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Abstract

Due to regulations and increased privacy awareness, patients may be
reticent in sharing data with any institution. The Personal Health
Train is an initiative to connect different data institutions for data
analysis while maintaining full authority over their data. The Per-
sonal Health Train may not only connect larger institutions but also
connect smaller, possibly on-device personal data stores, where data
is safely and separately stored.

This thesis explores possible solutions in the literature that guar-
antee data-privacy and model-privacy, and it shows the practical fea-
sibility when learning over a large number of personal data stores.
We specifically regard the generation of linear regression and logis-
tic regression models over personal data stores. We experiment with
different design choices to optimise the convergence of our training
architecture.

We discuss the PrivFL protocol [36] which takes into account both
data-privacy and model-privacy when learning a regression model
and is applicable to personal data stores.

We further propose a standardisation protocol, Secure Scaling Op-
eration 2.0, that guarantees data-privacy for patients and experiments
concluded that it improves convergence better than an adaptive gra-
dient.

We implement an architecture that can learn over personal data
stores and which preserves user privacy in FedLinReg-v2 and FedLogReg-
v2. While, in theory, no convergence is guaranteed, training over var-
ious datasets shows a difference of 0 to 0.33% in loss differences over
both training and test sets compared to models that are centrally op-
timised. No parameter optimisation was necessary. The coefficients
however may deviate from centrally trained models.

We were able to train regression models while preserving data-
privacy (15-private) over 150 personal data stores in minutes. An
even higher level of data-privacy will cause a strong linear increase
in computation-time in relation to the amount of personal data stores
included.



Chapter 1

Introduction

In recent decades, the quantity of digital information has grown to immeasur-
able numbers. This acquired data is distributed over data centres and personal
devices across the world. It has pushed the development of machine learning
solutions in healthcare that make use of data quantities like these.

More recently, privacy law enforcement puts extra requirements on the usage
and storing of personal and processed data. Participating patients could also be
hesitant to share their sensitive data that is stored somewhere unknown and
shared to researchers to create useful models. Machine learning models will
decrease in quality when they can only use part of the data or no data at all.

The Personal Health Train (PHT) is a Dutch architecture and solution to this
problem, as it can apply database queries (analytics) [3] and generate machine
learning models [16] when including multiple data sources. Current PHT ar-
chitecture is still tested on a few large data collections with limited cooperating
organisations. Limited research has been done on learning over personal data
stores and this thesis explores the following gap.

One use case that is not yet considered is the generation of machine learning
models on personal data stores. We explore the possibility to create informative
models while shielding user data from other parties, and shielding model de-
tails from all users. Such a solution will result in users contributing to medical
research while being able to maintain full authority over their data.

We build an implementation that can train logistic and linear regression
models over isolated patient data, and that should decrease participant reticence
in sharing data, and improve data authority. We extend the research to other
machine learning (ML) models and summarise how they could be implemented
under the same conditions.

1.1 Research Approach

This research proposes possible solutions to privately learn over personal data
stores and develops a product to apply regression on personal data store in a
privacy-preserving way. Therefore, it attempts to answer the following research
questions regarding regression models. The research questions are all in the
context of personal data stores.
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RQ1: How do we ensure data-privacy and model-privacy when creating
regression models by applying federated learning?

RQ2: How much do adaptive gradient and data standardisation improve
convergence?

RQ3: How well does our architecture approximate linear regression and
logistic regression while applying federated learning and preserving data-
privacy?

RQ3a: How do coefficients of our linear regression model, trained
via federated learning, compare to the coefficients of classic linear
regression?

RQ3b: How do the odds ratios of our logistic regression model,
trained via federated learning, compare to the odds ratios of classic
logistic regression?

RQ3c: How well can a linear regression model, trained via federated
learning, fit the data compared to classic linear regression?

RQ3d: How well can a logistic regression model, trained via feder-
ated learning, fit the data compared to classic logistic regression?

RQ3e: How well can a linear regression model, trained via federated
learning, predict compared to classic linear regression?

RQ3f: How well can a logistic regression model, trained via federated
learning, predict compared to classic logistic regression?

RQ4: How does a logistic regression model, trained via federated learning,
converge when using mini-batch updates?

RQ5: How does the amount of personal data stores influence computation
time?

RQ5a: What is the influence of the amount of personal data stores in
the network on the computation time for the central handler?

RQ5b: What is the influence of the amount of personal data stores in
the network on the computation time for every personal data store?

RQ6: How can we privately optimise other types of models in a federated
way while preserving privacy?

RQ6a: How do we apply federated learning to train regularised re-
gression models, support vector machines and artificial neural net-
works?

RQ6b: How do we apply privacy-preserving techniques to train de-
cision trees and random forests?

2



Numerous papers have been written on the subject of federated learning proto-
cols which decrease privacy concerns and cryptographic methods that can re-
duce data leakage. It is used to conclude RQ1 on how data and model-privacy
can be guaranteed. RQ2 gives us insight in methods that should help conver-
gence to an optimum. RQ3 is answered by practically implementing methods
that abide some of the privacy measures posed in the background literature.
RQ4 explores how mini-batch updating influences the convergence of our cur-
rent setup (further explained in section 6.2.6). For RQ5 we analyse how the size
of the network with personal data stores influences the run-time. In RQ6, we
explore some other models that can be optimised with federated learning. It
also explains an optimisation method for decision trees and random forests that
do not fit the federated learning technique. All RQ’s are answered in the context
of the Personal Health train, further explained in section 2.2.

In summary, this research first tries to establish a literature research on the
privacy concerns in federated learning. Second, it shows the practical feasibility
of learning while preserving data-privacy, concerning convergence rate (perfor-
mance metrics) and computation-time (speed).

This thesis starts by providing required background literature on the subject
in section 2. Section 3 explains the possibility to standardise the distributed
data. With 4 we dive deeper in specific solutions regarding the design of an ar-
chitecture that ensures data-privacy and model-privacy. Any literature research
is non-exhaustive and is mainly focused on finding one complete solution and
realising an implementation. We describe how we built the architecture in sec-
tion 5, while we test the resulting regression model quality against our baseline
in section 6.Solutions for the optimisation of other models optimisation besides
regression are discussed in section 7.
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Chapter 2

Background

2.1 Personal Data Stores

In existing research, among 603 interviewed, 56% of researchers demand control
over or knowledge in the usage of their personal data [21]. Personal Data Stores
(PDS) are patient-managed platforms that store data to be used by institutions
with the correct permissions. This stands in contrast to cloud storage that holds
data meant for personal use. PDSs stimulate user-centred software solutions
and the data is accessed via a personal API. When a PDS is meant for storing
personal health data, the data in it is referred to as Personal Health Records
(PHR). This stands in contrast to Electronic Health Records (EHR) which are
governed by institutions themselves and patients have less control over collec-
tion and processing. The store connects to a personalised database where users
or institutions can add information to, or the information is updated via point-
ers from an external EHR [52]. This PHR should not be confused with a personal
portal, where all the data is a reference to the original data from an EHR and is
not a platform providing ownership and governance.

While the advantage from the perspective of the user is clear, institutions
do not widely adopt this method of recording data [27]. Also, data sharing
through PHRs is protected by the european General Data Protection Regulation
(GDPR) as being one of the most stringent data protection laws[22]. PDSs do
not guarantee data governance as, in its current form, a copy of the data is still
shared with organisations.

PDSs can be manifested in two ways. The patient has the data stored on
its personal device, or companies can manage a patient’s data storage (called
Personal Online Data Storage, or PODS). The latter has access to the sensory
information of the device, possibly with peripheral equipment such as a heart-
rate monitor. A large difference is the accessibility of the data. While a server
can be assumed to be always available, a personal device can be disconnected
due to various reasons.

Currently, almost all data is centralised due to the value that such data col-
lections have. Owners of such collections can apply numerous machine learning
and analytics tasks. While PDSs are not widely adopted, a shift to a more se-
cure environment for personal records could cause a drop in available data for
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researchers and/or institutions. In this case, we would need a mechanism that
can utilise the data without it leaving the device so that governance is main-
tained. On the other hand, if such a mechanism could be applied, this may set
in motion a shift towards a society that governs its own medical data, and more
privacy is maintained. The Personal Health Train is such an initiative to bridge
this bipartite gap.

2.2 Personal Health Train

The Personal Health Train (PHT) can be considered a framework for apply-
ing analytics and machine learning tasks [3] over multiple data sources. The
PHT was developed under the FAIR conditions. The FAIR principles act as
a guideline for our data-rich society, where information should be Find-able,
Accessible, Interoperable, and Reusable [57]. While FAIR data considers the
communication with the data source, the PHT is concerned with connecting
different information sources to automate accessing multiple data sources at
once or in parallel. Numerous machine learning algorithms can be applied
to centralised data. These algorithms however must be altered, as data is not
stored centrally. When using the train metaphor, the PHT can be separated in
three distinct components.

Trains contain the explicit code of the analytic or learning task. This action
may be a simple query on a database. As an analytics example: how many
patients have a blood level x higher than value y. But it may also return up-
dated model parameters when learned over the data. A user of the PHT may
send a request to a central PHT server. This server sends a request over to the
data stores, which can, in turn, retrieve the right Train from storage and execute
it over their data. The result is sent back to the central server and the aggre-
gated result (summation or another specified aggregation method) is returned
to the client that requested it. A client may be some authorised user within this
PHT framework. Machine Learning trains can implement two different learning
strategies [42]. (1) When applied in parallel, we implement a central aggregator
Train that communicates with the data-rich side of the train at the source. (2)
The task can also be executed sequentially, which it is then referred to as Weight
Transfer [11] and Institutional Incremental Learning [48].

The Rails is a metaphor for the central server that can receive a Train direc-
tive from an authorised client, dispatch them over relevant data locations and
aggregate results. It receives a reference train object and metadata. The latter
could specify some required information, such as the model architecture, learn-
ing rate, data used, etc. It also deploys the server-side part of a Train locally,
providing the correct aggregation tool.

The Station has access to a private data collection and can execute the algo-
rithm of a Train. The Station trusts the Train, as it is located in a Train Registry.
This active Train on the Station communicates with the part of the Train on the
Rails (server).

The PHT is not only limited to Machine Learning or Analytics over multiple
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data sources, it tries to containerise algorithms to reproduce or repeat specific
results to promote usability. The PHT also implements privacy-by-design by
letting the data owner control how its data can be shared, processed, or is not
available at all. These settings may be applied for specific data or specific appli-
cations.

Over the past few years, some research is done on the application of analytics
tasks within the PHT [15]. Choudhury et al. described a methodology to apply
analytic tasks in a privacy-preserving manner [15]. Some advancements have
been made on training ML models regarding multiple data sources, which will
be described in chapter 2.4.

To this point, research has focused on testing the PHT on a very limited set of
institutions with big data storage, and tasks from simple data analytics to deep
learning have been applied. If we indeed tend towards separating our personal
data from institutions, which generates more ownership and security, a decline
in the application of data analytics and machine learning is unavoidable. This
may cause a decline in the discovery of new medicine and valuable insights for
treatment. The PHT is a platform for creating solutions to increase knowledge
even after the data has been separated. Vice-versa, the PHT platform itself may
also give users incentive to separate their personal health records in PDSs as
the PHT guarantees user governance over the personal data. This research may
also give incentive to institutions to use the PHT because of a larger collection
of data that can be accessed for research purposes while decreasing the need to
deal with privacy regulations.

2.3 Regression Algorithms

In the situation of isolated PDSs, research on this data must not be limited
because it is separated. This thesis’ main concern is limited to constructing
two prominent algorithms to optimise linear regression and logistic regression
models over PDSs.

Those algorithms can be classified as belonging to the statistical domain or
the machine learning domain. Both areas overlap, thus regression can fit into
both. When taking a statistical perspective, our algorithm applies a descriptive
analysis over a dataset and minimises a certain loss function to represent the
data optimally. But when the machine learning perspective is taken, the predic-
tive analysis (i.e. performance) over an unobserved test set must be optimised.
In our research, we take into account a possible train-test set distribution so that
the model can be tested over unobserved data, but a classical inference model
(goodness-of-fit) should not be excluded.

2.3.1 Linear Regression

A linear regression model models the relationship of a scalar output with one or
more explanatory variables: ŷi = β0 +Xiβ. Linear regression is commonly opti-
mised with the Ordinary Least Squares (OLS) estimator method β = (XTX)−1XTy.
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(Intercept β0 can be calculated with the estimated coefficient β0 = ȳ− x̄β.) This
method results in a vector of coefficients β that minimises the sum of the squares
of the residuals/error SSE = ∑n

i=1(yi − f (Xi, β))2 [17]. In our case, the linear
regression function is inserted for function f ().

Instead of using OLS to optimise the regression model, it is possible to ap-
ply a gradient descent (GD) method that also optimises the loss function. In
this thesis, we regard optimising linear regression with gradient descent, as this
may open up ways to optimise the regression model and preserve data-privacy,
see section 2.4. Gradient descent calculates an update step by calculating the
derivative of the loss function with respect to the coefficients. For the loss
function, we take the sum of squared residuals and derive one coefficient with

d
dβi

n

∑
i=1

(yi − f (Xi, β))2. After deriving, we can take the data (X,y) and current

model coefficients β to calculate the gradient update step βi+1 = βi+1 + η∇g(β)
where ∇g(β) is the vector of derivatives over all coefficients. Updating the co-
efficients with the negated derivatives of the coefficients decreases the sum of
squared residuals. This process can be repeated.

But do the methods of Ordinary Least Squares and Gradient Descent (GD)
yield equivalent estimates of the coefficients? As they both optimise the same
function, they should theoretically yield equal results. Where OLS always finds
a solution, gradient descent may potentially take some iteration steps when data
is skewed and the learning rate is sub-optimal. An advantage of GD over OLS
is when it is applied over an exceedingly large dataset. With OLS all data is put
into one computation, while the mini-batch variant of GD may create an update
over a subset of the data.

2.3.2 Logistic Regression

The formula for logistic regression with multiple independent variables is stated
in equation 2.1.

ŷi =
eβ0+Xiβ

1 + eβ0+Xiβ
(2.1)

As can be seen, the linear equation is included but is transformed by ap-
plying the sigmoid function, or inverse-logit function, over the linear result.
Instead of describing its activation function as is standard in machine learning,
literature sometimes also adds a link function common in the field of statistics.
It maps the nonlinear result to a linear combination of variables. In this case, it
is the inverse of the activation function, i.e. the normal logit function. The prior
formula can be rewritten as equation 2.2.

logit(Ŷ) = ln(Ŷ/1− Ŷ) = β0 + β1X1 + β2X2 + ... + βiXi (2.2)

Coefficients in logistic regression do not represent the relationship accu-
rately, as it is not linear. To be able to represent the dependency correctly, we use
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the odds ratio (OR). The odds, odds(Y) = p(Y=1)
p(Y=0) , is the ratio of an event Y occur-

ring versus not occurring. The odds ratio represents the constant effect of an in-
dependent variable X on the odds of Y occurring, OR = p(Y=1|X=1)

p(Y=0|X=1)/ p(Y=1|X=0)
p(Y=0|X=0) .

In the previous formula, X is a categorical variable. For continuous variables,
the OR must be interpreted as the change in odds when X is increased with one
unit. In both scenario’s, OR can be deduced from the logistic regression model
beta-coefficients, OR = eβi . In logistic regression, OR is constant for all possible
values or categories of a certain independent variable X, but in reality, the OR
may be inconsistent within X.

While the OR values can be interesting to compare, they are commonly ac-
companied by the Confidence Interval (CI), indicating a range with a chance of
95% that the real OR of the population is in that range. The confidence inter-
val is not included in a logistic regression model and thus we limit ourselves to
only considering the OR. We use OR instead of βi as it has better interpretability.
Future research on federated statistics could help fill this gap.

Logistic regression is mainly optimised via Maximum Likelihood Estima-
tor (MLE) functions. MLE are the group of methods that estimate the most
probable model parameters. Within logistic regression, the MLE always min-
imises the binary cross-entropy (i.e. log-loss). As there is no closed-form
expression like linear regression which optimises via OLS, MLE is an itera-
tive process. For our experiments, we will be using the quasi-Newton Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) algorithm for optimising logistic regres-
sion.

Loss = − 1
n

n

∑
i=1

yi · log ŷi + (1− yi) · log(1− ŷi) (2.3)

By inserting the logistic regression formula in the cross-entropy loss func-
tion, equation 2.3, we can take the derivative similar to linear regression to
calculate an update step and apply gradient descent (GD). As both MLE and
GD methods optimise the same loss function, they also theoretically converge
to the same regression model.

To create linear and logistic regression variants in the PHT, it may be able to
use techniques from the field of federated learning or decentralised learning.

2.4 Federated Learning

Rules, regulations and ethical aspects could prevent us from creating a cen-
tralised data storage and thus no machine learning can be applied. Some so-
lutions within the field of federated learning (FL) are proposed that are suited
as an applicable algorithm within the PHT and could provide us with the same
insights as normal machine learning. We elicit their workings and global char-
acteristics.

In 2015 and 2016, researchers coined the term Federated Learning (FL) as
a way to distribute learning over separate devices [30, 31]. Such an FL archi-
tecture provides potential privacy, security, governance and economic benefits,
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but also brings four new challenges [34], such as the impact of non-identical
distributions of data [61], the communication bottleneck of FL implementations
[5], devices having different capacities and capabilities [54], and possible infor-
mation leakage from the devices [38].

Figure 2.1: Hierarchical structure of ter-
minology

The naming scheme can be some-
what confusing, as names are simi-
lar and misinterpretations are easily
made. Figure 2.1 provides a graph-
ical overview of the fields and sub-
fields. Machine Learning is the over-
arching field of algorithms that im-
plements self-optimisation based on
certain goals or data. The biggest
and most straightforward field is
Centralised Machine Learning, where
data is located on a central server. De-
centralised Machine Learning was in-
troduced as the computation power
lacked behind the amounts of data that are collected nowadays. Under one
single orchestrator and using multiple local devices as computation points, al-
gorithms can use more calculation power to learn models. Available data is
then distributed over those devices. Federated Machine Learning, or Federated
Learning, is mostly applied to situations where computing power is limited, the
number of data sources is very large, and privacy restrictions are present.

Federated Decentralised Learning and Federated Centralised Learning differ
in communication, as there is no central orchestrator needed within this field.
Here the "Decentralised" part also refers to the learning algorithm, not only to
the scattering of data. The PHT uses a central handler to dispatch algorithms or
aggregate results, making it able to apply Federated Centralised Learning.

When one refers to FL, Horizontal FL is the most common technique. Ver-
tical FL deviates from this by splitting the data on the feature axis instead of
the sample axis. A concept was created that implemented Vertical FL in a PHT
architecture [55]. Personal Data Stores however split the data, as the name sug-
gests, on the sample axis. Some horizontal learning problems have been solved
by applying horizontal FL to the PHT. A practical implementation was made to
apply deep learning in a PHT infrastructure [42]. Two research papers regard-
ing the analysis of data with a logistic regression model within the PHT were
published in 2018 and 2019 [16, 49].

For the specific case of PDSs, and when looking at the above explanation
of our terminology, we need to research the domain of Centralised Federated
Learning. As (1) the PHT revolves around a central handler having access to the
final result. (2) PDSs can be unavailable at some point in time. Research on the
FL technique regards the PDSs as stateless, so that the algorithm still functions
when there is a PDS dropout or other malfunction. (3) Computing power is
very limited on edge devices, generating the need for a lightweight solution. (4)
Data originates from different patients, making the data non-i.i.d. (explained in
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the next section).
FL has an impact on all algorithms that can be optimised via gradient de-

scent. This includes Neural Networks, Support Vector Machines, but also linear
regression and logistic regression.

2.4.1 Independent and Identically Distributed

When choosing our solution, FL and DL techniques are clearly separated by
some characteristics like the number of computing sources and data-privacy
but also whether the data is independent and identically distributed (i.i.d.) [28].

Variables are mutually independent and identically distributed when they
are drawn from the same probability distribution. This i.i.d.-ness refers to dif-
ferent samples of the same variable. In this thesis, a sample can be regarded
as a measurement of multiple variables, including only one measurement per
variable. The measurement of a patient’s blood levels, will not influence the
measurements of another patient. However, when the patient’s measurements
are taken again at an earlier or later moment in time, the outcome will be heavily
dependent on the previous sample. In Federated Learning, non-i.i.d. variables
are a significant problem [26].

One PDS will consist of data from a single patient. Multiple observations of
patient features will have a high correlation. For us, this means that combining
multiple patients and multiple observations per patient results in a non-i.i.d.
dataset.

The fact is that there is only one observation per variable in a PDS. This
is making the statement that "different observations are non-i.i.d." useless, as
there are not multiple observations. When combining all the data from different
PDSs, the data is i.i.d., as one sample does not give us any information over one
of the other samples. When multiple measurements of one patient were to be
included, this statement would be false.

Federated Learning focuses on optimisation over non-i.i.d. data, while de-
centralised learning assumes i.i.d data as input. While assuming decentralised
learning would optimise the problem faster, it does not take into account our re-
quirements: guaranteeing privacy and using numerous (possibly mobile) sources.
Therefore we only explore methods that are labelled as Federated Learning.

2.5 Threat Model

A Threat Model tries to expose possible vulnerabilities in the system under
certain limitations or indicates which threats the author may try to solve. As
we are sending information through a network with different kinds of parties
involved and our goal is to hide certain information from certain parties, it is
good to analyse possible internal threats.

The PHT assumes the complete network to be trusted when dealing with in-
stitutions, however, Personal Data Stores owned by individuals can also be ma-
nipulated by patients themselves, which gives rise to a more prominent security
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threat. Inaccurate data may influence the performance of the data significantly
if the data were designed by an adversary, or access to the model may leak per-
sonal data contained within it. For this research, we ignore the possibility of
data poisoning and the retention of individual’s data in the final model, which
we further elaborate in section 2.7.

We consider two types of deviating users. Honest-but-curious adversaries fol-
low the protocol but receive a transcript of all the actions and values observed
by the protocol. It cannot change communication contents by actively influenc-
ing the algorithm, which we would call a Malicious adversary. We can alleviate
the privacy requirements by assuming the architecture interacts with honest-
but-curious parties.

By having only honest-but-curious adversaries in the network, we can elim-
inate an extra trusted party that can verify parties. For example, without a
verified network, the server could fake being a participating data locker and
share critical cryptographic information (for communication) to extract privacy-
sensitive updates from messages. For more information on cryptographic meth-
ods or to understand the example on why two patient parties would like to
communicate, see the next section (2.6).

We do not imply that a malicious adversary is unrealistic, but we limit our
research by assuming only honest-but-curious parties. We then arrive at the
next threat model for our research:

• The central server may be an honest-but-curious adversary (potentially
combining information from other sources)

• User devices may also be honest-but-curious adversaries (potentially com-
bining information from other sources).

2.6 Cryptographic Tools

Cryptographic tools cannot be omitted when regarding federated learning, as
FL itself does not guarantee any privacy per sé [4, 39]. The following sections
explain two commonly used cryptographic tools important for private federated
learning.

2.6.1 Homomorphic Encryption

Features can be homomorphically encrypted (HE), making them unreadable for
parties without the corresponding private key. The advantage of Homomorphic
Encryption is that the encrypted object is mathematically manipulable, i.e. sum-
mation and/or multiplication can be applied, changing the encrypted object so
that when it is decrypted, the operations are immediately applied to the original
object. In practice, this means that one party can manipulate an object, adding
information without seeing the original information and without seeing the re-
sulting information. In figure 2.6.1 the server S can manipulate an encrypted
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value, while party C is the only party to observe the result of the manipulation.

Figure 2.2: A simple client-server HE scenario, where C is Client and S is Server.
[1]

Partially Homomorphic Encryption protocols are Additive HE and Multi-
plicative HE. Examples of additive HE are E(x) + E(y) −→ E(x + y) or E(x) +
y −→ E(x + y). Examples of multiplicative HE are E(x) ∗ E(y) −→ E(xy) or
E(x) ∗ y −→ E(xy). Fully Homomorphic Encryption methods can apply both
(encrypted and decrypted) sums and products to an encrypted value. The use
case for HE in federated learning is the central addition of information from
numerous sources, while encrypted for the central aggregator.

An Additive HE algorithm can be described as a tuple of four items:

HE = (KeyGen, Enc, Eval, Dec)

• KeyGen: generates two distinct keys, private and public key, for asymmet-
ric encryption. These keys are meant to be stored locally or distributed to
trusted parties that must access encrypted information.

• Enc: can generate ciphertext with an encryption method when concerning
plaintext and a public key.

• Eval: ciphertext can be altered in an encrypted state (sum, product).

• Dec: can recover the plaintext when applying a decryption method con-
cerning ciphertext and the correct private key.

HE in Federated Learning

In practice, HE occurs in two forms, either (1) encrypting the model when send-
ing it to the collaborators or (2) encrypting the data when sending it to the
central handler, where all the encrypted values can be aggregated (summed).
To ensure data-privacy, the latter is the most common technique. We discuss
why naively applying HE in federated learning is not advised.

The PHT requires the final model to be accessible by the central handler. In
the case of using HE to encrypt the raw data or the updates before aggregation,
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the central handler will not have access to any model or will only have access
to an encrypted version of the model. This means the final model must be
decoded, and a fully trusted third party is required to do this as the central
handler may not have the decoding key. Otherwise it is able to encode the raw
data from the PDSs. In federated learning it is standard to not assume a trusted
third party.

Most HE schemes have relatively high computation-time, but this is negli-
gible due to the small shallow models we are training. We are dealing with a
huge number of collaborators, which means there are many exposed encrypted
values. The secret key should be renewed every round, as it will be prone to
cyphertext attacks [12]. This makes the algorithm heavier from a the computa-
tional and communication point-of-view.

2.6.2 Diffie-Hellman Key Agreement for Data Aggregation

In a typical federated learning setting, the server receives the local updates
and calculates the global update for the model. Local updates contain privacy-
sensitive information and should not be leaked to the central handler. The
Diffie-Hellman (DH) Key Agreement [18] is a method to share a secret through
public communication. By sharing a secret through means of a Diffie-hellman
key agreement, it is possible to hide individual updates while keeping access to
the global aggregate.

Figure 2.3: protocol flow of Diffie-Hellman key
agreement

As an example in figure
2.3, Alice and Bob are making
a key agreement. Both par-
ties can be considered two dif-
ferent PDSs where the central
handler is omitted for simpli-
fication. Both parties agree to
use numerical values g and p
by communicating them over
the network. Both Alice and
Bob possess a secret key a
and b respectively. By send-
ing Bob ga mod p, Alice’s se-
cret a cannot be inferred eas-
ily. The same hold for Bob when sending gb mod p. Both values are commu-
nicated and are processed further by an exponentiation with its local secret key,
Ba mod p and Ab mod p both equalling the same secret "AB". "AB" is not a
multiplication but just the name for the shared key between Alice (A) and Bob
(B).

DH Key Agreement in Federated Learning

With this secret, both parties are able to generate a mask or negated mask by
using the secret as a seed in a pseudo-random generator. When all those masks
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are added to the local updates and sent over to the central server, the server
is not able to see the individual updates. By summing the updates, the masks
will cancel out and the aggregate (sum) of all the updates is shown to the cen-
tral server, without showing individual updates. See figure 2.4 for a graphical
representation of the method.

Figure 2.4: Protocol flow of ag-
gregation with masks

In our isolated PDS context, the exchange
between all pairwise users may be time-
consuming. The main second concern of such
an aggregation method is that when one user
drops out of the aggregation, the aggregate
becomes unusable, as the masks do not cancel
out anymore.

2.6.3 Dropout-Robust Secure Ag-
gregation

Secure Aggregation [6] was introduced specif-
ically for application on Federated Learning
for wireless devices, extremely big numbers
of clients, to mitigate the risk of exposing pri-
vate data and catch possible drop-outs. In the
Personal Health Train setting regarding PDSs, this is a realistic scenario.

Figure 2.5: Rough visual overview of Threshold
Secret Sharing protocol.

The previous method in-
cluded masks so that it is only
possible to aggregate when
all clients are actively partic-
ipating. To make a dropout
robust protocol, Bonawitz et
al. [6] used a method called
threshold secret sharing, or
Shamir t-out-of-n Secret Shar-
ing. It is a protocol to split a
secret into its shares, with the possibility to recover the secret by only obtaining
t of the n shares, see figure 2.5. A polynomial can only be reconstructed when
enough datapoints (shares) are recovered. The original secret is the value of
a polynomial where x = 0. In federated learning, we split the secret key of a
party into shares, but not the shared keys, nor the masks. That means that every
party holds one share for every data party in the network.

The algorithm can be seen as an expansion of the update masking from
previous section 2.6.2. When a user D drops out, the mask of the dropped user
must be recovered. To recover the mask, all the shares concerning the single
secret key of D must be requested from all other parties (fig 2.5). Then the
secret key of D can be calculated. The central handler can use this secret key of
D to recover all the shared keys with other parties, as it can rerun part of the
DH-key agreement. All the shared keys can in turn be turned into masks as
we explained in the previous section. The central handler adds or subtracts the
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masks from the final aggregated result to make it usable.
One problem with this technique is that we must assume an honest-but-

curious server, as the server could fake that a user has dropped out to retrieve its
mask and to recover its original update. If the server is indeed malicious, extra
measures can be taken, as described in the paper of Bonawitz et al. [6]. As we
do not assume a malicious server, any extra measures may be omitted. A good
estimation on the risk of drop-outs during learning and possible processing
bottlenecks would help to choose the best aggregation algorithm in a scenario.
This is heavily dependent on the stability and type of the network. We also did
not define whether PDSs are mobile or located on a wired server.

2.7 Differential Privacy

Besides the application of cryptographic methods, there is an alternative method
to ensure dataset privacy. Differential Privacy (DP) is a measure of ensuring that
individual data cannot be leaked. The DP originally refers to a situation where
database information is leaked from a publication of a statistic, model, query or
another medium. DP guarantees that no single dataset sample can be identified
when such information is disclosed. In federated learning, this comes down
to the information that the individual updates or the final model give us. An
inference attack is an example of the extraction of samples from the original
model, which DP tries to prevent. Differential Privacy is commonly achieved
through the addition of noise.

In Federated Learning, DP refers to the prohibition of data leakage via two
ways: model updates, and model parameters. Global Differential Privacy (GDP)
only adds noise centrally after aggregation to prevent inference attacks. But
there is a second way. Local Differential Privacy (LDP) adds noise to individual
updates, masking the individual updates (just like the cryptography methods)
to the central handler and also decreasing the risk of inference attacks on the
final model.

We argue that our situation is different from most papers on DP applied to
federated learning. Research has confirmed that the effectiveness of inference
attacks is closely related to the complexity of the machine learning algorithm
[50, 47]. We are training shallow regression models, which can be seen as one of
the simplest neural network models. Using a shallow regression model is not a
guarantee for user privacy. Having multiple independent variables when only
including a few samples can still be a cause for over-fitting, but the number of
samples has to be extremely small. If the number of samples is high enough,
we hypothesise that no inference attacks will be effective. For simplification
of this research and due to time-constraints, we do not tackle the problem of
whether or not the regression models memorise samples. Therefore we also do
not implement any solution to this problem.

We hypothesise that the risk of inference attacks on our model is small,
which would deem GDP less useful. Local Differential Privacy can be applied
to mask updates, but in our situation as there is only one patient involved per

15



PDS (instead of 100’s or 1000’s), we assume it would need such a high amount
of local noise that the update becomes unusable. We conclude that applying
both LDP and GDP comes with its drawbacks and can even damage the model
quality. For this reason, we only use cryptographic methods for ensuring data-
privacy. It is up to future research to determine whether differential privacy can
replace cryptography. For now there is no theoretical basis to use DP.
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Chapter 3

Federated Standardisation Protocol

Our research question tries to compare a federated learning architecture with
its classical centrally optimised counterpart. To get the best performance from
a federated learning architecture we explore the possibilities of standardisation
of the data. As the data is distributed over different locations, we analyse the
consequences of distributed data on standardisation and a possible solution.

Gradient descent methods are highly sensitive to feature scaling [56]. So
why do we not just standardise or normalise our personal data stores? For
standardisation, we need the sample mean x̄ and sample standard deviation s
for every input feature, and xmin and xmax for normalisation. Such a calculation
is done centrally as all feature values must be taken into account. Our federated
situation does not fulfil these requirements. We explore relevant literature and
propose a different solution to improve the quality of our federated models on
real-life datasets.

With this challenge, we also dive deeper into the realm of security and en-
cryption. Some information has to be exposed somewhere, and for optimal
security, the proposed mechanics have to be analysed. Both methods described
in the next paragraphs should not influence the performance results, however,
it is important to evaluate its security concerns. Only federated standardisation
protocols are proposed, as we have not come across any method that can nor-
malise data in a privacy-preserving way, nor have we created a method that is
capable of doing this.

3.1 How Standardisation Influences Coefficients

As was just mentioned, standardisation of the continuous and categorical input
and/or output variables influences the convergence rate of gradient descent
regression methods [56]. While this is advantageous, models with standardised
(beta) coefficients b∗ must be interpreted differently than standardised (non-
beta) coefficients b, but can be useful in different ways.

For logistic regression holds: “a one-unit difference in X is associated with
a b-unit difference in logit(Y)" and “a one standard deviation difference in X is
associated with a b∗-unit difference in logit(Y)". The predictor variable Y is not
meant to be standardised.
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For linear regression holds: “a one-unit difference in X is associated with a
b-unit difference in Y" and when the input is standardised: “a one standard de-
viation difference in X is associated with a b-unit difference in Y". And a variant
when also the output is standardised: “a one standard deviation difference in
X is associated with a b∗-standard deviation difference in Y". It is good habit in
data analytics to standardise all your data.

It is possible to convert a linear and logistic regression model with beta-
coefficients to normal coefficients and vice-versa [40].

3.2 Secure Scaling Operation (by Mandal et al.) [36]

The Secure Scaling Operation (SSO) was introduced by Mandal et al. [36]. It
uses Secure Aggregation and only one communication step to be able to calcu-
late the mean and standard deviation. It does so in a privacy-preserving way.
In our scenario, there is only one sample per PDS. Because of this, we explain
the SSO in the context of isolated PDSs.

Here we summarize the original SSO. For every input feature, the PDS must
return two values, i.e. it must calculate 2n dimensional values from n features.
Due to the fact that sample size per PDS equals 1, the calculating formula is sim-
plified to: X(i) = (x1, ..., xn, x2

1, ..., x2
n) where x = (x1, ..., xn), which is the original

PDS data. Every PDS in the set of U calculates this vector. The central aggrega-
tor uses the proposed dropout-enabled secure aggregation protocol (from sec-
tion 2.6.3), which we call πDEA, to calculate the aggregate-sum of those values X
along with a list of responding PDSs (Ua). (Ua, X)←− πDEA(U, X(i), |U|, t) which
includes |U| > t and where X = (X1, ..., Xn, Xn+1, ..., X2n) and t is the threshold
for the number of PDSs that need to be used. Otherwise, the aggregation fails
as the dropouts cannot be recovered from. The mean µ = (µ1, ..., µn) and stan-
dard deviation σ = (σ1, ..., σn) can be calculated with respectively µp =

Xp
|Ua| and

σp =
√

1
|Ua|(Xn+p − (2|Ua| − 1)µ2

p). The final step includes sending µ and σ to

all users in Ua so to scale their data with xstandard ←−
x−µ

σ .
Participants may be honest-but-curious adversaries and this statistic sharing

may be regarded as a model-privacy leak. With Homomorphic Encryption, a
second communication round is able to prevent this. The calculation is done on
the central handler on the homomorphically encrypted user data, sent from the
PDS. HE(xstandard)←−

HE(x)−µ
σ .

Because the sample size per PDS equals 1 in our scenario, the mean and
standard deviation cannot be precisely estimated from the data and standard-
ised data alone. Two unknown variables in in equation has infinite solutions.
This means an adversary is unable to discover the original statistics based on
its own data. It is a one-time calculation that does not increase the complexity
of the complete protocol, it also clearly decreases privacy concerns compared to
previous method and thus we argue that it is still beneficial to use this protocol.

However, the threat model includes a scenario where multiple PDSs are con-
trolled by the same adversary. For this method, it is possible for the sample
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mean and standard deviation to be discovered when any two PDSs are honest-
but-curious adversaries. By having two samples of the input (raw data) and
two samples of the output (standardised data), it is possible to retrieve both un-
known variables µ and σ. This architecture is therefore 1-private, meaning that
it is secure when only one PDS is controlled by an adversary. But when more
than one PDS is controlled, the mean and standard deviation can be estimated
by the adversary.

3.2.1 SSO 2.0

Preliminary results regarding the calculation of statistics in a federated way
found that the standard deviation deviated from any centralised statistic by an
approximate margin of 10-20%, meaning the given formula by Mandal et al. [36]
is incorrect. By altering the given formula of σp to σ′p =

√
1
|Ua| (Xn+p − |Ua|µ2

p),
various testing concluded that the decimal place accuracy is at least 7, and the
difference is percentually negligible.
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Chapter 4

Privacy-Preserving Protocols

We dive into aggregation methods that can potentially apply linear regression
and/or logistic regression in a federated manner. This chapter provides so-
lutions on how to learning in a federated fashion and provides solutions to
preserve data-privacy and model-privacy, which answers RQ1. We can leverage
this knowledge to create an implementation to answer RQ3, which we propose
in section 5. Federated Learning methods alone do not guarantee any privacy,
so this chapter dives into FL algorithms but also into other necessities for the
creation of a privacy-preserving protocol.

Some papers describe learning a regression model by the sharing of data that
is homomorphically encrypted (HE) [43, 2, 7], or by using Yao’s garbled circuits
in its protocols[23, 43]. HE can have some disadvantages in our scenario. The
resulting model is encrypted and must be decrypted with one of the keys of
the collaborative parties (PDSs). The central handler does not have access to the
model coefficients/parameters [29] and possible sharing of the private key from
the PDSs may increase chances of data leakage. Therefore we exclude discussing
HE in its simple form. We also exclude any implementation regarding Yao’s
garbled circuits due to time-constraints.

4.1 Aggregate Methods

Most recently proposed federated learning algorithms are all based on the com-
munication of gradients or consequent model parameters.

Alternative Direction Method of Multipliers is a method introduced by
Boyd et al. [9] before the Federated Learning era but can be viewed as a FL pro-
tocol. Every iterative local calculation is based on residual compression errors
from previous rounds [9], meaning that a dropout of a node halts the train-
ing process. Such a ’stateful’ algorithm is impractical when potentially training
over thousands of PDSs. Although the long existence of ADMM, FedAvg and
FedSGD are more common in literature, including many work on the shoulders
of those giants [28].

Federated Averaging (FedAvg) is the most basic form of FL and diverges
the least from a centralised approach. Every location updates a model like
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it was centralised, only using the initial model parameters received from the
central handler. After learning, it communicates the new model weights to the
central server, because the local model has been updated multiple iterations
with different gradients. When clients end multiple iterations of local updates,
the updated model parameters are then sent back to the central server, where
they are averaged per weight. This new model is then used to validate and
to start a new training cycle. The model is not guaranteed to converge as the
local models potentially update local parameters differently when the data is
non-i.i.d., which we discussed in the previous chapter.

Federated Stochastic Gradient Descent (FedSGD) is a Federated Learning
algorithm [44]. It calculates the gradient of the loss function of the model on
each separated instance. As the loss function is to be minimised, updating the
parameters with the negated value of their corresponding gradient will decrease
the loss function. A training cycle is computationally-light, as only one update
step is calculated, but is communication-heavy, as each gradient descent step is
to be communicated.

In contrast to FedSGD, FedAvg is known to have fewer communication
rounds due to increased local training and that does not have to diminish the
performance [37]. With FedAvg, we can increase the number of iterations of the
local PDS update step, but as there is only one sample per local PDS, we argue
that this is less effective. Iterating over the same sample does not add as much
information as an iteration over a new sample. Optimising via ADMM seems
especially impractical in our use case, as a communication error or changing ac-
cess settings can cause an unrecoverable dropout. So FedSGD seems the optimal
choice for our architecture.

4.2 Federated Learning Protocols

FL protocols define a complete architecture, while the prior aggregate methods
only define the way of combining information from different data sources. Be-
cause of extra privacy issues that arise when regarding PDSs, a more extensive,
complete protocol regarding Federated Learning is required. According to our
threat model, we have to regard two main goals.

First, the protocol should preserve user-privacy. From the above described
federated learning algorithm, two problems arise. (1) The gradient is visible
to the central handler, which is a potential privacy leak, as the gradient may
potentially leak some data that it was derived from. Robust-Dropout Secure
Aggregation [6] was introduced to mitigate the risk of exposing separate gra-
dients or model parameters to the central server. A more extensive protocol
is PrivFL [36] and incorporates secure aggregation in a bigger protocol to hide
individual gradients. Another protocol regarding this type of privacy is VANE.
(2) The second risk that arises from this assumption is the risk of information
leakage from the model that is available to the central handler. After hiding
the individual gradients to the central handler, an incomplete or final model
may still contain, thus leak, private information (inference attack). A common
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technique used to prevent this leakage is the application of Differential Privacy
(DP) [37]. For this thesis, we do not prioritise securing against inference attacks
(see section 2.7).

Secondly, the model should have model privacy-preserving properties. Model-
privacy is the act of hiding all model details from the data owners. With many
federated learning papers focusing on data-privacy, there has been little focus
on the privacy preservation of model parameters. With the standard application
of FedSGD, the model parameters must be sent to the PDSs, thus no model-
privacy is taken into account. PrivFL by Mandal et al. [36] uses HE to hide the
model and its parameters from the user (regression models only). VANE does
not include the model as a privacy-sensitive object and thus leaks the model
parameters to the PDSs.

4.2.1 PrivFL (by Mandal et al.) [36]

PrivFL [36]is a solution for securing both the user input from the server and the
model parameters from the users. It uses both Homomorphic Encryption and
Secure Aggregation in its protocol. This protocol stands in contrast to only using
an aggregation protocol, such as Dropout-Robust Secure Aggregation (section 2.6.2)
or DH-key Agreement with Data Aggregation (section 2.6.3). Those methods are
less complex but do not secure the model parameters against leaking the model
details to a PDS adversary.

Figure 4.1: PrivFL’s protocol flow of double
privacy-preserving weight update for regres-
sion models [36].

Figure 4.1 shows a high-
level communication flow of
the protocol. The model
parameters are homomorphi-
cally encrypted by the server
E(θ), with the server being
the only party to have ac-
cess to the private key, and
are sent to all concerning data
parties. For a PDS, the loss
function is calculated over
the encrypted model param-
eters E(θ) and the local data
D1. E(loss) ←− floss(E(θ), D1).
The loss function has to be al-
tered to deal with encrypted values as an input and is further described in the
paper from Mandal et al.[36]. The application of logistic regression comes with
an estimation of the sigmoid function to be applicable to encrypted values. The
loss is used to calculate the encrypted gradient E(ωi) for all weights. Random
noise r array is generated and added to the gradient array to achieve s, resulting
in E(ωi) = E(si)− ri These two shares are both sent to the central server, one
in its original encrypted form E(si) and one by applying the secure aggregation
protocol πDEA (from section 2.6.3) on r.

The gradients cannot be extracted from the encrypted shares si without hav-
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ing the corresponding random noise shares ri. To access the aggregate of the
random noise shares, Secure Aggregation requires at least a certain amount of
random noise shares to make them accessible, as explained in section 2.6.3. If so,
the shares si are decrypted and added, the corresponding random noise shares
ri are decrypted and added, and the total gradient is calculated with ω = s− r,
where the individual gradients ωi are never seen. The final steps include divid-
ing by the number of users involved da and applying a server-specified learning
rate η. Because only the aggregate of the noise shares r is accessible, it is im-
possible to use a single noise share to subtract it from the share s to calculate a
single gradient, which means it is unable to leak any user data to the server.
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Chapter 5

Methods

Below we present the methods to test our research hypothesis. By not building
a simulation but a real distributed architecture, it can be run on different de-
vices. It is then also possible to get insight into the computation-time. The two
federated learning architectures FedLinReg and FedLogReg, attempt to solve
linear and logistic regression respectively when patient data is isolated with a
guarantee of data-privacy.

We were not able to run any tests on a real distributed network which was
the original idea for the design. This design can still be simulated on a single
device and thus requires more computational resources than is necessary for
edge devices in a real distributed setting.

The repository of an implementation of this architecture can be found here1

here2 and here3.

5.1 Learning Algorithm

Federated Learning algorithms decrease privacy concerns but do not eliminate
them altogether. We will be using one of the FL algorithms as research on the
subject regarding privacy has delivered promising results. FedSGD is used to
optimise our regression problems.

The name FedSGD is used throughout the thesis, however, a better name
would be FedBGD, Federated Batch Gradient Descent, as our implementation
does not select a subset of PDSs but rather uses all of them. FedBGD, however,
is an unused term in literature and we will be referring to the optimization
method with FedSGD. But why do we not need stochastic gradient descent?

Stochastic updating is used when there is a risk of optimising to a local error
minimum instead of the global best error minimum. Any local minimum in a
convex function is also a global minimum [8]. If we would minimise the error
when the error function is a convex function, that would mean that it always
converges to the global minimum which is the optimal result. The least-square

1https://github.com/CaspervanAarle/PHT_Node
2https://github.com/CaspervanAarle/PHT_Server
3https://github.com/CaspervanAarle/PHT_Data
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loss function for linear regression is a convex function [8]. Idem for logistic
regression where the cross-entropy function is convex [8, 46]. This means that
no stochastic updating is required.

Every convex regression problem has an optimal batch size (selection of PDS
instances for one update), where a larger batch size increases the computation-
time but has higher gradient accuracy, while a smaller batch size causes a fast
iterations but more iterations are necessary for convergence (slow convergence
rate). Because we decentralise most of the calculations done, the computation-
time will be less of a bottleneck. It is up to future research to find out at which
number of PDSs stochastic updating becomes necessary. For this research, we
include the maximum number of PDS instances possible, 100 or 160, and all
samples in those PDS instances are used in every update step.

5.2 Cryptography

While this thesis also discusses model-privacy methods, we omit any imple-
mentation due to time constraints. An algorithm such as PrivFL uses extra
encryption methods, which may be computationally expensive. While perfor-
mance should be equal, computation-time may differ significantly.

Our first implementation was tested in the preliminary experiments in chap-
ter 6.1. It omits any secure aggregation protocol to safely share gradients with
the central handler, i.e. individual PDS updates can be seen by the central han-
dler. We did this due to the fact that implementing it should not influence
performance in any way. Later this was added to test efficiency in section 6.2.7.
We use the method from section 2.6.2, which we call Simple Secure Aggregation

5.3 Hardware & Tools

We use Python as our main programming language. We tried to use Tensorflow
(TF) as a machine learning library to implement both our classifiers. By imple-
menting linear and logistic regression in Tensorflow, we were able to extract
the gradient over all the variables with its built-in tools. In practice, however,
running an instance of the TF library caused a portion of the working memory
to be reserved. With our current system setup (16GB RAM), we could run a
maximum of 27 PDSs all running an instance of the TF library. We overcame
this limitation by manual calculation of the gradient update step by taking into
account corresponding formula and derivatives of linear and logistic regression
without using the Tensorflow library, resulting in a maximum limit of 100 PDSs.
During our research, an upgraded system with 32GB RAM was able to run 160
PDSs.
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5.4 Communication

For communication within the local experiment, we use Python Sockets. This
communication standard can communicate within the local network via router
ports. The experiments will not be distributed but instead, all parts are run
on one device, except for when run-time is measured (see section 6.2.7). The
experiments are run in separate Python instances to simulate different PDSs.
This makes the architecture easily transferable to a real decentralised setting.

The architecture is only an implementation of the Train part of the PHT,
as a broader implementation does not regard the research question nor influ-
ence the resulting models. A broader implementation of the PHT architecture
would include containerising Trains, implement authentication and encrypt all
communication. We omit this, but the implementation can be regarded as the
deployment of two kinds of trains. The Aggregator Train must run once and
the PDS Learning Train can be deployed on every data device. A configuration
file can be sent alongside the train to define its task in detail.

Figure 5.1: High-level structure of the design

Figure 5.1 shows a rough graphical overview of the communication archi-
tecture and the involved parts. The overview is simplified, as it only involves
three PDSs. Communication is synchronous, i.e. updating is done whenever
an update is received, instead of waiting for all other PDSs to finish. Different
request types are discussed in section 5.5

We do not assume the existence of a trusted third party. That means that the
sharing of secrets between PDSs is done through the network in figure 5.1.
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5.5 PDS Request Types

As there is very limited data per PDS, the collection of PDSs must be split
into a training set and a test set (instead of the data within the PDSs). While
our first implementation included some limited options to create such sets, the
final version omits this. For simplification of our experiments, models are tested
centrally on a separate test set. As we only could run 100 or 160 PDSs, removing
any test PDSs makes the number of training PDSs larger. Advantages are that
the model becomes more robust as the size of the training set is larger, and there
are various options to analyse a model centrally for our experiments. Otherwise,
we would need to create extra functionality in our architecture. While for our
experiments it is possible to test centrally, in practice this is not possible as there
is no central database.

Preliminary implementation included some analytics requests, such as Ac-
curacy or Loss, but they are not necessary to answer our research questions and
thus were omitted in the final version. This would require extra analysis on
possible privacy issues.

In general, there are three types of requests that can be made by the server:

• Secret Sharing: PDS can send/receive a key from/to a different PDS to
generate a shared key for Simple Secure Aggregation.

• Gradient Calculation: PDS receives model parameters and returns a gra-
dient descent step (with or without Simple Secure Aggregation)

• Encrypted Data Request: PDS can send/receive encrypted data to/from
the server, where it is standardised.

Our implementation of the PDSs is a computation-loop, but it would be
better to communicate via HTTP-requests.

5.6 Preliminary Architecture Optimisation

5.6.1 Learning Rate

The learning rate is the most common hyper-parameter that has to be tuned.
Normal gradient descent uses a constant learning rate. This however may not
be an optimal solution as the converging to the optimum is slower compared
to more complex methods [25]. In our scenario, we have an incentive to de-
crease the communication required for training, as with every communication
step, we still leak some information from the PDS. This hyper-parameter is the
only parameter we optimise. Preliminary results showed that convergence to
the optimum when using FedSGD can still take numerous iterations. To de-
crease communications costs and simultaneously increase the performance of
the model, we propose to change the static learning rate η to an adaptive learn-
ing rate.
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AdaGrad [20], changes the learning rate depending on previous updates
of the weights. AdaGrad also considers weight updates separately from each-
other, i.e. each weight has a separate learning rate. If we have large previous
updates, that influences the next learning rate value to be high, while smaller
updates cause the learning rate to decrease.

As a result of AdaGrad, the initial learning rate chosen becomes less relevant,
though it may still have a big impact on more extreme η values. This in turn
potentially decreases the time spent on optimising the learning rate, in turn
decreasing communication costs. It is argued that a good optimiser for a convex
optimisation problem is AdaGrad [25], see equation 5.1 and 5.2.

wt+1
i = wt

i − ηBgt,i (5.1)

B =
1√

∑t
τ=1 g2

τ,i

(5.2)

An extra term B is added to the update step of a standard gradient update
step. In formula every weight wi in time-step t is updated based on the gradient
g for the specific parameter i. Variable B needs access to all previous gradients
gτ.

5.6.2 Standardisation

As we have explained in chapter 3, standardisation could potentially help im-
prove the convergence of our algorithm. Experiments in chapter 6.2 include the
Secure Scaling Operation (SSO) 2.0 (see section 3.2.1). This standardisation al-
gorithm guarantees data-privacy but also does not leak any mean or standard
deviation to the PDSs. We also add a partial implementation from section 2.6.2
which we name Simple Secure Aggregation, which does not allow dropouts.
This is due to time-constraints and we do not simulate dropouts in our experi-
ments.

5.6.3 Stopping Criterion

Gradient descent is a step-wise optimisation towards the optimum. The most
basic gradient descent algorithms include a number of iterations to be per-
formed. Because of the need of reducing communication costs, the learning
process can be terminated at an earlier point in time when the decrease in loss
becomes negligible. We use a threshold for the validation set performance in-
crease, to determine whether it is negligible or not. The validation loss can
also increase, indicating possible over-fitting of the model. A stopping criterion
could prevent this.

In a later version of the architecture, this stopping criterion was removed,
as it had the tendency to stop late or early. Extra fine-tuning of this parameter
brings extra complexity to the optimisation. Some extra steps to converge the
algorithm further is acceptable. Now, we limit the algorithm on its amount of
communication steps instead of based on convergence.
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5.7 Evaluation

In this research, we are evaluating a framework, so the goal is to make it ca-
pable of solving a variety of problems consistently. That is why testing should
try to solve a multitude of problems. UCI and Kaggle provide a broad variety
of datasets, some of which are popular for testing ML models. The following
datasets are used for benchmarking our proposed architecture. Every sample
in the dataset must be generated by different subjects but is not limited to peo-
ple. We prefer datasets with a size of 300 or larger. The information has to
be medical, health(care), or related. The target variable should be binary or
continuous to apply Logistic and linear regression respectively. Based on these
requirements, the following datasets are used for benchmarking our proposed
architecture.

• Medical Cost Personal Dataset (Insurance)[51]

• City Dataset (City)[53]

• CASP Protein Dataset (CASP)[19]

• TWOC Generated Dataset (TWOC)

• Haberman’s Survival Dataset (Haberman)[19]

• Breast Cancer Coimbra Dataset (Breast_cancer)[45]

• Heart failure Clinical Records Dataset (Heart_failure) [14]

• Cardiovascular Dataset (Cardiovasc / Cardio) (source: Kaggle)

Applying linear regression to the Insurance Dataset [51] generates a predic-
tor that can estimate possible future medical costs of a patient. The City Dataset
[53] does not include patient info, but rather cumulative regional information.
It is still very useful to test it on isolated PDSs. Linear regression can pre-
dict the mortality rate based on regional features concerning healthcare and
non-healthcare. One dataset CASP contains the problem of predicting the ter-
tiary structure of a protein based on other protein features [19], and is solved
with linear regression. Final dataset is used to support the Trusted World of
Corona project (TWOC). We use a subset of the TWOC dataset to fit into our
architecture, TWOC-150. Therefore we rename the original TWOC dataset to
TWOC-5000. The task of the dataset is to predict the severity of the disease.

The Haberman dataset [19] contains only a few features, including the task
of classifying each patient whether the patient survives for at least 5 years or
not. Logistic regression tries to model the features to predict this survival rate.
The Breast Cancer Dataset from the University of Coimbra [45] tries to predict
suffering patients based on patient features. Idem for the Heart Failure Dataset
[14] but here its task is to predict death. We also try to predict cardiovascular
disease from the Kaggle database.

The train set will be the same between central and federated experiments to
eliminate any performance differences caused by chance. An experiment may
use a subset, 100 or 150, of the samples available, which will be indicated.
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5.7.1 Metrics

The measured performance of the model is highly dependent on the quality
of the data for training (variance), but also on the model’s ability to fit the
data. A model with very little predictive power can causate from noise or a
lack of correlation, but also from poor training capabilities of a model. This
means that the predictive power alone is not a good measure of how well the
model performs. The model must be compared to a model that was trained
with a default regression method, centralised linear and logistic regression, or
CentrLinReg and CentrLogReg.

As we are considering an architecture that should mathematically approxi-
mate another function, we can consider differences in metrics as a measure of
how similar the functions are. In the field of data analytics, we could require
a model that represents the underlying dataset to draw a conclusion over that
dataset, i.e. inference. In the field of machine learning, it would be interest-
ing to compare the models over their predictive capabilities, i.e. performance
over unobserved data. In our experiments, we consider the differences in coef-
ficients, differences in metric values over the training set and metric values over
an unseen test set.

For linear regression, R-squared (R2) is a commonly used measure, which
indicates the percentage of the variable variance that the independent variables
explain. A second metric for linear regression is the Mean Squared Error (MSE).
For logistic regression the Area Under the Curve (AUC) indicates how well the
model can distinguish between two classes. A second metric commonly used is
Binary Cross-entropy.

We compare two different results by the percentage difference from the cen-
trally optimised model. We do not compare coefficients or odds ratios with a
relative or absolute distance, as it does not say anything about the performance
of the model. Sometimes we take the absolute difference, where we think a
relative comparison is illogical or can be interpreted wrong.
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Chapter 6

Results

This chapter describes the experiments conducted during this thesis project.
We compare our Federated Linear Regression architecture to a Linear Re-

gression baseline that calculates the underlying coefficients with OLS (Ordinary
Least Squares), which is implemented in CentrLinReg. With this in mind, that
means when we compare to the CentrLinReg model, we also compare to the
optimal linear solution based on the least square error.

Logistic Regression implements the BFGS optimizer (see section 2.3.2), which
estimates the logistic regression model parameters (here: CentrLogReg). This
could result in a sub-optimal solution. While we regard the logistic regression
model as the most optimal model, it could theoretically be possible to out-
perform CentrLogReg. This central algorithm is compared to our Federated
Logistic Regression Architecture (FedLogReg).

Model Name Activation Learning Rate Iterations Step Type
FedLogReg-v1 Sigmoid (to be optimized) 200 Batch
FedLogReg-v2 Sigmoid 0.01 800 Batch
SFedLogReg-v1 Sigmoid 0.01 800 Mini-batch
SFedLogReg-v2 Sigmoid 20 4000 Mini-batch
FedLinReg-v1 Linear (to be optimized) 200 Batch
FedLinReg-v2 Linear 0.01 800 Batch

Table 6.1: Summary of different architecture settings.

Table 6.1 summarises different setting used in our experiments. We use two
different activation functions, corresponding to Linear and Logistic regression
models. The learning rate must be optimised in some settings, where we run
the experiment multiple times to find the optimal result. Later experiments
converge to a static learning rate. Iterations indicate the amount of sequential
updates the final model receives until it terminates. In the field of research,
there are three types of updates, Batch Gradient Descent, Mini-batch Gradient
Descent, Stochastic Gradient Descent. We only implement the first two. Batch
Gradient Descent uses all data available to generate an update step, while mini-
batch gradient descent takes a subset of the data for every step. In our federated
learning case, this is respectively the same as using all PDSs or a subset of
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PDSs per step. All settings, except FedLogReg-v1 and FedLinReg-v1, include a
method of standardisation by default.

6.1 FedLinReg-v1 and FedLogReg-v1

The first preliminary research focuses on hyper-parameter tuning and method
testing to see its effect on the similarity between the centrally trained regression
models and federated regression models.

We will be testing some optimisation parameters in the context of inference,
or descriptive analytics. That means the trained model should make the correct
assumptions over the trained data. Therefore we can exclude any test set. Later
on, predictive analytics over a test set will be included. For the next experiments,
we apply adaptive gradient and the secure scaling operation to see its impact
on the performance. We also would like to know whether there is a correlation
between the amount of noise in the data and the convergence to the correct
coefficients.

RQ2: How much do adaptive gradient and data standardisation improve
convergence?

6.1.1 Noise Experiment

Our first experiment did not include any extra optimisation methods, i.e. ex-
cluding standardisation and adaptive gradient. It will compare the coefficients
between the application of regular centralised linear regression and our feder-
ated solution.

Details Dataset
no. 1 2 3 4 5 6
standardized yes yes yes yes yes yes
#features 1 1 2 2 9 9
#informative 1 1 2 2 5 5
output_noise 0σ 1σ 0σ 1σ 0σ 4σ

Table 6.2: Synthetic dataset details

Table 6.2 summarises the de-
tails with which the synthetic
data was generated. All data
is standardised and differs in
the number of features included,
the number of informative fea-
tures included and the noise
that was added to the target
variable, based on a multiplica-
tion of the standard deviation
of the original target variable.
Only the input variables are standardised.

This regular linear regression that is approximated with our federated learn-
ing method does not include any regularisation terms. We apply a learning
rate of 0.05 after aggregating the gradients. By using a tolerance as stopping
criterion, i.e. when the aggregated gradient does not exceed a certain value for
a specified number of times, the learning process is terminated.
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Source −→ Origin CentrLinReg FedLinReg-v1
dataset variable output_noise coef. coef. coef.

1 1 0σ 60.84 60.84 60.83
2 1 1σ 63.78 70.32 74.29
3 1 0σ 17.83 17.83 17.82

2 38.08 38.08 38.08
4 1 1σ 32.27 32.07 30.41

2 86.45 84.45 85.07
5 1 0σ 27.62 27.62 27.63

2 34.14 34.14 34.14
3 0.00 0.00 -0.01
4 0.00 0.00 0.00
5 0.00 0.00 0.00
6 99.89 99.89 99.87
7 8.26 8.26 8.25
8 0.00 0.00 -0.02
9 12.31 12.31 12.31

6 1 4σ 0.00 0.50 3.34
2 0.00 -3.18 -6.63
3 62.72 58.40 57.72
4 0.00e -4.23 -5.22
5 91.38 97.15 94.24
6 92.97 91.06 92.15
7 48.93 41.80 42.51
8 65.42 65.60 63.76
9 0.00 -2.31 -1.92

Table 6.3: Final coefficients from the central and federated model over synthetic
data.

Observations

As we observe in table 6.3, both the CentrLinReg and FedLinReg-v1 did not
converge to the original coefficients in all scenarios. This is because when noise
is added to the dataset, this may influence the ideal linear coefficients for that
data. The most important aspect of this table, however, is the difference between
CentrLinReg and FedLinReg-v1. Datasets with more noise in their correlations
come with a bigger deviation between CentrLinReg and FedLinReg-v1. The
current architecture does not approximate the original coefficients, nor does it
approximate the coefficients of CentrLinReg in all cases.

Interesting is that in FedLinReg-v1, all the data without noise, i.e. clear linear
relations, do already generate almost the exact same coefficients as the central
model. Unfortunately, this is an unrealistic scenario.
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6.1.2 Adaptive Gradient

To test our Adaptive Gradient in a federated setting, we evaluate the similarity
to the central least-squares baseline model. This experiment does not suggest
anything about its predictive capabilities, only on the capabilities to fit a func-
tion over the input data. The difference with the previous experiment is that the
data may include different features the synthetic data had not accounted for. A
possible scenario is that there is no correlation at all, only noise. As we have
seen, this may result in widely different coefficients. This does not necessarily
represent any difference in performance. For this reason, only the relevant error
rates are regarded. For logistic regression, we use the Log Loss as a measure of
performance. For linear regression, we use Mean Squared Error.

The results include columns with results from our basic FedLinReg and Fed-
LogReg solution and added AdaGrad (AG). The percentage indicates the dis-
tance to the central algorithm in terms of loss value. The learning rate (η) is the
most common hyper-parameter to tune when it comes to gradient optimisation
problems. The number of optimisation involved plays a potential hurdle in the
computation of a model. In our scenario, we do a parameter sweep of the learn-
ing rate with fixed values, by using the formula η = 5 ∗ 10p where p ∈ [−3, ..., 2].
The best performing variable is used. If no convergence is reached (η too small)
or loss value only increases (η too big) within the sweep, we continue until we
find a learning rate where loss is minimal.

While there was a stopping criterion, there was not any guaranteed con-
vergence. We remove the stopping criterion and train within a fixed number
of iterations from now on to make the most effective use of the time-resources
available. The number of iterations is capped on 201. Most of the convergence
is done within the first iterations and we assume this is a rough indication of
how well the model will converge relative to others. This experiment compares
the training loss between models that are optimized differently.

Observations

CentrLinReg FedLinReg FedLinReg+AG
Insurance MSE 1.55E+08 1.57E+08 1.58E+08

% diff (ref) +1.62% +2.06%
η - 5E-5 50

City_data MSE 2.32E+00 1.23E+01 4.59E+00
% diff (ref) +429.17% +97.63%
η - 5E-6 50

CASP MSE 2.47E+01 2.95E+06 1.39E+05
% diff (ref) +11947571.29% +563765.98%
η - 5E-14 5000

Table 6.4: Testing results of different FedLinReg implementations

In tables 6.4 and 6.5 the results of this experiment are shown. The most basic
form of Federated Learning using FedLinReg and FedLogReg showed signifi-
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CentrLogReg FedLogReg FedLogReg+AG
Haberman log-loss 0.4617 2.9201 0.5483

% diff (ref) +532.40% +18.74%
accuracy 0.77 0.74 0.74
η - 0.005 0.05

Breast_cancer log-loss 0.3446 inf 2.7700
% diff (ref) inf +703.93%
accuracy 0.82 - 0.47
η - - 0.05

Readmission log-loss 0.6388 1.2079 1.9001
% diff (ref) +89.08% +197.43%
accuracy 0.61 0.41 0.46
η - 0.005 0.005

Table 6.5: Test results of different FedLogReg implementations

cant drops in performance. By applying an adaptive gradient, AG, the results
generally shifted more towards the centralised least-squares baseline (CentrLin-
Reg or CentrLogReg). AG-optimised models are not necessarily better as the
two tasks over the datasets Readmission and Insurance perform worse. Increase
in loss over the CASP dataset is still not enough to approximate the centrally
trained model. But in most cases it causes some increase in performance.

The learning rate η is easier to optimise when using AG, as optimal learning
rate does not vary as much when using AG compared to without.
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6.1.3 Standardisation

For the third experiment, we are able to use a maximum of 150 simulated PDSs.
The error rates are averaged over ten sessions to get a better estimate of how
well the model performs. We iterate 201 times. We generated a new train-
test split for this experiment. We use the learning rates to optimize the model
which uses the non-standardised data. The model which uses the Secure Scaling
Operation (SSO) 2.0 (see section 3.2.1) uses a constant learning rate of 0.1, as the
convergence does not depend on the scale of the data anymore. For the original
FedLinReg we again do a learning-rate parameter sweep as in the previous
experiment.

The advantage of goodness-of-fit methods is that they are not influenced by
the scale of the variables, contrary to error measures like Mean Squared Error
(MSE) that depend on the exact values of the output. The R2-test is the most
common measure for goodness-of-fit in linear regression models. Because we
compare a model for scaled and unscaled data, it is not possible to use error
measures like MSE. For logistic regression, the dependent variable is not scaled,
as this is categorical data that the algorithm requires. Thus the log-loss error
rates can be used for comparison.

Observations

Dataset Metric CentrLinReg FedLinReg FedLinReg + SSO 2.0
Insurance R2 0.11542 0.10972 0.11542

abs-diff (ref) -0.0057 -0.0
η 5E-05 0.1

city_data R2 0.14370 -546.10922 0.14370
abs-diff (ref) -546.25292 -0.0
η 5E-09 0.1

CASP R2 0.29178 -75750.62633 0.29084
abs-diff (ref) -75750.91659 -0.00094
η 5E-14 0.1

Table 6.6: Results of performance through standardisation. Higher is better.

By comparing table 6.6 and 6.7, we can see the impact of our federated
standardisation. For these datasets, the architecture which includes SSO 2.0
outperforms the architecture without standardisation and drastically improves
on the convergence to the central model.

Earlier, we hypothesised that no parameter sweep was needed for SSO 2.0
to generate a better performance. This is indeed the case for those samples,
but it could still be that the learning rate is sub-optimal. We do however con-
clude that results are comparable deeming the optimisation of the learning rate
significantly less important. In federated learning, the execution of a learning
rate parameter sweep can take very long, as the optimisation over a network

36



Dataset Metric CentrLogReg FedLogReg FedLogReg + SSO 2.0
Haberman log-loss 0.49374 0.67341 0.49395

% diff (ref) +36.38% +0.04%
η 5E-3 0.1

Breast_cancer log-loss 0.48160 15.48325 0.52266
% diff (ref) +3114.96% +8.52%
η 5E-6 0.1

Readmission log-loss 0.67563 2.54954 0.67564
% diff (ref) +277.35% +0.00%
η 5E-3 0.1

Table 6.7: Results of performance through standardisation. Lower is better.

like the internet may take significantly longer time. This makes SSO 2.0 very
advantageous.
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6.2 FedLinReg-v2 and FedLogReg-v2

Previous preliminary research showed that without standardisation the result-
ing model performance is significantly lower. The AdaGrad method did gen-
erally improve the performance but with margins that are relatively small. We,
therefore, decided to exclude it from our subsequent experiments as we hypoth-
esise that the performance will be sufficient. All other subsequent experiments
are done with the default FedLinReg-v2 and FedLogReg-v2, which includes the
SSO 2.0 algorithm, static learning rate of 0.1, and a number of iterations equal
to 800 instead of 200. With this architecture, we try to answer the following
research question.

RQ3: How well does our architecture approximate linear regression and
logistic regression?

With an improved standardisation protocol from section 3.2.1, we continue
to run the following experiments to answer the main research questions for this
thesis. We decided to drop the non-standardised regression method as a means
of calculating the regression model, as previous experiments exposed too many
issues. We also decided to drop the adaptive gradient method that increased the
convergence rate slightly, because improvements were below our expectations.

6.2.1 Coefficients in FedLinReg-v2

We run the same experimental setup as the experiment in section 6.1.1, but here
we use real data. We use two different subsets of the CASP dataset, splitting
vertically (feature selection). This could maybe give us hints on the influence of
the number of variables on the similarity of the models.

RQ3a: How do coefficients of our linear regression model, trained via fed-
erated learning, compare to the coefficients of classic linear regression?

Observations

While the results over the Insurance and City_data datasets are extremely similar,
the same cannot be said about the CASP dataset (see figure 6.8). We argued
that the big deviation of coefficients in the CASP dataset may be caused by the
amount of variables that are included in the model. Therefore we ran the same
experiment on a subset of the variables of CASP (CASP_subset).

CASP_subset only includes four features and still deviates quite significantly
from the original parameters. We hypothesise that this must be caused by some
other aspect of the dataset that influences the convergence rate. In sum, OLS
(CentrLinReg) does not necessarily converge to the same coefficients as its fed-
erated counterpart, at least for our data samples.
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CentrLinReg FedLinReg-v2
Dataset Vars Beta-coefficient Beta-coefficient
Insurance age 0.34568 0.34568

bmi 0.06179 0.06179
children -0.07045 -0.07045

city data doc-avail 0.16844 0.16844
hosp_avail 0.11678 0.11678
income_1000s -0.21360 -0.21361
pop_density -0.26855 -0.26854

CASP_subset F1 -0.69146 -0.10181
F2 1.19925 0.60785
F3 -0.03126 0.20029
F4 -0.35510 -0.46978

CASP F1 0.92523 0.17667
F2 0.81175 0.85069
F3 -0.03544 -0.05841
F4 -1.23966 -1.24282
F5 -1.07380 -0.41327
F6 0.73016 0.79381
F7 -0.38525 -0.38342
F8 0.15355 0.16858
F9 -0.0717 -0.05954

Table 6.8: Final coefficients from the central and federated model.

6.2.2 Odds Ratio in FedLogReg-v2

As we explained in section 2.3.2, logistic regression uses Odds Ratio as a mea-
surement of constant influence by an independent variable on the predictor
likelihood. The modelled effect can best be described by the Odds Ratio, which
is calculated from the coefficient.

When the original data is categorical, the Odds Ratio of a certain category
value represents the increase in the likelihood of the predictor variable occurring
compared to a baseline category value. This value can sometimes be manually
calculated or from the fitted logistic regression model. With these values, A
decentrally optimised model can be compared to a central.

When the original data is continuous, the Odds Ratio depicts the increase in
likelihood of the predictor variable when the independent variable is increased
with one unit. This value can be derived from the logistic regression model
only, and not directly from the raw data itself. That means we cannot check the
validity of the Odds Ratio against the original but can check the odds ratio of
different logistic regression models. We compare a centrally optimised logistic
regression model against one which is decentrally optimised.
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The OR is calculated by comparing the odds of the predictive variable given
a categorical value to the predictive variable given the reference value. The Ad-
justed Odds Ratio (AOR) has the same meaning, except for that it accounts for
all other independent variables. Both OR and AOR are calculated in two differ-
ent scenario’s: over the source data, and over the central and federated logistic
regression model. When the OR of an input variable is 1.1, it can be interpreted
as: "An increase of one standard deviation in the input variable increases the
likelihood of having cardiovascular disease with 1.1". The algorithm used 800
iterations for model training.

The data used to run this experiment is the Cardiovascular dataset. We split
the dataset on the feature axis, one with mainly binary variables (cardio1), one
with continuous ones (cardio2). Thus the AOR only includes the variables in the
same subset.

RQ3b: How do the odds ratios of our logistic regression model, trained via
federated learning, compare to the odds ratios of classic logistic regression?

Observations

CentrLogReg FedLogReg-v2
ds Variable Type Variable Grouped ref? OR AOR OR AOR
cardio1 continuous Height (cm) - 1.0987 1.0961 1.0987 1.0961

Weight (kg) - 1.2195 1.2824 1.2195 1.2824
Age (yrs) - 1.8482 1.8366 1.8482 1.8366

cardio2 binary Gender female (ref)
male 1.1075 1.1609 1.1021 1.1609

binary Smoking no (ref)
yes 0.9649 1.1787 0.9649 1.1777

binary Alcohol no (ref)
yes 0.6138 0.5537 0.6138 0.5545

Table 6.9: Results, with the OR indicating the influence of different variables X
on having a cardiovascular disease

Results of this experiment are in table 6.9 The maximum difference between
central and federated OR/AOR values is 5/100th, which is a very small mar-
gin. We cannot conclude with certainty that this resemblance holds in other
datasets. We even hypothesise that this is not the case, just like in the previous
experiment, where the coefficients deviated when the correlation is noisy.
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6.2.3 Inference in FedLinReg-v2

In previous experiments, we checked whether the model parameters are similar
in both the centrally optimised model and the one fitted in our architecture.
Both methods try to create a model that best fits the observations, thus it would
be useful to see whether different fit-metrics results diverge from the central
one. Those methods are not applicable in a distributed way, as the data is not
centrally accessible, but may be calculated in our experimental setup and be
compared to the CentrLogReg values.

For linear regression and FedLinReg, we use standardised input and out-
put to get optimal convergence. The model can later be converted to non-
standardised parameters, see sec 3.1.

RQ3c: How well can a linear regression model, trained via federated learn-
ing, fit the data compared to classic linear regression?

Observation

CentrLinReg FedLinReg-v2
Measure R2 MSE R2 MSE % Diff
Insurance 0.13323 0.86676 0.13323 0.86676 +0.0

City 0.14370 0.85629 0.14370 0.85629 +0.0
CASP 0.39233 0.60767 0.39087 0.60913 +0.24026

Table 6.10: The R-squared goodness-of-fit measurement for central and feder-
ated models over some datasets

As can be seen in table 6.10 Federated architecture mirrors the same R-
squared values calculated over the test data. For the datasets included in this
experiment, the goodness-of-fit converges even for the CASP dataset. A model
with different coefficients does not necessarily mean that it has a worse fit on
the data. For example, the CASP dataset with 9 independent variables, has an
almost identical R-squared value, indicating that the goodness-of-fit is almost
identical, while the coefficients from those models deviate quite drastically (see
the experiment in section 6.2.1).
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6.2.4 Inference in FedLogReg-v2

For CentrLogReg and FedLogReg-v2, we use standardised input variables only,
as most logistic regression libraries require the standard binary values 0 and 1
in the dependent output variables.

RQ3d: How well can a logistic regression model, trained via federated
learning, fit the data compared to classic logistic regression?

The difference is calculated depending on the log-loss, as this metric is non-
thresholded, i.e. taking into account the probability of a class (between 0 and 1)
and not only the predicted class (0 or 1). Taking a percent difference from the
AUC that sits between 0 and 1 and how it is interpreted can be ambiguous.

Observations

CentrLogReg FedLogReg-v2
Dataset AUC Log-Loss AUC Log-Loss % Diff
haberman 0.649315 0.57381 0.649315 0.57381 +0.0
readmission 0.566428 0.68334 0.566250 0.68334 +0.0
breast_cancer 0.848558 0.48160 0.843450 0.48318 +0.32807
cardiovasc* 0.678929 0.64174 0.678393 0.64178 +0.00623
TWOC-150* 1.0 1.61522e-06 1.0 0.04132 +2558165.4

Table 6.11: The AUC values calculated over the train data after training. *=
unused datasets in preliminary experiments.

ROC curves are included in the appendix (table 8.1). In table 6.11, the differ-
ences between the central and federated architecture are smaller than previous
architecture FedLogReg-v1.

While the AUC uses the predicted output class (0 or 1), the log-loss uses
the predicted output probability (between 0 and 1) as a comparison against
the true values. Although the error over the TWOC-150 dataset is quite high
compared to the central model, this does not damage its fitting capacity as the
AUC remains high. The difference measurement is heavily dependent on the
size of the central log-loss. A small log loss does increase the impact of small
deviations, as happened in the TWOC-150 dataset. If we calculated the absolute
difference, both AUC and log-loss differences would be almost 0. Maybe the
absolute difference would have been a better measurement but that is up for
debate.

When regarding the best fit for our data, error becomes more important. For
models that cannot completely distinguish between classes (i.e. AUC < 1) the
Loss differences are all between 0% and 0.33%. If the model can separate the
classes completely (=TWOC-150), it models the data classes correctly, but the co-
efficient estimate is infinite, which is where maximum likelihood estimator used
in CentrLinReg breaks down. There are solutions to this, such as regularisation,
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but we omit such implementations due to time-constraints. This means that for
all generated models that do not separate output classes perfectly, differences
between error rates and AUC are negligible.

6.2.5 Prediction

In machine learning, models may be used for prediction. We estimate its per-
formance by using metrics that measure performance on an unseen test set.
There are solutions better suited for prediction, such as ridge regression and
regularised logistic regression. It is however still valuable to see its effect over
unseen data.

We excluded some of our datasets, as we would like to train our model with
150 PDS instances, and test over another 150 data samples. This means that
there should be at least 300 samples per dataset. The TWOC-5000 dataset has
enough samples but is severely imbalanced, i.e. some classes are extremely
prevalent and others are rare. We do not know what the effects are of testing
over a severely imbalanced dataset and assumed for now that it is not guaran-
teed to be a good measure for our architecture. Therefore we excluded it. Later
on, we do train the TWOC-5000 to analyse its fit over the train data in section
6.2.6. We did already use the TWOC-150 dataset for fitting a model.

RQ3e: How well can a linear regression model, trained via federated learn-
ing, predict compared to classic linear regression?

RQ3f: How well can a logistic regression model, trained via federated learn-
ing, predict compared to classic logistic regression?

Observations

CentrLinReg FedLinReg-v2
Dataset MSE MSE % difference
Insurance 1.04783 1.04783 +0.00000
CASP 1.27546 1.27833 +0.22501

Table 6.12: Squared error values calculated over an unobserved test set

CentrLogReg FedLogReg-v2
Dataset Log-Loss Log-Loss % difference
cardiovasc 0.67747 0.67588 -0.23469
haberman 0.51933 0.51933 +0.00000
readmission 0.69812 0.69812 +0.00000

Table 6.13: Log-loss values calculated over an unobserved test set

According to the results in tables 6.12 and 6.13 it is possible for our federated
algorithm to generate a better performance over the test set. This is caused
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by small differences in the model. As the error rates over the training sets
deviate only slightly, the difference in coefficients can also be advantageous to
the federated model.

Differences in prediction capabilities only deviated 0.24% at maximum for
the included datasets.

6.2.6 Mini-batch Learning

The TWOC dataset is a realistic generated dataset with a significant imbalance,
which could also occur in realistic situations. The dataset includes 5000 different
patients, which means we are unable to run all of our patient data in PDS
instances, as this is computationally too heavy. We can either create a simulation
of the federated learning algorithm to see its performance, or we can use a mini-
batch of PDSs each update step.

PDS mini-batch selection is different in the sense that it does not use all
available data in each iterative step, instead, we take a subset of the available
PDSs, generate an update step, and update the global model. This means that
updating the global model is a stochastic update, i.e. an approximation of the
total gradient is used. The next iteration takes a different subset of the PDSs.
With a simple programmable conversion, we were able to generate a new subset
of PDSs for every iteration.

We ran the algorithm with 800 iterations and a learning rate of 0.1. Under
those settings, we call the algorithm "SFedLogReg". The data was not standard-
ised as all the data was already in the range of 0-1.

RQ4: How does a logistic regression model, trained via federated learning,
converge when using mini-batch updates?

Observations

CentrLogReg SFedLogReg-v1 SFedLogReg-v2
Variables Coefficients Odds Ratio Coefficients Odds Ratio Coefficients Odds Ratio

M -57.80842 7.83649e-26 -2.68384 0.06830 -5.49016 4.12716e-03
P 56.92476 5.27364e+24 -0.01337 0.98670 20.04858 5.09319e+08

M*P 64.18585 7.50869e+27 -0.48963 0.61285 3.34734 28.42714
AUC 0.99983 0.81014 0.99975
Log-Loss 0.00294 0.06768 0.00879
Precision 0.98019 - 0.97872
Recall 0.99 0.0 0.92

Table 6.14: Experimental results over the TWOC-5000 dataset.

The results of our SFedLogReg-v1 algorithm is a sub-optimal performance
and does not predict the correct classes (see tables 6.14 and 6.15). While in previ-
ous experiments a single batch learning phase did practically always converge,
for this TWOC-5000 dataset a mini-batch optimisation method does not con-
verge. Recall is 0 as there are only negative retrieved predictions, while Recall
focuses only on positive samples.
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Table 6.15: CentrLinReg (left) ROC curve, SFedLogReg ROC curve (middle and
right)

Only after changing the learning rate from 0.1 to 20 and increasing the num-
ber of iterations from 800 to 4000, we get a method (SFedLogReg-v2) that gener-
ates a model that somewhat fits the data. The log-loss drops from 0.07 to 0.009,
which is much closer to the value of 0.003 from the central model. According
to the AUC value and comparing it to SFedLogReg-v1, classification of the data
samples is many times closer to CentrLogReg.

This experiment indicates that using a subset of the data from TWOC-5000
dataset in every update step (under the same learning rate and amount of it-
erations as FedLogReg) is not optimal. A possible hypothesis is that stochastic
updating needs more iterations and/or different learning rate. This is up to fu-
ture research. It would be useful to find settings that are optimal for both batch
updating (no subset) and mini-batch updating (subset).

6.2.7 Efficiency

The simple secure aggregation protocol (SSA, see section 2.6.2) makes use of the
Diffie-Hellmann key exchange, which is known for its high computational load
for especially edge devices with limited power. We, therefore, propose an ex-
periment that explores the influence of the number of PDSs on the computation
time on both a server and a client.

Figure 6.1: Setup for testing efficiency
of Central Handler

Figure 6.2: Setup for testing effi-
ciency of a PDS

Figure 6.1 and 6.2 give a graphical network visualisation to test the effi-
ciency of our algorithm. When simulating the algorithm on a single device,
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computation time may be influenced by other PDS instances. To create a stable
environment for the PDS, we isolate one PDS and locate it onto a secondary
device within the same local network. We do the same for the central handler
which will then communicate with all the PDSs simulated on a different device.

The code for both central handler and PDS mainly consist of single-threaded
computation, except for efficient communication. We used two devices, with
Intel Core i7-8550U and AMD Ryzen 3100 CPU. When calculating computation
time on a device, the architecture is mainly run on the Ryzen device, while
the computation-time was measured when running a separate instance (central
handler or PDS) on the Intel device.

RQ5a:What is the influence of the amount of personal data stores in the
network on the computation time for the central handler?

RQ5b: What is the influence of the amount of personal data stores in the
network on the computation time for every personal data store?

Observations

Figure 6.3: Computation time of a client in relation to the number of clients
included in simple secure aggregation.

To summarise, the duration in the graphs 6.3 and 6.4 is measured on separate
devices without interference of other parts of the network, and therefore being
a good indication of real practical duration. The communication-time however
is not included as no distant communication via the internet was used.

See figure 6.3. Incrementation in the number of PDSs included in simple
secure aggregation causes a linear increase in computation time for a single
PDS device. The computation time for one iteration in a PDS roughly increases
with one second when 36 PDSs are added to the network. Without applying
Simple Secure Aggregation, the algorithm only takes a constant 0.02 seconds to
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Figure 6.4: Computation time of the central handler in relation to the number
of clients.

finish an iteration for all amounts of PDSs involved. Therefore, the key agree-
ment algorithm for sharing secrets between clients was the sole cause for all the
computational expenses.

This means that using hundreds or thousands of PDSs in our network is
unfeasible. One solution would be to split up the PDSs in mini-batches, while
maintaining a single batch gradient descent step. In other words, for every PDS
mini-batch, we apply simple secure aggregation. For example, from 200 PDSs
we create 10 mini-batches of 20 PDSs. Every mini-batch applies simple secure
aggregation internally. This will reduce computational costs and will roughly be
equal to the duration of only applying simple secure aggregation to one group
of 20 PDSs (see graph 6.3) instead of 100 PDSs. The smaller the mini-batches
are, the faster computation time will be but updates will be less secure.

So what is the security risk of this reduction in computation cost? For exam-
ple, running simple secure aggregation over 2048 PDSs for 800 iterations will
take an estimated time of 13 hours. If the simple secure aggregation algorithm
is only applied over mini-batches of 16 PDSs, run-time is reduced to approxi-
mately 15 minutes, excluding communication-time. In practice, this means that
if an honest-but-curious adversary controls the central handler and a group of
15 specific PDSs, it would be able to extract the data of the 16th PDS, which is
a privacy leak. This architecture would be t-private, where t = 15 + 1− 1, i.e.
15-private. If any 15 honest-but-curious parties collaborate (15 PDSs + 1 central
handler is required), still no private information is leaked.

In graph 6.4, the central handler computation time roughly increases with
one second when 3200 PDSs are added to the network. This means the per-
formance of the central handler is depending significantly less on the amount
of PDSs involved than the PDSs themselves. Still for big amounts of clients it
could slow down the training process.
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Chapter 7

Other Methods for Data Modelling
in Personal Data Stores

The field of federated learning heavily depends on gradient optimisation. We
would like to discuss other gradient and non-gradient models that could be
optimised in a decentralized setting. We again prioritise the data-privacy of the
data owners and do not necessarily focus on model-privacy.

7.1 Gradient models

Regularized Regression

Regularisation is the act of adding information to a model mainly to prevent it
from overfitting. It is possible to add a regularisation term to some regression
models, but then the regularised model will carry a completely different name.
Depending on the size regularisation term λ, the coefficients are more drawn
towards lower values. The resulting simpler model may have a lower error rate
on unseen test sets.

A regularisation value is added to the loss function by multiplying the trade-
off parameter, λ, to the sum of the regularisation terms for all parameters, for
example ridge regression uses L2-regularisation, Loss = MSE + λ ∑n

j=1 θ2
j . The

loss is higher for higher coefficient values, where minimising the regularisation
term means setting all coefficients to zero. Lasso regression uses L1-regularisation
λ ∑n

j=1 |θj|. For elastic net regularisation both types of regularisation are used,
λ1 ∗ L1ratio ∗∑n

j=1 |θ|n + 0.5 ∗ λ ∗ (1− L1ratio) ∗∑n
j=1 θ2

n
Linear regression could be optimised with Ordinary Least Squares, which

could provide a single best answer. For ridge regression, a slightly altered
closed-form solution can locally be calculated via the Tikhonov regularisation
[24], see equation 7.1.

β = (XTX + λI)−1XTy (7.1)

But all regularised regression models mentioned above may be optimised
with loss minimisation by calculating the gradient of the regularisation terms.
For lasso, ridge, and elastic net regression holds, the loss functions are convex,
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but not all are strictly convex. This means that a local loss minimum is always
the global minimum but it may not be the only global minimum. For our re-
search this means that when we minimise the loss, it always finds an optimal
solution in a possible range of best solutions (minimal loss). This is identical to
our research on non-regularised regression methods.

Regularised regression methods are extremely similar to their non-regularised
counterparts and with slight alterations of our architecture it is possible to create
regularised models. As we have seen in experiment 6.2.4, with a logistic regres-
sion task that is completely separable, it is even advised to use regularised mod-
els. We hypothesise that the convergence rate is similar under similar settings
but this is up to future research.

Support Vector Machines

Support Vector Machines (SVMs) were originally developed for object classifi-
cation [41]. The algorithm is a linear classifier where the goal is to maximise
the margin between two (separable) classes in a dataset. A learned classifier
can calculate whether a new data sample is belonging to class A (positive) or B
(negative) and how far it is from the separation line. The basic SVMs include
linear separation. Instead of using a logistic function, the linear function is used,
as the result can better indicate the distance of a data sample to the separation
line. We choose to apply soft-margin gradient descent instead of hard-margin,
as this may be applied to both separable and non-separable data. It also gener-
alises better. The hard-margin variant has a similar loss function and is possibly
similar when creating a federated learning solution to this problem. Some SVMs
have been trained in a federated fashion [59, 10]

The classifier can be optimised by using gradient descent, as it is possible to
derivate the linear activation function and the hinge loss function. The classifier
optimises equation 7.2.

λ||w||2 + 1
n

n

∑
i=1

max(0, 1− yi(wTxi − b)) (7.2)

The prior part of the formula includes a regularisation term, while the latter
part implements the hinge loss function, punishing values that are too close to
the separation line or on the wrong side. The vector w along with intercept b
are to be optimised. The gradient can be calculated for every weight or intercept
on every PDS. The regularization can be calculated in the central handler or on
the PDS. For the latter, the value must be divided by the amount of PDS in the
network, otherwise the regularisation term will be calculated many times and
summed, instead of just applying it once per iteration.

SVM Implementation

We were able to practically simulate an architecture where the gradients were
separately calculated and later summed. Regularisation was not calculated on
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the central handler but in every PDS. No simple secure aggregation is applied
as we only would like to see the potential performance.

For this short research we use two-dimensional samples all belonging to
one of two classes. It is also possible to apply the algorithm to more than
two dimensions, which will create a hyper-plane that can separate the samples.
We generate different separable dataset and compare a classic Support Vector
Classifier to our federated implementation. Learning rate, η, of 0.01 is used. λ is
the strength of regularisation, in our case it is equal to 1. We iterate a thousand
times without any early stopping methods. SVMs may have different purposes
and quality can be measured in different ways. For this limited research on
SVMs, we only visualise the plotted results which may be interpreted differently
by the reader.

Results comparing it to regular SVM training can be seen in figure 8.2 in the
Appendix. In general, SVM with federated learning is comparable to its central
counterpart. Updates can be masked the same way as in federated regression,
as has been discussed in section 2.6.

Deep Learning

When regarding deep learning, the techniques compared to training SVMs or
Regression models is similar. Most papers regarding Federated Learning are
focused on the optimisation of artificial neural networks [32]. Deep learning is
focused on optimising neural networks but also requires extremely many data
samples.

The biggest difference is that the neural network does not have a convex error
landscape, which means that it is highly likely to convert to a local optimum. As
we explained in a previous chapter, stochastic updating is required, i.e. selecting
a subset of the PDS’s which may cause the learning process to escape a local
optimum and arrive at a better model.

Local training of a neural network is already very computation-heavy and
thus takes longer than previously discussed models. It could take tens of thou-
sands of iterations. In our scenario with PDSs, every iteration needs a commu-
nication step. That means that the learning duration of a neural network may
be extremely high. This is up to future research.

Some extra tools for the training of neural networks is required. Overfitting
is a more prominent threat in neural networks and the federated learning ar-
chitecture must split up the PDSs in different sets, for training, validation and
testing. Other metrics to measure the optimisation must also be implemented
and securely aggregated, to better analyse the training process. The current
architecture for regression must also be expanded in this way.

Yes, it is possible to optimise neural networks this way, but, neither central
training nor federated learning guarantees an optimal solution.
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7.2 Non-gradient models

We only discuss one non-gradient model which is popular in medicine due to
time-constraints. We focus on analysing the solution in the context of Personal
Data Stores and privacy preservation.

Decision Trees and Random Forests

Optimising random forests for horizontally-split data is a not commonly re-
searched topic [35]. Random forests iterate the creation of decision trees and
uses ensemble decision making to evaluate the results from all trees. So is it
possible to create a decision tree while preserving user-privacy? Xiao et al.
proposed a method to create a decision tree while keeping the privacy of data-
owners [58]. It alters the ID3 algorithm which is normally used to optimise
decision trees centralised. The algorithm and its federated counterpart uses en-
tropy and information gain to choose the correct attribute to split the data over.
We can calculate the information gain from the entropy. ID3 uses entropy to
build its tree. The entropy is calculated with equation 7.3, and consequently the
information gain is calculated with equation 7.4.

Entropy(S) = −
ntarget

∑
i=1

pi ∗ log2(pi) (7.3)

In f Gain(S, A) = Entropy(S)− ∑
v∈values(A)

((|Sv|/|S|) ∗ Entropy(Sv)) (7.4)

ID3 calculates the entropy by calculating pi. This value is calculated by
summing the amount of samples of a certain target category i (e.g. positive or
negative) and dividing it by the total amount of samples in the dataset. Then
the information gain can be calculated by calculating the change in entropy
between the total dataset S and all the categories Sv of a certain attribute A.
This algorithm is repeated by splitting the original dataset into the categories of
the attribute that maximises Information Gain and process is repeated over the
resulting datasets. This attribute is also added to the tree.

It is possible to ask a PDS whether it is from a certain category, and secure
aggregation can sum the resulting responses privately, thus making it possible
to request pi. Both |Sv| and |S| can also be requested and aggregated the same
way. This algorithm is repeated by splitting the original dataset into the cate-
gories of the attribute that maximises Information Gain. But the central handler
does not know which PDSs belong to which category of the attribute, but this is
not a problem. Concurrent requests to the PDSs should incorporate the current
decision tree and a PDS only answers when it is supposed to. When it is not
supposed to, a response is still generated but this does not influence the algo-
rithm. Thus, the PDSs function as being one single server, pi is requested and
information gain can be calculated, which is needed for the decision tree to be
built.

51



Because the feedback of the PDSs is very limited, in some cases the values
of certain data stores may be estimates quite accurately. If the aggregate has an
extremely low or extremely high value, the certainty of all the PDSs in the group
belonging to respectively 0 or 1 increases. For example, if the aggregate is 0, it is
certain that all the included PDSs returned 0, even if it was masked. The same
holds if all PDSs returned 1. With continuous variables like the gradient values,
single updates cannot be estimated. Thus, this method cannot be deemed totally
private. And if we would apply mini-batch secure aggregation that we proposed
in section 6.2.7, the risk of data leakage increases.

So what does this mean for Random Forests? Multiple decision trees can be
generated over different subsets of the data. The process remains exactly the
same for two exceptions. The starting dataset for every decision tree is (slightly)
different. And the attribute selection process uses dropouts, meaning that some
attributes are excluded when calculating which attribute generates the highest
information gain. These methods may safely be implemented in the central
handler without any privacy issues. This is a short theoretical foundation to
semi-privately learn decision trees and random forests, and further practical
research should expose possible problems in efficiency.

A more popular topic in federated learning are Gradient Boosted Decision
Trees. Some published papers propose algorithms that can optimise Gradient
Boosted Decision Trees in a federated way [60, 33, 13]. This thesis is limited to
decision trees and random forests and GBDT will not be discussed further.
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Chapter 8

Conclusion

RQ1: How do we ensure data-privacy and model-privacy when creating
regression models trained with federated learning?

Literature research provided an answer to this research question, mainly ex-
plained in chapter 4. While literature provides different Federated Learning
solutions to optimise models such as regression models, those models do not
guarantee data-privacy and model-privacy per se. A widely accepted solution,
Secure Aggregation, proved to be a solution to keep the data and gradients
hidden from the server and other PDSs when parties are honest-but-curious.
Differential Privacy does not work in our case. It is possible to guarantee both
model-privacy and data-privacy when training regression models with data
from personal data stores by implementing the PrivFL architecture.

RQ2: How much do adaptive gradient and data standardisation improve
convergence?

In our preliminary experiments we tried to improve convergence as it was insuf-
ficient. We applied a slightly different implementation of Secure Scaling Oper-
ation 2.0 (see section 3.2.1) which is able to standardise the data. AdaGrad was
able to adapt the gradient to potentially improve convergence. While AdaGrad
only saw slight inconsistent improvements, standardisation was significantly
better.

RQ3: How well does our architecture approximate linear regression and
logistic regression while applying federated learning and preserving data-
privacy?

We have built our final architecture FedLinReg-v2 and FedLogReg-v2 as an at-
tempt to approximate linear and logistic regression respectively. It averages all
the gradients of personal data stores and updates the central model. For best
convergence, we used Secure Scaling Operation 2.0. For optimal data-privacy,
we implemented simple secure aggregation, a simpler version of secure aggre-
gation without possible dropouts.

We observed that coefficients may not be equal, but no large deviations in
fit and prediction scores have been measured. All loss differences are between
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0% and 0.33%. There is one exception where the model was able to separate the
data perfectly (TWOC-150). It did not percentually approximate the loss, but its
absolute difference is still negligible.

RQ4: How does a logistic regression model, trained via federated learning,
converge when using mini-batch updates?

Results showed that the convergence is insufficient when using a mini-batch in
every update step. Changing learning settings like the learning rate and number
of iterations can improve the convergence, but future research has to validate
this on other data as well.

RQ5: How does the amount of personal data stores influence computation
time?

The amount of personal data stores has a strong positive correlation with the
computation time, increasing linearly with the amount of PDSs in every secure
aggregation step. Computation-time can still be decreased by decreasing the
security requirements. This does not influence the convergence rate.

A weak positive correlation in computation time can be seen in the central
handler. Influence on the central handler is significantly less big. Calculation
time can only be decreased further when using mini-batch updates, but our
experiments do not guarantee good convergence under this setting.

RQ6: How can we privately optimise other types of models in a federated
way while preserving privacy?

Chapter 7 explains possible ways to optimise gradient descent models such as
regularised regression, support vector machines and artificial neural network. It
also elaborates how to theoretically optimise decision trees and random forests
by the application of federated analytics, i.e. privacy-preserving requests to the
data owners.

8.1 Advice for Personal Health Train

The Personal Health Train can successfully connect different Personal Data
Stores to train regression models. We propose to use our algorithm, which
includes the federated learning algorithm FedSGD, with a learning rate of 0.1
and 800 iterations, and request updates from all available PDSs at once. Use
SSO 2.0 (Secure Scaling Operation) to standardise the data stores, which drasti-
cally improves convergence-rate and is very efficient. This architecture may be
implemented without any privacy concerns, as absolutely no data is leaked as
long as the protocols stay intact. That means the receiving party does not have
to abide to any of the rules in the General Data Protection Regulation (GDPR)
concerning data-privacy as it does not receive any personal data.

Resulting coefficients from a regression model do not quantify the strength
of the relation and thus coefficients do not tell the complete story. Models
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trained over PDSs data without relationships can significantly deviate from a
centrally trained model, but as there are no relations, the resulting coefficients
and the regression model do not hold any value. It would be beneficial to create
extra implementations to monitor the learning process and analyse whether
regression is useful.

8.2 Future Work

As we mentioned, it is interesting to see the effect of stochastically updating
the model instead of using all the available PDSs, as this could potentially slow
down the convergence when the number of PDSs is extremely large. Stochastic
updating may be a possible solution in a situation when there are too many
PDSs that it becomes extremely slow to use them all at once. It is interesting to
see whether this proposed stochastic method improves convergence on larger
datasets and/or will damage the performance or computation-time on smaller
datasets.

Future research on federated statistics could calculate confidence intervals
for the coefficients privately. Although not a significant problem, the model
itself should never leak any private information, i.e. differential privacy. It is
interesting to see how this DP reduces final model performance and whether it
is suitable for isolated patient data.
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Appendix

CentrLogReg FedLogReg

cardiovasc

haberman

readmission

breast_cancer

Twoc-150

Table 8.1: The ROC curves from the corresponding AUC values in table 6.11
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SVM - no FL SVM - FL

rnd1

rnd2

rnd3

rnd4

Table 8.2: Training samples visualised with the trained SVMs; with and without
using the federated learning optimization technique; over 4 random datasets
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