is impossible to construct larger cubes with the transputer
hardware, as each processor can be connected to at most 4 others.

th
ro

u
g

h
p

u
t
(K

b
yt

e
s

p
e

r
se

co
n

d
)

packet size (bytes)

cube

torus

2D grid

cross mesh

ring
double array

binary tree
array

binary tree
array

packet size (bytes)

th
ro

u
g

h
p

u
t
(K

b
yt

e
s

p
e

r
se

co
n

d
)

cube and
torus

2D grid
ring
cross mesh

double array

0

200

400

600

800

1000

1200

1400

0 8 32 256 1K 32K

0

5

10

15

20

25

30

0 8 32

Figure 2-12: Throughput for various topologies using adaptive routing. The picture on the
left is an enlargement of the one on the right. All networks consist of 16 transputers.
Most topologies are self-explanatory. The double array is an array of which all
connections consist of 2 transputer links instead of 1. The cross mesh is depicted in
figure 2-13.

Figure 2-13: The cross mesh

Performance measurements 47

0

100
200

300
400

500

600
700

800

900

0 8 32 256 1K 32K

torus

cube

cross mesh
grid

ring

binary tree
(double) array

packet size (bytes)

th
ro

u
g

h
p

u
t

(K
b

yt
e

s
p

e
r

se
co

n
d

)

0

5

10

15

20

25

0 8 32th
ro

u
g

h
p

u
t

(K
b

yt
e

s
p

e
r

se
co

n
d

)

packet size (bytes)

torus

cube
cross mesh and grid
ring

binary tree
(double) array

Figure 2-14: Throughput for various topologies using fixed routing. The picture on the left
is an enlargement of the one on the right. All networks consist of 16 transputers. See
figure 2-12 and figure 2-13 for an explanation of the topologies used.

2.6. Conclusions

Eventually, when choosing a communication mechanism, a main question will be whether
large messages are very common in Concurrent Clean programs. On the one hand the
Concurrent Clean graph copying mechanism tries to construct messages that are as large as
possible, as it assumes that large messages are relatively cheap. On the other hand, some
programs simply do not start up processes on large graphs. Nonetheless, we should take
into account that communication of large graphs can seriously influence performance if
such large graphs exist. In addition, a system that is relatively cheap for large messages
makes it possible to improve performance by combining messages, which is a clear
concept from a programmers point of view.

In this chapter we have presented the Class Transputer Router, an adaptive router that
uses class climbing to avoid deadlock. This router is based on the algorithm that was used
for the routing chip of the DOOM architecture. We have given a brief description of the
original algorithm and the changes that were needed to adapt it to the transputer hardware.
Performance figures indicate the router is able to compete with the Parix communication
mechanism and is faster than the Helios communication primitives. The required
communication pattern determines largely which kind of routing mechanism is best. In
general the Class Transputer Router performs very well for high network loads, taking
advantage of network topology.

Thus, we have given each transputer the capability to communicate with any other
processor in a network of arbitrary complexity. This enhancement provides a general
platform of a higher level that is compatible with architectures that incorporate a hardware
routing mechanism, like Thinking Machines’ connection machine, and with systems that
use some software solution to provide message passing, such as networks of SUN’s
running the PVM package. The next chapters will show how we have implemented
Concurrent Clean on it.

3. Realising the Components of the
Abstract ABC Machine

The previous chapter has presented an efficient way to realise reliable
communications between processors, and therefore, between processes. However, we
do not yet have any processes that can transmit messages, nor any data structures that
can be communicated.

The Clean compiler compiles a (parallel) Clean program to code for an abstract
machine, the (parallel) ABC machine (see section 1.5.6). In this chapter we will
present - and explain- the concrete realisation of the most prominent components of
the abstract ABC machine: the stacks, the heap, the processes, and the nodes.
Designing these elements requires careful consideration of their (intended) use. This
is closely related to the research issues that have been raised in section 1.3 and 1.4.
Amongst others, one needs to consider the workings of the concrete machine
architecture (i.e. the transputer hardware, see section 1.6), and the decision to make
no concessions with respect to the generality of the implementation. Furthermore, the
aim to base our implementation on sequential compiler technology needs to be taken
into account. Many additional issues are important, and therefore this chapter will
start with a review of the most significant ones.

In section 3.1 we will recapitulate some basic research issues and relate them to
the design of the parallel ABC machine. Section 3.2 will expand on the consequences
of one of these issues, namely the decision to allow speculative parallelism. Sections
3.3 to 3.6 will present the concrete realisation of respectively the stacks, the heap, the
processes and the nodes.

3.1. The basic research issues and the design of the ABC machine

This chapter revolves around basic design decisions. It explains how our views culminated
in concrete organisations on parallel hardware. Our goal is to get an efficient
implementation of a lazy functional language on a concrete general purpose parallel
machine. The decision to focus on general purpose machines, as opposed to developing a
dedicated processor has mainly been based on the expectation that the latter would
eventually result in a relatively slow machine, as industry continues to put massive efforts
into development of the former. This view has turned out to be correct considering the
generally rather disappointing results that have been obtained with specialised hardware so
far (Darlington and Reeve, 1981; Watson and Watson, 1987; Peyton Jones et al., 1987;

50 Realising the Components of the Abstract ABC Machine

Hankin et al., 1985; Richards, 1985; Stoye, 1985; Keller et al., 1984; Anderson et al.,
1987; Magó and Stanat, 1989). Consequently, research on special purpose hardware has
largely been discontinued.

Furthermore, we have restricted ourselves to architectures with distributed memory.
These are more scalable than shared memory machines, for which memory access
constitutes a bottleneck. Typically, shared memory architectures contain no more than a
few dozen processors, while machines with distributed memory contain anything between
one and a few hundred, and - if one can afford it - thousands.

We concentrate on true distributed memory systems. Hybrid designs that combine
distributed memory with hardware to present it as shared memory fall outside the scope of
this thesis. They behave like distributed memory machines in the sense that access to
remote memory is more expensive than local access, but provide the easier shared memory
programming model. As to caching mechanisms employed in these virtual shared memory
systems, it is interesting to note the similarities with graph copying. Both are employed to
provide efficient data access. Although we do not treat caching explicitly, we do use graph
copying as a caching mechanism. In a way, one may think of Concurrent Clean as a virtual
shared memory implementation.

The concepts of the parallel ABC machine directly originate from the decision to
focus on general purpose architectures with distributed memory. Dealing with distributed
memory, we assume that communication is expensive compared to execution of code. In
particular delays will be high (see also chapter 2). This has a number of consequences. First
of all, we primarily support coarse grained parallel processing, so that communications are
suppressed and relatively well-known sequential compiler optimisations can be exploited.

At the same time, we allow a considerable number of processes to be running
interleaved on a single processor. The exact number is determined by the availability of
memory only. Having many processes, the effects of communication delays can be hidden
to some extent, as increasing the number of processes decreases the probability that a
processor runs out of work and has to wait. On the other hand having more processes
means more process management is needed and clearly, there is a trade-off between the
size of processes and their number. So, although in principle we promote coarse-grained
parallelism, it is important to support finer grains as much as possible when pseudo-
parallelism on a single processor is involved. This means that lightweight processes should
be provided.

And finally we have to keep communications - expensive as they are - as lean and
efficient as possible. This involves avoiding small messages, which are relatively costly,
and allowing speculative parallelism (see section 3.2), so that there is a possibility to
compute - and transmit - results in advance without requiring strictness. The latter is related
to buffering and introduces some slackness in data dependencies. It may avoid
communication delays in acquiring results and is mostly useful for asynchronous stream
processing (we will see some more uses later). This is the main difference with
implementations like Wybert (Langendoen, 1993) and ZAPP (Goldsmith et al. 1993), that
concentrate on divide-and-conquer parallelism only. All this has a considerable impact on
the structure of the final system.

The basic research issues and the design of the ABC machine 51

Sequential compiler technology forms the backbone of our parallel implementation. It
will become clear that it is very well possible to combine structures for sequential
processing with those for parallelism, although it requires some careful designing.
Sequential implementations typically employ a set of stacks and a heap to perform graph
rewriting. Carrying this concept to a parallel world, we need stacks for every process and a
heap that can be shared by all processes on a single processor (sharing avoids
communications). On a lower level, registers are needed for each process, so that important
optimisations can be employed. These provisions for efficient sequential processing should
not cause serious overheads in parallel processing, in particular with respect to process
management.

Conversely, parallel constructs must be efficient and should not hamper sequential
processing. For example, our objective to exploit speculative parallelism requires the
incorporation of a fair scheduler, but this should not lead to high context switching
overheads (see the following section). If feasible, parallel constructs must be designed so
that they do not rule out code optimisations nor increase memory requirements. The next
sections will demonstrate how to devise structures for effectively combining sequentialism
and parallelism.

3.2. Dealing with speculative parallelism

The decision to allow speculative parallelism has a serious impact on the way an
implementation should be realised, and thus, on the design of the parallel ABC machine. In
general, speculative parallelism complicates matters, and therefore many functional
languages do not allow it. We will elaborate this next.

3.2.1. The costs of speculative parallelism

Some have contended that managing speculative parallelism will inevitably lead to high
runtime overheads, and that it will be extremely difficult to incorporate it in a parallel
implementation (Peyton Jones, 1989-c). Based on such claims many have refrained from
considering the implementation of this feature. However, reviewing the arguments against
speculative parallelism we have come to a different conclusion.

Avoiding speculation has been based on two assumptions. First of all, avoiding
termination problems is considered to be very expensive. And secondly, it has been argued
that it is very hard to remove speculative tasks that have turned out to be irrelevant. We will
show below that these assumptions are not always valid.

To begin with, termination problems can be avoided in two ways. One can either use
fair scheduling, or priority scheduling. Both are generally considered to be expensive. This
may be true for many architectures, but on the transputer hardware, fair scheduling can be
implemented very efficiently. On a transputer, context switches are barely noticeable (a
context switch takes less than 1 µs., while a time slice period takes between 1 and 2 ms.). It
is conceivable that similar features will be incorporated in future general purpose hardware
designs, as pre-emptive scheduling of processes is becoming rather common. We will treat
this in more detail later.

52 Realising the Components of the Abstract ABC Machine

And secondly, removing irrelevant tasks is not always hard. In Concurrent Clean,
speculative parallelism will commonly be employed to achieve some kind of buffering
behaviour to avoid delays. Typically, speculative tasks will not need to run indefinitely, but
for a bounded amount of time (or space). This can be enforced by giving them a limited
amount of resources, so that they cannot consume too much of it. The exact amount is
determined by the delays of the communication hardware (which means that a program
needs to be tuned). Employing such a strategy, speculative tasks will stop themselves when
they run out of resources, so that no special external mechanism is required to kill them.
We will see some examples of this in chapters 7 and 8 where we use annotations and
skeletons to accomplish this buffering behaviour. So, in these cases one does not have the
problem of processes that actively produce garbage, but the convenience of processes
actively killing themselves. As a result, it will not always be necessary to use an additional
- and possibly expensive - runtime garbage collection mechanism to detect irrelevant
processes.

The only processes that constitute a problem are irrelevant speculative ones that do
not fit in such a scheme and keep running too long (or indefinitely). Unfortunately, one
cannot preclude such unbounded speculative processing if a programmer is allowed to
eagerly start processes by means of annotations. We will see in chapter 5 that it may be
possible to develop effective garbage collection methods that deal with this problem as
well. It still remains unclear whether these methods will be truly successful. Until then, it is
too early to conclude that speculative parallelism is too difficult to handle.

On the other hand, we expect that unbounded speculative processing will be
relatively rare. Unbounded speculative processing is hardly useful, and will normally not be
introduced because of the risk of wasting machine resources. One might indeed question
whether it is useful to support unbounded speculative parallelism at all.

3.2.2. Avoiding termination problems: fair scheduling or priorities.

If we allow (bounded) speculative processing we must determine how to implement it. The
main problem is how to keep non-terminating speculative processes from stopping the
whole computation. Basically, there are two techniques: fair scheduling and priority
scheduling. Fair scheduling avoids termination problems by ensuring that all processes
eventually get some processing time. In contrast, priority scheduling assumes that the
execution of high priority processes prevails over the execution of low priority ones, so that
low priority processes will be interrupted by processes of higher priority. It avoids
termination problems by giving speculative processes a lower priority than non-speculative
(conservative) ones.

The advantages of priority scheduling are that speculative parallelism can be
incorporated safely without risking serious context switching overheads for conservative
tasks. Needed computations can simply proceed without interruption. If we merely consider
an evaluate-and-die model of processing where processes reduce to root normal form only,
and if we assume that every process runs for approximately the same amount of time, this
has the additional advantage that needed results will probably be delivered earlier than they
would have been using fair scheduling.

Dealing with speculative parallelism 53

However, the advantages of priority scheduling depend heavily on the assumption
that context switches are expensive. As we have above, this is not true for the transputer
hardware. In addition, priority scheduling does have some disadvantages.

• First of all, priority scheduling sometimes causes expensive priority updates. A
speculative task may become needed and then its priority should be increased. The
priority of some of its child tasks might have to be increased as well, and so on. This
can be costly.

• Secondly, priority scheduling can be a problem in lazy languages that use strictness
analysis to discover needed computations. Unfortunately, strictness analysis can only
approximate actual strictness properties. This means that some computations are
assumed to be speculative, while in reality, they are not. Running such computations
at low priority will certainly introduce priority upgrades, so they should have been
run at high priority in the first place (however, one might argue that in such cases, the
programmer should have indicated strictness).

• Thirdly, some forms of processing require concurrent evaluation of (partial) results.
For example, producers and consumers of streams often should not be allowed to run
until completion. A producer should not compute a complete stream before a
consumer is allowed to consume it. Similar problems arise when concurrent I/O is
involved or when one process takes considerably more time to complete than others
(that follow). A fair scheduling mechanism will then be needed to enforce concurrent
evaluation of all results.

• And finally, having low priority processes for speculative computations can increase
delays. In a distributed system, speculative computations are needed to avoid delays,
and consequently they should not be computed too late. A consuming process might
even request the result of a speculative computation earlier than some strict results,
as (the absence of) strictness does not say anything about when a process needs a
particular result. In other words, (bounded) speculative parallelism addresses the
problem of lazy evaluation in a distributed environment. It provides a way to start
computing results before they are needed.

Consequently, Concurrent Clean uses fair scheduling for its implementation. We
argue that not only the evaluation of irrelevant speculative tasks wastes machine resources,
but also delaying the execution of relevant ones. One does not know in advance which
speculative tasks are useful, so it is incorrect to assume they are less - or more - important
than other tasks. However, one might trust the programmer - or some analysis technique -
to introduce speculative tasks only if there is reason to do so, that is, if it is likely they will
be useful. The whole point of introducing speculative processes, is that they will use more
resources. This sharply contrasts with the view of Peyton Jones (1989-c).

Note that this discussion also reveals a problem of task pools that hold processes that
might be scheduled when some processor runs idle, which is useful to avoid flooding a
system with running processes. One should make a distinction between annotations that
indicate functions that are eligible for parallel evaluation (based on computational
complexity and communication overheads) and functions that should be run in parallel to
obtain the intended parallel behaviour. In a distributed system it is important to start up
some processes early to avoid delays. Additionally, concurrent I/O requires certain

54 Realising the Components of the Abstract ABC Machine

processes to be started up concurrently. For this reason the Concurrent Clean system starts
up processes as soon as an annotation is encountered. We have not yet considered task
pools. Annotations can be used to avoid flooding.

3.3. Registers and stacks

Traditionally, optimising compilers largely depend on the availability of registers to cache
frequently used values. Taking into account the importance of registers, which is confirmed
by their widespread presence in modern processors, the ABC machine has been designed
to take advantage of them. If an architecture has a reasonable number of general purpose
registers the ABC machine can conveniently be implemented on it.

Sequential implementations of the ABC machine not only employ registers to
evaluate expressions quickly, but also for providing fast access to important structures such
as the heap and the stacks. This means that at least three registers are needed. One to hold
the heap pointer and two for the stacks, as the b- and c-stack are normally combined. The
stacks themselves are used as an extension of the limited amount of registers (which
automatically makes registers an optimisation for stacks, depending on your point of view).
Taking advantage of stacks and registers, as opposed to using graph rewriting in the heap,
has been known to give a considerable performance boost for certain functional programs.

Unfortunately the transputer does not have sufficient general purpose registers to
implement the parallel ABC machine in the same manner. This has forced us to find a
different way to establish efficient access to the stacks and the heap, which is crucial for
good performance. We will take a short look at three alternatives next.

3.3.1. Workspace for stack

Several transputer programming languages use the transputer workspace pointer as a stack
pointer. This is straightforward if a single stack suffices, which is the case for languages
like Occam and C. Pointers to global data are carried around on this stack. C
implementations for instance, pass pointers to global data as implicit function arguments.
For the PABC machine adoption of this solution would lead to problems.

Following the example above, one could represent one of the PABC stacks by the
workspace pointer directly. Pointers to the other structures - the other stack pointer and the
heap pointer - would have to be carried around on this stack, resulting in an extra
indirection. Unfortunately these pointers are used much differently than the global data
pointer found in C implementations. First of all, the heap pointer is not a constant, so it not
only needs to be passed to each function, but it must be returned as well. Updating the heap
pointer becomes expensive this way. Depending on the handling of stacks, in particular on
stack overflows, a similar situation exists for stack pointers. Furthermore, a functional
program usually accesses the stacks far more frequently than imperative programs use the
global data pointer. As a rule, important data consists of local variables and function
arguments, and these are supposed to be on the stack. If they are not, C programmers - and
sometimes the compilers - typically use the stack to cache frequently accessed global items
or references. They create an alias. This trick sometimes works for imperative languages,
but not for the ABC machine. Firstly, because it does not always use a few stack elements

Registers and stacks 55

frequently, but rather many elements a little. And secondly, because stack elements of one
stack cannot simply be stored on the other for a long period of time, due to garbage
collection. As a result, the extra indirections for addressing stack elements impose too
much overhead for functional languages.

3.3.2. Merged stacks

Ignoring the implementation of heap allocation for the moment, the extra indirections to
access stack elements can be avoided if all stacks are merged into one. In other words, by
caching the entries of one stack on the other one for an indefinite period of time. A slight
drawback of this solution would be that elements may have to be rearranged more often
than is the case for separate stacks, but the main advantage is clear: the transputer
workspace pointer can be used to refer to the top of the single merged stack.

However, the garbage collector should still be able to distinguish the pointers from
the non-pointers on the stack, which was the reason for having multiple stacks in the first
place. As a result, stack elements have to be tagged in some way. Many solutions need
special distinct representations for different kinds of stack elements, or vectors that are
inserted between ordinary stack elements. These imply notable computational and spatial
overheads. A solution that does not suffer from these problems is the one employed by the
partial implementation of Concurrent Clean on ZAPP. It has a merged stack and avoids
explicit manipulation of the stack to store context information by associating this
information with each return address on the stack. Return addresses enclose sets of stack
entries and for each set the return address on top uniquely identifies which entries are
pointers and which are not. This imposes no overhead on normal execution and complicates
garbage collection only little.

Although this appears reasonably satisfactory, we have chosen not to use this
technique. The heap pointer still has to be accommodated in a different way, and apart from
this, there are important reasons to keep the transputer implementation in accordance with
the implementations for register based machines as much as possible. We will discuss this
in the next section.

3.3.3. Virtual registers

We have chosen to deviate as little as possible from implementations for concrete register-
based machines. There are various reasons for this. First of all, it is unclear whether using
the workspace pointer as a stack pointer is truly advantageous. Secondly, the transputer
architecture is not very common and in particular the T800 is quite old. Most modern
general purpose processors do have a reasonable number of registers and there is no
indication this will change in the near future. On the contrary: newer processors rather
contain more registers than older ones. In a way, this holds for newer transputers as well.
The T9000 transputer incorporates instruction grouping and caches that allow the
workspace of a process to be used as a set of registers without serious loss of efficiency.
We were reluctant to develop new implementation techniques for an old architecture. And
finally, we wanted to investigate which existing optimisation techniques for register-based
sequential implementations can be applied to register-based parallel ones as well. Not only
do we aim to keep our parallel implementation compatible with the sequential

56 Realising the Components of the Abstract ABC Machine

implementation of Clean for Macintoshes, Suns and PC’s, but also to keep it related to
common (sequential) implementations of other languages. This could indicate future
directions for research on code optimisation, given the continuing importance of sequential
architectures and the growing significance of parallel ones.

This meant we had to provide registers in software to compensate for the lack of
hardware registers, without killing performance. For this we used the on-chip static RAM
of the transputer. Access to on-chip memory is considerably faster than accessing normal
RAM - up to a factor of five. We have used this on-chip memory to give each process a
kind of private register set that is used in exactly the same way as a real register set in
sequential implementations: for evaluation of expressions and to accommodate stack
pointers and heap pointers (for more information, see the process structure in figure 3-2).
As will become clear, many optimisations remained applicable and this turned out
surprisingly well, despite some extra - but cheap - indirections needed for addressing. In
general, our compiler generates more efficient code than other transputer implementations,
including the one on ZAPP.

To stress that we are not restricting ourselves to transputer hardware we prefer the
familiar term ‘registers’ for this emulated register set. This conveniently relates our
implementation to more common architectures. To avoid confusion with the hardware
registers of the transputer we will sometimes talk about the ‘pseudo-registers’, or ‘emulated
registers’. The transputer registers will be referred to as ‘evaluation stack’, ‘transputer
stack’, or plainly ‘transputer registers’.

3.4. The heap

During graph reduction numerous nodes are created and this requires fast heap allocation
and reclamation. In Clean, heap objects can have various sizes. This makes the use of free-
lists less suitable to administer free memory. A better - and well-known - way to provide
fast allocation in this situation is by using a compacting garbage collector that ensures the
free space occupies a contiguous piece of memory. A register can then be allocated to point
to the first free byte in memory. To reserve space one only needs to take this pointer and
advance it the required number of bytes. This method has been successfully employed in
many sequential implementations.

It is not entirely trivial to take this concept to parallel implementations, because all
processes - both low priority and high priority ones - should be able to allocate memory
from the same heap in an indivisible way. Processes must now share the pointer to the free
area and they must be able to update it in an indivisible way. This is a delicate problem on
the transputer, due to its automatic time-slicing features and the implementation of its two
priority levels. Locking is costly (see the frame ‘Atomicity on the Transputer’) and the heap
pointer cannot plainly be kept in an emulated register, because the emulated registers are
not physically shared by processes (to keep context switches fast). On other architectures
similar problems may exist as well.

The heap 57

Atomicity on the Transputer

Preservation of atomicity on a transputer requires careful consideration of its
scheduling mechanisms. It is easy to support atomic actions among processes of the
same priority. High priority processes are not time-sliced at all and there are only a
few instructions that may cause descheduling of a low priority process. Avoiding
these instructions within a sequence of code will ensure indivisibility within the
scope of low priority processes. It is more difficult however, to ensure indivisibility
among processes running at different priority levels. High priority processes may
interrupt low priority processes at any moment - which is the exact reason for having
them -, and this means that low priority processes need to increase priority
temporarily if shared data is accessed.

Unfortunately, changing priority is relatively expensive on the transputer. It
involves starting up a new process on a different priority level, while stopping the
current one. This is illustrated below. While this is appropriate for an implementation
of semaphores in general, it is not suited to efficiently provide tiny atomic actions,
such as heap allocation.

 ldc proceed-2
 ldpi
 stl -1
 mint
 ldnlp dummy_wsp
 gajw

 runp

 stopp

proceed:

1
2
2
1
1
2

10

11

Store the address of the label 'proceed' at
wsp-1.

Switch to a dummy workspace.
Run a new high priority process with the old
wsp. It will immediately interrupt the current
process and start at the label 'proceed'.

The interrupted low priority process is still
active. It will stop itself later and store its
instruction pointer in the dummy workspace.

cyclesincrease priority code

ldlp 0
adc 1
runp
stopp

1
1
10
11

Start a new low priority process and stop the
current high priority one. The 'stopp'
instruction will store the start address for the
low priority process at the correct place.

decrease priority code cycles

3.4.1. Hierarchical heap

We solved these problems by giving each low priority process a small individual heap - a
few kilobytes - from which it allocates memory. Every process keeps a private pointer to
the first free byte in its little heap, so it can quickly - and safely - reserve memory in exactly
the same way as in sequential implementations. If it runs out of local heap space, it calls the
garbage collector to free unused memory.

58 Realising the Components of the Abstract ABC Machine

global allocation code local allocation code
 ldl heap_info
 ldnl free_ptr
 dup
 stl new_ptr
 ldnlp amount
 dup
 ldl heap_info
 stnl free_ptr
 ldl heap_info
 ldnl heap_end
 gt
 cj proceed

 call_garbage_collector

proceed:

2
2
1
1
1
1
2
2
2
2
2
4

22

 ldl free_ptr
 ldl heap_end
 ldnlp -amount
 dup
 stl heap_end
 gt
 cj proceed

 call_garbage_collector

proceed:

2
2
2
1
1
2
4

14

cycles cycles

Figure 3-1: Local versus shared heap allocation costs.

The little process heaps are located inside the main processor heap, carefully kept
invisible to all but the garbage collector and the high priority (system) processes. Usually
the garbage collecting process will merely reserve a new heap without actually removing
garbage. Only when the main heap becomes exhausted it starts recovering unused space.
This means we have shifted the problem of performing safe memory allocations to a single
high priority process. Semaphores are still needed in some form to invoke it, and although
this is relatively costly compared to forwarding a pointer there is no serious loss in
efficiency, because it occurs infrequently. On the contrary, in figure 3-1 we can observe
that maintaining a local heap pointer instead of a global one gives considerable
performance gains. The many cheap allocations in the local heap easily outweigh the few
expensive ones in the global heap.

For comparison, the ZAPP implementation and the HDG machine have avoided the
costs of locking on the transputer in another way. They both unshare part of the heap
administration by allocating from one end of the heap at low priority and from the other
end at high priority. This works correctly if low priority processes do not allocate more
than a certain amount in one go and high priority processes ensure they leave this amount
free. However, the heap pointers are not stored locally in registers, which makes this
solution less efficient than using private heaps. In addition, it cannot be applied on
hardware with more than two priority levels.

Some concluding remarks need to be made about having the hierarchical heap
presented above. First of all, this concept relates to generational garbage collection, which
is based on the observation that heap objects usually have a short life-cycle. The private
heap of each process seems a natural construct to provide generational garbage collection
on a per process basis. This not only can avoid traversing a lot of old objects during
garbage collections, but it also improves locality of heap usage. Secondly, at some level it
may be important to have a way to control the speed at which a specific process runs. It is
in particular useful to keep a process from flooding the main heap which may impede other

The heap 59

processes. The private heap of a process provides a handle that can be used to monitor and
restrict a single process, for example by withholding a new private heap for some time if it
allocates memory too quickly. And finally, as we will see later on, having localised
registers, stacks, and the heap to a single process it becomes possible to improve the
caching behaviour of a parallel system, provided the right hardware is available.

3.5. Processes

At the lowest level, each process is implemented as a transputer process that is scheduled
automatically in a fair way. At a higher level, it can be viewed as a set of registers, stacks,
and a private heap. We have depicted the relation between all components in figure 3-2
below.

a-register b-register c-register wsp-ptr i-ptr o-register

r0 r1 rn b-stack top ptr

a0a1aa b0 b1 b2 bb

heap start heap end

register ptr pid

a-stack top ptr

a-stack end ptr b-stack end ptr used heapfree heap

transputer registers

on-chip static RAM (emulated registers)

off-chip RAM
(main heap)

stacks

private heap

Figure 3-2: Process structure. The stacks and the private heap of each process are located
in the main heap.

This sharply contrasts with the Wybert implementation (Langendoen 1993). Wybert
does not incorporate fair scheduling and it does not have separate stacks for processes.
Instead, all processes execute on the same stack. Only the processes on the top of the stack
may proceed. This means it does not have concurrently executing processes on a single
processor. These differences are caused by different goals: Wybert is designed for divide-
and-conquer parallelism only.

3.5.1. Virtual virtual registers

The amount of on-chip memory on a transputer is limited and so is the number of register
sets that can be located on it. The current size of each register set (16 words of 4 bytes
each) allows about 50 processes to be accommodated in on-chip memory. Such a limit is

60 Realising the Components of the Abstract ABC Machine

Process Administration

The transputer hardware scheduling list only keeps track of on-chip runable
processes. We have used the following structures to manage the rest.

free lists. Two lists are used to track stopped and empty processes. One for the on-
chip processes and one for the off-chip processes. Both lists are needed to allow reuse
of unused process space. This decreases the number of garbage collections and it is
important for fast process allocation. When a process is allocated, it is taken from one
of these lists, and if this is not possible it is allocated from the heap, which is more
costly, mainly caused by additional initialisations. When a process stops - and de-
allocates - itself, it will have been running on-chip, so it puts itself in the on-chip list.
The process manager moves stopped processes from the on-chip list to the off-chip
list. The latter does not contain empty processes, as these are not evacuated.

suspended list: A doubly linked list keeps track of all off-chip suspended processes.
No such list exists for on-chip suspended processes. If a process suspends itself, it
will have been running on-chip and it simply places a ‘suspended’ mark in its process
id (the pid in figure 3-2). The process manager scans the on-chip memory for
suspended ones and puts them in the off-chip list. On waking up an off-chip
suspended process it will be placed in the off-chip runable list (see below). If it is still
on-chip it can be started directly after clearing the suspended mark, by inserting it in
the transputer hardware scheduling list.

runable list: this is the off-chip variant of the transputer scheduling list. The process
manager moves runable processes between this list and on-chip memory.

not acceptable. Language semantics dictate that we need to be able to run an arbitrary
number of processes on a single processor. To solve this we have made our registers more
virtual than they already are.

We have employed a mechanism similar to a paging mechanism in virtual memory
management to give each processor and unlimited number of register sets. In contrast to
what the picture above suggests, registers are actually not located in internal memory, but
in the heap. In addition to the transputer scheduling mechanism we have implemented a
process manager that ensures the registers of a process get located in internal memory by
the time the transputer hardware runs it. After consuming a time-slice the registers get
swapped out to external memory again. Processes do not notice this. It appears to them they
are always located in internal memory, albeit at varying addresses.

To accomplish this we allow the hardware scheduling list of the transputer to contain
merely on-chip processes and the process manager. The latter gets scheduled after all other
low priority processes have consumed their time-slice. At that moment it starts exchanging
on-chip registers for off-chip registers. Meanwhile, it adjusts the hardware scheduling list,
so that it continues to hold on-chip processes only. Having accomplished this, the process
manager puts itself at the end of the low priority scheduling list, followed by a forced
context switch. The newly allocated on-chip processes can now run until the next
scheduling round arrives.

Processes 61

We try to swap registers in a sensible way, so that processor time does not get wasted.
The policy for replacing processes is explained below. To understand this we first need to
clarify the states a process can have:

• runable: Runable processes are live processes that are able to proceed computing
something. Whenever a processor has runable processes, it will be running one of
them, which is then the running process.

• suspended: Suspended processes - also known as sleeping ones - are live processes
waiting for some reviving result. They cannot proceed without it. As they are not
able to do anything they should not take up processing time.

• stopped: Stopped processes are carcasses. They have registers, stacks and a heap, but
they are not running nor suspended. They are dead.

• empty: Empty processes are not even carcasses, they are skeletons consisting of
merely an on-chip register set (without stacks and without a heap). This happens to
an on-chip stopped process when the garbage collector hits it. It is not exactly a
process, but rather a left-over part of it.

On-chip processes are replaced by off-chip runable processes only. They are removed
in the following order:

1. Stopped and empty processes are removed first. The empty ones are simplest. They
are not really moved to off-chip memory but plainly overwritten by the registers of
off-chip processes. The stopped ones on the other hand, are evacuated, but only the
stack pointers and the heap pointers are saved.

2. Suspended processes are removed next, provided there still are off-chip runable
processes. All registers are saved.

3. Runable processes are evacuated last, provided there still are off-chip runable
processes. All registers are saved.

Depending on the number of runable processes the overall overheads of context
switching will vary. If all runable processes fit in internal memory there are no costs apart
from the hardware context switching time, which is negligible on a transputer (less than
one microsecond). As the number of runable processes increases the overheads grow until
there are twice as many processes as fit in internal memory. Every scheduling round will
then replace all on-chip processes. These costs are comparable to the costs of saving and
restoring registers on an architecture with a single register set.

Still, the duration of a time-slice is much higher than context switching time: some
milliseconds compared to a few microseconds at most. Processes rarely run for shorter
periods of time, partly because we avoid polling, in contrast to van Groningen (1992).
Usually, the costs of sequential processing remain dominant.

3.5.2. Hardware context switches and registers

The main reason to withhold general purpose registers from the transputer design has been
that saving registers during context switches would increase context switching times. While
this may be true for common sequential hardware, we think it is very well possible to
develop an architecture that combines general purpose registers with fast context switching.
This can easily be explained by looking at the process manager presented earlier.

62 Realising the Components of the Abstract ABC Machine

The process manager ensures that part of a process is cached in on-chip memory
during execution. This software solution runs interleaved with normal processing, so it
takes time. However, a hardware process manager could run in parallel with other
processes. If special register caches are supported, saving the registers of the previously
running process can delayed and performed during execution of the current one. Likewise,
the registers of the next process can be loaded in advance. In this way the hardware
anticipates context switches. It is not unthinkable such mechanisms will be incorporated in
future general purpose hardware, as pre-emptive scheduling has found its way to desktop
systems, mainly driven by the extensive use of graphical user interfaces.

One can extend this concept to other parts of a process, such as its stacks and the
private heap. Part of these can be moved between the caches and main memory in a similar
way when a context switch occurs. This is a general notion. One does not need to tailor
hardware for functional languages. It is sufficient to provide a way to program memory
management hardware so that it can move data in parallel with execution of other
processes. In addition to commonly used separate functional units for integer arithmetic,
floating point arithmetic and branching, one would need a functional unit for moving data.
In a limited way, this is already being provided by caching mechanisms that allow
background manipulation (flushing) of cache lines.

Concluding, we find that the availability of registers is crucial for good parallel
performance. The disadvantages are few. Context switching times will only become a
bottleneck when processes run for extremely short periods of time. This rarely occurs.
Normally sequential processing speed is more dominant. In addition, appropriate hardware
can considerably reduce the costs of saving and restoring registers.

3.6. Nodes

Efficient graph reduction requires a good node representation. As a rule of thumb the most
compact representation is best. Firstly, the memory requirements of a functional program
can be more of a bottleneck than speed of execution. Nodes that are unnecessary large may
prevent execution of programs due to shortage of memory. Furthermore, smaller nodes
imply cheaper graph rewriting, for less fields need to be initialised during node
construction and less garbage collections are needed. All the same, one should be careful
not to simplify nodes too much. It is necessary to keep possible future developments in
mind. At least during development of the language it must remain possible to incorporate
new techniques without substantial changes to the node layout.

Waiting lists and locks form the most important difference between the nodes used in
a parallel implementation and those used in a sequential one. A locking mechanism
suspends processes if they try to evaluate a node that is already being processed. Besides
avoiding unnecessary work, locks regulate the interaction between producing and
consuming processes. Waiting lists are related to locking. In contrast to polling locked
nodes, they administer suspended processes in the locked node, so that they do not
consume any processing time. This is important if many processes are running on a large
network with expensive communications. On average, many of them will be suspended and
waiting lists can be used to keep the overheads to a minimum. A small drawback is the

Nodes 63

need to store waiting lists in the nodes and to unlock them explicitly. The latter will be
dealt with in the next chapter.

3.6.1. Node usage

Node design requires careful consideration of the way nodes are used during reduction. The
abstract parallel ABC machine does not take this into account and uses a rather general and
spacious representation for its nodes. They are split in a fixed and a variable sized part,
allowing to update nodes in place, instead of using indirection nodes. This simplifies node
access, in particular during pattern matching. The variable sized part contains the
arguments of a node, whereas the fixed sized part contains the following four fields:

• descriptor. This is a representation of a Concurrent Clean symbol. It contains
information about the arity of the node and a string representation of the symbol.
Additionally, it provides information for applying partial application nodes (see also
chapter 6) to additional arguments.

• code. This field refers to the code that evaluates the node to Root Normal Form
(RNF). During reduction this code pointer will change. Nodes that are being reduced
refer to code that will suspend any reducer. Thus nodes can be locked. Evaluated
nodes on the other hand refer to a return instruction.

• waiting list. This is a list of suspended processes that are waiting for the result of the
locked node.

• argument pointer: a pointer to the variable sized part, containing the arguments.

If we focus on they way the parallel ABC machine uses its nodes, we can distinguish
two classes: constructors and function nodes. Constructors simply consist of the nodes in
RNF and function nodes take up the rest. Empty nodes are special function nodes.
Examination of the way that node fields are used during normal reduction reveals the
following properties.

1. With respect to the code and descriptor fields:

a) All constructors contain code that immediately returns, because the node has
already been evaluated.

b) The descriptors of function nodes are accessed infrequently. Only algorithms
that interpret nodes, such as the garbage collector, need this information. The
descriptors of constructors on the other hand, are accessed frequently, in
particular during pattern matching.

2. With respect to locking:
a) Function nodes can be locked by placing a special evaluation code in it that

blocks processes. Constructors are never locked.
b) Processes get suspended on locked nodes only. If a process starts to reduce a

locked node, the evaluation code automatically suspends the process and
inserts it in the waiting list.

c) Before overwriting a locked node by an unlocked one, all processes waiting
on the locked node are released and its waiting list is emptied.

64 Realising the Components of the Abstract ABC Machine

d) A locked function node does not need any arguments. Empty nodes on the
one hand, are locked function nodes of zero arity, and function nodes on the
other hand, can only become locked after pushing their arguments on the a-
stack. Hereafter these arguments will never be accessed via the node itself,
but only through the a-stack.

3. With respect to updating: only function nodes risk to be overwritten, and except for
empty nodes, they are always overwritten by constructors. An empty node with a
non-empty waiting list cannot be overwritten by a function node either. Instead, it
will be updated by the result of the evaluated function node, which is a constructor.

3.6.2. Basic node structure

These properties have enabled us to deviate substantially from the node representation used
by the parallel ABC machine. First of all, we have realised a combination of the code field
and the descriptor field, based on the first two properties. We have removed the code field
from constructor nodes, and the descriptor field from function nodes. The descriptor of a
function can still be accessed indirectly via its code (see figure 3-6). A tag has been added
to each node to discriminate between functions and constructors. This will be discussed in
more detail later.

The following four properties make it possible to maintain waiting lists without
sacrificing memory. 2a, 2b and 2c imply no waiting list field is needed for constructors nor
for unlocked function nodes. 2d states that locked function nodes do not need any
arguments. Consequently, one of the (former) argument fields can be used to store the
waiting list when a function node becomes locked. The rest of the arguments will be
dispersed with, so that memory leaks caused by irrelevant arguments are avoided.

The remaining property effected a further reduction in actual node size. Constructors
do not need a minimum size for their fixed part because they will never be overwritten.
Function nodes on the other hand do need a minimum size - the maximum size of the fixed
part of a constructor -, but they do not have to be split. Only empty nodes risk to be
overwritten by function nodes and in this case the compiler is always able to ensure that
they are big enough.

The picture below elucidates the resulting node structures. The distinct layout of
function nodes of arity zero allows the creation of arbitrary large empty nodes.
Constructors need a variable sized part only if they contain more than two arguments. We
have chosen this particular limit because some important constructors have less than three
arguments (list constructors and binary tree constructors, for instance), while function
nodes commonly have more than one argument. It should not be higher, to avoid increasing
the minimum size of function nodes and spilling too much memory.

To enable the construction of special function nodes the garbage collector preserves
the contents of empty fields. Consequently, function nodes of arity one may hold one word
of extra information, while function nodes of arity zero may incorporate an arbitrary
number of additional data fields. Amongst others, we exploited this feature for the
construction of channel nodes and waiting list elements. These will be treated in more
detail later.

Nodes 65

arity 0

arity 1 arity 2

b: basic value
bb: basic value of double size

f

function
nodes

constructors

f: function (code pointer)
c: constructor (descriptor)

: pointer to argument

f

c b c bb stringc
arity 0 arity 0 arity 0

c
arity 0

c c c
arity 1 arity 2 arity > 2

: empty

arity > 2
f

f

Figure 3-3: Node layout, tailored to the particular use of each node.

As we can see in figure 3-3, the exact structure of a node is completely determined by
its kind (constructor or function) and its arity, except for nodes of arity zero. Consequently,
processes that interpret nodes, generally need merely two tests for extracting the structure
of a node. They need to make exceptions for nodes of arity zero only. To decrease the
overheads of testing for alternatives still further, constructors that only contain a descriptor
field occupy two words instead of just one.

As a result of all this, an interpreting garbage collector will not necessarily perform
worse than one that uses special garbage collecting code fragments that are associated with
each node. The overheads for extracting and calling such code should not be
underestimated, compared to testing for the kind and size of a node. With the current node
layout the overheads are roughly the same. Note also that an interpreting garbage collector
is likely to fit in the processor cache (if it would exist in transputer hardware), while it also
allows for easy experimentation. Therefore we currently prefer interpretation of nodes to
implement garbage collection.

3.6.3. Waiting lists

Comparing this node layout to the one employed in sequential implementations of Clean
we see there is no difference. No special nodes are needed to accommodate waiting lists. If
a function node gets locked, all arguments are removed and it simply transforms into an
empty node, that is, a locked function node of arity zero. If then later a process tries to
evaluate the empty node it turns into a locked function node of arity one, with the waiting
list as its argument. Note that locked nodes with a waiting list do not need to be bigger than
the minimum size, because they cannot be overwritten by a large function node, but only

66 Realising the Components of the Abstract ABC Machine

by its result. This also means that a large empty node (arity zero) can be transformed into a
small one (arity one) if a process suspends on it.

f

locking

r1 r0p p

0 1

evaluation of a locked node

0

1

: locked function code of arity 0
: locked function code of arity 1

r0

r1

: release code of arity 0
: release code of arity 1

p : process descriptor

Figure 3-4: Locking and waiting lists.

The elements of a waiting list are special function nodes of arity one, except for the
last one, which has arity zero. Each contains information about a single suspended process.
This is stored in the extra data field. Processes will be woken up by evaluating each waiting
list element.

This allows some freedom to experiment with different forms of evaluation. Various
actions can be performed on updating a node. For instance, instead of suspending,
processes may also proceed with other computations after accessing a locked node. They
can leave a special waiting list element behind that will notify the process when the node
becomes updated. Another use would be to track updating of certain nodes during
debugging.

3.6.4. Tags

Combining the code field and the descriptor field makes it necessary to distinguish
constructors from function nodes during reduction. Some kind of tag must be added,
without increasing node size. The most suitable way depends on the hardware. The
transputer has a signed address space, so pointers are always negative if the total amount of
memory does not exceed 2 Gigabyte. By implementing descriptors as positive offsets into a
descriptor table we could distinguish them from negative code pointers.

As a result, the most significant bit of the code/descriptor field indicates whether a
node has been reduced to Root Normal Form or not. Whenever we need an evaluated node,
we first check this bit and if is one, we call the evaluation code stored in the node.
Otherwise we know the node has already been evaluated and we jump around the call
(figure 3-5).

If we merely consider the basic costs of a calling a subroutine compared to the basic
costs of testing and calling we might argue that it is better to avoid the use of tags.
However, in functional programs, most of the time that processes try to evaluate nodes they
are in RNF already. This is known as the 70 percent rule of Augustsson and Johnsson

Nodes 67

(1989). As a result, the costs of both solutions are about the same on average (Kingdon,
Lester and Burn, 1991). In addition, these are the minimal costs. In reality the costs for
performing subroutine calls and jumps are higher as these cause pipe-line breaks. This
makes testing tags relatively cheap as it reduces the number of pipe-line breaks. Note also
that a growing number of modern processors - unlike the transputer - incorporates
sophisticated instruction pipelining features that may hide the costs of (conditional) jumps.
Doing the same for calling code that is stored in a node is more difficult. And finally, as we
can see above, after testing the tag of an evaluated node, we will jump around quite some
code that is needed to set up a call. Depending on the actual use of registers and stacks this
includes stack checking code and code to save and restore registers. All this, plus the
advantage of using distinct representations for constructors and function nodes, makes tags
invaluable for an efficient implementation.

 ldl node_ptr get pointer to node
 ldnl code get code/descriptor field
 mint
 and extract most significant bit
 cj in_RNF jump on zero (descriptor)

 check_stacks macro, check if enough space on stack
 save_registers macro, save registers on stack

 ldl node_ptr
 ldnl code
 gcall call evaluation code

 restore_registers macro, restore registers from stack

in_RNF:

Figure 3-5: Evaluating a node.

3.6.5. Descriptors

The descriptor field of a constructor holds an index in a descriptor table. Each processor
contains an copy of this table, which stores a descriptor for every symbol used in the
program. A separate entry exists for every arity a symbol can take. The descriptor provides
a string representation of the symbol, information about its arity, and code pointers that are
used for quickly applying a curried function to an additional argument. In contrast to a
sequential implementation, in a parallel one each descriptor additionally contains a pointer
to the evaluation code of function nodes. This is needed to implement graph copying (see
chapter 5), but it might also be used to provide some form of dynamic code loading

Storing the descriptor of a constructor directly in the node itself as an index makes it
very easy to identify a constructor symbol. This is important for pattern matching. One only
needs to compare it to another index, which is a compile-time constant most of the time.
Many processors, including the transputer have efficient instructions to do this.

68 Realising the Components of the Abstract ABC Machine

0

k

n-1

add_argument

add_argument

apply entry of f
n

'f'

descriptor index for
a node 'f' of arity kdescriptor for symbol

'f' with maximum
arity n

evaluation code of f code entry for
function node 'f'
with arity n

code block for
function 'f'
(with arity n)

code entry of f

desciptor index

apply code of f

: pointer after resolving index

Figure 3-6: Layout of descriptor and code block.

Figure 3-6 shows the layout of a descriptor for an arbitrary function. Additionally, it
reveals the structure of the corresponding code block. Note that all access to the descriptor
table has been based on the use of indices, and that it is possible to get to the descriptor of a
function via its code and vice versa. This is used for graph copying and garbage collection,
which will be explained in chapter 5.

3.6.6. Smaller nodes

The FAST compiler (Langendoen, 1993) employs a node structure that is even more
compact. This has been achieved by using an intricate scheme for tagging pointers and
data. As a result, a list of strict integers takes only two words per element. Clearly, this
saves a lot of heap space. It has some disadvantages though. First of all, indirection nodes
are needed to update nodes and secondly, basic values are tagged and have a uniform size.
Even if the computational overheads of the latter are not significant, as the authors claim, it
is questionable whether the remaining space (31 bits for floating point numbers) provides
sufficient accuracy during computations. More worrying however is the lack of type
information in data structures. Not only does this make debugging and monitoring harder,
especially during language development, it is also unclear how such a node representation
can be used in conjunction with more sophisticated language features like existential types
and overloading. These may require runtime checking of types, or some tag that identifies
the operations that are possible on a particular type of node. To avoid hampering such
developments we have chosen to stay with the current node layout.

4. Code Generation for the Transputer
Processor

In this chapter we will explain how one can compile (parallel) ABC code to efficient
code for a single transputer processor. For now, we restrict ourselves to the
interleaved execution of multiple processes on one transputer. In the next chapter we
will see how to support true parallelism on a multi-transputer system.

First we will focus on the generation of code that does not support interleaved
execution in any way. That is, we will start with a sequential implementation for a
single transputer processor. We will not treat generation of sequential code in detail,
but we will show the relation between code generation for a single transputer
processor and for a conventional register-based sequential processor (such as a Sparc,
or a Motorola 680x0). It will become clear that the differences can be kept to a
minimum, even for a rather divergent architecture like the transputer processor,
which does not have any true general purpose registers at all (see section 1.6).

Having seen in which way the transputer hardware influences code generation
compared to more common architectures, the following part of this chapter will
examine the consequences of supporting interleaved execution of multiple processes
on a single transputer processor: context switches, locks and waiting lists, and less
evident, the handling of stack overflows. Performance figures show that these
additions do introduce overheads, but that they are tolerable.

And finally, we will relate the sequential performance of our implementation to
that of other implementations. We will see that simulating registers does not result in
bad performance. In contrast, our performance measurements show that our
Concurrent Clean implementation compares favourably to transputer implemen-
tations of other functional languages.

This chapter has been organised as follows. In section 4.1 we will determine
which target language is most suited to be generated on a transputer system. Section
4.2 will deal with the generation of purely sequential code. The following three
sections will present the necessary additions to support interleaved execution, and
indicate their effect on performance: section 4.3 will show how to cope with stack
overflows; section 4.4 explains the realisation of locks and waiting lists; and in
section 4.5, we will see how to support efficient context switching on the transputer.
Hereafter, in section 4.6, we will compare the sequential performance figures of our
implementation to those of other implementations. The final section will list our main
conclusions.

70 Code Generation for the Transputer Processor

4.1. The target language of the code generator

As we have argued in the first chapter, one cannot stop at generating abstract machine code.
Eventually, efficient machine code is required. Generating (imperative) machine code from
abstract machine code is easier than doing it directly from a functional program, but it is far
from trivial if we want to get optimised code. There are several ways to achieve this, and a
basic question in this respect is, which language should be generated. We will examine this
below.

4.1.1. The merits of generating C

Portability and ease of code generation are major justifications for generating (generic) C
code instead of machine code. We contend this view. Instead, in this section we argue that
C provides too low level a language to allow true portability or comfortable code
generation.

With respect to portability issues, it is important to note that there is a certain lack of
standardisation on the efficiency of C programs. Standard C programs may look portable,
but in practice there are many factors that influence performance. The efficiency of a single
C program may vary considerably on different architectures. This limits true portability.
We will elaborate this below.

C does not abstract from the underlying architecture. It is too explicit. Essential
language features cause this problem. Having pointers, it becomes possible to manipulate
data in a very explicit way. Consequently, there are optimisations a C compiler simply
cannot do. The differences become clear when comparing the efficiency of some programs
written in FORTRAN to their counterparts written in C. In some cases the compiler has
insufficient information about the locations that pointers refer to. This destroys the
possibility for a good analysis on dependencies (for instance, to make reordering of
instructions possible). To make up for this deficiency, C allows the use of directives for
tuning performance. These do not always have the same effect on all architectures. For
example, the standard keyword ‘register’ has no meaning on a transputer. Some directives
might even compromise correctness, if the programmer does not use them with caution. In
short, C programs will not always result in the best possible code on all architectures.

Moreover, the quality of the code that different C compilers generate varies. This is
sometimes caused by the use of custom directives that are not supported by all compilers.
At least as important however, is the diversity in the implementation of optimisations.
There is no ground for assuming that a particular C compiler provides all optimisations
needed to generate the best possible code. It seems that some C compilers have come to
trust programmers to write the most efficient code for a particular machine, based on the
explicit manipulation of performance that is inherent in the language.

Compilers that translate functional programs to C depend heavily on the (absence of)
features of specific compilers and machines. They typically rely on the ability of the
compiler and the machine to keep certain global variables in registers. In addition, they
commonly generate a special kind of C program that incorporates explicit manipulations of
stack- and heap-elements. This kind of code is very specific about how computations are to
be done. It does not contain much high-level information and it rather looks like assembly
language with C syntax than like a program written in C.

The target language of the code generator 71

Some compilers have serious problems compiling such unusual code, let alone
optimising it for a particular machine. For example, if we consider the code that C
compilers would produce for the transputer, we see it contains severe inefficiencies. On the
one hand, important global variables end up in the global data area and not in a register,
because the transputer does not have any (see also section 1.6 and section 3.3). This makes
accessing these values very expensive. On the other hand, if we generate C that explicitly
manipulates the heap and the stack in the same way that implementations for register-based
machines do, poor transputer code will be produced. Suppose we generate C code that
adjusts the stack pointer incrementally within a single basic block, which is common
practice in C programs for register based machines. Some processors, like the Motorola
68000, support this kind of addressing well and C compilers will generate excellent code
for these machines. Unfortunately, the transputer does not support this way of addressing,
and its C compilers do not combine several small stack adjustments into a large one, which
would have been best. Thus, one cannot expect the same C program to run equally well on
all sorts of machines. With respect to efficiency, C is not sufficiently portable.

The main advantage of generating C that remains appears to be ease of code
generation. However, the merits of this are not as clear as one might expect. We feel that
the - relatively small - additional efforts needed to generate machine code instead of
assembly-like C are worth the reduction in compilation time in general. In particular for the
transputer, generating C will not be much easier than generating assembly, because in both
cases registers need to be simulated explicitly. One does not get many optimisations for
free. Furthermore, looking at this from another direction, we have experienced that
adapting a sequential register-based code generator to the transputer was not extremely
difficult (as we will see in section 4.2). Transitions from one sequential register-based
machine to the other proved to be relatively easy as well, that is, as far as code generation is
concerned. It turned out that most work is not related to adapting the code generator, but to
adjusting runtime systems (including I/O systems) to the peculiarities of the underlying
operating system. Clearly, more code generation problems will arise if architectures emerge
that are radically different, but this also holds when C is generated.

4.1.2. The merits of generating Occam

Another candidate object language is Occam, which has been promoted by INMOS as a
high level transputer assembly language. Indeed, all Occam constructs can almost directly
be mapped on the transputer hardware, so if a solution can be expressed concisely in
Occam, it can be compiled to extremely efficient transputer code. However, the converse is
not the case: not all assembly code can be expressed concisely in Occam. Occam lacks the
freedom that is common in assembly or languages like C. Recursion, dynamic memory
allocation, dynamic process allocation and non-flat data structures (using pointers) have
never been a part of Occam. This is another reason that Occam is so efficient: due to
language restrictions the Occam compiler is able to perform many compile-time checks and
optimisations. It not only avoids runtime overheads, but it also provides a safe parallel
programming environment. For instance, it is able to statically check array bounds and
detect sharing of variables.

72 Code Generation for the Transputer Processor

Lack of features found in languages like C may not be a problem for the main market
that Occam has aimed at, namely that of embedded control systems, but for implementing a
system like Clean it is less suited. Several essential features need to be simulated and this
has consequences for performance. The figures presented for SkelML, which is a parallel
implementation of standard (strict) ML that compiles to OCCAM, show this (Bratvold,
1993, 1994). SkelML is more than a factor 3 slower than the Clean implementation (see
table 4-8 and table 5-4).

4.1.3. generating transputer assembly

As we have argued above, generating C (or another ‘high level’ imperative language) is not
always a workable alternative. Especially for the transputer, generating C or Occam will
not solve many problems with respect to code optimisation. If one does not generate
assembly-like Occam or C, these languages introduce considerable inefficiencies.
Consequently, we will directly compile parallel ABC code to efficient transputer assembly
code. The remaining part of this chapter will focus on problems that are related to
achieving this goal.

4.2. Sequential code generation

Sequential compiler technology forms the backbone of our implementation. However,
constructing an efficient sequential implementation is not our main concern here. This
already has been focused on in (Plasmeijer and van Eekelen, 1993; Nöcker et al, 1991-a,
1993-a, and 1993-b; Smetsers et al., 1989, 1991, 1993; van Groningen et al., 1991). In this
section, we will take a sequential implementation as a starting point and transform it to a
sequential transputer implementation. The following sections will show how this can be
extended to an efficient implementation that supports interleaved execution of processes.

To a large extent, sequential compiler technology is based on the efficient use of
registers and stacks. In the previous chapter we have chosen our data structures in such a
way that it remains possible to use this way of code generation for the transputer. As a
result, sequential code generation for the transputer does not differ substantially from
sequential code generation for a register-based processor. The most profound change is
caused by the real transputer registers. Having this small hardware evaluation stack it
becomes possible to pass intermediate results on it - at times no context switches are
possible -, instead of storing them in pseudo-registers or on a conventional stack. As a
result, transputer programs will use fewer (pseudo) registers on average than register based
machines. This section will explain the consequences for sequential code generation. We
will start with a short overview before proceeding with the details.

Ordinary sequential code generation for register-based machines is divided into a
number of phases (see figure 4-1). The conversion phase partitions the ABC program into
basic blocks and converts each block to a directed acyclic graph (DAG) representation.
Each DAG contains the data dependencies between the stack entries at the start and at the
end of its basic block. The global register assignment phase takes each block (in DAG
form) and determines which stack entries should be placed in registers at the beginning and
at the end. The ordering phase then derives the order in which the operations in the DAG

Sequential code generation 73

should be evaluated. This is followed by the code generation phase that generates
intermediate code in the given order. The main difference with the final code is that there is
no bound on the number of registers. This means that the intermediate code might use more
registers than are actually available. This is solved in the last phase. We will now take a
closer look at these phases.

Conversion Global Register
Assignment

Ordering Code
Generation

Local Register
Assignment

(Parallel) ABC
Code

Machine Code

Figure 4-1: The code generation phases

4.2.1. The conversion phase

The conversion phase constructs a DAG that represents the operations needed to get from
the start of a basic block to its end. The leafs either contain constants or load operations on
stack entries at the beginning of the basic block (the arguments of the basic block). The root
nodes store the results of the basic block on the stack. Intermediate nodes represent the
operations that are needed to compute these results from the arguments. The DAG is
constructed in such a way that unnecessary dependencies between instructions are avoided.
Basically, all dependencies in it are data dependencies.

4.2.2. The global register assignment phase

The global register assignment phase determines which stack entries should be kept in
registers at the beginning and the end of each block. It replaces certain store stack and load
stack nodes by store register and load register nodes respectively. In addition, it combines
information of adjacent blocks to optimise stack access (for example, it removes garbage
stack entries as soon as possible). This may change the DAGs for a combined group of
basic blocks, so the next phases are postponed until the global register allocation phase for
the group has ended.

These first two phases are essentially identical for both the parallel and the sequential
implementations of Concurrent Clean that have been developed at the university of
Nijmegen. This is in particular convenient, because they comprise elaborate machine
independent optimisations. The next phase is the first one that diverges. It determines the
order in which the operations in the DAGs should be performed. For the transputer this is
slightly different, because the hardware evaluation stack influences this order.

4.2.3. The ordering phase

The code generator may generate instructions in a different order than the order of the
PABC instructions, as long as the final result of each basic block remains the same. Part of

74 Code Generation for the Transputer Processor

f1:
 pushI +3
 push_b 1 push a
 addI add a and 3
 push_b 2 push b
 push_b 2 push a
 mulI multiply a and b
 update_b 1 3 clean up the stack
 update_b 0 2
 pop_b 2
 subI subtract results
 rtn

subtract

multiply add

store b-stack 0

load b-stack0load b-stack1 constant 3

Compile Clean
to ABC Code

Conversion

f :: !INT !INT -> INT
f a b -> (a * b) - (a + 3)

Figure 4-2: Constructing a DAG from a function

this order is fixed: the arguments of a node need to be evaluated before the node itself. The
evaluation order of the arguments remains to be determined. This is done by the ordering
phase.

For register-based machines the ordering phase tries to minimise register use, as this
is an important but scarce resource. This is a rather complex problem. Sub-expressions may
be shared, and this makes finding an optimal solution expensive, because one cannot
compute the register needs of a single expression independently of the evaluation order of
the other expressions. All possible permutations need to be tried, which is O(n!). This is too
expensive in practice, so instead the sequential Concurrent Clean implementations a safe
estimation of the costs (Plasmeijer and van Eekelen, 1993).

Sequential code generation 75

The transputer additionally has a small evaluation stack. The best evaluation order for
such a stack is to evaluate the expressions that use the most stack space first. This avoids
stack overflows and increases the probability that intermediate results can be passed on the
evaluation stack instead of in pseudo-registers.

Combining the ordering criteria for the registers and the evaluation stack, we let
register use prevail over evaluation stack use. The reason for this is that in general, the
evaluation stack use of a particular sub-expression does not say much about its use of
registers, as register use largely depends on sharing of sub-expressions. There is no clear
relation between evaluation stack use and sharing. This means that a good ordering
according to evaluation stack use could easily result in a very bad ordering according to
register use. Register use on the other hand, does give some useful information on
evaluation stack use: inefficient evaluation stack use may increase the register use.
Although possible, it is not very likely that the evaluation stack is used inefficiently when
register use is good, and even if this occurs, avoiding a worse register allocation is more
valuable in general (see also the frame ‘Ordering Dyadic Operators’).

The evaluation stack use will only play a role when the register uses of different
orderings are equal. If this is the case the alternative with the largest evaluation stack use
will be evaluated first. If the evaluation stack uses are the same we will evaluate the
arguments of a node from left to right, as non-commutative operators are constructed in
such a way that it is slightly more advantageous to evaluate arguments in this order.

In brief, the ordering phase for the transputer will basically determine the evaluation
order in the same way as for register-based machines. Differences only arise in case a pure
register implementation cannot decide which order to choose.

4.2.4. The code generation phase

The code generation phase produces intermediate code for the nodes in the DAG in the
order that has been derived by the previous phase. This code resembles the final code, but it
assumes an unlimited number of registers is available. The latter will be solved in the last
phase.

Different code needs to be generated for different machines. One might expect that
profound changes are needed while porting the code generator to another register-based
architecture, but often this is not the case. The nodes in the DAGs represent basic
operations. These operations are commonly found in modern general purpose processors.
Furthermore, addressing takes a similar form for these machines. The arguments of each
instruction typically consist of registers and constants. Additionally, offsets can be used.
Sometimes extras have been added such as post-incrementing the contents of registers. This
makes code generation for many register-based machines fairly similar.

Even for the transputer, code generation proceeds in the same way. The processor
provides the same basic set of operations that register-based machines supply. Addressing
seems somewhat different however. The arguments are not in registers, but on the
evaluation stack. Still, loading the evaluation stack can only be achieved via the workspace
pointer or by loading a constant. The workspace pointer in turn, refers to the emulated
register set of a process. So eventually we are using registers and constants as well.

76 Code Generation for the Transputer Processor

Ordering Dyadic Operators

The ordering algorithm for dyadic operators is listed below. It first calculates the
evaluation stack use and register use for both arguments in a recursive way (use1 and
use2). This includes the number of registers needed for evaluating each sub-
expression (arg.reg_use) and the increase in register use this causes (arg.increase).
The latter indicates the change in register allocation that the evaluation of the sub-
expression effects. It will be small - possibly negative - when the expression uses
many shared values for the last time. Conversely, it will be large when the expression
produces many shared values.

Next, the algorithm computes the overall increase in register use (use.increase),
which is basically the sum of the increments of the arguments. Combined with the
argument register uses this value determines the register costs for both possible
orderings (order1_use and order2_use). The order that needs the least registers will
be chosen (arg1_first). If the costs are the same the use of the hardware evaluation
stack (arg.stack_use) determines the evaluation order.

Note that if no sharing exists, the increase in register use will be zero, so that the
overall register use is largely determined by the maximum of the register uses of the
arguments. This is the same for both orderings. As a result the evaluation stack use
dominates in a system without sharing. On the other hand, if sharing exists avoiding
inefficient use of registers will be more important than using the evaluation stack in
an optimal way, for storing intermediate results in registers is inexpensive, compared
to dealing with register overflows, so that values need to be stored on a regular stack.

calculate_dyadic_register_use :: Graph -> RegisterUse
calculate_dyadic_register_use operator = use
where
 arg1 = first_argument_of operator
 arg2 = second_argument_of operator
 use1 = calculate_register_use arg1
 use2 = calculate_register_use arg2

 use.increase = use1.increase+use2.increase+(toInt(is_shared operator))

 order1_use = maximum order1_use' use.increase
 where order1_use'
 | use2.stack_use >= stack_size && (not (is_shared arg1))
 = maximum use1.reg_use (use1.increase + 1 + use2.reg_use)
 | otherwise
 = maximum use1.reg_use (use1.increase + use2.reg_use)

 /* order2_use is defined similarly */

 arg1_first
 | order1_use == order2_use = use1.stack_use >= use2.stack_use
 | otherwise = order1_use < order2_use

 use.stack_use = minimum stack_use' stack_size
 where stack_use'
 | arg1_first = maximum use1.stack_use (1 + use2.stack_use)
 | otherwise = maximum use2.stack_use (1 + use1.stack_use)

 use.reg_use
 | arg1_first = order1_use
 | otherwise = order2_use

Sequential code generation 77

Thus, we can view small groups of transputer instructions as simulating the behaviour
of ordinary register-based instructions. Each group is delimited by the points where the
evaluation stack is empty. It starts by loading the evaluation stack with the arguments of the
instruction it mimics. These are either constants or the contents of registers. Extra
transputer instructions add offsets if necessary. Having set up the input parameters the basic
operation can be performed, followed by storing the result.

Simulating every register-based instruction separately does not give the best
performance. As stated earlier the transputer allows us to pass results on the evaluation
stack, instead of in registers. To achieve this the code generator will never store the result
of a basic operation in a register, unless a stack overflow is imminent, a context switch is
about to occur, or when sharing dictates it. This increases the group size. In a sense we are
constructing new register-based instructions of arbitrary size.

4.2.5. The local register assignment phase

The intermediate code is allowed to use more registers than are actually available. The last
phase solves this. We have tried to minimise register use in the previous phases, so it is not
needed very often. If necessary, it maps the registers used in the intermediate code to the
real emulated registers of our implementation.

A mechanism similar to paging is used for this (Plasmeijer and van Eekelen, 1993).
The local register allocator replaces every instruction that uses a virtual register by one that
uses a real register. If at some point all physical registers are in use, it generates extra
instructions to save one to memory (on the stack, or in the heap). It evacuates the one
whose contents will not be used for the longest time (this can be determined by inspection
of the generated code). When the contents are needed of a virtual register that has been
saved before, the register allocator inserts additional instructions to reload this value in a
real register. This mechanism is used on all registers, so that allocation is most flexible.
This means that the heap pointers and the stack pointers may be saved temporarily in
memory as well.

Doing this for the transputer has both advantages and disadvantages. On the one
hand, finding and adjusting instructions that use a register is easy. One does not have to
take into account many instructions as there are only three: ldl, stl and ldlp. On the other
hand, inserting instructions to save and restore registers is more difficult, because these use
space on the evaluation stack and this may cause an overflow. It is here that we actively use
instruction grouping. Instructions are only inserted between groups. At these places the
evaluation stack is empty, so we can use all stack space.

At the moment we assume that groups do not need more registers than are actually
available. This will be valid for most programs. Often, the local register allocation phase
itself is not even needed. In case this assumption is not true, a group needs to be split up
further, so that register allocating instructions can be inserted within a group.

4.2.6. An example

The next figure shows the code that is generated from the DAG in figure 4-2. It lists both
transputer code and MC68020 code. This example illustrates the primary differences - and
the similarities - between transputer code and code for common register-based machines.

78 Code Generation for the Transputer Processor

The local register assignment phase has not been invoked in this case, because few registers
are used.

ldl 1 push b on evaluation stack
ldl 2 push a on evaluation stack
mul multiply a and b
ldl 2 push a on evaluation stack
adc 3 add 3 to a
sub subtract both results
stl 1 store final result

ldl 0 return
gcall

muls.l d1,d0 multiply a and b

addq.l #3,d1 add 3 to a

sub.l d1,d0 subtract both results

rts return

transputer code motorola M680x0 code

Figure 4-3: A Small Code Example

All transputer instructions are merely one byte long, except for the mul instruction,
which takes two bytes. In comparison, the Motorola code takes two bytes per instruction.
Instruction groups have been enclosed in small boxes. Passing intermediate results on the
transputer evaluation stack reduces the number of instruction groups to two. Note that after
pushing a and b on the evaluation stack for the last time, the corresponding registers are
free to be used for different computations. In contrast, the Motorola code needs d0 and d1
to store intermediate results until the subtract instruction at the end.

4.3. Handling stack overflows

Above, we have seen how to generate sequential code, which only supports a single process
per processor. Concurrent Clean however, allows many processes to be started on a single
processor by means of the {I} annotation (and the {P} annotation, if it starts a new process
on a processor that already runs one or more processes). These processes should run
interleaved and scheduling must be fair. In this section, and the following ones, we will
introduce the adjustments that are needed to support this form of processing. In addition,
we will show the effects on performance that are caused by these adjustments.

This section will consider the handling of stacks. Having many processes as opposed
to one in a sequential language, one cannot simply allocate a huge stack for each process to
avoid stack overflows. This would consume too much memory. Even if enough memory
were available to give every process a large stack, much precious space would needlessly
be wasted on stacks, resulting in superfluous garbage collections. Often, processes do not
need a large stack, so it would be better to allot more memory space to the heap instead. As
a result, processes should be given a small stack that is checked on overflow and expanded
if necessary.

Handling stack overflows 79

4.3.1. Combining stack checks

Some architectures allow stack overflows to be detected by hardware, for instance by a
memory management unit. The transputer does not have such hardware. Instead, the code
generator needs to insert stack checking code.

Checking a stack can be costly if it is needed too often. We combine stack checks to
some extent, but the abstract ABC code does not provide enough information to limit it to
one check per function call in an easy way. It is not entirely trivial to let the Clean to ABC
compiler pass this information, as it does not know the exact stack use. Low level code
optimisations may affect it. This is a drawback of using abstract ABC code: information
does not flow back up. Instead, the code generator needs to re-obtain information about the
dependencies between blocks of code. We have not implemented this, so our code is not
yet optimal with respect to checking stacks. All the same, if we have a look at the tests
below, we see that the current implementation does not incur too much overheads.

Even if sufficient information in code dependencies is available, stacks checks should
not always be combined into one per function. First of all, if a function has multiple
alternatives, it could check stacks at the start for the maximum use of all alternatives, but if
one exists that does not need any stack space this may not be a good strategy. Instead, the
stacks should be checked within each alternative. Secondly, one should allow stack size to
be decreased occasionally if much of it is unused while free memory is running low. A
logical - and efficient - way to do this, is to let the garbage collector decrease the size of a
stack when it sees fit (for it can determine overall memory usage and stack usage in a
relatively easy way). This may happen at some point after a function has checked its stack,
so the garbage collector must somehow ensure that at least the checked amount remains
available. A simple way to do this is to limit the amount of stack space that can be checked
in one go, so that the garbage collector knows by what amount it can safely decrease the
stack size. This means that several checks are necessary if the total stack use of a function
exceeds this bound.

The transputer code generator combines stack checks as follows. First it determines
the stack needs of each basic block. This comprises the increase in stack size caused by
evaluation of the block, the amount of stack space allocated by the local register assignment
phase to save registers, and - if a basic block ends with a jsr_eval instruction or a similar
one - the conditional stack use of this instruction (for saving registers; see figure 3-5). Next,
it combines checks for basic blocks that are divided by some form of subroutine call. This
is possible because the callee returns the stack in the same state as it finds it. The check of a
post-subroutine block may then be joined with the check of an earlier one. The code
generator visits basic blocks in reverse order, repeatedly shifting checks to previous blocks.
This stops when it arrives at the first combinable block, or if it reaches the maximum value
that can be checked at once (to allow the garbage collector to decrease stack size; this has
not yet been implemented). And finally, conditional checks are combined with
unconditional ones if the latter exist. This strategy has lead to the performance figures
presented in table 4-1.

80 Code Generation for the Transputer Processor

Table 4-1: The costs of checking stacks. In this thesis, all test of our Concurrent Clean
implementation have been performed on a network of T800 transputer processors.
Each processor runs at 25 MHz and has 4 Mbyte of memory. Unless stated otherwise,
heap size has been set at 3 Mbyte and the initial stack size has been set at 100 bytes.
Timings have been performed with the transputer clock and are very accurate, as our
transputer network is a standalone system. However, small variations in timings
exist, as they are slightly influenced by IO processes. These variations are less than
0.1% of the total execution time.

stack checks off stack checks on overhead

nfib 30 11.2 sec. 12.2 sec. 8.9 %

tak 24 16 8 10.9 sec. 11.4 sec. 4.6 %

queens 42.6 sec. 43.9 sec. 3.1 %

reverse 64.3 sec. 64.4 sec. 0.2 %

fast fourier 12.8 sec. 12.9 sec. 0.8 %

mandelbrot 134.7 sec. 141.5 sec. 5.0 %

raytrace 314.6 sec. 321.1 sec. 2.1 %

sieve 18.3 sec. 19.4 sec. 6.0 %

quicksort 4.7 sec. 4.9 sec. 4.3 %

We can see that the overheads for checking stacks do not exceed 10%. The nfib
benchmark suffers the most. This is not surprising, as it is a small recursive function that
computes relatively little during each function invocation. The reverse function on the other
hand, does not push entries on the stack most of the time. Instead it uses registers so it does
not perform many stack checks.

To illustrate the significance of having stack checks: we have tried to run some
interleaved concurrent programs - merely using {I} annotations - on a single processor
without stack checks, but we did not succeed in general. Many interleaved processes had to
be accommodated on a single processor, and the initial stack size had to be fairly large for
each process, so that often memory problems arose. In contrast, with stack checks, running
these programs did not give many problems (but again, a few programs could not be run
because of memory shortage). The ‘interleaved’ parallel programs that we were able to run
without stack checks revealed similar overheads for stack checking as their sequential
counterparts.

4.3.2. Expanding a stack

The costs of a single stack check are clear. The two stacks grow from the ends of a single
memory block towards each other, so that it takes a single pointer comparison to check
both. In addition, the stack pointers can be accessed quickly because they are stored in
internal memory. One cannot improve much on this, no matter how stacks are
implemented.

Handling stack overflows 81

The costs of various ways to expand stacks are less obvious. There are basically two
methods. One approach uses a stack that consists of several pieces that are linked together.
If this segmented stack turns out to be too small, an new part is allocated and linked to the
old stack. The other solution uses a traditional monolithic stack that is reallocated when
needed.

We use the latter. It involves copying the old stack and at first sight this seems to be
expensive. However, it simplifies garbage collection - and debugging - as the stack layout
is less complicated. Secondly, most processors allow contiguous blocks of memory to be
copied rather quickly. But most importantly, stack reallocations are needed very
infrequently. Once a stack has grown sufficiently, many subsequent computations can be
performed on it without increasing its size. Note that it is important not to decrease the
stack size too quickly, for it may increase the number of succeeding stack reallocations. At
the moment we do not decrease it at all, so during the execution of a process we
dynamically allocate its maximum stack use (if shrinking stacks are necessary, these can be
effectively provided by the garbage collector).

Table 4-2: The costs of stack reallocations. These tests have been performed with a large
initial stack size that does not require any reallocation, and with a small initial stack
size. Most programs (except raytrace) are small, but this does not imply that they use
little stack space. The raytrace and mandelbrot program need almost 100 Kbyte of
stack space, as they convert all pixels to integers and add them recursively on the
stack (to avoid overheads for plotting). The fast fourier programs uses about 30
Kbyte of stack space. The others use less than 10 Kbyte. The runtime system increases
stacks by about 10% plus a small constant. The latter ensures that very small stacks
grow fast enough. Allocating large initial stacks will sometimes increase garbage
collection times a little. We have listed the pure execution times without garbage
collections as well, to rule out these additional costs. The differences in pure
execution times are hardly noticeable.

Including

Garbage Collection Time

Excluding

Garbage Collection Time

small stacks (16
bytes)

large stacks
(10-100 Kbyte)

small stacks (16
bytes)

large stacks
(10-100 Kbyte)

nfib 30 12.2 sec. 12.2 sec. 12.2 sec. 12.2 sec.

tak 24 16 8 11.4 sec. 11.4 sec. 11.4 sec. 11.4 sec.

queens 43.9 sec. 43.9 sec. 42.9 sec. 42.9 sec.

reverse 64.2 sec. 64.4 sec. 59.9 sec. 59.9 sec.

fast fourier 12.9 sec. 12.9 sec. 10.5 sec. 10.4 sec.

mandelbrot 141.5 sec. 141.5 sec. 141.5 sec. 141.5 sec.

raytrace 321.0 sec. 321.1 sec. 320.5 sec. 320.5 sec.

sieve 19.4 sec. 19.4 sec. 19.3 sec. 19.3 sec.

quicksort 4.9 sec. 4.9 sec. 4.7 sec. 4.7 sec.

82 Code Generation for the Transputer Processor

Table 4-2 shows that this strategy has kept the overheads of stack reallocation to a
minimum. The costs can be even less for architectures that allow virtual memory
management to be used for realising stack reallocations.

We have not tested a version with segmented stacks. This would require quite some
changes to the code generator and the garbage collector. Especially the particularities of the
abstract ABC machine make it very difficult to realise an optimal implementation of
segmented stacks. Incorporating these would impose too much work for the limited gain
they might bring. Segmented stacks do not offer serious advantages because the costs of
stack reallocations are negligible. In contrast, segmented stacks may increase overheads if
functions frequently cross the boundaries of a segment. This is not unlikely because stack
use typically fluctuates quickly. Depending on the complexity of the implementation and
the architecture this may be especially disadvantageous in conjunction with caches.
Monolithic stacks automatically avoid these problems. They naturally provide the basic
features stacks should have, that is, supporting quickly fluctuating memory demands by
allowing fast allocation, de-allocation and reuse of memory. On the other hand, linked
stacks can be more flexible in certain situations, and in principle, they can be as efficient as
ordinary stacks (provided the right hardware is available). See Appel (1987 and 1994) for a
detailed discussion on this subject.

4.4. Handling locks and waiting lists

In contrast to a sequential implementation, a parallel one requires locking of nodes to
prevent multiple processes reducing the same node, unless one employs a partially strict
reduction strategy that avoids sharing of redexes among processes (Langendoen, 1993).
Concurrent Clean uses a lazy reduction strategy by default, and at the moment it always
locks nodes4. Nonetheless, at places the Concurrent Clean compiler is able to employ strict
evaluation, it avoids constructing nodes as much as possible, thereby decreasing locking
overheads.

On machines with distributed memory locking itself does not have to introduce any
overheads. On entry of a node one simply places a special locking code pointer in it. For
comparison, sequential implementations place a special error code in the node to detect
cycles in the spine of reduction, and more importantly, to allow the garbage collector to
remove unneeded function arguments as soon as possible. The costs are exactly the same.

Unlocking a node on the other hand does impose some overhead. On updating a node
its waiting list needs to be checked. If it is not empty the processes in it should be woken up
by evaluating each waiting list element. So we need an extra test compared to a sequential
implementation. Though not seriously affecting performance (see table 4-3) we can
improve on this.

In general, updating a node occurs shortly before returning from a jsr_eval
instruction. Instead of storing the return address on the stack after entering a node, we could
equally well store it in the node itself after extracting its arguments. We may use the

4 Regardless of the actual uniqueness properties of nodes. Taking advantage of uniqueness would
require different calling conventions. It is not yet clear whether this can be done without hurting
performance

Handling locks and waiting lists 83

f

locking

r1 r0p p

0 1

evaluation of a locked node
(the return address is saved in a new node)

r

gcall r

All pointers will be made to point to the second field of a node, so that it
becomes possible to store code at this position (which additionally enables
dynamic loading of code in the heap). The code generator will produce the
following code to return from a jrs_eval instruction

If the address in the locked node is a plain return address this code will return
directly. Otherwise the gcall instruction will jump to the gcall instruction in the
node above after storing its return address - i.e. the address of the release code
- on the transputer evaluation stack. The second gcall in the node will then
return to this code after storing a pointer to the node itself on the evaluation
stack. The release code can now retrieve the original return address and the
waiting list from this pointer and release all processes.

load_address_from_node
gcall
release_code

0

1

: locked function code of arity 0
: locked function code of arity 1

r0

r1

: release code of arity 0
: release code of arity 1

p : process descriptor
r : return addressgcall : transputer gcall instruction

c

c: special constructor (descriptor)

Figure 4-4: Avoiding the test for waiting lists by storing the return address in a locked
node. See also figure 3-4.

waiting list field for this. On the transputer this does not introduce additional costs
compared to pushing the return address on the stack. Now before overwriting the node we
should retrieve this address and call it after the update has taken place. Ordinary subroutine
calls will store the return address on the stack as usual.

This not only saves stack space - possibly avoiding stack checks as well - but it also
removes the need to check the waiting list field. Storing the return address in the locked
node allows it to be modified when a process tries evaluate the node. Instead of inserting a
waiting list, we may first save the original return address and then replace it by code that
releases an associated waiting list before returning to the saved address. A possible way to

84 Code Generation for the Transputer Processor

do this on the transputer is shown in figure 4-4.
We have not yet implemented this technique as it may interfere with some

experiments with different forms of evaluation. A clear example is compiling strict
continuations, so that processes do not return after updating a node - i.e. reduce to root
normal form -, but proceed with the evaluation of another function. We could store a
continuation address in the node, similarly to storing a return address, but this may be more
expensive than checking for a waiting list and jumping to the continuation code directly. It
is not yet entirely clear if and how a combination should be realised. This largely depends
on the need for different forms of evaluation. Meanwhile, we check waiting lists explicitly.

Note that we have not yet considered the overheads of starting and stopping
processes. They should be kept to a minimum, but nonetheless they may become dominant
when many small processes are created, or when certain dependencies exist between
producing and consuming processes. If so, we think this should primarily be solved by
increasing grain size. It remains to be seen whether this is feasible in all circumstances.

4.5. Supporting context switches

Clean requires fairness, so we need context switching. The transputer hardware au-
tomatically provides this, but only at the execution of unconditional jump instructions. As a
result we must ensure that jump instructions are encountered regularly.

In contrast to C implementations, we have not used the transputer call instruction to
realise subroutine calls. Instead we generate code to store the return address explicitly
followed by a jump instruction. This makes subroutine calls more expensive, but it
improves context switching capabilities. We cannot use a similar construct to implement
jsr_eval instructions, because no context switch may occur between calling and locking a
node. In this case, additional jump instructions within the called function will introduce the
necessary context switching points.

Table 4-3: The combined overheads of locking and context switching support.

without support
for parallelism

with support for
parallelism

overhead

nfib 30 11.7 sec. 12.2 sec. 4.3 %

tak 24 16 8 11.0 sec. 11.4 sec. 3.6 %

queens 42.9 sec. 43.9 sec. 2.3 %

reverse 62.0 sec. 64.2 sec. 3.5 %

fast fourier 12.7 sec. 12.9 sec. 1.6 %

mandelbrot 139.9 sec. 141.5 sec. 1.1 %

raytrace 315.9 sec. 321.0 sec. 1.6 %

sieve 18.3 sec. 19.4 sec. 6.0 %

quicksort 4.8 sec. 4.9 sec. 2.1 %

Supporting context switches 85

Limiting context switches to well-known places only is invaluable for a fast parallel
implementation. It not only allows efficient manipulation of possibly shared data structures
- such as nodes and the transputer evaluation stack -, but it also makes it possible to pass
parameters in registers, just as in sequential implementations. To allow this we need to be
able to tell which registers contain pointers during garbage collections. These may occur
when a process is descheduled: either after executing a jump instruction, or after
suspending explicitly. We provide pointer information by storing it in a special register just
before such a situation arises. Arbitrary context switching points would not have allowed
this.

A better solution would be to include pointer information in the code. It should be
placed near suspend instructions, and before each entry that is reachable by an
unconditional jump. The garbage collector is then able to retrieve it by examining the
instruction pointer of each descheduled process. This will decrease execution time slightly,
but more importantly it allows an additional register to be used for passing parameters. We
have not yet implemented this due to the relatively small gains we expect. Check table 4-3
to see the current overheads for supporting context switches and locking.

4.6. Performance measurements for sequential programs

In this section we will present some performance figures for sequential programs. In case of
the transputer implementation of Concurrent Clean the figures below include overheads for
supporting parallelism (stack checks, testing for waiting lists, etc.), although the programs
themselves are purely sequential. The Concurrent Clean figures will be related to transputer
implementations of other functional languages. It will become clear that our transputer
implementation performs relatively well. But before we proceed with this, we will relate
the transputer implementation to a sequential implementation of Concurrent Clean for the
SPARC processor.

As our transputer implementation uses simulated registers one would expect a
performance penalty. Compared to similar implementations of Clean on a SPARC
processor the performance on the transputer is indeed rather disappointing (table 4-4).
However, if we consider the relative performance of C programs and the performance of
other functional languages on the transputer, it becomes clear that it is not the
implementation that is slow, but the transputer hardware itself. This is partly due to the age
of the transputer design. It originates from the early 80’s and much faster machines have
become available since then. It is still being used, but more and more as a real-time
processing system and not so much as a number cruncher.

It is rather hard to compare functional languages on the transputer in a sensible way.
Only a few functional languages have been implemented on the transputer hardware, and
little is known about their performance. The notorious nfib benchmark is the only one that
has been tested for a number of languages in a fairly consistent way. It does give some
information, but one cannot not draw general conclusions from it.

86 Code Generation for the Transputer Processor

Table 4-4: Performance of Clean and C on a single transputer running at 25 MHz,
compared to performance on a SUN4 (SPARC) running at 32 MHz. The SUN4
version is between 3 and 6.4 times faster than the transputer version. The transputer
figures for reverse and sieve are not entirely the same as in the previous tables. The
reverse function has been run in a smaller heap (2 Mbyte) and the sieve is an
optimised version that avoids unnecessary divisions.

Helios C T800 C SUN4 speed-up

nfib 30 8.5 sec. 1.5 sec. × 5.7

Clean T800 Clean SUN4 speed-up

nfib 30 12.2 sec. 1.9 sec. × 6.4

nfib 26 with reals 3.5 sec. 0.7 sec. × 5.0

tak 24 16 8 11.4 sec. 1.8 sec. × 6.3

queens 43.9 sec. 10.7 sec. × 4.1

fast fourier 12.9 sec. 3.5 sec. × 3.7

reverse 66.9 sec. 15.0 sec. × 4.5

sieve 8.8 sec. 2.9 sec. × 3.0

Table 4-5: The sequential nfib ratings for various functional language implementations on
transputers.

PAM (20 MHz T800) 1.3 Knfib/sec.

HDG (25 MHz T800) 27 Knfib/sec.

Clean (25 MHz T800) 221 Knfib/sec.

Clean on ZAPP (20 MHz T800) 223 Knfib/sec.

Above, we find some results for PAM (Loogen et al., 1989), the HDG machine
(Kingdon, Lester and Burn, 1991), our Clean implementation, and a partial implementation
of Clean on the ZAPP architecture (Goldsmith, McBurney and Sleep, 1993). The results of
PAM have been obtained with an interpreter. This shows the need for code generation. The
HDG machine on the other hand macro-expands abstract machine code to transputer code.
It is mostly known for its evaluation-transformer graph reduction model, which is used to
introduce parallelism automatically. And finally, the ZAPP implementation employs true
code generation. It provides a virtual tree architecture that supports a divide-and-conquer
style of parallel programming only. The ZAPP architecture has not been designed
specifically for the purpose of running Clean programs.

The figures above suggest that the ZAPP implementation is the fastest functional
language implementation and that the HDG machine is remarkably slower than both
implementations of Clean. This is not entirely the case. The HDG machine does not have
stacks. Instead, it uses large nodes to store stack frames. This makes it relatively slow for
functions such as nfib and tak that gain significantly from using stacks. For the queens
program the differences are less dramatic, although still notable (see table 4.6). The

Performance measurements for sequential programs 87

opposite is the case for the ZAPP implementation. Compared to our implementation it
benefits slightly from having a merged stack to evaluate functions like nfib. This advantage
disappears for other programs (see table 4-7).

Table 4-6: Performance of Clean and the HDG machine on a single processor.

HDG Clean

nfib 20 0.81 sec. 0.11 sec.

tak 18 12 6 5.22 sec. 0.30 sec.

queens (on a board of 6 by 6) 0.21 sec. 0.08 sec.

Table 4-7: Performance of Clean and Clean on ZAPP for a single processor. The reverse
program reverses a list of 3000 elements 3000 times. The matrix multiplication
program uses lists of lists of reals to represent matrices. The 25 MHz machine is not
quite 1.25 times faster than the 20 MHz machine, due to substantial overheads in
accessing memory (5 cycles for a word).

ZAPP (20 MHz) Clean (25 MHz)

nfib 30 12.1 sec. 12.2 sec.

reverse 143.0 sec. 66.9 sec.

queens (on a board of 10 by 10) 62.7 sec. 43.9 sec.

matrix multiplication (64 by 64) 5.8 sec. 3.9 sec.

Altogether this is a meagre set of tests. Only a few programs have been run. Of these,
the matrix multiplication example is the most realistic one. In particular the HDG machine
has only executed very small examples. We expect that its large node layout will introduce
problems for more substantial tests.

The functional language SkelML does not figure in the nfib suite above, as no results
have been presented for nfib, but it has been tested on more realistic programs (Bratvold,
1993, 1994). SkelML is a version of Standard (read strict) ML that incorporates a set of
skeletons to introduce parallelism. For the transputer a compiler has been constructed that
generates Occam. Some tests have been performed with a ray tracing program. Table 4-8
contains the results for a single processor. It is about 3.5 times slower than our
implementation of Clean (which is lazy).

Table 4-8: Performance of SkelML and Clean. SkelML generates Occam, which clearly
does not automatically produce the most efficient transputer executables.

SkelML Clean

raytrace simple scene 1.86 sec. 0.53 sec.

raytrace complex scene 8.12 sec. 2.31 sec.

Analogous to the ZAPP implementation, C compilers can take full advantage of
having to manage merely one stack on the transputer for functions like nfib (table 4-9). For

88 Code Generation for the Transputer Processor

other programs the differences are smaller. We will see in chapter 8 that matrix
multiplication in Clean can be equally fast as C on the transputer. We should also note that
the relatively slow execution of nfib in Clean is purely a transputer problem. On true
register-based architectures Clean runs this benchmark about as fast as C (sometimes a bit
slower and sometimes a little faster, depending on the machine).

Table 4-9: The sequential nfib ratings for C on transputers. The C compilers can take full
advantage of not having to manage multiple stacks. The Pact compiler places the
stack in on-chip memory by default. This may increase execution speed for sequential
programs, but it is not realistic when multiple processes are running on a single
processor. As we can see below, the Helios compiler produces the best code by far,
but we should take into account that the Pact compiler provides more flexible runtime
constructs for creating parallel programs. This complicates the calling conventions
of the Pact Compiler, which decreases performance, in particular for tiny recursive
functions like nfib.

Pact C (stack in on-chip memory) 267 Knfib/sec.

Pact C (stack in external memory) 183 Knfib/sec.

Helios C (stack in external memory) 315 Knfib/sec.

We have also run some tests with interleaved concurrency on a single processor. In
general these versions ran only a little slower than the sequential versions, due to overheads
for starting and stopping processes. These overheads are highly dependent on the number
of processes and their interaction. For divide-and-conquer programs the overheads were
typically no more than 5%. Only for the sieve programs these overheads resulted in a
considerable slow-down (it ran twice as slow as a purely sequential sieve). Some programs
could not be run in an interleaved manner due to shortage of memory: too many processes
needed to be accommodated on a single processor. Unfortunately, we have not been able to
relate these results to other implementations, as these do not report performance figures for
interleaved execution (which they usually do not support).

4.7. Conclusion

We have shown that it is not extremely difficult to adapt a register-based sequential code
generator to transputer hardware. Simulating registers does not introduce serious problems.
In addition, it keeps the transputer implementation compatible with more common
architectures.

Furthermore, the additional constructs that are needed to support parallel evaluation
do not introduce a serious performance penalty. In particular the overheads of reallocating
stacks are negligible. It is possible to further reduce the costs for locking and the costs for
supporting context switches. Additionally, avoiding intermediate ABC machine code might
improve stack management, at the cost of merging low level and high level implementation
techniques. Nonetheless, our implementation already compares favourably to other
implementations of functional languages. In the next chapter we will present performance
figures for parallel programs.

5. Managing Distributed Graphs

In the previous chapter we have shown how to compile abstract machine code to
concrete machine code. The generated programs specify graph reduction in detail, but
they do not realise graph copying, nor garbage collection. To complete graph
rewriting, these complex features need to be incorporated in a runtime system. This
chapter will show how to accomplish this.

In section 5.2 we will determine which data structures are needed to keep track of
distributed graphs. Section 5.3 deals with transmission of graphs. It focuses on
efficiency, feasibility, and reliability. In addition it will consider copying of work. In
section 5.4 we will examine distributed garbage collection. The Clean
implementation employs a combined approach. It uses a copying garbage collector
for each processor heap, and a weighted reference counting scheme for the inter-
processor references. Cycles and speculative parallelism complicate matters. We
have not yet solved these problems, but we will show how they might be tackled.
Section 5.5 will conclude this chapter with some parallel performance figures. This
demonstrates the effectiveness of our graph management techniques. The Concurrent
Clean implementation compares favourably to others, which are often more
restrictive. The tests will also reveal some efficiency problems. These will be treated
in the remaining chapters.

5.1. Introduction

Clean employs graph rewriting for its implementation. In a sequential system function
nodes are evaluated by a single process according to the functional strategy. After a
particular function node has been chosen for reduction, it will eventually be overwritten by
its result5. In between, during reduction, new nodes may be constructed and other function
nodes will be reduced if necessary.

In a parallel system with distributed memory the graphs are scattered over the
network. Reduction then takes place at different processors simultaneously, possibly by
multiple processes on the same processor. Locking of nodes prevents reduction of the same
shared node by multiple processes. Sometimes the reduction of a function requires access
to a part of a graph that is stored at another processor. If this is the case, this part needs to
be transported to the function that needs it, possibly after evaluation.

5 It might be possible to avoid updating nodes by taking into account uniqueness information,
but this has not yet been investigated.

90 Managing Distributed Graphs

Garbage collection and transmission of graphs both play an essential role in a finite
parallel distributed system. They complement graph reduction as described above. Still,
transmission of graphs and garbage collection remain rather abstract notions within the
abstract machine code, although it does specify graph reduction in detail. The ABC
machine code tells how to reduce functions - that is, how to construct graphs -, when to
reduce a function and - related to this - when to request a remote graph. Yet, instructions
that indicate the need for a certain graph at another processor can hardly be regarded to
represent a basic abstract reduction step. At the same time garbage collection remains
completely hidden. The abstract machine assumes that garbage collection and transmission
of graphs exist, and it tells what they should do, but it does not clarify how they should be
realised.

Solving both problems is far from trivial. If one considers garbage collection, one
may choose from a number of techniques, varying from on-the-fly collectors, to stop-and-
collect techniques. Each has its advantages. Similar problems exist for transmitting graphs.
How do we arrange transmission? What protocol do we need? What happens when a graph
is requested that for some reason cannot be transmitted directly?

A complicating factor with respect to garbage collection is that Clean allows cyclic
graphs and speculative parallelism. Dealing with cycles in a system with distributed
memory is known as a hard problem. Additionally, speculative parallelism allows existence
of processes that produce results that are not necessarily needed. If at some point in time it
becomes clear that such a process produces unneeded results - it produces garbage -, this
process should be stopped by the garbage collector. Detecting such a garbage process is a
delicate problem in itself, but additionally, it may be running too fast for the garbage
collector to catch it.

As we have explained in chapter one, Clean employs a lazy graph copying
mechanism. This allows multiple nodes to be transmitted simultaneously so that small
messages are avoided. Small messages give rise to relatively high overheads, so lazy graph
copying reduces communication costs, which is very important in a distributed system. To
realise such a graph copying mechanism we need to copy (or move) nodes locally into a
single message. Thus, the nodes of a graph are gathered (packed) before transmission. This
packing will be referred to as graph copying; building a local duplicate of a graph (in some
appropriate format). If we move graphs, the original will be discarded after copying. Thus,
it is important to make a distinction between (local) graph copying and transmitting graphs
to other processors. The latter requires the former.

It is here that garbage collection and transmission of graphs come together. Garbage
collection requires a graph copying mechanism as well. This is most apparent for garbage
collectors in sequential systems. In contrast to building a message, the garbage collector
uses it to move and compact structures that are in use. This not only applies to a copying
garbage collector, which will copy live data to a new heap and discard the old one, but also
to mark-sweep garbage collectors, which will gradually copy live data to one end of the
heap, thereby overwriting the old structures. Consequently, graph copying and copying
garbage collection for a sequential system are almost synonymous.

This chapter will treat garbage collection and transmission of graphs simultaneously,
partly due to this strong relation. However, we will not focus on the graph copying

Introduction 91

algorithm itself, which is fairly straightforward, akin to a common copying garbage
collection mechanism. Instead we will show how graph copying can be used to realise
distributed garbage collection and transmission of graphs. We will demonstrate which
communication protocols and which data structures we employed to manage distributed
graphs. The main emphasis will be on implementation issues such as efficiency, reliability
and feasibility.

5.2. Representing references to remote graphs

To manage distributed graphs we need a few additional data structures. Basically, we
require a way to represent a references to remote graphs. This section will explain how this
has been provided in the Clean system.

5.2.1. Channel nodes

The parallel ABC machine uses special function nodes - channel nodes - to refer to graph at
other processors. Such a channel node has the same semantics as an ordinary indirection
node. Evaluation is equivalent to evaluating the remote graph itself if it were stored at the
current processor. As a consequence, every channel node that is being reduced should
eventually be overwritten by the root normal form of the remote graph that it refers to.

To achieve this behaviour, evaluation of a channel node will result in a series of
operations. First, after locking the channel node, a request message will be sent to the
processor that contains the referred graph. If the graph is in root normal form it will be
returned immediately. The channel node will then be overwritten by the evaluated root
node. And finally, the processes that are suspended on the channel node will be released.

However, it may be the case that the requested graph has not been reduced yet. If a
process is already reducing it, we simply administer the request by inserting a special
answering function in the waiting list of the remote graph. Otherwise, we start a new
process on the graph first. The functional strategy guarantees that a root normal form will
be reached if it exists. After evaluation (to Root Normal Form), the reducer will release the
waiting list of the remote graph by evaluating all functions in it. Thus, all requests will be
answered, and the channel node will eventually be updated, analogous to the previous
paragraph.

In practice, handling requests can be slightly more complicated sometimes. The
Clean runtime system makes extensive use of asynchronous communications and adaptive
routing to avoid unnecessary sequentialisation. As a result, it is possible that a request
arrives ahead of the graph itself. In such cases we create place-holders (empty nodes) to
keep track of requests. The graph itself - i.e. its root node - will then be placed in this empty
node when it arrives.

5.2.2. Indirection tables

Keeping track of remote graphs is not trivial, because the addresses of nodes may vary, due
to compacting garbage collections, as we will see below. To cope with this we will use an
indirection table. Each processor contains such a table and its entries refers to the locally
stored graphs that are accessible from outside. If the garbage collector adjust the pointers in

92 Managing Distributed Graphs

the indirection table the indices provide fixed node addresses (global addresses) that can be
used in references. Similar approaches have been used in various other implementations
(the PABC simulator, the HDG machine, and the GUM implementation of Haskell).

Channel nodes contain global addresses that consist of two parts: the processor
number and the index of the indirection table entry that refers to the graph. Figure 5-1
depicts the relation between channel nodes and indirection tables in detail.

r1 t1 r0p i p

1

some graph under
evaluation

list of requests

i

2

1

n

indirection
table

iBchannel
channel node

processor A processor B

waiting list

1 : locked function code of arity 1
p : process descriptor
i: indirection table index

r0 : release code of arity 0
r1 : release code of arity 1
t1 : table index node of arity 1

Figure 5-1: The relation between channel nodes and indirection tables. The Clean runtime
system stores an indirection table in the heap of each processor. If it turns out to be
too small it is reallocated in the same way that stacks are. The table may shrink as
well, but not beyond the highest entry that is in use. Waiting processes can be placed
in the waiting lists of both the channel node and the remote graph (the channel node
above does not yet have any, as it will only contain a waiting list field after it has
been locked, in which case it is actually not a channel node anymore, but a locked
node). Requests are stored in the indirection table. It acts as a place-holder when a
request arrives ahead of the graph itself. The waiting list of the globally known
graph does not only hold references to waiting processes (i.e. local ones), but also
the index of the corresponding table entry, so that requests can be retrieved - and
answered- by the reducer that updates the graph.. To accomplish this, the reducer
merely has to evaluate the evaluation code of the waiting list element that contains
the index.

On creation of a channel node to some processor, we need to reserve a unique index
in the corresponding indirection table. One way to deal with this, is to shape the indirection
table as a hashing table. On creation of a channel node one can simply generate a new
hashing key locally. One might take a combination of the processor address and some
locally unique number, so that the resulting key is globally unique. The hashing table will

Representing references to remote graphs 93

map this key to a single table entry. The advantage is that no delays are introduced on
obtaining an address. The disadvantage however, is that managing the indirection table
becomes more complex. Not only are additional structures needed to accommodate
multiple graphs in a single hash table entry, but this method also allows the use of a key for
which no corresponding physical table entry has been created yet. This can be problematic
if at some point in time status information needs to be stored in a table entry during garbage
collections, for instance to detect communication errors (see the subsection on deadlock-
free protocols). Dealing with such problems in another way may be less efficient, and it can
be a nuisance, especially in prototype implementations, because it complicates
communication protocols.

We have adopted another solution that simply uses buffered streams of allocated
indexes coming from different processors. Allocating an index can be achieved by taking
an index from the appropriate stream. In general, this avoids delays. Such a stream has the
additional advantage that it is able to carry remote load information. This solution turned
out to be sufficient for the programs we tested. However, it might be necessary to switch to
using hashing tables if obtaining global addresses proves to be a bottleneck nonetheless.

5.2.3. Tracking of duplicates

Channel nodes can be duplicated and transmitted to other processors. It is possible that
different channel nodes to the same graph end up at the same processor. The first time that
one of these references is evaluated the graph will be copied to the processor that holds the
channel node. However, evaluation of the other reference will result in another duplicate at
the same processor. If possible, this should be avoided. However, we will see below that
dealing with this problem can add too much complexity to the implementation.

channel 2

channel 1

processor A

copy

processor B

g

processor A
copy of g

copy of g

Figure 5-2: unwanted introduction of duplicates

We should note that this problem does not occur if one merely shares a remote
expression. In this case one would share the reference to the remote object (the channel
node) and not the remote object itself. To obtain situation above, one would either have to
copy a graph that incorporates two different deferred nodes that share some sub-graph, or
one would have to create two processes that share a deferred graph and start them up at the
same processor. Clearly some effort is required to obtain the situation of figure 5-2.

One way to deal with this, is to maintain sharing of graphs in all circumstances, so
that duplication of graphs is avoided altogether. Graphs will not be copied, but moved.

94 Managing Distributed Graphs

Different references to the same graph may exist, but if the graph moves all references will
be redirected to its new location. On the one hand this avoids needless duplications, but on
the other hand it also introduces needless retransmissions if graphs are needed at several
processors. So instead of not detecting some locally cached graph, we have obtained a
severely restricted form of caching, which in some cases equals no caching at all (see also
the subsection below on copying work). This can have a serious impact on performance, so
we will not consider this here. In contrast, we will focus on detecting references to different
instances of the same graph. We will discuss the possibility of tracking local duplicates in
order to avoid unnecessary additional duplication.

The GUM implementation of Haskell uses two hashing tables to accomplish this in
certain situations (Hammond et al., 1995). The first maps local address to global addresses.
This is used to ensure that every graph has at most one global address, so that references to
the same graph are easily recognised. The second table maps global addresses to local ones.
This identifies locally available copies of the remote graph. On evaluation of a channel
node one first checks if the graph is locally available already.

There are some problems with such a solution. Depending on its intended scope it can
imply notable extra costs, and even then it may not be able to track all duplicates. Consider
the case that some graph g at processor B gets copied to processor A and that a channel
node at A refers to a sub-graph s of g at processor B (see figure 5-3). Transmission of s to A
results in a partial duplicate of g. If we use hashing tables to detect this form of sharing as
well, transmission of graphs will become considerably more costly. During the original
transmission of g to A we would have had to check the entire original graph at B for
possible remote references before sending. The detected global addresses should have been
included in the message and used to update the hashing tables at A, enabling it to detect
local availability of s later. This is highly undesirable, because without such mechanisms
graph copying already can be a bottleneck (see chapter 7). Note that we have to include all
global addresses in the message, not just the ones from A, because we normally do not
know where references come from (as keeping track of this would be expensive in a
distributed system and irrelevant for ordinary reduction).

channel 1

processor A

copy

processor B

g

schannel 2 channel 2

processor A processor B

scopy of s

copy of g

Figure 5-3: Subsequent evaluation of channel 1 and channel 2 will result in duplication of
s at A.

Still, all this extra work is not sufficient. A channel node may possibly not refer to a
shared sub-graph directly. Reconsider the example above and reverse the order in which
channel nodes are evaluated. At some point in time, processor A will then have received a

Representing references to remote graphs 95

sub-graph s from processor B. It additionally contains a channel node that refers to g, which
might be a single non-shared node at processor B that refers to s (see figure 5-4). For
instance, the root of g may be a selector function on s, or more obscurely, the result of such
a selector function: even if the original selector node is overwritten by a node from s, its
global address will differ from the one in s, which possibly does not have any global
address at all. If processor A tries to map the global address of g to a local one this will not
succeed, because it does not have a local equivalent of g already. To deal with this - i.e. to
avoid sending s for a second time -, processor B would at least have to keep track of the
destination to which it has copied any of its nodes earlier. In addition it would have to
know which of the copies still exist. This would be very expensive.

channel 1

processor A

copy

processor B

g

schannel 2

channel 1

processor A processor B

scopy of s

g

Figure 5-4: Subsequent evaluation of channel 2 and channel 1 will result in duplication of
s at A

The proposed hashing mechanism may be insufficiently powerful, but the main
question is, whether the cases it can detect justify its implementation. This is unclear. In
any case, it has serious problems in a few important cases. Firstly, during the creation of
two processes on a shared argument it will not automatically avoid copying the argument
twice, because then the initiative for transmission is taken by the sender and not by the
receiver. The hashing method will only become effective after requesting additional parts
of an argument (if part of the argument was deferred). In addition, as has been pointed out
above, it has serious problems when two graphs - say g and g' - partly overlap as shown in
figure 5-3 and 5-4. This form of sharing is easily introduced in lazy functional languages,
for instance, by passing a single argument to two functions. It is questionable whether the
remaining detectable cases constitute a major part of the duplication problem in practice.

And even if they do, it might be better to allow the programmer to deal with this so
that runtime overheads are avoided. For instance, instead of starting up two different
remote processes with the same argument, one rather might have started up merely one.
This process could then start up additional internal processes which all share a single
channel node to the argument. Alternatively, one could also transmit the argument before
starting up several processes on it (simply by starting an identity function on the argument
at the correct processor and subsequently starting the processes on the result).
Alternatively, using random process allocations in large networks will make it less likely
that different references to the same graph end up at the same processor. And finally, it
might be possible to conveniently deal with sharing and duplication with suitable language
constructs and (profiling) tools.

96 Managing Distributed Graphs

In any case, the best way to solve this problem is still unknown. We have not yet
acquired enough experience with parallel functional programming to establish the need for
tracking (certain) duplicates. Nor do we know whether programmers - or runtime systems -
can adequately deal with this problem. For practical reasons, we have chosen to refrain
from attempting to implement - and test - hashing techniques to partially track duplication
of graphs. This would have introduced too much work, while the example programs in this
thesis do not suffer from the problems depicted above. We only try to maintain sharing
within the graphs that are transmitted in a single message. This can be done in a relatively
cheap way, using forwarding addresses during graph copying. In the next section we will
have a closer look at this.

5.3. Transmission of graphs

Transferring a graph to another processor involves several phases. First of all, we must
pack it in a message. Next, we can transmit it to another processor, possibly after ensuring
enough memory is available. Doing so, one has to be careful not to introduce deadlocks.
And finally, after the copy has arrived, it needs to be unpacked, which mainly involves
adjusting pointers. We will examine these phases in more detail below. In addition we will
discuss the possibility of avoiding copying of work, as this is closely related to the way that
graphs are transmitted to other processors. And finally we will focus on realising deadlock-
free protocols.

5.3.1. Packing a graph

To pack a graph, the Concurrent Clean graph copying mechanism walks over the original
graph and copies all nodes it encounters in a contiguous area in the heap. It uses marks and
forwarding addresses to detect and maintain local sharing and local cycles. Doing so, the
original graph gets corrupted, but it can be restored afterwards, by traversing the copy.

Copying will stop at deferred nodes. A new reference (a channel node) will be created
to such a node, which replaces the copy. The effect is, that copying gets postponed at
deferred nodes. It will automatically be resumed later if a process tries to de-reference - i.e.
evaluate - the new channel node (see the previous section). Note that any copying
mechanism should at least copy the root node of a graph that has been reduced to root
normal form, because the goal of transmitting a graph in root normal form is to update a
channel node with it.

In addition to deferred nodes, copying will always stop at channel nodes. More
precisely, copying will stop after copying a channel node: the channel node itself gets
copied, but it will not be de-referenced. Thus, a new reference to the remote graph is
automatically created. Clearly, this is the best thing to do, as there is no reason why a
remote graph should be copied to the current processor only to be sent away to another one
(except perhaps for maintaining sharing at extremely high costs).

The partial duplicate that is obtained this way can almost be put in a single message
and sent to another processor. It only lacks relocation information. To be able to adjust
argument pointers we include the address of the copied root node. Descriptor fields are no
problem, as these contain indices in a (standard) table that is stored on every processor. A

Transmission of graphs 97

constructor is represented by the same index throughout the network. Code pointers on the
other hand may vary and therefore, they are replaced by their corresponding descriptor
index (see also figure 3-6). This also allows the use of heterogeneous networks.

It would be possible to compress the copy before transmission (see also van
Groningen, 1992). We will not do this, as the transmission costs are usually not a
bottleneck on the transputer. In contrast, packing itself can be more of a problem, as we
will see in chapter 7. This will only become worse when using compression techniques.

copya

bd

c

channel 1

a channel 2 c
0 1 2

channel 1
3

1 2 0 3

bd

a

channel 1channel 1

c

original graph

packed graph

Figure 5-5: Packing a graph rooted by node ‘a’. The node with symbol ‘b’ is deferred. The
top cycle is broken up here. In contrast, the cycle over ‘a’ and ‘c’ is maintained.

5.3.2. Transmission

Messages are always created in the heap, which eliminates the need to implement separate
message buffers (of arbitrary size). They are constructed from standard nodes
(constructors), so that reducers conveniently can carry around messages on their stack
without any danger of messages being destroyed by the garbage collector. This also allows
sharing of (parts of) messages, which can be employed to send large messages to several
processors without having to duplicate them physically in the heap.

Creating messages in the heap has a downside as well. Garbage collections will move
heap objects. Consequently, messages are subject to relocation. This may happen while
they are being sent by the transputer link hardware, which operates independently of the
CPU. For this reason, the links cannot simply read - or write - data directly from the heap
during a garbage collection. Therefore, the router (see chapter 2) always copies messages in
its own buffers before sending. If necessary, this can be avoided, during the time between
two garbage collections, but only at the expense of extra checks within the router software.

To transmit a message, it merely needs to be appended to a special list of outgoing
messages in the heap. The router continuously checks this list and picks out messages for
transmission (in a fair manner). It guarantees arrival, so after putting a message in the
message list, one can safely proceed without waiting - or checking - for an
acknowledgement. Consequently, communication is asynchronous as far as reducers are
concerned. Additionally, the router splits up large messages into packets, to which it
appends the position in the original message. This allows the receiver to reconstruct the
original message from all parts.

98 Managing Distributed Graphs

To facilitate unpacking of graph messages, we guarantee that the constituent packets
will be stored in the correct order in a contiguous (relocatable) area of the destination heap.
To achieve this, we need to allocate this area before storing the first packet that arrives.
This does not have to be the first packet of the original message, as packets may arrive out
of order. For this reason each packet includes the size of the whole message. A drawback
is, that we cannot overlap packing and transmission, unless we split both tasks up, which
might lead to some additional loss of sharing.

We use different allocation protocols depending on the size of a message. For small
messages, we assume that enough free space is available in the destination heap. We just
transmit the message and allocate memory at the moment the first packet arrives. Most of
the time this will succeed, keeping delays to a minimum. However, if it fails, the whole
message is discarded and a new one must be transmitted. This increases the transmission
costs occasionally, but for small message this will not be too serious. This protocol requires
that the source processor keeps a copy of the message for as long as the destination process
has not properly stored it. Retransmission and acknowledgement messages are handled by
the processes of the underlying runtime system. For reducers, transmission appears to be
asynchronous.

Large messages on the other hand, will not be transmitted until memory has been
allocated at the destination. This avoids costly retransmissions. On the other hand, delays
will be larger because the destination has to grant permission for transmission. However,
the runtime system handles the control messages that are needed to achieve this, so that
reducers can safely proceed after submitting a message.

5.3.3. Arrival

The router never queues incoming packets to be processed later, as this may give rise to
buffering problems (see also the section on deadlock-free protocols below). It rather
processes packets directly upon arrival. It has associated a packet-handling routine with
each kind of packet. This will be executed as soon as a packet arrives. To avoid deadlocks,
the runtime system only employs routines that never fail and immediately free the router
buffer (see also section 5.3.5).

After all components of a messages have arrived, the contained graph will be
unpacked. This will take place within the memory space of the message itself, so we do not
need additional memory. Argument pointers are adjusted according to the difference
between the original address of the root node and the new one. The descriptors of
constructors do not need to be changed. Conversely, the descriptors that are stored in the
packed function nodes are replaced by their corresponding code addresses. These can be
found in the local copy of descriptor table (see figure 3-6).

Transmission of the graph has now completed. Note however that parts of the original
graph at the source processor may still exist. If they are shared by other processes the
garbage collector will not remove them. If so, we have actually duplicated (part of) the
graph.

Transmission of graphs 99

5.3.4. Avoiding duplication of work

This leads us to an important problem, namely duplication of work, represented by function
nodes. This is especially hard, because there is no general way to predict the costs of
evaluating a function node. Potentially, functions represent an infinite amount of work.
Copying function nodes might quickly lead to vast duplication of work. This can be
disastrous for performance.

For comparison, copying data - represented by constructors - is less of a problem,
because in many cases it will be useful to keep copies of data locally available. The use of
caches in (virtual) shared memory systems is based on the same assumption, using the
property that normal forms are unchanging to ensure cache coherency. It will only affect
memory usage and not processor load as well, like duplicating work will. One will
encounter difficulties only when memory is low. With respect to possible techniques to
reshare expressions, note that equality of data - normal forms - is fundamentally easier to
detect than equality of functions.

In contrast, moving data (as opposed to copying) will give rise to unacceptable
overheads if it is needed simultaneously by several processors (all pulling at it).
Additionally it will seriously complicate the reduction mechanism, as one cannot be sure
that an evaluated argument will stay locally available for important operations like pattern
matching.

As a result, data should in principle be copied as opposed to functions (and possibly
processes), which should be moved. If we want data objects to stay unique, they should not
be shared, but passed explicitly between functions.

copya

bd

c

channel 1

bd channel 1

a c

channel 1

copy

original

channel 2

channel 3 channel 4

Figure 5-6: Moving work instead of duplicating it: if node ‘a’ and ‘c’ are function nodes,
the originals will be replaced by channel nodes to their copies (see also figure 5-5).

To realise a graph transmission mechanism that truly moves function nodes we need
to do extra work. The implementation of Haskell on GUM for instance (Hammond et al,
1995), replaces all function nodes of the original graph by references to the corresponding
copies. The first stage of this algorithm is virtually the same as the one above. Hereafter, it
constructs a reply message at the destination processor that includes the new addresses of
copied function nodes. After returning this message to the source processor, the original

100 Managing Distributed Graphs

function nodes are updated by channel nodes that refer to their copies. To avoid reduction
of the original function nodes while they are being moved, they remain locked during this
time.

To decrease delays on evaluating a node that is being moved one might allocate
references to the new positions on beforehand: one may update the original function nodes
with references to remote place-holders that will eventually be filled with the copy. In this
way, a process will not merely block on a moving node, but send a request for it as well
(which might even overtake the node itself).

Unfortunately, this moving technique has some practical disadvantages. First of all,
the time it takes to complete a successful transmission might become rather high in large
systems. In general, communication costs will increase because a - possibly large - reply
message needs to be sent. Secondly, handling large graphs becomes more complex, because
now not only space has to be reserved for the graph, but also for the reply message, which
may have a considerable size as well (see also the subsection on deadlock-free protocols).
Thirdly, moving a function node repeatedly will leave a trail of channel nodes behind. One
will have to traverse these in order to get to the result of the function. Such chains have
indeed been observed for some programs in the GUM implementation of Haskell. And
finally, the moving algorithm is not able to determine which function nodes it needs to
replace by a reference to the corresponding copy. It simply replaces all, because it lacks
sharing information. Apart from the - possibly pointless - replacement overheads
themselves, this introduces two additional drawbacks. Firstly, adding references needlessly,
will result in superfluous overheads during subsequent garbage collections, which will
remove these references (as the garbage collector does have enough sharing information).
Secondly, as we can see in figure 5-8 (reconsider also figure 3-3), nodes may not be large
enough to hold a reference. As a result, updating a graph may increase its size considerably,
leading to all sorts of memory management problems.

As a consequence we will use a different way to avoid the dangers of copying work.
Instead of moving function nodes, we will never copy them implicitly. One can only copy
work by annotating it, so that it is only duplicated explicitly. The next chapter will focus on
this in detail. It will show that this solution does not lead to an awkward style of
programming but that programs more clearly reveal what will be computed where. It will
provide distributed lazy normal form processing.

5.3.5. Realising deadlock-free Protocols

The routing mechanism that has been presented in chapter 2 prevents deadlocks provided
that messages are consumed within a finite amount of time at the destination. Other routers
inevitably have a similar requirement, which protocols built on top have to fulfil in order to
provide deadlock-free communications. For this reason, the Clean runtime system
immediately stores a packet on arrival, processes it in some way, or discards it (e.g. during
garbage collections), so that the router buffers are freed as soon as possible.

A delicate problem is imposed by messages that require some answer to be returned.
The reply message cannot always be created in the heap, because a processor may
temporarily have run out of heap space (during garbage collections). Likewise, one cannot
simply postpone creation of such a message until more convenient times, because this

Transmission of graphs 101

either blocks the routing mechanism for a considerable time, or it requires administration of
the request, which consumes memory as well. On the other hand one cannot use the buffer
space of the incoming message to construct the answer, as this could introduce deadlocks.
To deal with this, either the routing mechanism has to be adapted - for instance by
increasing the number of buffer classes -, or one has introduce additional constructs at a
higher level that allow freeing a buffer directly on arrival of a message.

Extending the routing mechanism seems an elegant way to provide safe reply
messages. It has the advantage that higher level protocols remain simple. However, the
proper way to do this depends on the characteristics of these higher level protocols (such as
the size of reply messages and the number of times a message may ‘bounce’ back and
forth). Especially in a prototype implementation, these are likely to change. In addition,
routing mechanisms typically exploit certain properties of the network topology. The Clean
router for instance, allocates buffer space according to the network diameter. Such an
approach is rather static, in the sense that it cannot not adapt its use of resources to runtime
demands. And finally, changing a router requires careful reconsideration of the algorithm it
uses. These are often complex and hard to adjust. Hardware routers may not be expandable
at all. This limits portability. Therefore, we will stay with a basic routing mechanism and
examine if we can devise a safe protocol on top of it.

One way to achieve this would be to allocate reply messages in a separate memory
space. Time-outs could be used to detect failure due to lack of memory. The problem with
such a solution is that it complicates the end-to-end protocol considerably. One would have
to deal with needless retransmissions, and tuning the system to a particular network
topology. These problems are essentially the same as those in a system that contains
unreliable communication links. As transputer networks - and many other parallel machines
- commonly do not belong to this category, it seems odd to adopt such a solution.

A better way would be to limit the number of requests a processor can submit to
another one at any moment in time. If the number of unanswered requests reaches a certain
point, new requests will be queued at the source processor, or sent to a different processor
if this is possible. The destination should have allocated enough memory in advance to be
able to handle any request up to this allowance. Note that reply messages should have a
limited size as well in order to make this possible.

A small allowance might introduce too much synchronisation between two
processors. To deal with this, it will need to be increased, requiring the allocation of
additional memory for constructing reply messages. This can be done at runtime, which is a
considerable advantage compared to extending the underlying routing mechanisms.
Depending on the memory use, a processor may alter the allowances of others. This will
also help in balancing the processor load.

In a way, the Clean runtime system already incorporates a simple form of a self-
regulating allowance. If we allocate an entry in the indirection table, we automatically
increase the allowance for handling certain messages. Each entry provides some (tiny)
amount of space for constructing, postponing, or even avoiding reply messages. Note that
this requires the physical existence of a table entry in certain cases, which makes the use of
locally generated hashing keys to represent indirection table indices less attractive (see
section 5.2.2).

102 Managing Distributed Graphs

We have not yet adopted any complete solution for practical reasons. In our prototype
implementation protocols are likely to change, while future communication hardware is all
but established. At the moment we use a dedicated message buffer for allocating reply
messages. This has turned out to be sufficient for most tests. Only in a few cases, after
memory became scarce, the number of reply messages increased to such extent that the
buffer became depleted.

5.4. Garbage collection

As the previous section has pointed out, many problems are related to memory
management. They do not figure in ideal systems that have an unlimited amount of
memory. Real systems with finite memory need some form of garbage collection that
reclaims unused space. This complements graph transmission and graph creation.

5.4.1. Sequential garbage collection

Copying garbage collectors (see Minsky, 1963) are commonly used in sequential systems.
They are known for their efficiency if relatively little memory is in use. Additionally, they
automatically compact the heap so that fragmentation is avoided and fast memory
allocation is sustained. The main drawback is that only half of the available memory can be
allocated.

Mark-scan collectors (see Cohen 1981) do not have this disadvantage, but they are
less efficient when little memory is used, as they need to scan the entire memory space.
Therefore, the sequential Clean implementation combines both techniques to track live data
(Sansom, 1991). It uses a copying collector when memory demands are low, and switches
to a compacting mark-scan (mark-sweep) collector (van Groningen, 1993) when memory
usage surpasses a certain threshold.

Reference counting mechanisms are less appropriate for sequential implementations.
This has several reasons. First of all they do not automatically compact the heap, which
may lead to fragmentation if nodes have various sizes. Secondly, they tend to increase node
size, as reference counts need to be accommodated in each node (except perhaps for nodes
for which the reference count is known at compile time. See also the next chapter on
uniqueness). In particular, this is a problem for small nodes. Thirdly, reference counts need
to be maintained always, even in the face of abundant memory, giving rise to unnecessary
computational overheads in this case (note however that reference counting can be cheaper
if memory is scarce). But most importantly, reference counting cannot reclaim cyclic
structures.

5.4.2. Distributed garbage collection

In an architecture with distributed memory though, collectors that track live data (tracking
collectors, such as copying collectors and mark-scan collectors) are less valuable. First of
all, they do not have an apparent distributed equivalent. To be effective they need to
construct a global overview of the distributed system. This may take considerable time due
to communication overheads. Meanwhile, garbage will persist. This can introduce
considerable delays at processors that do not have any free memory left. The global view

Garbage collection 103

may be blurred as well. Unless one forces all processors to a full stop - which can be
extremely costly -, one can only compute an approximation. Secondly, in a distributed
memory machine, there is no clear relation between the total amount of garbage and the
invocation of a garbage collection. Some processor heaps may be full, but many others may
not contain much garbage. This contrasts sharply with tracking garbage collections in
sequential implementations, which will only be applied when there is absolutely no space
left and a reasonable amount of garbage is likely to exist. This makes the efficiency of
copying and mark-scan collectors hard to predict in a distributed environment.

For comparison, reference counting operates on-the-fly by default, so that processors
do not need to be stopped. It removes garbage as soon as it is comes into existence - which
avoids delays -, and it remains idle otherwise. The costs do not depend on quantities that
are indirectly related to the amount of garbage, such as the proportion of the heap that is in
use, the total amount of heap space, or the frequency of garbage collections. The overheads
solely depend on the amount of garbage that is produced and up to a certain point they are
localised to the appropriate areas as well (only nodes that are reachable from the detached
one are affected).

Furthermore, one can avoid many of the disadvantages of reference counting by
employing it for inter-processor references only (see also Kingdon et al. 1991). For each
processor this will determine which globally accessible nodes are garbage. Locally, a
traditional tracking garbage collector can be used to remove all nodes that are not reachable
from outside (through one of the live global nodes). This collector will basically be invoked
when the local heap fills up, analogous to single-processor implementations. In turn, this
will indicate which references to other processors are garbage. This is related to lazy
garbage collection, which avoids a recursion stack to update reference counts (Glaser and
Thompson, 1985). In this way we retain the advantages of copying and mark-scan
collectors for most nodes (compaction of each local heap, small node size, reclamation of
local cyclic structures).

On the other hand, this hybrid solution does reintroduce some of the delays that are
typical for tracking collectors. To deal with this problem, it may be necessary to decrease
delays by introducing additional local garbage collections for advancing reference count
information in time. One sometimes needs local garbage collections on lightly loaded
processors to allow removal of garbage on heavily loaded ones.

Nonetheless, the hybrid solution introduces less overheads than a global tracking
mechanism. The latter always introduces garbage collection overheads on lightly loaded
processors, whereas the former can limit the number of extra collections by introducing
them only when ordinary collections could not free enough memory on certain processors
(that lightly loaded processors have references to). In general, delays are less serious for the
hybrid garbage collector, as they are not introduced at the top level of the distributed
garbage collection, but at each node that gets detached. All in all, the combined solution is
better suited for distributed systems than tracking or reference counting alone.

5.4.3. Weighted reference counts

Using a straightforward implementation of this reference counting scheme two problems
remain. Firstly, cyclic structures can only be removed if they do not cross processor

104 Managing Distributed Graphs

boundaries. Distributed cyclic objects need to be collected with a different method. We will
examine this later. Secondly, pure reference counting in a distributed system implies that
messages are needed to update reference counts. We need both increment an decrement
messages and this may lead to racing conditions. If a decrement message arrives before an
increment message, a node might be destroyed that is not garbage at all.

weight 10

reference
count 10

add
reference weight 5

reference
count 10

weight 5

reference
count 5

weight 5

remove
reference

Figure 5-7: Weighted reference counting.

This problem can be solved by using a weighted reference counting algorithm
(Bevan, 1987; Watson and Watson, 1987). As the name suggests, it assigns a weight to
each reference (i.e. each channel node). Initially, the weight will be some huge power of
two. The ‘reference count’ of each node equals the sum of the weights of all references
pointing to it. On duplication of a reference, the reference count will not be increased, but
the weight will be equally divided over both references. On removing a reference, the
reference count will be decreased by the corresponding weight. As always, a node becomes
garbage when its reference count drops to zero. As a result, only decrement messages are
needed. The main drawback of this method is that indirection nodes are needed when the
weight cannot be split any further. In practice this does not happen very often, but in a few
cases it might present a problem (see the proposed broadcast mechanism in chapter 8).

Additionally, weighted reference counting introduces a slight practical problem. In
addition to duplicating a reference to a remote graph, it is also possible that a new reference
is created to a locally available node that already has a global address. If we strive to
maintain a single global address for each node we must increase its reference count. This is
problematic if such a number is a considerable power of two already. Therefore, we do not
preserve unique global addresses, but we create additional ones, each with its own
reference count. Consequently, several indirection table entries may refer to the same
graph. If multiple requests arrive via various entries, a distinct waiting list element will be
stored in the waiting list of the requested graph, each referring to one of these entries (see
figure 5.1), so that the updating reducer can find all requests.

5.4.4. Garbage collection as implemented in Clean

Here, we will show how we have extended an ordinary copying garbage collector to realise
local garbage collections as described above. It does not remove cyclic structures that are
distributed over multiple processors, nor does it detect garbage reducers: only stopped and
empty processes are removed. This means that we assume that processes refer to graphs
that are connected to the root. If not, they should stop themselves in due time, so that they
can be removed. Six phases can be distinguished.

Garbage collection 105

1. The algorithm starts by inspecting the indirection table for live processes. We not
only use the indirection table to give global addresses to graphs, but to processes as
well. This address is generally referred to as the process id (the pid). An entry may
refer to the private heap of a process (see also figure 3-2). From there one can reach
the registers and the stacks of a process. The first phase determines which processes
should be copied. It removes stopped processes from the indirection table, so that
they will be ignored in the next phases. Empty processes are not removed, simply
because these are never stored in the indirection table.

2. The second phase copies the indirection table to the new semi-space, possibly after
reducing its size.

3. Hereafter, the register sets of live processes are copied. This only applies to off-chip
processes. The on-chip registers are not touched at all: they will stay available as they
are located outside the heap.

4. Next, the garbage collector copies the stacks and the private heaps (excluding the
nodes in it) of all live processes. If necessary, their size will be reduced. All on-chip
stopped processes automatically become empty ones, as they are not stored in the
indirection table anymore.

5. This phase performs most of the work. For every entry in the indirection table that
has a non-zero reference count, it copies the graph it refers to. Additionally it copies
the graphs that are reachable from the stacks and the registers of live processes. For
this we use a common copying garbage collection mechanism.

6. The last phase examines the original set of channel nodes in the semi-space that has
become garbage. If a channel node does not contain a forwarding pointer it has not
been copied, so it has become obsolete. In that case, the channel node is transformed
into a decrement reference count message and appended to the outgoing message list.

To realise the last phase in an efficient way, we need some structure for tracking all
channel nodes that have become garbage in a particular age (the time between two garbage
collections). We have achieved this by uniting all channel nodes in a doubly linked list.
This list will be preserved until the last garbage collection phase. At that moment it will be
traversed to filter out all garbage channel nodes and transform these into decrement
reference count messages. Simultaneously a new list will be constructed in the new age.

channel left right procw table id

links global addressevaluation code

w
e

ig
h

t

0 32 64 96 128 160

Figure 5-8: The final layout of a channel node.

As a result, channel nodes are rather large. The figure 5-8 shows all fields of a single
channel node. The two links to the other channel nodes take one word (32 bits) each. To
avoid any hard limit on the size of the indirection table - and to enable some experiments
with tables of a different structure - one should keep the size of the table id fairly large. We

106 Managing Distributed Graphs

have reserved an entire word for it. The processor id on the other hand can be slightly
smaller, because the number of processors is not very likely to exceed memory size. In
addition, the weight w can be stored as log(w) because it will always be a power of two.
Consequently we have reserved merely five bits for the weight and combined this field with
the processor id, which left 27 bits for the latter. This still allows for parallel machines with
over 130 million processors. Summing up all this, we see that a single channel node takes
five words of 32 bits, which is quite a bit larger than the minimum size of function nodes.
Consequently, one generally cannot replace function nodes by channel nodes without
risking an increase in memory use.

The algorithm above shows the current state of the Concurrent Clean implementation.
Clearly it does not remove all garbage, so it is only a partial solution. The removal of
distributed cycles and irrelevant processes is still problematic. This is known as a hard
problem. Nonetheless, we will have a closer look at this below.

5.4.5. Removing garbage reducers

Garbage processes reduce graphs that are not connected to the root of the computation.
They can only be introduced in a system that allows speculative parallelism. In general, the
removal of such irrelevant processes is considered to be rather hard. This is one of the
reasons that many implementations do not support speculative parallelism at all. However,
as we have pointed out earlier (see section 3.2), this form of processing can be very useful.
In addition, there are some typical forms of processing in which speculative tasks are able
to stop themselves, shortly after they have actually become garbage reducers.
Consequently, it will often be possible to exploit speculative parallelism without requiring
an additional mechanism to kill irrelevant tasks. They can kill themselves. In spite of this,
one cannot always guarantee the absence of garbage reducers if one allows speculation. If
we truly want to take advantage of this form of processing, we still need to find a way to
remove garbage reducers without introducing substantial overheads.

Clearly, there is a strong relation between the relevance of reducers and the
neededness of graphs. On the one hand a reducer is irrelevant if it can only touch nodes that
are garbage. On the other hand, live reducers determine the reachability of graphs. This
becomes apparent if we consider locked nodes. These do not contain any references to the
sub-graphs that are required to compute them. Instead, these graphs are stored in the
registers and the stacks of the reducing process (see figure 5-9). In this way they
automatically become garbage as soon as the reducer pops them from the stack, and not
merely after it updates the locked node. As a result one cannot discard any of the graphs
that are reachable by a live process (the nodes that are reachable by process p will be
referred to as ‘the nodes of p’). Consequently, the most promising approach for detecting
garbage processes is to link it to ordinary garbage collection.

This is not trivial. Garbage collectors commonly only follow live data. These tracks
do not lead to any garbage reducer. This means one would have to find all live processes
and discard the remaining ones, similar to ordinary garbage collection. This is problematic
as well, because graphs do not refer to reducers in general. No node contains information
that reports which process might still reach it. At best, one can only tell which reducer is
reducing a particular locked node.

Garbage collection 107

process p

locked node
A

B

the arguments of process p

the node that process p
will update

Figure 5-9: If a locked node is reachable (via A), the process that locked it
is reachable as well, and so are its arguments. A garbage collector
can easily detect this, provided that it has a way to get from the
locked node to the process that locked it (the dotted arrow). In
general this is no problem, as a process can leave its mark in each
node it locks. However, if merely the argument graphs are reachable
(via B), process p may be considered reachable as well, as it might
reduce reachable nodes. Unfortunately, the garbage collector cannot
quickly detect this: it does not have a link from the arguments to
process p.

If our goal is to find all live processes, it seems we would have to extend ordinary
garbage collection in an rather elaborate way. After tracking all nodes that are reachable
from the indirection table, one would have to start tracking the nodes of each process. If it
turns out that none of these nodes have been encountered earlier, the process might be
garbage. However, we cannot be sure until we have tracked all processes. If another live
process refers to a node of a process that was presumed garbage earlier, it will not be
irrelevant after all and its nodes will have to be preserved. Possibly this will also force
rehabilitation of other processes that were accused of being irrelevant earlier (see figure 5-
10).

connected

p (unknown)

unknown

q (presumed garbage)

connected

p (alive)

connected

q (alive)

Figure 5-10: If it turns out that process p is able to reach a connected part of the graph it
is not garbage. All nodes that are reachable by p will then become connected as well.
This might include some nodes of a process q that was judged irrelevant earlier. If so,
q will stay relevant after all.

108 Managing Distributed Graphs

This form of garbage collection can be rather costly in some situations. This depends
on the order in which processes are considered and the existence of garbage processes.
Most of all, it matters whether the root node of a live process is reachable (reference A in
figure 5-9), or merely some nodes at the leaves (reference B in figure 5-9). Usually, the
former will be the case. If we start by tracking such processes in the right order, we will
quickly detect that they cannot be removed, without temporarily mistaking them for
garbage processes. This means we can use an ordinary garbage collection mechanism on
these processes, without the need to perform substantial additional checks. In contrast, the
classification of the remaining processes will introduce more problems. First of all, we can
only discover a - possibly - irrelevant process after checking all its nodes, instead of just
one (or a few). Once we have detected a process that does not refer to a connected part of
the graph we must take into account that we might re-encounter one of its nodes later, while
tracking the remaining processes. To enable detection of such nodes - and of the
corresponding process(es) - we possibly have to store extra information in them, requiring
additional traversals for restoring them if they turn out to be reachable later.

A much simpler approach is possible if we allow the use of an alternative definition
for a garbage reducer. One might consider a reducer to be irrelevant if no node that it has
locked is reachable from the root of the computation. Removing such a reducer is safe, as
the final result does not depend on updating any of these locked nodes. Any process that
gets blocked on a garbage locked node must be garbage as well.

Note that we will remove more processes than before. A reducer that has not locked
any reachable nodes will be killed, even though it might still evaluate a reachable one later.
This is not as odd as it might seem: if a reducer is started on some graph, the first thing it
does, is locking the root node (consider also figure 5-9). This node will eventually be
updated with the result of the computation, directly followed by the death of the reducer. If
at some point before its update the root becomes garbage, the speculative computation as it
was meant to occur will not be of any interest anymore, even though some sub-computation
might still be useful. The new definition avoids keeping a large computation (and the
associated data) merely because a small part of it is still needed. If it the sub-computation
remains needed it will automatically be computed by a separate process later.

Note that similar arguments hold for other forms of processing. A stream process, for
example, will not die after evaluating a node, but continue with the evaluation of other
nodes. Such a process will have locked its continuation node by the time it updates the root.
The continuation node will then become the new root, which has to stay reachable in order
for the process to be useful.

This has important practical advantages, because detecting garbage processes
becomes much easier. Note that it is possible to adapt locking of a node in such a way that
it becomes possible to identify the reducer that locked it (the dotted arrow in figure 5-9).
This does not have to introduce any additional costs. If we use marks to distinguish live
processes from irrelevant ones we can use the following (local) garbage collection
algorithm.

• First, unmark all reducers. For a start, they will all be considered garbage.

Garbage collection 109

• Next, copy all nodes that are reachable from the indirection table (i.e. perform phase
5 of the garbage collection algorithm presented above). Each time a locked node is
encountered, the reducer that locked it will be marked.

• Now, repeatedly pick out a marked reducer and copy its nodes. Continue marking the
corresponding reducers if locked nodes are encountered. Repeat this step for as long
as there exist marked reducers whose nodes have not been tracked yet.

• Finally, remove all unmarked reducers. These are all garbage according to the new
definition, because the earlier steps have uncovered all reachable nodes, and thus all
reachable locked nodes. If a process had any reachable locked nodes it will have been
marked.

This algorithm exactly traces live processes in the ‘right’ order, just as the original
one might have done in its efficient first phase. The rest of the processes is garbage by
definition. So, we avoid the costly second phase that checks all nodes of a presumed
garbage process.

In conjunction with fair scheduling this form of garbage collection avoids many of
the problems that are pointed out by Peyton Jones (1989-c). First of all, it is not possible
that a speculative task is removed when it is reducing a node that is reachable by a
conservative one. The locked node will not be garbage in that case, and neither will be the
speculative task. Secondly, there are no problems related to priority upgrades, simply
because we do not need any (see section 3.2.2). And finally, we do not consider the
problems that are introduced by space leaks a legitimate argument against speculative
parallelism. Space leaks need to be avoided in the first place.

Still, one problem remains. As we have indicated earlier, there may be some delay
between detecting and removing garbage. An irrelevant process might live on in its
children, by quickly spawning new processes on other processors. Each new process does
not even have to lock a node - these are garbage anyway -, but it merely has to start up a
new process at another processor before the trail of local garbage collections behind it
catches up. Doing so, it might stay ahead of the garbage collector indefinitely. One may
question whether such processes will be started up speculatively. Especially if the dangers
are so obvious it seems rather awkward to start up quickly spreading processes in a
speculative way. Nonetheless, we will have a closer look at this in the next subsection.

5.4.6. Removing distributed cycles

Cycles that are spread over multiple processors cannot be reclaimed by reference counting
alone. Still, reference counting is very suited for collecting non-cyclic structures. Therefore
it is desirable not to discard reference counting, but to introduce a complementing
mechanism which sole purpose is to remove cyclic structures.

This supplementing garbage collector probably will not have to remove distributed
cycles extremely quickly. In many cases, distributed cycles will be rather exceptional, so
that the original garbage collection methods will quickly free enough memory to maintain
ordinary operation in the short term, while the gradual removal of distributed cycles will
avoid space-leaks on the long run. The effectiveness of such co-operation however,
depends on the characteristics of the application, so it remains to be seen whether a
relatively slow solution for removing distributed cycles suffices in general.

110 Managing Distributed Graphs

If so, it will be worthwhile to reconsider distributed mark-scan algorithms. More
precisely, we will mainly need to focus on the marking phase. Nodes left unmarked may
simply be given a reference count of zero, so that subsequent local garbage collections will
remove them. To avoid stopping all processors, a distributed marking algorithm will have
to run concurrently with normal computations. This can be achieved for example, by using
the local compacting garbage collections for advancing the marks (in the same way as it is
used for introducing decrement reference count messages). Note that it is possible that the
reference counting mechanism removes some nodes - either marked or unmarked - during a
single marking phase. This may reduce the number of nodes that yet have to be visited by
the marking algorithm.

The most evident question in such a system is when to stop marking nodes. Two
alternatives come to mind. For one, it is possible to proceed marking for as long as there
exist nodes that have not yet been visited. However, ordinary reducers are continuously
introducing new nodes and it is most likely that the marking phase cannot keep up, unless
all processes get suspended due to shortage of memory. If few cycles exist, no memory
problems will occur, but the marking phase will not complete and cycles will prevail. If
many cycles exist, memory shortages will arise, leading to a trashing behaviour and
possibly to a full stop of the system. The marking phase will then be able to catch up, but
this will not be much better than stopping the whole system in advance.

Alternatively, the marking phase may stop at nodes that have been introduced since it
started. Only old nodes will be visited. New ones will not be considered garbage, nor will
the old ones that are reachable by new nodes. If no speculative parallelism exists, this
premise is rather harmless. We will assume this for the moment. Now, we can simply
presume that all nodes that are reachable by some process are also connected to the root.
New nodes can only be created by processes, so they will not be garbage at the moment
they come into existence. Consequently, marking not only may start at the root, but at each
process as well, thus accelerating its completion. New nodes will be created with a mark in
them. This marking algorithm will surely stop, but clearly, not all garbage cycles will be
detected in a single run of the marking phase. Nonetheless, if a garbage cycle remains
undetected in the current marking round, it will be reclaimed in the next.

The existence of speculative parallelism complicates matters. We do not like to start
marking nodes from irrelevant processes. In some cases we can prevent this. If we consider
the algorithm for removing garbage reducers that has been presented above, we see that we
do not have to start marking nodes from garbage processes that can be spotted by this
algorithm. There are some cases however, that this method cannot detect. First of all, the
original difficulty of detecting garbage reducers remains. An irrelevant process might
simply outrun the garbage collector by quickly starting up new processes. Secondly, if a
garbage reducer refers to a distributed garbage cycle (i.e. if it is ‘located’ on a cycle) it will
not be recognised as being irrelevant. Both the cycle and the process will persist, provided
that the process does not stop itself and that at least one node on this cycle - or in another
reachable part of the graph - has been locked by the garbage process. Otherwise, the
reducer will be considered garbage even though it effected marking of the cycle. The cycle
itself can then be reclaimed later, if it is not reachable by any other process. Note also that,
if locking is the result of the evaluation of a node on a cycle, the problem might disappear

Garbage collection 111

automatically. Reductions on a distributed cycle might move the cycle to a single
processor, which makes it an easy prey for local garbage collections.

An idea for solving these problems is to limit the life span of processes and to extend
the garbage collector with life-giving capabilities. Processes will only be allowed to run for
a limited period of time, that is, for as long as they do not run out of ‘fuel’ (Haynes and
Friedman, 1984; Wong and Yuen, 1992). To ensure that processes cannot live on
indefinitely by means of their children, they have to divide their energy over their off-
spring. This does not have to be a strict division: it is sufficient that children are started
with less energy than their parent. Eventually, new processes will not get any initial energy,
so they will suspend immediately without any chance of spawning any children. In this way
the problem of unbounded spreading of processes is avoided. The garbage collector on the
other hand, will refuel any process as soon as it is able to verify that it is not garbage.
Additionally, it will not start marking from processes that have run out of fuel. These have
a relatively high probability of being garbage, and at the same time they cannot create any
new nodes, so if they are not encountered in a single marking phase they can be reclaimed.

Unfortunately, it is not so easy determine which processes should be refuelled. At any
moment in time some garbage process might still have some fuel left. Marking will then
spread from such a process and thus, we cannot simply refuel all processes we encounter
during marking. The only processes that are certainly not garbage, are those that are
directly reachable from the root of the computation. However, if we only refuel these
processes, we loose parallelism. So, we need a solution that falls between both extremes.

One possibility to realise this, is to allow processes to pass energy to processes on
which they depend, with the restriction that the total amount of energy does not increase.
Again, we might use the marking mechanism for passing energy from one process to
another (but of course, processes can also do this themselves). If a process passes some
amount of fuel to another one, its own fuel level must drop by the same amount. As a
result, a certain branch of computation - possibly consisting of many processes - will
certainly die if at some point in time all connections to the root are cut off. The total
amount of energy in such an isolated subsystem will gradually drop to zero. Usually,
parents will fuel the children they started, but the converse is also possible if a child
depends on some shared argument that is - partially - computed by the parent.

Note that we cannot simply give new processes a slightly lower fuel level than its
parent. In contrast with the earlier situation, the energy of new processes must be drawn
from the energy of the parent. Otherwise, a process with energy level n might start up
another one with energy level n-1. Subsequently, the parent is able to pass one energy unit -
or more -, and then we have got another process with at least energy level n. This can
repeat itself indefinitely.

These techniques have not yet been implemented, mainly because they are quite
complex and it would take too much time to realise them. This means that we do not know
whether they are able to remove garbage with sufficient speed. Furthermore, it is unclear in
which ways ordinary reductions are influenced by the fuelling system introduced above.
However, our point is that there is no reason to assume that distributed cycles and
speculative parallelism are too difficult to handle. This still remains to be verified.

112 Managing Distributed Graphs

5.5. Performance measurements for parallel programs

Although our garbage collector does not remove distributed cycles and irrelevant
speculative processes this usually does not impede the execution of test programs.
Weighted reference counting is sufficient in many cases. Table 5-1 lists the programs we
have tested initially. These indicate which algorithms give significant parallel speed-ups,
and which constitute a problem. This section will shortly consider the source of the
problems, and it will compare our results with those of other parallel implementations of
functional languages.

Table 5-1: Execution times of some well-known parallel test programs in Concurrent
Clean. The nfib benchmark computes nfib 30. Sieve computes 10,000 primes. Queens
computes the number of solutions of the queens problem on a board of 10 by 10.
Rnfib is similar to nfib, only now floating point numbers are used instead of integers.
The fast fourier programs has been executed on a list of 8000 complex numbers. And
finally, mandelbrot computes a well known fractal in a resolution of 560 by 320
pixels and depth 128.

program number of processors

1 2 4 8 16 32

nfib 30 12.2 sec. 6.5 sec. 3.5 sec. 2.2 sec. 1.4 sec. 1.1 sec.

sieve 19.4 sec. 31.2 sec. 32.1 sec. 23.6 sec. 16.9 sec. 14.5 sec.

queens 47.9 sec. 28.5 sec. 15.1 sec. 9.0 sec. 6.2 sec. 4.7 sec.

rnfib 30 23.7 sec. 12.2 sec. 7.1 sec. 3.9 sec. 2.2 sec. 1.6 sec.

fast fourier 13.8 sec. 11.2 sec. 8.7 sec. 6.3 sec. 5.6 sec. 5.6 sec.

mandelbrot 147.0 sec. 91.0 sec. 54.3 sec. 34.3 sec. 18.2 sec. 10.6 sec.

As we can see in table 5-1, some programs give rather promising speed-ups, while
others hardly give any gain in performance at all. The sieve and the fast fourier program
contain less inherent parallelism than ordinary divide-and-conquer programs like the other
benchmarks. In addition, both programs use asynchronous pipelining (the fast fourier
program uses a pipelined merge function). The problems are mainly related to overheads in
communication. We will take a close look at these efficiency problems in the chapter 7 and
8.

The programs that do perform relatively well exploit divide-and-conquer parallelism
(nfib, rnfib, queens, and mandelbrot). For these programs we used thresholds to control the
grain size of computation. However, speed-ups are not linear. This is caused by load
imbalance. The processor that gets most work determines the overall execution time. This
situation becomes worse as runtimes get shorter: a small deviation in load (in absolute
terms) will then have a significant effect on performance.

We have not (yet) employed any load balancing technique for the divide-and-conquer
programs. Instead, processes have been scattered randomly over the network. This
somewhat balances the load if the number of processes is high enough. Therefore we had to

Performance measurements for parallel programs 113

set the threshold such that enough processes were introduced to balance the load, while also
avoiding an abundance of processes, which would introduce too much overheads.

Unfortunately, mainly these fairly simple divide-and-conquer programs get most
attention in reports on parallel implementations of functional languages. This is even the
case if one uses an interpreter, for which communication overheads are rather irrelevant.
Note also that, if one uses code generation, one commonly does not have much trouble with
these divide-and-conquer programs either. The speed-ups can be kept comparable to
interpreters if one scales the problem appropriately, so that computation and
communication do not digress drastically.

If we consider the results that have been presented for the HDG machine (Kingdon,
Lester and Burn, 1991) we only encounter nfib, the takeuchi function, and the queens
program (see table 5.2 for the nfib figures). The listed execution times are very short, as the
problem sizes have been kept quite small. More complex programs cannot be tested on the
HDG implementation, because it lacks a garbage collector. As we have seen in chapter 4,
the HDG machine produces less efficient code than the Clean compiler. Consequently,
having very short sequential execution times, the Clean compiler has difficulties to obtain
similar speed-ups for these tiny programs, although the absolute execution times of the
parallel Clean programs are always smaller than the HDG programs. For larger problem
sizes the speed-ups in Clean become comparable to those of the HDG machine.

Table 5-2: Parallel performance of the HDG machine and Clean for the nfib benchmark

1 processor 2 processors

HDG 1.28 sec. 0.68 sec.

Clean 0.12 sec. 0.08 sec.

An interesting point about the HDG machine is that it automatically introduces
parallelism. No annotations, nor any thresholds are needed. In addition, the HDG machine
employs some heuristics to balance the load. Unfortunately, the effectiveness of these
techniques is only demonstrated for very small examples, for which the use of annotations
is no problem at all. And, as Concurrent Clean demonstrates, the use of a random process
allocation does not give significantly worse execution times, compared to using the HDG
load balancing heuristic.

The parallel speed-ups of the partial implementation of Concurrent Clean on the
ZAPP architecture are fairly similar to the figures of table 5-1. Table 5-3 lists the parallel
results on ZAPP for nfib, queens and matrix multiplication. The Clean figures for matrix
multiplication can be found in chapter 7 and 8. See also table 4-7 for a comparison of
absolute performance figures between our implementation and the ZAPP implementation.
ZAPP does have slightly better speed-ups for nfib. This can largely be attributed to the
special support for divide-and-conquer parallelism. ZAPP does not support other forms of
parallelism, such as stream processing.

114 Managing Distributed Graphs

Table 5-3: Parallel performance of the ZAPP implementation.

1 processor 8 processors

nfib 30 12.1 sec. 1.69 sec.

queens (on a board of 8 × 8) 2.36 sec. 0.42 sec.

matrix multiply 64 × 64 5.79 sec. 1.67 sec.

And finally, as we have seen before, SkelML lists some results for a ray tracing
program. For SkelML the same applies as for the HDG machine. It is slower than Clean,
but it has similar speed-ups if the problem size is scaled appropriately.

Table 5-4: Parallel performance of SkelML and Clean for a raytrace benchmark.

1 processor 16 processors

SkelML 8.70 sec. 0.83 sec.

Clean 2.31 sec. 0.60 sec.

Concluding, the Clean implementation performs well compared to other transputer
implementations. The limitations of the garbage collector have not yet prevented execution
of test programs. However, some algorithms do not give significant speed-ups. These
programs are often ignored by other implementations, partly because they only support
divide-and-conquer parallelism (or more precisely, because they do not support pipelining),
and partly because of other limitations, such as the absence of a distributed garbage
collector.

6. The influence of Graph Copying on
Runtime Semantics and on Uniqueness
Typing

In the previous chapter, we have explained how to copy graphs. We have seen that a
redex can have a defer attribute, and that copying stops at such a node. These are
rather technical matters. We have not yet considered a more fundamental issue.
Which redexes should be deferred? By answering this question we devise a copying
strategy, which tells the graph copier which redexes to copy, and which not.

Not all copying strategies are equal. First of all, they influence the runtime
semantics. Depending on the copying strategy (a potentially infinite amount of) work
will be copied, moved, or evaluated locally. Clearly, this can greatly influence
performance. Therefore, a copying strategy should be chosen such that programs
maintain a clear runtime behaviour. Secondly, as we will see in this chapter, some
copying strategies are incompatible with uniqueness typing. This is possible, because
uniqueness typing is defined for the standard graph rewriting semantics, while graph
copying forms an extension of these standard semantics.

This chapter has been structured as follows. Section 6.1 will give a short
overview of uniqueness typing. Section 6.2 will identify the conflicts between
uniqueness typing and graph copying. In particular, it will show that the copying
strategy that has been employed in Concurrent Clean so far is incompatible with
uniqueness typing. Section 6.3 will identify possible solutions. Basically, these can
be divided into a group that does not alter the copying strategy, and a group that does.
Section 6.4 will present the solution we have adopted: a different graph copying
strategy called lazy normal form copying. This strategy both avoids uniqueness
conflicts and it improves the runtime semantics of programs. In section 6.5 we will
have a close look at one aspect of this strategy, namely the copying of work. Section
6.6 will show what the new copying strategy implies for the semantics of some
example programs. And finally, in section 6.7 we will list our main conclusions.

6.1. Uniqueness typing

Uniqueness typing (Barendsen and Smetsers, 1993, 1995-a and 1995-b) is an important
techniques to efficiently implement functional languages. The uniqueness type system is an
extension of a classical type system. It uses knowledge about the standard semantics of

116 Graph Copying, Runtime Semantics and Uniqueness Typing

graph rewriting and the reduction strategy to derive information about sharing. This makes
it sometimes possible to update objects destructively without consequences for referential
transparency (compile-time garbage collection). Thus, it can optimise standard graph
rewriting, which forms the basis of efficient array implementations and the Concurrent
Clean I/O system. In this section we will give a short introduction of uniqueness typing.

The Concurrent Clean uniqueness type system is based on the observation that a node
a can be unique with respect to a function node f. This is the case if a can only be reached
via f and there exists only one path from f to a, as depicted below. As we can see,
uniqueness is a local property: the function itself may be referred to by many others, and
many paths may lead from the top of the graph G to a.

graph G

f

a

*

Figure 6-1: An argument a is unique with respect to f. The star indicates a unique path.

6.1.1. Functions and uniqueness propagation

 Despite the locality of the uniqueness property, it can be used to ensure that f has exclusive
access to a, because no other function is able to reach a it without evaluating f first: one
cannot traverse a function node during normal reduction, simply because one cannot match
on functions, but only on function results (i.e. constructors). So, functions shield their
unique arguments from the rest of the world.

Functions do not only obstruct the upward propagation of uniqueness, they also block
downward propagation. A function with ordinary non-unique arguments can deliver a
unique result. This is rather trivial. Using the information of non-unique arguments a
function can create a totally new object. Clearly, such an object is unique to the function
itself, and it can be delivered as a unique result. In brief, functions obstruct the propagation
of uniqueness information. (see figure 6-2).

6.1.2. Constructors and uniqueness propagation

For constructors different rules apply. Unlike function nodes, constructors do not shield
their arguments from the rest of the world. One can match on a constructor and thus reach
its arguments from ‘outside’. Consequently, it is not very sensible to consider uniqueness
of arguments with respect constructors. An argument of a constructor can only be unique if

Uniqueness typing 117

f

g

h

i

*

*

Figure 6-2: Function nodes obstruct propagation of uniqueness information downwards,
as well as upwards. The star indicates uniqueness. Assume g builds a unique result,
but it does not have a unique argument. In contrast, h has a unique argument, but it
does not deliver a unique result. The expression f c (g c) with c defined as (h i) results
in a graph as depicted. The graph rooted by g is unique, but the sub-graph rooted by
h is not. In short, uniqueness of a graph does not imply that sub-graphs are unique,
and uniqueness of a sub-graph does not mean that surrounding nodes are unique.

the surrounding constructor is unique. In figure 6-1, the nodes between f and a must all be
unique with respect to f. Clearly, a could not have been unique with respect to f otherwise.
The converse is possible: the argument of a unique constructor does not have to be unique.
For instance, the nodes that are reachable from a in the picture 6-1 do not have to be unique
with respect to f. Briefly, constructors propagate the uniqueness property upwards, but not
downwards.

As we will see later, virtually the same rules apply to curried functions On a low
level, curried functions are actually structured objects. Consequently the rules for curried
functions are very similar to those for constructors. However, to avoid confusion, we will
only consider constructors for the moment.

6.1.3. The uniqueness type system

The main consequence of the propagation rules above, is that any uniqueness information
about some graph (with respect to an enclosing function), can only reveal something about
the final result of the graph. Function nodes block propagation of uniqueness information,
so at best, uniqueness properties give some information about the topmost function nodes
in a graph, but not for function nodes contained within others. Therefore, the uniqueness
properties of a graph are closely related to its type.

In general, uniqueness of function arguments cannot be decided at compile time. The
Concurrent Clean system therefore incorporates a decidable approximation that uses unique
type attributes. By default, the type system infers these attributes, but one can also attribute
function types explicitly. The unique type attribute indicates that an object is not shared.
Initially, each object gets this attribute when it is created: only the creating function has a
single reference to this object then. However, as soon as an object becomes shared (for
instance by referring to it twice in some expression) it looses its unique type attribute
forever. The formal arguments of a function may have a unique type attribute as well (this

118 Graph Copying, Runtime Semantics and Uniqueness Typing

can be indicated by the programmer). Whenever a formal function argument has the unique
attribute the type system guarantees that the function has private access to the argument: it
does not allow applications of the function to non-unique objects.

There can be many references to a unique argument after - and even before - a
function accesses it, but the uniqueness type system ensures that uniquely attributed
arguments have reference count one at the moment the function inspects them (amongst
others it takes into account the order of evaluation). This allows compile-time garbage
collection for unique arguments. If a unique argument is not part of the function result it
becomes garbage, and consequently the compiler can reuse the freed space for constructing
the function result.

6.1.4. Type coercion

In contrast to pure ‘linear’ systems, unique objects can be coerced to non-unique ones
(Note that the converse is not possible). This happens at the moment a function introduces
several references to the same unique argument. For example, it may simply pass the same
argument to two functions. This will have no effect on the outcome of the program. The
only difference is that certain optimisations are not possible on non-unique objects.

Some unique objects cannot be coerced to non-unique ones. They are essentially
unique. Any attempt to share such an object must be rejected by the compiler. We will see
some examples of essentially unique data later in this chapter. It will become clear that
copying conflicts are especially hard to avoid for these objects. On the other hand, it will
also become apparent that essentially unique data cannot be avoided in certain situations
(see section 6.5.1, which explains currying in Concurrent Clean).

6.2. The conflict between lazy graph copying and uniqueness typing

Lazy graph copying is an extension of standard graph rewriting semantics. Therefore, the
question arises whether it is compatible with the optimisations that are introduced by the
uniqueness type system, which only takes into account standard graph rewriting semantics.
At first sight, if one considers the meaning of the terms ‘uniqueness’ and ‘copying’,
maintaining consistency seems problematic. How can some unique data structure remain
unique after it has been copied? If this cannot be guaranteed, one cannot take advantage of
uniqueness properties in a parallel environment, in particular one cannot apply important
optimisations. This would seriously degrade performance, and the possibility to efficiently
incorporate arrays and I/O facilities.

In this section we will identify in which ways the graph copying extension invalidates
derived uniqueness information. Clearly, not all extensions are dangerous. If copying
changes a non-unique object into a unique one (at runtime), there is no problem, except
perhaps for not exploiting this information (this might be an interesting optimisation, but
we will not consider this here). In contrast, if graph copying changes a unique object into a
non-unique one, this will result in serious conflicts if this change is not taken into account
by functions that refer to this object. Objects that are actually not unique might then be
updated in place, which destroys referential transparency.

The conflict between lazy graph copying and uniqueness typing 119

6.2.1. The source of the conflict: deferred unique objects

Interestingly, eager graph copying does not impose any problems. If one copies a graph as a
whole, the copy will be exactly the same as the original. For both the copy and the original
the (local) uniqueness properties of individual nodes will be the same. If an argument is
unique with respect to some function, the copy of the argument will be unique with respect
to the copy of the function.

Problems arise when introducing laziness to copying. Lazy copying will not always
result in a physical copy. Instead, it will introduce new references to deferred nodes, and if
these have a unique type this may invalidate the uniqueness information that has been
derived by compiler. So, deferred nodes can be problematic if they have a uniqueness
attribute. This means that conflicts are related to the copying strategy, which determines
which nodes should be deferred and which not.

g

f

*

d

g

f

*

d

g

*copy

Figure 6-3: Lazy graph copying affects actual uniqueness properties, without changing the
derived uniqueness information. Suppose that f is a function that delivers a unique
result and g takes this unique result for its argument. If we have the following
expression (h, {P} h), with h defined as g {I} f, the function node of f will be deferred -
as it will be reduced by a separate process - so copying will stop at f. The leftmost
figure shows the graph h before copying, the rightmost figure shows the original h
and its copy. The star indicates derived uniqueness (which does not change during
copying), but clearly f is no longer unique with respect to g after copying.

The question is, whether such a conflicting situation can actually occur during the
standard lazy graph copying strategy of Concurrent Clean. Unfortunately this is the case.
Standard lazy graph copying will defer locked nodes, and nodes on which a process has
been started. Thus, it avoids copying of nodes that would otherwise certainly introduce
duplication of work. Both types of deferred nodes can have a unique type attribute, and, as
we can see in figure 6-3, annotated nodes can introduce a conflict. Interestingly, only
annotated nodes are problematic. If locked nodes are unique no conflicts arise. We will
explain this is section 6.2.3.

In this thesis, we will refer to the standard graph copying strategy of Concurrent
Clean as (plain) lazy graph copying, although this term generally does not indicate a
copying strategy, but the class of copying algorithms that stop copying at certain nodes.
However, no generally accepted terminology has been established yet for copying
strategies.

120 Graph Copying, Runtime Semantics and Uniqueness Typing

6.2.2. Traversing function nodes during copying can be dangerous

Not all deferred unique nodes will introduce conflicts, but only those contained within a
function node that gets copied. If no function node around a deferred unique graph gets
copied (see figure 6-4) no problems occur due to the upward uniqueness propagation of
constructors: all copied nodes around the unique part will be unique as well. This means
that the original graph will become garbage after copying has succeeded, because the copy
function delivers the copy and discards the original. Therefore the newly created pointer to
the unique deferred substructure will become the only one left after copying and uniqueness
is not violated. This shows that conflicts are closely related to the exclusive ability of the
graph copier to traverse function nodes.

f

*

d

c

f

*

d

c
*

copy
argument
of g

*
*

c

g g

Figure 6-4: Suppose that c is a constructor. If f is unique, c has to be unique as well.
Consequently, if c gets copied, the deferred unique node f will not cause problems,
because the original argument of g becomes garbage.

As long as no function nodes are copied no conflicts occur, but if one does not copy
function nodes one cannot start functions at another processor. Not all function nodes are
dangerous however. First of all, only by traversing a function node with unique arguments
one can add references to its unique arguments (there is no other way to reach the
arguments). And secondly, if one can assure that the original function node becomes
garbage after copying, the total amount of pointers to any unique deferred argument will
not change. This situation is equivalent to that of figure 6-4, if one replaces c by a function
node.

In short, deferred nodes that are unique with respect to some function f can only give
rise to copying problems if the enclosing function f is copied and if f does not become
garbage after copying. These observations will turn out to be important for the solution we
have adopted.

6.2.3. Locked unique nodes are safe

The observations above imply that locked unique nodes are safe with respect to copying.
To explain this, we need to take a closer look at the order in which nodes get evaluated.
When a reducer reduces (and locks) a unique argument during evaluation of some function
f it will have locked the surrounding function node f as well. Any access to the unique
argument must pass f. This holds for the graph copier as well, and as the parent function
node is locked, copying will stop there automatically and not at the argument. So, the
normal functional reduction strategy will never allow the graph copier to traverse nodes

The conflict between lazy graph copying and uniqueness typing 121

with locked unique arguments. Consequently, it is safe to defer nodes during ordinary
sequential reduction. Clearly the order of evaluation is crucial here, considering the
problems that occur when annotations for parallelism are used.

6.2.4. Introducing additional deferred nodes at runtime

The standard lazy copying strategy only defers locked nodes and nodes with an annotation
for parallelism. But sometimes, it is very useful to defer additional nodes at runtime. For
example, it may be useful to stop copying a graph if it is about to become very large (see
also section 7.4). This may keep down communication overheads (if certain parts of the
graph are not needed), while also avoiding potential memory management problems.
Likewise one may like to stop copying when a large flat data structure - such as a strict
array - is hit. Such a data structure will then be transmitted later in a separate message,
which can be more efficient than packing it in a message along with the other nodes of the
copied graph (we will see an example in chapter 7). And finally, as we will see in chapter 8,
it may be useful to keep certain parts of a data structure at a particular processor. To realise
the intended behaviour one needs to defer certain arguments at runtime, so that they do not
get copied to the ‘wrong’ processor.

All these ‘optimisations’ concern data structures. But, chapter 1 has already made
clear that the defer attribute has originally been introduced to limit the copying of work.
Therefore, only function nodes can be deferred. Still, this is not a very fundamental
limitation. In Clean, one can easily defer copying of data (at runtime) by inserting deferred
indirection nodes in some data structure. This is correct, because no function will ever
assume that a certain amount of data will get copied. The standard evaluation mechanism
always takes into account possible indirections (such as channel nodes).

The point is, that there will be several situations in which one would like to insert
additional deferred nodes, depending on runtime conditions. Potentially, they all may lead
to conflicts with respect to uniqueness. If we devise a solution, we should consider its
tolerance with respect to inserting additional deferred (indirection) nodes.

6.3. Potential solutions

Excluding uniqueness typing is not a realistic option to avoid conflicts between uniqueness
typing and graph copying, nor is banning lazy graph copying on machine with distributed
memory. Keeping both, the current copy strategy is able to change the actual uniqueness
properties of graphs at runtime if deferred unique objects are encountered. Three possible
remedies come to mind.

• First of all one could implement runtime coercions to make functions aware of the
changes that have occurred.

• Secondly, one could avoid the creation of deferred unique objects, that is, objects that
may introduce uniqueness conflicts.

• And finally, one could change the copying strategy so that it cannot change
uniqueness properties at runtime.

122 Graph Copying, Runtime Semantics and Uniqueness Typing

6.3.1. Runtime coercions

The first solution would imply that functions invoke evaluation code that depends on the
actual runtime uniqueness properties. The code addresses of function nodes (see chapter 3)
would have to be modified by the graph copier if it detects that an argument is no longer
unique. Not only is this needed for the nodes in the copy but for nodes in the original graph
as well. Such a solution is intolerable. Not only does it make copying considerably more
complex, requiring expensive runtime operations for deducing uniqueness properties and
adjusting nodes, but it also gives rise to unclear runtime behaviour. This surfaces most
clearly when essentially unique objects are involved, or functions that do not have an
equivalent with non-unique arguments (for example, functions that write to a file). These
cannot be coerced to a non-unique type and a runtime error would be the result.

6.3.2. Avoiding deferred unique objects

Only deferred unique nodes may cause copying problems. Avoiding creation of these
objects will solve the copying problems. However, in some situations it is worthwhile to
have deferred unique objects and there is no reason that they will actually result in conflicts
(i.e. if they do not get copied), so avoiding them regardless will often be harmful and of no
use at all. Keeping this in mind, we will examine the feasibility of this method in more
detail below.

It is technically possible to avoid creation of unique deferred objects (that is, without
throwing away uniqueness typing altogether). The standard copying strategy only defers
locked nodes and annotated ones. As we pointed out above, locked nodes are no problem,
and the compiler can easily reject the use of unique types for annotated nodes.
Unfortunately, such a strategy has three serious disadvantages.

First of all, one risks a notable performance penalty if processes are not allowed to
deliver unique results. The next chapter will show that arrays can be crucial for good
parallel performance. But, to implement arrays efficiently, uniqueness typing is invaluable.
If we do not allow processes to deliver unique results, they would not be able to deliver
arrays that can be updated in place. In addition, it would become virtually impossible to
implement an efficient distributed I/O system. For instance, processes would not be able to
deliver (remote) files that can be modified in place.

The second disadvantage of this solution is that it does not allow additional deferring
of unique nodes at runtime (see section 6.2.4.). Apart from the potential loss of
performance (and flexibility) that is caused by the absence of these unique deferred objects,
this solution requires a runtime mechanism that checks the actual uniqueness properties of
nodes. This may be rather hard to realise. Furthermore, one faces the problem of unclear
runtime copying semantics, if some nodes get deferred, while others do not, depending on
actual uniqueness properties.

The last observation leads to the third disadvantage of avoiding unique deferred
objects: rejecting uniqueness for (annotated) deferred objects at compile-time can also be
confusing for the programmer. The {I} annotation in itself has no influence whatsoever on
the uniqueness properties of graphs: no two processes running interleaved at the same
processor are able to access unique arguments of the same function node, because function
nodes are locked during reduction. This is in accordance with the view that processes do

Potential solutions 123

not introduce new data dependencies. They merely provide safe eager evaluation (safe with
respect to program termination). In effect, the introduction of processes can - and should -
be seen completely separate from the (unwanted) effects of graph copying.

From the above, it will be clear that avoiding the creation of unique deferred objects
has serious drawbacks, mainly because these objects are very useful to have for various
reasons, while they may not become problematic at all (i.e. if they do not get copied).

6.3.3. Changing the copying strategy

Until now, we have not paid much attention to different copying strategies. There are
basically three issues that are important in this respect. First of all, some copying strategies
are more efficient (and flexible) than others. We have already seen some examples in
section 6.2.4. In this respect, it is important that a copying strategy allows the introduction
of additional deferred nodes at runtime. Secondly, different strategies imply different
runtime behaviour. Depending on the copying strategy work will be moved, copied or
evaluated locally. A good copying strategy should have clear runtime semantics. And
finally, as we will see below, some copying strategies do not conflict with uniqueness
typing. In the next section, we will present such a safe copying strategy: lazy normal form
copying. The last part of this chapter (sections 6.5 and forth) will show that it has clear
runtime semantics as well, while the remaining part of this thesis will show that
considerable parallel speed-ups can be obtained with this new copying strategy.

6.4. A safe copying strategy

In this section, we will present a graph copying strategy that does not alter uniqueness
information. Laziness will not be discarded. In contrast, copying will become even lazier as
it will stop before it hits nodes that may introduce conflicts. Our solution is based on the
observations of section 6.2.2: deferred unique objects can only become problematic if the
enclosing function is copied, and if this function does not become garbage after copying. In
other words, a function node can be copied safely if:

1. The function node does not have any unique arguments.
2. The function node does have unique arguments, but one can assure that they will be

copied completely, i.e. they do not contain any deferred nodes.
3. The function node does have unique arguments with deferred nodes, but the function

node becomes garbage after copying.

The first property can easily be checked by a copying algorithm if the compiler
includes uniqueness information in function nodes. The other properties impose more
problems. In general, the compiler cannot derive this information. It does not know if a
graph can be copied entirely. Amongst others, this would involve knowing whether parts of
the graph are being reduced and at which processor they are. In addition, the compiler
cannot determine for a particular graph which of its function nodes will become garbage
after copying. Most likely it does not even know which function nodes it contains and
where they are located, and even if it did, the uniqueness type system only provides

124 Graph Copying, Runtime Semantics and Uniqueness Typing

a1 ai an

f

processor 1

processor 2

a1 b1 an

f

processor 1

processor 2

bm

C

Figure 6-5: a1, a2 ... an are all graphs that are not in root normal form. The leftmost
picture shows the distribution of graphs after evaluating the expression ({Pn} f a1 a2
... an) at processor 1. f is the only function node that has been copied to processor 2.
If it needs argument ai, it will send a request for it. The graph copying mechanism
will then start a new process on ai and return the result as soon as it has been
computed. Suppose this is a constructor C with arguments b1 b2 ... bm that are not in
root normal form. Only the constructor will then be copied as shown in the rightmost
picture. If some bj is needed later, the same will apply as for ai, etc. Note that if ai
was already in root normal form before copying f, the rightmost graph would have
been obtained directly.

information for the topmost function nodes and not for function nodes contained within
others.

It may be possible to derive such information at runtime, in conjunction with complex
compile-time analysis, but this will make reasoning about copying behaviour an impossible
task. This is especially problematic for function nodes as these represent work. Unclear
copying semantics will make it hard for a programmer to figure out what will happen
where. Therefore, we have adopted a much simpler solution. This will be presented below.

6.4.1. The lazy normal form copying strategy

We have taken a radical approach that does not copy any function nodes (work) at all,
unless explicitly requested. By default, copying will stop at every function node. If a
programmer wishes to copy function nodes she has to indicate them explicitly. This could
be done with annotations, by means of a special type denotation, or otherwise. We propose
a new {Pn} annotation that will copy only one function node: the annotated function node
at the root, provided that the compiler is able to verify compatibility with uniqueness typing
(this will be explained in the following subsection). Copying may proceed at the arguments
of a root node, but only as long as they are in root normal form.

Take for example, the expression ({Pn} f a), where f and a are both functions. The
original copying strategy - i.e. ({P} f a) -,would copy the whole expression (f a), whereas
the new one merely copies f. The argument expression a stays at its original location.
However, the result of a can be copied later if evaluation of f requires it. If so, a will first
be reduced to RNF, and then the result can be copied for as far as it is in normal form.

A safe copying strategy 125

Again, copying will stop at any function node contained within the result. Consequently,
this new copying strategy only copies normal forms by default, and remote processes are
able to drive a local computation in a lazy manner and vice versa (hence the name: lazy
normal form copying). Figure 6-5 will clarify this behaviour in a more general and a more
graphical way.

6.4.2. Safety checks for copying annotated function nodes

The annotated function nodes that do get copied, need to undergo a safety check. Criteria
for copying function nodes have been indicated above already. We will not try to exploit all
possibilities, but instead we have chosen to keep the copying decision safe and simple (for
ease of reasoning about programs). An annotated function node may only be copied if
either of the following rules apply.

• It has no unique arguments.
• It has unique arguments, but the function node becomes garbage after copying.

For annotated graphs this is not hard to detect. There are merely two cases we need to
consider. Either the annotated function is a locally created function node, or it is not.

1. If the annotated root node is a locally created function node these checks are trivial.
It is actually rather hard to create an invalid expression if we annotate a locally
created function node. In such a case sharing the annotated graph (as in (a,a) where
a={Pn} f) does not lead to any problems, as then the copy will be shared after
copying and not the original on beforehand . One would have to place a label
between the {Pn} annotation and the annotated expression in order to share the
original (using (a,b) where b={Pn} a, and a=f). Such an expression is not very useful
in general, as it explicitly copies exported work. If necessary, one could still consider
replacing the original node f by an equivalent version that does not require unique
arguments.

2. If the root is not locally created, it will have been passed as a parameter and the
compiler should inspect the uniqueness properties of the passed argument with
respect to the current function. If the argument does not have the unique type
attribute, copying must be rejected, as then one cannot be sure it becomes garbage.
One could consider this an invalid coercion of types. In contrast, if the argument does
have the unique type attribute, it may be copied, provided that it is not shared within
the function itself. So, for a unique argument the same rules apply as for a locally
created function node (see 1.)

A disadvantage of this method, is that the compiler will sometimes refuse copying
function nodes that are actually not shared, but lack the unique type attribute. In many cases
however, one will not be inclined to start a new process on a (non-unique) graph, mainly
because it is often difficult to derive whether it has been - or is being - evaluated already.
But if there is need to do so, one could resort to the use of curried functions. This will be
explained later in this chapter.

126 Graph Copying, Runtime Semantics and Uniqueness Typing

6.4.3. The runtime semantics

This new copying strategy not only avoids uniqueness conflicts, but it also provides clear
runtime semantics. Lazy Normal Form Copying avoids the implicit - and conditional -
copying of work. Without special measures one can be sure that only normal forms are
copied. If one explicitly copies a function (node) f to another processor to deliver some
structure in parallel, one can be sure that the structure will be returned completely evaluated
and not some function that computes (parts of) it. The same holds for the arguments passed
to f: these will be evaluated locally so that the remotely evaluating f will get evaluated
arguments and not extra work. One does not risk to copy more work than intended. In
effect, the type of an annotated graph indicates what will be copied eventually. With the
original lazy copier a similar copying behaviour could only be approximated by using extra
annotations. In section 6.6, we will see that lazy normal form copying does not result in an
awkward style of programming.

Not only programmers benefit from having clear runtime semantics. The compiler
does as well. Typically, a compiler employs strictness analysis to introduce eager
evaluation where appropriate. Unfortunately, this may cause a serious side-effect if
function nodes can be copied implicitly: changing the order of evaluation might then
influence the location that functions are evaluated. If a function is evaluated before
copying, it will be evaluated locally, otherwise it will be evaluated at another processor.
Therefore, the Concurrent Clean system does not yet derive strictness information for
expressions that have an annotation for parallelism. The new normal form copying strategy
avoids these problems. It allows the use of strictness analysis and strictness annotations
without influencing the location of evaluation.

6.4.4. The effects on efficiency

In addition to clear runtime semantics, lazy normal form copying does not hurt
performance. We have tested the parallel programs of table 5-1 with both the old and the
new copying strategy and found no significant differences in the speed of execution. The
remaining chapters will show some additional parallel examples that perform very well
with lazy normal form copying.

Note furthermore that lazy normal form copying allows the introduction of additional
deferred nodes within data structures (see section 6.2.4). One merely needs to inject extra
functions, such as the indirection function i, which is defined as i x = x. Such a function
does not alter its argument data structure, but, as it is represented by an ordinary - and thus
deferred - function node, it acts as a copy-stopper. In this way the size of copies (i.e. data)
can be limited in a very flexible way, either by hand, or automatically. We exploited this
possibility in both chapter 7 and 8.

And finally, note also that lazy normal form copying eliminates the need for
expensive mechanisms that avoid the copying of work (reconsider section 5.3.4). By
default, work does not get copied at all; it sticks to its location.

Copying of work using lazy normal form copying 127

6.5. Copying of work using lazy normal form copying

Lazy normal form copying also has a drawback: copying of work becomes more difficult.
Suppose one has an argument a and one wishes apply f·g to a at another processor. The
{Pn} annotation only copies the function node at the root, so that {Pn} f (g a) means that
only f is computed at the other processor, while g is evaluated locally - either on beforehand
if g is evaluated eagerly, or later if it is evaluated in a lazy manner. Some extra work is
needed to specify the demanded behaviour. For instance, one might define a new function
h, which is defined as h a = f (g a). {Pn} h a would now perform as intended.

The introduction of such functions seems to be problematic in certain cases. Take the
example in the frame below, where h could be some skeleton for parallelism (see also
chapter 8). The argument function g will not be evaluated another processor, together with
f. Suppose it should. How does one accomplish this? Perhaps an extra annotation would be
needed. We will take a look at this next and show that this is not necessary, as the use of
curried functions provides a powerful means to copy work explicitly. But before we
proceed, we need to understand how currying is realised in Clean.

h :: (x -> y) x -> z

h g a = {P n} f (g a)

f :: y -> z

...

6.5.1. Currying in Concurrent Clean

Clean is based on a functional term-graph rewriting system. In such a system, all symbols
have a fixed arity. If a function has non-zero arity we cannot use the function symbol all by
itself, thus preventing the use of functions as an argument or as a result. Notwithstanding,
we can simulate the concept of higher order functions as follows.

Suppose we have defined a dyadic function f x y = ... and we want to model the
function f x = λy.f (x, y). We can define a curry variant F1, which is a constructor of arity 1
(on the abstract ABC machine level this is also known as a partial application node). The
expression F1 x will now represent λy.f (x, y). Note that the curry variant is in root normal
form. To be able to apply it to additional arguments, we also define an application rule for
the special function symbol ap:

ap :: (a→b) a → b
ap (F1 x) y = f x y

In general, one can define for each function symbol f of arity n a set of n curry
variants and application rules.

128 Graph Copying, Runtime Semantics and Uniqueness Typing

ap :: (a→b) a → b
ap F0 x1 = F1 x1
ap (F1 x1) x2 = F2 x1 x2

…

ap (Fn-1 x1 x2 … xn-1) xn = f x1 x2 … xn-1 xn

In Clean, the curry variants and the application rules are introduced implicitly for
each function. To make it possible to deal with the curry variants in a more natural way,
Clean allows the curry variant Fm x1 x2 … xm to be denoted as f x1 x2 … xm (where m is
smaller than the arity of the function symbol). Likewise, to specify the application of an
argument a to a curried function g one can simply write g a instead of ap g a.

Thus, curried functions are actually constructors with a number of function
arguments. Consequently, the uniqueness type system treats curried functions (almost) like
constructors. It ensures that uniqueness properties propagate upwards. Suppose that the mth

argument of a function f gets the uniqueness type attribute. According to the standard rules,
the curry variants themselves have to be unique in order to ensure uniqueness of the mth

argument. The application rules for f become as follows. We have included the type of each
application function to be able to indicate uniqueness type attributes by means of the star
symbol. The star at the actual arguments more precisely indicates where uniqueness is
required.

ap(a→b) :: (a→b) a → b
ap(a→b) F0 x1 = F1 x1

…

ap(*a→b) :: (*a→b) *a → *b
ap(*a→b) (Fm-1 x1 … xm-1) *xm = *Fm x1 … xm-1 *xm

ap*(a→b) :: *(a→b) a → *b
ap*(a→b) (*Fm x1 … *xm) xm+1 = *Fm+1 x1 … *xm xm+1

…

ap*(a→b) :: *(a→b) a → *b
ap*(a→b) (*Fn-1 x1… *xm … xn-1) xn = f x1 … *xm … xn-1 xn

This means we basically have four classes of application functions, say ap(a→b),
ap(*a→b), ap*(a→b), and ap*(*a →b), that require different uniqueness properties for their
two arguments. When applying an argument to a curried function, one of these ap functions
will be inserted implicitly, according the actual uniqueness properties of the curry variant
and the required uniqueness properties of the argument. However, if a function f requires a
unique argument, some of its application rules will be defined for unique curry variants
only: there is no rule ap(a→b) (Fn-1 x1… *xm … xn-1) xn in the set of rules above. This
means that using ap(a→b) for applying a non-unique curry variant of f to an argument
would result in an irreducible (i.e. non-matching) expression. To maintain referential

Copying of work using lazy normal form copying 129

transparency we need to avoid this situation (from a programmers point of view there is no
difference between ap(a→b) f a and ap*(a→b) f a: it all looks like f a). Therefore, the type
system will not allow coercion of unique curry variants to non-unique ones. Unique curry
variants are essentially unique, and consequently, data structures that contain unique curry
variants are essentially unique as well. The use of such objects is severely restricted.

In short, curried functions are treated in a very special way by the type system. With
respect to uniqueness, they act more like constructors, than like function nodes. The type
system ensures that uniqueness propagates upwards for curried functions.

6.5.2. Currying and copying

Back to the copying of work. The use of curried functions forms an interesting idea in this
respect. The type of a curried function argument is denoted as (A1 A2 ... An → R). If the
graph copier encounters an object with this type and if the type should indicate what gets
copied, one could argue that a function should be copied that takes arguments of type A1,
A2, ..., An, and delivers a result of type R. In contrast, one could also decide not to copy the
curried function as it represents work just as well as ordinary functions. We have chosen
for the former solution as it provides a clear and powerful way to copy work safely. In
addition, it keeps the standard evaluation mechanism simple: if one cannot copy curried
functions, one has to incorporate an additional mechanism that applies local arguments to
remote curried functions (instead of copying the curried function to the argument and
applying it locally).

As we have seen above, uniqueness propagates upward for curry variants. As a
consequence curry variants can be copied safely, as opposed to function nodes. As one
might expect, this can be realised very easily in Clean. The low level representation of
curried functions is the same as the representation of constructors. This allows the new
copying strategy to automatically handle curried functions the right way, that is to copy
them.

Doing so, we can safely transmit work, while having the additional advantage that
{Pn} ap f x means exactly the same as {Pn} f x (that is, in both cases the function f will be
executed at another processor, even though f is not the root node in ap f x). In a way, the
graph copying mechanism presented in chapter 5 transforms {Pn} f x into {Pn} ap f x, as it
replaces the code of the function node f by the corresponding function descriptor before
transmission. Consequently, one could argue that at some level ap is the only function node
that remains copyable. Note also the relation between the copying rules for the root node
and the uniqueness properties of curried functions.

Using currying to pass work to other processors, the example of the previous
subsection becomes as follows. Here we can see that the type of the annotated function h'
indicates that work will be copied. It has type (x → y) x → z, in contrast to f, which has
type y → z.

130 Graph Copying, Runtime Semantics and Uniqueness Typing

h :: (x -> y) x -> z

h g a = {P n} h' g a

h' :: (x -> y) x -> z

h' g a = f (g a)

f :: y -> z

...

A special case is formed by functions of arity zero. One cannot use the currying
mechanism to pass such functions to other processor, simply because one cannot use them
in a curried way. It remains to be seen whether this is a serious problem. A possible
solution would be to introduce additional functions with dummy arguments. Alternatively,
one might introduce special language constructs to deal with this problem.

6.6. The runtime semantics of some example programs

Due to the different copying strategy the runtime semantics of Concurrent Clean programs
will change. The previous examples already made this clear. This section will show how
some rather basic example programs are affected. Note that no well-defined copying
strategy can alter the final outcome. It is merely able to influence runtime behaviour and
thus, efficiency.

6.6.1. Nfib

This is a notorious benchmark. A parallel version can be defined in Concurrent Clean as
follows.

nfib 0 = 1

nfib 1 = 1

nfib n = 1 + (nfib (n - 1)) + ({P n} nfib (n - 2))

The difference between the old and the new copying strategy can be clearly seen in
this example. The original copying strategy - using {P} nfib (n - 2) - would cause the whole
expression nfib(n-2) to be sent to another processor by means of a single message, which is
very efficient. In contrast, the new copier will keep the argument (n-2) local and it will only
be evaluated (and copied) after the nfib function requests its remote argument. This clearly
is less efficient, due to the delays involved in accessing the argument. To re-obtain the
behaviour of original copying strategy one could use an intermediate function nfib' as show
below.

The runtime semantics of some example programs 131

nfib 0 = 1

nfib 1 = 1

nfib n = 1 + (nfib (n - 1)) + ({P n} nfib' n)

where nfib' n = nfib (n - 2)

Another efficient solution would be the use of a strictness annotation as depicted
below. This will force (n-2) to be evaluated before creating a new process.

nfib 0 = 1

nfib 1 = 1

nfib n = 1 + (nfib (n - 1)) + ({P n} nfib ! (n - 2))

A strictness annotation is needed above, because the Concurrent Clean system does
not yet derive strictness information for expressions that have annotations for parallelism.
This lack of strictness analysis may seem odd, but consider the side-effects that strictness
analysis would cause using the original copying strategy: it could change the location that
functions are evaluated (see also section 6.4.3). The new copying strategy does not have
this problem: the location that arguments are evaluated does not change by placing a
strictness annotation, nor by employing strictness analysis.

6.6.2. The sieve of Erathostenes

Another advantage of lazy normal form copying surfaces when using some form of (lazy)
stream processing. The sieve of Erathostenes is a well-known example. The original
copying strategy required the programmer to place annotations for two reasons. First of all
to drive computation, and secondly to defer copying at certain function nodes. This can be
seen in the example below, where an {I} annotation is needed at a filter function to keep it
at the current processor when a new parallel sieve is started. This is a rather awkward use
of the {I} annotation.

sieve [p : s] = [p : {P} sieve {I} (filter s p)]

sieve [] = []

filter [x : xs] p

 | x mod p == 0 = filter xs p

 | otherwise = [x : {I} filter xs p]

filter [] p = []

In contrast, if one replaces the {P} annotation above by a {Pn} annotation the first {I}
annotation is not needed anymore. The filter function will then remain at the correct
location. A new process will automatically - and lazily - be started on the filter function if

132 Graph Copying, Runtime Semantics and Uniqueness Typing

its result is needed by the next sieve. If one does not care about speed of execution and just
wants to evaluate the sieve in a distributed lazy manner, no {I} annotations are needed in
the filter function either. In the next chapter we will see how we can improve the sieve
program further.

6.6.3. A simple divide and conquer program

And finally, consider the following divide and conquer program to count the occurrence of
some element in a tree.

count:: a (Tree a) -> Int

count elem NilTree = 0

count elem (NodeTree elem’ left right)

 | elem == elem’ = count_sons + 1

 | otherwise = count_sons

 where

 count_sons = ({P} count elem left) + ({P} count elem right)

Here we can see the danger of implicitly passing extra work to each processor that
evaluates a count function in parallel. The original copying strategy copies function nodes
that are contained in the sub-graphs, for instance elements that have not yet been computed.
These may represent a substantial amount of work, and if they are shared this work will be
duplicated. However, this extra amount of work does not show in the program above. Thus,
locality of reasoning is lost with the original copying strategy.

To avoid this problem using the original copying strategy, one had to evaluate the
tree explicitly - using annotations - before passing it to the counting function. The new
copying strategy does not have this problem. Consequently, it allows programmers to
determine locally what work will be performed by another processor.

But suppose one wants to evaluate the elements of the tree at the processor that
executes the count function. How does one accomplish this with the lazy normal form
copying strategy? Obviously, it is possible to define a function that both creates a tree and
performs a count on it, but how do we proceed when we have to deal with an existing tree,
of which some elements have been computed and others have not. In that case, we need
construct the tree differently. We need to put special functions in the tree. Again, we will
not invent extra annotations, but resort to the use of currying. If the elements of the tree
must be computed at another processor, the type of the tree must be changed. One could
use the following example.

:: Tree x = NodeTree ((Tree x) (Tree x) -> x) (Tree x) (Tree x)

 | NilTree

The curried function indicates the function that should be applied to both sub-trees to
get the element of its root node. The type of this curried function is rather arbitrary though.

The runtime semantics of some example programs 133

It could have been defined having a different type of argument or a different number of
arguments (but not zero). The count function would now become as indicated below.
Computing the element has become explicit. The definition of the curried function
precisely states what will happen if it is evaluated at another processor (the programmer
has to take care of this now). Note that the arguments of the curried function will not
necessarily be evaluated at the same processor as the curried function itself. For these the
same rules apply as for annotated functions.

count elem NilTree = 0

count elem (NodeTree function left right)

 | elem == function left right = countrest + 1

 | otherwise = countrest

 where

 countrest = ({P n} count elem left) + ({P n} count elem right)

In some cases it will be more efficient to perform such a count function on a graph
that has been distributed over a network already. The count function should then be started
at the location of its argument. In this case there would be no difference between the old
and the new copy function as both would merely copy the count function. This cannot be
expressed in standard Clean however. Chapter 8 will introduce some special functions that
add this functionality.

6.7. Conclusions

Lazy graph copying is an extension of the standard graph rewriting semantics. We have
shown that it may conflict with the uniqueness type system. This depends on the copying
strategy. Until recently, Concurrent Clean employed a strategy that was incompatible with
the uniqueness type system. It could invalidate uniqueness information during runtime. We
have presented a new copying strategy that does not have this problem. Additionally, it
does not copy work implicitly. This not only allows programmers to reason more easily
about the exact behaviour of parallel programs, but it also ensures that placing strictness
annotations cannot influence the location of evaluation.

7. The Costs of Graph Copying

This chapter will explore the costs of graph copying in detail. It will make clear that
these costs can form a bottleneck for a class of serious parallel programs. This not
only comprises practical divide and conquer style programs - of which parallel matrix
multiplication is an example -, but also programs that use pipelines, such as the sieve
of Erathostenes. One can observe that copying costs vary widely for different data
structures. We will show how arrays can be used to reduce copying costs
considerably. This resulted in significant speed-ups for the examples above.

Section 7.1 will start with a short introduction. The next section will clarify in
which cases communications costs can form a bottleneck. It will indicates three
directions of interest for reducing these costs. The following three sections will focus
on each direction: section 7.3 will make clear that choosing data structures carefully
can greatly reduce absolute communication costs; section 7.4 shows the use - and the
limits - of distributing communication tasks; and thirdly, section 7.5 will show how
delays can be reduced by overlapping communication and computation. Considerable
speed-ups have been obtained in this way. The last two sections will present our
conclusions and discuss the solutions we have adopted.

7.1. Introduction

As we have seen before, distributed graph reduction requires transmission of graphs. This
chapter will focus on the costs involved. More precisely, we will not concern ourselves
with the pure transmission costs, but with costs that surround the act of transportation. First
of all, bookkeeping tasks - possibly employing control messages - are needed to regulate
transmission (see also chapter 5). And secondly, as we have seen before, efficient reduction
requires a graph representation that differs from the one needed for efficient
communication. During reduction a node typically contains local memory addresses to
efficiently access other nodes on the same processor, whereas a graph that is being
transported will contain some sort of globally usable addresses, such as offsets within a
message. This introduces the need for graph conversions. As previous chapters have
indicated this basically involves graph copying, but in this chapter we will rather refer to
this as conversion, to distinguish this kind of copying from the one used by garbage
collectors. Clearly, administration and conversions take time, as no special hardware is
assumed to accomplish these tasks. As we will see below, the overheads can be
unacceptably high for some parallel programs.

136 The Costs of Graph Copying

These protocol costs have been largely ignored by the implementors of parallel
functional languages. In the first place, of all implementations, there are not many aimed at
distributed memory architectures. Most recent research in parallel functional programming
focuses at implementations for (virtual) shared memory architectures (<ν,G>, Augustsson
and Johnsson, 1989; AMPGR, George, 1989; GAML, Maranget, 1991; GRIP, Peyton Jones
et al., 1987, 1989-b; Flagship, Watson et al., 1986, 1987, 1988; HyperM, Barendregt et al.,
1992). Graph copying plays no role in such implementations. And secondly, the exact costs
of copying have not been made explicit for distributed memory implementations.
Sometimes the use of an interpreter causes uncertainty about the relative costs of copying
compared to the costs of computation (PAM, Loogen et al., 1989; π-RED+, Bülk et al.,
1993). In other cases only some simple divide-and-conquer programs have been tested that
are not very conclusive with respect to overall communication overheads (HDG, Kingdon
et al., 1991; SkelML, Bratvold, 1993). In particular pipelines of processes are not
considered at all.

Our work has some relation with that of Kuchen (1994). He proposed, implemented,
and tested a set of skeletons on special data structures to exploit data-parallelism. This was
based on the assumption that some data structures are cheaper than others for certain
problems. Amongst others, he considered algorithmic properties of data structures, such as
the ability to efficiently access elements in a random way. However, this work is limited to
data-parallelism only, and although it mentions the advantages of certain structures with
respect to communication, it does not examine the costs of graph copying in detail.

7.2. Copying costs

Reports on speed-ups for parallel implementations of a functional languages on machines
with distributed memory are rare and strikingly similar. Either abstract machine code has
been interpreted, resulting in performance figures that are not conclusive with respect to the
possible performance of compiled code, or one does compile, but then only a small set of
programs turns out to perform well. These programs all have a comparable structure that
makes them less sensitive to delays in communication.

A closer look at this sort of program reveals a number of similarities. In the first
place, they all exploit a simple divide-and-conquer mechanism. Computation unfolds into a
tree of processes. These trees are not very deep, but they contain a huge number of
processes. This means that data does not have to travel far. At the same time there will be
many processes per processor, so that a waiting process does not imply the processor
becomes idle. In addition, the complexity of the data is rather small, compared to the
complexity of the computation. As a result, communication overheads can easily be
‘suppressed’ by increasing the problem size. Altogether, this means that communication
latencies do not (need to) have much effect on efficiency. Typical examples are programs
like nfib, queens, mandelbrot, and ray tracers (see table 5-1).

Let us assume that we do not have such a divide and conquer program. Data will be
complex, or it will have to travel over a long distance, or both. We will see realistic
examples below. The price of copying cannot be ignored now, it has to be kept as small as
possible.

Copying costs 137

There are basically three ways to do this. First of all, one should decrease the absolute
costs of conversion and communication. Secondly, communication and computation should
overlap as much as possible, hiding delays. And finally, copying tasks should be distributed
over the network as much as possible. The latter can usually be realised by selecting a
suitable algorithm for splitting up the problem. We will give a small example of this, but
the main emphasis will be on improvements of the first and second kind. These are
somewhat more generally applicable than distributing copying tasks, as this strongly
depends on the algorithm used. The following section will be concerned with reduction of
the overall conversion costs (transmission costs are mostly determined by the hardware, so
we will not consider them here). Hereafter, we will shortly contemplate the possibility of
distributing graph copying. And finally, we will focus on overlapping computation and
communication.

7.3. Decreasing conversion costs

Conversion costs are most significant if data is complex. Large data structures can impose
serious overheads when copied to another processor. An example matrix multiplication
program will clarify this. Comparing different data structures below, we will see that it is
important to choose data structures carefully, because the conversion costs may vary
tremendously for different ones. This section will end with a short reflection on distributing
copying tasks over the network.

7.3.1. Matrix multiplication with lists

Matrix multiplication is more complicated than the simple divide and conquer programs of
the previous section, because the arguments and results are more complex. Increasing the
problem size will not automatically result in better performance as the copying costs will
grow as well. Depending on the size of the network the complexity of communication may
approach the complexity of plain matrix multiplication: O(n3). This happens for example
when every new matrix element is computed by a separate processor: each processor needs
O(n) data and O(n2) processors are needed. It is crucial that copying costs are kept to a
minimum here.

A simple way to multiply two square matrices A and B of size n (number of rows) on
n processors, is to split A into n rows a1...an and compute ai × B on processor pi. We will
assume that A and B both reside at some processor ps initially and that the result should
return to ps. Suppose further, that ps itself distributes all the work. Below, we have listed a
Concurrent Clean program that multiplies two matrices in this way.

mul :: [[Real]] [[Real]] -> [[Real]]

mul a b = mul' a (! Transpose b) processor1

continues

138 The Costs of Graph Copying

continued

where

 mul' :: [[Real]] [[Real]] Int -> [[Real]]

 mul' [a1:a] b p

 = [{P at (ItoP p) } mulrow a1 b : ! mul' a b (p + 1)]

 mul' [] b p = []

 mulrow :: [Real] [[Real]] -> [Real]

 mulrow a1 [b1:b] = [! mulvector a1 b1 : ! mulrow a1 b]

 mulrow a1 [] = []

 mulvector :: [Real] [Real] -> Real

 mulvector a1 b1 = mulvector' a1 b2 0.0

 mulvector' :: [Real] [Real] Real -> Real

 mulvector [e1:r1] [e2:r2] result

 = mulvector r1 r2 (result + (e1 * e2))

 mulvector [] [] result = result

It is easy to see that this will not lead to speed-ups if communication is expensive:
copying B (n-1) times is O(n3). In general, if we use this method on p processors, the costs
of communication are O(p × n2). We can see below what results were obtained with
matrices represented by lists of lists of floating point numbers, employing up to 16
processors. We should note here that the use of lists does not impose overheads to access
matrix elements: the algorithm does not need random access to elements.

Table 7-1: Multiplication of matrices represented by lists of lists of floating point numbers.

sequential 16 processors speed-up

multiply 64 × 64 3.9 sec. 5.0 sec. × 0.8

multiply 128 × 128 30.3 sec. 35.0 sec. × 0.9

Table 7-2: Time spent by root processor in parallel version on conversion and garbage
collection (using lists of lists).

conversions collections

multiply 64 × 64 2.9 sec. 0.2 sec.

multiply 128 × 128 16.9 sec. 10.0 sec.

The disappointing figures in table 7-1 need some explanation. First of all, the
conversion costs per matrix element are higher than an elementary multiplication step.

Decreasing conversion costs 139

Conversion costs can be derived from table 7-2 and the following formula, which
elucidates the conversion costs at the root processor (using a total of 16 processors).

conversion costs at the root:15p n2 + n2

16






+ 15u
n2

16
≈ 16p + u()n2 (1)

It assumes that it takes p seconds to pack an element and u seconds to unpack it. The
root (un)packs data for 15 remote processors and n denotes the size of the square matrices).
We should note that unpacking is less expensive than packing in our implementation, as
unpacking does not involve copying nodes. It merely has to adjust pointers. We have not
yet established the exact difference in speed. This means that conversion takes between
16pn2 and 17pn2, assuming that u is greater than zero, but smaller than p. Consequently, the
packing cost p lies approximately between 42 and 45 µs for n = 64 and between 61 and 65
µs for n = 128 (the total conversion costs can be found in table 7-2 for these values of n).
The variation is caused by extra overheads if memory runs low during conversion, which is
the case during multiplication of matrices of 128 by 128 reals. For comparison, from the
timings for one processor one can deduct that it takes about 15 µs to perform a basic
multiplication step (total time is n3 times basic time). This is considerably cheaper than
conversion.

Secondly, the larger the matrices, the more the tests suffer from excessive garbage
collection times at the root processor, as we can see in table 7-2. The list representation of
each matrix consumes about 400 Kbyte of memory, while graph conversion claims a
similar amount for the resulting message. Only little room remains to perform graph
reduction. With a total heap size of 3 Mbyte per transputer, garbage collection times add up
to 10 seconds. The root processor spends 27 seconds on conversion and garbage collection
alone, while matrix multiplication takes less than 2 seconds per processor. This is partly
due to the use of a two-space copying collector, which traverses all live data and limits the
maximum usable space to half the heap size. For this particular problem it might be
advisable to reduce the number of garbage collections by using an heuristic that will hold
garbage collections as long as the heap contains large - or many - messages. Garbage
collection would not free enough memory in this case, as opposed to communication.
However, this introduces alternating phases of communication and computation, which
may not always be advantageous. We have not yet tested this.

And finally, idle time is considerable. A large amount of data has to be transported
over the transputer communication links. In addition, conversions and garbage collections
cause delays as well. Not only do these operations take notable time to complete, they also
- unlike normal reduction - make overlapping computation and communication more
difficult. One cannot boldly access messages in the heap during these operations because
nodes may be in an inconsistent state (perhaps containing forwarding addresses and marks).
In the current implementation processors cannot forward messages while they are busy
converting graphs and collecting garbage. The matrix multiplication program suffers
greatly from this problem. Again, part of this problem might be alleviated by postponing
garbage collections and conversions, in favour of message passing.

140 The Costs of Graph Copying

From the above it becomes clear that copying is excessively expensive here. In short,
converting a large graph takes much time and memory. One can observe that relative
conversion costs can be reduced by increasing the problem size, but at a much slower rate
than for the simple divide-and-conquer programs listed earlier. At the same time physical
memory size restrains the use of extremely large matrices. These introduce substantial
memory management overheads, which in turn will cause higher communication delays.

7.3.2. Matrix multiplication with arrays

We will show below that the use of strict arrays solves many problems. In this particular
case we do not need them for efficient random access to elements, but because they can be
copied cheaply. In Clean, the uniqueness type system allows an array to be represented by a
single, efficiently modifiable, block of memory. Strict arrays consist of evaluated
(unboxed) elements that are placed one after another in memory. As a result, copying a
strict array merely involves moving a block of memory if the elements are flat (e.g. a strict
array of integers). No expensive conversion is involved, which can clearly be seen in the
tables below. The algorithm is virtually the same as the one above that uses lists. We will
only give the new definition of the mulrow and the mulvector function to illustrate the use
of (unique) arrays. The put and get functions are needed to insert and to extract arrays
elements (which Clean 0.8 does not support directly).

mulrow :: Array Matrix Int -> *Array

mulrow a1 b row

 = mulrow' a1 b (newArray size) row size

 where size = sizeof a1

mulrow' :: Array Matrix *Array Int Int -> *Array

mulrow' a1 b c row col

 | col == 0 = c

 | otherwise = mulrow a1 b (put1 c col' result) row col'

 where

 col' = col - 1

 result = mulvector a1 b size col' 0.0

 size = sizeof a1

mulvector :: Array Matrix Int Int Real -> Real

mulvector v1 v2 row col result

 | row > 0 = mulvector a b row' col result'

 | otherwise = result

 where

 row' = row - 1

 result' = result + ((get1 a row') * (get2 b row' col))

Decreasing conversion costs 141

To achieve these results, we had to optimise the copying of arrays. Clearly, if the
graph is a strict array with flat elements, it can be copied without conversion by means of a
simple block move. In many cases however, the graph will consist of a mixture of strict
arrays and ordinary nodes. If an array is small, it will not be worthwhile to send a separate
message for it. In this case the graph copier will pack it - i.e. copy it - in a message together
with the other nodes of the graph. On the other hand, if an array is large, the copier will
create a separate message for it. This message consists of the array itself, creation does not
involve copying. For our transputer system 16 Kbyte turned out to be a good boundary
between small and large arrays. The combination of two-dimensional strict arrays and this
copying scheme has led to the improved speed-ups below.

Table 7-3: Multiplication of matrices represented by 2-dimensional arrays of floating point
numbers.

sequential 16 processors speed-up

multiply 32 × 32 1.0 sec. 0.4 sec. × 2.5

multiply 64 × 64 7.6 sec. 1.0 sec. × 7.6

multiply 128 × 128 60.3 sec. 5.0 sec. × 12.1

multiply 256 × 256 480.7 sec. 32.5 sec. × 14.8

Table 7-4: Time spent by root processor in parallel version on conversion and garbage
collection

conversions collections

multiply 256 × 256 0.03 sec. 0.08 sec.

If we compare these results with the previous ones, the merits of using strict arrays
are clear. Larger matrices can be used and for the large ones the speed-up is nearly perfect.
And if we take a closer look, we can see that all problems listed above are avoided by using
this different data representation.

• There are nearly no conversion costs, as large matrices do not get packed at all. They
already are packed from the start.

• Virtually no time is spent on garbage collections. On the one hand fewer garbage
collections are needed: no memory is allocated for conversions and the matrix
representation is more compact. A matrix of 128 by 128 reals takes only about 128
Kbyte as opposed to 400 Kbyte above. On the other hand each garbage collection is
less expensive, as the amount of live data is smaller, while having a less complex
structure as well.

• Idle time is small. Less data has to be transported, due to the compact matrix
representation. The reduction of conversions and garbage collections is important as
well. Unlike these computations, normal reduction can easily be overlapped by
communication, because the transputer communication hardware works
independently of the CPU.

142 The Costs of Graph Copying

However, we can also observe that the absolute execution times on a single processor
have gone up. It seems that computing the address of an element in a two-dimensional
array is more expensive than walking through a list. Unfortunately, version 0.8 of the Clean
compiler does not support arrays directly, so that special functions are needed to perform
array selections (version 1.0 solves this problem, but it has not yet been ported to the
transputer system). Small functions like put and get are used to insert or extract array
elements. If we manually inline the code of the get functions for the inner vector
multiplication loop (the mulvector function) we obtain the results in table 7-5 for sequential
matrix multiplication. These are competitive with C.

Table 7-5: Execution times of sequential matrix multiplication in Clean and C using two-
dimensional arrays and inlined array selections. The figures for the Pact Compiler
indicate execution times obtained with the stack in fast on-chip memory (1) and in
off-chip memory (2). The latter is more realistic for parallel programs with multiple
processes on a single processor. In Clean and in Helios, stacks are always placed off-
chip. The Helios compiler produces the best code in this case.

Matrix Size Clean Helios C Pact C1 Pact C2

multiply 32 × 32 0.3 sec. 0.2 sec. 0.2 sec. 0.3 sec.

multiply 64 × 64 2.3 sec. 1.9 sec. 1.8 sec. 2.2 sec.

multiply 128 × 128 17.6 sec. 15.7 sec. 14.3 sec. 18.2 sec.

multiply 256 × 256 139 sec. 131 sec. 117 sec. 146 sec.

The differences between Clean and C are marginal in these case. For Clean we can
expect further improvements if loop optimisations are employed that are commonly found
in languages like FORTRAN and SISAL. Considering the code that the Clean system
currently produces, we expect that performance can be improved approximately by factor
of two (compared to version with inlined array selections of table 7-5).

Table 7-6: Parallel matrix multiplication in Clean using two-dimensional arrays and
inlined array selections.

sequential 16 processors speed-up

multiply 32 × 32 0.3 sec. 0.3 sec. × 1.0

multiply 64 × 64 2.3 sec. 0.7 sec. × 3.3

multiply 128 × 128 17.6 sec. 2.9 sec. × 6.1

multiply 256 × 256 139 sec. 14.9 sec. × 9.3

Using the inlined array selector functions we get better performance for the parallel
version as well. These figures are listed in table 7-6. We can see that the sequential versions
are almost twice as fast as the ones that used lists. On the other hand, not only the execution
times have decreased, but the speed-ups have as well. This situation becomes even worse
when using lists of one-dimensional arrays instead of two-dimensional arrays. One-

Decreasing conversion costs 143

dimensional arrays have the advantage that addressing is cheaper than for two-dimensional
arrays. This reduces the sequential execution times notably, and it reintroduces slightly
more complex communications. As a result, the parallel execution times increase a little
and speed-ups plummet. The results are shown in table 7-7.

Table 7-7: Parallel matrix multiplication in Clean using lists of one-dimensional arrays
and inlined array selections.

sequential 16 processors speed-up

multiply 32 × 32 0.2 sec. 0.3 sec. × 0.7

multiply 64 × 64 1.5 sec. 0.8 sec. × 1.9

multiply 128 × 128 11.0 sec. 4.4 sec. × 2.5

multiply 256 × 256 84.9 sec. 16.5 sec. × 5.9

At this point, the limits of the available bandwidth become clearly noticeable. With
matrices of 256 × 256 elements, we need to transport about 8 Mbyte of data from one
processor. This causes delays, which becomes more apparent as the running times get
shorter. Running these tests on 32 processors will actually increase execution times notably
compared to running them on 16, as then we need to ship 16 Mbyte of data from the root
processor. This however, is not a problem that is caused by graph copying. It is inherent to
the algorithm used. One might solve it by using some form of broadcasting - which should
be able reduce the amount of transported data drastically -, or by using a slightly different
algorithm that distributes the data in another way. This will be treated below. It is also
possible to use a totally different approach with ‘data-parallel’ matrices that are distributed
from the start. As we will see in the next chapter this can give greatly improved speed-ups.

One could argue that lists are more elegant than arrays. In any case, the use of arrays
for certain operations does not rule out the use of lists for others. For instance, on top of the
efficient parallel matrix multiplication function for two-dimensional arrays, one can define
one for a list representation. Full conversions between the two representations are of O(n2)
If one has n processors, parallel matrix multiplication is of O(n2) as well. One can take
C-1((C A) × (C B)), where C is the function that converts the list representation into the
array representation. Having n processors one does not convert B n times, but only once. In
effect the conversion has been moved in front of all copying operations so that these can
share the converted result. Another viable way to achieve this might be the use of a special
cache for converted graphs so that these do not need to be re-computed.

7.4. Distributed copying

We have seen that absolute conversion costs can be greatly reduced by choosing
appropriate data structures. Alternatively, one could reduce the time needed for conversions
by distributing copying operations over all processors. This is mostly worthwhile if
copying costs are high, as is the case for the matrix multiplication program above that used
lists. It requires the root processor to perform most conversions, which turned out to be

144 The Costs of Graph Copying

very expensive. Conversely, one could use an algorithm that avoids this problem. An easy
way to achieve this is to split matrices recursively in half until some basic size has been
reached. Matrix multiplication will then be performed on these sub-matrices. Combination
of the partial results yields the final one. This gave slight speed-ups for matrices
represented by lists (table 7-8).

mul' :: [[Real]] [[Real]] -> [[Real]]

mul' a b

 | (sizeof a < threshold) = sequential_multiply a b

 | otherwise = append top bottom

 where

 top = {P} mul'' half1 b

 bottom = ! mul'' half2 b

 (half1,half2) = split_horizontal a

mul'' :: [[Real]] [[Real]] -> [[Real]]

mul'' a b

 = append' left right

 where

 left = {P} mul' a half1

 right = ! mul' a half2

 (half1,half2) = split_vertical b

Table 7-8: Parallel Matrix Multiplication using lists of lists and recursive split-up.

1 processor 16 processors speed-up

multiply 64 × 64 3.9 sec. 2.6 sec. × 1.5

multiply 128 × 128 30.3 sec. 16.0 sec. × 1.9

Table 7-9: Time spent by root processor in parallel version on conversion and garbage
collection (using recursive split-up on lists).

conversions collections

multiply 64 × 64 0.6 sec. 0.0 sec.

multiply 128 × 128 4.4 sec. 2.5 sec.

These figures are better than the naive matrix multiplication algorithm using lists, but
they are far from optimal, and certainly worse than the results obtained with arrays.
Compared to the original list version the root spends 4 to 5 times less time on conversions
and garbage collections, but the total execution time has only halved. As conversions are
not only executed at the root now, but for a considerable part on other processors as well,
we need to take into account these costs. Here problems arise because in Clean graphs are
copied as a whole - if they are in normal form - and not on a per-node basis. The

Distributed copying 145

distribution of data takes several phases that do not overlap. In other words, the copying
costs - mostly conversion costs - add up over a path from the root processor to a leaf.
Details can be found in the frame ‘Delays in Matrix Multiplication’.

Delays in Matrix Multiplication

For the naive matrix multiplication solution the total amount of delays is largely
determined by the conversion costs at the root. If we ignore the effects of garbage
collection and define p and u to indicate the packing and unpacking costs per
element, we can use the following formula for overall delays caused by conversion.

total conversion delays:

15p n2 + n2

16






+ u n2 + n2

16






+ p
n2

16
+ 15u

n2

16
= 16p + u()n2 (2)

The conversion costs at the root are given by (1), which is almost the same as (2).
For the matrix splitting solution this situation differs. The conversion costs at the
root are as follows:

conversion costs at the root:2 p n2 + n2

2






+ un2 = (3p + u)n2 (3)

It indicates that packing costs per element are now roughly between 37 and 49 µs
and between 67 and 90 µs respectively (see table 7-9). This is in accordance with
the figures found earlier if we consider that memory management overheads are
worst for the largest matrices. The formula for the overall delays is rather different
however. If we recursively split the matrices four times, we obtain 16 sub-matrices.
The delays for splitting and recombining can then be approximated by the
following formulae.

packing delays during splitting:3n2 + 3
n2

2
+ 3

n2

4
+ 3

n2

8






p (4)

unpacking delays during splitting:3
n2

2
+ 3

n2

4
+ 3

n2

8
+ 3

n2

16





u (5)

packing delays during recombination:
n2

2
+ n2

4
+ n2

8
+ n2

16






p (6)

unpacking delays during recombination: n2 + n2

2
+ n2

4
+ n2

8





u (7)

total conversion delays: (4)+(5)+(6)+(7) ≈ (6.6p + 4.7u)n2 (8)

Depending on the relative costs of unpacking the matrix splitting solution is only a
factor 1.5 to 2.4 better than the original one. This largely explains the limited
speed-ups that we measured for the splitting solution.

146 The Costs of Graph Copying

The conversion costs for the splitting algorithm are too high to improve the simple
version that uses arrays. However, we can also combine the two solutions. This resulted in
the execution times of table 7-10. For this particular test we did not use two-dimensional
arrays, but lists of one-dimensional arrays, because this enabled easy splitting.

Table 7-10: Parallel matrix multiplication using lists of one-dimensional arrays, inlined
array selections, and recursive split-up.

1 processor 16 processors speed-up

multiply 32 × 32 0.2 sec. 0.4 sec. × 0.5

multiply 64 × 64 1.5 sec. 0.9 sec. × 1.7

multiply 128 × 128 11.0 sec. 3.0 sec. × 3.7

multiply 256 × 256 84.9 sec. 11.1 sec. × 7.7

Clearly, this improves the earlier array versions only a little, if it improves them at all.
This solution appears more scalable though, because it does not add serious overheads for
larger networks. In spite of this, we have not been able to obtain better results with
additional tests on 32 processors. So at best, we do not increase execution times by using
more processors, unlike the earlier versions. Again, the delays form the limiting factor.

To overcome this problem, one either has to come up with an algorithm that splits up
the load more effectively, or one has to avoid the standard method of copying. The former
may introduce much work for a particular problem, so this is not always the best way to go.
In either case, finding better algorithms falls outside the scope of this thesis, so we will
concentrate on different forms of copying. For avoiding delays, the use of streams comes to
mind. One would like to break up the copying of a structure in pieces, so that a rather
continuous stream of data can be formed in which a pipeline of copying functions works
concurrently. This will not reduce the overall copying costs, but ideally it will fold them up
so that delays are reduced. We have not implemented matrix multiplication based on this
method, because implementing a pipelined copying algorithm for arbitrary structures is
rather complex and constitutes too much work. The next section will show how such
pipelines can be efficiently implemented for lists of integers. We will focus on the sieve of
Erathostenes.

7.5. Overlapping communication and computation

To some extent communication in Clean is lazy. By default results are not transmitted until
needed. This has some advantages. It avoids needless communications, suppresses small
(expensive) messages, and allows remote results to be referred without copying. The main
disadvantage is that it increases delays in obtaining results: if a result is needed, one has to
wait until it has been returned. First a request message will be transmitted. After this has
arrived, the result will be packed as soon as it has been computed, and finally the obtained
message can be returned and unpacked (see chapter 5). Only then the requesting process
can proceed. This may have great effect on performance for certain programs.

Overlapping communication and computation 147

In addition to the programs above, which suffered to a large extent from the
complexity of conversion alone, there is a class of programs that is seriously affected by
these delays. In general this is a problem if data is not necessarily complex, but has to travel
over a large distance. Many (small) delays will then add up to a considerable amount. In
functional languages this travelling distance is closely related to the depth of parallel
function composition, whereas the costs of each communication step are related to the
structural complexity of arguments and results. Although reduction of conversion costs can
be important for reducing delays as well, we will not consider this here. The previous
section already has focused on this. In contrast, this section will concern itself with
reducing delays by overlapping computation and (more eager) communication.

7.5.1. Streams

Streams consist of - possibly lengthy - compositions of functions. These pipelines can be
used to solve real-world problems, but they can be very sensitive to delays. A classical
example - albeit not extremely useful - is the sieve of Erathostenes. It generates a list of
prime numbers by filtering all non-primes from the list of natural numbers. The filter
consists of a pipeline of small filters. Each assumes the first number in the stream to be a
prime number. It will first deliver this prime and next remove all numbers from the stream
that are divisible by it. The resulting stream is passed to the next filter. This results in the
following process structure.

[1, 2 , 3 , 4, 5, ...]

[2, 3, 5, ...]

filter 2 filter 3 filter 5

Figure 7-1: A snapshot of the process structure of the sieve of Erathostenes.

In Concurrent Clean, this algorithm can be defined as shown below. We have listed
the definitions for the most important functions only. New processes are either started at a
remote processor with a {Pn} annotation, or on the current processor with a {I} annotation.
A heuristic has been used to balance the load. The higher the prime number of a filter, the
fewer numbers it has to filter, so an increasing number of filter processes will be grouped
on the same processor. As processes reduce functions to root normal form only, extra
internal processes are needed to drive the filtering (in a speculative way).

The results of this program have been listed in table 7-11. The speed-ups are not very
impressive, mainly due to the effects of delay. In addition, the use of the {I} annotation in
the filter function gives rise to unbridled eager computation of results. This may flood the
heap, which introduces substantial memory management overheads and prevents the use of
large - or infinite - lists. The exact cause of delays varies widely, because there is no
mechanism to control the length of the list that will be copied. If lists are long, conversion
time introduces considerable delay. If lists are short, many small messages are needed and
communication overheads are relatively high.

148 The Costs of Graph Copying

sieve n [p : s]

 | n == 0 = [p : {P n} sieve ns f]

 | otherwise = [p : {I} sieve (n - 1) f]

 where

 f = filter s p

 ns = squareroot p

sieve n [] = []

filter [x : xs] p

 | x mod p == 0 = filter xs p

 | otherwise = [x : {I} filter xs p]

filter [] p = []

Table 7-11: The sieve of Erathostenes.

1 processor 32 processors speed-up

sieve 10000 18.4 sec. 8.9 sec. × 2.0

sieve 20000 61.7 sec. 23.7 sec. × 2.6

sieve 40000 213.3 sec. 64.7 sec. × 3.3

sieve 80000 752.2 sec. ? ?

7.5.2. Buffering

To overcome these problems an efficient buffering mechanism between processors is
useful. Firstly, it is able to limit the number of elements that can be computed in advance so
that memory problems are avoided. Secondly it can minimise delays by controlling the size
of messages and the use of early requests, meaning that request messages are sent before
the requested object is actually needed. This will cause conversions and communication to
take place at less critical moments. Reducers do not have to stop (that long) performing
useful computations, so that communication and computation will overlap. By controlling
the message size one avoids messages that are too large or too small to be efficient.

Strict arrays are very useful for implementing a buffering skeleton. As has already
been shown above, strict arrays can be communicated very efficiently, so buffers
implemented this way can be as well. In addition, the uniqueness type system can ensure
that buffers are not shared, so that they can be destructively updated. This is very important
for efficiently filling and emptying a buffer.

We have implemented the following low level buffering function for lists of integers,
which has been based on this method. The definitions below are a little more complicated
in reality. For clarity, we have left out boundary conditions and the definitions of low level
functions. Each buffer function starts a write function at the given processor and passes the
result to a local read function. The write function will fill a newly created buffer with the
values it obtains by evaluating size elements of its parameter list. It finally combines the
resulting buffer and a reference to the next fillbuffer function for the rest of the list.

Overlapping communication and computation 149

Evaluation of the read function will force this result to return. It first extracts the returned
buffer and the reference to the next one. Hereafter, it sends a request for the next buffer
without suspending itself (by starting an interleaved process on it). This forces speculative
evaluation of the next size elements. Meanwhile, each low level get_element function takes
the next element out of a buffer. It delivers both the element and the updated buffer. If
executed on a depleted buffer it will first perform a read on the next one.

:: Buffers = (! Array, Buffers)

buffer :: ProcId Int [Int] -> [Int]

buffer processor size list = read({P n at processor } write size list)

write :: Int [Int] -> Buffers

write size list = fillbuffer (createbuffer size) size list

where

 fillbuffer buf size list = (filledbuffer, nextbuffer)

 where

 nextbuffer = fillbuffer (createbuffer size) size remaininglist

 (filledbuffer,remaininglist) = eval_and_fill buf size list

read :: Buffers -> [Int]

read (filledbuffer, nextbuffer) = [first : get rest {I} nextbuffer]

where

 (first,rest) = get_element filledbuffer

 get buf nextbuffer

 | notempty buf = [elem : get rest nextbuffer]

 | otherwise = read nextbuffer

 where

 (elem,rest) = get_element buf

Most of the time the situation of figure 7-2 will exist. Any consumer will be able to
get the next element from a returned buffer quickly by evaluating the get function. At the
same time the eval_and_fill function will be filling the next buffer. On average size
elements will be buffered. If processes proceed at equal speed the next buffer will be filled
- and possibly returned - by the time the consumer needs it. Note that evaluation of the list
will stop if the consumer does not evaluate the read function for some buffer: the next
buffer will not be requested then.

As we will see below, the buffer function above can give greatly improved
performance for streams of integers. It has two limitations however. First of all, it unravels
the argument list, so it does not preserve cycles. Unfortunately, we cannot avoid this if we
use Clean to construct the buffer array. In Clean, there is no way to detect cyclic structures.
And secondly, this buffer function can only handle lists of integers. This has to do with the

150 The Costs of Graph Copying

functions that fill the strict array, which need to know the size of each element. This
limitation can be avoided in version 1.0 of the Clean system, which supports type classes
(the transputer implementation only supports version 0.8).

[e1, e2, …,
fillbuffer

processor A processor B

]get
size [er, er+1, …]

ep ep+1 eq eq+1 er-1

Figure 7-2: The relation between buffering functions during evaluation of the fillbuffer
function.

If we use this new buffer function for the implementation of the sieve program, we
get the code below. It does not need extra process annotations to drive the filtering
processes. In order to start up a buffer function that reads from the correct processor each
remotely started sieve receives the processor number of its parent. Note that the currentP
function is not really referentially transparent: it has a different result if evaluated on
different processors. On the other hand it cannot have any influence on the final outcome of
the program, except for the placement of processes and as a result of this, on efficiency. In
addition, as we will see in the next chapter, it is possible to define more sophisticated
constructs that do not need such functions. Note also that the copying strategy ensures that
the currentP function is reduced at the correct processor. It does not need a strictness
annotation (which would have been necessary in the old copying strategy).

sieve n [p : s]

 | n == 0 = [p : {P n} psieve currentP ns f]

 | otherwise = [p : {I} sieve (n - 1) f]

 where

 f = filter s p

 ns = squareroot p

sieve n [] = []

psieve processor n list = sieve n (buffer processor BufferSize list)

filter [x : xs] p

 | x mod p == 0 = filter xs p

 | otherwise = [x : filter xs p]

filter [] p = []

Overlapping communication and computation 151

The execution times for this program have been listed below. Clearly the speed-ups
for the sieve are significant if enough numbers are filtered. We should note that sieves are
not necessarily running on neighbouring processors and that the buffering function is not
yet optimal. Idle time is approximately 50% on each processor. This means that even better
performance may be achieved in the future, although these results already are a notable
improvement compared to results presented earlier for functional programs.

Table 7-12: The sieve of Erathostenes with buffering. The first column is the same as in
table 7-11, as it lists the results for a purely sequential program, without any
buffering function.

sequential 16 processors speed-up 32 processors speed-up

sieve 10000 18.4 sec. 3.9 sec. × 4.7 3.5 sec. × 5.3

sieve 20000 61.7 sec. 9.8 sec. × 6.3 8.3 sec. × 7.4

sieve 40000 213.3 sec. 29.8 sec. × 7.2 21.8 sec. × 9.8

sieve 80000 752.2 sec. 90.9 sec. × 8.3 56.4 sec. × 13.3

sieve 100000 1136.9 sec. 131.4 sec. × 8.7 81.1 sec. × 14.0

sieve 200000 4225.8 sec. 476.0 sec. × 8.9 269.6 sec. × 15.7

7.6. Conclusions

We have concentrated on the costs of graph copying. These costs turned out to form a
bottleneck for a class of useful parallel programs, such as matrix multiplication and
programs that use pipelines. Observing that copying costs vary considerably for different
data structures we have been able to present a solution that relies on the use of arrays.
These can be transferred very efficiently, and they form the basis of efficient skeletons to
regulate communication. This has led to significant speed-ups for the example programs.

7.7. Discussion

One may argue that we have actually avoided graph rewriting by using arrays. Does this
mean that we have chosen the wrong computational model for Concurrent Clean? And if
not, does the use of arrays demand an unnatural way of programming?

The way we have used arrays in this chapter can be compared to the way that files are
used by the Concurrent Clean I/O system. In essence, files and messages are the same.
Using the standard graph copying mechanism, graphs not only can be stored in a message,
but also in a file. Communication can then take place by passing this file from one process
to another (à la UNIX). The origins of the flat ‘structure’ of files are found in the nature of
the underlying hardware, which only handles flat blocks of data well. Likewise, our use of
arrays has to do with communication hardware that only handles flat messages well.

In both cases, flat data structures are used at a low level. At higher levels, graph
rewriting remains dominant. This can be seen in the pipelining example above. The buffer
function consumes lists and produces lists, but it uses arrays for its implementation, simply

152 The Costs of Graph Copying

to efficiently interface with the underlying communication hardware. It avoids the standard
graph copying mechanism and replaces it by a custom one. In general, the use of arrays can
be embedded in ordinary graph rewriting.

For other programs that have nothing to do with communication or other forms of
I/O, the use of arrays can be important as well. Only now, the need for such flat structures
will usually originate in the algorithm itself. For example, it may be necessary to provide
constant access time to elements.

One may argue that it is odd to use arrays in a parallel implementation, as it is
necessary to sequentialise the write access on arrays, so that each following function uses
the new array that the current function delivers (leading to an imperative style of
programming). The uniqueness type system enforces this order. However, lists may not be
much better in this respect. These automatically introduce sequential access to elements
because of the way they are constructed. One way or another, one ends up with some form
of sequentialisation.

Note also that, after choosing a flat data structure, this decision can sometimes be
hidden at a higher level. On the language level, ‘list’ comprehensions can be defined for
both arrays and lists. For example, the matrix multiplication program can be expressed very
concisely with list comprehensions. Both the version that uses lists and the one that uses
arrays essentially have the following structure.

mul a b = [mulrow x b \\ x <- a]

mulrow a b = [mulvector a x \\ x <- b]

mulvector a b = sum [x * y \\ x <- a & y <- b]

Such constructs are easy to use and they can safely incorporate parallel updates on
arrays. They are related to the language constructs of data-parallel languages like SISAL.
We can take this a bit further. It is conceivable that special constructs are provided that
enable the efficient splitting and recombination of unique arrays (without copying arrays
physically), allowing programmers to define processes that work on all parts in parallel. As
we will see in the next chapter, skeletons can be defined on such split arrays that allow a
very straightforward use of arrays in a parallel context. So even if we explicitly use arrays,
this does not necessarily affect ease of parallel programming.

8. Constructing Skeletons

Skeletons are well-suited to structure parallel programming. They allow the easy use
of some well-known parallel programming paradigms to construct portable, efficient
programs. Much research has been focused on the use of skeletons in functional
programming languages, because they can be expressed elegantly as higher order
functions. On the other hand, little attention has been paid to an elementary weakness
of skeletons: how to implement them without having to resort to low level
techniques. In this chapter we will show that the parallel constructs of Concurrent
Clean can be used to efficiently implement a range of high level skeletons. We will
construct skeletons for data parallelism, for parallel I/O, and for stream processing.
Our experiments demonstrate that no performance penalty needs to be paid,
compared to more restrictive solutions.

Section 8.1 will give a short introduction on skeletons. Hereafter, in section 8.2,
we will introduce some basic functions that we will use in the remaining part of this
chapter to construct a number of skeletons. Section 8.3 will show how to construct
skeletons for data-parallelism. In particular, it will focus on a data-parallel matrix
multiplication program. In section 8.4 we will demonstrate how skeletons can be
constructed that provide a powerful mechanism for specifying parallel I/O. Section
8.5 will proceed with the introduction of skeletons that support stream processing.
And finally, section 8.6 will present our conclusions.

8.1. Introduction

The use of functional languages partly solves the problem of writing efficient parallel
programs, because referential transparency allows arbitrary expressions to be evaluated in
parallel, without changing the outcome of the program. This makes reasoning about the
result of parallel functional programs as easy as for sequential ones. Unfortunately,
knowing we cannot compute the wrong result, does not imply we are doing it efficiently.
Resource allocation has great effect on parallel performance. Finding the best one for a
certain program on a given parallel machine model is difficult. In addition, as there are so
many different models, portability is hard to maintain.

Should the compiler allocate resources implicitly, or is it a programmers task to do it
explicitly? Clearly, a fully implicit approach would be ideal. It would keep the programmer
from making mistakes and it retains portability. However, at this moment no method is

154 Constructing Skeletons

known that will automatically derive efficient parallel programs in all circumstances. This
means that compilers currently need some form of guidance from the programmer.

The concept of skeletons (Cole, 1989) forms an interesting idea for structuring this
guidance. Skeletons can be seen as predefined templates that are used to control parallel
execution of programs. The use of these has the advantage that it enables the programmer
to exploit certain well known parallel programming paradigms, without having to resort to
low level language constructs. In addition, the implementor of a skeleton is able to
construct the most efficient one for each platform by taking full advantage of specific
machine features. And finally, a certain degree of portability is ensured if the same set of
skeletons is provided for all platforms (true portability requires the skeletons to be
implementable equally efficiently on different machines).

Many have advocated the use of skeletons in parallel programming environments and
in particular, research has focused on functional languages (Blelloch et al., 1993, Bratvold,
1993 and 1994; Danelutto et al., 1993; Darlington et al., 1993; Kuchen et al., 1994). This is
mainly because skeletons can be expressed elegantly as higher order functions. These are a
natural part of functional languages and have already been used widely in functional
programming, not so much because they may embody parallelism, but because they
provide a concise way of expression. Similar concepts form the basis of the idea to use the
Bird-Meertens Formalism as a parallel programming model (Skillicorn, 1992).

On the other hand, little attention has been paid to the elementary weaknesses of
skeletons: first of all, a set of skeletons has to be implemented on every platform and
secondly, a given set may not be very suited to solve some problems efficiently or
elegantly. It has already been pointed out by Cole that new skeletons will have to be
developed and that ‘the “ad hoc” implementation of each skeleton from scratch on each
new architecture would result in much wasted effort’ (although this effort is relatively little
compared to that put into application development using crude tools). Considering this, it is
not surprising that most experiments with some form of skeletons have been produced with
a small set of data parallel languages on a limited set of machines that support these
languages well (Blelloch et al., 1993; Cann, 1992). So far, we have gained only little
experience with skeletons in more common functional languages on more general purpose
machines (Bratvold, 1993, 1994; Kuchen et al., 1994). This indicates that an intermediate
level of abstraction is desirable.

In this chapter, some examples will illustrate how Concurrent Clean can be used to
implement a range of high level skeletons. In contrast to Darlington (1993), not only the
meaning of each skeleton will be established by its functional language definition, but also
its behaviour. Thus, we will use a lazy functional programming language with general
mechanisms for unstructured parallelism only, to capture structured parallelism. This not
only allows to build a structured system that can be extended easily, but it also permits
mixing of structured and unstructured parallel programming.

Power of expression is important, but actual speed is crucial in a parallel system.
Some experiments on the transputer system will make clear that no performance penalty
needs to be paid, compared to parallel functional (Concurrent Clean) programs without
skeletons (Bülk et al., 1993; Nöcker, 1993-c), and compared to other functional languages
that provide skeletons in more restrictive ways (Bratvold, 1993; Kuchen et al., 1994). Some

Introduction 155

Concurrent Clean programs are even competitive with C. But before we take a look at these
examples, we will introduce some auxiliary functions.

8.2. Auxiliary functions

With the basic program annotations that Clean supports, it is possible to introduce and
control parallelism at a very low level. Nonetheless, it turned out to be useful to add a few
auxiliary functions. The implicit communication mechanism transports evaluated remote
arguments to functions that need them, where they can be used for further processing. It is a
little cumbersome to achieve the converse, that is: transport a function to a remote
argument and apply it to this argument there. One would have to keep track of the location
of an expression explicitly (see the definition of the buffering sieve of Erathostenes in the
previous chapter). For this reason we have defined the following functions and types in
Clean.

:: R x = Remote x

r_ap :: (x -> y) (R x) -> R y

r_ap f (Remote x) = r_ap_at (arg_id x) f x

where

 r_ap_at :: ProcId (x -> y) x -> R y

 r_ap_at processor f x = Remote ({P n at processor } f x)

get_remote :: (R x) -> x

get_remote (Remote x) = x

id :: x -> x

id x = x

First of all, we have devised a polymorphic higher order function r_ap (remote
application) that is able to transport a function to a remote argument and apply it to this
argument. The result is again a remote object. It uses the low level function arg_id that
returns the location of its argument; more precisely, it returns the position of the root node
of its argument. This may seem to violate referential transparency, but, as processor ids
only have a meaning within annotations, pureness is preserved in this ‘para-functional’
programming style (no operations have been defined on processor id’s other than {Pn at
...}). Even so, the arg_id function is completely hidden in the definition of the r_ap
function. It is not available for programmers. In a sense, r_ap can be seen as a very basic
skeleton that hides these confusing details.

In addition, we have introduced a new algebraic type that indicates - or rather
suggests - that a data structure is at another processor. Typically, the argument of a Remote
constructor will be on a different processor than the constructor itself (see figure 8.1). Such
a type is useful for various reasons. Firstly, it helps the programmer to keep track of remote

156 Constructing Skeletons

structures. In Clean there is no obvious difference at the language level between a local
object and a remote one. This is very convenient during default evaluation, for then we do
not need to worry about communication. But if one wants to deal with certain remote
objects in a special way, one would like some help in tracking these objects. This can be
provided by declaring some objects to be remote. Secondly, the extra constructor Remote
allows functions - always reducing to RNF - to return a truly remote result: a reference to a
result at another processor. This becomes apparent in the definition of the r_ap_at function
above. Without the extra constructor it would not only apply a function at a remote
argument, but it would also subsequently evaluate (i.e. request) the result, so that it does
not remain remote. This would not be the intended behaviour. And finally, having the
Remote constructor, functions that have remote arguments need to perform a pattern match
on the Remote constructor to get hold of the actual reference to the argument. This ensures
that any indirections that may have been added after constructing the remote object will
conveniently be removed automatically. This makes it easy for the arg_id function to find
out the exact location of its argument. It will not accidentally return the location of some
selector function for example.

getremote (Remote)
argument

processor A processor B

Figure 8-1: The locations of the ‘Remote’ constructor and its argument in the expression
‘get_remote (Remote argument)’.

And finally, two simple functions have been defined. The get_remote function turns a
remote object into a local one, using the standard evaluation and communication
mechanism. A put_remote function is not very useful, as this can easily be provided by the
standard {Pn} annotation in conjunction with the Remote constructor (see the definition of
the r_ap_at function). The identity function is sometimes necessary to act as a copy-
stopper. This is useful in case the Remote constructor is produced by a remote function, and
not locally, as is the case in the r_ap_at function above. If so, we need to insert a copy-
stopper between the constructor and the object, so that evaluation and transmission of the
constructor does not trigger transmission of the object as well.

Combined with these functions, the standard Clean annotations are powerful enough
to easily define a range of high level skeletons, as we will see in the following sections. We
will construct skeletons that provide efficient data parallel constructs, skeletons to perform
parallel I/O, and finally, skeletons that describe stream processing.

8.3. Skeletons for data parallelism

Unlike Sisal (Böhm et al., 1989; Cann, 1989), Concurrent Clean is not a strict language
dedicated to data parallelism. One of its major shortcomings has been the lack of suitable
constructs for this kind of parallel processing. In this section we will show that functional

Skeletons for data parallelism 157

languages not only can be used as data parallel languages, but also to implement data
parallel constructs efficiently.

8.3.1. Arrays and matrices

Arrays and matrices undoubtedly are the most prominent data structures in data parallel
processing. Clean does have some support for matrices and arrays, but these are not ‘data
parallel’ in the sense that they are automatically distributed over a number of processors.
Instead, each array is associated with a single contiguous block of memory on a single
processor, much like arrays in sequential imperative languages. In addition, referential
transparency forces single-threaded access on these arrays if updates are to be done in
place.

Despite this sequential nature of arrays in Clean, they are very suited for parallel
programming. Even if referential transparency forces single threaded access on arrays, this
can be better than using lists, which impose an order on accessing elements. And compared
to lists, strict arrays can be considerably more efficient when they are to be transmitted to
other processors. The previous chapter has shown that the use of arrays instead of lists can
dramatically speed up parallel matrix multiplication, even if one uses a very straightforward
algorithm without any data parallel constructs.

Below, we will demonstrate how an efficient implementation of data parallel matrices
can be obtained from the standard matrices in Clean. This will allow efficient parallel
processing on a large number of processors, in contrast to the examples in chapter 7, which
were not very scalable. First we will choose the structure of the distributed matrix and
define some - rather general - data parallel operations on it. Next, we will use these to
construct a data parallel matrix multiplication program that is based on Gentleman’s
algorithm (1978). And finally, we will present the execution times of this program, which
will make clear that building data parallel skeletons in Clean does not result in a
performance penalty.

8.3.2. Operations on distributed matrices

The idea for obtaining a distributed matrix, is to define a local structure that refers to
remote substructures, as depicted in figure 8-2.

a1 a2 a3

A:

Figure 8-2: A distributed array A, of which each part ai resides on a different processor.
The dotted lines indicate processor boundaries.

Using the definitions given earlier we can simply define parallel matrices to be a
double list of remote sub-matrices, as shown below. Choosing a list of lists is rather
arbitrary though. One could have used a different structure, like for instance a quad-tree, or

158 Constructing Skeletons

a doubly linked circular list, or several, while using some natural transformation functions
to get from one form to the other.

 :: PMatrix :== [[R Matrix]]

Map- and fold-like operations are crucial in data parallel programming languages. We
will give Clean definitions of each kind below. These functions are polymorphic and
operate on double lists of general remote objects. They can be applied to objects of type
PMatrix, but also to different distributed objects that use a double list as local structure.

The map3 function shown below constructs a new distributed structure out of three
distributed structures. The remote elements of the new structure will contain f a b c, where
a, b and c are the corresponding remote elements of the argument structures. The function f
is applied at the processor that contains c and this will also be the location of the resulting
element.

map3 :: [[R x1]] [[R x2]] [[R x3]] (x1 x2 x3 -> y) -> [[R y]]

map3 [row1 : rows1] [row2 : rows2] [row3 : rows3] f

 = [map3row row1 row2 row3 f : map3 row1 rows2 rows3 f]

map3 [] [] [] f = []

where

 map3row :: [R x1] [R x2] [R x3] (x1 x2 x3 -> y) -> [R y]

 map3row [e1 : e1s] [e2 : e2s] [e3 : e3s] f

 = [r_ap (map3elem f e1 e2) e3 : map3row e1s e2s e3s f]

 map3row [] [] [] f = []

 map3elem :: (x1 x2 x3 -> y) (R x1) (R x2) x3 -> y

 map3elem f e1 e2 e3 = f (get_remote e1) (get_remote e2) e3

The definition of map3 is completely lazy: new processes will only be introduced at
the moment the corresponding part of the resulting double list is needed by some other
computation. Consequently, if one would pass the result of map3 to some function that
sequentially accesses the different parts of the result structure, no parallelism would be
introduced, although different parts would be computed at different processors one after the
other. This may seem odd, but our aim is to provide the kind of data parallel laziness that is
proposed by Hill (1993). The parallel construct we have defined above is nothing more
than a description of the location that certain computations will take place, should they turn
out to be needed. This has the advantage that unnecessary computations will not take place.
Our definition of the map3 function could be even lazier still, because the r_ap function
embodies a {Pn} annotation that actually starts a new process, while it would be sufficient
to just place a function at the correct processor (lazy normal form copying will ensure that
this function does not move to another location).

Skeletons for data parallelism 159

a1 a2 a3

r_ap fr_ap f r_ap f

map f A:

Figure 8-3: Applying a lazy ‘parallel’ map to a distributed array A (see figure 8-2). The
dotted lines indicate processor boundaries. No real parallelism is introduced here.
However, as soon as some computation hits one of the r_ap nodes the unary function
f will be applied to the corresponding argument at the remote processor.

Having this lazy definition of map, an additional eager mechanism is required to
actually introduce new processes where necessary. This is closely related to standard se-
quential lazy evaluation, where computations are driven by an eager printing mechanism.
In our case true parallelism may be introduced by an eager parallel fold function, as the one
presented below. It requests all remote elements of a doubly linked list in parallel.

fold :: [[R x]] (y y -> y) (x -> y) y -> y

fold [row : rows] h g e

 = fold rows h g ({I} foldrow row h g e)

fold [] h g e = e

where

 foldrow :: [R x] (y y -> y) (x -> y) y -> y

 foldrow [elem : elems] h g e

 = foldrow elems h g e'

 where

 e' = {I} get_remote (r_ap h' elem)

 h' = compose (h e) g

 foldrow [] h g e -> e

 compose :: (y -> z) (x -> y) x -> z

 compose h g x = h (g x)

The fold function above applies the function g to each remote element and folds the
results with the function h. Normally, g will be some folding function over the structure of
the remote elements. Most concurrency can be found in the parallel application of g, but
fold is not as parallel as could be, because there is a sequential dependency between the
applications of h. A trivial solution would be to split the double list recursively and fold it
in a tree-like manner, provided that h is associative.

160 Constructing Skeletons

g g g

hh

fold h g (map f A):

a1

f f f

a2 a3

Figure 8-4: The application of a parallel fold to the distributed array of figure 8-3. Again,
the dotted lines indicate processor boundaries. After some reduction steps the
situation above will arise. The function h will be applied in parallel on its arguments.
This will force parallel evaluation of g, which in turn introduces the parallel
evaluation of f (provided that h needs the result of g, and g needs the result of f). And
finally, the result of the fold function will be copied to the root processor.

Transformations like shifts and rotations can easily be defined on the local structure
of the distributed object. They merely perform some permutations on the references to the
remote structures. In this way, communications are automatically postponed until needed.
This means that the transformation rotate_left (rotate_up x) does not introduce more
communications than some function rotate_left_and_up x.

rotate_up :: [[x]] -> [[x]]

rotate_up [row : rows] = append rows [row]

rotate_up [] = []

a1 a2 a3

rotate_left A:

Figure 8-5: Rotating the distributed array A (see figure 8-2) to the left. This merely
involves a pointer permutation. No communication takes place.

Skeletons for data parallelism 161

Broadcasts

Broadcast communication can be provided by means of distributed objects as well.
For example, it is possible to define a primitive function broadcast that has the
following type:

broadcast :: x -> [R x]

The effect of this function will be that it broadcasts its argument to all processors,
and delivers a list of remote objects. Element ei will refer to the copy of the original
argument at processor i. Having obtained such a broadcast object, we can simply start
up functions at the appropriate processors using the r_ap function. Alternatively, we
might also distribute the list of remote objects over all processors (only copying
references, not the remote elements themselves), so that each processor obtains a
complete overview of the location of each copy. Again, we might use the broadcast
function to accomplish this:

broadcast (broadcast x) :: [R [R x]]

Supporting such a double broadcast operation requires careful reconsideration of
the weighted reference counting scheme. In large networks one introduces many
references to the same object, copying the same channel node many times, each time
halving its weight. Consequently a straightforward solution could introduce many
indirection nodes, in particular in large networks.

a1 a2 a3

r_ap fr_ap f r_ap f

map f A (rotate_left A):

Figure 8-6: Mapping a dyadic function f on A and on (rotate_left A). Communication will
only take place if f is actually executed at the location of one of its arguments.
Depending on the definition of the map function f will either be executed at its first
argument or at the second. If f is applied at the location of its first argument the
elements of A will actually be rotated to the left. Otherwise, they will be rotated to the
right. The overall effect remains the same.

162 Constructing Skeletons

And concluding, distributed objects can be created with functions like the map
function above. Only now, each occurrence of r_ap f x should be replaced by Remote {Pn
at …} (create_element …). Again, the create_element function can be passed as an
argument.

Note that the map and fold operations defined above just happen to be specialised to
lists of lists. Constructing these operations for other kind of data structures is fairly
straightforward. It comes down to walking the particular structure while distributing and
inserting functions in a similar way. It will be interesting to exploit type classes and
constructor classes and define skeletons for sets of data structures.

8.3.3. Data parallel matrix multiplication

The functions that we have defined in the previous paragraphs allowed us to implement
Gentleman’s matrix multiplication algorithm (Gentleman, 1978) in a straightforward way.
We used a few additional functions for rotating and skewing matrices, but these can be
constructed similarly to the rotate_up function above. Gentleman’s algorithm lets each
processor compute a part of the resulting matrix, by rotating the relevant rows and columns
‘through’ this processor (see also figure 8-7). It does this for each part of the result
simultaneously. Below, we have listed the main part of the program.

ai1 ai2 ai3 ai4 ai5
b3j

b4j

b5j

b2j

b1j

Figure 8-7: A snapshot of Gentleman's matrix multiplication algorithm. The bold square
depicts the processor that will multiply row ai with column bj. It has already
computed ai1 × b1j + ai2 × b2j, and it is currently computing ai3 × b3j. The elements
ai1, ai2, b1j, and b2j have been passed on to other processors. The remaining elements
still have to pass through this processor. At the same time the other processors will
be working on other parts of the result in a similar way.

The new_mat function creates a new distributed matrix and fills it according to its
argument function. The skew and rotate functions have been defined in the same way as the
rotate_up function above. length is a function that computes the length of a list. It tells how
many rotations are necessary. mul_add does all the work. It is a sequential function that
multiplies two ordinary matrices and adds the result to another (this is very similar to the
matrix multiplication algorithms in the previous chapter).

Skeletons for data parallelism 163

mul :: PMatrix PMatrix -> PMatrix

mul a b = mul' a' b' zero rotate_n

where

 a' = skew_left a

 b' = skew_up b

 zero = new_mat zero_mat

 rotate_n = length a

 mul' :: PMatrix PMatrix PMatrix Int -> PMatrix

 mul' a b c 0 = c;

 mul' a b c n

 = mul' a' b' (map3 a b c mul_add) (n - 1)

 where

 a' = rotate_left a

 b' = rotate_up b

The whole computation is driven by the function fold as shown below. This is not
part of Gentleman’s algorithm, but it is merely used to guarantee parallel evaluation. If we
omit the fold function the whole resulting matrix gets printed on screen. This happens
lazily, so we loose parallelism, while gaining I/O overheads. Conversely, if we merely
select a single sub-matrix from the result, only this element will be computed on its own
processor. The rest will remain idle. The fold function avoids this. It ensures that all
elements of the result are computed in parallel.

fold (mul a b) (&&) matrix_to_bool True

where

 a = new_mat some_mat

 b = new_mat another_mat

8.3.4. Performance Measurements

The following tables present the results that have been obtained with matrices containing
floating point numbers of 64 bits. The parallel versions have been compared to a purely
sequential matrix multiplication program that contains no overheads for parallelism (using
2-dimensional arrays, see also table 7-3). Although the actual network topology matches
the matrix structure, no effort has been made to place sub-matrices that are neighbours
logically at physically neighbouring processors (for our hardware provides no clear relation
between processor numbering and the physical network). This increases communication
overheads, especially for large networks and small matrices.

164 Constructing Skeletons

Table 8-1: Execution times of matrix multiplication in Clean

sequential 4 processors 16 processors 64 processors

multiply 32 × 32 1.0 sec. 0.4 sec. 0.4 sec. 1.7 sec.

multiply 64 × 64 7.6 sec. 2.1 sec. 1.0 sec. 1.8 sec.

multiply 128 × 128 60.3 sec. 15.6 sec. 5.1 sec. 2.9 sec.

multiply 256 × 256 480.7 sec. 121 sec. 36.3 sec. 11.3 sec.

multiply 512 × 512 3846 sec.* 966 sec.* 281 sec. 73.8 sec.

Table 8-2: Speed-up of matrix multiplication in Clean

4 processors 16 processors 64 processors

multiply 32 × 32 × 2.5 × 2.5 × 0.6

multiply 64 × 64 × 3.6 × 7.6 × 4.2

multiply 128 × 128 × 3.9 × 11.8 × 20.8

multiply 256 × 256 × 4.0 × 13.3 × 42.5

multiply 512 × 512 × 4.0* × 13.7* × 52.1*

The star indicates where we have used estimations, as matrices of size 512 by 512 are
too big to be accommodated on a single processor. Matrix multiplication is of O(n3), so it is
not unreasonable to assume it will take 8 times longer to multiply two matrices of size 512
by 512 on one processor, than it takes to multiply two of size 256 by 256. This assumption
is strongly supported by the results we have obtained for the sequential program.

Table 8-3: Execution time and speed-up in Clean after inlining the array selection
functions inside the innermost vector multiplication loop.

sequential 16
processors

speed-up 64
processors

speed-up

multiply 32 × 32 0.3 sec. 0.4 sec. × 0.8 1.7 sec. × 0.2

multiply 64 × 64 2.3 sec. 0.6 sec. × 3.7 1.8 sec. × 1.3

multiply 128 × 128 17.6 sec. 1.8 sec. × 9.6 2.5 sec. × 7.0

multiply 256 × 256 139 sec. 10.2 sec. × 13.6 5.0 sec. × 27.8

multiply 512 × 512 1112 sec.* 73.9 sec. × 15.1* 22.1 sec. × 50.3*

As in the previous chapter, the absolute performance can be improved by inlining
some array selection functions. table 8-3 lists the resulting performance figures (these are
comparable to C, see also table 7-5). Using parallel matrices has two considerable
advantages over the solutions of chapter 7. First of all, larger matrices can be used, as they
do not have to fit in the memory of a single processor. And secondly, this algorithm is far
more scalable. This is already noticeable for 16 processors (compare table 8-3 with table 7-

Skeletons for data parallelism 165

6 and table 7-7). With 64 processors we get significant speed-ups, whereas earlier versions
became slower if more than 16 processors were used.

The figures presented above compare favourably to the ones presented for π-RED+
(Bülk et al., 1993) and the Data Parallel Functional Language (DPFL) presented in
(Kuchen et al., 1994). Both give similar speed-ups - albeit with smaller networks -, but they
have worse absolute performance (No absolute performance figures have been presented
for π-RED+, but this is an interpreter). Other implementations of functional languages on
machines with distributed memory either do not list results for matrix multiplication, or
they are considerably less efficient.

Table 8-4: Execution times of Clean and DPFL for multiplication of matrices of size 500 ×
500. For Clean we did not use inlining of array selections this time.

4 processors 25 processors

Concurrent Clean (25 MHz T800) 902 sec.* 169 sec.

DPFL (20 MHz T800) 3127 sec. 510 sec.

More interesting than execution times however, - as this largely depends on
sequential code quality -, is that DPFL uses a set of custom data parallel constructs. To
implement these, a communication mechanism has been suggested that uses version
numbers to maintain the correct ordering of messages and operations. Though messages
may pass each other in Clean as well, we do not need such a construct, because the correct
order of operations is automatically maintained by data dependencies. In addition, we do
not rely on uniqueness properties as heavily as DPFL. Instead of requiring each instance of
an entire array to be unique, we only need this property temporarily during sequential
construction of some remote sub-array. Usually, this requirement will be met by the array-
constructing argument functions of the skeletons. We have not (yet) made use of
uniqueness properties within the definition of the skeletons themselves.

We have not been able to compare Clean with SISAL in a sensible way. To some
extent because Clean does not optimise loops on arrays, but mainly because the
architectures for which they are available differ greatly. The performance figures obtained
on transputers are not conclusive with respect to performance on a Cray (and vice versa).
We end up comparing architectures instead of languages. Eventually, an important question
will be whether laziness allows the same level of code optimisation (copy elimination) as
has been achieved in SISAL.

8.4. Skeletons for parallel I/O

I/O can be a bottleneck if only one process is allowed to do it. Typically, machines have
many independent devices for I/O that all operate in parallel. A single thread of control
may not be able to drive all of these efficiently, either because it is too slow, or because it
introduces unnecessary sequentialisation of I/O. The latter is not unlikely in a pure
functional language without a non-deterministic merge function. Instead, it would be best
to split up the load and let different processes - and processors - perform various I/O tasks
in parallel.

166 Constructing Skeletons

To accomplish this, one needs to divide an I/O system at some level into several
independent parts. For instance, one could view a picture as a set of independent pixels.
Different processes may then colour these pixels in parallel, which is all right as long as the
order in which this happens does not matter. If we are only interested in the final result,
which will always be the same, this is no dangerous form of non-determinism.

At some level however, this concept is unmanageable. There are moments one would
rather like to manipulate a picture as a whole, or handle a properly ordered sequence of
pictures, or deal with some other object in which the pixels are united, without loosing the
efficiency of parallelism. In these cases one needs to supply parallel I/O within some
framework. This ordered concurrency can be provided by skeletons in exactly the same
way as they provided data parallelism. Only now, we are not working with parallel data
structures, but with parallel I/O devices.

8.4.1. Plotting pixels in parallel

We will stay with the picture example and show how to use the two skeletons below to
build and draw a picture in parallel. Again, these skeletons have been constructed in Clean
with the primitives presented above.

new_PPict :: Size (Int Int -> Pixel) -> PPict

plot_PPict :: Window PPict -> Window

The new_PPict function is almost the same as the data parallel new_mat function. It
lazily creates a distributed picture, in which each remote part is a little square of pixels that
represents a distinct part of the image. The only difference with the matrix creating skeleton
is that it does not build a local list of lists, but instead it constructs a distributed one. We
will see below why this is useful. new_PPict has two arguments. The first is a tuple of four
integers that describe the size of the picture (respectively, the horizontal and vertical size of
the picture and the horizontal and vertical size of each remote square). The second
argument is a function that describes the scene. It delivers the colour of each pixel
according to its co-ordinates in the image.

plot_PPict is able to draw such a distributed picture in a window, and it does this for
all image parts in parallel. It has been defined analogous to the fold function and drives
parallel computation by eagerly applying a plotting function to each remote part of the
image simultaneously (similar to g in fold). For this it not only splits the picture recursively
into its basic components, but it also breaks down the window structure into corresponding
sets of pixels. The result of the various plotting functions is then combined to form a new
window, similarly to the function f in fold. In this way windows can be treated as a whole,
while incorporating parallelism.

We have tested these functions in two programs, of which the main calls have been
listed below. The execution times can be found below. In both cases, the fill function
passed to new_PPict is a plain sequential function that does not contain any construct for
parallelism. Conversely, new_PPict itself scatters a considerable number of processes over
the network: 448 and 900 respectively. One program is quite simple and draws a man-

Skeletons for parallel I/O 167

delbrot set. The other is fairly extensive and generates a scene of polygons using a ray-
tracing algorithm. To accomplish this, it needs to distribute a collection of objects - the
‘scene’ - over all processors. This is done automatically by the r_ap function contained in
new_PPict, but to avoid doing it from a single processor for every process, we have kept
the PPict structure as distributed as possible: it is structured as a distributed tree (using
broadcasts may have been better, but the graph copying mechanism does not support this
yet).

plot_PPict Window (new_PPict size fill)

where

 size = (560 320 20 20)

 fill = mandelbrot_color

mandelbrot_color :: Int Int -> Int

mandelbrot_color x y = ...

plot_PPict Window (new_PPict size fill)

where

 size = (300 300 10 10)

 fill = trace_colour screen scene

traceColour :: Screen Scene Int Int -> Int

traceColour screen:(h,v,origin,eye) scene x y = impactColour impact

 impact = firstImpact ray scene

 ray = (eye, vNormalise (vSubtract point eye))

 point = vAdd origin (vAdd dv dh)

 dh = vMultiply h (x / detail)

 dv = vMultiply v (y / detail)

 detail = 300

firstImpact :: Ray Scene -> Impact

firstImpact ray [object | rest]

 = closest (testForImpact ray object) (firstImpact ray rest)

firstImpact ray [] = NoImpact

...

Table 8-5: Execution time with parallel plotting

1 processor 16 processors 32 processors 64 processors

mandelbrot 153.5 sec. 13.6 sec. 9.2 sec. 6.3 sec.

raytrace 331.3 sec. 33.0 sec. 17.4 sec. 9.9 sec.

168 Constructing Skeletons

Table 8-6: Speed-up with parallel plotting

16 processors 32 processors 64 processors

mandelbrot × 11.3 × 16.7 × 24.4

raytrace × 10.0 × 19.0 × 33.5

Although it seems that first a picture is generated, and then plotted, this is not the
case. As in the data-parallel map, construction of the image is lazy, and therefore will take
place at the moment the plotting function requires it: when it starts to plot a basic part of
the picture. So reading ‘;’ as ‘followed by’ and || as ‘in parallel’, instead of ((gen1 || gen2 ||
... || genn) ; (plot1 || plot2 || ... || plotn)), we get ((gen1; plot1) || (gen2;plot2) || ... ||
(genn;plotn)). This shows better on screen what is going on, while avoiding unnecessary
sequentialisation: each part of the image is plotted as soon as it is available. This spreads
plotting over time, which is more efficient in many cases.

Table 8-7: Execution time with sequential plotting

1 processor 16 processors 32 processors 64 processors

mandelbrot 155.5 sec. 18.5 sec. 12.7 sec. 9.2 sec.

raytrace 392.5 sec. 36.1 sec. 22.4 sec. 16.8 sec.

Table 8-8: Execution time without plotting

1 processor 16 processors 32 processors 64 processors

mandelbrot 141.5 sec. 13.6 sec. 9.2 sec. 6.3 sec.

raytrace 321.0 sec. 31.3 sec. 16.7 sec. 9.9 sec.

In our system parallel plotting was able to improve execution time considerably - up
to a factor of 1.7 -, compared to having a single process that draws the image sequentially
(see table 8.7). The latter causes all pixels to be plotted in a fixed order, as in (gen1 || ... ||
genn || (plot1; ... ;plotn)). As a result, most of them are plotted in a single burst after
computing the whole picture. This increases execution time notably because the underlying
system transfers all pixels from the transputer network to a server via a single transputer
link (which also makes it impossible to test truly parallel I/O). Using parallel plotting,
transferring the pixels gets overlapped with ordinary computation to such an extent that
plotting overheads are barely noticeable (compare table 8.5 and 8.8).

The mandelbrot program in Clean is about a factor 1.5 slower than an iterative
version in C. This is caused by stack management overheads that are not present in the
iterative C version. Concurrent Clean additionally suffers from having to manage multiple
stacks on the transputer (see also table 4-5 and table 4-9). Recursive versions in C on the
other hand, perform worse than Clean, even after some tuning. Compared to SkelML
(Bratvold, 1993), which is strict, the ray tracer in Clean is a factor 3.5 faster, although the
speed-ups are comparable (see also table 5-4; SkelML uses Occam as an intermediate

Skeletons for parallel I/O 169

language, whereas the Clean system generates transputer assembly directly). As with the
matrix multiplication example, we have not been able to compare our results in a sensible
way with other implementations of functional languages on distributed memory machines.

Load imbalance - caused by the irregular structure of these problems - largely
explains the limited speed-up. The use of skeletons does not degrade performance here.
Generating a distributed pixel map is not more difficult than generating a distributed
matrix. This means that speed-ups can be at least as good as in table 8-2 and table 8-3 if we
create an image by filling it with a function that takes constant time for all co-ordinates.

8.5. Skeletons for streams

Our last example involves the use of skeletons to construct streams. These provide
pipelines and process networks (which can be used to simulate systolic arrays, for
example). To some extent, the low level constructs for parallelism in Clean are very well
suited to express this kind of parallelism directly. This also holds for certain divide-and-
conquer style programs, which means that we may not always need to employ skeletons.
Examples are well-known programs like ‘queens’ and the sieve of Erathostenes. Using
basic Clean constructs, one can obtain good speed-ups for both in a rather straightforward
way, although the sieve requires a special buffering function between distinct filter
functions. These examples are very simple however, and inserting special functions, such
as buffers, may be hard sometimes. In these cases, skeletons are invaluable.

 Before we proceed, we will present a modified version of the buffer function that
was introduced in chapter 7. It can be defined in a more concise way with the functions we
have introduced in section 8.2. Below, we have listed the buffer functions that have
changed. Note that one does not have to pass a processor id to the buffer function anymore.
It will automatically start up the write function at the right processor.

:: Buffers = (! Array, R Buffers)

buffer :: Int (R [Int]) -> [Int]

buffer size list = read (get_remote (r_ap (write size) list))

write :: Int [Int] -> Buffers

write size list = fillbuffer (createbuffer size) size list

where

 fillbuffer buf size list = (filledbuffer, (Remote nextbuffer))

 ...

read :: Buffers -> [Int]

read (filledbuffer, nextbuffer)

 = [first : get rest {I} (get_remote nextbuffer)]

 ...

170 Constructing Skeletons

As a result, it becomes possible to express the buffered sieve algorithm of the
previous chapter in a less awkward way, without using the currentP function.

sieve n [p : s]

 | n == 0 = [p : {P n} psieve ns (Remote f)]

 | otherwise = [p : {I} sieve (n - 1) f]

 where

 f = filter s p

 ns = squareroot p

sieve n [] = []

psieve n list = sieve n (buffer BufferSize list)

Using this buffering function, we can create complex skeletons for efficient stream
processing. Below, we have listed one that is able to construct a tree of buffered stream
processes. It gets a tree of remote lists as an argument and two functions: node_f and leaf_f.
The function leaf_f is applied to each list in the tree in parallel (at the leaves), which results
in horizontal parallelism. The node_f function is placed at each node and combines the
results. This leads to several vertical streams that flow from the leaves down to the root of
the tree. To regulate the flow, buffering functions are inserted where appropriate, that is,
between functions executing on different processors. The size of the buffer gets halved
each step up the tree. Note the similarity with the fold and map functions defined earlier.

buffertree :: (Tree(R[x])) ([x][x]->[x]) ([x]->[x]) -> [x]

buffertree list node_f leaf_f

 = buffer BuffSize (Remote {P n at ItoP StartProc } root)

 where root = buffertree' list node_f leaf_f StartProc BuffSize

where

 buffertree' :: (Tree(R[x])) ([x][x]->[x]) ([x]->[x]) Int Int -> [x]

 buffertree' (Leaf list) node_f leaf_f proc size

 = leaf_f (buffer size list)

 buffertree' (Node left right) node_f leaf_f proc size

 = node_f arg1 arg2

 where

 arg1 = buffer newsize (Remote {P n at ItoP leftP } buffer_left)

 arg2 = buffer newsize (Remote {P n at ItoP rightP } buffer_right)

 buffer_left = buffertree' left node_f leaf_f leftP newsize

 buffer_right = buffertree' right node_f leaf_f rightP newsize

 leftP = newleftP proc

 rightP = newrightP proc

 newsize = Half size

Skeletons for streams 171

This skeleton can be employed to easily implement the following divide-and-conquer
style merge-sort algorithm. It sorts a tree of unsorted lists by applying a sequential sorting
function at each leaf and executing a merge function at every node. The stream-like
processing overlaps these computations as much as possible.

mergesort :: (Tree (R [Int])) -> [Int]

mergesort list = buffertree list merge sort

sort :: [Int] -> [Int]

sort [x] = [x]

sort list = merge (sort left) (sort right)

where (left, right) = split list [] []

merge :: [Int] [Int] -> [Int]

merge alist=:[a : as] blist=:[b : bs]

 | less a b = [a : merge as blist]

 | otherwise = [b : merge alist bs]

merge alist [] = alist

merge [] blist = blist

split :: [Int] [Int] [Int] -> ([Int],[Int])

split [a : [b : rest]] left right

 = split rest [a : left] [b : right]

split [a] left right = ([a : left],right)

split [] left right = (left,right)

Table 8-9 lists the results of this program for different input sizes. The tree of
unsorted lists is generated at a single processor. Two versions have been tested. One that
uses the standard integer comparison, and one that employs a complex comparison.
Compared to earlier experiments with special stream functions in Clean (Nöcker, 1993-c),
the use of buffers gives better performance, while also improving memory usage.

Table 8-9: Execution time for parallel mergesort.

1 processor 8 processors 16 processors 32 processors

standard 20000 15.6 sec. 4.6 sec. 3.5 sec. 3.9 sec.

standard 40000 59.8 sec. 11.2 sec. 8.0 sec. 9.1 sec.

complex 20000 79.2 sec. 19.4 sec. 12.2 sec. 10.9 sec.

complex 40000 196.0 sec. 42.6 sec. 25.3 sec. 21.7 sec.

172 Constructing Skeletons

Table 8-10 Speed-up for parallel mergesort.

8 processors 16 processors 32 processors

standard 20000 × 3.4 × 4.5 × 4.0

standard 40000 × 5.3 × 7.5 × 6.6

complex 20000 × 4.1 × 6.5 × 7.3

complex 40000 × 4.6 × 7.8 × 9.0

The reason that speed-ups are limited is two-fold. First of all, - despite the use of
buffering functions -, delays can be substantial. Our buffering mechanism is too simple to
avoid all delays, which may be caused by complex data dependencies. And secondly, the
algorithm contains only a limited amount of inherent parallelism. About half of the
available processors is used to sort the remote lists in parallel and the rest for merging the
results. One cannot be faster than the time it takes to sort one sub-list, which is a problem
for small networks. Conversely for large networks, having a tree of processes, the root
becomes a bottleneck. At a certain point, adding more processors does not help. It will even
harm, as it causes more overhead at some processors (for example, at the list generating
processor), while also introducing longer data paths. The effects can be quite complex and
account for the speed-down for 32 processors compared to 16 with the standard integer
comparison.

Having poor speed-ups for this particular program does not mean that stream-like
processing is not useful at all. First of all, better speed-ups can be expected for programs
that have more regular data dependencies, such as systolic arrays of the form f1 (f2 (... fn)),
where n is sufficiently large. Even the sieve of Erathostenes gives better speed-ups - up to
16 on 32 processors -, although the first filtering process forms a bottleneck (note however
that it is not very useful to try to fit the sieve program into some skeleton structure: this
kind of processing can very well be expressed with the primitives for parallelism).
Secondly, many large computations contain compositions of functions working on streams.
These computations can be overlapped to some extent. There may not be enough overlap to
keep many processors busy, but the speed-up may be high enough nonetheless.

The importance of this becomes more apparent if we consider that data-parallel
operations can easily be combined with stream-like processing. The latter may be used for
consuming small numbers of processors, while the former is responsible for the big speed-
up factors. For instance, one could map a stream-like parallel signal processing function -
consisting of several filters - over a distributed database of signals. Each signal processing
function will account for only a limited speed-up, but it does effect a better utilisation of
processing power. Skeletons as defined above are powerful tools to accomplish this. Being
higher order functions, skeletons for stream-like processing can be passed to skeletons for
data parallelism (and vice versa), so that a new skeleton is composed out of old ones.

Skeletons for streams 173

map_filters :: (Struct s) [s -> s] -> Struct s

map_filters database filters

 = map database (compose_stream filters)

8.6. Conclusions

Using Concurrent Clean we constructed a number of skeletons. In this way we easily
obtained efficient skeletons for data parallelism, for parallel I/O, and for streams. They
have been tested and show very good performance compared to more restrictive solutions.
Constructing skeletons in this way makes it easy to extend a system with new skeletons,
tailored for specific needs.

The primitives presented above allow functions to ‘travel’ over distributed structures
easily. This offers an interesting starting point for research on distributed functional
databases, using skeletons for searching and updating. These skeletons may then be
parametrised with functions that perform local transformations on the database.

Conclusions

We started this thesis with an explanation of the techniques that we employed to realise an
implementation of Concurrent Clean on transputer hardware. It became apparent that a
large number of technical and fundamental problems need to be addressed in order to
support the {P} and {I} annotations to their full extent. The main implementation topics
were: efficient and reliable communications, the logical structure of the implementation,
code generation, graph copying and garbage collection. The decision to make no
concessions with respect to the generality of the implementation greatly influenced our
design decisions. Although increasing the implementation work, this generality did not
result in serious runtime overheads.

Reconsidering the research questions of chapter 1, we see that the {P} and { I }
annotations are very general. We have been able to base a fair number of parallel
algorithms on these simple annotations. Two problems became apparent however. First of
all, it turned out that the original graph copying strategy did not provide clear runtime
semantics: sometimes annotations were needed in awkward ways in order to get the desired
behaviour. The new lazy normal form copying strategy - introducing the {Pn} annotation -
has solved this. And secondly, the {Pn} and {I} annotations alone do not suffice to program
concise solutions. As we have shown in chapter 8, it is possible to solve this problem if one
uses the basic annotations to construct skeletons for parallelism. Thus, we obtained
skeletons that are adequate for programming comprehensible parallel programs. A
considerable advantage of defining skeletons in a functional language, is that new (and very
specialised) skeletons can easily be added. Amongst others, we heavily depend on the
higher-order features of Concurrent Clean.

With respect to performance, we have demonstrated that a number of parallel
programs run very efficiently on our implementation. This not only holds for the programs
that directly use {Pn} and {I} annotations, but also for the ones that employ skeletons.
However, arriving at an efficient solution often requires careful consideration of the data
structures that are employed. As we have seen in chapter 7 the use of arrays (i.e. flat data
structures) can be crucial for good parallel performance.

In order to allow flat data structures to be used efficiently in Concurrent Clean, one
needs uniqueness typing. Unfortunately, as we have shown in chapter 6, uniqueness typing
is incompatible with the original lazy graph copying strategy. The introduction of the lazy
normal form copying strategy has solved this problem as well, as it is safe with respect to
uniqueness typing.

176 Conclusions

Reasoning about parallel performance

Our implementation efforts have specifically been directed at machines with distributed
memory. The reason for this is, that machines with distributed memory are more scalable
than shared memory machines. The most important disadvantage of distributed memory
machines is that they are difficult to program.

Our implementation aimed at reducing the complexity of programming distributed
memory machines. This has only partly succeeded. On the one hand, it became possible to
program such machines without having to use explicit message passing. This makes it easy
to reason about the correctness of a program. On the other hand, reasoning about the
efficiency remains difficult, although the introduction of normal form copying has slightly
improved this situation. Let us consider the costs of a very basic parallel program.

merge ({P n} f a) ({P n} g b)

The meaning of such a program is that f and g are computed in parallel at different
processors. The arguments a and b are evaluated locally, as soon as f and g need them. And
finally the results of f and g are returned as soon as the merge function needs them.
Suppose that the affix t stands for the costs of transmitting a result and c for the costs of
computing it. The costs of exporting work - denoted by wt - will be assumed to be constant.
Furthermore, let the affix p and u denote the costs of packing and unpacking a message.
The total costs can now roughly be approximated by the following formula (although the
communication costs are not totally independent).

ac+ap+bc+bp+wt+maximum(at+au+fc+fp+ft , bt+bu+gc+gp+gt)+fu+gu+ mergec

Often, a, b, f and g are needed computations, and in addition, they sometimes
represent complex structures. If this is the case, evaluating them in a lazy manner will
introduce unnecessary overheads. Not only because the computational overheads for lazy
evaluation are often higher than for eager evaluation, but also because lazy transmission
may result in many small messages and large delays. To deal with this, the compiler and
the programmer can introduce eager evaluations on strict arguments. If one eagerly reduces
a, b, f and g to normal form before transmitting the result, this evaluation strategy is
equivalent to the sandwich evaluation mechanism of Wybert (Langendoen, 1993). The
performance approximation basically remains the same, but often with considerably smaller
figures for the transmission costs.

Another decrease in costs can be obtained by using data structures for which the
packing and unpacking costs are small. Some structures, such as strict arrays, do not need
any (un)packing at all. Avoiding these costs results in the following formula.

ac+bc+wt+maximum(at+fc+ft , bt+gc+gt)+ mergec

Reasoning about parallel performance 177

The main problem with the strategies above, is that they require fc and gc to be fairly
large compared to the other costs. Otherwise, parallel evaluation will not be much better -
or even worse - than sequential evaluation (which costs ac+bc+f c+gc+mergec). In
particular, this is a problem for programs running on distributed memory machines,
because the costs of transportation are relatively high on such machines. Concurrent Clean
allows the programmer to deal with this by introducing pipelined computations (using the
{I} annotation to drive the pipelines). In this way, computations and communications can be
overlapped. Ideally, the computations overlap totally and the transmission costs vanish,
except for the initial costs of exporting work and the basic costs to set up a pipeline (pipec).
This results in the following formula.

2 × pipec+wt+maximum (ac+ap+bc+bp+fu+gu+mergec, au+fc+fp, bu+gc+gp)

In reality, it will be extremely hard to realise such performance. Programs will need
to be tuned to balance computation and communication. Buffering techniques are necessary
to avoid delays. In some cases, it will be more important to avoid delays than to avoid
unnecessary computations. If so, some computations will have to be computed speculative-
ly. In short: it will take considerable efforts to obtain a highly efficient pipelined program.

To conclude, we stress the importance of choosing the right placement of processes
and data. For example, the primitive Concurrent Clean annotations place functions at a
particular location and then data is transported to these locations for processing. However,
some algorithms perform better if data is placed at a particular location and functions are
transported to the data and executed there. Gentleman’s matrix multiplication algorithm
uses this form of processing (see chapter 8). It avoids the costs of transporting the
arguments (ap, at, au, bp, bt, and bu). In addition, the arguments (ac and bc) are computed in
a distributed manner. The computational costs are approximately as follows.

wt +maximum(ac+ fc+fp+ft , bc+gc+gp+gt)+fu+gu+mergec

The design of efficient parallel algorithms

As we argued in the first chapter, functional languages are inherently parallel, and the
differences between sequential and parallel algorithms should be minimal (modulo
annotations). Indeed, annotations cannot compromise correctness, but unfortunately,
achieving good performance by merely placing annotations is not easy, and sometimes
even impossible. Functional programs are inherently parallel, but they can still incorporate
too much unnecessary sequential data dependencies. In some cases it will be necessary to
avoid certain forms of sequentialisation and derive an algorithm that has a completely
different structure. For example, if we compare the matrix multiplication results of chapter
7 and 8, we see two considerable differences. First of all, the structure of the algorithms
differs notably, and secondly, the performance figures of Gentleman’s algorithm are much
better for large matrices.

178 Conclusions

This makes clear that if one starts with a sequential program, it will be necessary to
develop tools for helping the programmer to transform a given sequential solution to an
efficient parallel one. Some form of semi-automatic transformational reasoning will be
required. However, realising such techniques is far from trivial, and one may question
whether the strategy of parallelising sequential programs will be fruitful.

Parallel programs are not always difficult to reason about. For example, Gentleman’s
data parallel matrix multiplication algorithm is not a sequential algorithm: it would not
make much sense to run such an algorithm on a single machine. In contrast, it is far more
parallel than the divide-and-conquer solutions of chapter 7. Reasoning about Gentleman’s
algorithm implies reasoning about many concurrent processes at once. One does not think
about Gentleman’s algorithm in a divide-and-conquer manner where the results of a few
argument processes are recursively combined. Instead, one envisages a considerable
number of processes, all interacting collectively. Still, this does not complicate reasoning
about the algorithm: Gentleman’s solution is elegant and clear.

 This shows that it will not always be wise to start programming a correct sequential
solution and to transform in into a parallel one. It is often better to devise a parallel
algorithm from the start and program it directly in a functional language.

To maximise parallelism, one should consider the development of techniques that
help postponing potentially limiting design decisions such as choosing the right data
structures. Data structures introduce certain forms of sequentialisation and they influence
communication costs, as we have seen in chapter 7. If we have a look at the matrix
multiplication algorithms, it is clear that the solution actually only has to be specified in
terms of relations between the input and the output. However, at some point in time during
programming we have to choose some suitable structure for combining the data elements,
and this in turn, introduces an order on the operations that can be performed on these data
elements.

List comprehensions - and skeletons in general -, are a good way to delay such
decisions. If a solution is based on skeletons, it is possible to change the underlying
structure of a program radically, by changing the implementation of the skeletons. On the
other hand, by choosing some skeleton one also introduces a particular structure of
processing. This may be too limiting as well. Perhaps one needs a programming paradigm
that more radically separates the logical structure of a program from efficiency issues.

Future Work

Clearly, much is still unknown with respect to the implementation of functional languages.
First of all, we still do not have much experience with large parallel applications written in
a functional languages like Concurrent Clean. Consequently, it remains to be seen how well
our implementation performs on such programs. In particular, it will be interesting to know
what the effects of lazy normal form copying would be on writing large programs.

Secondly, load imbalance causes bad performance in certain cases. Compile-time
techniques will not be sufficient general, and so, a runtime mechanism should be developed
that deals with this problem in a convincing way. It may be necessary to move running
processes from heavily loaded processors to lightly loaded ones.

Future work 179

Thirdly, not all garbage collection problems have been solved. In particular, one will
have to tackle unbridled speculative parallelism and distributed cyclic structures. In this
thesis we have shown a direction that might be taken to solve this problem, but it remains
to be seen whether this approach is fruitful.

Fourthly, there is a growing base of heterogeneous loosely coupled networks that
incorporate a vast number of processors (e.g. internet). Consequently, there will be need to
dynamically manage code for different platforms, and reduce communication overheads as
much as possible. For such networks it becomes worthwhile to reconsider compression
techniques for graphs. Related to this, will be the growing significance of modelling a
distributed I/O system.

And finally, one will need to have better tools for explicitly devising efficient
(parallel) functional programs, considering the differences in speed that are caused by
different algorithms and data structures. The support for reasoning about the correctness of
functional programs is unparalleled, but the lack of techniques for reasoning about their
efficiency is still one of their major shortcomings.

Bibliography

Achten (1995) P.M., and Plasmeijer M.J. ‘The ins and outs of Clean I/O’. In Journal of
Functional Programming, 5(1), January 1995, pages 81-110.

Anderson (1987) P., Hankin C.L., Kelly P.H.J., Osmon P.E., Shute M.J. ‘COBWEB-2:
Structured Specification of a Wafer Scale Supercomputer’ In Proceedings of Parallel
Architectures and Languages Europe, (PARLE ’87), LNCS 258, Springer-Verlag,
1987, pages 51-67.

Annot (1987) J.K., Twist R.A.H. van. ‘A Novel Deadlock Free and Starvation Free Packet
Switching Communication Processor’. Philips Research Laboratories. Eindhoven. In
Proceedings of Parallel Architectures and Languages Europe (PARLE ’87). LNCS
258, Vol. I, Springer-Verlag, 1987, pages 68-85.

Appel (1987) A.W. ‘Garbage Collection Can Be Faster Than Stack Allocation’ In
Information Processing Letters, 25(4), 1987, pages 275-279.

Appel (1994) A.W. An Empirical and Analytic Study of Stack vs. Heap Cost for Languages
with Closures, Technical Report CS-TR-450-94, Princeton University, 1994.

Augustsson (1984) L.A. ‘A compiler for lazy ML’ In Proceedings of the ACM Symposium
on LISP and Functional Programming, Austin, Texas, ACM press, pages 218-227.

Augustsson (1989) L., Johnsson T. ‘Parallel Graph Reduction with the <ν,G> - machine’.
In Proceedings of Functional Programming Languages and Computer Architecture,
(FPCA ‘89), London, U.K. ACM press 1989, pages 202-213.

Backus (1978) J. ‘Can Programming be Liberated from the von Neumann Style? A
Functional Style and its Algebra of Programs’ In Communications of the ACM, 21(8),
1978, pages 613-641.

Barendregt (1987) H.P., Eekelen M.C.J.D. van, Glauert J.R.W., Kennaway J.R., Plasmeijer
M.J. and Sleep M.R. ‘Term Graph Rewriting’ In Bakker J.W. de, Nijman A.J., and
Treleaven P.C., editors. Proceedings of Parallel Architectures and Languages
Europe (PARLE ’87), LNCS 259, Vol. II, Springer-Verlag, 1987, pages 141-158.

Barendregt (1992) H.P., Beemster M., Hartel P.H., Hertzberger L.O., Hofman R.F.H.,
Langendoen K.G., Li L.L., Milikowski R., Mulder J.C., Vree W.G. Programming
Clustered Reduction Machines. Technical report CS-92-05, Dept. of. Comp. Sys,
University of Amsterdam, 1992.

182 Bibliography

Barendsen (1992) E. and Smetsers J.E.W. Graph Rewriting and Copying. Technical Report
No. 92-20, Faculty of Mathematics and Computer Science, University of Nijmegen,
the Netherlands, 1992.

Barendsen (1993) E. and Smetsers J.E.W. ‘Conventional and Uniqueness Typing in Graph
Rewrite Systems’ (extended abstract). In Shyamasundar R.K. editor. Proceedings of
Foundations of Software Technology and Theoretical Computer Science, LNCS 761,
Springer-Verlag, 1993, pages 41-51.

Barendsen (1995-a) E. and Smetsers J.E.W. ‘Uniqueness Type Inference’ In Hermenegildo
M. and Swierstra S.D. editors. Proceedings of the Seventh International Symposium
on Programming Languages: Implementations, Logics and Programs, LNCS 982,
Springer-Verlag 1995, pages 189-206.

Barendsen (1995-b) E. and Smetsers J.E.W. ‘A Derivation System for Uniqueness Typing’
In Proceedings of joint COMPUGRAPH-SEMAGRAPH workshop on Graph
Rewriting and Computation (SEGRAGRA ’95), Volterra, Pisa, Italy, Electronic Notes
in Theoretical Computer Science, 1, Elsevier, 1995.

Bertsekas (1987) D., Gallager R. Data Networks. Prentice-Hall International 1987.

Bevan (1987) D.I. ‘Distributed garbage collection using reference counting’, In
Proceedings of Parallel Architectures and Languages Europe (PARLE ’87). LNCS
259, Vol II, Springer-Verlag, 1987, pages 176-187.

Blelloch (1993) G.E., Chatterjee S., Hardwick J.C. , Sipelstein J., and Zagha M.
‘Implementation of a Portable Nested Data-Parallel Language’ In Principles and
Practice of Parallel Programming (PPoPP), ACM press, 1993, pages 102-111.

Böhm (1989) A.P.W., Sargeant J. ‘Code Optimisation for Tagged Token Dataflow
Machines’, In IEEE Transactions on Computers, 38(1), January 1989.

Bratvold (1993) T.A. ‘A Skeleton-Based Parallelising Compiler for ML’. In Proceedings of
the fifth International Workshop on the Implementation of Functional Languages,
Technical Report 93-21, Faculty of Mathematics and Computer Science, University
of Nijmegen, the Netherlands, 1993, pages 23-33.

Bratvold (1994) T.A. ‘Parallelising a Functional Program Using a List-Homomorphism
Skeleton’. In Proceedings of Parallel Symbolic Computation, (PASCO ’94),
Hagenberg/Linz, Austria, World Scientific, 1994, pages 44-53.

Bülk (1993) T., Held A., Kluge W., Pantke S., Rathsack C., Scholz S., Schröder R.
‘Preliminary Experience with a π-RED+ Implementation on an nCUBE/2 System’, In
Proceedings of the fifth International Workshop on the Implementation of Functional
Languages, Technical Report 93-21, Faculty of Mathematics and Computer Science,
University of Nijmegen, the Netherlands, 1993, pages 101-113.

Burks (1946) A.W., Goldstine H.H. and Neuman J. von. ‘Preliminary discussion of the
logical design of an electronic computing instrument’ In John von Neumann,
Collected Works, 5, pages 35-79.

183

Cann (1992) D. ‘Retire Fortran? A debate rekindled’ In Communications of the ACM,
35(8), 1992, pages 81-89.

Church (1936) A. and Rosser J.B. ‘Some properties of conversion’ In Trans American
Mathematical Society, 39, pages 472-482.

Clarke (1991) L., Wilson G. ‘Tiny: an efficient routing harness for the Inmos transputer’. In
Concurrency: Practice and Experience, Vol. 3(3), 1991, pages 221-245.

Cohen (1981) J. ‘Garbage collection of linked data structures’ In Computing Surveys,
13(3), pages 341-367.

Cole (1989) M. ‘Algorithmic Skeletons: Structured Management of Parallel Computation’.
Research Monographs in Parallel and Distributed Computing. Pitman/MIT, 1989.

Curry (1958) H.B. and Feys R. Combinatory Logic. 1. Amsterdam: North-Holland 1958.

Danelutto (1993) M. and Pelagatti S. ‘Parallel Implementation of FP using a Template-
based approach’. In Proceedings of the fifth International Workshop on the
Implementation of Functional Languages, Technical Report 93-21, Faculty of
Mathematics and Computer Science, University of Nijmegen, the Netherlands, 1993,
pages 7-21.

Darlington (1981) J. and Reeve M.J. ‘ALICE: A Multiple-Processor Reduction Machine
for the Parallel Evaluation of Applicative Languages’ In Functional Programming
Languages and Computer Architecture, (FPCA ’81), 1981, pages 65-76.

Darlington (1993) J., Field A.J., Harrison P.G., Kelly P.H.J., Sharp D.W.N., Wu Q., and
While R.L. ‘Parallel Programming Using Skeleton Functions’ In Parallel
Architectures and Languages Europe, (PARLE ’93), LNCS 694, Springer-Verlag,
1993, pages 146-160.

Debbage (1991) M., Hill M., Nicole D. Virtual Channel Router Version 2.0 User Guide.
Technical Report, University of Southampton, U.K. October 1991.

Eekelen (1991) M.C.J.D. van, Plasmeijer M.J., Smetsers J.E.W. ‘Parallel Graph Rewriting
on Loosely Coupled Machine Architectures’ In Kaplan, Okada, editors. Proceedings
of the Workshop on Conditional and Typed Rewriting Systems, (CTRS '90). LNCS
516, Springer-Verlag, 1991, pages 354-369.

Eekelen (1993) M.C.J.D. van, Huitema H.S., Nöcker E.G.J.M.H., Plasmeijer M.J., and
Smetsers J.E.W. Concurrent Clean Language Manual - Version 0.8. Technical
Report No. 93-13, Faculty of Mathematics and Computer Science, University of
Nijmegen, the Netherlands, 1993.

Gentleman (1978) W.M. ‘Some Complexity Results for Matrix Computations on Parallel
Processors’, In Journal of the ACM, vol. 25, 1978, pages 112-115.

George (1989) L. ‘An Abstract Machine for Parallel Graph Reduction’. In Proceedings of
Functional Programming Languages and Computer Architecture, (FPCA ’89),
London, U.K., ACM press 1989, pages 214-229.

184 Bibliography

Girard (1987) J-Y. ‘Linear Logic’ In Theoretical Computer Science, 50, pages 1-102.

Glaser (1985) H.W. and Thompson P. ‘Lazy garbage collection’ Software Practice &
Experience, 17(1), pages 1-4.

Goldsmith (1993) R., McBurney D.L. and Sleep M.R. ‘Parallel Execution of Concurrent
Clean on ZAPP’ In Sleep M.R., Plasmeiijer M.J., Eekelen M.C.J.D van, editors. Term
Graph Rewriting: Theory and Practice, Wiley, 1993, chapter 21.

Groningen (1991) J.H.G van., Nöcker E.G.J.M.H. and Smetsers J.E.W.. ‘Efficient Heap
Management in the Concrete ABC Machine’ In Glaser, Hartel editors. Proceedings of
the Third International Workshop on the Implementation of Functional Languages on
Parallel Architectures. Technical Report Series CSTR 91-07, University of
Southampton, U.K., 1991.

Groningen (1992) J.H.G. van ‘Some Implementation Aspects of Concurrent Clean on
Distributed Memory Architectures’, Proceedings of the Fourth International
Workshop on the Parallel Implementation of Functional Languages, Aachener
Informatik-Berichte Nr. 92-19, Fachgruppe Informatik, RWTH Aachen, Germany,
1992.

Groningen (1993) J.H.G. van ‘Optimising Mark Scan Garbage Collection’ In Proceedings
of the fifth International Workshop on the Implementation of Functional Languages,
Technical Report 93-21, Faculty of Mathematics and Computer Science, University
of Nijmegen, the Netherlands, 1993, pages 185-192.

Hammond (1995) K., Mattson J.S. Jr., Partridge A.S., Peyton Jones S.L. and Trinder P.W.
‘GUM: a portable parallel implementation of Haskell’ In Proceedings of the
Workshop on the Implementation of Functional Languages ’95, Båstad, Sweden,
September 13-15 1995, pages 259-280.

Hankin (1985) C.L., Osmon P.E., Shute M.J. ‘COBWEB - a combinator reduction
architecture’ In Proceedings of Functional Programming Languages and Computer
Architecture, (FPCA ’85), LNCS 201, Springer-Verlag 1985, pages 99-112.

Harper (1986) R., MacQueen D. and Milner R. Standard ML Internal Report ECS-LFCS-
86-2, Edinburgh University 1986.

Harrison (1986) P.G. and Reeve M.J. ‘The Parallel Reduction Machine, Alice’. In Graph
Reduction, LNCS 279, Springer-Verlag 1986, pages 181-202.

Haynes (1984), C.T. and Friedman D.P. ‘Engines Build Process Abstractions’ In the ACM
Conference on Lisp and Functional Programming, 1984.

Hill (1993) J.M.D. ‘The AIM is laziness in a data-parallel language’ In K. Hammond, and
J. T. O’Donnell, editors. Glasgow Functional Programming workshop, Springer-
Verlag WICS, 1993.

Hoare (1978) C.A.R. ‘Communicating Sequential Processes’ Communications of the ACM,
21(8), pages 666-677.

185

Hudak (1986) P. and Smith L. ‘Para-functional Programming: A Paradigm for
Programming Multiprocessor Systems’ In ACM POPL, January 1986, pages 243-254.

Hudak (1992) P., Peyton Jones S., Wadler Ph., Boutel B., Fairbairn J., Fasel J., Hammond
K., Hughes J., Johnsson Th., Kieburtz D., Nikhil R., Partain W. and Peterson J.
‘Report on the programming language Haskell’ ACM SigPlan Notices, 27(5), pages
1-164.

INMOS (1988). Transputer instruction set. Prentice-Hall 1988.

INMOS (1988). Transputer reference manual. Prentice-Hall, 1988.

Keller (1984) R.M., Lin F.C.H. and Tanaka J. ‘Rediflow Multiprocessing’ In IEEE
Compcon, February 1984, pages 410-417.

Kernighan (1978) B, Ritchie W. and Dennis M. The C Programming Language,
Englewood Cliff NY: Prentice-Hall 1978.

Kesseler (1990) M.H.G. ‘Concurrent Clean on Transputers’, In Proceedings of the Second
Workshop of ESPRIT Parallel Computing Action (PCA), ISPRA, Italy, 1990.

Kesseler (1991) M.H.G. ‘Implementing the ABC machine on transputers’, In H. Glaser, P.
Hartel, editors. Proceedings of the third International Workshop on Implementation
of Functional Languages on Parallel Architectures, Technical Report 91-07,
University of Southampton, U.K. 1991, pages 147-192.

Kesseler (1992) M.H.G. ‘Communication issues regarding parallel functional graph
rewriting’, In H. Kuchen, R. Loogen, editors. Proceedings of the fourth International
Workshop on the Implementation of Functional Languages on Parallel Architectures,
Aachener Informatik-Berichte Nr. 92-19, Fachgruppe Informatik, RWTH Aachen,
Germany, 1992.

Kesseler (1993-a) M.H.G. ‘The Class Transputer Router’, In V. Malyshkin, editors.
Parallel Computing Technologies, (PaCT'93), vol. I, NT-Centre, Obninsk, 1993,
pages 235-250.

Kesseler (1993-b) M.H.G. ‘Efficient routing using Class Climbing’, In R. Grebe, J. Hektor,
S. C. Hilton, M. R. Jane, P. H. Welch, editors. Transputer Applications and Systems,
World Transputer Congress ’93, Aachen, vol. 2, IOS Press, 1993, pages 830-846.

Kesseler (1994-a) M.H.G. ‘Uniqueness and Lazy Graph Copying - Copyright for the
Unique’, In Proceedings of the 6th International Workshop on the Implementation of
Functional Languages, University of East Anglia, Norwich, UK, 1994.

Kesseler (1994-b) M.H.G. ‘Reducing Graph Copying Costs - Time to Wrap it Up’. In
Proceedings of Parallel Symbolic Computation, (PASCO ’94), Hagenberg/Linz,
Austria, World Scientific, 1994, pages 244-253.

Kesseler (1995) M.H.G. ‘Constructing Skeletons in Clean - The Bare Bones’, In
Proceedings of High Performance Functional Computing (HPFC ’95), Denver,
Colorado, CONF-9504126, Lawrence Livermore National Laboratory, 1995, pages
182-192.

186 Bibliography

Kingdon (1991) H., Lester D. R., Burn G.L. ‘The HDG-machine: a Highly Distributed
Graph-Reducer for a Transputer Network’. The Computer Journal, 34(4), 1991,
pages 290-301.

Koopman (1990) P.W.M., Eekelen M.C.J.D. van, Nöcker E.G.J.M.H., Smetsers S.,
Plasmeijer M.J. The ABC-machine: A Sequential Stack-based Abstract Machine For
Graph Rewriting. Technical Report No. 90-22, Faculty of Mathematics and
Computer Science, University of Nijmegen, the Netherlands, 1990.

Kuchen (1994) H., Plasmeijer R., and Stoltze H. ‘Distributed Implementation of a Data
Parallel Functional Language’ In Parallel Architectures & Languages Europe,
(PARLE ’94) , pages 464-477, LNCS 817, Springer Verlag, 1994.

Langendoen (1993) K. Graph Reduction on Shared Memory Multiprocessors PhD. Thesis,
University of Amsterdam, the Netherlands, 1988.

Lester (1993) D.R. ‘Distributed Garbage Collection of Cyclic Structures’ In Hammond K.,
and O’Donnell J.T., editors. Glasgow Workshop on Functional Programming,
Springer-Verlag WICS, 1993, pages 156-169.

Loogen (1989) R., Kuchen H., Indermark K., Damm W. ‘Distributed Implementation of
Programmed Graph Reduction’. In Proceedings Parallel Architectures and
Languages Europe (PARLE ‘89), LNCS 365/366, Springer-Verlag, 1989, pages 136-
157.

Magó (1989) G.A. and Stanat D.F. ‘The FFP Machine’ In High-Level Language Computer
Architectures, 1989, pages 430-468.

Maranget (1991) L. ‘GAML: a Parallel Implementation of Lazy ML’. In Proceedings of
Functional Programming Languages and Computer Architecture, (FPCA ’91), LNCS
523, Springer-Verlag, 1991, pages 102-123.

McBurney (1987) D.L. and Sleep M.R. ‘Transputer-Based Experiments with the ZAPP
Architecture’ In Parallel Architectures and Languages Europe, (PARLE ’87), LNCS
258, Springer-Verlag, 1987, pages 242-259.

McCarthy (1960) J. ‘Recursive functions of symbolic expressions and their computation by
machine’ Communications of the ACM, 4, pages 184-195.

McGraw (1985) J. SISAL: Streams and Iterations in a Single-Assignment Language,
Reference Manual version 1.2. Manual M-146, Revision 1, Lawrence Livermore
National Laboratory, 1985.

Minsky (1963) M.L. A Lisp garbage collection algorithm using serial secondary storage.
Project MAC Memo 58 (rev.), Massachusetts Institute of Technology, 1963.

Nöcker (1991-a) E.G.J.M.H., Smetsers J.E.W., Eekelen M.C.J.D. van, Plasmeijer M.J.
‘Concurrent Clean’, In Parallel Architectures and Languages Europe, (PARLE ’91).
LNCS 505, Vol. II, pages 202-219.

187

Nöcker (1991-b) E.G.J.M.H., Plasmeijer M.J., Smetsers J.E.W. ‘The PABC Machine’ In
Proceedings of the Third International Workshop on Implementations of Functional
Languages on Parallel Architectures. Technical Report Series, CSTR 91 91-07,
University of Southampton, U.K, 1991.

Nöcker (1993-a) E.G.J.M.H. ‘Strictness Analysis using Abstract Reduction’ In
Proceedings of Functional Programming Languages and Computer Architecture.
Copenhagen, Denmark, ACM Press, 1993, pages 255-265.

Nöcker (1993-b) E.G.J.M.H. and Smetsers J.E.W. ‘Partially Strict Non-Recursive Data
Types’ In Journal of Functional Programming, 3(2), 1993, pages 191-215.

Nöcker (1993-c) E.G.J.M.H. ‘Efficient Parallel Functional Programming - Some Case
Studies’. In Proceedings of the fifth International Workshop on the Implementation of
Functional Languages, Technical Report 93-21, Faculty of Mathematics and
Computer Science, University of Nijmegen, the Netherlands, 1993, pages 51-67.

Peyton Jones (1987) S.L. , Clack C., Salkild J., Hardie M. ‘GRIP - a High Performance
Architecture for Parallel Graph Reduction’. In Proceedings of Functional
Programming Languages and Computer Architecture (FPCA ‘87). LNCS 274,
Springer-Verlag 1987, pages 98-112.

Peyton Jones (1989-a) S.L. and Salkild, J. ‘The spineless tagless G-machine’ In
Proceedings of Functional Programming Languages and Computer Architectures,
(FPCA ‘89), Reading MA, Addison-Wesley 1989, pages 184-201.

Peyton Jones (1989-b) S.L., Clack, C., Salkild, J. ‘High Performance Parallel Graph
Reduction’. In Proceedings of Parallel Architecture and Languages Europe (PARLE
‘89), LNCS 365/366, Springer-Verlag 1989, pages 193-206.

Peyton Jones (1989-c) S.L. ‘Parallel Implementations of Functional Programming
Languages’, In Computer Journal, 32(2), 1989, pages 175-186.

Plasmeijer (1993) M.J., Eekelen M.C.J.D. van Functional Programming and Parallel
Graph Rewriting. Addison Wesley, 1993.

Plasmeijer (1995) M.J., Eekelen M.C.J.D. van Clean 1.0 Language Report, Technical
Report, in preparation, University of Nijmegen, the Netherlands.

Richards (1985) H. An Overview of Burroughs NORMA Technical report, Austin Research
Centre, Burroughs Corp., January 1985.

Sansom (1991) P.M.. ‘Dual-mode garbage collection’ In Proceedings of the Third
International Workshop on Implementations of Functional Languages on Parallel
Architectures. Technical Report Series, CSTR 91 91-07, University of Southampton,
U.K., 1991.

Skillicorn (1992) D.B. ‘The Bird-Meertens Formalism as a Parallel Model’ In NATO ARW
“Software for Parallel Computation”, 1992.

188 Bibliography

Smetsers (1989) J.E.W. Compiling Clean to Abstract ABC-Machine Code. Technical
Report 89-20, Faculty of Mathematics and Computer Science, University of
Nijmegen, the Netherlands, 1989.

Smetsers (1991) J.E.W., Nöcker E.G.J.M.H., Groningen J.H.G. van, Plasmeijer M.J.
‘Generating Efficient Code for Lazy Functional Languages’. In Proceedings of
Functional Programming Languages and Computer Architecture, (FPCA ’91), LNCS
523, Springer-Verlag, 1991, pages 592-617.

Smetsers (1993) J., Barendsen E., Eekelen M.C.J.D. van, Plasmeijer M.J. ‘Guaranteeing
Safe Destructive Updates through a Type System with Uniqueness Information for
Graphs’. In Schneider H.J., Ehrig H. editors Proceedings of the Workshop on Graph
Transformations in Computer Science. LNCS 776, Springer-Verlag, 1993, pages 358-
379.

Son (1991) N. T., Paker Y. ‘Adaptive Deadlock-free Packet Routeing in Transputer-based
Multiprocessor Interconnection Networks’. In The Computer Journal, 34(6), 1991,
pages 493-502.

Stallings (1988) W. Data and Computer Communications. Macmillan Publishing
Company, 1988.

Stoye (1985) W.R. The Implementation of Functional Languages using Custom Hardware,
Ph.D. thesis, University of Cambridge, 1985.

Turner (1985) D.A. ‘Miranda: a non-strict functional language with polymorphic types’ In
Jouannaud, J.P. editor. Proceedings of Functional Programming Languages and
Computer Architecture (FPCA ’85), LNCS 201, Springer-Verlag 1985, pages 1-16.

Wadler (1990) Ph. ‘Linear types can change the world!’ In Broy, M., Jones, C.B., editors.
Programming Concepts and Methods, Amsterdam, North-Holland 1990.

Watson (1986) P. and Watson I. ‘Graph Reduction in a Parallel Virtual Memory
Environment’. In Graph Reduction, LNCS 279, Springer-Verlag, 1986, pages 265-
214.

Watson (1987) P. and Watson I. ‘Evaluation of Functional Programs on the Flagship
Machine’. In Proceedings of Functional Programming Languages and Computer
Architecture (FPCA ‘87). LNCS 274, Springer-Verlag, 1987, pages 80-97.

Watson (1989) P., Watson I. ‘An efficient garbage collection scheme for parallel computer
architectures’, In Proceedings of Parallel Architectures and Languages Europe
(PARLE ’87). LNCS 259, Vol II, Springer-Verlag, 1989, pages 432-443.

Watson (1988) I., Woods V., Watson P., Banach R., Greenberg M., Sargeant J. ‘Flagship:
A Parallel Architecture for Declarative Programming’, In 15th IEEE/ACM symp.
Computer Architecture. Honolulu, Hawaii. SIGARCH newsletter, 16(2), 1988, pages
124-130.

Wong (1992) W.F. and Yuen C.K. ‘A Model of Speculative Parallelism’ In Parallel
Processing Letters, 2(3), 1992, pages 265-272.

Index

ABC machine 20, 50, 63, 79
adaptive routing 29, 45, 91
AMPGR 136
annotations

strictness 18
{I} 17
{P at ...} 18
{Pn} 124
{P} 17

ap 127
application rule 127
arrays 140, 148
asynchronous communication 91, 97
asynchronous machines 15

basic block 71, 72, 79
broadcast 161
buffering 148

caching 59, 62
cancel message 30
channel node 91, 96, 105
class climbing 31
code generation phase

code generation 75
conversion 73
global register assignment 73
local register assignment 77
ordering 73

compilation 15
connection machine 9
constructors 63, 98, 129
context switching 61, 84
conversion 135, 139
copy-stopper 126
copying strategy 115, 119
CTR 29, 33

curry variant 127, 129
currying 127
cyclic graphs 10, 90, 96, 109, 149

DAG 72
deadlock 28, 31, 100
defer attribute 19
delays 50, 136, 145
descriptor 98
descriptor table 67, 98
destructive updates 17, 116, 148
distributed matrices 157
distributed memory 15, 50
divide-and-conquer 13
DOOM 29
DPFL 165
duplication of work 99, 119, 126
dynamic code loading 67

essentially unique 118
evaluation stack 56, 75
existential types 68

fair scheduling 51, 53
Flagship 136
fold 159
FORTRAN 142
function definitions

buffer 149, 169
fold 159
get_remote 155
id 155
map3 158
rotate_up 160
r_ap 155

function nodes 63, 98, 120, 129
functional evaluation strategy 18

190 Index

functional languages 7

GAML 136
garbage collection 21, 58, 85, 90, 102

copying 90, 102
generational 58
lazy 103
mark-scan 102
mark-sweep 90, 102
reference counting 102
tracking 102
weighted reference counting 103

garbage reducers 51, 106
general purpose machine 14
graph copying 18, 90

eager 18, 119
full lazy 18
lazy 19, 90, 119
lazy normal form 123

graph rewriting 16, 89
GRIP 136
GRS 16
GUM 92, 94, 99

hashing tables 94
HDG 58, 86, 92, 113, 136
heap 21, 56
Helios 38, 40
higher order functions 18, 127, 154
HyperM 13, 136

I/O 9, 10, 20, 28, 39, 53, 116, 122, 151,
165, 179

indirection table 91, 101, 104
INMOS 22
input process 29
instruction grouping 77
interleaved processing 50
interpretation 15, 86

lambda calculus 16
lazy evaluation 8
linear systems 118
list comprehensions 16, 152

load balancing 10, 101, 112, 113
locking 22

map 158
matrix multiplication 137, 162
messages 97
MIMD 14

network topology 46
node fields

argument pointer 63
code 63, 64, 66
descriptor 63, 64, 66
waiting list 63, 64

nodes 21, 62
deferred 19, 96, 119
empty 63, 65
locked 22, 62, 65, 82, 120
tags 66

Occam 71, 87
output process 29
overloading 16, 68

PABC Machine 22, 54
packet store 30, 44
packing 96, 121
paging 60, 77
PAM 86, 136
parallel architecture 5
parallelism

divide-and-conquer 112, 136
explicit 11
horizontal 4
implicit 11
pipeline 4, 112, 169
speculative 90
vertical 4

Parix 39, 42
pre-emptive scheduling 51, 62
priority scheduling 51, 52
priority updates 53, 109
process administration

free lists 60

191

runable list 60
suspended list 60

processes 59
conservative 52
empty 61
runable 61
speculative 51
stopped 61
suspended 61

redex 16
reducers 22
referential transparency 7, 17, 118
registers 54, 56, 59
request message 30, 91, 100, 104, 124,

146
RNF 16
runtime semantics 126

shared memory 15, 50
sharing 16, 17, 93, 96, 116
sieve of Erathostenes 147
signal message 35
SIMD 15
SISAL 142, 152, 165
skeletons 11, 18, 154
SkelML 72, 87, 114, 136
special purpose machine 14
speculative parallelism 13, 50, 51, 106
stack 21, 54

checking 79
monolithic 81
overflows 78
reallocation 80
segmented 81, 86

starvation 28, 32, 36
state 9
stream process 108
streams 147, 169
strictness analysis 12, 16, 53, 126, 131
super-scalar 4
synchronous machines 15
systolic arrays 169

T800 22, 28, 33, 55
term rewriting 16
term-graph rewriting 16, 127
time-outs 101
Tiny 39
transformational derivation 11
transputer 22

communication links 22
context switch 23, 51
instructions 24
link 97
on-chip memory 22, 56, 59
priority 22, 56
registers 22, 56
time-slicing 22, 51, 56
workspace pointer 22, 54

TRS 16
type classes 16

unique type attribute 17, 117
uniqueness propagation 116, 129
uniqueness typing 10, 16, 17, 115, 140,

148
unpacking 98

VCR 39
virtual memory 60, 82
virtual shared memory 50

waiting list 22, 62, 65, 82, 91, 104
Wybert 50, 59

ZAPP 13, 33, 50, 58, 86, 113

π-RED+ 136, 165
<ν,G> 136

Samenvatting

Dit proefschrift gaat over gereedschap. En zoals velen zullen beamen, valt zonder goed
gereedschap geen degelijk huis te bouwen. Zo is het ook binnen de informatica: men heeft
goede gereedschappen nodig om degelijke computerprogramma’s te maken.

De beperkingen van de mens en de machine

Eenieder die wel eens met computers te maken heeft gehad zal opmerken dat de
computerapparatuur (de hardware) wel steeds sneller wordt, maar dat het nog steeds slecht
gesteld is met de kwaliteit van computerprogrammatuur (de software). Programma’s geven
soms foute antwoorden, zijn te traag en lopen af en toe gewoon ‘vast’. Dit wordt ook wel
de software-crisis genoemd.

Nu kan men beweren dat programmeurs hun werk niet goed doen, maar dit lost de
software-crisis niet op. Beter is het te onderkennen dat zowel de computers zelf als de
computerprogramma’s steeds complexer worden en dat programmeurs klaarblijkelijk niet
de juiste gereedschappen hebben om die complexiteit de baas te worden. In essentie is deze
gedachte de basis van al het informatica-onderzoek: het hanteerbaar maken van complexe
systemen.

Een duidelijk voorbeeld van een complex probleem is het programmeren van
zogenaamde parallelle computers. Dit zijn machines die bestaan uit een groot aantal
afzonderlijke computers die samenwerken om zo het werk sneller te doen. Het idee is
simpel, maar het programmeren van dergelijke systemen is zo lastig dat het vaak
voordeliger is om te wachten tot er snellere sequentiële computers zijn, dan om veel tijd te
steken in de ontwikkeling van parallelle programma’s. Dit is de voornaamste reden dat
dergelijke parallelle machines nog niet wijd verspreid zijn.

Wat is er dan verkeerd aan het wachten op snellere sequentiële computers? Ten eerste
zijn er problemen waarvoor nu een hogere berekeningssnelheid nodig is. Ten tweede
kunnen sequentiële computers niet onbeperkt sneller worden. Op een gegeven moment
loopt men tegen de snelheid van het licht aan. Nu al zijn er computers die meer dan
honderd miljoen instructies per seconde kunnen uitvoeren. Bij zulke snelheden legt licht
hooguit een paar meter af per instructie. Over enige tijd zal die afstand waarschijnlijk nog
maar een paar centimeter zijn. Dan zal men informatie in een zeer klein computertje
moeten stoppen, anders ligt het te ver weg om het nog op tijd bij een enkele instructie te
krijgen. Snellere computers zullen daarom kleiner moeten zijn, maar oneindig klein is
helaas onmogelijk.

194 Samenvatting

Programmeertalen

Terug naar de gereedschappen voor het programmeren van computers. Een van de
belangrijkste hulpmiddelen voor een programmeur is de programmeertaal waarin deze zijn
programma schrijft. Met zo’n taal kan men heel precies beschrijven hoe een computer een
bepaald probleem moet oplossen. Er zijn verschillende van die talen, maar ze zijn niet
allemaal even begrijpelijk voor mensen. Gaandeweg worden er steeds begrijpelijker talen
ontwikkeld. Echter, hoe begrijpelijker een taal voor de mens wordt, hoe onbegrijpelijker
deze voor een computer wordt. Daarom moet zo’n taal vertaald (gecompileerd) worden
naar een voor de computer duidelijke taal: de machinetaal (ofwel machinecode). Men
spreekt ook wel over het implementeren van een taal op een computer. Voor talen van een
hoog niveau is dit erg lastig, omdat die helemaal niet lijken op machinetaal. Dit proefschrift
gaat over de implementatie van een bepaalde klasse programmeertalen van een zeer hoog
niveau: de functionele talen. Daarbij beperken we ons tot één soort parallelle machine
waarin elk computertje zijn eigen geheugen heeft: een parallelle machine met
gedistribueerd geheugen.

Wanneer is een taal een functionele programmeertaal? Dit is het geval als een taal is
opgebouwd uit wiskundige functies. De meest fundamentele eigenschap van zulke functies
is dat hun betekenis volledig wordt bepaald door hun argumenten. Functies zijn referentieel
transparant. In gewoon Nederlands betekent dit dat een functionele expressie altijd
dezelfde betekenis heeft; het maakt niet uit waar en wanneer zo’n expressie gebruikt wordt.
Traditionele imperatieve programmeertalen hebben die eigenschap niet. Zulke talen staan
variabelen toe waaraan verschillende betekenissen kunnen worden toegekend. Zo’n
variabele - de naam zegt het al - heeft dus niet altijd dezelfde betekenis.

Een functionele taal heeft belangrijke voordelen. Ten eerste is het mogelijk om
eenvoudige wiskundige technieken te gebruiken om de correctheid van programma’s te
bewijzen. Verder kan men gemakkelijk redeneren over de betekenis van zo’n programma,
omdat elke expressie dezelfde vaste betekenis heeft. En tenslotte is het mogelijk om
expressies in een willekeurige volgorde uit te rekenen. Een andere volgorde verandert de
betekenis van het programma namelijk niet. In het bijzonder wordt het zo mogelijk om
verschillende expressies tegelijkertijd uit te rekenen. Dit houdt in dat het mogelijk wordt
om programma’s veel sneller uit te voeren op een parallelle machine, zonder het
programma zelf wezenlijk te veranderen.

Het grootste nadeel van functionele talen is dat ze moeilijk zijn te vertalen naar
machinetaal. In het bijzonder is dit lastig voor parallelle computers, en dan met name voor
parallelle machines met gedistribueerd geheugen. Dit is vooral vervelend omdat het relatief
gemakkelijk is om erg krachtige computers met gedistribueerd geheugen te maken, in
tegenstelling tot parallelle computers met een gezamenlijk geheugen.

Implementatie

Dit proefschrift heeft een experimenteel karakter. Het beschrijft de implementatie van een
concrete functionele taal - namelijk Concurrent Clean - op concrete parallelle transputer
hardware. Deze implementatie is daadwerkelijk gebouwd en getest door metingen te
verrichten. Deze werkwijze, alsmede de taal Concurrent Clean, de transputer hardware en

Implementatie 195

de problematiek van het implementeren van functionele talen worden beschreven in het
eerste hoofdstuk.

De hoofdstukken 2 tot en met 5 beschrijven de technieken die nodig zijn om een
functionele taal volwaardig te implementeren op transputer hardware. De onderwerpen van
deze hoofdstukken zijn achtereenvolgens: de realisatie van efficiënte en betrouwbare
communicatie over een transputer-netwerk, de logische structuur van de implementatie, het
genereren van machinecode voor de transputer processor en tenslotte, het verdelen van
willekeurige functionele expressies over het gedistribueerde geheugen (het kopiëren van
grafen) en het automatisch verwijderen van expressies die niet meer gebruikt worden
(garbage collectie). Een belangrijk verschil met andere onderzoeken op dit gebied is dat er
geen enkele concessie is gedaan aan de algemeenheid van de functionele programmeertaal.
Tegelijkertijd hebben we getracht om ook de implementatie zelf algemeen te houden door
technieken te gebruiken die niet alleen toepasbaar zijn op transputer hardware, maar ook op
andere computerarchitecturen. Dit heeft grote invloed gehad op het ontwerp - en de
omvang - van de implementatie. Het blijkt echter dat zowel de algemeenheid van de taal,
als die van de implementatie geen noemenswaardige nadelige invloed op de efficiëntie
hebben indien men enige zorgvuldigheid in acht neemt bij het ontwerp.

Hoofdstuk 6 gaat dieper in op het verdelen van expressies over het gedistribueerde
geheugen. Het blijkt dat sommige methoden niet te combineren zijn met belangrijke
optimalisatietechnieken, zoals uniciteits-typering. Bovendien maken sommige verdeel-
methoden het erg moeilijk voor programmeurs om te beredeneren hoe berekeningen
verdeeld raken over de parallelle computer. Een nieuwe verdeelmethode genaamd lazy
normal form copying biedt een oplossing voor beide problemen.

In hoofdstuk 7 zien we het belang van uniciteits-typering. Deze optimalisatietechniek
werd in eerste instantie ontwikkeld om het mogelijk te maken grote compacte data-
structuren te gebruiken die zeer gemakkelijk veranderd kunnen worden. Zulke structuren
zijn essentieel voor het realiseren van efficiënte communicatie met de gebruiker (en de
buitenwereld in het algemeen). We laten zien dat zulke datastructuren ook erg gemakkelijk
verplaatst kunnen worden van de ene processor naar de andere. Ze zijn dan ook belangrijk
voor het realiseren van efficiënte communicatie tussen computers onderling. Dit kan grote
gevolgen hebben voor de snelheid waarmee sommige parallelle programma’s worden
uitgerekend.

Hoofdstuk 8 laat zien dat hogere-orde functies belangrijk zijn om functionele talen uit
te breiden. Concurrent Clean heeft slechts een paar eenvoudige - maar fundamentele -
annotaties die parallelle evaluatie van expressies bewerkstelligen. Voor het programmeren
van ingewikkelde parallelle berekeningen heeft men veel van die simpele annotaties nodig.
Dit maakt parallelle programma’s soms onoverzichtelijk. Met hogere-orde functies kan
men echter nieuwe constructies maken - skeletten - die een bepaalde soort ingewikkelde
parallelle berekening beschrijven. Op die manier kunnen ingewikkelde - en zeer efficiënte -
programma’s op een eenvoudige manier geschreven worden.

196 Samenvatting

De ontwikkeling van parallelle programma’s

Al met al is de implementatie van functionele programmeertalen op parallelle computers
een lastig probleem, dat nog niet geheel is opgelost. Toch is al gebleken dat het
programmeren van parallelle machines vele malen eenvoudiger is in een functionele taal,
dan in een traditionele imperatieve taal. Tegelijkertijd moeten we opmerken dat het nog
niet zo eenvoudig is als men wel zou willen. Functionele programma’s zijn dan wel zonder
wezenlijke aanpassingen parallel uit te voeren, maar niet elk functioneel programma loopt
zo snel als men zou verwachten. Dit komt omdat ook functionele programma’s vaak nog
teveel sequentiële afhankelijkheden in zich bergen. Dit heeft veel te maken met de
gebruikte datastructuren. Het lijkt dan ook noodzakelijk zich te richten op methoden die
helpen bij het kiezen van de juiste datastructuren, of het mogelijk maken eenvoudig van
structuur te veranderen. Misschien moeten concrete datastructuren pas geïntroduceerd
worden in een laat stadium van de ontwikkeling van een programma.

Curriculum Vitae

Marcus Henricus Gerardus Kesseler

1968 Geboren te Heumen op 10 april

1980 - 1986 VWO, Elshofcollege te Nijmegen

1986 - 1990 Doctoraal Informatica, Katholieke Universiteit Nijmegen

1991 - 1995 Assistent in Opleiding (AIO), Computing Science Institute (CSI),
Faculteit Wiskunde en Informatica, Katholieke Universiteit
Nijmegen

1995 Dienstplichtig Reserve Officier Academisch Gevormd (ROAG),
Frederikkazerne, Den Haag

1995 - heden Wetenschappelijk medewerker bij Hollandse Signaalapparaten B.V.
te Hengelo (Ov)

Marco Kesseler
What have I done since?

may 1997 - july 1999: researcher at Océ R&D, Venlo, the Netherlands. http://www.oce.com.

since august 1999: software developer at Aia Software B.V., Nijmegen, the Netherlands. http://www.aia.nl.

	Contents
	Acknowledgements
	1. Introduction
	1.1. The limits of software development and hardware development
	1.1.1. The limits of nature
	1.1.2. The limits of man: the software crisis

	1.2. The promise of functional programming
	1.3. The problem of implementing functional languages
	1.3.1. Sequential implementation issues
	1.3.2. Parallel implementation issues
	1.3.3. Implicit versus explicit parallelism
	1.3.4. The runtime behaviour of functional programs

	1.4. An outline of our research
	1.4.1. The research questions
	1.4.2. The research plan
	1.4.3. The architecture
	1.4.4. Compilation versus interpretation

	1.5. The language that will be implemented: Concurrent Clean
	1.5.1. Graph rewriting
	1.5.2. Uniqueness typing
	1.5.3. Annotations
	1.5.4. Lazy graph copying
	1.5.5. The structure of the Concurrent Clean system
	1.5.6. The abstract ABC machine

	1.6. The transputer hardware
	1.7. An overview of this thesis
	1.7.1. Chapter 2: packet routing
	1.7.2. Chapter 3, 4, and 5: the implementation chapters
	1.7.3. Chapter 6: Graph Copying and Uniqueness Typing
	1.7.4. Chapter 7: The Costs of Graph Copying
	1.7.5. Chapter 8: Constructing Skeletons

	2. Packet Routing
	2.1. The need for a routing mechanism on transputer hardware
	2.2. The original DOOM routing algorithm
	2.2.1. The components of the DOOM router
	2.2.2. Process interaction
	2.2.3. Class climbing
	2.2.4. Buffer management
	2.2.5. Starvation

	2.3. The modified routing algorithm: the CTR
	2.3.1. Incompatibilities
	2.3.2. Multiplexing of messages
	2.3.3. Sleeping processes
	2.3.4. Starvation

	2.4. Optimising the CTR
	2.4.1. Variable packet size
	2.4.2. Overlapping data and control messages
	2.4.3. Combination of messages
	2.4.4. Traffic control
	2.4.5. Potential improvements

	2.5. Performance measurements
	2.5.1. Helios versus CTR
	2.5.2. Parix versus CTR
	2.5.3. The influence of packet storage size
	2.5.4. Adaptive routing versus fixed routing
	2.5.5. The influence of different topologies

	2.6. Conclusions

	3. Components of the ABC Machine
	3.1. The basic research issues and the design of the ABC machine
	3.2. Dealing with speculative parallelism
	3.2.1. The costs of speculative parallelism
	3.2.2. Avoiding termination problems: fair scheduling or priorities.

	3.3. Registers and stacks
	3.3.1. Workspace for stack
	3.3.2. Merged stacks
	3.3.3. Virtual registers

	3.4. The heap
	3.4.1. Hierarchical heap

	3.5. Processes
	3.5.1. Virtual virtual registers
	3.5.2. Hardware context switches and registers

	3.6. Nodes
	3.6.1. Node usage
	3.6.2. Basic node structure
	3.6.3. Waiting lists
	3.6.4. Tags
	3.6.5. Descriptors
	3.6.6. Smaller nodes

	4. Code Generation for the Transputer
	4.1. The target language of the code generator
	4.1.1. The merits of generating C
	4.1.2. The merits of generating Occam
	4.1.3. generating transputer assembly

	4.2. Sequential code generation
	4.2.1. The conversion phase
	4.2.2. The global register assignment phase
	4.2.3. The ordering phase
	4.2.4. The code generation phase
	4.2.5. The local register assignment phase
	4.2.6. An example

	4.3. Handling stack overflows
	4.3.1. Combining stack checks
	4.3.2. Expanding a stack

	4.4. Handling locks and waiting lists
	4.5. Supporting context switches
	4.6. Performance measurements for sequential programs
	4.7. Conclusion

	5. Managing Distributed Graphs
	5.1. Introduction
	5.2. Representing references to remote graphs
	5.2.1. Channel nodes
	5.2.2. Indirection tables
	5.2.3. Tracking of duplicates

	5.3. Transmission of graphs
	5.3.1. Packing a graph
	5.3.2. Transmission
	5.3.3. Arrival
	5.3.4. Avoiding duplication of work
	5.3.5. Realising deadlock-free Protocols

	5.4. Garbage collection
	5.4.1. Sequential garbage collection
	5.4.2. Distributed garbage collection
	5.4.3. Weighted reference counts
	5.4.4. Garbage collection as implemented in Clean
	5.4.5. Removing garbage reducers
	5.4.6. Removing distributed cycles

	5.5. Performance measurements for parallel programs

	6. Graph Copying and Uniqueness Typing
	6.1. Uniqueness typing
	6.1.1. Functions and uniqueness propagation
	6.1.2. Constructors and uniqueness propagation
	6.1.3. The uniqueness type system
	6.1.4. Type coercion

	6.2. The conflict between lazy graph copying and uniqueness typing
	6.2.1. The source of the conflict: deferred unique objects
	6.2.2. Traversing function nodes during copying can be dangerous
	6.2.3. Locked unique nodes are safe
	6.2.4. Introducing additional deferred nodes at runtime

	6.3. Potential solutions
	6.3.1. Runtime coercions
	6.3.2. Avoiding deferred unique objects
	6.3.3. Changing the copying strategy

	6.4. A safe copying strategy
	6.4.1. The lazy normal form copying strategy
	6.4.2. Safety checks for copying annotated function nodes
	6.4.3. The runtime semantics
	6.4.4. The effects on efficiency

	6.5. Copying of work using lazy normal form copying
	6.5.1. Currying in Concurrent Clean
	6.5.2. Currying and copying

	6.6. The runtime semantics of some example programs
	6.6.1. Nfib
	6.6.2. The sieve of Erathostenes
	6.6.3. A simple divide and conquer program

	6.7. Conclusions

	7. The Costs of Graph Copying
	7.1. Introduction
	7.2. Copying costs
	7.3. Decreasing conversion costs
	7.3.1. Matrix multiplication with lists
	7.3.2. Matrix multiplication with arrays

	7.4. Distributed copying
	7.5. Overlapping communication and computation
	7.5.1. Streams
	7.5.2. Buffering

	7.6. Conclusions
	7.7. Discussion

	8. Constructing Skeletons
	8.1. Introduction
	8.2. Auxiliary functions
	8.3. Skeletons for data parallelism
	8.3.1. Arrays and matrices
	8.3.2. Operations on distributed matrices
	8.3.3. Data parallel matrix multiplication
	8.3.4. Performance Measurements

	8.4. Skeletons for parallel I/O
	8.4.1. Plotting pixels in parallel

	8.5. Skeletons for streams
	8.6. Conclusions

	Conclusions
	Reasoning about parallel performance
	The design of efficient parallel algorithms
	Future Work

	Bibliography
	Achten - Barendregt
	Barendsen - Burks
	Cann - George
	Girard - Hoare
	Hudak - Kesseler
	Kingdon - Nöcker
	Nöcker - Skillicorn
	Smetsers - Wong

	Index
	Samenvatting
	De beperkingen van de mens en de machine
	Programmeertalen
	Implementatie
	De ontwikkeling van parallelle programma’s

	Curriculum Vitae

