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Abstract

The paper “Sorting with bialgebras and distributive laws” (Hinze et al., 2012) uses the
category-theoretical framework of bialgebraic semantics to define sorting algorithms.
However, the correctness of the algorithms isn’t verified. I use basic categorical semantics
of dependent types to define an intrinsically verified algorithm using the same framework.
Additionally, I show that the coalgebras of the codomain are well-founded, which resolves
an issue of the original construction.
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1 Introduction
Sorting algorithms are arguably some of the most studied creatures in computer science.
They are, after Euclid’s algorithm, one of the first algorithms learners of programming
are introduced to. As such, one might be forgiven to think that everything concerning
sorting has already been said. Yet sorting algorithms are a surprisingly useful test for
ideas that may have much broader reach and be far more abstract in their general case.
So, for example, an extremely concise formulation [13] of the Quicksort algorithm has
long been used as a poster child for the Haskell [22] programming language, and declar-
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ative programming in general. In this vein, this treatise is a case study of an approach
to intrinsically correct algorithm design using category theory, applied to sorting. We
begin by relating the origin of the particular category-theoretical construction we’ll be
using, “bialgebraic semantics”, and how it can be applied to algorithm design.

1.1 Background
The syntax of formal languages can be modeled via algebras for a functor, a notion from
category theory. Syntax is defined using a signature, an assignment of operator symbols
to arities. An example of syntax is the grammar of regular expressions for an alphabet
𝐴, which has the signature Σ = {∅ ∶ 0, 𝜀 ∶ 0, (literal𝑎 ∶ 0)𝑎∈𝐴, concat ∶ 2, | ∶ 2, ∗ ∶ 1}.
Regular expression terms and their interpretation as languages form algebras for the
functor: 𝑅(𝑋) = 1 +1+ 𝐴+ (𝑋 × 𝑋)+ (𝑋 × 𝑋)+ 𝑋. The initial algebra for this functor
is the set of closed terms.

The categorical dual to algebras, coalgebras, on the other hand, can be used to model
the behavior of systems. Universal coalgebra [24] is an approach of modeling many kinds
of transition systems via coalgebras. An example of transition systems are deterministic
finite automata for an alphabet 𝐴. They can be described as coalgebras for the functor
(−)𝐴 × 2 (where the (− × 2) encodes whether a state is accepting and (−)𝐴 encodes for
each letter which state to transition to).

In the seminal work [25] by Turi and Plotkin, the two notions are combined to de-
scribe SOS (structural operational semantics) specifications as distributive laws of syntax
over behavior functors. Bialgebraic semantics refers to the doubly unique morphism, by
initiality and finality, from the initial algebra for the syntax functor to the final coal-
gebra for the behavior functor lifted to bialgebras using a distributive law. This same
construction was used in [7] to define sorting algorithms.

To understand how this notion from semantics made it to algorithmics we need to
introduce some background on categorical algorithm design. The analog of syntax and
behavior functors in the field of functional programming language analysis are so-called
“base functors” for inductive and coinductive datatypes [4]. In the category Set of sets
and functions, the carrier 𝜇𝐹 of an initial algebra for a base functor 𝐹 models an inductive
datatype, which contains all finite trees “of shape” 𝐹. The carrier 𝜈𝐹 of a final coalgebra
for 𝐹 models a coinductive datatype, which contains both finite and infinite trees of
shape 𝐹. The well-known cons-list for elements of type 𝐴 e.g., can be modeled as the
carrier of the initial algebra of the base functor 𝐿(𝑋) = 1 + 𝐴 × 𝑋. In this context,
bialgebraic semantics can be used to define two morphisms, one by initiality and the
other by finality, from an inductive datatype 𝜇𝐹 to a coinductive datatype 𝜈𝐵, given a
distributive law 𝐹𝐵 ⇒ 𝐵𝐹.

1.2 Problem Statement and Contributions
Our goal is to define an intrinsically verified sorting algorithm. This involves encoding
the specification into the type of the program itself, i.e. the algorithm is a term in a
dependently typed language. By interpreting types dependent on values of a type 𝑋 as
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objects in the slice category Set/𝑋, we can use the techniques of categorical algorithm
design, in this case bialgebraic semantics, to define it.

In defining an intrinsically verified algorithm we follow the mantra “local steps carry
proofs of local properties, which extend to the desired global properties”. For datas-
tructures that should maintain some structural invariant, the respective mantra is “local
invariants of components extend to the global invariant”.

The prior work we’re building on top of is the paper “Sorting with bialgebras and
distributive laws”[7]. There, sorting algorithms are defined using a distributive law (the
local step) of the list base functor 𝐿 over an “ordered” list base functor 𝑂 (the local
components). However, it comes with two caveats: The first is that the output list is
no longer guaranteed to be finite. The second is that the correctness of the algorithm is
unverified. By defining a dependently-typed version of their algorithm we extend their
framework, resulting in the following novel contributions:

• We arrive at an intrinsically verified sorting algorithm by verifying only a local
step (the distributive law), and proving that local properties of the base functors
extend to the requisite global properties in the carriers of their initial algebra/final
coalgebra (Sections 4 and 5).

• After locally encoding the properties of sorting in its type, there is exactly one
such distributive law so we are arguably getting proven correct sorting “for free”
(Section 5).

• We define the base functor of the output type in such a way that its coalgebras are
well-founded, which makes the carrier of its final coalgebra finite lists (Section 4).
This ensures that the output list of the sorting algorithm is finite.

2 Overview
We begin with the fundamentals of the specification of sorting. A sorting algorithm
is a function from a list of elements of some total order (𝐴, ≤) to again a list of such
elements.

The first rule of sorting is: The output list must be ordered, i.e. all pairs of consecutive
elements are related to each other via the ordering relation ≤.

The second rule of sorting is: The output list is a permutation of the input list, i.e.
sorting preserves elements. Note that this property relates the output to the input,
which is not the case for the first property.

As our goal is to define an intrinsically verified algorithm using bialgebraic semantics,
we need to break these two global properties down into local properties of the base
functors 𝐿 and 𝑂 and the distributive law, 𝜎∶ 𝐿𝑂 ⇒ 𝑂𝐿, between them. The map we
will obtain is of type 𝜇𝐿 → 𝜈𝑂, where 𝜇𝐿 is the carrier of the initial algebra for the
base functor of the unordered list, and 𝜈𝑂 the carrier of the final coalgebra for the base
functor of the ordered list. In the original construction used in [7], 𝐿 and 𝑂 are just
aliases for the list base functor in Set, (1 + 𝐴 × –). This means the resulting sorting
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algorithm has type 𝐴∗ → 𝐴∗ + 𝐴ℕ, i.e. the output type is lists or infinite streams1.
Both to encode the structural invariants needed for intrinsic verification and to ensure
the final coalgebra of the ordered list base functor is well-founded, we need to work in a
category with more structure than Set.

2.1 Element preservation
We start with examining the element preservation property, since the way we encode it
gives the basis on top of which we define the orderedness property. It can be expressed
globally as the requirement that the following diagram commutes:

List of 𝐴 Ordered List of 𝐴

Multiset of 𝐴
elements

sort

elements

This expresses that the mapping of a list to the multiset of its elements is invariant
under sorting. A key insight of this thesis was to realize that this diagram is a morphism
in the slice category Set/(Multiset of 𝐴), and that working in this slice category allows
us to express all the properties we are interested in: element-preservation, orderedness,
and wellfoundedness of the final coalgebra for the ordered list base functor.

We will write ℳ(𝐴) for “Multiset of 𝐴” in the following and use some notation and
terminology introduced in Section 3.

To encode the element preservation property locally, that is as a property of the
distributive law 𝐿𝑂 ⇒ 𝑂𝐿, we need to express element indexing locally, i.e. that the
base functors map to their elements, assuming their recursive arguments do. This means
that, given an argument (𝑋, element-index), its image under the base functor, which
should have (1 + 𝐴 × 𝑋) as its object component, should map to its respective elements
in ℳ(𝐴).

Clearly, 1 should map to the empty multiset. The pair (𝑎, 𝑥) ∶ 𝐴 × 𝑋 should map to
the insertion of 𝑎 into the multiset index of 𝑥. We can express this as a definition sketch
for the base functor 𝐿 in Set/ℳ(𝐴):

𝐿(𝑋, element-index) ≔ (1+𝐴×𝑋, [empty multiset, 𝜆(𝑎, 𝑥). insert(𝑎, element-index(𝑥))])

2.2 Orderedness
Having established how we can locally express element preservation, it remains to express
the orderedness property in addition to it in the base functor for ordered lists.

We can locally ensure orderedness by maintaining it as a structural invariant: we allow
prepending an element to a list only if it is lesser than the head of the list to prepend to,
or that list is the empty list. The final coalgebra of the base functor should then give us
ordered lists (a fact which we verify in Section 4.3). We only necessarily need to index
lists by their head, so that we can check that the element to prepend is smaller than

1See Theorem 3.8
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the head of the list to prepend to. However, since in the construction so far we index
by the entire multiset of the list’s elements, and not only the head, we need to suitably
extend the relation to that. The generalization of the requirement that the element to
be prepended be smaller than the head of the list it is to be prepended to is that it be
smaller than all the elements of that list, i.e. it is a lower bound to it. This is equivalent
to the previous formulation due to the transitivity of ≤.

Combined with the element-indexing property, this adds up to the following definition
sketch for the base functor 𝑂 for ordered lists (the slice map is the same as the one in
the definition sketch of 𝐿 so we elide it here):

𝑂(𝑋, element-index) ≔ (1 + {(𝑎, 𝑥) ∈ 𝐴 × 𝑋 ∣ is-lower-bound(𝑎, element-index(𝑥))}, … )

We proceed to work out the details of how exactly to define base functors that satisfy
the definition sketches outlined above in a compositional way in Section 4. First though,
we interleave a section on background to give the requisite preliminaries. A reader
sufficiently familiar with the subject matter may choose to skip ahead to the Section 4
and refer back to Section 3 as needed.

3 Background, Definitions, Notation & Terminology
Over the course of this entire treatise we will be considering lists of elements from some
set 𝐴 on which there exists a linear (total) order ≤. We will make it clear when we are
using this particular set 𝐴 and when we are referring to some arbitrary set 𝐴.

We make a brief note on notation here: Cartesian products are denoted 𝑋 × 𝑌 with
projections 𝜋𝑙 ∶ 𝑋×𝑌 → 𝑋, 𝜋𝑟 ∶ 𝑋×𝑌 → 𝑌, and tupling ⟨𝑓, 𝑔⟩ ∶ 𝑍 → 𝑋×𝑌 for 𝑓∶ 𝑍 → 𝑋
and 𝑔∶ 𝑍 → 𝑌.

Coproducts are denoted 𝑋 + 𝑌 with inclusions inl ∶ 𝑋 → 𝑋 + 𝑌, inr ∶ 𝑌 → 𝑋 + 𝑌, and
cotupling [𝑓, 𝑔] ∶ 𝑋 + 𝑌 → 𝑍 for 𝑓∶ 𝑋 → 𝑍 and 𝑔∶ 𝑌 → 𝑍.

Restrictions are denoted 𝑓|𝑍 for 𝑓∶ 𝑋 → 𝑌 and 𝑍 ⊆ 𝑋. Functions that are both
restrictions and corestrictions are denoted 𝑓 ∣ 𝑍 → 𝐴 for 𝑓∶ 𝑋 → 𝑌, 𝑍 ⊆ 𝑋 and 𝐴 ⊆ 𝑌.

For categorical constructions that have both object- and morphism components, such
as a functor 𝐹∶ 𝒞 → 𝒟, we use subscript 0 to refer specifically to their object- and
subscript 1 to refer to their morphism component, e.g. 𝐹0 ∶ 𝒞0 → 𝒟0, 𝐹1 ∶ 𝒞1 → 𝒟1. We
make occasional use of the Structure Identity Principle [1], in short, “isomorphic math-
ematical structures are structurally identical; i.e. have the same structural properties”.
This means that we may choose to replace objects by others which are isomorphic to
them, without explicitly conjugating by the isomorphism.

Definition 3.1. We define the multiset on some set 𝐴 as

ℳ(𝐴) ≔ {𝜑∶ 𝐴 → ℕ ∣ supp(𝜑) is finite},

where supp(𝜑) ≔ {𝑎 ∈ 𝐴 ∣ 𝜑(𝑎) ≠ 0} is called the support of 𝜑.
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Notation 3.1.1. We write a multiset as a formal sum 𝑚1|𝑎1⟩ + ⋯ + 𝑚𝑛|𝑎𝑛⟩, where
𝑚𝑖 ≔ 𝜑(𝑎𝑖) ∈ ℕ is called the multiplicity of the element 𝑎𝑖. The join of two multisets
𝜑 and 𝜓 is defined as 𝜑 ∪ 𝜓 ≔ 𝜆𝑥∶ 𝑋. 𝜑(𝑥) + 𝜓(𝑥). We denote the multiset with empty
support with ∅. Multiset membership is defined as 𝑥 ∈ 𝜑 ≔ 𝜑(𝑥) ≠ 0. We denote
multisets with nonempty support with ℳ+(𝐴) and note that ℳ(𝐴) ≃ 1 + ℳ+(𝐴).
Singleton inclusion 𝜂𝐴 ∶ 𝐴 → ℳ+(𝐴) is defined by 𝜂𝐴(𝑎) ≔ 1|𝑎⟩.

We refer to [9, Definition 4.1.1] as a reference for the above definition and notation.

3.1 Constructions in the Slice Category
Definition 3.2 (Slice category). Given a category 𝒞 and an object 𝐶∶ 𝒞, the slice
category 𝒞/𝐶 has:

• As objects pairs (𝑋, 𝑔) where 𝑋∶ 𝒞 and 𝑔∶ 𝑋 → 𝐶.

• As morphisms (𝑋1, 𝑔1) → (𝑋2, 𝑔2) 𝒞-maps 𝑓∶ 𝑋1 → 𝑋2 s.t. 𝑔2 ∘ 𝑓 = 𝑔1, i.e. the
following diagram commutes:

𝑋1 𝑋2

𝐶
𝑔1

𝑓

𝑔2

Remark. We refer to the morphism components of slice objects as “slice maps”, while
we refer to the arrows between slice objects as “slice morphisms”.

We may refer to a slice object (𝑋, 𝑔) by just its slice map 𝑔.
Objects 𝑔 of Set/𝑋 are equivalent to 𝑋-indexed families {𝐴𝑥}𝑥∈𝑋 of sets, where a

particular set 𝐴𝑥 corresponds to the inverse image of 𝑥 under 𝑔. For example, vectors of
element type 𝐴 can be viewed equivalently as the family of length-indexed lists {𝐴𝑛}𝑛∈ℕ
or as the object (𝐴∗, length) in Set/ℕ. This justifies our use of “indexed” when referring
to slice objects.

We now introduce the base change functor and its left and adjoint. They will be
used in Section 4.1. The reader need not be familiar with the concept of adjunction;
throughout this treatise we only use one fact about left adjoints, namely that they
preserve colimits [16]. The concept of pullback should however be familiar—should it
not be we refer to e.g. [20].

Definition 3.3 (Base change functor). For 𝑓∶ 𝑋 → 𝑌 there is an induced functor:

𝑓∗ ∶ Set/𝑌 → Set/𝑋

of slice categories. Its definition on objects (𝐴, 𝑔) is given by the pullback of 𝑔 along 𝑓:

𝑋 ×𝑌 𝐴 𝐴

𝑋 𝑌

𝜋𝑙|𝑋×𝑌𝐴

𝜋𝑟|𝑋×𝑌𝐴

𝑔

𝑓

𝑓∗
0(𝑔) ≔ 𝜋𝑙|𝑋×𝑌𝐴
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On morphisms, it is defined using the universal property of the pullback: A morphism
ℎ∶ (𝐴, 𝑔1) → (𝐵, 𝑔2) in Set/𝑌 is mapped to the the unique morphism from the span
(𝑋 ×𝑌 𝐴, ℎ ∘ 𝜋𝑟|𝑋×𝑌𝐴, 𝑓∗(𝑔1)) into the pullback 𝑋 ×𝑌 𝐵:

𝐴 𝑋 ×𝑌 𝐴

𝐵 𝑋 ×𝑌 𝐵

𝑌 𝑋

ℎ

𝑔1

1
𝜋𝑟|𝑋×𝑌𝐴

𝑓∗(𝑔1)

𝑔2

𝜋𝑟|𝑋×𝑌𝐵

𝑓∗(𝑔2)

𝑓

𝑓∗
1(ℎ) ≔ 1

To obtain the unique morphism from (𝑋 ×𝑌 𝐴, ℎ ∘ 𝜋𝑟|𝑋×𝑌𝐴, 𝑓∗(𝑔1)) into the pullback
𝑋 ×𝑌 𝐵, we need to prove that it is a cone for the cospan (𝑌 , 𝑓, 𝑔2), i.e. 𝑓 ∘ 𝑓∗(𝑔1) =
𝑔2 ∘ (ℎ ∘ 𝜋𝑟|𝑋×𝑌𝐴):

𝑓 ∘ 𝑓∗(𝑔1) = 𝑔1 ∘ 𝜋𝑟|𝑋×𝑌𝐴 (𝑋 ×𝑌 𝐴 is the pullback for 𝑓 and 𝑔1)
= 𝑔2 ∘ ℎ ∘ 𝜋𝑟|𝑋×𝑌𝐴 (ℎ∶ 𝑔1 → 𝑔2 is a slice morphism, so 𝑔1 = 𝑔2 ∘ ℎ)

𝑓∗ preserves identities and composition by uniqueness.

Definition 3.4 (Dependent sum functor along 𝑓). The dependent sum along 𝑓∶ 𝑋 → 𝑌,
𝑓! ∶ Set/𝑋 → Set/𝑌 is a functor, defined on objects as:

(𝑋, ℎ) ↦ (𝑋, 𝑓 ∘ ℎ)

acting as postcomposition.

Lemma 3.1. 𝑓! is left adjoint to 𝑓∗

Proof. We refer to [17].

Lemma 3.2. 𝑓∗ has a right adjoint 𝑓∗.

Proof. We refer to [17].

Lemma 3.3. The categorical product in Set/𝑋 of two objects (𝐴, 𝑔1), (𝐵, 𝑔2) is given by
the pullback 𝐴 ×𝑋 𝐵:

𝐴 ×𝑋 𝐵 𝐵

𝐴 𝑋

𝜋𝑙|𝐴×𝑌𝐵

𝜋𝑟|𝐴×𝑋𝐵

𝑔2

𝑔1

With slice map equivalently 𝑔2 ∘ 𝜋𝑟|𝐴×𝑋𝐵 or 𝑔1 ∘ 𝜋𝑙|𝑋×𝑌𝐴.

Proof. We refer to [21, Exercise 48].
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Lemma 3.4. Let (𝐴, 𝑔) ∶ Set/𝑋. Then the functor (𝑔 ×𝑋 –) ∶ Set/𝑋 → Set/𝑋 preserves
colimits.

Proof. This follows from the fact that (𝑔 ×𝑋 –) is equivalent to the composition of two
functors: the dependent sum along 𝑔 after the base change along 𝑔, i.e. 𝑔 ×𝑋 – ≃ 𝑔! ∘ 𝑔∗.
Since these are both left adjoints their composition is likewise a left adjoint, and as such
preserves colimits.

3.2 Algebra and coalgebra
We briefly recall the definitions and some of the properties of (co)algebras. For details,
see e.g. [11]. We also define some examples and prove some theorems that we will refer
back to in Section 4.

3.2.1 Algebra

Given some endofunctor 𝐹 on a category 𝒞:

Definition 3.5. An 𝐹-algebra is an object 𝑋 in 𝒞 together with a map 𝑔∶ 𝐹𝑋 → 𝑋.
An 𝐹-algebra morphism from 𝑔∶ 𝐹𝑋 → 𝑋 to ℎ∶ 𝐹𝑌 → 𝑌 is a map 𝑓∶ 𝑋 → 𝑌 s.t. the
following diagram commutes:

𝐹𝑋 𝐹𝑌

𝑋 𝑌

𝐹𝑓

𝑔 ℎ
𝑓

If there is an initial 𝐹-algebra (𝜇𝐹 , in), then for any algebra (𝑋, 𝑔) the unique algebra
morphism from “in” to 𝑔 is called the inductive extension of 𝑔 and denoted ⦅𝑔⦆:

𝐹𝜇𝐹 𝐹𝑋

𝜇𝐹 𝑋

in

𝐹⦅𝑔⦆

𝑔

⦅𝑔⦆

Definition 3.6. Consider the following sets:

𝐴𝑛 ≔ {⟨𝑎0, …, 𝑎𝑛−1⟩ ∣ 𝑎𝑖 ∶ 𝐴}
𝐴+ ≔ ∑

𝑛∈ℕ>0

𝐴𝑛

𝐴∗ ≔ ∑
𝑛∈ℕ

𝐴𝑛

𝐴𝑛 is the type of lists of elements of type 𝐴 of length 𝑛, 𝐴+ nonempty lists and 𝐴∗ all
lists. We note that 𝐴∗ ≃ 1 + 𝐴+ and implicitly include 1 or 𝐴+ in 𝐴∗. We define the
function:

cons ∶ 𝐴 × 𝐴∗ → 𝐴+

cons(𝑎, 𝛼 = ⟨𝑎0, …, 𝑎𝑛−1⟩) ≔ ⟨𝑎, 𝑎0, …, 𝑎𝑛−1⟩
which prefixes 𝑎 to 𝛼.
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Theorem 3.5. (𝐴∗, [⟨⟩, cons]) is the initial algebra for the functor (1 + 𝐴 × –).

Proof. Let (𝑋, [𝑏, 𝑛]) be some (1 + 𝐴 × –)-algebra. Then we must show there is a unique
algebra morphism 𝑓 from [⟨⟩, cons] to [𝑏, 𝑛], s.t. the following diagram commutes:

1 + 𝐴 × 𝐴∗ 1 + 𝐴 × 𝑋

𝐴∗ 𝑋

1+𝐴×𝑓

[⟨⟩,cons] [𝑏,𝑛]

∃𝑓!

The commutativity of the above is, after chasing elements of type 1 + 𝐴 × 𝐴∗ through
it, equivalent to the equalities:

𝑓(⟨⟩) = 𝑏(⋆)
𝑓(cons(𝑎, 𝑟)) = 𝑛(𝑎, 𝑓(𝑟))

We take 𝑓 to be the unique solution to this system of recursive equations.

We use the initiality just proven to define a function which maps a list to the multiset
of its elements:

Definition 3.7. Let elt ≔ [∅, 𝜆(𝑎, 𝑟). 𝜂𝐴(𝑎)∪𝑟] be the algebra which maps 1 to the empty
multiset and 𝐴×𝑋 to multiset insertion (singleton inclusion combined with union). Then
elt uniquely extends to a (1 + 𝐴 × –)-algebra map elts ≔ ⦅elt⦆ ∶ 𝐴∗ → ℳ(𝐴) which maps
a list to the multiset of its elements.

1 + 𝐴 × 𝐴∗ 1 + 𝐴 × ℳ(𝐴)

𝐴∗ ℳ(𝐴)

[⟨⟩,cons]

1+𝐴×⦅elt⦆

elt=[∅,∪∘(𝜂×id)]

elts=⦅elt⦆

Remark. “∪ ∘ (𝜂𝐴 × id)” is a pointfree way of writing 𝜆(𝑎, 𝑟). 𝜂𝐴(𝑎) ∪ 𝑟.

3.2.2 Coalgebra

Given some endofunctor 𝐵 on a category 𝒞:

Definition 3.8. A 𝐵-coalgebra is an object 𝑋 in 𝒞 together with a map 𝑔∶ 𝑋 → 𝐵𝑋.
A 𝐵-coalgebra morphism from 𝑔∶ 𝑋 → 𝐵𝑋 to ℎ∶ 𝑌 → 𝐵𝑌 is a map 𝑓∶ 𝑋 → 𝑌 s.t. the
following diagram commutes:

𝑋 𝑌

𝐵𝑋 𝐵𝑌

𝑔

𝑓

ℎ
𝐵𝑓
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If there is a final 𝐵-coalgebra (𝜈𝐵, out), then for any algebra (𝑋, 𝑔) the unique coalgebra
morphism from 𝑔 to “out” is called the coinductive extension of 𝑔 and denoted 〖𝑔〗:

𝑋 𝜈𝐵

𝐵𝑋 𝐵𝜈𝐵

𝑔

〖𝑔〗

out
𝐵〖𝑔〗

Example 3.1. Consider the type of streams of elements of type 𝐴, 𝐴ℕ and the functions:

hd ∶ 𝐴ℕ → 𝐴
hd(𝑎0, 𝑎1, … ) ≔ 𝑎0

tl ∶ 𝐴ℕ → 𝐴ℕ

tl(𝑎𝑖)𝑖∈ℕ ≔ (𝑎𝑖+1)𝑖∈ℕ

Theorem 3.6. (𝐴ℕ, ⟨hd, tl⟩) is the final coalgebra for the functor (𝐴 × –).

Proof. Let (𝑋, ⟨o𝑋, tr𝑋⟩) be some (𝐴×–)-coalgebra. Then we must show there is a unique
coalgebra morphism 𝑓 from ⟨o𝑋, tr𝑋⟩ to ⟨hd, tl⟩, s.t. the following diagram commutes:

𝑋 𝐴ℕ

𝐴 × 𝑋 𝐴 × 𝐴ℕ

∃!𝑓

⟨o𝑋,tr𝑋⟩ ⟨hd,tl⟩

𝐴×𝑓

The commutativity of the above is, after chasing an element 𝑥 ∈ 𝑋 through it, equiv-
alent to the equalities:

hd(𝑓(𝑥)) = o𝑋(𝑥)
tl(𝑓(𝑥)) = 𝑓(tr𝑋(𝑥))

We claim the unique solution to the above equations is 𝑓 defined as:

𝑓(𝑥)(𝑖) ≔ o𝑋(tr𝑖
𝑋(𝑥))

We prove this by induction on 𝑖:

IB. 𝑓(𝑥)(0) = hd(𝑓(𝑥)) = o𝑋(𝑥) = o𝑋(tr0
𝑋(𝑥)).

IS. 𝑓(𝑥)(𝑖 + 1) = tl(𝑓(𝑥))(𝑖) = 𝑓(tr𝑋(𝑥))(𝑖) IH= o𝑋(tr𝑖
𝑋(tr𝑋(𝑥))) = o𝑋(tr(𝑖+1)

𝑋 (𝑥)).

The next final coalgebra we want to define is for the functor (1 + 𝐴 × –). In this we
follow roughly the structure of [9, Proposition 1.2.1]. The carrier of the final coalgebra
will prove to be the type of either lists or streams. To define the morphism from some
(1 + 𝐴 × –)-coalgebra (𝑋, 𝑐) to the final coalgebra, we make a distinction on the number

12



of iterations 𝑐 takes to reach 1. This number is in ℕ ≔ ℕ + {𝜔}, depending on whether
1 is reached or not. We define an iterable variant of 𝑐, 𝑐𝑛 ∶ 𝑋 → 1 + 𝑋 as:

𝑐0(𝑥) ≔ inr(𝑥)

𝑐𝑛+1(𝑥) ≔ {
inl(⋆) 𝑐𝑛(𝑥) = inl(⋆)
𝑐(𝑦) 𝑐𝑛(𝑥) = inr(𝑦)

(1)

We introduce the following lemma:

Lemma 3.7. Let (𝑋, 𝑐) be a (1 + 𝐴 × –)-coalgebra. Consider the following sets:

𝑋0 ≔ {𝑥 ∈ 𝑋 ∣ 𝑐(𝑥) = inl(⋆)}
𝑋𝑛 ≔ {𝑥 ∈ 𝑋 ∣ ∀𝑖 ≤ 𝑛. 𝑐𝑖(𝑥) ≠ inl(⋆) ∧ 𝑐𝑛+1(𝑥) = inl(⋆)}
𝑋𝜔 ≔ {𝑥 ∈ 𝑋 ∣ ∀𝑖. 𝑐𝑖(𝑥) ≠ inl(⋆)}
𝑋∗ ≔ ∑

𝑛∈ℕ
𝑋𝑛

𝑋+ ≔ ∑
𝑛∈ℕ>0

𝑋𝑛

Then 𝑋 can be split into the disjoint sets: 𝑋 ≃ 𝑋0 + 𝑋+ + 𝑋𝜔 and 𝑐 is equivalent, up
to the isomorphism 1 + 𝐴 × 𝑋 ≃ 1 + 𝐴 × 𝑋∗ + 𝐴 × 𝑋𝜔, to the sum of the following
(co)restrictions:

𝑐 ≃ (𝑐 ∣ 𝑋0 → 1) + ∑
𝑛∈ℕ>0

(𝑐 ∣ 𝑋𝑛 → 𝐴 × 𝑋𝑛−1) + (𝑐 ∣ 𝑋𝜔 → 𝐴 × 𝑋𝜔)

As functions into a product, we may decompose 𝑐|𝑋𝑛
and 𝑐|𝑋𝜔

into ⟨o𝑋𝑛
, tr𝑋𝑛

⟩ and
⟨o𝑋𝜔

, tr𝑋𝜔
⟩, respectively.

Proof. We omit the proof that 𝑋 ≃ 𝑋0 + 𝑋+ + 𝑋𝜔. We show the (co)restrictions are
well-defined:

1. 𝑐 ∣ 𝑋0 → 1: By definition.

2. 𝑐 ∣ 𝑋𝑛 → 𝐴 × 𝑋𝑛−1: By reindexing.

3. 𝑐 ∣ 𝑋𝜔 → 𝐴 × 𝑋𝜔: By definition.

We are now ready to define the final coalgebra for (1 + 𝐴 × –):

Example 3.2. Consider the type of both streams and lists 𝐴∞ ≔ 𝐴∗ + 𝐴ℕ and the
functions:

hd+ ∶ 𝐴+ → 𝐴
hd+(cons(𝑎, 𝑟)) ≔ 𝑎
tl+ ∶ 𝐴+ → 𝐴∗

tl+(cons(𝑎, 𝑟)) ≔ 𝑟
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Theorem 3.8. ((𝐴∞ ≃ 1 + 𝐴+ + 𝐴ℕ), id + ⟨hd+, tl+⟩ + ⟨hd, tl⟩) is the final coalgebra
for the functor (1 + 𝐴 × –).

Proof. Let (𝑋, 𝑐) be some (1 + 𝐴 × –)-coalgebra. Then we must show there is a unique
coalgebra morphism 𝑓 from 𝑐 to id+⟨hd+, tl+⟩ + ⟨hd, tl⟩. We use Lemma 3.7 to rewrite 𝑐
as the sum 𝑐|𝑋0

+ ∑𝑛∈ℕ>0
𝑐|𝑋𝑛

+ 𝑐|𝑋𝜔
. To show that there exists a unique morphism 𝑓,

it suffices to construct it as the direct product of a family of unique morphisms, namely
𝑓 = (𝑓0 ∶ 𝑋0 → 1) + ∑𝑛∈ℕ>0

(𝑓𝑛 ∶ 𝑋𝑛 → 𝐴𝑛) + (𝑓𝜔 ∶ 𝑋𝜔 → 𝐴ℕ), such that the following
diagrams commute:

𝑋0 1

1 1

𝑓0

𝑐∣𝑋0 id

id

𝑋𝑛 𝐴𝑛

𝐴 × 𝑋𝑛−1 𝐴 × 𝐴𝑛−1

𝑓𝑛

⟨o𝑋𝑛,tr𝑋𝑛⟩ ⟨hd+,tl+⟩

id×𝑓𝑛−1

𝑋𝜔 𝐴ℕ

𝐴 × 𝑋𝜔 𝐴 × 𝐴ℕ

𝑓𝜔

⟨o𝑋𝜔,tr𝑋𝜔⟩ ⟨hd,tl⟩

id×𝑓𝜔

𝑓𝜔 is the same as the unique morphism of Theorem 3.6. We prove by induction on 𝑛
that all the 𝑓𝑛 exist and are unique:

IB. Clearly 𝑓0 is unique as the arrow to the terminal object 1, and has type 𝑋0 → 1.

IS. 𝑓𝑛 making the above diagram commute means that:

hd+(𝑓𝑛(𝑥)) = o𝑋𝑛
(𝑥)

tl+(𝑓𝑛(𝑥)) = 𝑓𝑛−1(tr𝑋𝑛
(𝑥))

We then define 𝑓𝑛 as the unique solution of this set of equations.

4 Base Functors for (un)ordered lists and their (co)initial
(co)algebras

In this section we define base functors in Set/ℳ(𝐴) that encode the local versions of
the properties of element indexing and orderedness, and show that these local properties
extend to the corresponding global properties in the initial algebra of unordered lists
and the final coalgebra of ordered lists respectively.

In Section 4.1 we are concerned with defining base functors that encode the desired
local properties. In Section 4.2 we show that for unordered lists, local element-indexing
extends to global element-indexing in the initial algebra. In Section 4.3 we show that
both element-indexing and orderedness extend to the respective global properties in the
final coalgebra.

4.1 Base functors
Having introduced the requisite background, we can rephrase the definition sketches
from Section 2.1 as:

𝐿(𝑋, 𝑔) = (1 + 𝐴 × 𝑋, [∅, ∪ ∘ (𝜂𝐴 × 𝑔)]) (2)
𝑂(𝑋, 𝑔) = (1 + {(𝑎, 𝑥) ∈ 𝐴 × 𝑋 ∣ ∀𝑒 ∈ 𝑔(𝑥). 𝑎 ≤ 𝑒}, [∅, ∪ ∘ (𝜂𝐴 × 𝑔)]) (3)
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We recall that the base functor for lists in Set is (1 + 𝐴 × –). We want to define the
base functors in Set/ℳ(𝐴) in a compositional way, i.e. lift the constituent components
1, +, 𝐴, and × individually from Set to Set/ℳ(𝐴). This will allow for a compositional
definition of the distributive law in Section 5.3 and allows us to use existing categorical
constructions with known properties in defining the components.

We begin by lifting those that are the same for both functors from Set to Set/ℳ(𝐴)
s.t. they are indexed by their elements.

Definition 4.1 (Lifting 1 to Set/ℳ(𝐴)). Let ̂1 ≔ (1, ∅), where ∅∶ 1 → ℳ(𝐴) is the
generalized element [18] ∅ ∈ ℳ(𝐴).

Definition 4.2 (Lifting 𝐴 to Set/ℳ(𝐴)). Let ̂𝐴 ≔ (𝐴, 𝜂𝐴), where 𝜂𝑋 ≔ 𝜆(𝑥∶ 𝑋). 1|𝑥⟩,
i.e. the function that sends an element to the singleton multiset.

Definition 4.3. Let +∶ Set2 → Set be the functor that sends objects to their coproduct
in Set. Then there is a functor ⊕∶ (Set/ℳ(𝐴))2 → Set/ℳ(𝐴) , defined on objects as:

((𝑋, 𝑔), (𝑌 , ℎ)) ↦ ((𝑋 +0 𝑌 ), [𝑔, ℎ])

And on morphisms as (𝑓1, 𝑓2) ↦ 𝑓1 +1 𝑓2.
The fact that it is a functor follows from the interaction laws of sum and cotupling.

Lemma 4.1. ⊕ is the coproduct in Set/ℳ(𝐴).

Proof. Consider two objects (𝑋, 𝑔1), (𝑌 , 𝑔2) in Set/ℳ(𝐴). Consider some target object
(𝑍, 𝑔3) and slice morphisms 𝑓1 ∶ (𝑋, 𝑔1) → (𝑌 , 𝑔3), 𝑓2 ∶ (𝑌 , 𝑔2) → (𝑍, 𝑔3). We claim
that the unique morphism from the coproduct in Set, [𝑓1, 𝑓2] ∶ 𝑋 + 𝑌 → 𝑍 is also the
unique slice morphism of from (𝑋, 𝑔1)⊕(𝑌 , 𝑔2) = (𝑋 +𝑌 , [𝑔1, 𝑔2]) to (𝑍, 𝑔3). Uniqueness
follows from its uniqueness in Set; thus it remains to show that it is a slice morphism,
i.e. 𝑔3 ∘ [𝑓1, 𝑓2] = [𝑔1, 𝑔2]. This follows from cotupling laws and from the fact that 𝑓1, 𝑓2
are slice morphisms: 𝑔3 ∘ [𝑓1, 𝑓2] = [𝑔3 ∘ 𝑓1, 𝑔3 ∘ 𝑓2] = [𝑔1, 𝑔2].

𝑋 𝑌

𝑋 + 𝑌

ℳ(𝐴) 𝑍

inl

𝑓1

𝑔1

inr

𝑓2

𝑔2

[𝑓1,𝑓2][𝑔2,𝑔3]

𝑔3

It now remains to lift the product. In the definition sketch (2) we see that the slice
maps of its arguments, (𝐴, 𝜂𝐴) and (𝑋, 𝑔), should be combined via ∪.

One construction which satisfies this is the tensor product obtained by lifting the
monoidal category structure of (Set, ×, 1) to Set/ℳ(𝐴) via the monoid (ℳ(𝐴), ∪, ∅):
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Definition 4.4 (Set/ℳ(𝐴) is a monoidal category). Set/ℳ(𝐴) inherits the monoidal
structure of (Set, ×, 1) and ℳ(𝐴).

The tensor product ⊗ takes objects 𝑔∶ 𝑋 → ℳ(𝐴), ℎ∶ 𝑌 → ℳ(𝐴) to the morphism
𝑋 × 𝑌

𝑔×ℎ
−−→ ℳ(𝐴) × ℳ(𝐴)

∪
−→ ℳ(𝐴), and the unit is given by ̂1.

Remark. This is a known construction from topos theory, see [19, Example 2.2].
To show that the tensor product – ⊗ – is a functor (Set/ℳ(𝐴))2 → Set/ℳ(𝐴), we

factor it into the composition of two functors:

Definition 4.5 (Induced product functor). Let ×∶ Set2 → Set be the functor that
sends objects to their cartesian product. Then the induced product ⊠∶ (Set/ℳ(𝐴))2 →
Set/(ℳ(𝐴) × ℳ(𝐴)) is a functor, defined on objects as:

((𝑋, 𝑔), (𝑌 , ℎ)) ↦ ((𝑋 ×0 𝑌 ), 𝑔 ×1 ℎ)

and on morphisms as (𝑓1, 𝑓2) ↦ 𝑓1 ×1 𝑓2. The fact that it is a functor follows from the
functoriality of ×.

Secondly, we recall the dependent sum functor, acting as postcomposition (Defini-
tion 3.4). Using these two functors, the tensor product can be defined as the composi-
tion:

⊗ = ∪! ∘ ⊠

We now have all the components we need to define the base functor for unordered lists:

Definition 4.6. Let (𝑋, 𝑔) ∶ Set/ℳ(𝐴). We define a functor 𝐿∶ Set/ℳ(𝐴) → Set/ℳ(𝐴):

𝐿(𝑋, 𝑔) ≔ (1, ∅) ⊕ (𝐴, 𝜂𝐴) ⊗ (𝑋, 𝑔)

Remark.

• 𝐿 is a functor as a composition of functors: 𝐿 = ( ̂1 ⊕ –) ∘ ( ̂𝐴 ⊗ –).

• If we expand the definitions of the components we arrive at our original definition
sketch: 𝐿(𝑋, 𝑔) = (1 + 𝐴 × 𝑋, [∅, ∪ ∘ (𝜂𝐴 × 𝑔)]).

In the definition sketch of the ordered list base functor, the object component of the
product construction needs some additional structure. We proceed to define it in the
following section.

4.1.1 The ordered slice product

We now want to find a compositional definition for the product component of 𝑂, outlined
in its definition sketch (3). Given an argument (𝑋, 𝑔) ∶ Set/ℳ(𝐴), its object component
should be the set {(𝑎, 𝑥) ∈ 𝐴 × 𝑋 ∣ ∀𝑒 ∈ 𝑔(𝑥). 𝑎 ≤ 𝑒}. To separate the two arguments of
the product, we first lift the relation ≤ itself to ℳ(𝐴) × ℳ(𝐴).
Remark. In the following, we will abbreviate ℳ(𝐴) × ℳ(𝐴) as ℳ(𝐴)2.
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Definition 4.7 (Extending the relation). Consider the poset (𝐴, ≤). We extend ≤ to a
relation on ℳ(𝐴):

⊑≔ {(𝑙, 𝑚) ∈ ℳ(𝐴)2 ∣ ∀𝑥 ∈ 𝑙, ∀𝑥 ∈ 𝑚. 𝑥 ≤ 𝑦}

Notation 4.7.1. We may also represent the relation ⊑ by its inclusion in the binary
product ℳ(𝐴)2: ⊑

⊑
−→ ℳ(𝐴)2.

Remark. Note that ⊑ is no longer itself a poset, since ∀𝑎, 𝑏 ∈ ℳ(𝐴). 𝑎 ⊑ ∅ ⊑ 𝑏, which
breaks transitivity and antisymmetry. However, since the multiset on the left will in our
case always be a singleton, this doesn’t pose a problem.

Using our definition of ̂𝐴 ≔ (𝐴, 𝜂𝐴) the object component becomes {(𝑎, 𝑥) ∈ 𝐴 × 𝑋 ∣
𝜂𝐴(𝑎) ⊑ 𝑔(𝑥)}, which we generalize for arbitrary arguments (𝑋, 𝑔), (𝑌 , ℎ) as:

{(𝑥, 𝑦) ∈ 𝑋 × 𝑌 ∣ 𝑔(𝑥) ⊑ ℎ(𝑦)} (4)

This equation can be expressed as the pullback of 𝑔 × ℎ along ⊑ in Set:

(𝑋 × 𝑌 )×ℳ(𝐴)2 ⊑ ⊑

𝑋 × 𝑌 ℳ(𝐴)2

𝜋𝑟

𝜋𝑙

⌟
⊑

𝑔×ℎ

We verify that this pullback expresses equation (4) by performing a diagram chase:

((𝑥, 𝑦), 𝑐 ⊑ 𝑑) 𝑐 ⊑ 𝑑

(𝑥, 𝑦) (𝑔(𝑥), ℎ(𝑦)) = (𝑐, 𝑑)

𝜋𝑟

𝜋𝑙

⌟
⊑

𝑔×ℎ

We express this in more detail in the following lemma:

Lemma 4.2. The canonical representation of the pullback (𝑋×ℳ(𝐴)2𝑌 ), 𝑃 = {((𝑥, 𝑦), (𝑐, 𝑑)) ∣
(𝑥, 𝑦) ∈ 𝑋 ×𝑌 , (𝑐, 𝑑) ∈ ⊑, (𝑔(𝑥), ℎ(𝑦)) = (𝑐, 𝑑)} and the set 𝑄 = {(𝑥, 𝑦) ∈ 𝑋 ×𝑌 ∣ 𝑔(𝑥) ⊑
ℎ(𝑦)} are isomorphic with 𝜋𝑙 ∣ 𝑃 → 𝑄 and ⟨id, 𝑔 × ℎ⟩ ∣ 𝑄 → 𝑃 the components of the
isomorphism.

Proof. We show that the (co)restrictions are well-defined. The fact that they are inverses
of each other follows by equality substitution.

⇒ We have ((𝑥, 𝑦), (𝑐, 𝑑)) ∈ 𝑃, i.e. (𝑐, 𝑑) ∈ ⊑ and (𝑔(𝑥), ℎ(𝑦)) = (𝑐, 𝑑). Therefore
𝜋𝑙((𝑥, 𝑦), (𝑐, 𝑑)) = (𝑥, 𝑦) ∈ 𝑄.

⇐ We have (𝑥, 𝑦) ∈ 𝑄 i.e. 𝑔(𝑥) ⊑ ℎ(𝑦). Then ⟨id, 𝑓 ×𝑔⟩(𝑥, 𝑦) = ((𝑥, 𝑦), (𝑓(𝑥), 𝑔(𝑦))) ∈
𝑃.
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Using this lemma, we use the set 𝑄 in place of the canonical representation 𝑃 as the
pullback 𝑋 ×ℳ(𝐴)2 𝑌 in the following.

By Lemma 3.3, the pullback in Set of 𝑔 × ℎ along ⊑ is the categorical product in
Set/ℳ(𝐴)2 of 𝑔 ⊠ ℎ and ⊑. We note that:

((𝑋, 𝑔) ⊠ (𝑌 , ℎ))×ℳ(𝐴)2 ⊑= ({(𝑥, 𝑦) ∈ 𝑋 × 𝑌 ∣ 𝑔(𝑥) ⊑ ℎ(𝑦)}, 𝑔 × ℎ)

Finally, we want to combine the slice maps of the arguments via ∪. We can again use
the dependent sum along ∪, ∪! ∶ Set/ℳ(𝐴)2 → Set/ℳ(𝐴) to do this. This finally leads
us to the definition of the ordered product functor:

Definition 4.8. Let (𝑋, 𝑔), (𝑌 , ℎ) ∶ Set/ℳ(𝐴). We define a functor ⋊∶ (Set/ℳ(𝐴))2 →
Set/ℳ(𝐴):

𝑔 ⋊ ℎ ≔ ∪!((𝑔 ⊠ ℎ)×ℳ(𝐴)2 ⊑)

Remark. The functoriality of ⋊ follows from the fact that it is a composition of functors:
⋊ = ∪! ∘ (–×ℳ(𝐴)2 ⊑) ∘ ⊠.

We can now define the base functor for ordered lists:

Definition 4.9. Let (𝑋, 𝑔) ∶ Set/ℳ(𝐴). We define a functor 𝑂∶ Set/ℳ(𝐴) → Set/ℳ(𝐴):

𝑂(𝑋, 𝑔) ≔ (1, ∅) ⊕ (𝐴, 𝜂𝐴) ⋊ (𝑋, 𝑔)

Remark.

• 𝑂 is a functor as a composition of functors: 𝑂 = ( ̂1 ⊕ –) ∘ ( ̂𝐴 ⋊ –).

• If we expand the definitions of the components we arrive at our original definition
sketch: 𝑂(𝑋, 𝑔) = (1 + {(𝑎, 𝑥) ∈ 𝐴 × 𝑋 ∣ 𝜂𝐴(𝑎) ⊑ 𝑔(𝑥)}, [∅, ∪ ∘ (𝜂𝐴 × 𝑔)]).

4.1.2 Distributivity of the slice products

Finally we prove that both ⊗ and ⋊ distribute over ⊕. We will use this property to
define functions in and out of composites involving these functors. We make many
backreferences to Section 3.1 here.

Lemma 4.3. Let (𝐴, 𝑔) ∶ Set/𝐷, (𝐵, ℎ1), (𝐶, ℎ2) ∶ Set/𝐸. Then

𝑔 ⊠ (ℎ1 ⊕ ℎ2) ≃ 𝑔 ⊠ ℎ1 ⊕ 𝑔 ⊠ ℎ1

Proof. We assume that this distributivity follows from a general category-theoretical
property but were regrettably unable to find one. Therefore we prove it manually. Since
we are claiming this is an isomorphism in the slice category, the components of the
isomorphism must be slice morphisms. If the components of a Set-isomorphism are slice
morphisms then the Set-isomorphism extends to a slice isomorphism; this follows from
the fact that the obvious forgetful functor 𝒰∶ Set/𝑋 → Set is conservative [10, p. 7].
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Thus the only proof obligation is to show that both components of the relevant Set-
isomorphism are slice morphisms. We write out the Set-isomorphism 𝐴 × (𝐵 + 𝐶) ≃
𝐴 × 𝐵 + 𝐴 × 𝐶:

≃𝑟 ∶ 𝐴 × (𝐵 + 𝐶) → 𝐴 × 𝐵 + 𝐴 × 𝐶
≃𝑟 (𝑎, inl(𝑏)) = inl(𝑎, 𝑏)
≃𝑟 (𝑎, inr(𝑐)) = inr(𝑎, 𝑐)

≃𝑙 ∶ 𝐴 × 𝐵 + 𝐴 × 𝐶 → 𝐴 × (𝐵 + 𝐶)
≃𝑙 (inl(𝑎, 𝑏)) = (𝑎, inl(𝑏))
≃𝑙 (inr(𝑎, 𝑐)) = (𝑎, inr(𝑐))

We claim its components, ≃𝑟 and ≃𝑙, are slice morphisms:

𝐴 × 𝐵 + 𝐶 𝐴 × 𝐵 + 𝐴 × 𝐶

𝐷 × 𝐸
𝑔×[ℎ1,ℎ2]

≃𝑟

[𝑔×ℎ1,𝑔×ℎ2]

𝐴 × 𝐵 + 𝐶 𝐴 × 𝐵 + 𝐴 × 𝐶

𝐷 × 𝐸
𝑔×[ℎ1,ℎ2]

≃𝑙

[𝑔×ℎ1,𝑔×ℎ2]

This can be easily verified with suitable diagram chases:

(𝑎, inl(𝑏)) inl(𝑎, 𝑏)

(𝑔(𝑎), ℎ1(𝑏))
𝑔×[ℎ1,ℎ2]

≃𝑟

[𝑔×ℎ1,𝑔×ℎ2]

(𝑎, inr(𝑐)) inr(𝑎, 𝑐)

(𝑔(𝑎), ℎ2(𝑐))
𝑔×[ℎ1,ℎ2]

≃𝑟

[𝑔×ℎ1,𝑔×ℎ2]

(𝑎, inl(𝑏)) inl(𝑎, 𝑏)

(𝑔(𝑎), ℎ1(𝑏))
𝑔×[ℎ1,ℎ2]

≃𝑙

[𝑔×ℎ1,𝑔×ℎ2]

(𝑎, inr(𝑐)) inr(𝑎, 𝑐)

(𝑔(𝑎), ℎ2(𝑐))
𝑔×[ℎ1,ℎ2]

≃𝑙

[𝑔×ℎ1,𝑔×ℎ2]

Lemma 4.4. Let 𝑔, ℎ1, ℎ2 ∶ Set/ℳ(𝐴). Then

𝑔 ⊗ (ℎ1 ⊕ ℎ2) ≃ 𝑔 ⊗ ℎ1 ⊕ 𝑔 ⊗ ℎ1

Proof. Writing out the definition of ⊗ we get:

𝑔 ⊗ (ℎ1 ⊕ ℎ2) ≔ ∪!(𝑔 ⊠ (ℎ1 ⊕ ℎ2))
≃ ∪!((𝑔 ⊠ ℎ1) ⊕ (𝑔 ⊠ ℎ2)) (Lemma 4.3)
≃ ∪!(𝑔 ⊠ ℎ1) ⊕ ∪!(𝑔 ⊠ ℎ2)

(∪! preserves colimits as left adjoint (Lemma 3.1))
≕ 𝑔 ⊗ ℎ1 ⊕ 𝑔 ⊗ ℎ2
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Lemma 4.5. Let 𝑔, ℎ1, ℎ2 ∶ Set/ℳ(𝐴). Then

𝑔 ⋊ (ℎ1 ⊕ ℎ2) ≃ 𝑔 ⋊ ℎ1 ⊕ 𝑔 ⋊ ℎ2

Proof. Writing out the definition of ⋊ we get:

𝑔 ⋊ (ℎ1 ⊕ ℎ2) ≔ ∪!((𝑔 ⊠ (ℎ1 ⊕ ℎ2))×ℳ(𝐴)2 ⊑)
≃ ∪!((𝑔 ⊠ ℎ1 ⊕ 𝑔 ⊠ ℎ2)×ℳ(𝐴)2 ⊑) (Lemma 4.3)
≃ ∪!((𝑔 ⊠ ℎ1)×ℳ(𝐴)2 ⊑ ⊕(𝑔 ⊠ ℎ2)×ℳ(𝐴)2 ⊑) (Lemma 3.4)
≃ ∪!((𝑔 ⊠ ℎ1)×ℳ(𝐴)2 ⊑) ⊕ ∪!((𝑔 ⊠ ℎ2)×ℳ(𝐴)2 ⊑) (Lemma 3.1)
≕ 𝑔 ⋊ ℎ1 ⊕ 𝑔 ⋊ ℎ2

4.1.3 The (un)ordered base slice functors

We we recall the definitions of 𝐿 and 𝑂 (Definitions 4.6 and 4.9):

𝐿(𝑋, 𝑔) ≔ (1, ∅) ⊕ (𝐴, 𝜂𝐴) ⊗ (𝑋, 𝑔)
𝑂(𝑋, 𝑔) ≔ (1, ∅) ⊕ (𝐴, 𝜂𝐴) ⋊ (𝑋, 𝑔)

Or, if we expand the definitions:

𝐿(𝑋, 𝑔) = (1 + 𝐴 × 𝑋, [∅, ∪ ∘ (𝜂𝐴 × 𝑔)])
𝑂(𝑋, 𝑔) = (1 + {(𝑎, 𝑥) ∈ 𝐴 × 𝑋 ∣ 𝜂𝐴(𝑥) ⊑ 𝑔(𝑥)}, [∅, ∪ ∘ (𝜂𝐴 × 𝑔)])

They conform to the definition sketches we laid out in Section 2 to locally encode the
properties of element-indexing and orderedness. It now remains to prove that:

1. Element-indexed lists are the initial 𝐿-algebra.

2. Element-indexed ordered lists are the final 𝑂-coalgebra.

We proceed to do this in the following two sections.

4.2 Element-Indexed Lists are the Initial 𝐿-Algebra
We need to show that local element-indexing extends to global element-indexing in the
initial algebra, in order to get global element preservation as a property of the algorithm
defined using a distributive law which locally preserves elements. We state that local
element-indexing extends to global element-indexing in the initial algebra in the below
theorem:

Theorem 4.6. ((𝐴∗, elts), [⟨⟩, cons]) is the initial algebra for the functor 𝐿 = ( ̂1⊕ ̂𝐴⊗–).
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Proof. We recall that elts ≔ ⦅∅, ∪∘(𝜂𝐴×id)⦆ (Definition 3.7). We introduce the following
abbreviations:

in ∶ 1 + 𝐴 × 𝐴∗ → 𝐴∗

in ≔ [⟨⟩, cons]
elt ∶ 1 + 𝐴 × ℳ(𝐴) → ℳ(𝐴)
elt ≔ [∅, ∪ ∘ (𝜂𝐴 × id)]

elts ∶ 𝐴∗ → ℳ(𝐴)
elts = ⦅elt⦆

The first thing to note is that 𝐿-algebras are equivalently (1+𝐴×–)-algebra-morphisms-
to-elt. Namely, given an algebra ( ̂1 ⊕ ̂𝐴 ⊗ (𝑋, 𝑔))

𝑎
−→ (𝑋, 𝑔), the slice map of its domain,

[∅, ∪ ∘ (𝜂𝐴 × 𝑔)] is equivalently elt ∘ (1 + 𝐴 × 𝑔), and 𝑔 is an (1 + 𝐴 × –)-algebra-morphism
from 𝑎 to elt:

1 + 𝐴 × 𝑋 𝑋

1 + 𝐴 × ℳ(𝐴) ℳ(𝐴)

𝑎

1+𝐴×𝑔 [∅,∪∘(𝜂×𝑔)] 𝑔

elt=[∅,∪∘(𝜂×id)]

In fact, this illustrates that we are equivalently proving that ((𝐴∗, in), ⦅elt⦆) is initial in
the category Alg(1+𝐴×–)/elt. The fact that ((𝐴∗, elts), in) is an 𝐿-algebra follows from
the fact that elts = ⦅elt⦆ is an (1 + 𝐴 × –)-algebra morphism to elt.

We still need to prove that ((𝐴∗, in), ⦅elt⦆) is initial. Let ((𝑋, 𝑔), 𝑎) be some 𝐿-algebra.
Then there must be a unique algebra morphism from ((𝐴∗, elts), in) to ((𝑋, 𝑔), 𝑎), i.e.
the following diagram commutes (we already know that (1) and (2) do):

1 + 𝐴 × 𝐴∗ 1 + 𝐴 × 𝑋

ℳ(𝐴)

𝐴∗ 𝑋

1+𝐴×𝑓

in

[∅,∪∘(𝜂×elts)] 𝑎[∅,∪∘(𝜂×𝑔)]

(1) (2)

𝑓

elts 𝑔

We define 𝑓 ≔ ⦅𝑎⦆ by initiality of (𝐴∗, in). We can refactor our diagram to show that
both ⦅elt⦆ and 𝑔 are (1 + 𝐴 × –)-algebra morphisms to elt:

1 + 𝐴 × ℳ(𝐴)

1 + 𝐴 × 𝐴∗ 1 + 𝐴 × 𝑋

ℳ(𝐴)

𝐴∗ 𝑋

elt

1+𝐴×⦅a⦆

in

1+𝐴×⦅elt⦆

𝑎

1+𝐴×𝑔

⦅𝑎⦆

⦅elt⦆ 𝑔
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It remains to prove that ⦅𝑎⦆ is a slice morphism, i.e. 𝑔 ∘ ⦅𝑎⦆ = ⦅elt⦆. But this follows
from the uniqueness of ⦅elt⦆ ∶ (𝐴∗, in) → (ℳ(𝐴), elt), since 𝑔 ∘⦅𝑎⦆ is a (1+𝐴×–)-algebra
morphism of the same type.

4.3 Element-Indexed Ordered Lists are the Final 𝑂-Coalgebra
We need to show a total of three things about the final 𝑂-coalgebra:

1. The object component of its carrier is a subset of 𝐴∗, in particular not of 𝐴∞.

2. It is indexed by its elements, i.e. its slice map is elts.

3. The object component of its carrier is ordered lists.

To point out why the first of these is not trivial, we recall Theorem 3.8, in which we
showed that the final coalgebra of the Set-functor (1 + 𝐴 × –) is both lists and streams
(𝐴∗ + 𝐴ℕ). The structure of our proof here will be similar to the one there. To define
the morphism from some (1+𝐴×–)-coalgebra ((𝑋, 𝑔), 𝑐) to the final coalgebra, we need
to make a distinction on the number of iterations 𝑐 takes to reach 1. We will show that
in this case, this is a natural number, i.e. 1 is always reached in a finite number of steps.
This is the case because the slice map 𝑔 acts as a ranking function for 𝑐.

Lemma 4.7. Let 𝑐 ∶ (𝑋, 𝑔) → ̂1⊕ ̂𝐴⋊(𝑋, 𝑔) be an 𝑂-coalgebra. We use the same iterable
version of 𝑐, 𝑐𝑛, defined in (1) (Note that it doesn’t need to be a slice morphism since
it’s only used internally). Consider the following sets:

𝑋0 ≔ {𝑥 ∈ 𝑋 ∣ 𝑐(𝑥) = inl(⋆)}
𝑋𝑛 ≔ {𝑥 ∈ 𝑋 ∣ ∀𝑖 ≤ 𝑛. 𝑐𝑖(𝑥) ≠ inl(⋆) ∧ 𝑐𝑛+1(𝑥) = inl(⋆)}
𝑋+ ≔ ∑

𝑛∈ℕ>0

𝑋𝑛

𝑋∗ ≔ 𝑋0 + 𝑋+

Then 𝑋 ≃ 𝑋∗.

Proof. We must show that from any state 𝑥 ∈ 𝑋, the number of iterations 𝑐 takes to
reach 1 is a natural number, i.e. ∀𝑥 ∈ 𝑋. ∃𝑛. 𝑐𝑛(𝑥) = inl(⋆). We do this by providing a
wellfoundedness proof for 𝑐 on (ℕ, <) using num ∘ 𝑔 as a ranking function:

num ∶ ℳ(𝐴) → ℕ

num(𝑚0|𝑥0⟩ + … 𝑚𝑙|𝑥𝑙⟩) ≔
𝑙

∑
𝑖=0

𝑚𝑖

We know this sum is well-defined since ℳ(𝐴) has finite support. We make a case
distinction on 𝑐(𝑥):

𝑐(𝑥) = inl(⋆): Then 𝑛 = 0.
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𝑐(𝑥) = inr(𝑎, 𝑟): Then 𝑐 will be recursively called on 𝑟, therefore we must show
that it is less than 𝑥 by the ranking function. We know 𝑔(𝑥) = 𝜂𝐴(𝑎) ∪ 𝑔(𝑟), thus
num(𝑔(𝑟)) = num(𝑔(𝑥)) − 1, i.e. (num ∘ 𝑔)(𝑟) < (num ∘ 𝑔)(𝑥).

We now proceed to extend this factorization from 𝑋 to 𝑐. This will enable us to define
the map into the final coalgebra by induction.

Lemma 4.8. Let 𝑐 ∶ (𝑋, 𝑔) → ̂1 ⊕ ̂𝐴 ⋊ (𝑋, 𝑔) be an 𝑂-coalgebra. Then 𝑐 is equivalent, up
to distributivity ( ̂𝐴 ⋊ 𝑋 ≃ ̂𝐴 ⋊ 𝑋0 ⊕ ̂𝐴 ⋊ 𝑋+), to the direct product of the (co)restrictions:

𝑐 ≃ (𝑐 ∣ 𝑋0 → 1) + ∑
𝑛∈ℕ>0

(𝑐 ∣ 𝑋𝑛 → ̂𝐴 ⋊ 𝑋𝑛−1)

Note that as functions into a product, we may decompose 𝑐|𝑋𝑛
into ⟨o𝑋𝑛

, tr𝑋𝑛
⟩.

Proof. We show the (co)restrictions are well-defined:

1. 𝑐 ∣ 𝑋0 → 1: By definition.

2. 𝑐 ∣ 𝑋𝑛 → ̂𝐴 ⋊ 𝑋𝑛−1: This means that from a state 𝑥 that needs 𝑛 > 0 iterations of
𝑐 to reach 1, we end up in a state 𝑐1(𝑥) that needs 𝑛 − 1 iterations. The proof is
by reindexing.

We are now ready to define the final 𝑂-coalgebra:

Theorem 4.9. Consider the following sets:

𝑆𝑛 ≔ ({𝜎 ∈ 𝐴𝑛 ∣ ∀𝑖 < 𝑛 − 1. 𝜎𝑖 ≤ 𝜎𝑖+1}, elts)
𝑆+ ≔ ⊕𝑛∈ℕ>0

𝑆𝑛

𝑆∗ ≔ ⊕𝑛∈ℕ𝑆𝑛

I.e. sets of ordered streams of element type 𝐴. Then (𝑆∗ ≃ 1 + 𝑆+, 1 + ⟨hd+, tl+⟩) is the
final 𝑂-coalgebra.

Proof. In the following it is useful to specialize ̂𝐴 ⋊ – to 𝑆∗ in order to concretize the
proof obligations. Thus, note that:

̂𝐴 ⋊ 𝑆∗ = ({(𝑎, 𝜎) ∈ (𝐴 × 𝑆∗) ∣ 𝜂𝐴(𝑎) ⊑ elts(𝜎)}, [∅, ∪ ∘ (𝜂𝐴 × elts)])

1. We must first show that (𝑆∗, 1 + ⟨hd+, tl+⟩) is an 𝑂-coalgebra. This generates the
following proof obligations:

a) The (co)restriction of tl+ ∶ 𝐴+ → 𝐴∗ to 𝑆+ → 𝑆∗ is well-defined, i.e. consec-
utive elements are still related by ≤. It is clear that this holds, since the tail
operation performs reindexing, which preserves relations between consecutive
elements.
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b) Arising from the ⊑ constraint of ( ̂𝐴 ⋊ –):

∀𝜎 = ⟨𝑎0, …, 𝑎𝑛−1⟩ ∈ 𝑆+. 𝜂𝐴(hd+(𝜎)) ⊑ elts(tl+(𝜎))

This means that the head of the list should be smaller than all the elements
of the tail. This holds due to the transitivity of ≤ and the fact that all
consecutive elements of 𝜎 are related by ≤. In the case that 𝑛 = 1 it is
vacuously true.

c) 1 + ⟨hd+, tl+⟩ is a slice morphism, i.e. (1 + ∪ ∘ (𝜂𝐴 × elts)) ∘ (1 + ⟨hd+, tl+⟩) =
(1 + elts) holds. This factors into the separate obligations 1 ∘ 1 = 1 and
(∪ ∘ (𝜂𝐴 × elts) ∘ ⟨hd+, tl+⟩)(𝜎) = 𝜂𝐴(hd+(𝜎)) ∪ elts(tl+(𝜎)) = elts(𝜎). The
latter follows from the definitions of the functions elts, hd+ and tl+.

2. We must show that (𝑆∗, 1+⟨hd+, tl+⟩) is the final 𝑂-coalgebra. To this end, consider
the following arbitrary ( ̂1 ⊕ ̂𝐴 ⋊ –)-coalgebra:

𝑋 ℳ(𝐴)

1 + 𝐴 × 𝑋 1 + 𝐴 × ℳ(𝐴)

𝑐

𝑔

1+𝐴×𝑔
[∅,∪∘(𝜂×𝑔)] [∅,∪∘(𝜂×id)]

Using Lemma 4.8, to show that there exists a unique morphism 𝑓, it suffices
to construct it as the direct product of a family of unique morphisms, namely
𝑓 = (𝑓0 ∶ 𝑋0 → 1) + ∑𝑛∈ℕ>0

(𝑓𝑛 ∶ 𝑋𝑛 → 𝑆𝑛), such that the following diagrams
commute:

𝑋0 1

1

1 1

𝑓0

𝑐|𝑋0

𝑔|𝑋0

id

elts

id

id id

𝑋𝑛 𝑆𝑛

ℳ+(𝐴)

𝐴 × 𝑋𝑛−1 𝐴 × 𝑆𝑛−1

𝑓𝑛

⟨o𝑋𝑛,tr𝑋𝑛⟩

𝑔|𝑋𝑛 (5a)

⟨hd+,tl+⟩

elts

(5b) (5c)

id×𝑓𝑛−1

∪∘(𝜂×𝑔|𝑋 𝑛−1
)

(5d)

∪∘(𝜂×elts)

We will write 𝑔|𝑋𝑛
as 𝑔𝑛 in the following. To prove is that all the 𝑓𝑛 exist, are

well-defined and unique, and are slice morphisms, i.e. elts ∘ 𝑓𝑛 = 𝑔𝑛 holds. We
prove this by induction on 𝑛:
IB. Clearly 𝑓0 is unique as the arrow to the terminal object 1. Also elts|1 ∘𝑓0|𝑋0

=
1 ∘ 1 = 1 = 𝑔|𝑋0

.
IS. 𝑓𝑛 making the outside of diagram (5) commute means that:

hd+(𝑓𝑛(𝑥)) = o𝑋𝑛
(𝑥) (6)

tl+(𝑓𝑛(𝑥)) = 𝑓𝑛−1(tr𝑋𝑛
(𝑥)) (7)

We take this as a definition of 𝑓𝑛 in terms of 𝑓𝑛−1. We must show that:
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i. 𝑓𝑛 ∶ 𝑋𝑛 → 𝑆𝑛 is well-typed, i.e.: Let 𝑥 ∈ 𝑋𝑛, then ∀𝑖. < 𝑛 − 1. 𝑓𝑛(𝑥)𝑖 ≤
𝑓𝑛(𝑥)𝑖+1. This is only meaningful to prove for 𝑛 > 1, so we will assume
𝑛 > 1 in the following. First we write out what it means for 𝑐|𝑋𝑛

to map
into ̂𝐴 ⋊ 𝑋𝑛−1:

𝜂𝐴(o𝑋𝑛
(𝑥)) ⊑ 𝑔𝑛−1(tr𝑋𝑛

(𝑥)) ⇔
𝜂𝐴(o𝑋𝑛

(𝑥)) ⊑ (∪ ∘ (𝜂𝐴 × 𝑔𝑛−2) ∘ ⟨o𝑋𝑛−1
, tr𝑋𝑛−1

⟩)(tr𝑋𝑛
(𝑥))) ⇔ (5b)

𝜂𝐴(o𝑋𝑛
(𝑥)) ⊑ 𝜂𝐴(o𝑋𝑛−1

(tr𝑋𝑛
(𝑥))) ∪ 𝑔𝑛−2(tr𝑋𝑛−1

(tr𝑋𝑛
(𝑥))) ⇔

o𝑋𝑛
(𝑥) ≤ o𝑋𝑛−1

(tr𝑋𝑛
(𝑥)) ∧

𝜂𝐴(o𝑋𝑛−1
(𝑥)) ⊑ 𝑔𝑛−2(tr𝑋𝑛−1

(tr𝑋𝑛
(𝑥)))

(8)
Our induction hypothesis is that 𝑓𝑛−1 is well-typed, i.e.: IH ∶ ∀𝑥 ∈
𝑋𝑛−1, ∀𝑖 < (𝑛 − 1) − 1. 𝑓𝑛−1(𝑥)𝑖 ≤ 𝑓𝑛−1(𝑥)𝑖+1. Basically our proof obli-
gation follows from using the induction hypothesis for 𝑖 in the range
1–(𝑛 − 1), and equation (8) to relate the head to the second element, so
for 𝑖 = 0.
We prove that ∀𝑥 ∈ 𝑋𝑛, ∀𝑖. < 𝑛 − 1. 𝑓𝑛(𝑥)𝑖 ≤ 𝑓𝑛(𝑥)𝑖+1 by a case distinc-
tion on 𝑖:

𝑖 = 0
o𝑋𝑛

(𝑥′) ≤ o𝑋𝑛−1
(tr𝑋𝑛

(𝑥′)) (8)

o𝑋𝑛
(𝑥′) ≤ hd+(𝑓𝑛−1(tr𝑋𝑛

(𝑥′))) Rewrite with (6)

hd+(𝑓𝑛(𝑥′)) ≤ hd+(tl+(𝑓𝑛(𝑥′))) Rewrite with (6), (7)

𝑓𝑛(𝑥′)0 ≤ 𝑓𝑛(𝑥′)1
Definition of hd+/tl+

∀𝑥 ∈ 𝑋𝑛. 𝑓𝑛(𝑥)0 ≤ 𝑓𝑛(𝑥)1
∀I(𝑥′)

𝑖 ∈ [1, 𝑛 − 1]

∀𝑖 < (𝑛 − 1) − 1. 𝑓𝑛−1(tr𝑋𝑛
(𝑥′))𝑖 ≤ 𝑓𝑛−1(tr𝑋𝑛

(𝑥′))𝑖+1
IH[𝑥\tr𝑋𝑛

(𝑥′)]

∀𝑖. 0 < 𝑖 < 𝑛 − 1 ⇒ 𝑓𝑛−1(tr𝑋𝑛
(𝑥′))𝑖−1 ≤ 𝑓𝑛−1(tr𝑋𝑛

(𝑥′))𝑖
Reindexing

∀𝑖. 0 < 𝑖 < 𝑛 − 1 ⇒ 𝑓𝑛(𝑥′)𝑖 ≤ 𝑓𝑛(𝑥′)𝑖+1
Rewrite with (7)

∀𝑥 ∈ 𝑋𝑛. ∀𝑖. 0 < 𝑖 < 𝑛 − 1 ⇒ 𝑓𝑛(𝑥)𝑖 ≤ 𝑓𝑛(𝑥)𝑖+1
∀I(𝑥′)

ii. elts ∘ 𝑓𝑛 = 𝑔𝑛 holds.
By the inductive hypothesis we know ∀𝑥 ∈ 𝑋𝑛−1. elts(𝑓𝑛−1(𝑥)) = 𝑔𝑛−1(𝑥).
We introduce an argument 𝑥 ∈ 𝑋𝑛. Then to prove is:

elts(𝑓𝑛(𝑥)) = 𝜂𝐴(hd+(𝑓𝑛(𝑥))) ∪ elts(tl+(𝑓𝑛(𝑥))) (5c)
= 𝜂𝐴(o𝑋𝑛

(𝑥)) ∪ elts(𝑓𝑛−1(tr𝑋𝑛
(𝑥))) (6, 7)

= 𝜂𝐴(o𝑋𝑛
(𝑥)) ∪ 𝑔𝑛−1(tr𝑋𝑛

(𝑥)) (IH)
= 𝑔𝑛(𝑥) (5b)
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5 Verified Sorting with a Distributive Law
Having defined the base functors and shown that the local properties of element-indexing
and orderedness they encode extend to the desired global properties in the carriers of
the initial algebra for 𝐿 and the final coalgebra for 𝑂, respectively, we must complete
the final step of defining a morphism between them using bialgebraic semantics.

In Section 5.1 we give an abstract summary of bialgebraic semantics, which is used as a
categorical algorithm design pattern in [7] (For an explanation that is specific to sorting,
we refer the reader to [7]). In Section 5.2 we show how a distributive law between
the composition of list base functors can be factored into simpler components using
distributivity. Finally in Section 5.3 we show that there can be exactly one distributive
law of type 𝐿𝑂 ⇒ 𝑂𝐿, from which we get an intrinsically correct sorting algorithm.

5.1 Bialgebraic Semantics
The sorting algorithms in [7] are defined using bialgebraic semantics as a categorical
algorithm design pattern. This pattern can arise when one wants to define a function
from the carrier of an initial algebra (𝜇𝐹 , in) for some functor 𝐹 to the carrier of the
final coalgebra (𝜈𝐵, out) for a functor 𝐵. In the following we attempt to provide a
step-by-step derivation of how one might arrive at this pattern.

By having an initial algebra as domain and a final coalgebra as codomain, we get two
ways to define such a function: As the inductive extension of an 𝐹-algebra with carrier
𝜈𝐵, or the coinductive extension of a 𝐵-coalgebra with carrier 𝜇𝐹. We start with the
first approach. Let us first add the 𝐹-algebra “in” and the yet-to-be-defined 𝐹-algebra 2
with carrier 𝜈𝐵 to the picture:

𝐹𝜇𝐹 𝐹𝜈𝐵

𝜇𝐹 𝜈𝐵

𝐹1

in
2

1=⦅2⦆

Now, 2 is an arrow into 𝜈𝐵 and as such we can define it as the coinductive extension of
a 𝐵-coalgebra with carrier 𝐹𝜈𝐵:

𝐹𝜇𝐹 𝐹𝜈𝐵

𝜇𝐹 𝜈𝐵 𝐵𝐹𝜈𝐵

𝐵𝜈𝐵

𝐹1

in
2=〖3〗

3

1=⦅2⦆

out
𝐵2
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It remains to define this 𝐵-coalgebra 3∶ 𝐹𝜈𝐵 → 𝐵𝐹𝜈𝐵, but first we look at the second
possibility of defining the morphism 1 as the coinductive extension of a 𝐵-coalgebra with
carrier 𝜇𝐹:

𝜇𝐹 𝜈𝐵

𝐵𝜇𝐹 𝐵𝜈𝐵

1=〖4〗

4
out

𝐵1

Now, 4 is an arrow out of 𝜇𝐹 and as such we can define it as the inductive extension of
an 𝐹-algebra with carrier 𝐵𝜇𝐹:

𝐹𝜇𝐹

𝐹𝐵𝜇𝐹 𝜇𝐹 𝜈𝐵

𝐵𝜇𝐹 𝐵𝜈𝐵

in
𝐹5

5

1=〖4〗

4=⦅5⦆
out

𝐵1

Now, if we combine the partial diagrams of the two approaches, we get the following
diagram, with 3 and 5 still left to define:

𝐹𝜇𝐹 𝐹𝜈𝐵

𝐹𝐵𝜇𝐹 𝜇𝐹 𝜈𝐵 𝐵𝐹𝜈𝐵

𝐵𝜇𝐹 𝐵𝜈𝐵

in
𝐹5

𝐹1

2=〖3〗
3

5
1=〖4〗
1=⦅2⦆

4=⦅5⦆
out

𝐵2
𝐵1

We can get part of the way to defining them, in the case of 3 by working forwards from
its domain using “out” lifted by 𝐹, and in the case of 5 by working backwards from its
codomain using “in” lifted by 𝐵:

𝐹𝜇𝐹 𝐹𝜈𝐵 𝐹𝐵𝜈𝐵

𝐹𝐵𝜇𝐹 𝜇𝐹 𝜈𝐵 𝐵𝐹𝜈𝐵

𝐵𝐹𝜇𝐹 𝐵𝜇𝐹 𝐵𝜈𝐵

in
𝐹5

𝐹1

2=〖3〗
3

𝐹out

7

56
1=〖4〗
1=⦅2⦆

4=⦅5⦆
out

𝐵2
𝐵in 𝐵1

Now, notice that 6 and 7 have the type of components of a single natural transformation
𝜎∶ 𝐹𝐵 ⇒ 𝐵𝐹, at 𝜇𝐹 and 𝜈𝐵, respectively. Since the morphisms 1 and 2 will now be
equal2, we replace them in their lifted occurrences with ⋆. Putting it all together we get

2For an explanation why, we refer to the works we cite at the end of this section.
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the following diagram:

𝐹𝜇𝐹 𝐹𝜈𝐵 𝐹𝐵𝜈𝐵

𝐹𝐵𝜇𝐹 𝜇𝐹 𝜈𝐵 𝐵𝐹𝜈𝐵

𝐵𝐹𝜇𝐹 𝐵𝜇𝐹 𝐵𝜈𝐵

𝐹⋆

in𝐹⦅5⦆ 〖3〗

𝐹out

3=𝜎𝜈𝐵∘𝐹out
𝜎𝜈𝐵

𝜎𝜇𝐹
5=𝐵in∘𝜎𝜇𝐹

⦅〖3〗⦆

〖⦅5⦆〗

⦅5⦆
out

𝐵〖3〗

𝐵in 𝐵⋆

The above diagram looks like, in fact it is a 2D version of a 3D diagram, with some
roundabout connections missing. The diagram is the following:

𝐹𝜇𝐹 𝐹𝜈𝐵

𝐹𝐵𝜇𝐹 𝐹𝐵𝜈𝐵

𝜇𝐹 𝜈𝐵

𝐵𝐹𝜇𝐹 𝐵𝐹𝜈𝐵

𝐵𝜇𝐹 𝐵𝜈𝐵

𝐹⋆

in

𝐹⦅5⦆

〖3〗

𝐹out

3
𝜎𝜇𝐹

5

𝐹𝐵⋆

𝜎𝜈𝐵 ⋆

⦅5⦆ out
𝐵in

𝐵𝐹⋆

𝐵〖3〗

𝐵⋆

Remark. We refer to [11] and [3, Section 3.2] for a more complete treatment of bialgebraic
semantics. For a formalization in Agda, see my contribution [2] to the agda-categories
library [8].

5.2 Factoring the distributive law using distributivity
In this section only, we will shadow our definitions of 𝐿 and 𝑂 as functors in Set/ℳ(𝐴)
with 𝐿 and 𝑂 as aliases for the list base functor on Set, (1 + 𝐴 × –), which is how they
are defined in [7]. We will also shadow our definitions of ×𝑂 and ×𝐿 with aliases for the
product component of 𝑂 and 𝐿, which is just × in Set.

In [7] the distributive law 𝛿 ∶ 𝐿𝑂 ⇒ 𝑂𝐿 at 𝑋 is defined as a morphism:

𝛿𝑋 ∶ 1 + 𝐴 ×𝐿 (1 + 𝐴 ×𝑂 𝑋) → 1 + 𝐴 ×𝑂 (1 + 𝐴 ×𝐿 𝑋)
𝛿𝑋 (inl(⋆)) ≔ inl(⋆)
𝛿𝑋 (inr(𝑎, inl(⋆))) ≔ inr(𝑎, inl(⋆))

𝛿𝑋 (inr(𝑎, inr(𝑏, 𝑥))) ≔ {
inr(𝑎, inr(𝑏, 𝑥)) 𝑎 ≤ 𝑏
inr(𝑏, inr(𝑎, 𝑥)) 𝑏 ≤ 𝑎
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We find this monolithic definition a bit hard to take in all at once. Using distributivity
of × over + we rewrite the type of 𝛿𝑋 to:

𝛿𝑋 ∶ 1 + 𝐴 ×𝐿 1 + 𝐴 ×𝐿 (𝐴 ×𝑂 𝑋) → 1 + 𝐴 ×𝑂 1 + 𝐴 ×𝑂 (𝐴 ×𝐿 𝑋)

We can now factor 𝛿𝑋 into the parallel composition of three morphisms:

1 + 𝐴 ×𝐿 1 + 𝐴 ×𝐿 (𝐴 ×𝑂 𝑋)
+ +

1 + 𝐴 ×𝑂 1 + 𝐴 ×𝑂 (𝐴 ×𝐿 𝑋)

𝛿1𝑋 𝛿𝑠𝑋
𝛿𝑝𝑋

Such that 𝛿𝑋 ≃ 𝛿1𝑋 + 𝛿𝑠𝑋 + 𝛿𝑝𝑋
. They are defined as:

𝛿1𝑋 ≔ id1

𝛿𝑠𝑋 ≔ id𝐴×1

𝛿𝑝𝑋
(𝑎, (𝑏, 𝑥)) ≔ {

(𝑎, (𝑏, 𝑥)) 𝑎 ≤ 𝑏
(𝑏, (𝑎, 𝑥)) 𝑏 ≤ 𝑎

We argue that this is a much more concise presentation. More importantly, in the
following section, where the components carry proofs, these are much easier to write for
the components individually than they would be for the non-factorized law.

Via bialgebraic semantics, as outlined in the previous section, given 𝛿 ∶ 𝐿𝑂 ⇒ 𝑂𝐿,
we get a map of type 𝜇𝐿 → 𝜈𝑂. As 𝐿 and 𝑂 are aliases for (1 + 𝐴 × –), we get
a map between the carriers of the initial and final algebras of that functor, thus, by
Theorems 3.5 and 3.8, a map of type 𝐴∗ → 𝐴∗ + 𝐴ℕ.

In the next section we see how our base functor definitions from Section 4.1 let us
define a map in the same way, which will however have a type that guarantees it to be
a sorting algorithm.

5.3 Sliced Distributive Law
In Sections 4.2 and 4.3 we showed that the local properties of element-indexing and
orderedness extend to the carriers of the (co)initial (co)algebras for the (un)ordered list
slice base functors. We are now ready to use the base functors in which we encoded
these properties to define a distributive law which will extend via bialgebraic semantics
to a slice morphism between the carriers of the initial algebra and final coalgebra.

As it turns out, the constraints imposed by the base functors ensure that there is
exactly one inhabitant of the type 𝐿𝑂 ⇒ 𝑂𝐿, which we show in the following theorem:

Theorem 5.1. There is a unique distributive law 𝜎∶ 𝐿𝑂 ⇒ 𝑂𝐿, where 𝐿 and 𝑂 are the
endofunctors on Set/ℳ(𝐴) defined in 4.6 and 4.9.

Proof. Let (𝑋, 𝑔) be an object in Set/ℳ(𝐴). Since we are defining a natural transforma-
tion, this is a family of slice morphisms: 𝜎𝑋 ∶ ̂1 ⊕ ̂𝐴 ⊗ ( ̂1 ⊕ ̂𝐴 ⋊ 𝑋) → ̂1 ⊕ ̂𝐴 ⋊ ( ̂1 ⊕ ̂𝐴 ⊗ 𝑋).
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Using distributivity of ⊗ and ⋊ over ⊕ (Lemmata 4.4 and 4.5), we can factor 𝜎𝑋 into
the parallel composition of three morphisms:

1 + ̂𝐴 ⊗ 1 + ̂𝐴 ⊗ ( ̂𝐴 ⋊ 𝑋)

1 + ℳ+(𝐴) + ℳ+(𝐴)

1 + ̂𝐴 ⋊ 1 + ̂𝐴 ⋊ ( ̂𝐴 ⊗ 𝑋)

𝜎1𝑋

id
𝜎𝑠𝑋

∪∘(𝜂×∅)

𝜎𝑝𝑋

∪∘(𝜂×(∪∘(𝜂×𝑔)))

id ∪∘(𝜂×∅) ∪∘(𝜂×(∪∘(𝜂×𝑔)))

We define and check that each component is a slice morphism and show that it is the
unique inhabitant of its respective type:

𝜎1𝑋: There is exactly one (slice) morphism of type 1 → 1 namely id1.

𝜎𝑠𝑋: We first note that ∪ ∘ (𝜂𝐴 × ∅) = 𝜂𝐴 ∘ 𝜋𝑙 and use the latter as the slice map in
the following. We know that (𝜋𝑟 ∘ 𝜎𝑠𝑋)(𝑥) ∶ 1 so (𝜋𝑟 ∘ 𝜎𝑠𝑋)(𝑥) = ⋆. Secondly, 𝜎𝑠𝑋
being a slice morphism requires that 𝜂𝐴 ∘𝜋𝑙 ∘𝜎𝑠𝑋 = 𝜂𝐴 ∘𝜋𝑙 i.e. 𝜋𝑙 ∘𝜎𝑠𝑋 = 𝜋𝑙. Thus,
𝜎𝑠𝑋(𝑎, ⋆) = (𝑎, ⋆). It remains to show that 𝜂𝐴(𝑎) ⊑ ∅; this holds by definition of
⊑.

𝜎𝑝𝑋
: We assign variables to the components of the result tuple to avoid wrangling nested

projections. Let (𝑐, (𝑑, 𝑒)) ≔ 𝜎𝑝𝑋
(𝑎, (𝑏, 𝑥)). We know the equality {𝑎, 𝑏} ∪ 𝑔(𝑥) =

{𝑐, 𝑑} ∪ 𝑔(𝑒) must hold. We don’t know anything about the type 𝑋, therefore we
cannot map 𝑥 to anything other than itself, so the equality 𝑒 = 𝑥 must hold. This
results in the remaining constraint {𝑎, 𝑏} = {𝑐, 𝑑}. There are now two possible
things that 𝜎𝑝𝑋

(𝑎, (𝑏, 𝑥)) could be equal to while satisfying the initial equality:
(𝑎, (𝑏, 𝑥)) or (𝑏, (𝑎, 𝑥)).

This is where the ⊑ constraint comes into play. We have 𝜂𝐴(𝑐)
!
⊑ 𝜂𝐴(𝑑) ∪ 𝑔(𝑥).

i.e. 𝑐 ≤ 𝑑 ∧ ∀𝑙 ∈ 𝑔(𝑥). 𝑐 ≤ 𝑒. We know that 𝜂𝐴(𝑏) ⊑ 𝑔(𝑥), i.e. ∀𝑙 ∈ 𝑔(𝑥). 𝑏 ≤ 𝑙.
Furthermore, due to the linearity of ≤ we know that either 𝑎 ≤ 𝑏 or 𝑏 ≤ 𝑎.

𝑎 ≤ 𝑏 Then 𝜎𝑝𝑋
(𝑎, (𝑏, 𝑥)) must equal (𝑎, (𝑏, 𝑥)). Namely, 𝜂𝐴(𝑎) ⊑ 𝜂𝐴(𝑏)∪𝑔(𝑥) since

𝑎 ≤ 𝑏, and from ∀𝑙 ∈ 𝑔(𝑥). 𝑏 ≤ 𝑙 we have ∀𝑙 ∈ 𝑔(𝑥). 𝑎 ≤ 𝑙 by transitivity of ≤.
Also it cannot equal (𝑏, (𝑎, 𝑥)), since 𝜂𝐴(𝑏) ⊑ 𝜂𝐴(𝑎) ∪ 𝑔(𝑥)) doesn’t hold, e.g.
for ≤=≤ℕ, 𝑎 = 1, 𝑏 = 2 and 𝑔, 𝑥 arbitrary, 𝜂𝐴(2)⋢𝜂𝐴(1) ∪ 𝑔(𝑥).

𝑏 ≤ 𝑎 Then 𝜎𝑝𝑋
(𝑎, (𝑏, 𝑥)) must equal (𝑏, (𝑎, 𝑥)). The proof is the same as the above,

with 𝑎 and 𝑏 switched.
Thus, the only way to define 𝜎𝑝𝑋

such that it is well-typed and 𝜎 is natural, is the
following:

𝜎𝑝𝑋
(𝑎, (𝑏, 𝑥)) = {

(𝑎, (𝑏, 𝑥)) 𝑎 ≤ 𝑏
(𝑏, (𝑎, 𝑥)) 𝑏 ≤ 𝑎
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𝜎 is natural as the sum of parametric functions, i.e. functions that do not inspect the
index 𝑋.

Using bialgebraic semantics, by Theorems 4.9 and 4.6, we obtain a slice morphism of
type:

𝐴∗ ∑𝑛∈ℕ{𝜎 ∈ 𝐴𝑛 ∣ ∀𝑖 < 𝑛 − 1. 𝜎𝑖 ≤ 𝜎𝑖+1}

ℳ(𝐴)
elts elts

This morphism has our desired global properties since:

• The orderedness of the output follows from the structure of the carrier of the final
𝑂-coalgebra.

• The property of element preservation follows from the fact that it is a slice mor-
phism and the slice map of the source and target are both elts.

Thus we uniquely obtain the desired intrinsically verified sorting algorithm, including
the guarantee that the output list is finite, while using the same framework for algorithm
design as [7], bialgebraic semantics.

6 Related Work
Our work essentially builds on top of [7] to construct an intrinsically verified sorting algo-
rithm using categorical semantics of dependent types, while using the same framework,
bialgebraic semantics, to define it. Their work seems to be the only one in the literature
so far that applies bialgebraic semantics, which originated in the field of programming
language semantics [25], to algorithm design.

The way orderedness is encoded locally in the base functor in [14, Section 4] bears
similarity to our work (they make no reference to categorical semantics but we translate
to our terminology here). However, their approach indexes lists by their heads, which
suffices for orderedness, but, as we have seen, for element preservation one needs to in-
dex lists by the whole multiset of their elements. On the topic of element-preservation,
[6] define multiset equivalence in Agda and as an example application extrinsically ver-
ify that a tree-sort preserves elements. As regards intrinsic verification, [12] define an
intrinsically verified heapsort as a metamorphism, using a technique from [15]. Their
algorithm has the shortcoming of having a coinductive type as codomain, i.e. the finite-
ness isn’t captured in the type, a similar shortcoming to that which we have at least
theoretically overcome in our work; however their work is actually formalized in Agda
whereas ours isn’t (at least yet: see Future Work).
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7 Future Work
In this work we managed to locally encode the properties arising from the specification
of sorting, namely element-indexing and orderedness, in base functors for the input
and output lists. We proved that there is a unique distributive law between them,
the bialgebraic semantics of which gives us intrinsically correct sorting. A side effect
of making the coalgebras for the output list base functor element-indexed was that
they are necessarily well-founded. The main shortcoming of our work is that we haven’t
implemented our construction in a dependently typed language (e.g. Agda), thus leaving
our claim that such a modular definition of an intrinsically correct algorithm reduces its
verification burden untested. The main obstruction to a formalization is that we used
finality to define morphisms into a final coalgebra. We proved that all such coalgebras
are well-founded by using the elements index as a ranking function and constructed the
unique map into the final coalgebra by splitting the domain into different sets based on
the number of steps required until termination, but a direct translation of this into Agda
seems to us unergonomic and unidiomatic for programming.

Ideally we would want to replace both algebra morphisms defined by initiality, as well
as coalgebra morphisms by finality by coalgebra-to-algebra morphisms from recursive
coalgebras [5]. To illustrate what we mean, we introduce the ad-hoc notation ⦃𝑎⦄𝑐
for the unique coalgebra-to-algebra morphism from a recursive 𝐹-coalgebra 𝑐 to some
target 𝐹-algebra 𝑎. The recursive-coalgebra version of the definition of the algorithm by
initiality looks like this:

𝐿𝜇𝐿 𝐿𝜇𝑂 𝐿𝑂𝜇𝑂

𝜇𝐿 𝜇𝑂 𝑂𝐿𝜇𝑂

𝑂𝜇𝑂

𝐿1

3=⦃in𝑂⦄2

2=𝜎𝜇𝑂∘𝐿in−1
𝑂

𝐿in−1
𝑂

𝜎𝜇𝑂

⦃3⦄1
1=in−1

𝐿

𝑂3in𝑂

And the diagram for the definition by finality like this:

𝐿𝜇𝐿

𝐿𝑂𝜇𝐿 𝜇𝐿 𝜇𝑂

𝑂𝐿𝜇𝐿 𝑂𝜇𝐿 𝑂𝜇𝑂

𝐿2

𝑂in𝐿∘𝜎𝜇𝑂𝜎𝜇𝐿

⦃inO⦄2

2=⦃𝑂in𝐿∘𝜎𝜇𝑂⦄1

1=in−1
𝐿

𝑂in𝐿

𝑂1

in𝑂

Since it is a known result that the inverse maps of initial algebras are recursive coal-
gebras [5], The proof obligations arising from the above diagrams would be that the two
maps 𝜎𝜇𝑂 ∘ 𝐿in−1

𝑂 and ⦃𝑂in𝐿 ∘ 𝜎𝜇𝑂⦄in−1
𝐿

respectively are recursive coalgebras.
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We conjecture that this is the case. It is worth investigating whether it would hold
in the original Set-construction used in [7] or whether our encoding in Set/ℳ(𝐴) is
necessary. In this vein we would also like to further investigate our observation, made in
Section 4.2, that 𝐿-algebras are equivalently (1 + 𝐴 × –)-algebra-morphisms to elt, since
another consequence of it is that 𝑂-coalgebras are (omitting the orderedness constraint)
(1 + 𝐴 × –)-coalgebra-to-algebra-morphisms to elt.

Should the conjecture hold, our next step would be to define such an intrinsically
verified sorting algorithm in Agda. Prior work has been done on “good”, i.e. ergonomic
for proofs in practice, definitions of datatypes with orderedness-invariants [14], as well as
on using proof-relevant membership relations on multisets for element preservation [6].

Should an adjusted “bialgebraic semantics” pattern for defining algorithms prove itself
amenable to use in a dependently-typed programming language, we plan to investigate
what other algorithms besides sorting could be expressed (and verified) in it.
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