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Abstract

As financial data becomes increasingly complex, understanding the relationships between assets is
crucial for informed decision-making. This thesis explores the potential of employing deep learning
models to estimate connections between financial time series, paving the way for more robust invest-
ment strategies and risk management approaches. To this end, we applied both the neural relational
inference (NRI) model and the neural Granger causality (NGC) model to estimate the connections. We
also introduce a novel architecture, cNSVM, which combines the NGC model and the neural stochastic
volatility (NSVM) model. To compare the aforementioned deep learning models with machine learning
methods, we also analyzed the performance of the t-VAR model. We have evaluated these models on
synthetically generated datasets and a real-world dataset of historical stock prices. On the real-world
stock dataset, t-VAR and NRI emerged as the best-performing models. Our findings contribute to the
existing literature in financial time series by showcasing the strengths and weaknesses of connectivity
estimation deep learning models. Looking ahead, future research could focus on refining the formula-
tion of the newly introduced cNSVM to further enhance its performance, ultimately leading to better
financial decision-making and risk management.
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1 Introduction

In an ever-evolving financial landscape, understanding the intricate connections between assets has
become crucial for making informed investment decisions [1]. By analyzing how assets are connected,
investors can identify patterns that help them make strategic choices and construct more effective
portfolios that balance risk and return [2]. By leveraging the knowledge of asset connectivity, they can
diversify their holdings across a range of assets [3]. Moreover, recognizing the relationships between
different assets enables investors to mitigate potential risks and hedge their investments, ultimately
protecting their portfolios from market volatility and potential losses [4]. But how can we reliably
estimate these connections in a complex, interconnected world? This thesis explores the potential of
employing deep learning models to estimate connectivity between financial time series, paving the way
for more robust investment strategies and risk management approaches.

The primary goal of this thesis is to explore how deep learning can help estimate the connec-
tions between financial time series data. Traditional methods for connectivity estimation often lack
generalizability [5, 6]. In a survey by Broto et al. [7], various models were used based on differ-
ent properties of financial data. Deep learning could overcome this problem by generalizing multiple
models at once [8]. Another issue with traditional methods is that they can be computationally
expensive in high dimensions [9]. They often use sampling-based approaches, which are slow in
high dimensions. On the other hand, deep learning methods are known to scale well [10]. Additionally,
parameter estimation for some traditional methods can be difficult and may require specific prior
knowledge about parameter distributions (as the likelihood function is hard to estimate and uses
Bayesian approaches) [11]. On the contrary, deep learning methods can learn well without needing
such detailed prior knowledge [12]. In summary, current state-of-the-art methods can lack generaliz-
ability and scalability or require extensive prior knowledge. All of these limitations could be tackled
with deep learning approaches.

In order to properly analyze the generalizability of these methods, we applied them to both the
synthetically generated data and a real-world stock market dataset. Using synthetically generated
datasets allowed us to create test-scenarios with different connection strengths and numbers of variables
(to test for scalability). Synthetic data is generated from the vector autoregressive model (VAR, section
3.1) and the stochastic volatility model (SV-AR, section 2.2.2). VAR is a statistical model often used
in financial time series analysis that captures the linear interdependencies between multiple time series
variables, while SV-AR is a financial model that accounts for the time-varying and random nature of
asset price volatility [13]. Stochastic volatility is often influenced by volatility spillovers, which are
the transmissions of volatility shocks from one financial asset to another, which is what makes its
modeling a difficult task [14, 15]. However, both models have their limitations. VAR assumes that the
dependencies are linear, which does not have to be the case for real-world data. On the other hand,
the parameters of SV-AR are hard to estimate (due to the intractable estimation of the likelihood
function), particularly in high dimensions, which can make it challenging to apply it to real-world
scenarios [16, 17].

The models used for estimating connectivity are deep learning-based models, such as a neural rela-
tional inference (NRI, section 3.2) model and the neural Granger causality (NGC, section 3.3) model
[18, 19]. While it has not yet been used for financial data, the NRI model offers a way to estimate con-
nections between assets in the form of a graph, with nodes being assets and edges being the connections
between them. The NGC model offers a framework for directly estimating the connections between
time series. Even though its original formulation is limited to using multilayer perceptron (MLP) and
long short-term memory (LSTM) networks, we extend it by combining it with an architecture that
is better suited for stochastic volatility modeling, a neural stochastic volatility model (section 3.4)
introduced by Luo et al. [20]. Furthermore, to compare deep learning against the machine learning
approaches, we used t-VAR, introduced by Barbaglia et al. [21], that fits the data to the model similar
to VAR.

Other than analyzing the performance of deep learning models, we also wanted to analyze some
additional useful properties. To that note, we also analyzed the scalability of connectivity estimation.
The financial data is often high-dimensional and constantly evolving, requiring models to be able to
handle large datasets [22, 23]. Furthermore, we are also interested in analyzing how well the deep
learning models estimate the covariance matrix of the noise generation process. The presence of a
correlation between noise distributions can negatively impact the performance of connectivity estima-
tion models if they mistake the connection between assets with the covariance of the noise signal [24].
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Additionally, estimating the noise distribution of financial models allows for modeling the unobserved
factors that influence the time series and are not present in the observed data [25]. This motivated us
to investigate the performance of these models to different noise magnitudes in the data. Finally, we
also inspected if these models have a bias toward estimating connections rather than non-connections.
Understanding such biases is crucial for accurately interpreting the results and making well-informed
investment decisions.

To make an extensive analysis of the applicability of these deep learning models for estimating
connections between financial time series, we aim to answer the following research questions:

1. How do deep learning models for connectivity estimation perform on data with different strengths
of connections, considering both the VAR and SV-AR generated data?

2. How robust are connectivity estimation models to noise? Additionally, can they effectively dis-
tinguish between contemporaneous correlation in the correlation terms of the covariance matrix
of the noise generation process and the connections encoded in the coefficient matrices of both
VAR and SV-AR models?

3. How does data dimensionality affect the performance and training time of connectivity estimation
models, particularly in high-dimensional scenarios?

4. Are the connectivity estimation models biased towards estimating connections or non-connections?

5. How well do connectivity estimation models perform on real-world historical stock price datasets
compared to existing models in the literature?

In summary, this study is organized into different chapters. The first chapter starts by defining the
concept of connectivity. It further provides a background on the definition and importance of financial
models used to create synthetic data and the analysis of the real-world dataset used in the study. The
second chapter introduces the models used for estimating connectivity. It provides a solid background
on how they work, their motivation for using them, and how they compare. The third chapter displays
an analysis of the results of the experiments. The fourth chapter summarizes the main thoughts of the
experiments and provides answers to the above research questions. Finally, the last chapter puts the
critical findings into perspective and concludes this study.
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2 Background

In this section, we explained some of the crucial concepts that were used during this study. Granger
causality plays a vital role in connectivity estimation, allowing us to investigate relationships between
different time series. In this section, we provide the necessary concepts for understanding Granger
causality (section 2.1), as well as two models used for generating synthetic data: vector autoregressive
(VAR, section 2.2.1) and stochastic volatility (SV-AR, section 2.2.2) models. An understanding of the
Granger causality concept is necessary as we have imposed the connectivity between the variables of
the synthetic time series by imposing the Granger causality on the variables of data generation models.
Moreover, the applicability of these models extends beyond synthetic data; they have also been tested
on a real-world dataset, which is described later in this chapter (section 2.3).

2.1 Modelling Connectivity as Granger Causality

The concept of causality is crucial for inferring connectivity between time series. Two main prop-
erties for determining cause-effect relationships are temporal precedence and physical influence [26].
Temporal precedence states that a time series that causes another precedes it in time, and physical
influence states that manipulations of causing time series change the affected time series. Both of
these statements are true for financial data. For example, if the value of one stock changes, it should
have an effect on the value of another stock (physical influence) but at a later point in time (temporal
precedence). This suggests that quantifying causality is valuable in assessing connectivity. However,
there are multiple types of causality, such as structural causality, intervention causality, and Granger
causality [26] [27]. In this study, we have used Granger causality as it provides a straightforward way
of imposing connectivity between synthetically created time series (more in sections 2.2.1, 2.2.2).

The idea of Granger causality was introduced by C.W.J. Granger in 1969 [26]. In time series
analysis, inferring the cause-effect relationship is commonly based on Granger causality. Specifically,
let X and Y be two stationary stochastic processes (or time series). If disregarding X from predicting
values of Y makes the larger residuals of predictions, it indicates that X contains some information
regarding Y , and thusX Granger causes Y . This formulation allows for the modeling of both linear and
non-linear dependencies. Additionally, it should be noted that Granger causality can lead to wrongly
inferred causal relations in the presence of latent variables. If, for example, there are three-time series:
X, Y , and Z, where Xt−2 causes the change in Yt−1 and Zt. If only Y and Z are observable, Granger
causality infers that Y Granger causes Z, even though that is not the case.

2.2 Data Generation Models

To test the performances of the neural models used to determine the connectivity in financial data
(more in section 3), they were initially tested on synthetically created stochastic processes. These
stochastic processes were generated from two well-known time series models frequently used to model
the dynamics of financial data. Variables in these stochastic processes represent asset returns, which
can be: currency prices over time, values of index returns over time, etc.

2.2.1 Vector Autoregressive Model

The first data-generation model used in this study is the vector autoregressive (VAR) model, introduced
by C. Sims in 1980 [28]. It is a simple and interpretable model that models multiple time series variables
and allows for modeling connections between them. It has been extensively used in various applications
with financial data [29], [30], [31].
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In this study, we use VAR to model the asset returns. Let yt be asset returns, then the probabilistic
formulation of the model is defined in equations (1) and (2), and analytical formulation of the model
is defined in equation (3).

yt|yt−1 ∼ N(µ+Φ(yt−1 − µ),Ση), (1) yt = µ+Φ(yt−1 − µ) + ηt, (3)

y0 ∼ N(µ,Ση/(1−Φ2)), (2)

where yt = (yit)i=1,...,N is a vector of N asset returns at time t, µ is the vector of N means of asset
returns, Φ = (ϕij)i,j=1,...,N is a matrix of size N ×N that contains autoregression coefficients, ηt is a
Gaussian noise, ηt ∼ N(0,Ση), with Ση = (ση,ij)i,j=1,...,N .

From equation (1), it is visible that the returns only depend on the previous timestep, t − 1.
Elements on the diagonal of Φ define the linear dependence of the returns of the same asset, which
indicates its self-dependence. Elements on the off-diagonal of Φ define the linear dependence of one
asset’s return at the current timestep on the returns of the rest of the assets at the previous timestep.
In this scenario, Granger causality is defined as the linear dependence between asset returns. If ϕi,j

is non-zero, we say that the asset j Granger causes asset i, and there is a connection from j to i.
Otherwise, if ϕi,j is zero, there is no connection between assets i and j. Granger causality could
be indicative of risk estimation, as the non-existence of Granger causality indicates a market that is
harder to predict, therefore, a riskier market.

In this study, the VAR model was used only to generate stationary data because non-stationary
data would lead to exploding unpredictable values. For example, if a model is fit to non-stationary
data exhibiting an upward trend, the model may predict that the trend continues indefinitely, which
is unrealistic. Therefore, ensuring that financial data is stationary before modeling it is crucial. In
order for the VAR model to generate stationary data, the roots of the equation |I − λΦ| = 0 (where I
is the identity matrix of size N ×N) should lie outside of the unit circle [32].

We further provide an example of the data generated from the VAR model. For variables y11:t and
y21:t, figure 1 illustrates an example of data generated from the VAR model. Model parameters used
to generate this data are:

µ =

(
3
1

)
Φ =

(
0.8 0.
0.6 0.9

)
Ση =

(
0.1 0.
0. 0.01

)
(4)

As already mentioned, µ defines the mean of the data, which is the value around which y11:t and
y21:t are centered. Ση is the variance-covariance of the noise, η that models the stochasticity of the
data. Since ση,1,1 > ση,2,2 we can see that y1 exhibits greater differences in its values than y2. Φ is
the autoregression coefficient matrix. Because Φ1,2 = 0, y1 is independent of y2 and only depends on
its previous value, in the Granger causal sense. However, y2 depends on its previous value and the
previous value of y1, which indicates Granger causality.

Figure 1: Data generated from VAR model with parameters specified in equation (4)
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2.2.2 Stochastic Volatility Model

The VAR discussed in the previous section does not incorporate many properties of real financial data.
Numerous empirical studies have been done on asset return data throughout the years to extract its
qualitative properties known as stylized facts [33]. One of these, known as volatility clustering, states
that volatility changes through time, and high-volatility events tend to cluster together [34]. Numerous
models have been developed to generate or fit the data with changing volatility [35]. In this study,
we also use one of such models - the discrete multivariate form of stochastic volatility autoregressive
model, SV-AR model, proposed in [36]. It autoregressively models the volatility dynamic with the
same definition that was used in VAR to model the dynamics of asset returns.

In addition to modeling volatility clustering, SV-AR also incorporates other stylized facts, such
as volatility persistence and co-movements [33]. Volatility persistence states that there is a time
dependence in volatility, meaning that future volatility is influenced by past volatility. Co-movements
state that the returns of different assets tend to change in the same direction. Furthermore, while we
do not consider it here, SV-AR can also incorporate one more stylized fact - the leverage effect.

Let yt be asset returns and ht volatility; then, the model is defined with the following equations.
Equations (5) - (7) show the probabilistic definition of the model, and equations (8), (9) show the
analytical definition of the model.

yt|ht ∼ N(0,Σϵdiag(exp (ht))Σϵ), (5) yt = diag(exp(ht/2))ϵt, (8)

ht|ht−1 ∼ N(µ+Φ(ht−1 − µ),Ση), (6) ht = µ+Φ(ht−1 − µ) + ηt, (9)

h0 ∼ N(µ,Ση/(1−Φ2)), (7)

where yt = (yi,t)i=1,...,N is a vector of N observed asset returns at time t, ht = (hi,t)i=1,...,N

is a vector of N unobserved volatilities of asset returns at time t. ht parametrizes the volatility of
asset returns since the variance of yt in equation (8) is parameterized by ht. From equation (6), it
is visible that the volatility only depends on one timestep, or one lag, in the past. Furthermore, the
noise µ is the vector of N means of asset volatilities. The coefficient matrix Φ = (ϕij)i,j=1,...,N is a
matrix of size N × N that contains autoregressive coefficients of the volatility process. Its diagonal
elements, ϕii determine how much effect the asset volatility at a preceding lag, hi,t−1, has on its
volatility at a current lag, hi,t. Its off-diagonal elements, ϕij , determine how much effect the volatility
of one asset at a preceding lag, hj,t−1, has on the volatility of another asset at a current lag, hi,t.
Ση = (ση,ij)i,j=1,...,N is a covariance matrix of size N ×N for the conditional distribution of volatility,
ht. ϵt is a random noise vector of size N sampled from a Gaussian distribution, ϵt ∼ N(0,Σϵ),
Σϵ = (σϵ,ij)i,j=1,...,N . ηt is a random noise vector of size N sampled from a Gaussian distribution,
ηt ∼ N(0,Ση), Ση = (ση,ij)i,j=1,...,N .

In SV-AR, asset returns are dependent on the unobservable process of volatilities. This makes
the movement of asset returns more complex as they are defined by underlying, unobserved dynam-
ics. Thus, the likelihood function is intractable which makes the model hard to estimate in higher
dimensions [16, 17]. However, with its formulation, SV-AR can model the concept known as volatility
persistence. Volatility persistence states that there is a time dependence in volatility, meaning that fu-
ture volatility is influenced by past volatility. This is because volatility ht is autoregressively modeled
with ht−1, equations (6), (9). By modeling the volatility persistence, it also models the dependence of
an asset i between its lags t− 1 and t. With volatility persistence, volatility clustering is also modeled
because it makes small and large volatilities cluster together in time. Furthermore, by having the off-
diagonal values of the coefficient matrix Φ to be non-zero, SV-AR incorporates co-movements stylized
fact. Co-movements state that the returns of different assets tend to change in the same direction.
While we do not consider it here, it is also possible to incorporate one more stylized fact - the leverage
effect.

Furthermore, we are only interested in generating stationary data since the values of the non-
stationary data would explode and would not be predictable. In SV-AR, the condition of stationarity
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is achieved (in the same manner as with the VAR model) by applying the constraint on the coefficient
matrix of the autoregressive process: the roots of |I − λΦ| must lie outside of the unit circle. Thus,
when generating the data in experiments, we take that into account.

We further illustrate one example of data generated from this model. Figure 2 shows an example
of the dynamic of asset returns and volatilities generated by SV-AR. The figures were generated with
the following parameters:

µ =

(
1
0

)
Φ =

(
0.99 0.3
0 0.2

)
Ση =

(
0.05 0.0
0.0 0.01

)
Σϵ =

(
1 0.6
0.6 1

)
(10)

As shown in figure 2b, µ1 and µ2 define the unconditional means of volatilities of asset returns. Since
µ1 > µ2, the returns of the first asset, y1, are more volatile than the returns of the second asset, y2.
In figure 2b, we notice that the second asset’s volatilities, h2, look very similar to the noise process.
This is because the elements of the coefficient matrix relevant for that asset are very small (relative
to other values of Φ). Since ϕ2,1 = 0, the volatility more clusters on the volatility of the second asset.
Elements on the diagonal of Φ model volatility persistence and their larger value would mean that
there are more clusters of the prices.
In figure 2a, it is possible to see two clusters of low volatility asset returns (in green areas) and three
clusters of high volatility asset returns (in red areas). This is because, in figure 2b, the volatility in
red areas has larger values than the volatility in green areas.
Ση defines the covariance matrix of the noise process of the dynamics of volatilities. Because the
value of the variance of the noise of the first volatility, ση,1,1 is larger than the value of the variance of
the noise of the second volatility, ση2,2, volatility of the second asset, h2, is more stochastic than the
volatility of the first asset h1.

Σϵ is the covariance matrix of the normal distribution from which ϵt is sampled. With larger values
in Σϵ, the volatility less reflects the true volatility that the asset returns are experiencing.

Furthermore, it is worth indicating the differences between the asset returns generated by the VAR
model (figure 1) and the asset returns generated by the SV-AR model (figure 2a). While the former
one exhibits no clusters of variance, the latter one shows areas of high or low variance.

(a) Example of asset returns for two random
variables, y1 and y2.

(b) Example of volatilities for two random variables, h1

and h2 (with their respective mean values).

Figure 2: Asset returns and volatility generated from SV-AR with parameters specified in equation
(10)

2.3 Dataset of Historic Stock Prices

Other than using the aforementioned data-generation models to create the dataset, we also used a
historical dataset of stock prices. Since we compared the results of our neural models with the results
from Hecq et al., we used to same datasets as the authors [37]. This subsection shows some of the
statistics measured from the real-world dataset.

To get more insight into the datasets of historic stock prices, the following summary statistics
were calculated: mean, median, mode, range, standard deviation, variance, skewness, kurtosis, and
Pearson’s correlation. The mean and median provide information about the central tendency. The
mean is the average of the stock prices, and the median is the middle value when the stock prices
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are ordered (and, as such, is more robust to outliers). Furthermore, the range, standard deviation,
and variance provide insight into the spread of the data. The range is the difference between the
highest and lowest stock prices, and as such, it provides insight into how much variation exists in the
data and how widely spread the values are. The standard deviation is a measure of the spread of the
stock prices around the mean, while the variance is the square of the standard deviation. They give
an indication of how tightly or loosely the values cluster around the mean. Moreover, kurtosis and
skewness provide additional information about the shape of the distribution of stock prices. Kurtosis
quantifies the degree to which the data deviates from a normal distribution, with a positive kurtosis
indicating a distribution with more extreme values than a normal distribution and negative kurtosis
indicating a flatter distribution. Skewness measures the asymmetry of the distribution, with a positive
skewness indicating a distribution that is skewed to the right (with a long tail on the positive side of
the mean) and negative skewness indicating a distribution that is skewed to the left (with a long tail
on the negative side of the mean). Finally, Pearson’s correlation is a statistical measure of the linear
association between two variables, where the values range between -1 and +1, with +1 indicating a
strong positive linear relationship, -1 indicating a strong negative linear relationship, and 0 indicating
no linear relationship. Measuring Pearson’s correlation between stocks before using more complex
methods for estimating connectivity between stocks can provide a quick and easy insight into the level
of the linear relationship between the stocks and help to identify trends and patterns in the data.

Stock Name Mean Median Range Stand. Dev. Variance Kurtosis Skewness
AAPL 64.11 61.32 126.09 34.69 1203.64 -1.22 0.16
AXP 54.35 53.49 83.49 20.73 429.69 -0.98 -0.04
BA 84.47 66.16 149.67 37.32 1392.67 -1.32 0.34
CAT 69.83 74.49 84.18 19.45 378.23 -0.12 -0.78
CSCO 20.52 19.98 22.61 4.88 23.85 -0.70 0.42
CVX 83.39 86.22 79.57 19.87 394.66 -1.16 -0.26
DD 44.61 42.38 66.61 15.73 247.28 -1.01 0.06
DIS 56.77 46.06 105.83 30.55 933.27 -1.29 0.46
GE 19.67 19.78 27.89 6.34 40.14 -1.01 0.11
GS 145.68 150.47 209.22 34.96 1222.00 0.27 -0.06
HD 61.73 50.28 129.11 39.23 1539.34 -1.09 0.57
IBM 140.02 148.35 134.98 32.31 1043.83 -0.83 -0.55
INTC 22.08 20.37 28.97 7.16 51.31 -0.90 0.45
JNJ 72.14 60.43 87.88 23.94 573.36 -1.22 0.49
JPM 44.07 38.39 78.51 14.46 209.05 -0.09 0.66
KO 31.27 32.95 31.30 8.25 68.01 -1.23 -0.21

MCD 77.54 81.50 93.89 23.65 559.52 -0.82 0.16
MMM 99.95 81.78 150.26 40.75 1660.24 -1.17 0.46
MRK 38.88 37.22 50.79 13.28 176.26 -1.35 0.24
MSFT 31.47 25.85 53.38 12.60 158.69 -0.41 0.84
NKE 30.30 24.52 58.29 16.19 262.20 -0.98 0.61
PFE 21.41 20.41 27.71 7.85 61.69 -1.50 0.16
PG 62.31 57.88 57.23 13.85 191.87 -1.26 0.16
TRV 68.03 57.89 99.62 27.76 770.60 -1.28 0.37
UNH 64.43 51.39 151.25 39.24 1539.87 -0.52 0.81
UTX 78.03 73.76 87.44 22.53 507.40 -1.21 -0.04
V 39.40 30.98 77.82 23.33 544.51 -1.22 0.52
VZ 34.41 35.77 39.69 10.65 113.34 -1.43 0.03

WMT 58.08 59.04 47.90 12.45 154.96 -1.50 0.07
XOM 72.24 73.69 50.70 12.19 148.72 -1.06 -0.22

Table 1: Statistics of the historical stock prices dataset measured on the full interval
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Figure 3: Heatmap of Pearson’s correlation between stocks taken from the full dataset interval

The first dataset consists of 30 stock prices on 1-minute intervals from March 2008 until February
2017 (2236 trading days). The table 1 shows the mean, median, range, standard deviation, variance,
kurtosis, and skewness for each stock. Based on the data, we can see that GS (Goldman Sachs Group
Inc) has the highest mean of 145.68, and GE (General Electric) has the lowest mean of 19.67. It
seems that most stocks’ mean and median values are close to each other, which means that the data is
likely to be symmetrically distributed. However, 20 out of 30 stocks have a slightly higher mean than
the median, indicating a slightly positive skew in the 67% of the data and a slightly negative skew
in the 33% of the data. In terms of kurtosis, the data shows that the kurtosis is generally negative
for most of the stocks, which suggests that the distributions of prices for most stocks are less spread
out than a normal distribution and have fatter tails. For example, American Express Co. (AXP) has
a kurtosis value of -0.98. However, Goldman Sachs (GS) is the only stock among all with a positive
kurtosis value of 0.27. The range of returns is relatively large for some stocks, such as Apple (AAPL)
at 126.09 and Boeing (BA) at 149.67, indicating a higher degree of volatility. This suggests that the
returns for these stocks have been more spread out over the observed period. Cisco Systems (CSCO)
has the lowest range value among all the stocks, which is 22.61. The standard deviation of returns is
generally higher for stocks with larger ranges and higher means, indicating that the returns for these
stocks are more spread out. For example, The standard deviation of returns for Apple (AAPL) is
34.69, which is relatively high when compared to Cisco Systems (CSCO) of 4.88. 3M (MMM) has the
highest standard deviation value among all the stocks, at 40.75.

Furthermore, the results of Pearson’s correlation for each of the stock pairs are shown in figure 3
in the form of a heatmap. The correlation values generally range from 0.5 to 1.0, with some values
slightly below 0.5, indicating that the relationship between the variables is relatively strong. There
are no negative correlation values, indicating that none of the variables have a negative relationship.
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Stock Name Mean Median Range Stand. Dev. Variance Kurtosis Skewness
AAPL 105.45 105.42 48.01 10.30 106.12 -0.03 0.60
AXP 64.60 63.73 30.75 6.82 46.49 -0.35 0.37
BA 133.51 129.54 74.37 14.39 207.02 -0.08 0.81
CAT 78.81 78.90 45.01 11.15 124.36 -0.87 -0.06
CSCO 28.47 29.40 12.27 2.54 6.47 0.00 -0.84
CVX 98.70 99.00 46.38 10.62 112.71 -0.38 -0.25
DD 66.20 66.64 29.02 5.85 34.17 0.16 -0.35
DIS 97.81 96.86 26.74 5.38 28.89 -0.08 0.81
GE 29.89 29.92 6.21 1.21 1.47 -0.33 -0.32
GS 175.82 161.86 114.92 33.13 1097.65 -0.21 1.17
HD 129.36 129.93 35.66 6.11 37.33 0.28 -0.63
IBM 149.61 150.56 69.81 14.71 216.40 -0.06 -0.39
INTC 33.03 33.93 11.33 2.90 8.41 -1.32 -0.16
JNJ 112.22 114.18 32.57 7.21 51.98 -0.02 -0.80
JPM 66.95 63.78 39.82 10.28 105.75 -0.48 0.91
KO 42.59 42.25 6.51 1.45 2.11 -0.99 0.35

MCD 118.72 119.01 19.54 4.52 20.39 -1.08 0.08
MMM 166.46 168.37 53.08 11.25 126.59 1.03 -1.23
MRK 57.13 58.08 19.39 4.97 24.73 -1.13 -0.38
MSFT 55.19 55.30 18.73 4.82 23.25 -1.11 0.31
NKE 55.66 55.44 15.90 3.42 11.68 -0.93 0.17
PFE 31.95 32.15 9.11 2.08 4.32 -0.80 -0.22
PG 82.47 82.70 19.61 3.75 14.04 -0.27 -0.34
TRV 112.64 113.46 23.98 5.15 26.54 -0.53 -0.36
UNH 137.03 137.26 59.20 15.31 234.35 -0.67 0.04
UTX 100.54 100.77 31.55 7.45 55.43 0.12 -0.78
V 78.08 78.48 21.97 4.09 16.77 -0.30 -0.42
VZ 50.04 50.02 13.14 2.60 6.76 0.61 -0.58

WMT 68.42 68.83 15.78 3.20 10.21 -0.14 -0.65
XOM 83.99 85.11 24.50 4.80 23.05 0.49 -0.84

Table 2: Statistics of the historical stock prices dataset measured on 2016-2017 interval
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Figure 4: Heatmap of Pearson’s correlation between stocks measured on 2016-2017 interval

To make the dataset distribution more closely approximate a normal distribution (and to remove
the outliers), Heq et al. also used another dataset of a shorter period [37]. The authors hypothesize
that the relationships are more stable over a shorter time frame. The chosen time frame specifically
skips two significant past occurrences that significantly increased market instability: the 2008 global
financial crisis and the 2011 U.S. debt ceiling crisis. Therefore, the second dataset was taken from
January 2016 until February at 1-minute intervals. The table 2 shows the mean, median, range,
standard deviation, variance, kurtosis, and skewness for each stock for this new period. The range
of returns for most stocks is relatively smaller in the new observation period than in the full period.
This indicates lower volatility in the stock prices during the new period. Additionally, the standard
deviation of returns for most stocks was found to be generally higher in the first period as well, further
emphasizing the higher level of volatility in the stock prices during this period. Furthermore, the
kurtosis values are closer to zero in the new period, which implies that the returns of the second period
have thinner tails than the distributions of the first period. The skewness values are generally also
closer to zero in the new period, suggesting that the return distributions for most stocks were more
symmetric than in the full period. The two latter statements imply that the distributions of returns
for most stocks are closer to an observation period than the new period of observations.

Additionally, the results of Pearson’s correlation for each stock pair in the new period are shown
in figure 4 as a heatmap. The correlation coefficients in the new period tend to be lower than those
in the full period. This suggests that they are less correlated in this shorter period. However, we can
still see from the heatmap that, for many stocks, the correlation only decreased slightly.

This information can provide insight into which stocks may be influenced by similar factors and
how changes in one stock’s price may affect the prices of other stocks. It can also give an idea of the
market’s overall state and identify any related trends in the stock prices. However, it is essential to
note that correlation does not imply causation, and other factors, such as market trends, economic
conditions, and company-specific events, also affect stock prices.
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3 Methods

In this study, we employed four approaches for connectivity estimation between time series data.
Firstly, we fitted the data to a model similar to the VAR model (section 3.1). Secondly, we used
a deep neural model that uses graphs to represent the market state (nodes are variables, and edges
are the connections between them) (section 3.2). The third approach utilized another neural method
where the weights of the initial layer of the deep network represent Granger connections (section 3.3).
And finally, we introduce the combination of the third approach with another neural network baseline
that is more suited for data with stochastic volatility (section 3.4).

3.1 t-VAR Model

The first model we used for connectivity estimation is called the t-VAR model, an approach from
Barbaglia et al. [21]. It is a modification of the VAR model (introduced in section 2.2.1). Using a
model for connectivity estimation that is closely related to the VAR model (used for data generation)
may result in a better fit for the synthetic data generated from the VAR model.

Instead of modeling the noise, ηt, as a Gaussian, they assume that the noise follows the Student-t
distribution. Student t-distribution has wider tails, which allows for better modeling of outliers, such
as stock market crashes [38]. This modification could potentially improve the model’s performance on
real-world data. In t-VAR, the model returns, yt, are defined as:

yt = µ+Φ(yt−1 − µ) + et et ∼ t(v, 0,Ψ) (11)

where yt = (yit)i=1,...,N is a vector of N asset returns at time t, µ is the vector of N means of asset
returns, Φ = (ϕij)i,j=1,...,n is a matrix of size N ×N that contains autoregression coefficients, et is a
noise that follows a Student-t distribution, et ∼ t(v,0,Ψ) where v is the degrees of freedom, 0 is the
location vector and Ψ = (ψi)i,j=1,...,J is the J × J scale matrix, where J is the number of variables.

In order to estimate the connections between the returns, one must estimate the values of the
coefficient matrix, Φ. Since the noise, et, follows a Student-t distribution, the estimation of Φ is
now more complicated. To that note, the authors use the Expectation Maximization (EM) algorithm.
To simplify the algorithm, the authors reformulate the distribution of noise, et, as a scale multivari-
ate normal and introduce an extra parameter τ t, et|τ t ∼ N(0, Ψ

τ t
), where τ t is a random variable

distributed as Gamma, τ t|et ∼ Γ(v+J2 ,
v+eT

t Σ−1et

2 ), with J being the number of variables of t-VAR
model. Furthermore, the N ×N matrix τ = (τ t)t=1,...,N . The formulation of et through τ simplifies
the minimization objective of the M-step.

The goal of the EM algorithm is to estimate both Φ and Ψ. The EM algorithm iterates between
the E-step and the M-step until the estimations converge. During the E-step, the expected value of
τ t is calculated as:

τ̂ t
(m)

= E[τmt |et] =
v + J

v + etTΨ−1et
=

v + J

v + yt − yt−1Φ
(m−1)Ψ−1yt − yt−1Φ

(m−1)
(12)

where Φ(m−1) is the estimated value of Φ at a previous iteration of the EM algorithm. Thus, we have

the vector τ̂ (m) = (τ̂ t)
(m)
t=1,...,N .

During the M-step, the authors estimate Φ. To ensure that the elements of this matrix can reach
zeros, the authors impose a Lasso regularization on the values of Φ during its estimation. The authors
use maximum likelihood and jointly estimate Φ and Σ by minimizing the negative log-likelihood.
Simultaneously modeling the coefficient matrix, Φ and the variance of the noise distribution, Σ can
potentially help the model distinguish between the connections of returns and the contemporaneous
correlations of their noise vector distributions. The minimization problem is given by:

(Φ̂
(m)

, Ψ̂
(m)

|τ̂ (m)) = argmin
Φ,Ψ

1

2N
tr[τ̂ (m)1/2(Y − Y Φ)Ψ−1(τ̂ (m)1/2(yj − Y Φ))T ] + λ

J∑
i,j=1

|ϕij | (13)

+ γ

J∑
i̸=j

|ψij |

− 1

2
log|Ψ|−1
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where the first row of the equation comes from the Lasso estimation of Φ, where Y = (yt)t=2,...,N

and X = (xt−1)t=1,...,N−1, N is the total number of timesteps, tr(·) is the trace function of the
matrix which is defined as the sum of its diagonal elements, and λ > 0 is the regularization parameter
for Lasso. The second row of the equation ensures that the estimation of Ψ is feasible even if the
number of parameters exceeds the time series length, and it also encourages some elements of Ψ̂ to
zero, with γ > 0 being the regularization parameter. The third row accounts for the contemporaneous

correlation of noise generation. To estimate (Φ̂
(m)

, Ψ̂
(m)

), in the M-step of the mth iteration the
authors use Gaussian Lasso algorithm, after which the EM algorithm iteratively proceeds to the next
iteration. The iterations repeat until the convergence of (Φ̂, Ψ̂).

In conclusion, since this study evaluates the performance of connectivity estimation models on VAR-
generated data (where the noise is sampled from a Gaussian distribution), the concern is whether this
model can still perform well (as it makes an assumption that the noise is generated from a Student-t
distribution). Since the t-distribution generalizes the Gaussian distribution, the t-VAR model should fit
VAR-generated data. Furthermore, this study investigates the performance of connectivity estimation
models on real-world data as well, where the noise distribution is not known. The Student-t noise
assumption of the t-VAR model could make it fit the real-world data better than its counterparts
(other connectivity estimation models used in this study). Additionally, the t-VAR model estimates
both the scale and the coefficient matrix, allowing for simultaneous estimation of the scale matrix
of the noise generation and the coefficient matrix. Finally, the t-VAR model stands out as the only
non-deep learning model considered in this study, making a comparison of its performance with that
of its deep learning counterparts both interesting and valuable.

3.2 Neural Relational Inference

3.2.1 Preliminary Concept: Graph Neural Network

A graph is a data structure made of vertices (data samples) that are connected by edges (relationships
between samples). Edges can be directed (one-sided connection) or undirected (mutual connection).
Graphs do not exist in Euclidean space, making them difficult to analyze. Examples include social
networks, physical systems, molecules, knowledge graphs, etc. This raises the question of whether it
is possible to model time series variables as graph nodes and the connections between them as graph
edges.

Graph neural networks (GNNs) are neural networks that are specialized for handling graph data
[39]. They can be applied to perform node-level, edge-level, or graph-level predictions [40, 41, 42].
Since our goal is to estimate connections (edges), we focus on edge-level predictions. GNNs use two
key operations: node-to-edge message passing and edge-to-node message passing.

Node-to-edge message passing, as shown in equation 14, calculates the edge embedding, hl
(i,j):

v→e: hl(i,j) = f le([h
l
i,h

l
j ,x(i,j)]) (14)

where hl(i,j) is the edge embedding vector between the nodes i and j at the layer l, f le is the lth neural

network edge layer, hli and hlj are the node embeddings at layer l, and x(i,j) is vector of initial the
initial edge features.

Edge-to-node message passing, as shown in equation 15, calculates the node embedding, hl+1
j :

e→v: hl+1
j = f lv([

∑
i∈Nj

hl(i,j),xj ]) (15)

where hl+1
j is the embedding vector of node j at layer l + 1, f lv is the lth neural network node layer,∑

i∈Nj
hl(i,j) is the sum of all Nj edge embeddings connecting to node j, and xj is the vector of initial

node features.
In the case of GNN, the edge and node functions, fe and fv, can be either fully connected layers

or any other layers. These functions are the building blocks for the neural relational inference model
(NRI), which uses node-to-edge and edge-to-node message-passing layers.
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3.2.2 Preliminary Concept: Variational Autoencoder

Autoencoders (AEs) are neural networks with two sub-networks: an encoder and a decoder [43]. The
encoder compresses the data samples into a lower-dimensional latent representation, while the decoder
reconstructs the data from its lower-dimensional representation back to its original dimension. The
goal is that the input to the encoder should be as close as possible to the output of the decoder,
ensuring that the latent space captures enough information to reconstruct the original data samples.
However, a drawback of vanilla AE is the lack of structure in the latent space, which can result in
similar data points being far apart, regardless of their semantic meaning.

Variational autoencoders (VAE) address this issue by enforcing a prior distribution on the latent
space, consequentially turning the latent representation into a latent distribution [44]. The loss function
used to achieve this is called evidence lower bound (ELBO) loss, and it is defined as the sum of the
negative log-likelihood and the Kullback-Leibler (KL) divergence:

L = −Eqϕ(z|x)[log pθ(x|z)] +KL[qϕ(z|x)||pθ(z)] (16)

where qϕ is the encoder network with parameters ϕ, pθ is the decoder network with parameters θ,
x is the input vector to the encoder, z is a lower-dimensional latent representation vector. The
negative log-likelihood term, −Eqϕ(z|x)[log pθ(x|z)], denotes the expectation (or average) taken over
the distribution qϕ(z|x). This can have a form of a mean-square error (MSE) loss or some variation of
MSE loss. The KL term, KL[qϕ(z|x)||pθ(z)], measures the similarity between the latent distribution
and its predefined prior.

The neural relational inference (NRI) model uses a VAE-based architecture where the latent space
is a distribution of graphs. This model is discussed in the next section.

3.2.3 Explanation of NRI

The Neural Relational Inference (NRI) model, introduced by Kipf et al., is a deep learning model
that learns interactions of variables by forecasting observational data [18]. It combines a variational
autoencoder (VAE) and a graph neural network (GNN), allowing it to infer interactions between time
series variables. In the context of financial data analysis, the NRI model can potentially capture the
interactions between variables and uncover more complex relationships (maybe even the ones generated
from the SV-AR model or found in real-world data).

The architecture itself is similar to the one from VAE, with some key differences. The input to the
NRI is the vector of returns at a previous timestep, yt−1, and its output is the vector of returns at a
current timestep yt. However, the latent space is a graph encoding the connections between returns. It
should also be noted that this graph does not contain self-edges, which means that the NRI is not able
to estimate self-connections (connection from the future timestep to the previous timestep of the same
variable). Nevertheless, for the latent space to represent graphs, the encoder and the decoder alternate
between node-to-edge and edge-to-node message-passing layers. The encoder consists of three layers,
as shown in equations 17 - 20. The equations show the encoder message passing for one return, yj .
The same set of equations is repeated for all returns, yj . The first encoder layer is an embedding layer
that transforms returns into their node embeddings:

yj →v: h1
j = femb(yj,t−1) (17)

where yj,t−1 is the return j at time t− 1, femb is a fully connected layer that projects the input into
the node embedding, h1j is the first node embedding of the return yj .

The second encoder layer is a node-to-edge message-passing layer:

v→e: h1
(i,j) = f1e ([h

1
i ,h

1
j ]) (18)

where h1
i and h1

j are node embeddings of returns i and j, f1e is the first node-to-edge message-passing
layer, and h(i,j)1 is the first edge embedding of returns i and j.

The third encoder layer is the edge-to-node message-passing layer:

e→v: h2
j = f1v (

∑
i̸=j

h1
(i,j)) (19)
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where
∑
i ̸=j h

1
(i,j) is the sum of embeddings of all of the edges that connect to node j, f1v is the first

edge-to-node message-passing layer, and h2
j is the second node embedding of the return j.

The fourth and final encoder layer is another node-to-edge message-passing layer:

v→e: h2
(i,j) = f2e ([h

2
i ,h

2
j ]) (20)

where h2
i and h2

j are node embeddings of returns i and j, f2e is the second node-to-edge message-passing
layer, and h(i,j)2 is the output edge embedding of returns i and j.

In a typical VAE, the encoder outputs the parameters of the distribution (for example, a mean and
a covariance matrix in the case of a Gaussian distribution), but this is not the case for NRI. The latent
variables, h2

i , are normalized probabilities for the discrete latent variables representing the interaction
graph. In order to convert these logits into a continuous approximation of the discrete distribution
over the latent variables was used. Continuous approximation is a method used to represent a discrete
random variable as a continuous random variable. In NRI, the authors used the Gumbel-Softmax trick
(type of continuous approximation), which is defined as:

qϕ(zij |x) = softmax(
h2
(i,j) + g

τ
) (21)

where h2
(i,j) are the logits outputted from the encoder, τ is a smoothness factor, g is a random sample

from Gumbel distribution, g ∼ Gumbel(0, 1), and zij are edges of a latent graph with the introduced
stochasticity that are used for the input to the decoder.

The task of the decoder is to predict the return of a current timestep, yt, while given the return at
a past timestep, yt−1, and the graph of interactions outputted from the encoder, Z = (zij)i,j=1,...,N .
Firstly, the returns are transformed to their edge embeddings with node-to-edge message passing layer:

v→e : h̃
3

(i,j) =
∑
k

zij f̃
k
e ([yi,yj ]) (22)

where zij is an edge representation from node i to node j, yi and yj are returns at timestep t− 1, f̃ke

is the decoder node-to-edge message passing layer, and h̃
3

(i,j) is an edge representation. Finally, since
the node representations are needed for the final predictions, the final edge-to-node message-passing
layer is defined as:

e→v : ŷj,t = f̃v(
∑
i ̸=j

h̃t(i,j)) (23)

where
∑
i ̸=j h̃

t
(i,j) is the sum of all embeddings of all of the edges that connect to node j, f̃v is the

decoder edge-to-node message-passing layer, and ŷj,t is the return of asset j at a current timestep.
In order to train NRI (so it can obtain correct estimations of yt and, ultimately, the correct

estimations of the connections), the ELBO loss function was used. ELBO loss function is defined as
the sum of the negative log-likelihood and the KL term. The negative log-likelihood term is defined
as:

− Eqϕ(z|x)[log pθ(x|z)] = −
J∑
j

T∑
t=2

||ŷt − yt||2 (24)

where ŷt is the estimated return at time t, yt is the true return, T is the number of timesteps, J is the
number of variables, and the result is an MSE loss.

The other part of the ELBO loss function, the KL term, is defined as:

KL[qϕ(z|x)||pθ(z)] =
∑
i ̸=j

H(qϕ(zij |x)) (25)

where qϕ(zij |x) is the output of encoder.
After calculating the ELBO loss, gradients are computed, and the weights of the model are updated

using the Adam optimizer [45]. When the ELBO loss converges, the latent graph represents the
estimated connections.

To recapitulate, the NRI model uses the combination of VAE and GNN to estimate connections
between returns in the form of a graph represented in the latent space. It uses deep layers that could
fit the complex data well (such as real-world stock data). On the other hand, it is more likely to overfit
on the simpler dynamics, such as the synthetic data generated from the VAR model. Unlike t-VAR,
NRI cannot estimate the noise distribution.

16



3.3 Neural Granger Causality Models

The Neural Granger Causality (NGC) model, introduced by Tank et al. [19], is a deep learning-based
approach for identifying Granger causality between time series. It is particularly effective at detecting
Granger causality in nonlinear and complex systems, where traditional methods, like the t-VAR model
(section 3.1), may fall short due to their linear assumptions. However, the NGC can use a variety of
deep neural networks to fit the data and estimate connectivity, and therefore, its performance heavily
depends on the choice of deep learning architecture.

The authors of NGC propose a component-based deep learning setting where there is one neural
network, gi, for every variable of the time series. Each network takes as input the returns at a current
timestep and predicts the value of the returns at a future timestep of one variable, as follows:

yt+1,i = gi(yt) + ηt,i (26)

where yt+1,i is the return at time t + 1 of variable i, gi is a neural network for that variable, yt =
(yt)t=1,...,N represents the vector of N returns, and ηt,i is the additive noise at time t for variable i.

In this study, we experimented with three existing NGC model architectures: component-wise
multilayer perceptron (cMLP) with one layer, component-wise multilayer perceptron (cMLP) with
two layers, and component-wise long short-term memory network (cLSTM). MLPs are particularly
well suited for modeling recursive time series data where the value of the future timestep explicitly
depends on the value of a previous time step, such as the synthetic data generated from the VAR
model. In order to test the effect of having multiple layers, we have experimented with both one-layer
and two-layer cMLPs. The one-layer and two-layer cMLPs are defined as:

1 layer cMLP: yt+1,i = W 1
i · yt + b1i + ηt,i (27)

2 layer cMLP: yt+1,i = W 2
i · ReLU(W 1

i · yt + b1i ) + b2i + ηt,i (28)

where Wi
1,Wi

2 are matrices of the first and second layer of variable i respectively, b1i , b
2
i are biases

of the first and second layer of variable i respectively, and ReLU is a rectified linear unit activation
function [46].

Another NGC deep learning architecture that we used is cLSTM. It is effective for modeling time
series data where the future value implicitly depends on its previous value, such as in the case where the
data is synthetically generated from the SV-AR model. To model this implicit dependency, NGC uses
LSTMs hidden states (ct, ht) [47]. LSTM is a type of recurrent neural network (RNN) architecture
designed to address the vanishing gradient problem encountered when training deep neural networks
[48]. This is a well-known problem faced by deep neural networks where the gradient becomes too
small during backpropagation, hindering the training process. By using a series of gates, LSTMs can
effectively capture long-term dependencies in the data. The LSTM cell is defined by the following set
of equations:

Input gate: it = σ(Wi[yt,ht−1] + bi) (29)

Forget gate: ft = σ(Wf [yt,ht−1] + bf ) (30)

Cell state update: gt = tanh(Wc[yt,ht−1] + bc) (31)

Cell state: Ct = ft ·Ct−1 + it · gt (32)

Output gate: yt+1 = σ(Wo[yt,ht−1] + bo) (33)

Hidden state: ht = yt+1 · tanh(Ct) (34)

where yt is the input vector of size N at time step t, ht−1 is the hidden state at the previous time step,
and σ is the sigmoid activation function. The input gate it determines how much new information
should be stored in the cell state, while the forget gate ft determines how much information should be
discarded from the cell state. The cell state updates gt is the new candidate information that could be
stored in the cell state, and the output gate ot determines how much of the cell state should be used
to compute the hidden state ht.

After fitting the data to either cMLP or cLSTM, the connectivity from a variable j to i is estimated
to be true if there still exists a non-zero input weight on input j in the neural network, gj . In order to
ensure that the input weights are able to reach zeros, the Lasso penalty is defined for each network as
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the following optimization process:

min
W

T∑
t=1

(yi,t − gi(yt−1))
2 + λ

J∑
j=1

|w1
i,j | (35)

where λ > 0 is the regularization term, and J is the number of variables.
To further ensure that exact zeros are reached, the authors have used proximal gradient descent

[49]. Proximal gradient descent first performs a gradient update on every layer of the neural network
and then a proximal update on the input layer. Proximal gradient descent update of W is defined as:

W (m+1),1 = proxγλω(W
(m),1) = ReLU(1− λγ

|W (m),1|
) ·W (m),1 (36)

where W is the J × H matrix of input weights where J is the number of variables, and H is the
number of hidden layers (or 1 in case of the last layer), γ > 0 is the learning rate, λ > 0 is the Lasso

regularization term and |W 1| =
√∑J

i

∑H
j |wij |2 is the Forbenius norm of the matrix of the input

layer. The proximal step further ensures that the weights reach zeros because, for γλ > |W (m),1|, the
weight matrix is updated to zero.

In summary, the NGC model incorporates the expressiveness of deep networks to predict the
connections between the returns. In this study, we conducted experiments using one-layer cMLP,
two-layer cMLP, and cLSTM models to determine whether multiple layers are necessary for cMLP
models and to explore the importance of implicit dependence in cLSTM models. However, unlike
the t-VAR model, the NGC model does not estimate the noise distribution parameters. In terms of
scalability, the NGC model can be easily scaled when using small deep network architectures. However,
for many variables, it may need a large number of simultaneously employed networks, increasing
computational demands. Nonetheless, the NGC model demonstrates the most efficient scaling when
compared to the other connectivity estimation models considered in this study. Finally, concerning
possible model biases, the combination of group Lasso and proximal gradient descent could make this
model overestimate sparse coefficient matrices.

3.4 Component-wise Neural Stochastic Volatility Model

Finally, as the last connectivity estimation model used in this research, we introduce a novel model,
the component-wise neural stochastic volatility model (cNSVM). It combines the approaches from the
neural stochastic volatility model (introduced by Luo et al. [20]) and the neural Granger causality
model (section 3.3, [19]). The former research was utilized as the authors introduce a novel deep
learning architecture more suited for the data with stochastic volatility, such as the stochastic volatility
model from section 2.2.2. The latter research was utilized to estimate connections between two time
series (section 3.3).

The deep learning architecture used from NSVM is compromised out of 2 deep learning networks:
the inference network and the generative network. The goal of the inference network is to model the
latent volatility process, qψ(Z|X) (where Z is the volatility process, and X is the input series), as the
factor of the Gaussian distribution with the following equations:

qΨ(Z|X) =

T∏
t=1

qΨ(zt|z<t,y1:T ) (37)

qΨ(Z|X) =

T∏
t=1

N(zt; µ̃
z
Ψ(z<t, x1:T ), Σ̃

z
Ψ(z<t,x1:T )) (38)

where qΨ is the volatility distribution of zt dependant on the previous volatility values, z<t, and the
returns, y1:T . µ̃

z
ψ is the mean and Σ̃zψ is the covariance matrix of the Gaussian distribution. Both of

these values are determined from both previous volatilities, z<t and datapoints, x1:T .
These parameters are the outputs of the inference network. The inference network is implemented as

a cascade of a bidirectional RNN [50], an autoregressive RNN, and one multilayer perception (MLPZI ),
and outputs the mean and the covariance matrix of the latent distribution, zt:

h̃→t = RNN→I (h̃→t−1, xt−1; Ψ) (39)
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h̃←t = RNN←I (h̃←t+1, xt+1; Ψ) (40)

h̃zt = RNNz
I (h̃

z
t−1, [zt−1, h̃

→
t , h̃

←
t ]; Ψ) (41)

µ̃zt , Σ̃
z
t =MLP zI (h̃

z
t ; Ψ) (42)

zt ∼ N(µ̃zt , Σ̃
z
t ; Ψ) (43)

where RNN→I is the first RNN that takes a datapoint at a past timestep, xt−1, as input and outputs

its hidden state, h̃→t . RNN←I takes as input a datapoint from a future timestep, xt+1, and outputs

its hidden state, h̃←t . Both of these hidden states are concatenated together with the value of the
volatility at a previous timestep, zt−1, and used as an input to the third RNN, RNNz

I . Finally, the

hidden state of the third RNN, h̃zt is used as an input to the MLP zI that outputs the mean, µ̃zt , and
the covariance matrix Σ̃zt of volatility at the current time step, zt. The sample of this distribution was
used as an input to the generative network.

The generative network models the distribution of returns as a Gaussian distribution dependent
on the latent volatility process:

pΦ(X|Z) =
T∏
t=1

pΦ(xt|xt−1, zt) (44)

pΦ(X|Z) =
T∏
t=1

N(xt;µ
x
Ψ(yt−1, zt),Σ

x
Ψ(xt−1, zt)) (45)

where pΦ is a Gaussian distribution of datapoints, yt, with parameters, µxΨ and ΣxΨ that are dependant
on the value of a previous datapoint, xt−1 and the current sample of the volatility process, zt. The
generative network is implemented as a cascade of an RNN and an MLP:

hxt = RNNx
G(h

x
t−1, [xt−1, zt]; Ψ) (46)

µ̃xt , Σ̃
x
t =MLP xG(h

x
t ; Ψ) (47)

xt ∼ N(µ̃xt , Σ̃
x
t ) (48)

where RNNx
G is an RNN that takes as input the datapoint at a previous timestep, xt−1 concatenated

with the volatility at a current timestep, zt. The hidden state of this RNN, hxt , is used as an input to
an MLP, MLP xG that outputs the mean, µ̃xt and the covariance matrix, Σ̃xt of the normally distributed
current datapoints, xt.

In summary, the architecture of NSVM consists of two stacked deep networks. The first one, the
inference network, estimates the distribution of the latent volatility process, qΨ(Z|X), and the second
one, the generative network, estimates the distribution of the datapoints, pΦ(X|Z).

Also, regarding the implementation details of this architecture, we have used the same approaches
as in the original paper. More specifically, we have also used dropout on each RNN module as a
regularization technique to prevent overfitting [51]. Furthermore, the latent space, Z, is 4 dimensional,
and the hidden states of an RNN, h, are 10 dimensional. Also, as for the specific architecture of RNN
cells, we have used GRU cells as they have fewer parameters than LSTMs but still show state-of-
the-art results [52]. Finally, as opposed to estimating the Gaussian mean (which is straightforward),
estimating the Gaussian covariance matrix requires postprocessing of the outputs to ensure that the
resulting output is positive and semi-definite, which is a constraint that any covariance matrix needs
to satisfy. To construct a positive semi-definite matrix from the aforementioned MLP outputs, we use
an MLP to output the values on the upper triangular matrix. Then, this upper triangular matrix is
summed with its own transpose to acquire a symmetric matrix, and the resulting symmetric matrix
is multiplied with its own transpose to acquire a positive semi-definite matrix, which we use as an
estimated covariance matrix. As for the loss function, we have used an ELBO loss, which is computed
as a sum of the MSE of the predicted datapoints and a KL divergence loss imposed on the latent
space.

The NSVM model provides a good theoretical ground for fitting the data with a latent stochastic
volatility process. Therefore, we combine the approach used in section 3.3 and introduce cNSVM.
cNSVM model consists of p NSVM architectures, where p is the number of variables of the multivariate
dataset. Every NSVM architecture takes as input all of the datapoints at time t, xt−1, but each of
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them outputs one variable. Also, each NSVM architecture has a fully-connected initial layer. This is
because this fully-connected layer needs to perform variable selection.

Furthermore, we use L2 regularization on every layer other than the first one. For the first one,
we use group Lasso regularization. We use Lasso since we want the values to be able to reach close to
0, and more specifically, a group adaptation of the Lasso regularization since the input to the NSVM
model is xt−1 and xt+1 and we want to group the weights depending on the variable.

In conclusion, we propose the cNSVM model, which combines the advantages of the neural stochas-
tic volatility model and neural Granger causality model (section 3.3), enabling to better fit the data
with stochastic volatility. Similar to other NGC models, the cNSVM model does not estimate any
parameters of the noise distribution. Finally, regarding scalability, it is expected to scale efficiently in
a manner similar to other NGC models, although it may require additional computational resources
due to its deeper layers.
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4 Results

In this section, we present the results of the experiments where we estimated the connectivity of finan-
cial data with different connectivity estimation models. The experiments have been performed on the
data generated from the vector autoregressive model (VAR, section 4.1), the stochastic volatility model
(SV-AR, section 4.2), and the historical stock price dataset (section 4.3). We estimated connectivity
with six different connectivity estimation models (presented in section 3): t-VAR, NRI, NGC with
1-layer cMLP, NGC with 2-layer cMLP, NGC with cLSTM, and NGC with cNSVM. For clarity, we
refer to these models using the following abbreviations: t-VAR, NRI, cMLP-1, cMLP-2, cLSTM, and
cNSVM.

Each model outputs a binary adjacency matrix representing connections between variables. In the
experiments with synthetically created data using VAR and SV-AR models, we measured accuracy
as the percentage of correctly estimated elements in the adjacency matrix. Since the historical stock
price dataset does not have ground-truth labels for the estimations, we compared the outputs of our
models with the results from three different models presented in Hecq et al. [37]. We calculated the
similarity between their models and ours as the percentage of connections estimated by our model that
were also estimated by models in Hecq et al [37].

Some models may produce varying results based on different seed values for the random number
generator, resulting in inconsistent performance. To ensure a more reliable comparison of performances
between different models, we trained and evaluated each model Nruns = 5 times with different seed
values. We then calculated the mean and standard deviation of testing accuracies to compare the
performance of different model evaluations. The standard deviation provides insight into the stability
of the model’s outputs. Therefore, this section aims to provide the results of the experiments to
determine the advantages and disadvantages of these models.

To that note, the results are presented in bar plots, with the mean accuracy (or mean similarity in
the case of the historical stock price dataset) and the standard deviation on the y-axis, and different
sub-experiments on the x-axis. Each bar plot is accompanied by a table displaying the details of
different sub-experiments.

Before stating the results of the experiments, it is important to note the values of the hyperpa-
rameters used during this research. For noise distribution in t-VAR, we used 15 degrees of freedom.
For NRI, we used 256 nodes in the encoder and decoder layers and a learning rate of 0.005. For the
NGC-based models, we used 100 nodes for its hidden layers, a learning rate of 0.005, a Lasso coefficient
of 0.002, a Ridge coefficient of 0.01, and 10 nodes for the recurrent layers.

4.1 Data Generated from VAR Model

In this section, we examined the performance of connectivity estimation models on the synthetic
datasets generated from the VAR model. We estimated connectivity with four models: t-VAR, NRI,
cMLP-1, and cMLP-2.

4.1.1 Preliminary: Experiment 1

Goal: To ensure a fair comparison in future experiments with synthetic data generated by the
VAR model (experiments 4.1.2 - 4.1.5), all models must be trained under the same conditions (this
experiment does not yield any insights related to the research questions posed in the Introduction,
section 1). Therefore, it is necessary to determine the dataset size needed to train these models. Other
than only determining the dataset size, they should also be tested under the same conditions. To that
note, it is also important to determine the percentage of the dataset used for testing these models. The
goal of Experiment 1 is to do just that; determine the dataset size (the number of timesteps created
by the VAR model) and the train/test ratio of that dataset that produces the most stable results.
These choices should yield a small standard deviation over different random seed initializations. A
small standard deviation ensures the reliability of model performance.

Setup: In this experiment, we first trained the connectivity estimation models on five different
dataset sizes: 500, 1000, 2000, 3000, and 4000. To ensure the model is also unbiased towards the
train/test split, we train the models with four different train/test ratios. Then we repeated this
process five times with different seed values for the random number generator. Thus, each model was
trained 100 times (5 dataset sizes, 4 train/test ratios, and 5 different seed values). They were trained
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on the VAR data generated from the coefficient matrix of Φ =

[
0.8 0.8
0 0.8

]
. Figure 5 shows the models’

performances based on different dataset sizes, and figure 6 shows the models’ performances based on
different train/test ratios.

Results: In figure 5, we see different models’ performances based on various dataset sizes. t-VAR,
NRI, and cMLP-1 demonstrate consistent performance for all five dataset sizes, as they all have a
standard deviation of 0. However, the standard deviation of cMLP-2 is 0 only when the dataset is
generated with 3000 or 4000 timesteps. Since having a smaller dataset is computationally more efficient,
we have used the dataset size of 3000 for conducting future experiments on the data generated by the
VAR model.
Furthermore, figure 6 shows the performances of different models with different train/test ratios: 0.6,
0.7, 0.8, and 0.9. We can see that, again, t-VAR, NRI, and c-MLP have the same performance
throughout different ratios and that cMLP-2 is the only model whose standard deviation varies. The
mean of its accuracy remains the same, but the standard deviation is the smallest for the ratios of
0.8 and 0.9. We chose the train/test ratio of 0.8 because having a smaller train set implies fewer
computations of trainable parameters. It also implies having a larger test set, which produces more
reliable results (as the models were tested on more timesteps). Therefore, we proceeded to the following
experiments with a dataset of 3000 timesteps and a train/test ratio of 0.8 in the next sections, where
we experimented with the VAR model.

Figure 5: Accuracy of different models with VAR-generated data and different training subset sizes in
table 3

Experiment ID Dataset size

1.1.1 500

1.1.2 1000

1.1.3 2000

1.1.4 3000

1.1.5 4000

Table 3: Dataset sizes for experiments from figure 5
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Figure 6: Performance of different models with VAR-generated data and different train/test ratios in
table 4

Experiment ID Train/test ratio

1.2.1 0.6

1.2.2 0.7

1.2.3 0.8

1.2.4 0.9

Table 4: Train/test ratios for experiments from figure 6

4.1.2 Experiment 2

Goal: In the second experiment, we tested the models’ performance on the data with two variables
and different strengths of connections. Specifically, we examined the performance of models depending
on different coefficient matrices, Φ, of the VAR model.

Setup: There are four possible connectivity patterns that the coefficient matrix Φ can represent:

1. No connection between variables; Φ =

[̸
= 0 = 0
= 0 ̸= 0

]

2. Connection from variable 1 to variable 2; Φ =

[̸
= 0 = 0
̸= 0 ̸= 0

]

3. Connection from variable 2 to variable 1; Φ =

[̸
= 0 ̸= 0
= 0 ̸= 0

]

4. Mutual connection between variables: Φ =

[̸
= 0 ̸= 0
̸= 0 ̸= 0

]
The values of the non-zero elements in the Φ matrix influence the strength of the connections. Larger
diagonal elements indicate stronger autocorrelation, meaning that the value of a variable at time t is
more dependent on its value at time t−1. Greater off-diagonal elements represent stronger connections
between variables. Thus, this experiment evaluates the models’ performance in all four scenarios with
varying diagonal element values in the Φ matrix.

Results: Figures 7 - 10 present the results of the second experiment. Figure 7 displays the models’
performance for different on-diagonal values when variables are not connected. In subexperiment 1.1.1,
we see that none of the models can perform well when there is no self-connection (connection from
the future timestep to the previous timestep of the same variable). In this case, the generated data is
purely Gaussian noise. NRI appears to perform best, but since it cannot estimate self-connections, its
80% mean accuracy should be interpreted as correctly identifying the absence of connections between
variables 80% of the time. In contrast, the other models, which do estimate self-connections, achieve
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better overall performance. For small diagonal values of Φ, these models struggle to estimate self-
connections, but their performance improves as the on-diagonal values increase.
Figures 8 and 9 show the models’ performance when variable 1 is connected to variable 2 and vice versa.
The results exhibit similar behavior to the previous subexperiment, with all models performing well
when the connection strength is sufficiently large. NRI can achieve 100% accuracy when the connection
strength is 0.4 or higher, outperforming cMLP-2 for smaller connection strengths. However, cMLP-2
still performs better than NRI for weaker connections, detecting them more accurately. t-VAR and
cMLP-1 achieve the best performance, largely because their formulations are very similar to the VAR
model used to generate the data. The difference between these models’ formulations is that t-VAR
uses a Student-t distribution instead of a Gaussian distribution for modeling noise, and cMLP-1 does
not capture the noise component of the VAR model.
Figure 10 presents the performance of the models when both variables are connected. Similar to the
other subexperiments in this section, the results indicate that the models can recognize connections
if the connection strength is large enough. NRI exhibits the poorest performance, while t-VAR and
cMLP-1 demonstrate the best performance among the four models. This outcome is consistent with the
findings of the other subexperiments, highlighting the importance of connection strength in determining
model performance.
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Figure 7: Performance of different models with VAR-generated data of two variables and coefficient
matrices with no connections between variables from table 5

Experiment ID Φ

2.1.1

[
0 0
0 0

]
2.1.2

[
0.1 0
0 0.1

]
2.1.3

[
0.2 0
0 0.2

]
2.1.4

[
0.3 0
0 0.3

]
2.1.5

[
0.4 0
0 0.4

]
2.1.6

[
0.5 0
0 0.5

]
2.1.7

[
0.6 0
0 0.6

]
2.1.8

[
0.7 0
0 0.7

]
2.1.9

[
0.8 0
0 0.8

]
2.1.10

[
0.9 0
0 0.9

]
Table 5: Values of coefficient matrix Φ for experiments from figure 7
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Figure 8: Performance of different models with VAR-generated data of two variables and coefficient
matrices with a connection from variable 1 to variable 2 from table 6

Experiment ID Φ

2.2.1

[
0.8 0
0 0.8

]
2.2.2

[
0.8 0.1
0 0.8

]
2.2.3

[
0.8 0.2
0 0.8

]
2.2.4

[
0.8 0.3
0 0.8

]
2.2.5

[
0.8 0.4
0 0.8

]
2.2.6

[
0.8 0.5
0 0.8

]
2.2.7

[
0.8 0.6
0 0.8

]
2.2.8

[
0.8 0.7
0 0.8

]
2.2.9

[
0.8 0.8
0 0.8

]
2.2.10

[
0.8 0.9
0 0.8

]
Table 6: Values of coefficient matrix Φ for experiments from figure 8
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Figure 9: Performance of different models with VAR-generated data of two variables and coefficient
matrices with a connection from variable 2 to variable 1 from table 7

Experiment ID Φ

2.3.1

[
0.8 0
0 0.8

]
2.3.2

[
0.8 0
0.1 0.8

]
2.3.3

[
0.8 0
0.2 0.8

]
2.3.4

[
0.8 0
0.3 0.8

]
2.3.5

[
0.8 0
0.4 0.8

]
2.3.6

[
0.8 0
0.5 0.8

]
2.3.7

[
0.8 0
0.6 0.8

]
2.3.8

[
0.8 0
0.7 0.8

]
2.3.9

[
0.8 0
0.8 0.8

]
2.3.10

[
0.8 0
0.9 0.8

]
Table 7: Values of coefficient matrix Φ for experiments from figure 9
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Figure 10: Performance of different models with VAR-generated data of two variables and coefficient
matrices with a mutual connection between variables from table 8

Experiment ID Φ

2.4.1

[
0.8 0.1
0.1 0.8

]
2.4.2

[
0.8 0.2
0.2 0.8

]
2.4.3

[
0.8 0.3
0.3 0.8

]
2.4.4

[
0.8 0.4
0.4 0.8

]
2.4.5

[
0.8 0.5
0.5 0.8

]
Table 8: Values of coefficient matrix Φ for experiments from figure 10

4.1.3 Experiment 3

Goal: The objective of the third experiment was to evaluate the models’ ability to differentiate
between contemporaneous correlation in the correlation terms of the noise covariance matrix, Ση, and
the connections encoded in the coefficient matrix, Φ, of the VAR model.

Setup: The experiment involved introducing a correlation between the noise generation processes
of the variables, then removing the correlation and repeating the experiments. The hypothesis was
that if a model is robust to contemporaneous correlation, its accuracy would not decrease when noise
correlation is introduced. We tested noise covariance values of 0.49, 0.09, and 0.04, with the covariance
being as high as possible while adhering to the positive semidefinite constraint (required for any
covariance matrix). Each setup was repeated five times with different seed values, resulting in 30
trains per model.

Results: Figure 11 displays the results of this experiment. From the figure, it is evident that the
NRI model performs poorly for this coefficient matrix and should not be considered when drawing
conclusions about this experiment. NRI’s performance remains similar to the setting without noise
correlation. In contrast, t-VAR demonstrates complete resistance to the added correlation in the noise
distribution, likely because it models the noise distribution simultaneously while estimating the coef-
ficient matrix. However, NGC-based models, cMLP-1 and cMLP-2, also perform well, although they
are not entirely resilient to larger noise. Their performance is somewhat worse in examples with larger
noise compared to those with smaller noise. Nonetheless, we can observe only a slight increase in
accuracies from subexperiment 1 to subexperiment 2, as well as from 3 to 4 and 5 to 6, because subex-
periments 2, 4, and 6 have no noise correlation. This indicates that these models are almost entirely
resistant to the contemporaneous correlation in the noise generation matrix but not to the overall
larger noise. Therefore, it can be concluded that the models can distinguish between contemporaneous
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correlation in the correlation terms of the covariance matrix of the noise generation process, Ση, and
the connectivity encoded in the coefficient matrix, Φ, of the VAR model. This is because none of
them exhibit a significant decline in performance when the contemporaneous correlation in the noise
distribution is introduced.

Figure 11: Performance of different models with VAR-generated data and different noise covariances
from table 9

Experiment ID Φ Σ

3.1

[
0.8 0
0 0.8

] [
0.5 0.4
0.4 0.5

]
3.2

[
0.8 0
0 0.8

] [
0.5 0
0 0.5

]
3.3

[
0.8 0
0 0.8

] [
0.1 0.09
0.09 0.1

]
3.4

[
0.8 0
0 0.8

] [
0.1 0
0 0.1

]
3.5

[
0.8 0
0 0.8

] [
0.05 0.04
0.04 0.05

]
3.6

[
0.8 0
0 0.8

] [
0.05 0
0 0.05

]
Table 9: Values of different noise co-variances for experiments from figure 11

4.1.4 Experiment 4

Goal: Experiment 4 aimed to evaluate the connectivity estimation models’ performance for high-
dimensional data in terms of both estimation accuracy and training time. This experiment compares
the models based on their accuracy of estimation as well as their training time. In high-dimensional
datasets, the performance of the models might stay the same, but if the model takes too long to train,
then it cannot be used on real-world high-dimensional data (such as portfolios containing numerous
stocks).

Setup: We tested these models on 2 to 8 variables and repeated the process 5 times with different
seed values, resulting in 35 runs per model in total. As we increased the number of variables, we
randomly initialized the positions of non-zero elements in matrix Φ. The sparsity of all coefficient
matrices was 50%. This means that 50% of the variables are connected, and 50% of the variables are
not connected. Furthermore, all of the non-zero values in Φ are the same and as large as possible,
subject to the stationarity constraint (necessary for all time series in this study).

Results: Figure 12 reveals that the models’ performance does not change based on the number
of variables. However, table 10 highlights a significant difference in models’ training times. NRI takes
the longest time to train. This is expected because, as discussed in section 3.2, for every new variable
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in the dataset, a new node needs to be added to the fully connected graph, which severely increases
the complexity of the model. cMLP-1 and cMLP-2 tend to scale the best. t-VAR scales poorly, as
its performance is almost 22 times slower when going from 2 to 8 variables. This is expected because
the complexity of NGC-based models increases linearly when new variables are added. On the other
hand, t-VAR is an EM-based algorithm, and they are known to scale poorly because of the complex
calculations performed during the E-step and the M-step (section 3.1). Even though NRI has the
longest runtime, the poor scalability of t-VAR’s runtime suggests that adding many more variables
would cause t-VAR’s runtime duration to surpass the one of NRI, making it challenging to use in
real-life scenarios with numerous variables.

Figure 12: Performance of different models with VAR-generated data and different number of variables
from table 10

Experiment ID Number of variables Average time per run per model (minutes)

NRI NGC-0 NGC t-VAR

4.1 2 3.617 2.15 3.32 0.48

4.2 3 5.24 2.95 5.75 0.93

4.3 4 6.81 3.29 7.13 1.62

4.4 5 8.165 4.95 9.51 3.11

4.5 6 11.53 5.8 11.19 3.88

4.6 7 14.96 7.17 12.15 6.97

4.7 8 18.18 8.39 13.42 10.48

Table 10: Values of different numbers of variables and average time duration for experiments from
figure 12

4.1.5 Experiment 5

Goal: In the fifth experiment, we wanted to test if estimating connections is easier than estimating
non-connections. That is, we wanted to check for the existence of a possible bias toward estimating
connections (or non-connections). This is especially important to check for the NGC-based models,
such as cMLP-1 and cMLP-2, as they initially start the training with all connections present and
gradually remove connections as training progresses.

Setup: We generated a high-dimensional dataset with 8 variables and differently sparsed coefficient
matrices, Φ, of the VAR model. We tested matrices with 1 to 8 connections per variable, maintaining
the same number of connections per variable for each subexperiment. The number of connections per
variable is the same per one subexperiment. If the sparsity is 0.25, it implies that every variable is
connected to 2 other variables (including itself). This results in 8 different trains per model, with 5
repetitions for random seed, consequentially resulting in a total of 40 trains per model.

Results: Figure 13 shows the results of this experiment. NRI’s performance decreases as the
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sparsity increases. With fewer connections between variables, NRI’s estimations worsen. This further
shows that the NRI model is biased towards estimating connections compared to estimating non-
connections. However, other models do not exhibit the same behavior. cMLP-1, cMLP-2, and t-VAR
achieve excellent performance (around 100%) no matter the sparsity of VAR’s coefficient matrix, Φ.
This suggests that NRI struggles with increased numbers of variables, predominantly estimating no
connections between them. In contrast, the other models do not suffer from this issue. Their per-
formance remains consistent as more connections are introduced, indicating no bias towards either
estimating connections or non-connections.

Figure 13: Performance of different models with VAR-generated data with 8 variables and differently
sparsed coefficient matrices from table 11

Experiment ID Percentage of connections between variables (%)

5.1 12.5

5.2 25

5.3 37.5

5.4 50

5.5 62.5

5.6 75

5.7 87.5

5.8 100

Table 11: Values of differently sparsed coefficient matrices with 8 variables for experiments from figure
13

4.2 Data Generated from Stochastic Volatility Model

After evaluating connectivity estimation models on the data generated from the VAR model, we
proceeded to test them on the data generated from the SV-AR model. In this set of experiments, we
only used two models: cLSTM and the novel model we have introduced, cNSVM.

Before running the experiments on the synthetic datasets generated by the SV-AR model, we first
wanted to justify why we did not use the connectivity estimation models presented in the previous
section. As shown in figure 14, these models perform poorly on the few samples of SV-AR-generated
data. All models have an accuracy of 50% with a high standard deviation. An accuracy of 50%
is the lowest possible and indicates that the models have failed to fit the data, leading them to
randomly determine connectivities. Therefore, for the synthetic data generated by the SV-AR model,
we only experimented with cLSTM and cNSVM connectivity estimation models as they provide a
more robust theoretical foundation for fitting SV-AR-generated data. The experimental setup of this
section corresponds to the experimental setup with the data generated by the VAR model in the

31



previous section (section 4.1).

Figure 14: Performance of different models with SV-AR-generated data with 2 variables from coefficient
matrices from table 12

Experiment ID Φ

6.1

[
0.8 0
0 0.8

]
6.2

[
0.8 0.4
0 0.8

]
6.3

[
0.8 0
0.4 0.8

]
6.4

[
0.8 0.1
0.1 0.8

]
Table 12: Values of coefficient matrices with 2 variables for experiments from figure 14

4.2.1 Preliminary: Experiment 7

Goal: The goal of this experiment was to determine the dataset size and train/test ratio required
to run these models (it does not yield any insights related to the research questions posed in the
Introduction, section 1). To compare the models fairly, we trained them under the same conditions,
with the same dataset size and the same train/test ratio. We wanted to use the smallest dataset size
for which the models give stable results (the standard deviation is the smallest), as increasing the
size of the dataset increases the computational time. Additionally, we wanted the smallest possible
train/test ratio that yields stable results (the smallest standard deviation) because having a smaller
train/test ratio means that the model needs fewer data points to fit the parameters (which results in
less compute time), and more data for model evaluation.

Setup: To investigate this, we employed the same experimental setup as in experiment 1 (section
4.1.1). We trained both models using five different dataset sizes: 500, 1000, 2000, 3000, and 4000.
When training with a specific dataset size, we repeated the experiment with four train/test ratios:
0.6, 0.7, 0.8, and 0.9. To account for the stability of the results, we repeated this process 5 times with
five different seeds for the random number generators. In total, each model was trained 100 times.
Finally, we averaged the results based on the dataset size and, then, based on the train/test ratio to
get unbiased results. They were trained on the SV-AR data generated from the coefficient matrix

Φ =

[
0.8 0.8
0 0.8

]
and the noise covariance matrix Ση =

[
0.01 0
0 0.01

]
.

Results: In figure 15, we can see different models’ performances based on different dataset sizes.
cLSTM consistently achieves the same result regardless of the dataset, with an accuracy of 75%. On
the other hand, cNSVM’s performance generally declines as the size of the dataset increases, along
with its standard deviation. This indicates a more stable training process. Furthermore, cNSVM
shows the same performance for the datasets of 3000 and 4000 timesteps. Therefore, we have, again,
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determined that the size of 3000 would be sufficient for training these models, and we proceeded with
further experimentation with the aforementioned dataset size.
Figure 16 shows models’ performance based on different train/test ratios. Again, cLSTM achieves a
consistent accuracy of around 75% regardless of the train/test ratio. However, cNSVM attains the
highest, most stable accuracy for the last two train test ratios. Therefore, we selected the train/test
ratio of 0.8 for future experiments.

Figure 15: Accuracy of different models with SV-AR-generated data and different training subset sizes
in table 13

Experiment ID Dataset size

7.1.1 500

7.1.2 1000

7.1.3 2000

7.1.4 3000

7.1.5 4000

Table 13: Dataset sizes for experiments from figure 15
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Figure 16: Performance of different models with SV-AR-generated data and different train/test ratios
in table 14

Experiment ID Train/test ratio

7.2.1 0.6

7.2.2 0.7

7.2.3 0.8

7.2.4 0.9

Table 14: Train/test ratios for experiments from figure 16

4.2.2 Experiment 8

Goal: In experiment 8, we assessed these models on the data with two variables and varying
connection strengths between the volatilities of the SV-AR model. This was done to investigate how
well do models perform based on different coefficient matrices of the SV-AR model.

Setup: The experimental setup of experiment 8 corresponds to the experimental setup of experi-
ment 8 (section 4.1.2). We extensively tested the models for numerous combinations of the coefficient
matrix, Φ of the SV-AR model:

1. No connection between variables; Φ =

[̸
= 0 = 0
= 0 ̸= 0

]

2. Connection from variable 1 to variable 2; Φ =

[̸
= 0 = 0
̸= 0 ̸= 0

]

3. Connection from variable 2 to variable 1; Φ =

[̸
= 0 ̸= 0
= 0 ̸= 0

]

4. Mutual connection between variables: Φ =

[̸
= 0 ̸= 0
̸= 0 ̸= 0

]
Results: In figure 17, we see models’ performance for different on-diagonal values when there is no
connectivity between the variables. Both models perform poorly in the case when the data is generated
by random noise (subexperiment 8.1.1). Instead of estimating no connectivity in the coefficient matrix,
both models estimate full connectivity. This, again, shows how the models perform poorly on random
data. Furthermore, we see that cLSTM gives an accuracy of 50% for all other variations. This indicates
that cLSTM cannot perform well when there is no connectivity between variables (as it estimates full
connectivity between variables). However, cNSVM performs with an accuracy of 50% throughout this
entire subexperiment, 8.1. Its results have a high standard deviation. This indicates that cNSVM is
also not able to estimate the data when there is no connection between variables. To conclude, neither
cLSTM nor cNSVM can accurately recognize when there is no connection between the variables.
In figures 18 and 19, we see the models’ performance when there is only one connection between
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variables. Figure 18 shows the performance of the models when there is a connection from variable
1 to variable 2, and figure 19 shows the performance of the models when there is a connection from
variable 2 to variable 1. It is clear that the models cannot achieve good performance (that is close to
100%). Both models result in an accuracy close to 75%. Given that there are only four connections,
this is a poor score. When the off-diagonal value of the coefficient matrix is 0.2 (or higher), the models
can estimate the third connection, but when the off-diagonal value of the coefficient matrix is 0.1, the
models do not recognize it as a connection. Overall, as the standard deviation of cLSTM is always 0,
it shows that cLSTM does not produce any results with 100%, unlike cNSVM.
Lastly, in figure 20, we see the models’ performance when there is a mutual connection between the
variables. In this scenario, cLSTM performs better than cNSVM. When the values on the off-diagonal
element of the coefficient matrix are larger than 0.1, it performs with a consistent 100% accuracy. On
the other hand, the mean accuracy of cNSVM is around 80% and is more unstable. For the case of
low value on the off-diagonal element of the coefficient matrix, neither of the models performs well.
In summary, this experiment shows that the connectivity estimation models cannot perform well on
the SV-AR-generated data. Although they show signs of learning, overall, they cannot perform as well
as t-VAR, cMLP-1, cMLP-2, and NRI did on VAR-generated data. Furthermore, even though there
have been numerous runs where cNSVM performed better than cLSTM, overall, it shows a slightly
worse performance than cLSTM. On top of that, the overall performance of cLSTM throughout this
experiment suggests that it might be biased toward estimating connections instead of non-connections.
In experiment 8.1, where there are 2 out of 4 connections between variables, it has an overall accuracy
of around 50%; in experiments 8.2 and 8.3, where there are 3 out of 4 connections between variables,
it has an overall accuracy of around 75%, and in experiment 8.4 where there are 4 out of 4 connections
it shows accuracy on two examples of 100%. However, it is also certain that cLSTM does not always
estimate complete connectivity, as there are examples to contradict this, such as 8.1.1, 8.2.1, 8.2.2,
8.3.1, 8.3.2, 8.4.1, and 8.4.2.
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Figure 17: Performance of different models with SV-AR-generated data of two variables and coefficient
matrices with no connections between variables from table 15

Experiment ID Φ

8.1.1

[
0 0
0 0

]
8.1.2

[
0.1 0
0 0.1

]
8.1.3

[
0.2 0
0 0.2

]
8.1.4

[
0.3 0
0 0.3

]
8.1.5

[
0.4 0
0 0.4

]
8.1.6

[
0.5 0
0 0.5

]
8.1.7

[
0.6 0
0 0.6

]
8.1.8

[
0.7 0
0 0.7

]
8.1.9

[
0.8 0
0 0.8

]
8.1.10

[
0.9 0
0 0.9

]
Table 15: Values of coefficient matrix Φ for experiments from figure 17
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Figure 18: Performance of different models with SV-AR-generated data of two variables and coefficient
matrices with a connection from variable 1 to variable 2 from table 16

Experiment ID Φ

8.2.1

[
0.8 0
0 0.8

]
8.2.2

[
0.8 0.1
0 0.8

]
8.2.3

[
0.8 0.2
0 0.8

]
8.2.4

[
0.8 0.3
0 0.8

]
8.2.5

[
0.8 0.4
0 0.8

]
8.2.6

[
0.8 0.5
0 0.8

]
8.2.7

[
0.8 0.6
0 0.8

]
8.2.8

[
0.8 0.7
0 0.8

]
8.2.9

[
0.8 0.8
0 0.8

]
8.2.10

[
0.8 0.9
0 0.8

]
Table 16: Values of coefficient matrix Φ for experiments from figure 18
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Figure 19: Performance of different models with SV-AR-generated data of two variables and coefficient
matrices with a connection from variable 2 to variable 1 from table 17

Experiment ID Φ

8.3.1

[
0.8 0
0 0.8

]
8.3.2

[
0.8 0
0.1 0.8

]
8.3.3

[
0.8 0
0.2 0.8

]
8.3.4

[
0.8 0
0.3 0.8

]
8.3.5

[
0.8 0
0.4 0.8

]
8.3.6

[
0.8 0
0.5 0.8

]
8.3.7

[
0.8 0
0.6 0.8

]
8.3.8

[
0.8 0
0.7 0.8

]
8.3.9

[
0.8 0
0.8 0.8

]
8.3.10

[
0.8 0
0.9 0.8

]
Table 17: Values of coefficient matrix Φ for experiments from figure 19
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Figure 20: Performance of different models with SV-AR-generated data of two variables and coefficient
matrices with a mutual connection between variables from table 18

Experiment ID Φ

8.4.1

[
0.8 0.1
0.1 0.8

]
8.4.2

[
0.8 0.2
0.2 0.8

]
8.4.3

[
0.8 0.3
0.3 0.8

]
8.4.4

[
0.8 0.4
0.4 0.8

]
8.4.5

[
0.8 0.5
0.5 0.8

]
Table 18: Values of coefficient matrix Φ for experiments from figure 20

4.2.3 Experiment 9

Goal: The goal of experiment 9 was to test if the models can distinguish between contemporaneous
correlation in the correlation terms of the covariance matrix of the volatility’s noise generation process
Ση, and the connection encoded in the coefficient matrix, Φ, of SV-AR model. Even though there are
two noise sources, we only experimented with the additive noise of the volatility process, η (section
2.2.2).

Setup: The setup of the experiment is the same as in experiment 3 (section 4.1.3). There is
no connection between the variables encoded on the coefficient matrix, Φ. The variables only have
a strong self-connection (connection from the future timestep to the previous timestep of the same

variable), which results in Φ taking the following form Φ =

[
0.8 0
0 0.8

]
. We first ran the models three

times where the variances on the covariance matrix, Ση, have the following values: 0.5, 0.1, and 0.05,
and with the covariances being 0.4, 0.09 and 0.04. We kept the covariances as high as possible while
still satisfying the positive definite constraint of the covariance matrix of the noise generation process.
This corresponds to the subexperiments: 9.1, 9.3, and 9.5, respectively. We then repeated these
experiments, removing the covariance of the noise generation. This corresponds to subexperiments:
9.2, 9.4, and 9.6, respectively. We repeated this process 5 times with different seed values of the noise
generation process to make a fair comparison. In total, this resulted in 30 runs for each of these two
models.

Results: Figure 21 shows the results of this experiment. Initially, we can see that cLSTM does
not perform well, with an overall performance of around 50%. The performance of cLSTM in this
experiment should not be considered to draw any conclusions as cLSTM cannot recognize that there is
no connection. It was also not able to do so even with a smaller noise in experiment 8 (section 4.2.2).
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Furthermore, in the case of cNSVM, we can see a slight improvement when the contemporaneous
correlation is removed. However, it still achieves a low overall score, and its accuracies have a high
standard deviation. But, with smaller noise, cNSVM’s performance increases. This shows that the
cNSVM’s performance is susceptible to the magnitude of the introduced noise of the volatility process.

Figure 21: Performance of different models with SV-AR-generated data and different noise covariance
matrices from table 19

Experiment ID Φ Σ

9.1

[
0.8 0
0 0.8

] [
0.5 0.4
0.4 0.5

]
9.2

[
0.8 0
0 0.8

] [
0.5 0
0 0.5

]
9.3

[
0.8 0
0 0.8

] [
0.1 0.09
0.09 0.1

]
9.4

[
0.8 0
0 0.8

] [
0.1 0
0 0.1

]
9.5

[
0.8 0
0 0.8

] [
0.05 0.04
0.04 0.05

]
9.6

[
0.8 0
0 0.8

] [
0.05 0
0 0.05

]
Table 19: Values of different noise covariance matrices for experiments from figure 21

4.2.4 Experiment 10

Goal: In experiment 10, we wanted to test the performance of these models in the setting with
high-dimensional data. Similar to experiment 4 (section 4.1.4), the goal is not only to compare the
models’ accuracies but also their training time. This is particularly important for the data generated
by the SV-AR model, as there already exist methods that can fit the data of the stochastic volatility
well, but they rely on sampling approaches (which are too slow).

Setup: The setup of this experiment corresponds to the setup of experiment 4 (section 4.1.4).
We used the data of dimensions from 2 to 8 and repeated the experiment 5 times with different seed
values of the random number generator. As a result, each of the two models was trained 35 times.
Also, we randomly initialized the positions of non-zero elements in the matrix Φ while maintaining
the same sparsity of the coefficient matrix. This prevented the models from achieving higher accuracy
simply because they could estimate connections more easily than non-connections. Regardless of their
dimensions, the coefficient matrices had a sparsity of 50%. Additionally, all non-zero values in Φ were
identical and maximized within stationarity constraints and a 50% fill rate. Lastly, the coefficient
matrix was filled with zeros at random positions in each run.

Results: Table 20 shows that, time-wise, cLSTM is more scalable than cNSVM, as it takes less
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time to run in higher dimensions. We can also observe that, generally, these models take considerably
longer time than the models from experiment 4 (section 4.1.4). However, figure 22 shows that cNSVM
performs better. Although, as in the previous experiments, cNSVM has a large standard deviation.
cLSTM maintains an overall stable performance regardless of the number of dimensions in the data
(around 50% mean accuracy), indicating that it is not able to estimate the connections.

Figure 22: Performance of different models with SV-AR-generated data and different number of vari-
ables from table 20

Experiment ID Number of variables Average time per run per model (minutes)

cLSTM cNSVM

10.1 2 15.909 21.92

10.2 3 21.43 32.06

10.3 4 31.41 42.14

10.4 5 38.3 52.78

10.5 6 44.69 63.53

10.6 7 51.04 74.14

10.7 8 59.45 85.16

Table 20: Values of different numbers of variables and average time duration for experiments from
figure 22

4.2.5 Experiment 11

Goal: In the final experiment with SV-AR data, we wanted to test if models are biased towards
estimating connections rather than non-connections or vice-versa. Since both cNSVM and cLSTM
are NGC-based models, they begin the training process with all connections present, and during the
training, they gradually remove unnecessary connections to better fit the data.

Setup: The experimental setup of this experiment follows the one from experiment 5 (section
4.1.5). To that attempt, a dataset with 8 variables and differently sparsed coefficient matrices of the
volatility process, Φ, was generated. This means that the initial subexperiment, 11.1, has a dataset
with 8 connections between 8 variables, and the final subexperiment, 11.8, has a dataset with 64
connections between 8 variables. Each subexperiment was re-run 5 times to account for different seed
values for random number generators, resulting in a total of 35 runs per model.

Results: Figure 23 shows the results of the experiments. From the figure, we can see that cNSVM
performs very poorly and achieves a score of around 50% every time. This indicates that the model’s
estimation is mostly random. However, the performance of cLSTM is highly dependent on the sparsity
of the coefficient matrix. cLSTM estimates poorly sparser connectivities between variables. This
further proves the statement made in experiment 8 (section 4.2.2): cLSTM is biased towards estimating
connections rather than estimating non-connections.
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Figure 23: Performance of different models with SV-AR-generated data with 8 variables and differently
sparsed coefficient matrices from table 21

Experiment ID Percentage of connections between variables (%)

11.1 12.5

11.2 25

11.3 37.5

11.4 50

11.5 62.5

11.6 75

11.7 87.5

11.8 100

Table 21: Values of differently sparsed coefficient matrices with 8 variables for experiments from figure
23

4.3 Dataset of Historic Stock Prices

After testing these models on synthetically generated data, all six connectivity estimation models were
tested on a real-world dataset of 30 stocks. The data was preprocessed in the same manner as in Hecq
et al. [37]. These models’ results were compared with those reported by the authors of the paper. The
paper used three different models, and we compared our results with all three of them. Specifically,
we evaluated the performance of our models against the novel PDS-LM HVAR method introduced by
the authors (which employs stock selection before performing Granger causality tests). Additionally,
since the authors of the paper compared the performance of their model with the other two models, Bi-
HVAR and Full-HVAR, we have also compared the performance of these models with the ones we have
used in our study. Bi-HVAR tests for causality between each pair of variables separately, making the
results not as accurate as it only takes into account two stocks at a time. Full-HVAR estimates high-
dimensional VAR models with all stocks simultaneously, which makes it computationally demanding
and susceptible to overfitting.

We re-ran the training 5 times with different seed values of the random number generators. To
compare the results, we calculated the similarity, defined as the percentage of the same estimations of
connections between the models of Hecq et al. [37] and the models we used in our study. As in their
research, we performed the experiments on both full datasets of prices and on the smaller dataset of
prices in 2016-2017.

4.3.1 Experiment 12

Goal and setup: In experiment 12, we compared the performance of our models with the models
form Hecq et al. [37] on the full dataset of the historical stock prices. This dataset contains 2236
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trading days between March 2008 and February 2017.
Results: From figure 24, we can see that (for subexperiment 12.1) t-VAR and NRI are the least

similar to the results of the BiHVAR model. The NGC-based models achieve the same performance
as the BiHVAR model that the authors used. However, the authors have used the BiHVAR model to
show that it does not perform well in a high dimensional setting as it estimates that all stocks are fully
connected, which is not correct.
For the PDS-LM HVAR model (subexperiment 12.2) and the FullHVAR model (subexperiment 12.3),
t-VAR and NRI achieve the most similar results to the ones from the authors of the paper. Both
t-VAR and NRI are similar in 70% of the connections that were also estimated by PDS-LM HVAR
and FullHVAR models. The performance of NRI is more unstable than the performance of t-VAR.
Suppose the models from Hecq et al. [37] reflect the true connections between the stocks. In that case,
this could indicate that Student’s t-distribution, used in the t-VAR model, can model the unobserved
processes of the real-world data.

Figure 24: Comparison of models’ results with models from Hecq et al. [37] (table 22)

Experiment ID Model

12.1 BiHVAR

12.2 PDS-LM HVAR

12.3 FullHVAR

Table 22: Models from Hecq et al. [37] with comparison of results from figure 24

4.3.2 Experiment 13

Goal and setup: In experiment 13, we tested our models on a shorter market period of years
2016-2017 and compared the results with those of Hecq et al. [37]. The authors trained their models
on a shorter period as the relations are more likely to stay stable over time since this period contains
fewer outliers. It avoids two major events: the financial crisis of 2008 and the U.S. debt-ceiling crisis
of 2011. This dataset contains 284 trading days.

Results: From figure 25, we can see that, once again, t-VAR and NRI achieve the most similar
performance to the models used in Hecq et al [37]. They have a similarity score of around 80%, which is
measured as the percentage of the connections that are estimated both by our models and the models
from the paper. This score is higher than in the previous period in experiment 12 (section 4.3.1).
Also, the standard deviation of NRI is now much smaller than in the full-time period in experiment
12 (section 4.3.1). NRI and t-VAR estimate connections the most similar to PDS-LM HVAR, which is
the novel model introduced by the authors of the paper. As for the rest of the models, they perform
poorly when compared with any of the three methods from Hecq et al [37].
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Figure 25: Comparison of models’ results with models from Hecq et al. [37] (table 23)

Experiment ID Model

13.1 BiHVAR

13.2 PDS-LM HVAR

13.3 FullHVAR

Table 23: Models from Hecq et al. [37] with comparison of results from figure 25
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5 Discussion

Our study investigated the performance of various deep learning models for estimating connections
on both synthetic and real-world data of historic stock prices (section 2.3). The synthetic data was
generated by VAR (section 2.2.1) and SV-AR (section 2.2.2). Connectivity estimation models used
in this study were: t-VAR (section 3.1), NRI (section 3.2), cMLP-1 (section 3.3), cMLP-2 (section
3.3), cLSTM (section 3.3), and cNSVM (section 3.4). In this section we have answered the research
questions stated at the beginning of this study (section 1).

Research Question 1: How do deep learning models for connectivity estimation perform on data
with different strengths of connections, considering both the VAR and SV-AR generated data?

Answer: We found that when the data is generated from standard models with linear connec-
tions (such as VAR), simpler models (e.g., t-VAR and cMLP-1) perform marginally better than more
complex neural models (e.g., cMLP-2 and NRI). This may be because their formulation matches the
formulation of the VAR model used to generate the data. Despite this, all models performed well
on the VAR-generated synthetic data. Since cMLP-2 performs better than cMLP-1, we can conclude
that adding more layers to the network makes it perform worse on the simple VAR-generated data.
For more complex SV-AR-generated data, none of these models (cMLP-1, cMLP-2, t-VAR, NRI) were
successful in estimating connections of SV-AR-generated data. To address this, we tested a cLSTM
model and introduced a new architecture called cNSVM, which combined the NGC model and the
Neural stochastic volatility model. Although cNSVM’s performance was not ideal, it showed more
potential than cLSTM, with an accuracy of over 50%.

Research Question 2: How robust are connectivity estimation models to noise? Additionally,
can they effectively distinguish between contemporaneous correlation in the correlation terms of the co-
variance matrix of the noise generation process and the connections encoded in the coefficient matrices
of both VAR and SV-AR models?

Answer: For data produced by VAR model, NRI and t-VAR showed robustness to noise as they
were not affected by increased noise magnitudes (unlike cMLP-1 and cMLP-2). When the data con-
tained contemporaneous correlation, the performances of cMLP-1, cMLP-2, and NRI were slightly
affected, while t-VAR remained unaffected. This is possibly due to t-VAR simultaneously estimating
both the coefficient matrix of the VAR model and the noise distribution of the data. Regarding the
SV-AR-generated data, cNSVM was influenced by the noise magnitude in SV-AR-generated data, and
it performed better when the noise levels were lower. It was also affected by the contemporaneous
correlation in the noise generation process. cLSTM was not able to perform well on larger noise mag-
nitudes as it achieves an accuracy of 50%.

Research Question 3: How does data dimensionality affect the performance and training time
of connectivity estimation models?

Answer: For the case of VAR-generated data, t-VAR, cMLP-1, cMLP-2, and NRI performed well
when applied to higher-dimensional VAR-generated data. However, t-VAR and NRI were found to
be the least scalable in terms of computational time, as it was heavily impacted by increased data
dimensionality. In the case of t-VAR, this is because it uses the EM algorithm, which does not scale
well, and in the case of NRI, it is because every time a new variable is added, the number of compu-
tations quadratically increases. With respect to the SV-AR-produced data, cNSVM maintained its
performance with high-dimensional data, but its computation time was affected. The performance of
cLSTM did not change with high-dimensional data. Additionally, it proved to be more computation-
ally efficient than cNSVM.

Research Question 4: Are the connectivity estimation models biased towards estimating con-
nections or non-connections?

Answer: When the data is generated by the VAR model, NRI showed a bias toward estimating
connections (rather than non-connections) and performed better when the data had more connections.
Other models (t-VAR, cMLP-1, cMLP-2) did not show a bias toward estimating connections or non-
connections. As for the data created using the SV-AR model, cLSTM exhibited a strong bias toward
estimating the existence of connections, often predicting that all of the variables were interconnected.
On the other hand, cNSVM did not show any bias toward estimating connections or non-connections.
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Research Question 5: How well do connectivity estimation models perform on real-world his-
torical stock price datasets compared to existing models in the literature?

Answer: t-VAR and NRI emerged as the best-performing models on the real-world data (as they
estimated connections that were the most similar to the PDS-LM HVAR model introduced in Hecq et al
[37]). All other models (cMLP-1, cMLP-2, cLSTM, cNSVM) overestimated the number of connections
between stocks. This result indicates that using deep learning does not guarantee better connection
estimation, as seen from the strong performance of t-VAR. Furthermore, the success of NRI suggests
that using graphs to represent the financial market could be a promising approach.

In summary, our findings highlight the strengths and weaknesses of each connectivity estimation
model when applied to both synthetic and real-world financial data, providing valuable insights for
future research on deep learning applications in financial time series.
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6 Conclusion

In this study, we explored the application of various deep learning models for connectivity estimation
in financial time series, focusing on real-world stock market data and synthetic data generated from
vector autoregressive (VAR, section 2.2.1) and stochastic volatility (SV-AR, section 2.2.2) models. By
employing the t-vector autoregressive model (t-VAR, section 3.1), neural relational inference model
(NRI, section 3.2), and the variations of neural Granger causality models (cMLP-1, cMLP-2, cLSTM,
section 3.3), as well as introducing a novel model based on the existing NGC model formulation
(cNSVM, section 3.4), we aimed to address the challenges of estimating connectivity in financial time
series.

The results of our study contribute to the existing body of literature on connectivity estimation in
financial time series by showcasing the potential of deep learning models. By comparing the perfor-
mance of these models in various settings, our research highlights the advantages and disadvantages
of using deep learning approaches. Furthermore, our findings on the scalability, contemporaneous cor-
relation in the noise generation, and the biases of predicting connections provide valuable insights for
future research and the development of new connectivity estimation models.

Building on our findings, there are several potential directions for future research and improvements
in connectivity estimation. For instance, refining the formulation of cNSVM, such as using multiple
layers and group Lasso to combine the input variables before passing them to NSVM architecture
[20]. Additionally, the performance of connectivity estimation could be examined on alternative data
generation models (such as Heston [53], GARCH [54], or SABR model [55]) as well as alternative real-
world datasets (such as currency exchange or options data) may help uncover new insights into the
effectiveness of these deep learning models in various financial contexts. Finally, investigating novel
deep learning architectures and techniques that simultaneously model the connections and the noise
generation process could lead to more accurate and reliable connectivity estimation models in cases
with larger noise levels and contemporaneous correlation in the noise distribution.

In conclusion, this study contributes to the research on connectivity estimation in financial time
series by showcasing the potential of deep learning models for this application. Our findings have im-
portant implications for understanding relationships in financial markets and the practical applications
of connectivity estimation. With the results from these experiments, we hope to advance the field of
financial time series analysis and support investors, traders, and portfolio managers in making more
informed decisions based on accurate estimation of connections between financial assets.
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