
Master thesis
Computing Science

Cyber Security

Radboud University

Designing q-ary Transformations for
Symmetric Cryptography

Author:
Denise Verbakel
s1018597

First supervisor/assessor:
Prof. J.J.C. Daemen (Joan)

j.daemen@cs.ru.nl

Second supervisor:
Dr. S. Mella (Silvia)
silvia.mella@ru.nl

Third supervisor:
ir. D.W.C. Kuijsters (Daniël)

d.kuijsters@cs.ru.nl

Second assessor:
Dr. B.J.M. Mennink (Bart)

b.mennink@cs.ru.nl

June 27, 2023

Abstract

Designing an efficient transformation f : Fn
q → Fn

q is not as obvious as it
seems. It all starts with defining a round function, which consists of a non-
linear layer and several linear layers, that has good propagation properties.
These propagation properties are well-studied over (extensions of) binary
fields, but not over (extensions of) prime fields. Combining this with the
emerging trend of using primitives that handle such fields in symmetric
cryptography for multi-party computation (MPC), fully homomorphic en-
cryption (FHE) and zero-knowledge (ZK) environments, it is deemed useful
and important to look into the generalizations of these concepts. In this
research, we formalize the metrics belonging to the avalanche behavior over
Fq with q an odd prime power for the first time. We also define differen-
tial cryptanalysis over the field Fq. Linear cryptanalysis is generalized to Fp

from the binary case. Besides this, we consider a family of transformations
over Fn

q called Tq of which the simple yet efficient non-linear layer is defined
as yi ← xi + x2i+1. The parameters used in the round function of Tq are
determined by investigating the avalanche behavior of Tq. We also look into
the differential and linear propagation properties of this family of transfor-
mations and find an intriguing property that is believed to only occur in our
non-linear layer and the mapping χ3 of Xoodoo. Additionally, we elaborate
upon a certain instance of Tq: we show an efficient software implementation
with dedicated arithmetic using counter-intuitive shift offsets in the shuffle
layer.

Contents

1 Introduction 4
1.1 Related Work . 5
1.2 Our Contribution . 5
1.3 Outline . 6

2 Preliminaries 7
2.1 Finite Field Fq . 7
2.2 Vector Spaces . 8

2.2.1 Standard Basis ei . 9
2.2.2 Activity Patterns . 9
2.2.3 Runs . 9

2.3 Affine Spaces . 10
2.4 Transformations . 10

2.4.1 Iterated Transformations 10
2.5 Functions . 11

2.5.1 Hamming Weight . 11
2.5.2 Kronecker Delta . 11
2.5.3 Transpose . 11

2.6 Complex Numbers . 11

3 Structure of the Family of Transformations Tq 13
3.1 Structure of the State Array 13
3.2 Structure of the Round Function 14

3.2.1 Mixing Layer θ . 15
3.2.2 Shuffle Layer ρ . 15
3.2.3 Non-Linear Layer γ . 16

3.3 Possible Parameters in the Round Function 17
3.3.1 Parameters cj in θ . 17
3.3.2 Parameters ri in ρ . 18
3.3.3 Parameter g in γ . 18

1

4 Avalanche Behavior 19
4.1 Input and Output Differences 19
4.2 Avalanche Probability Matrix 20
4.3 Avalanche Dependence . 21
4.4 Avalanche Weight . 22
4.5 Avalanche Entropy . 22

5 Differential Propagation 24
5.1 Differentials . 24
5.2 Differential Probability . 24
5.3 Round Differentials . 26
5.4 Differential Trails . 26
5.5 Trail Search . 28

5.5.1 Trail Extension in the Forward Direction 29
5.5.2 Trail Extension in the Backward Direction 29
5.5.3 Trail Cores . 30
5.5.4 Search Strategy Used in Trail Search 30

5.6 Differential Propagation Properties of γ in Tq 31
5.6.1 Tools for Differential Trail Search on Tq 33
5.6.2 Non-invertibility of γ 38

6 Linear Propagation 40
6.1 Correlation . 40
6.2 Linear Approximations . 42

6.2.1 Linear Mask Propagation Through a Linear Layer . . 42
6.2.2 Linear Mask Propagation Through γ of Tq 43

6.3 Linear Potential . 49
6.3.1 Relation Between Hamming Weight and LP 50
6.3.2 Non-invertibility of γ 52

6.4 Round Linear Approximations 52
6.5 Linear Trails . 53
6.6 Trail Search . 53

6.6.1 Trail Extension in the Forward and Backward Direction 54
6.6.2 Search Strategy Using Trail Cores 55

6.7 Tools for Linear Trail Search on Tq 55

7 Practical Applications of Tq 56
7.1 Sponge Construction . 56
7.2 Duplex Construction . 57
7.3 Encryption Scheme Ciminion 58
7.4 Authenticated Encryption Scheme Elephant 59

2

8 Case Study: Ternary Transformation τ in T3 61
8.1 Encoding of Trits . 61
8.2 Arithmetic for τ . 62

8.2.1 Addition . 62
8.2.2 Subtraction . 62
8.2.3 Negation . 63
8.2.4 Squaring . 63
8.2.5 Addition of a Square 64
8.2.6 Addition of Three Terms 64

8.3 State of τ . 65
8.4 Possible Values of the Parameters in τ 65

8.4.1 Parameter t in θ . 65
8.4.2 Parameters ri in ρ . 66
8.4.3 Parameter g in γ . 66

8.5 Avalanche Behavior of τ . 66
8.5.1 Mixing Layer θ With Four Terms 67
8.5.2 Mixing Layer θ With Three Terms 67
8.5.3 Testing Different Parameters for ρ 68
8.5.4 Testing Different Parameters for γ 69

8.6 Round Function of τ . 69
8.7 Differential and Linear Propagation Properties of τ 69
8.8 Implementation of τ . 70

9 Conclusions and Future Work 73

3

Chapter 1

Introduction

Most primitives in symmetric cryptography use a permutation, or even a
transformation, which is constructed using a round function. This round
function is repeated for a certain number of rounds and, in turn, consists
of a non-linear mapping and multiple linear mappings. It is important for
a round function in such a permutation or transformation to be deemed
strong enough against various attacks. Examples of three common measures
to evaluate this property are the avalanche behavior (diffusion analysis),
differential cryptanalysis and linear cryptanalysis. The goal of these analyses
is to study the behavior of a certain cryptographic design with reference to
these properties. In the ideal case, the avalanche behavior indicates that each
output bit depends on all input bits, the differential cryptanalysis concludes
that there is no exploitable differential propagation from input to output
and the linear cryptanalysis results in not having any exploitable correlations
between input and output present. These three analyses are well-studied for
binary fields, but not in much depth for other fields, such as prime fields.

In symmetric cryptography there is an emerging trend of using primitives
that handle (extensions of) prime field Fp. These primitives are then used
in multi-party computation (MPC), fully homomorphic encryption (FHE)
and zero-knowledge (ZK) environments. Examples of such primitives are
Troika (operating in F3) [32], MiMC (operating in Fp with p either prime
or a power of 2) [1] and Poseidon (operating in Fp with p prime) [28]. The
design rationale of these last two primitives briefly touches on the topic of
differential and linear cryptanalysis, and for Troika a more comprehensive
approach is taken with respect to differential cryptanalysis [15]. The other
analysis, investigating the avalanche behavior, is not discussed for these or
any other primitives.

4

It is considered to be useful and important to look into these concepts
over Fq, with q = pl an odd prime power (using prime p and natural number
l), for future use in MPC, FHE and/or ZK environments. Therefore, we
address the following research question in this thesis:

“How can we design an efficient q-ary transformation with good
propagation properties?”

Note that we define a q-ary transformation f : Fn
q → Fn

q as an assignment
of each element of Fn

q to some element in Fn
q [44].

This is particularly interesting because of the richer arithmetic implied by
an odd prime power field: the standard operation of squaring is no longer a
linear operation, but can potentially be a very efficient non-linear operation.
We want to investigate the mapping yi ← xi + x2i+1 as partly introduced in
[27] as the non-linear layer of a round function and see how the propagation
properties of the full round function, i.e., the non-linear layer combined with
some linear layers, perform.

1.1 Related Work

This thesis generalizes the concepts of the avalanche behavior as discussed in
[21, 45, 49], the differential cryptanalysis as discussed in [10, 12, 14, 18, 45]
and the linear cryptanalysis discussed in [4, 11, 14, 18, 21, 25, 34, 35, 36].
In particular, the method we follow to do differential and linear trail search
was introduced in [20, 30]. As part of our non-linear layer γ, we use the map
introduced in [27] that is based on squaring.

In Chapter 8, an implementation of a ternary transformation is investi-
gated. This transformation was coded using insights on trit encoding and
arithmetic in F3 as shown in, for instance, [13] and [31].

1.2 Our Contribution

In this work, we present the formalization of the avalanche behavior over the
field Fq which is interesting and useful because no one has done this formally
before. Then, to capitalize on the emerging trend of symmetric cryptography
over (extensions of) primary fields, the differential cryptanalysis is defined
for q-ary transformations and the linear cryptanalysis is generalized from the
binary case to be applicable to p-ary transformations (with p a prime). Note
that, in this case, linear cryptanalysis does not work in the range −1 to +1
as was the standard for binary primitives, but correlations become complex
numbers in the unit circle using the root ω = e

2πi
p .

Besides this, we want to investigate the promising non-linear mapping
based on squaring, which we define as yi ← xi + x2i+1. Combining this non-
linear mapping with some other linear operations to form our round function,

5

we define a family of q-ary transformations. This family will be called Tq. To
build an efficient set of transformations, we look at the avalanche behavior
of Tq to determine which parameters to use in its round function. We also
investigate the differential and linear propagation properties of it and find
a dual relation of the DP and LP, which is believed to only occur in our
non-linear layer γ and the mapping χ3 of Xoodoo. Along this, we provide
tools in order to perform both differential and linear trail search on Tq. These
tools are for finding the minimum reverse weight, showing that the Hamming
weight represents the minimum direct weight and how to find compatible
input and output differences and/or masks.

Moreover, we look at practical applications using this family of transfor-
mations. We also shed light on a particular transformation τ : we show how
one could possibly implement this transformation in code (by using counter-
intuitive shift offsets in the shuffle layer) and perform the aforementioned
analyses on the instance τ .

1.3 Outline

This thesis consists of 9 chapters of which the introduction forms the first
one. The next chapter, Chapter 2, discusses all the preliminaries needed
to understand our conducted research. After this, Chapter 3 introduces
the structure of the family of transformations called Tq. In the following
chapters we will investigate properties of Tq: in Chapter 4 we look at the
avalanche behavior, in Chapter 5 we study the differential propagation and
in Chapter 6 we explore the linear propagation. Then, Chapter 7 discusses
some practical applications for Tq. Following on this, we provide a case
study on T3 (transformations for which q = 3) in Chapter 8. Here, we
show how to design and implement τ , which is an instance of this family of
transformations. Finally, Chapter 9 concludes our thesis.

6

Chapter 2

Preliminaries

Before defining Tq and investigating its propagation properties, we need some
background information about the research we will be conducting. We start
with introducing the field Fq and its properties in Section 2.1. After this, we
will cover what a vector space and an affine space is: see respectively Section
2.2 and Section 2.3. Then, we explain what a (q-ary) transformation is and
how we can use such function: see Section 2.4. In Section 2.5, we will intro-
duce three important functions used throughout this research. Lastly, the
terminology and notation regarding complex numbers are given in Section
2.6.

2.1 Finite Field Fq
Let q = pl be an odd prime power with p a prime and l ≥ 1. Then, let Fq

be a finite field, which is defined as a set with a finite number of elements
“in which four operations (called addition, multiplication, subtraction, and
division) can be defined so that, with the exception of division by zero, the
sum, product, difference, and quotient of any two elements in the set is an
element of the set” [26]. A finite field is a set that satisfies the field axioms
[47] given in Table 1.

In this research, we will give examples for a specific field, namely the
finite field with p = 3, l = 1 and thus q = 3, i.e., F3. Elements of this field
are called trits [17]. Note that we call elements of F2 bits and, in general,
elements of Fq (especially for q /∈ {2, 3}) digits.

Note that if l = 1 and thus q = p, Fq is isomorphic to (Z/pZ,+,×), which
means that addition and multiplication are performed modulo p. Subtrac-
tion and division can then be done by respectively using the additive and
multiplicative inverse.

When l > 1, the elements of Fq can be represented as polynomials with
a degree smaller than l and with coefficients in Fp. Addition, multiplication,
subtraction and division should now be performed modulo an irreducible

7

Table 1: The nine axioms for a finite field [47].

Finite field axioms
1. Associative law of addition: a+ (b+ c) = (a+ b) + c.
2. Commutative law of addition: a+ b = b+ a.
3. Existence of additive identity: a+ 0 = 0 + a = a.
4. Existence of additive inverse: a+ (−a) = (−a) + a = 0.
5. Associate law of multiplication: a · (b · c) = (a · b) · c.
6. Commutative law of multiplication: a · b = b · a.

7. Existence of multiplicative identity: a · 1 = 1 · a = a where
1 ̸= 0.

8. Existence of multiplicative inverse: a · a−1 = a−1 · a = 1
for a ̸= 0.

9. Distributive laws: a · (b+ c) = a · b+ a · c and
(b+ c) · a = b · a+ c · a.

polynomial p(X) ∈ Fq[X] of degree l. This is a polynomial that is only
divisible by 1 and itself, i.e., there does not exist any g(X), h(X) ∈ Fq[X]
such that p(X) = g(X) · h(X) [22]. So, to multiply two elements modulo
such irreducible polynomial, one should perform two steps: take the product
of the two polynomials and after this, take the remainder of the result after
division by p(X) [22]. As an example, we get the following result if we
multiply the polynomial X +X2 with 1 +X2 over F24 by using irreducible
polynomial p(X) = 1 +X +X4 :(

X +X2
) (

1 +X2
)
≡ X +X3 +X2 +X4 (mod p(X))

≡ X +X3 +X2 + (−1−X) (mod p(X))

≡ X +X3 +X2 + 1 +X (mod p(X))

≡ 1 +X2 +X3 (mod p(X)) .

2.2 Vector Spaces

After having defined the finite field Fq, we define Fn
q as a vector space of

dimension n over the finite field Fq when it satisfies the axioms shown in
Table 2. A vector space is a “collection V of objects, u, v, etc., called
vectors, such that we are given a binary operation, +, which assigns to every
pair of vectors u and v a third vector u+ v” [5]. Likewise, a multiplication
assigns to every scalar t ∈ Fp and every vector v ∈ Fq another vector tv ∈ Fq

[5].

8

Table 2: The six axioms for a vector space [5].

Vector space axioms
1. Associative law of addition: (u+ v) +w = u+ (v +w).
2. Commutative law of addition: u+ v = v + u.

3. Existence of additive identity: there is a vector 0 such that
0+ v = v for all v.

4. Existence of additive inverse: for every v there is a −v such
that v + (−v) = 0.

5. ‘One’ acts as multiplicative identity: 1v = v for every v.

6.
Associative and distributive laws: for any scalars r and s
and any vectors u and v it holds that (rs)v = r(sv),
(r + s)v = rv + sv and r(u+ v) = ru+ rv.

2.2.1 Standard Basis ei

We define a standard basis ei of length n over the finite field Fq as a vector
which has a single 1 on position i and 0 in all other positions. Note that
one can also define the standard basis eni as the standard basis vector in Fn

q ,
where enij = 1 if i = j (and 0 otherwise) [14].

2.2.2 Activity Patterns

Let x ∈ Fn
q . The activity pattern of x is a vector in Fn

q whose ith digit equals
to 1 if xi ̸= 0 and is 0 otherwise [14]. If the ith digit of the activity pattern
equals to 1, the digit of x is called active. Likewise, if the ith digit of the
activity pattern equals to 0, the digit of x is called passive. If the ith digit
of x has not been assigned a value and is thus neither active nor passive, it
is called unspecified. This is denoted with the value ∗.

To illustrate this concept, take q = 3 and n = 5. The vector x ∈ F5
3

can, for instance, take on the values 20210. The activity pattern of x is then
equal to 10110.

2.2.3 Runs

After defining what active, passive and unspecified digits are, one can define
a 1-run. We define a 1-run as a sequence of active digits preceded by at
least one passive digit and followed by at least one passive digit. Note that
a g-run can then be defined by having a sequence of active digits with a step
size g instead of 1 in between them.

Again take q = 3 and n = 5 with x = 20210 (such that x ∈ F5
3). In

this vector, two 1-runs are present: the single 2 at the beginning and the
sequence 21 in the middle of x. Note that if we would look at, for instance,
the 2-runs within x this would only yield one run: the sequence 122. This

9

is because the first and last value of x are also seen as neighboring values:
runs can thus wrap around the length of x.

2.3 Affine Spaces

An affine space is a translation of a vector space as defined above. In other
words, an affine space is a “set A consisting of points P , Q, etc., and an
operation + which assigns to each P ∈ A and each v ∈ V another point in
A which is denoted by P + v” [5]. Here, V is a vector space as defined in
Section 2.2. Affine spaces follow the axioms as listed in Table 3.

Table 3: The four axioms for an affine space [5].

Affine space axioms

1. Associative law: (P + u) + v = P + (u+ v) for any
P ∈ A and u,v ∈ V .

2. ‘Zero’ acts as identity: P + 0 = P for any P ∈ A.

3. Transitivity: given any two points P,Q ∈ A, there is a v ∈ V
such that P + v = Q.

4. Faithfulness: if, for any P , the equality P + u = P + v
holds, then u = v.

Note that the axioms 3 and 4 indicate that if we are given two points P
and Q, there exists a unique vector v such that P + v = Q [5].

2.4 Transformations

A q-ary transformation f : Fn
q → Fn

q is an assignment of each element of
Fn
q to some element in Fn

q [44]. Note that a transformation does not need
to be invertible, unlike a permutation f ′ : Fn

q → Fn
q , which is an ordered

arrangement of the elements of the set Fn
q [44].

In particular, we consider a ternary transformation. This is a transfor-
mation f defined using q = 3, i.e., we have that f : Fn

3 → Fn
3 . A binary

transformation can be defined similarly by using q = 2.

2.4.1 Iterated Transformations

A q-ary transformation f can be built by composing a number of lightweight
round functions Ri. This can be denoted as f [k] = Rk−1◦· · ·◦R1◦R0 for some
k ≥ 0 [14]. Note that f [0] = id, where id represents the identity function [14].
We then talk about an iterated transformation. Transformations, iterated or
not, can be useful in, for instance, a sponge or a duplex construction [6]: see
Section 7 for more practical applications.

10

2.5 Functions

In this research, we will use some standard mathematical functions. Exam-
ples of these are the Hamming weight function, the Kronecker delta and the
transpose function, which will be explained in the next sections.

2.5.1 Hamming Weight

Assuming a vector space Fn
q , the Hamming weight of a vector v, denoted as

HW(v), is equal to the number of non-zero entries in v [3]. Note that, for
binary vectors, this means that the Hamming weight is equal to the number
of ones in it.

2.5.2 Kronecker Delta

The Kronecker delta of two variables i, j ∈ Z [33] is defined as follows:

δij =

1 if i = j ;

0 if i ̸= j .

Another form of the Kronecker delta is the so-called discrete unit sample
function δ[x], which takes a value of one when x = 0 and a value of zero
elsewhere [2]. In mathematical terms:

δ[x] =

1 if x = 0 ;

0 if x ̸= 0 .

2.5.3 Transpose

Taking the transpose of a matrix M is an operation that switches the row
and column indices of M [26]. We denote the transpose of M with M⊤ and
if the inverse of this transpose is well-defined, it is denoted as M−⊤.

2.6 Complex Numbers

A complex number z ∈ C is a number in the complex plane of the form
z = a + bi where a, b ∈ R and i the imaginary unit satisfying i2 = −1
[42]. Terminology related to complex numbers, such as modulus, real and
imaginary part, complex conjugate etc. are listed in Table 4.

A complex number also has a polar form: z = reiϕ = r(cosϕ + i sinϕ)
[42]. Note that r represents the absolute value, i.e., the modulus of z and ϕ
the argument of z.

11

Table 4: Terminology and notation related to complex numbers [42].

Name Meaning Notation
Real axis Set of real numbers

Imaginary axis Set of imaginary numbers
Imaginary number Real multiple of i

Modulus of z Length r of z |z| =
√
a2 + b2

Argument of z Angle ϕ of z arg(z)

Real part of z x coordinate of z Re(z)
Imaginary part of z y coordinate of z Im(z)

Complex conjugate of z Reflection of z in the real axis z = a− bi

12

Chapter 3

Structure of the Family of
Transformations Tq

In order to investigate how we can design q-ary transformations with good
propagation properties, we should first define a (set of) transformation(s). In
this section, we will present a parameterized multidimensional state array s
and define a parameterized family of q-ary transformations called Tq. At the
end of this chapter, we explain which conditions should be satisfied by the
parameters in the round function to accomplish, for instance, invertibility.

3.1 Structure of the State Array

We will call the state on which Tq operates s, which is an element of Fn
q . In

this research, we will use two representations of this state: see Figure 1.

0 1 2 3 4 5 . . . 2m-1
0

.

.

.

d-1

(a)

0 1 2 3 4 5 . . . n-1

(b)

Figure 1: (a) The two-dimensional representation of state s with d rows and 2m

columns where m ≥ 0. (b) The one-dimensional representation of state s with state
width n. Note that n = d · 2m.

In representation (a), the state s is represented as a two-dimensional
array. The number of rows is equal to d and the number of columns is a
power of two, namely 2m for m ≥ 0. The state size n is then equal to
d · 2m. The digits in this representation of state s are denoted by sx,y where
0 ≤ x < 2m and 0 ≤ y < d.

13

In representation (b), the state s is depicted as a one-dimensional array.
In this case, the digits in the state s are referred to as si where 0 ≤ i < n.

There exists a mapping between the two-dimensional indexing and one-
dimensional indexing. To go from one-dimensional to two-dimensional, the
following formulas should be used:

x = i mod 2m ;

y = i mod d .

In the reverse direction, this formula can be applied:

i = x+ ((y − x) mod d) · 2m .

This last equation results from using the Chinese Remainder Theorem in
Garner’s form [24]. An example of this state numbering for transformations
over F3 using d = 3 andm = 6 is shown in Figure 2. Note that this particular
indexing is used in the two-dimensional state to simplify the description of
the round function: it expresses the working of the shuffle layer well and
makes the explanation of it easier.

0
64
128

129
1
65

66
130
2

3
67
131

132
4
68

69
133
5

. . .

. . .

. . .

63
127
191

(a)

0 1 2 3 4 5 . . . 191

(b)

Figure 2: (a) The two-dimensional representation of state s with d = 3 rows and
2m = 26 = 64 columns. (b) The one-dimensional representation of state s with
state width n = 3 · 64 = 192.

3.2 Structure of the Round Function

Each round function Ri is built by composing several step functions [14]. In
this research, the round function R that is iterated in Tq consists of three
step functions, namely the theta (θ) step, the rho (ρ) step and the gamma
(γ) step:

R = γ ◦ ρ ◦ θ .

Here, θ serves for mixing, ρ for dispersion and γ for non-linearity. A visu-
alization of the round function R for Tq using d = 3 can be seen in Figure
3.

Note that normally a fourth step function is added: a round constant
addition [14]. In this thesis, we do not treat such function as it affects our
analyses minimally. The addition of this step function is left as future work.

14

θ

ργ

Figure 3: A schematic overview of round function R for Tq using d = 3 in the
two-dimensional representation.

3.2.1 Mixing Layer θ

The first step of the round function R is θ and is visualized in Figure 4
for a specific instance. This step updates each state digit by performing
additions of state digits. When using the two-dimensional representation,
we can formulate this step mathematically as follows:

sx,y ←
n−1∑
j=0

(cj · sx+j,y+j) .

Likewise, using the one-dimensional representation, we get:

si ←
n−1∑
j=0

(cj · si+j) .

Note that, for all step functions, the indices x and y of sx,y are respectively
taken modulo 2m and d and the indices i of si are taken modulo n.

0 1 . . . t . . . n 0 1 2 . . . n

×2

+ +

Figure 4: A schematic overview of the θ operation with c0 = 1, c1 = 2, ct = 1
and all other cj = 0 using the one-dimensional representation. Here, it is shown
that the state digit s0 is adapted by θ resulting in the state digit θ(s0). In the
figure the state digits si are denoted as i.

3.2.2 Shuffle Layer ρ

The second step of R is called ρ and is visualized in Figure 5 for Tq using
d = 3. ρ makes sure that the state digits are rotated by r0, r1, r2, . . . rd−1

positions to the left depending on their position in the state. Note that

15

r0 is fixed to the value zero. For the two-dimensional representation this
step function can be explained as follows: row 0 of the state is rotated by 0
positions, row 1 of the state is rotated by r1 positions, row 2 of the state is
rotated by r2 positions and row d−1 of the state is rotated by rd−1 positions:

sx,y ← sx+ry ,y .

When looking at the one-dimensional representation, one can state that each
digit with index i ≡ 0 (mod d) is rotated by 0 positions, each digit with index
i ≡ 1 (mod d) is rotated by r1 positions, each digit with index i ≡ 2 (mod d)
is rotated by r2 positions and each digit with index i ≡ d − 1 (mod d) is
rotated by rd−1 positions:

si ← si+d·ri mod d
.

≪ r1
≪ r2

Figure 5: A schematic overview of the ρ operation for Tq using d = 3 in the
two-dimensional representation. Here, it is shown that row 0 is not shifted, that
row 1 is shifted with r1 and that row 2 is shifted with r2.

3.2.3 Non-Linear Layer γ

The last step of the round function R is the non-linear operation γ that
takes a parameter g. This step is visualized in Figure 6. In this step, each
state digit is updated by adding the square of another state digit. Using the
two-dimensional representation, we can express γ mathematically as:

sx,y ← sx,y + (sx+g,y+g)
2 .

When using the one-dimensional representation, we end up with the follow-
ing:

si ← si + (si+g)
2 .

0 1 . . . g . . . n 0 1 2 . . . n

ˆ2

+

Figure 6: A schematic overview of the γ operation using the one-dimensional
representation. Here, it is shown that the state digit s0 is adapted by γ resulting
in the state digit γ(s0). In the figure the state digits si are denoted as i.

16

3.3 Possible Parameters in the Round Function

In the previous sections, the step functions were defined using several pa-
rameters. Below we will discuss possible values for all of them.

3.3.1 Parameters cj in θ

As we saw in the previous section, θ is a function operating on a variable
number of state digits. In order to choose proper values for the parameters
cj , one should choose them in such a way that θ is invertible. If θ is not
invertible, one can easily find collisions by making use of its kernel [29], which
is undesirable. We can determine values for the parameters cj such that θ is
invertible by looking at the associated polynomial of the mixing layer.

The state s can be expressed by using the following polynomial:

S(X) =
n−1∑
i=0

siX
i .

So, instead of looking at the state as a one or two-dimensional array, we
consider the state as a polynomial. In this case, addition is thus expressed
as the addition of the polynomials. A cyclic shift over offset ri of the state S
is then expressed as the multiplication of S with the polynomial Xri modulo
Xn − 1.

The associated polynomial of the mixing layer, which is the polynomial
representation of the output state of θ, can be represented as

S ← S ·
n−1∑
j=0

(
cj ·Xj

)
mod Xn − 1 .

This is because the state S is updated with θ : si ←
∑n−1

j=0 (cj · si+j). What
we can thus see here is that si = si+0 is represented as X0 = 1 in the
polynomial, si+1 as X1 = X, si+2 as X2 etc. The modulo Xn − 1 makes
sure that the indices j stay within the bounds of 0 and n − 1. The inverse
of the associated polynomial of θ can then logically be denoted as:

S ← S ·

Ñ
n−1∑
j=0

(
cj ·Xj

)é−1

mod Xn − 1 .

In order for this inverse to exist, the associated polynomial should be coprime
to the polynomial Xn − 1. The parameters cj should thus be chosen such
that this property holds.

17

3.3.2 Parameters ri in ρ

The next step function, ρ, has d different parameters. The first parameter
r0, is fixed to the zero. Note that the parameter r0 can be set to 0 because
for any r0 we can add r0 to all other ri and get the same state rotated by
r0. This thus means that we get an equivalent state, but need to test less
values when looking at the avalanche behavior (as is done in Section 8.5).

The other parameters ri do not have a restriction like the ones for θ, so
these offsets can initially be picked at random as long as they are not equal
to zero and ri ̸= rj for i ̸= j holds. If this property would hold, we expect
bad propagation properties.

3.3.3 Parameter g in γ

As we saw before, γ operates on two state digits of which one of the two
indices is fixed and the other one is determined by the parameter g. We
want a parameter value for which it holds that g is coprime to n, i.e., for
which it holds that gcd(g, n) = 1. If g is not coprime, then γ performs its
operations on separate sections of the state instead of on the full state width
n.

To illustrate this, take, for instance, g = 64 and n = 192 such that
gcd(64, 192) ̸= 1. Now, assume we want to apply γ to the state s and want
to start with calculating s0. We then have the following equations:

s0 = s0 + (s64)
2 ;

s64 = s64 + (s128)
2 ;

s128 = s128 + (s0)
2 .

If this is the case, the number of collisions between states is much higher
than when γ would perform its operations on the full state width. So, if we
do not want this to happen, g should be coprime to the state size n.

Note that, at this point, γ is not invertible. One could make γ invertible
by adding a hole to this step function, i.e., putting a constraint on, for
instance, the first digit such that it is left unchanged during this non-linear
step. γ would, in that case, look like the following:

sx,y ←

sx,y if (x, y) = (0, 0) ;

sx,y + (sx+g,y+g)
2 if (x, y) ̸= (0, 0) .

Or equivalently using the one-dimensional representation:

si ←

si if i = 0 ;

si + (si+g)
2 if i ̸= 0 .

18

Chapter 4

Avalanche Behavior

In this chapter we will look into the avalanche behavior of q-ary transfor-
mations. The avalanche behavior is about how single digit differences ap-
plied at the input to the state propagate through k rounds. Specifically,
the avalanche behavior looks at how digits of the intermediate state after k
rounds change if one of the input digits changes [49]. It thereby gives an
estimate of how vulnerable a cryptographic transformation is against struc-
tural distinguishers such as impossible differentials, integral cryptanalysis or
truncated differentials [45].

In general, the avalanche behavior is defined for binary transformations
and permutations. In this chapter, we will define all definitions and algo-
rithms related to the avalanche behavior for non-binary transformations, i.e.,
for q-ary transformations. Note that one can deduce the definitions and al-
gorithms for the binary case from the given definitions and algorithms for
the q-ary transformations.

4.1 Input and Output Differences

Before we go into the different aspects of the avalanche behavior, we start
with explaining what input and output differences are. In order to do this,
one should first define inputs and outputs of a q-ary transformation. Let
x ∈ Fn

q and x∗ ∈ Fn
q be inputs of the q-ary transformation f : Fn

q → Fn
q . The

input difference [14, 19] is then denoted by

b = x− x∗ .

Likewise, let y ∈ Fn
q and y∗ ∈ Fn

q be outputs of f for, respectively, the inputs
x and x∗. Then, the output difference [14, 19] can be written as

a = y − y∗ = f(x)− f(x∗) .

19

4.2 Avalanche Probability Matrix

We start with defining avalanche probability matrices. The definition of
the avalanche probability matrices for q-ary transformations can be seen in
Definition 1. This definition is generalized from the case considering binary
transformations as described in [21, 45].

Definition 1. Let f : Fn
q → Fn

q be a q-ary transformation and b an input
difference. The avalanche probability matrix P f,b = (pi,j) for q-ary trans-
formations is defined as a matrix with dimensions (n× q) where component
(i, j) is the probability that digit i of the output of f has difference j in the
output due to the input difference b.

Note that the avalanche probability matrix P f,b describes n · q probabil-
ities, namely the probability that the difference in digit i equals to j ∈ Fq

when the input difference is b :

pi,j,b =

∣∣{x ∈ Fn
q : f(x)i − f(x− b)i = j

}∣∣
qn

.

The generation of the avalanche probability matrix for q-ary transforma-
tions is defined in Algorithm 1. This algorithm generalizes the generation
of avalanche probability vectors as given in [21]. Note that Algorithm 1
only gives an approximation of the avalanche probability matrices: the more
samples M are used, the more accurate the results.

Algorithm 1 Computation of the avalanche probability matrix P f,b.

Parameters: a q-ary transformation f : Fn
q → Fn

q , an input difference b
and a number of samples M .
Output: the avalanche probability matrix P f,b.

1: Initialize a two-dimensional array p of probabilities pi,j with the dimen-
sion (n× q) to all zeroes.

2: for M uniformly and randomly generated states x do
3: Compute B = f(x)− f(x− b)
4: for all state digit positions i do
5: for all j ∈ Fq do
6: if j == Bi then
7: pi,Bi = pi,Bi + 1/M
8: return P f,b = p

As can be deduced from the algorithm above, the two-dimensional array
p now thus represents all the n · q probabilities pi,j,b. Algorithm 1 is rather
detailed: we use all n · q probabilities whereas we could achieve the same
result with only using n · (q− 1) probabilities. The final column (containing

20

n probabilities) can then be obtained by subtracting the sum of all existing
columns from the all-ones vector. Also note that the check in line 6 does
not have to be done for each value of j: if the equation is satisfied for a
particular j, one can stop the inner loop.

In this research, we will compute the avalanche probability matrix for all
input differences that have Hamming weight 1. The digit that attains a non-
zero value in the input difference is called the difference digit. In general,
the avalanche probability matrix is computed for all non-zero values of the
difference digit. However, as the difference digit with the value x represents
an equivalent difference as the difference digit with the value −x, there are
only q−1

2 different values and thus only q−1
2 different avalanche probability

matrices to compute.
After having computed all avalanche probability matrices, we compute

the three metrics which we will describe in the next sections. We then
report on the worst-case performance of the metrics over all the avalanche
probability matrices. Note that this is a choice: one could also report on,
for instance, the average results or on the divergence between different input
differences.

4.3 Avalanche Dependence

After having defined the avalanche probability matrix we turn to the first
avalanche metric: the avalanche dependence [21, 45]. This metric is de-
noted as Dav and is defined in Definition 2, which is a generalization of the
avalanche dependence for binary transformations as defined in [21, 45].

Definition 2. Let b be an input difference with Hamming Weight 1 and
pi,j,b the probabilities described by P f,b. The avalanche dependence for q-ary
transformations describes the number of output digits that may change due to
b. The formula that describes this avalanche dependence is given as follows:

Dav (P f,b) = n−
n−1∑
i=0

δ

q−1∑
j=1

pi,j,b

 .

An equivalent representation is:

Dav (P f,b) = n−
n−1∑
i=0

δ [1− pi,0,b] .

As we report on the minimal value for Dav, we expect that the value for
Dav over all input differences with Hamming weight 1 of a random transfor-
mation is equal to the width of the transformation, i.e., equal to n. This is
expected because then all output digits are a function of all n input digits

21

[45]. At this point, the digits diffuse well throughout the random transforma-
tion [45]. Note that, in our experiments, we increase the number of rounds
until the value for Dav is converged to n.

4.4 Avalanche Weight

The second avalanche metric is the avalanche weight [21, 45]. The avalanche
weight is denoted as wav and is defined in Definition 3. This definition is a
generalization of the one for binary transformations given in [21, 45].

Definition 3. Let b be an input difference with Hamming Weight 1 and
pi,j,b the probabilities described by P f,b. The avalanche weight for q-ary
transformations describes the expected number of digits that change due to b.
The formula that describes this avalanche weight is given as follows:

wav (P f,b) =
n−1∑
i=0

q−1∑
j=1

pi,j,b .

An equivalent representation is:

wav (P f,b) =
n−1∑
i=0

(1− pi,0,b) .

Just like we report on the minimal value for Dav, we also report on the
minimal value for wav. Looking at the value for wav over all input differences
with Hamming weight 1 of a random transformation, we expect the value to
be equal to n · q−1

q . This is because all n output digits can change to one
of the other q − 1 values (if it does not keep its current value). This thus
indicates that the output digits change with a probability of q−1

q due to a
change in the input difference [49]. In our experiments, we keep increasing
the number of rounds until the value for wav is roughly converged to n · q−1

q .

4.5 Avalanche Entropy

The third avalanche metric is called the avalanche entropy [21, 45]. This met-
ric is denoted as Hav, is defined in Definition 4 and generalizes the avalanche
entropy for binary transformations as given in [21, 45].

Definition 4. Let b be an input difference with Hamming Weight 1 and
pi,j,b the probabilities described by P f,b. The avalanche entropy for q-ary
transformations describes the uncertainty about whether output digits change
due to b. The formula that describes this avalanche entropy is given as
follows:

Hav(P f,b) =

n−1∑
i=0

q−1∑
j=0

(
−pi,j,b logq (pi,j,b)

)
.

22

Note that we choose the log base q instead of log base 2 to make sure that
the inner sum can take on a maximum value of 1 if no bias [48] is present, i.e.,
if no output digit has a higher chance of changing value than other output
digits. This thus means that if we again take the minimum value, in this
case for Hav over all input differences with Hamming weight 1 of a random
transformation, we expect the value to be the width of the transformation,
i.e., to be equal to n. We expect this because if there is no bias and thus
if each of the n output differences occur equally likely, the inner sum will
sum op to 1 and the outer sum will make the value of the avalanche entropy
equal to n. Note that we increase the number of rounds in the experiments
until the value for Hav is converged to n.

23

Chapter 5

Differential Propagation

In order to find the differential propagation properties of a transformation,
one will perform differential cryptanalysis. This is “a method which analyzes
the effect of particular differences in plaintext pairs on the differences of the
resultant ciphertext pairs” [10]. Information about the differential propaga-
tion is valuable for estimating how vulnerable a cryptographic transformation
is against exploitation of high-probability differentials [10, 12].

This chapter will treat differential cryptanalysis on q-ary transformations.
First, we will explain the concepts of (round) differentials, differential prob-
ability, differential trails, differential trail cores and trail search. Then, we
discuss the differential propagation properties through the non-linear layer
of Tq. Lastly, we will provide tools to perform a differential trail search on
Tq.

5.1 Differentials

As introduced in the previous chapter, we have the input difference b =
x− x∗ and the output difference a = y − y∗ = f(x)− f(x∗). The (ordered)
pair (b, a) ∈ Fn

q × Fn
q containing the input and output difference is called a

differential [14, 19].

5.2 Differential Probability

Using such differential, one can define the differential probability: see Defi-
nition 5 [14, 19].

Definition 5. Let f : Fn
q → Fn

q be a q-ary transformation, b an input differ-
ence of f and a an output difference of f . The differential probability (DP)
of a differential (b, a) over f is defined as

DPf (b, a) =
Nf (b, a)

qn

24

with Nf (b, a) denoting the number of values x ∈ Fn
q for which it holds that

f(x)− f(x− b) = a.

From this definition we can deduce that the following relation always
holds for a fixed input difference b :∑

a

DPf (b, a) = 1 .

Another relation between DPs is as follows:

DPf (b, a) = DPf (−b,−a) .

Having introduced the differential probability, we will define the weight
related to this DP as the (restriction) weight. The weight can only be derived
from the differential probability if the input difference b and output difference
a are compatible, i.e., when DPf (b, a) > 0 [14, 19]. The definition of this
weight is shown in Definition 6 and is derived from the definitions in [14, 19].

Definition 6. Let DPf (b, a) be the DP of a differential (b, a) over a q-ary
transformation f . The (restriction) weight of a differential (b, a) over f that
satisfies DPf (b, a) > 0 is defined as

wr(b, a) = − logq (DPf (b, a))

which can be equivalently written as

q−wr(b,a) = DPf (b, a) .

A question that arises is for instance: “How can we easily compute
DPf (b, a) and wr(b, a), with f a q-ary transformation containing multiple
iterations of the round function R, if the state size n (and thus implicitly qn)
gets too big to exhaustively compute by hand or by computer?”. To solve
this question, we will investigate the linear and non-linear layer separately.

We start off with the linear layer. The linear layer of Tq is defined as
λ = ρ ◦ θ. Note that this linear layer λ can be generically expressed as
y = Mx where y ∈ Fn

q denotes the output, x ∈ Fn
q the input and M ∈ Fn×n

q

some matrix (which is a linear transformation) [19]. Now, if we write out the
output difference a algebraically, we obtain the result as shown in Equation
1.

a = y − y∗

= λ(x)− λ(x∗)
= Mx−Mx∗

= Mx−M(x− b)
= Mx−Mx+Mb

= Mb .

(1)

25

This thus means that the linear layer has the following differential probabil-
ity:

DPλ(b, a) =

1 if and only if a = Mb = λ(b) ;

0 otherwise .

Note that the derivation in Equation 1 also holds for affine mappings y =
Mx+ c with some constant vector c.

As we can deduce from the result on DPλ(b, a) above, we should focus
on the differential propagation through the non-linear layer γ. This is a
consequence of the fact that for linear layers the DP equals to 1. Normally,
one can split the non-linear layer into smaller chunks, called S-boxes [14, 19].
However, our q-ary transformation does not contain any S-boxes, so this is
inapplicable in our case. We will investigate the propagation properties of
the non-linear layer in Section 5.6.

5.3 Round Differentials

Instead of looking at the differential probability of q-ary transformations, we
can also look at the differentials over a round function Ri. Let qi be the
input difference of round Ri and qi+1 the output difference of round Ri and,
at the same time, the input difference of round Ri+1. The (ordered) pair
(qi, qi+1) ∈ Fn

q × Fn
q containing the input and output difference of round Ri

is called a round differential [14].

5.4 Differential Trails

It can happen that NRi(qi, qi+1) ≥ 1 for all i for a sequence of input and
output differences (q0, q1, . . . , qk) ∈

(
Fn
q

)k+1. In other words, it could be
possible that the number of values x ∈ Fn

q for which Ri(x)−Ri(x−qi) = qi+1

holds (for all 0 ≤ i < k) is bigger or equal to 1 for a sequence of input and
output differences (q0, q1, . . . , qk) ∈

(
Fn
q

)k+1. In this case we denote this
sequence as a k-round differential trail [14, 45]: see also Definition 7.

Definition 7. A k-round differential trail is a sequence of k + 1 difference
patterns Qk = (q0, q1, . . . , qk) ∈

(
Fn
q

)k+1 that satisfies DPRi(qi, qi+1) > 0 for
0 ≤ i < k.

Note that if we write Q ∈ (q0, qk), we indicate that Q starts in input
difference q0 and ends in output difference qk.

If we remove the initial difference q0 and the final difference qk, we ob-
tain a differential trail core (q1, q2, . . . , qk−1) [14]. This trail core defines a
collection of differential trails with the same inner differences [14].

Just like a differential, a k-round differential trail has a differential prob-
ability. Its differential probability is “equal to the probability that input pair

26

(x, x+ q0) with x uniformly random will exhibit the sequence of differences
through the rounds” [45]. In other words, this DP indicates the probability
that a pair with input difference q0 has difference q1 after one iteration of the
round function, has difference q2 after two iterations of the round function,
etc. [19]. After k rounds the pair should end up with the output difference
qk. Definition 8 describes this concept mathematically as done in [14].

Definition 8. Let f : Fn
q → Fn

q be a q-ary transformation and Qk = (q0, q1,
. . . , qk) a k-round differential trail. The differential probability (DP) of a
k-round differential trail Qk is defined as

DPf (Qk) =
Nf (Qk)

qn

with Nf (Qk) denoting the number of values x ∈ Fn
q for which it holds that

Ri(x)− Ri(x− qi) = qi+1 for all 0 ≤ i < k.

Now, let f represent a q-ary transformation that contains k rounds of
round function R. As we know that any ordered pair (x, x+b) follows exactly
one differential trail, we also know that the DP of a k-round differential
equals to the sum of the differential probabilities of the trails in it [14, 19]:

DPf (q0, qk) =
∑

Qk∈(q0,qk)

DPf (Qk) .

As the DP of a differential trail is in general hard to compute, one can use
the concept of the expected differential probability to obtain an approximate
value: see Definition 9 [14, 19]. Note that this concept is based on a statistical
independence assumption [46].

Definition 9. Let f : Fn
q → Fn

q be a q-ary transformation, R the round
function belonging to f and Qk = (q0, q1, . . . , qk) a k-round differential trail.
The expected differential probability (EDP) of a k-round differential trail
Qk is defined as

EDPf (Qk) =

k−1∏
i=0

DPR (qi, qi+1) .

After having defined the (E)DP of a differential trail, one can also define
the weight of it. The weight of a trail is similar to the weight of a differential
[14, 19] and is easy to compute exactly: see Definition 10.

Definition 10. Let f : Fn
q → Fn

q be a q-ary transformation, Qk = (q0, q1, . . . ,
qk) a k-round differential trail and EDPf (Qk) the EDP of k-round differential
trail Qk. The (restriction) weight of a k-round differential trail Qk is defined
as

wr(Qk) = − logq(EDPf (Qk))

27

which can be equivalently written as

wr(Qk) =

k−1∑
i=0

wr (qi, qi+1) .

If the weight is sufficiently small in the size of the state and meets some
specific requirements, round differentials are (almost) independent [19] such
that

DPf (Qk) ≈ EDPf (Qk) = q−wr(Qk) .

Next to this relation with the expected DP, there are two other important
relations we can link to the EDP. First of all, if there is almost no clustering
[14], there is often a single dominating trail [19] such that

DPRk(q0, qk) ≈ EDPf (Qk) .

Secondly, when counting differential trails, a sequence (q0, q1, q2, . . . , qk) is
considered as a proper trail only if EDPf (Qk) > 0 [14, 19].

5.5 Trail Search

As stated in the beginning of the chapter, high-probability differentials can
be exploited [10, 12]. If we encounter trails with low weight and thus with a
high DP, we know that there automatically exists a differential with a high
DP, which are potential exploitable weaknesses [38]. We thus aim to find the
minimum weight, or similarly, the maximum DP, of trails over k rounds. In
other words: we aim to find a lower bound on the trail weights over k rounds
[30, 38].

As k increases and takes on a value of above 3, this usually already gets
quite complex [38]. To still perform this analysis, something called a trail
core tree search [38] can be performed. This technique has been applied to
various other ciphers such as Keccak-p [39], Xoodoo [21] and Ascon [30]
and will be explained in more detail in the next sections.

However, before we do, we should clarify some things. First of all, this
trail search looks separately at the linear and non-linear layer of the round
function. We split our round function again in the linear layer λ = ρ ◦ θ
and the non-linear layer γ. Besides this, the k-round differential trail Qk is
written down differently to represent this split: we use ai to represent the
ith input of the linear layer and bi to represent the ith input of the non-linear
layer. For Qk we then write:

Qk =
Ä
a0, b0, a1, b1, . . . , bk−1, ak

ä
.

28

5.5.1 Trail Extension in the Forward Direction

The first concept we need to understand before being able to do trail search
is trail extension in the forward direction: extending a k-round trail Qk =(
a0, b0, a1, b1, . . . , bk−1, ak

)
by one round [38]. The result of this extension

is a set of k + 1-round trails Qk+1 =
(
a0, b0, a1, b1, . . . , bk−1, ak, bk, ak+1

)
.

As can be seen, for trail extension in the forward direction one should first
compute bk = λ(ak) and then build all compatible output differences over γ,
i.e., build all ak+1 [38].

If we now want to say something about the weight of this newly created
trail Qk+1, one should keep in mind that the weight of the shorter original
trail, Qk, is known. This weight is namely equal to wr(Qk). The only
thing to determine is the weight of the two newly added differences, namely
wr

(
bk, ak+1

)
, such that we can define

wr(Qk+1) = wr(Qk) + wr
Ä
bk, ak+1

ä
as the weight of the extended trail. To find a trail with a DP as high as
possible, we want to compute what the minimum possible weight is for a
given transformation. This can be achieved by computing the minimum
direct weight [38]: see Definition 11.

Definition 11. Let wr
(
bk, ak+1

)
be the weight of the differential

(
bk, ak+1

)
.

The minimum direct weight is defined as

wdir
Ä
bk
ä
:= min

ak+1
wr
Ä
bk, ak+1

ä
.

5.5.2 Trail Extension in the Backward Direction

The second important concept is related to the previous notion: if one
can extend a trail in the forward direction, one should also be able to
extend a trail in the backward direction. More concretely, trail exten-
sion in the backward direction is about extending a k-round trail Qk =(
a1, b1, . . . , bk−1, ak, bk, ak+1

)
by one round [38]. The result is then the set

of k + 1-round trails Qk+1 =
(
a0, b0, a1, b1, . . . , bk−1, ak, bk, ak+1

)
. To obtain

this set, one should thus first build all compatible input differences over γ,
i.e., build all b0 and then compute a0 = λ−1(b0) [38].

If we want to say something about the weight, we can again define it as
the sum of the weight of the k-round trail and the newly added weight: in
this case of the differential

(
b0, a1

)
. Note that it is wrong to consider the

differential of the two computed values –
(
a0, b0

)
– as for the weight we need

a differential over the non-linear layer γ instead of over the linear layer λ.
From this, we can thus conclude that the weight of the k + 1-round

differential trail is defined as

wr(Qk+1) = wr
(
b0, a1

)
+ wr(Qk) .

29

To find a trail with a DP as high as possible, we should know what the
minimum possible weight for this transformation is. This is described by the
so-called minimum reverse weight [38] as shown in Definition 12.

Definition 12. Let wr
(
b0, a1

)
be the weight of the differential

(
b0, a1

)
. The

minimum reverse weight is defined as

wrev (a1) := min
b0

wr
(
b0, a1

)
.

5.5.3 Trail Cores

The last concept to understand before we can do a trail search is the notion
of trail cores as introduced in Section 5.4. Using the notation of input and
output differences on the level of the non-linear and linear layer, one can
write a k-round differential trail core as

(
a1, b1, . . . , bk−1

)
[14, 38]. If we

combine these trail cores with the notions of minimum direct and minimum
reverse weight, one can lower bound the weight of a k-round trail core by
using the following formula [38]:

wr (Qk) = wrev (a1)+ k−1∑
i=2

wr
(
bi−1, ai

)
+ wdir

Ä
bk−1

ä
.

5.5.4 Search Strategy Used in Trail Search

To find the lower bound on the trail weight, one could build all k-round trail
cores up to some target weight Tk. If no trail core is found, then Tk is a
non-tight bound on the weight of all k-round trails [38]. If a trail core is
found, the minimum weight found defines a tight bound on the weight of all
k-round trails [38].

However, building all k-round trail cores up to some target weight Tk
is very inefficient and possibly even infeasible. To solve this issue, one can
start with a k′-round trail core with k′ < k and extend this trail core using
the extension methods explained in previous sections [38].

To give a small example of this technique [30, 38], we assume that our
goal is to lower bound the weight of all 4-round trail cores using target weight
T4. A 4-round trail core Q4 has the following weight:

wr(Q4) = wrev(a1) + wr
(
b1, a2

)
+ wr

(
b2, a3

)
+ wdir(b3) .

As we know that wr(Q4) ≤ T4, this implies that

wrev(a1) + wr
(
b1, a2

)
≤ T4

2

or
wr

(
b2, a3

)
+ wdir(b3) ≤

T4
2
.

30

This thus indicates that we can build any 4-round trail coreQ4 with wr(Q4) ≤
T4 by building all 2-round trail cores Q2 with wr(Q2) ≤ T2 = T4

2 and after
this extending them by 2 rounds in the forward and backward direction [38].

To generate a 2-round trail core, denoted by Q2 = (a1, b1), one should
first note that Q2 is fully determined by a1 [38]. We can namely write
b1 = λ(a1) resulting in the trail core notation Q2 = (a1, λ(a1)). From this,
it follows that the weight of this trail core is also fully determined by a1 [38]:

wr(Q2) = wrev(a1) + wdir(λ(a1)) .

The last thing we need to do in order to bound wr(Q2) by target weight
T2, is to build all possibilities for a1 [38]. This can be done using a so-called
tree-traversal approach as explained in [30].

5.6 Differential Propagation Properties of γ in Tq
Before we look at the full non-linear layer γ, we will first investigate the DP
of the squaring function s(x) = x2. Let b be the input difference of input
pair (x, x∗). The corresponding output difference a can then be written as:

a = y − y∗

= x2 − (x∗)2

= x2 − (x− b)2

= x2 − x2 − 2xb+ b2

= b2 − 2xb .

As we can see, the result is a linear equation. This equation shows us that
for any output difference a there is only one input pair (x, x∗) with x = (b2−
a)(2b)−1. From this, it follows that the set of output differences a compatible
over the squaring function s(x) = x2 with a non-zero input difference b
coincides with Fq. Therefore, DPs(b, a) =

1
q .

Now, the output difference of the non-linear layer γ can also be written
out mathematically. We rewrite the output difference a with respect to digit
i of the state in terms of input difference b and input x in Equation 2. Note
that in this equation the input difference b is known, and thus that we can
consider the differences bi and bi+g as constants.

31

ai = yi − y∗i
= γ(xi)− γ(x∗i)

=
Ä
xi + (xi+g)

2
ä
−
Ä
x∗i +

(
x∗i+g

)2ä
= xi − x∗i + (xi+g)

2 −
(
x∗i+g

)2
= bi + (xi+g)

2 −
(
x∗i+g

)2
= bi +

(
xi+g − x∗i+g

) (
xi+g + x∗i+g

)
= bi + bi+g

(
xi+g + x∗i+g

)
= bi + bi+g

(
xi+g − x∗i+g + 2x∗i+g

)
= bi + bi+g

(
bi+g + 2x∗i+g

)
= bi + (bi+g)

2 + bi+g · 2x∗i+g

= bi + (bi+g)
2 + bi+g · 2(xi+g − bi+g)

= bi + (bi+g)
2 + bi+g · 2xi+g − 2 (bi+g)

2

= bi − (bi+g)
2 + bi+g · 2xi+g .

(2)

The result of Equation 2 thus means that we can consider the expression
as a linear equation in input digit 2xi+g. We can consider two cases regarding
bi+g :

1. If bi+g = 0, the digit value 2xi+g can take on any value, i.e., 2xi+g ∈ Fq,
as long as ai = bi. This is the case as we know that gcd(g, 2) = 1 holds:
we namely know that 2 is invertible. Because 2 is invertible, the map
z 7→ 2z becomes bijective. So, if z can take on any value, then so can
2z.

2. If bi+g ̸= 0, the digit value 2xi+g can only have one value as determined
by the constants in the following equation:

2xi+g =
Ä
ai − bi + (bi+g)

2
ä
(bi+g)

−1 .

From these two cases, we can conclude that Theorem 1 holds for the DP
of a differential (b, a) over the non-linear layer γ.

Theorem 1. Let γ : Fn
q → Fn

q be the non-linear layer of Tq, b an input
difference of γ and a an output difference of γ. The differential probability
(DP) of a differential (b, a) over γ is equal to

DPγ(b, a) = q−HW(b) .

Proof of Theorem 1. The case distinction has shown that 2xi+g is fixed
if bi+g ̸= 0, but that it can take on any value if bi+g = 0. For the DP, it is
important to know how many times an input can take on any value as we

32

can calculate the DP using this knowledge. The DP should namely be equal
to the number of possible (unfixed) values, divided by all possible states:

DPγ(b, a) =
qnumber of zero entries of b

qn

=
qn−HW(b)

qn

=
qn · q−HW(b)

qn

= q−HW(b) .

Here, n represents the size of the state.

As we can see in the derivation above, this relation does not only hold
for q, but holds for any integer N as long as N is coprime to 2, i.e., as long
as N is an odd number. Note that, at this point, we are not talking about a
finite field anymore. The structure in which this will work is in a structure
where the element 2 has an inverse, such as the ring (Z/NZ,+,×).

As we know that DPγ(b, a) = q−wr(b,a) should hold, we can answer the
question posed before on how to compute DPf (b, a) and wr(b, a) easily. We
can namely state that the weight of a differential is equal to the Hamming
weight of the input difference:

wr(b, a) = HW(b) . (3)

5.6.1 Tools for Differential Trail Search on Tq
We will provide tools that are useful to perform differential trail search on
Tq. However, the complete trail search is left as future work.

Before we provide the components for a trail search on Tq, we note that
we fixed the parameter g in the non-linear layer γ to g = 1. We did this
to better see relations between the output and input differences of γ. Note
that the results for g = 1 can logically be converted to any parameter value
g: this is done using multiplicative shuffles as the only thing to be changed
is the order of the state coordinates. An example of this is as follows. When
using g = 1 in γ we can represent a 5-digit state by s0s1s2s3s4. If we now
want to convert this to a non-linear layer using g = 2, we reorder the state
as s0s2s4s1s3 to obtain similar results. The algorithms in this chapter are
for simplicity thus defined with the parameter g = 1.

Compatible Output Differences Through γ

The compatible output differences a ∈ Fn
q over γ form an affine space for a

certain input difference b ∈ Fn
q [18, 19, 38]. This can be shown if we consider

33

Equation 2. Replacing g with 1 in this equation, we can immediately deduce
that our offset is bi − (bi+1)

2. In matrix notation, we can write the result of
Equation 2 as [18]:

a0

a1

a2
...

an−2

an−1

= bi − (bi+1)

2 +

0 b1 0 0 · · · 0 0

0 0 b2 0 · · · 0 0

0 0 0 b3 · · · 0 0

· · ·
0 0 0 0 · · · 0 bn−1

b0 0 0 0 · · · 0 0

2x0

2x1

2x2
...

2xn−2

2xn−1

.

The independent columns of this matrix form a basis [18]. Note that they
are all already independent since each column has only one non-zero value
that does not appear in any other column. The basis is thus given by col-
umn vectors uk = bk−1ek−1, which are vectors with all zeros except bk−1 in
position k − 1 [18].

Having an affine space formed by the compatible output differences means
one can find all compatible output differences by building an offset and a
basis belonging to that affine space [5]. How to build this offset and basis is
shown in Algorithm 2.

Algorithm 2 Generation of the offset and basis for the affine space that
defines all compatible output differences of the input difference b ∈ Fn

q .

Parameters: an input difference b ∈ Fn
q .

Output: the offset P and basis V for the compatible output differences
of input difference b ∈ Fn

q .

1: Initialize an empty set V to hold all basis vectors vi.
2: for state coordinate i do
3: Pi = bi − (bi+1)

2

4: if bi ̸= 0 then
5: Add biei to V .
6: return (P, V)

Hamming Weight as the Minimum Direct Weight

If we look at Definition 11, we see that the minimum direct weight takes the
minimum restriction weight over all differentials (bk, ak+1). However, as was
shown in Equation 3, the restriction weight of a differential (b, a) is equal to
the Hamming weight of input difference b: wr(b, a) = HW(b). As a result, we
essentially do not have a minimum direct weight: it is equal to the Hamming
weight of the input difference.

34

Compatible Input Differences Through γ

The input differences compatible with a given output difference do not form
an affine space. To find relations to determine the compatible input dif-
ferences without an exhaustive search of all qn possibilities, we make a toy
example over F3 with state size n ≤ 8.

In this small example, all possible input differences are generated. From
these input differences, all output differences over γ are computed in a brute-
force manner. After having generated all compatible output differences for
each input difference, we make a list of the reversed structure: we make a
list of all compatible input differences for a certain output difference. From
this list, we could reveal a structure on how to compute all compatible input
differences belonging to a given output difference of any instance of T3, but
also of Tq.

The method to find all compatible input differences of output difference a
consists of two steps. First, the compatible input activity patterns belonging
to a are determined. How to do this is described in Algorithm 3.

As can be seen in Algorithm 3, a tree traversal approach is taken in order
to obtain all compatible input activity patterns B. The first thing that is
done is getting the activity pattern A of output difference a. Then, the
input activity pattern B is initialized to all unspecified values. After this, it
is specified whether Bn−1 is active or passive. Following on this, for all other
digits Bn−2 to B0, we determined whether the digits are active or passive
based on these two rules:

1. If Bi = 0 and Ai−1 = 0, then Bi−1 = 0;

2. If Bi = 0 and Ai−1 ̸= 0, then Bi−1 ̸= 0.

Proof of statement 1. We prove statement 1 with a proof by contradic-
tion. Assume that Bi = 0, Ai−1 = 0 and Bi−1 ̸= 0. As Bi = 0 we know
that bi = xi − x∗i = 0, which yields xi = x∗i . Likewise, as Bi−1 ̸= 0, we
know that bi−1 = xi−1 − x∗i−1 ̸= 0, which yields xi−1 ̸= x∗i−1. Because an
application of γ results in yi−1 = xi−1 + (xi)

2 and y∗i−1 = x∗i−1 + (x∗i)
2, we

know that yi−1 ̸= y∗i−1. This is because in both equations the same value for
the square is added, but the first term differs. Since yi−1 ̸= y∗i−1, it follows
that ai−1 = yi−1 − y∗i−1 ̸= 0 and thus that Ai−1 ̸= 0. But we assumed that
Ai−1 = 0: a contradiction.

Proof of statement 2. We prove statement 2 with a proof by contradic-
tion. Assume that Bi = 0, Ai−1 ̸= 0 and Bi−1 = 0. As Bi = 0 we know that
bi = xi− x∗i = 0, which yields xi = x∗i . Likewise, as Bi−1 = 0, we know that
bi−1 = xi−1 − x∗i−1 = 0, which yields xi−1 = x∗i−1. Because an application
of γ results in yi−1 = xi−1 + (xi)

2 and y∗i−1 = x∗i−1 + (x∗i)
2, we know that

yi−1 = y∗i−1. This is because both equations essentially perform the same
addition of a square. Since yi−1 = y∗i−1, it follows that ai−1 = yi−1−y∗i−1 = 0

35

Algorithm 3 Generation of all compatible input activity patterns of the
output difference a ∈ Fn

q .

Parameters: an output difference a ∈ Fn
q and bound for the weight W .

Output: list L containing the compatible input activity patterns of out-
put difference a ∈ Fn

q .

1: Build the activity pattern A of output difference a.
2: Initialize an empty list L to hold compatible input activity patterns.
3: Initialize the activity pattern B of input difference b to all ∗.
4: Bn−1 = 1
5: buildB(n− 1, B, A, W)
6: Bn−1 = 0
7: buildB(n− 1, B, A, W)

8: where buildB(i, B,A,W), with i the remaining unspecified digits of B,
B the activity pattern of input difference b, A the activity pattern of
output difference a and W the bound for the weight, is defined as:

9: if HW(B) > W then return
10: if i = 0 then
11: if Bn−1 = 1 or A0 = B0 then
12: Add B to L.
13: return
14: B′ = B
15: if Bi = 1 or Ai−1 = 1 then
16: B′

i−1 = 1
17: buildB(i− 1, B′, A,W)
18: if Bi = 1 or Ai−1 = 0 then
19: B′

i−1 = 0
20: buildB(i− 1, B′, A,W)
21: return

36

and thus that Ai−1 = 0. But we assumed that Ai−1 ̸= 0: a contradiction.

Note that these rules are not used explicitly in Algorithm 3. We use the
following inferences from these statements:

1. If Bi = 1, the rules give no restriction on the value for Bi−1. This
thus means that we should investigate both possibilities: Bi−1 can be
passive (Bi−1 = 0) but can also be active (Bi−1 = 1);

2. If Ai−1 = 1 and Bi = 0, we trigger the second rule: this means that
Bi−1 should be active (Bi−1 = 1);

3. If Ai−1 = 0 and Bi = 0, we trigger the first rule: this means that Bi−1

should be passive (Bi−1 = 0);

The second step is to deduce the compatible input differences from the
compatible input activity patterns resulting from Algorithm 3. This is done
as follows. Given an input activity pattern B, one leaves the passive coor-
dinates fixed to 0, as passive coordinates represent zero values. Then, we
should change an active coordinate Bi to ai if Bi+1 = 0. This is because if
Bi+1 = 0 and Bi ̸= 0, we get that xi+1 = x∗i+1 and xi ̸= x∗i , which yields
ai = yi − y∗i = xi + (xi+1)

2 −
Ä
x∗i +

(
x∗i+1

)2ä
= xi − x∗i = bi. Following the

same reasoning, the last step is changing all other active coordinates Bi to
any non-zero value if Bi+1 ̸= 0.

Minimum Reverse Weight

As we can generate all compatible input differences belonging to a certain
output difference, this means that an algorithm that deduces the minimum
reverse weight can also be formulated: see Algorithm 4.

As we can see in Algorithm 4, the minimum reverse weight is a bit more
complicated than the minimum direct weight. The minimum reverse weight
is defined as a sum over the length l of each 1-run. We namely add:

• l
2 if l is an even number;

• l+1
2 if l is an odd number.

We can define the minimum reverse weight like this because of the rules
defined above: if Bi = 0 and Ai−1 = 0, then Bi−1 = 0 and if Bi = 0 and
Ai−1 ̸= 0, then Bi−1 ̸= 0. The first rule basically says that if we have a zero
on position i− 1 in the output difference a, the input difference b can never
have a non-zero value on position i − 1 and a zero on position i. Similarly,
the second rule states that if we have a non-zero digit on position i − 1 in
output difference a, the input difference b can never have zero values on both
positions i and i− 1.

When we look at a 1-run of even length, we notice that the minimal way
to comply with these rules is to have alternating zero and non-zero values in

37

Algorithm 4 Computation of the minimum reverse weight of the output
difference a ∈ Fn

q .

Parameters: an output difference a ∈ Fn
q .

Output: the minimum reverse weight of a ∈ Fn
q .

1: Make a list L to hold all 1-runs of output difference a.
2: if L ̸= ∅ do
3: Initialize the minimum reverse weight w to 0.
4: for r ∈ L do
5: l = length(r)
6: if l%2 = 0 do
7: w = w + l

2
8: else
9: w = w + l+1

2
10: return w
11: else
12: return 0

the input difference. If a zero value on position i would change to a non-zero
value, it still follows the rules, but we incremented the weight by one (so
it is not minimal anymore). The other way around, if a non-zero value on
position i changes to a zero value, we have zero values on both positions i
and i − 1, which is not possible. This thus indicates that if the length of a
1-run is even, the minimum reverse weight of this part is equal to l

2 .
The same holds a 1-run of odd length. However, one should note that the

alternating sequence of zero and non-zero values should always start with a
non-zero value. If this is not the case, the first rule will not be satisfied.
Therefore, if the length of a 1-run is odd, the minimum reverse weight of
this part is equal to l+1

2 .
Note that if an output difference is the all-zero state, no runs are found.

In this case, the compatible input with the lowest weight would be the all-
zero state again, which is why, in Algorithm 4, 0 is returned in case no runs
are found.

5.6.2 Non-invertibility of γ

A non-zero input difference b can lead to a zero-output difference a (and
thereby causing a collision) if 0 is its offset in the affine space. This can only
happen if for all positions it holds that both the positions bi and bi+1 are
active, i.e., if the input difference b has no coordinates equal to zero. There
are (q − 1)n of such input differences, for which DPγ(b, 0) = q−n.

We can quantify the non-invertibility of γ by looking at the collision
probability. We define the collision probability of a mapping as the proba-

38

bility that we randomly choose two different inputs and have their outputs
collide. We know that a random transformation f : Fn

q → Fn
q has collision

probability q−n since this is the probability that two chosen inputs end up
in the same image. For the non-linear layer γ, the collision probability is
equal to the number of colliding pairs divided by the total number of pairs.
In mathematical notation:

(q − 1)n(qn
2

) =
2(q − 1)n

qn(qn − 1)
≈ 2(q − 1)n

q2n
.

Therefore, if we look at the differential propagation, the non-invertibility of
γ is no problem.

39

Chapter 6

Linear Propagation

Linear cryptanalysis of primitives that operate on arrays of elements of F2 is
“a known plaintext attack in which the attacker studies probabilistic linear
relations (called linear approximations) between parity bits of the plaintext,
the ciphertext, and the secret key” [11]. Information about the linear propa-
gation is valuable for estimating how vulnerable a cryptographic transforma-
tion is against exploitation of high correlations (in absolute sense) between
linear combinations of input digits and linear combinations of output digits
[14, 36].

This chapter will discuss the generalization of binary linear cryptanalysis
to transformations that are defined over Fp. The generalization for q-ary
transformations (by making use of the trace function [23, 34]) is left as
future work. We will first explain the concepts of correlation and linear
approximations. After this, we discuss the linear propagation properties
through the linear and non-linear layer of Tq. Then, the concepts of linear
potential, round linear approximations, linear trails, linear trail cores and
trail search will be elaborated upon. Lastly, we will provide tools to perform
a linear trail search on Tq.

6.1 Correlation

Instead of considering all q-ary transformations, we will look at transforma-
tions from Fn

p to Fn
p for which thus q = pl = p1 = p with p a prime. Having

such transformations, we define new functions f : Fn
p → Fp. The correlation

between two such functions f, g : Fn
p → Fp will not be defined in the range of

−1 to +1 as was the case for primitives that operate on arrays of elements
of F2. If we generalize the setting of binary linear cryptanalysis to functions
over Fp, correlations become complex numbers on the unit circle. These
complex numbers can be seen as vectors in R2 and thus, the correlation is
related to the scaling factor in the projected vector [42].

40

Specifically, we can define the functions f̂ : Fn
p → S where S = {z ∈ C : |z| =

1} is the unit circle in the complex plane [25, 35]. The functions f̂ make use
of the pth root of unity, say, ω = e

2πi
p and can be expressed as:

f̂(x) = ωf(x) .

Note that the image of f̂ is not equal to all complex numbers, but only equal
to the p pth roots of unity lying on the unit circle S.

The set of functions Fn
p → C is an inner product space [29], which means

that one can define an inner product between two such functions f̂ and ĝ.
The inner product of f̂ and ĝ is denoted by ⟨f̂ , ĝ⟩ and is defined as:

⟨f̂ , ĝ⟩ =
∑
x∈Fn

p

f̂(x)ĝ(x)

where z is the complex conjugate as introduced in Section 2.6. Having an
inner product, it defines the norm, which is denoted by ||f̂ || and expressed
as:

||f̂ || =
»
⟨f̂ , f̂⟩ .

The distance between two functions f̂ and ĝ can be calculated as ||f̂ − ĝ||.
Here, f̂ − ĝ is given by (f̂ − ĝ)(x) = f̂(x)− ĝ(x).

Note that the normalized inner product will function as our correla-
tion. Therefore, we will now define the correlation between two functions
f, g : Fn

p → Fp as described in Definition 13.

Definition 13. Let f, g : Fn
p → Fp be functions over Fp from n digits to 1

digit. The (complex) correlation between the functions f and g is defined as

C(f, g) =
1

pn
·
∑
x∈Fn

p

f̂(x)ĝ(x) .

To make the correlation a bit more concrete, one should note that an
inner product space is automatically a vector space (that has an inner prod-
uct), which means that it has many bases b ∈ B. This B thus contains linear
(basis) functions, which are orthogonal to each other [5]. We know that if
B is the set of orthogonal basis vectors b of a vector space, one can express
each vector v of that vector space as follows [29]:

v =
∑
b∈B

⟨b, v⟩
||b||2

· b .

The coefficients of this expression are equal to the correlations, i.e., the
correlation between v and a basis vector b is equal to ⟨b,v⟩

||b||2 . As one can see,
these correlations are thus scaled inner products.

41

6.2 Linear Approximations

After giving an explanation on correlations, we will define linear approxi-
mations and their correlations. Let f : Fn

p → Fn
p be a transformation op-

erating on n digits in Fp. Take u ∈ Fn
p and v ∈ Fn

p . The (ordered) pair
(u, v) ∈ Fn

p ×Fn
p is called a linear approximation, with u the input mask and

v the output mask [14].
We can perform an operation on the transformation f : Fn

p → Fn
p to

obtain functions fv : Fn
p → Fp. This can be done by choosing an output

mask v ∈ Fn
p and after this linearly combining coordinates. Therefore, the

functions fv with input x ∈ Fn
p are defined as:

fv(x) = v⊤f(x) .

The correlation of a linear approximation can then be defined by the
correlation between the functions u⊤x and v⊤f(x) [25] as follows:

Cf (u, v) =
1

pn
·
∑
x∈Fn

p

ωu⊤x−v⊤f(x) . (4)

Note that u⊤x defines a linear function of the input digits and that v⊤f(x)
defines a linear function of the output digits for x ∈ Fn

p [18]. If v⊤f(x) is
viewed as a function of the input digits, it is not linear in case f is non-linear.

As there are attacks known which use correlations with high absolute
value, the goal is to make sure that there are no such correlations between
linear functions of the input and linear functions of the output of transfor-
mations [14, 36].

6.2.1 Linear Mask Propagation Through a Linear Layer

Recall that a linear layer λ can be expressed as y = Mx where y ∈ Fn
p

denotes the output, x ∈ Fn
p the input and M ∈ Fn×n

p some matrix (which
is a linear transformation) [19]. Taking the output mask v ∈ Fn

p one can
deduce the following relation regarding the linear layer [18]:

v⊤y = v⊤Mx

=
Ä
M⊤v

ä⊤
x .

What we can see in this relation is that if u = M⊤v, we get the equation
v⊤λ(x) = u⊤x when denoting y = λ(x). But, if these two expressions are
equal, we see in Equation 4 that Cλ(u, v) equals to 1.

A linear layer could potentially also include constant addition, which
influences the correlation. Let c : Fp → Fp be given by c(x) = x+ k. Again,

42

taking the output mask v ∈ Fp one can deduce [18]:

v⊤c(x) = v⊤(x+ k)

= v⊤x+ v⊤k .

Now, if u = v, we get that v⊤c(x) = u⊤x+u⊤k. The correlation of constant
addition, Cc(u, v), is thus equal to ω−v⊤k. Note that this is a correlation
with absolute value 1 but with a different argument.

6.2.2 Linear Mask Propagation Through γ of Tq
The non-linear layer γ performs four operations on each state digit. These
four steps are:

1. Duplicate the state digit si once, such that two copies are present;

2. Square state digit si+g to obtain (si+g)
2;

3. Perform an addition to obtain si + (si+g)
2;

4. Save this result to state digit si.

To determine the correlation of a linear approximation over the non-linear
layer, we should know the correlation of duplication, the correlation of squar-
ing and the correlation of addition.

We first find the correlation of duplication. Let d : Fp → Fp×Fp be given
by d(x) = (x, x). Taking output mask (v1, v2) ∈ (Fp)

2 yields:

(v1, v2)
⊤d(x) = (v1, v2)

⊤(x, x)

= v⊤1 x+ v⊤2 x

= (v⊤1 + v⊤2)x

= (v1 + v2)
⊤x .

If u = v1 + v2, we get the equation (v1, v2)
⊤d(x) = u⊤x and see that the

correlation of duplication, Cd(u, (v1, v2)), equals to 1.
Then, we determine the correlation of addition. Let a : Fp × Fp → Fp be

given by a(x, y) = x+ y. Taking output mask v ∈ Fp, we get:

v⊤a(x, y) = v⊤(x+ y)

= v⊤x+ v⊤y

= (v, v)⊤(x, y) .

If u1 = u2 = v, we get the equation v⊤a(x, y) = (u1, u2)
⊤(x, y) and see that

the correlation of addition, Ca((u1, u2), v), equals to 1.

43

Now, the only thing left to do is to determine the correlation of squaring.
The inner product of the correlation is defined in Theorem 5.33 of [35] for
f(x) = a2x

2 + a1x+ a0 ∈ Fp[x] with a2 ̸= 0 as follows:∑
c∈Fp

f̂(c) = ¤�(
a0 − a21(4a2)−1

)
· η(a2) ·G(η,)̂ .

Here, η represents the so-called Legendre symbol and G the Gaussian sum
[35]. As the squaring function is defined as f(x) = x2, we know that a2 = 1,
a1 = 0 and a0 = 0. We then get the following expression:

0̂ · η(1) ·G(η,)̂ = η(1) ·G(η,)̂ .

The Legendre symbol η(c) =
Ä
c
p

ä
with c ∈ F∗

p, expresses whether or not a
value is a (non-)quadratic residue modulo p [35]. Note that if c = 0, the
value stays 0. This indicates that the value η(1) in our expression always
equals to 1: c = 1 is always a (non-zero) quadratic residue modulo p. This
yields the following expression for the inner product of the correlation:

1 ·G(η,)̂ = G(η,)̂ .

As stated before, the remaining term, G(η,)̂ =
∑

c∈F∗
p
ψ(c)ĉ, represents the

Gaussian sum [35]. Here, ψ is the multiplicative character of Fp, which means
that ψ is a special group homomorphism from Fp to the multiplicative group
of F∗

p [35]. For more information about characters, we refer to [35].
The exact value of this Gaussian sum can be expressed as is shown in

Theorem 5.15 of [35]:

G(η,)̂ =

√
p if p ≡ 1 (mod 4) ;

i
√
p if p ≡ 3 (mod 4) .

To obtain the correlation, one should now get the scaled version of this sum:

Cs(u, v) =

√
p

||b||2 if p ≡ 1 (mod 4) ;

i
√
p

||b||2 if p ≡ 3 (mod 4) .

Here, b represents the set of linear functions. However, the norms of all basis
vectors are the same and is given by ||b||2 = p. Therefore, the correlation of
squaring is equal to:

Cs(u, v) =

√
p
p if p ≡ 1 (mod 4) ;

i
√
p

p if p ≡ 3 (mod 4) .

Then, if a2 = 0 (so if the output mask v equals 0), the square is cancelled
in the function and we have two cases to consider: either the input mask

44

u = 0 or u ̸= 0. The only way to obtain a correlation equal to 1, is to set
u = 0. This is because, by taking u = 0, the correlation between two complex
vectors equals 1. Likewise, if u ̸= 0, and we do not consider a correlation
with the complex all-one vector, the correlation will be equal to 0.

To visualize why this particular correlation for squaring holds, we give
an illustration of an example derivation over F3.

Illustration over F3 of the correlation of squaring

Let ω = e
2πi
3 be a cube root over the complex numbers, such that raising it

to the power of 3 equals to 1:

ω3 =
Ä
e

2πi
3

ä3
= e

2πi
3

·3

= e2πi

= −eπi

= −(−1)
= 1 .

Note that this derivation uses Euler’s identity [16], which states that eπi+1 =
0. Now, consider Table 5. Here, we can see three linear functions and one
non-linear function from one digit to another digit.

Table 5: Application of four linear functions on input x.

x x 7→ 0 x 7→ x x 7→ 2x x 7→ x2

0 0 0 0 0
1 0 1 2 1
2 0 2 1 1

In Table 5, each column belonging to a mapping will be called a value
vector v = (v0, v1, v2). For example, the value vector of the mapping x 7→
x is equal to v = (v0, v1, v2) = (0, 1, 2). We define the function f̂(v) =
(ωv0 , ωv1 , ωv2) to transform value vectors in F3 to value vectors in C. If this
function is applied to Table 5, this yields the results in Table 6.

Table 6: Application of f̂ on the results of Table 5.

x f̂((0, 0, 0)) f̂((0, 1, 2)) f̂((0, 2, 1)) f̂((0, 1, 1))

0 1 1 1 1
1 1 ω ω2 ω

2 1 ω2 ω ω

45

What can be deduced from Table 6 is that the three value vectors f̂((0, 0, 0)),
f̂((0, 1, 2)) and f̂((0, 2, 1)) function as orthogonal basis vectors for the be-
longing vector space. Their inner products namely all equal to 0:

⟨f̂((0, 0, 0)), f̂((0, 1, 2))⟩ = ⟨f̂((0, 0, 0)), f̂((0, 2, 1))⟩
= ⟨f̂((0, 1, 2)), f̂((0, 0, 0))⟩
= ⟨f̂((0, 2, 1)), f̂((0, 0, 0))⟩
= 1 + ω2 + ω

= 0 ;

⟨f̂((0, 1, 2)), f̂((0, 2, 1))⟩ = ⟨f̂((0, 2, 1)), f̂((0, 1, 2))⟩
= 1 + ω2 + ω4

= 1 + ω2 + ω

= 0 .

Why the addition 1+ω+ω2 is equal to 0, is visualized in Figure 7 with the
unit circle.

As stated before, we know that each vector v of a certain vector space
can be expressed using the basis vectors b ∈ B :

v =
∑
b∈B

⟨b, v⟩
||b||2

· b .

As it holds that ||f̂((0, 0, 0))||2 = ||f̂((0, 1, 2))||2 = ||f̂((0, 2, 1))||2 = 3, we
can write v = f̂((0, 1, 1)) as shown in Equation 5.

One can now deduce the correlations between the mapping x 7→ x2 and
the three mappings x 7→ 0, x 7→ x and x 7→ 2x by looking at Equation 5. This
is because the correlations are equal to the coefficients before respectively
the value vectors f̂((0, 0, 0)), f̂((0, 1, 2)) and f̂((0, 2, 1)). We thus get the
following three correlations:

1. The correlation between x 7→ x2 and x 7→ 0: 1√
3
e−

πi
2 ;

2. The correlation between x 7→ x2 and x 7→ x: 1√
3
e

πi
6 ;

3. The correlation between x 7→ x2 and x 7→ 2x: 1√
3
e

πi
6 .

These correlations are visualized in Figure 8.

46

x

y

(1, 0)

(0, 1)

(−1, 0)

(0,−1)

0◦ 1
120◦

ω ≡ ω4

240◦

ω2

Figure 7: Visualization of basis vector addition (the addition of 1+ω+ω2) on the
unit circle using ω = e

2πi
3 with arg(ω) = 120◦. The red vector represents the vector

of 1, the blue vector represents the vector of ω and the green vector represents the
vector of ω2. Here, it is shown that first 1 + ω is calculated. The result of this
addition is shown as the black dashed vector. As the result of this addition is in the
exact opposite direction of the green vector, the addition of all three terms yields
0.

47

f̂((0, 1, 1)) =
1

3
· ⟨f̂((0, 0, 0)), f̂((0, 1, 1))⟩ · f̂((0, 0, 0))+

1

3
· ⟨f̂((0, 1, 2)), f̂((0, 1, 1))⟩ · f̂((0, 1, 2))+

1

3
· ⟨f̂((0, 2, 1)), f̂((0, 1, 1))⟩ · f̂((0, 2, 1))

=
1

3
· f̂((0, 0, 0)) · f̂((0, 1, 1)) · f̂((0, 0, 0))+

1

3
· f̂((0, 1, 2)) · f̂((0, 1, 1)) · f̂((0, 1, 2))+

1

3
· f̂((0, 2, 1)) · f̂((0, 1, 1)) · f̂((0, 2, 1))

=
1

3
· (1, 1, 1) · (1, ω2, ω2)⊤ · f̂((0, 0, 0))+

1

3
· (1, ω, ω2) · (1, ω2, ω2)⊤ · f̂((0, 1, 2))+

1

3
· (1, ω2, ω) · (1, ω2, ω2)⊤ · f̂((0, 2, 1))

=
1

3
· (1 + ω2 + ω2) · f̂((0, 0, 0))+

1

3
· (1 + 1 + ω) · f̂((0, 1, 2))+

1

3
· (1 + ω + 1) · f̂((0, 2, 1))

=
1

3
·
(
1 +

Ä
e

2πi
3

ä2
+
Ä
e

2πi
3

ä2)
· f̂((0, 0, 0))+

1

3
·
Ä
2 + e

2πi
3

ä
·
Ä
f̂((0, 1, 2)) + f̂((0, 2, 1))

ä
=

1

3
·
Ä
1 + 2e

−2πi
3

ä
· f̂((0, 0, 0))+

1

3
·
Ä
2 + e

2πi
3

ä
·
Ä
f̂((0, 1, 2)) + f̂((0, 2, 1))

ä
=

1

3
·
√
3e−

πi
2 · f̂((0, 0, 0))+

1

3
·
√
3e

πi
6 ·
Ä
f̂((0, 1, 2)) + f̂((0, 2, 1))

ä
=

1√
3
e−

πi
2 · f̂((0, 0, 0))+

1√
3
e

πi
6 ·
Ä
f̂((0, 1, 2)) + f̂((0, 2, 1))

ä
.

(5)

48

x

y

(1, 0)

(0, 1)

(−1, 0)

(0,−1)

30◦ = πi
6

270◦ = −90◦ = −πi
2

Figure 8: Visualization of the found correlations. The red vector depicts the
correlation between the mappings x 7→ x2 and x 7→ 0 and the blue vector shows the
correlation between the mappings x 7→ x2 and x 7→ x and between the mappings
x 7→ x2 and x 7→ 2x.

6.3 Linear Potential

Using the correlation, one can specify the linear potential [14, 25]: see Defi-
nition 14.

Definition 14. Let Cf (u, v) be the correlation between the input mask u and
output mask v over a p-ary transformation f . The linear potential (LP) of
a linear approximation (u, v) over f is defined as

LPf (u, v) = Cf (u, v)Cf (u, v) = |Cf (u, v)|2 .

Note that the linear potential expresses a real number instead of a com-
plex number [14, 25].

49

After having introduced the linear potential, we define the weight be-
longing to this LP as the (correlation) weight [14]. This weight only exists
if the linear potential is not equal to zero, i.e., when LPf (u, v) ̸= 0 [14]: see
Definition 15.

Definition 15. Let LPf (u, v) be the LP of a linear approximation (u, v) over
a p-ary transformation f . The (correlation) weight of a linear approximation
(u, v) over f that satisfies LPf (u, v) ̸= 0 is defined as

wc(u, v) = − logp (LPf (u, v))

which can be equivalently written as

p−wc(u,v) = LPf (u, v) .

One can see resemblance between this definition and Definition 6. This
means that we can ask a similar question: “How can we easily compute
LPf (u, v) and wc(u, v), with f a p-ary transformation containing multiple
iterations of the round function R, if the state size n (and thus implicitly
pn) gets too big to exhaustively compute by hand or by computer?”. We will
answer this question by looking at the LP of the non-linear layer separately.

6.3.1 Relation Between Hamming Weight and LP

As we know the correlations of all of the separate operations that happen in
γ, we also know their LP. Some of these linear potentials are also shown in
[25]. In particular, the LP of duplication is equal to

LPd(u, (v1, v2)) =

1 if u = v1 + v2 ;

0 otherwise ,

the LP of addition to

LPa((u1, u2), v) =

1 if u1 = u2 = v ;

0 otherwise ,

and the LP of squaring to

LPs(u, v) =

1
p if v ̸= 0 ;

1 if u = 0 and v = 0 ;

0 if u ̸= 0 and v = 0 .

We can now look at the linear potential of the entire non-linear layer. This
layer is shown in Figure 9 as a circuit of operation blocks.

50

si siduplicate add

square

result to
addition block

of si−g

result from
square block

of si+g

ui

wi

xi

yi

yi−g

vi

Figure 9: Schematic overview of the non-linear layer γ : si = si + s2i+g for 0 ≤
i < n using the operation blocks of duplication, addition and squaring. The green
letters ∗i indicate index i of mask ∗.

Now, let the mask u ∈ Fn
p be defined at the input of the duplication

block, the mask w ∈ Fn
p between the output of the duplication block and

the input of the squaring block, the mask x ∈ Fn
p between the output of

the duplication block and the input of the addition block, the mask y ∈ Fn
p

between the output of the squaring block and the input of the addition block
and the mask v ∈ Fn

p at the output of the addition block: see also Figure
9. We will consider four cases to say something about the LP of the full
non-linear layer:

1. The mask element vi = 0 and the mask element vi−g = 0.
As the LPa((u1, u2), v) is 1 if and only if u1 = u2 = v and we are
given that vi = 0, this yields that xi = yi = vi = 0. Similarly, we
obtain xi−g = yi−g = vi−g = 0. Then, by LPs(u, v), if v = 0, this
LP is 1 if and only if u = 0. We know that yi−g = 0, so wi = 0.
Lastly, as LPd(u, (v1, v2)) is 1 if and only if u = v1+v2, we obtain that
ui = xi + wi = 0 + 0 = 0.

2. The mask element vi = 0 and the mask element vi−g = 1.
Following the same reasoning as in case 1, we obtain: xi = yi = vi = 0,
xi−g = yi−g = vi−g = 1, wi ∈ Fp and ui = xi + wi ∈ Fp. Note that
wi ∈ Fp as LPs(u, v) with v ̸= 0 has an undetermined value for u.

3. The mask element vi = 1 and the mask element vi−g = 0.
Following the same reasoning as in case 1, we obtain: xi = yi = vi = 1,
xi−g = yi−g = vi−g = 0, wi = 0 and ui = xi + wi = 1 + 0 = 1.

4. The mask element vi = 1 and the mask element vi−g = 1.
Following the same reasoning as in case 1 and 2, we obtain: xi = yi =
vi = 1, xi−g = yi−g = vi−g = 1, wi ∈ Fp and ui = xi + wi ∈ Fp.

What we can deduce from these cases is that if all coordinates of the output
mask v are set to zero, the input mask u is also the all-zero mask, as expected.

51

Besides this, the only way to have coordinate i of the input mask u obtain
any value in Fp, the coordinate i− g of the output mask v should be set to a
non-zero value. This behavior is caused by the LP of squaring. In all other
cases, i.e., when coordinate i − g of the output mask v is set to zero, the
value of coordinate i of the input mask u is fixed to a value Fp.

This thus means that we found a similar relation for the linear potential as
we did for the DP: the LP is equal to p−(number of non-zero entries in output mask v).
The relation we can thus specify is as follows:

LPγ(u, v) = p−HW(v)

= p−wc(u,v) .

The correlation weight of a linear approximation (u, v) over p-ary transfor-
mations thus equals the Hamming weight of the output mask v :

wc(u, v) = HW(v) .

The LP, just like the DP, can thus be more easily computed using the Ham-
ming weight instead of exhaustively listing all possibilities.

6.3.2 Non-invertibility of γ

A non-zero output mask v can only be imbalanced (and thereby causing a
collision) if 0 is its offset in the affine space. This can only happen if for all
positions it holds that both the positions vi and vi+1 are active, i.e., if the
output mask v has no coordinates equal to zero. There are (p− 1)n of such
output masks, for which LPγ(0, v) = p−n.

Again, we can quantify the non-invertibility of γ by looking at the colli-
sion probability. For the non-linear layer γ, the collision probability is equal
to the number of colliding pairs divided by the total number of pairs and
thus:

(p− 1)n(pn
2

) =
2(p− 1)n

pn(pn − 1)
≈ 2(p− 1)n

p2n
.

Therefore, if we look at the linear propagation, the non-invertibility of γ is
also no problem.

6.4 Round Linear Approximations

Just as there were round differentials defined over a round function Ri, one
can also define linear approximations over it. Let qi be the input mask of
round Ri and qi+1 the output mask of round Ri and, at the same time, the
input mask of round Ri+1. The (ordered) pair (qi, qi+1) ∈ Fn

p×Fn
p containing

the input and output mask of round Ri is called a round linear approximation
[14].

52

6.5 Linear Trails

The sequence we can build using round linear approximations is the so-called
k-round linear trail [14]: see Definition 16.

Definition 16. A k-round linear trail is a sequence of k + 1 mask patterns
Qk = (q0, q1, . . . , qk) ∈

(
Fn
p

)k+1 that satisfies CRi(qi, qi+1) ̸= 0 for 0 ≤ i < k.

Note that if we write Q ∈ (q0, qk), we indicate that Q starts in input
mask q0 and ends in output mask qk.

If the initial mask q0 and the final mask qk is left out, one obtains the
linear trail core (q1, q2, . . . , qk−1) [14]. This trail core holds a collection of
linear trails with the same inner linear masks [14].

Next, we define the correlation contribution of a k-round linear trail [14].
This is shown in Definition 17.

Definition 17. Let f : Fn
p → Fn

p be a p-ary transformation and Qk =
(q0, q1, . . . , qk) a k-round linear trail. The correlation contribution of a k-
round linear trail Qk is defined as

Cf (Qk) =
k−1∏
i=0

CRi (qi, qi+1) .

Using correlation matrices [18, 48], we can state that the correlation
contribution of a k-round linear approximation equals to the sum of the
correlation contributions of the trails in it [14]:

Cf (u, v) =
∑

Qk∈(u,v)

Cf (Qk) .

Finally, we introduce the (correlation) weight for linear trails [14]. This
weight metric is defined in Definition 18.

Definition 18. Let Qk = (q0, q1, . . . , qk) be a k-round linear trail. The
(correlation) weight of a k-round linear trail Qk is defined as

wc(Qk) =

k−1∑
i=0

wc (qi, qi+1) .

6.6 Trail Search

Like differentials with a high-probability can be exploited, linear approxima-
tions can be exploited if these have a high correlation [14, 36]. So, in other
words, if we find a trail with a high correlation contribution, it has a low
correlation weight and poses a potential weakness. Therefore, we again focus

53

on finding a lower bound on the trail weights over k rounds. This can be
done with the same method as explained in Section 5.5.

Again, we slightly change the representation of a k-round trail. However,
instead of looking at the input differences and figuring out which output
differences are compatible, we investigate output masks and see which input
masks belong to this output. Because of this, propagating through the linear
layer involves the transpose of the corresponding matrix [21]. The transpose
of the linear layer is equal to λ⊤ = (ρ ◦ θ)⊤ = θ⊤ ◦ ρ⊤. Note that the
non-linear layer stays the same. The k-round linear trail Qk will then be
represented as follows:

Qk =
Ä
v0, u0, v1, u1, . . . , uk−1, vk

ä
.

Here, vi is used to represent the ith input of the transposed linear layer and
ui is used to represent the ith input of the non-linear layer.

6.6.1 Trail Extension in the Forward and Backward Direc-
tion

Trail extension in both the forward and backward direction is very similar
for linear trails as for differential trails as was also the case in [21]. This
thus means that extension in the forward direction, i.e., extending a k-round
linear trail Qk =

(
v0, u0, v1, u1, . . . , uk−1, vk

)
by one round to the set of trails

Qk+1 =
(
v0, u0, v1, u1, . . . , uk−1, vk, uk, vk+1

)
, can be done by first comput-

ing uk = λ⊤(vk) and afterwards building all compatible input masks vk+1

over γ. The minimum direct weight can therefore be defined as is stated in
Definition 19.

Definition 19. Let wc
(
uk, vk+1

)
be the weight of the linear approximation(

uk, vk+1
)
. The minimum direct weight is defined as

wdir
Ä
uk
ä
:= min

vk+1
wc
Ä
uk, vk+1

ä
.

Likewise, extension in the backward direction, i.e., extending a linear
trail Qk =

(
v1, u1, . . . , uk−1, vk, uk, vk+1

)
by one round to the set of trails

Qk+1 =
(
v0, u0, v1, u1, . . . , uk−1, vk, uk, vk+1

)
can be achieved by first build-

ing all compatible output masks u0 over γ and secondly computing v0 =
(λ⊤)−1(u0). Then, the minimum reverse weight can be expressed as given
in Definition 20.

Definition 20. Let wc
(
u0, v1

)
be the weight of the linear approximation(

u0, v1
)
. The minimum reverse weight is defined as

wrev (v1) := min
u0

wc
(
u0, v1

)
.

54

6.6.2 Search Strategy Using Trail Cores

Combining the definitions of the minimum direct weight, minimum reverse
weight and linear trail cores, one can bound the weight of a linear trail core
as follows:

wc (Qk) = wrev (v1)+ k−1∑
i=2

wc
(
ui−1, vi

)
+ wdir

Ä
uk−1

ä
.

Having this expression, one can perform the same search strategy as
explained in Section 5.5.4 and [30].

6.7 Tools for Linear Trail Search on Tq
We have shown that the (dual) relations DPs(b, a) =

1
q and LPs(u, v) =

1
p ,

but also DPγ(b, a) = q−HW(b) and LPγ(u, v) = p−HW(v) hold. Because of the
similarity of the relations above, the masks propagate in a similar fashion
over the non-linear layer γ as the differences do. To make this concrete,
let f−1 : Fn

p → Fn
p be given by f−1(x) = y where ∀i : y−i = xi. Then, for

v = f−1(b) and u = f−1(a), we get that DPγ(b, a) = LPγ(u, v). One should
recall that we are investigating in the direction of output to input masks
instead of from input to output differences. Another important thing to note
is that the indices should be reversed: the index i in an input and/or output
mask corresponds to the index −i in an input and/or output difference. This
is because of the reverse direction and the specification of γ. If we namely
go from input difference to output difference, we start with state digit si and
obtain state digit si+1, but if we go from output mask to input mask, we
start with state digit si and obtain state digit si−1.

Therefore, to generate all compatible input masks through γ, one can
make use of the affine space as explained in Algorithm 2. To generate all
compatible output masks through γ, Algorithm 3 should be followed. Like-
wise, to find the minimum direct weight, we can use the 1-runs as specified
in Algorithm 4 and to find the minimum reverse weight, we simply take the
Hamming weight.

The results of the linear trail search are, just like the ones for differential
trail search, left as future work. By using the provided algorithms, one
should be able to perform a successful linear trail search.

55

Chapter 7

Practical Applications of Tq

After defining Tq and analyzing its diffusion and propagation properties, we
will look into some use cases for it. In particular, one can use such trans-
formations in sponge and duplex constructions, in encryption schemes such
as Ciminion or even in authenticated encryption schemes such as Elephant.
Designing concrete instances of Tq for these applications is left as future
work.

7.1 Sponge Construction

A sponge construction is “a mode of operation, based on a fixed-length per-
mutation (or transformation) and on a padding rule, which builds a function
mapping variable-length input to variable-length output” [6]. Such sponge
construction can be denoted by Z = Sponge[f, pad, r](M, l) where f is ei-
ther a permutation or a transformation operating on b digits, pad a certain
padding rule, r the bitrate, M the message and l the output length [7]. An
illustration of this construction can be seen in Figure 10. Note that the
first r digits of the state are called the outer part and the last b − r = c
digits of the state are called the inner part [7]. Also note that the capacity
c “determines the attainable security level of the construction” [7].

An instance of such sponge construction is called a sponge function, de-
noted with Sponge[f, pad, r] [7]. As stated before, f is either a permutation
or a transformation. This means that Tq operating on b digits could be used
within a sponge function. The sponge construction can then be explained in
three steps.

The first step is the initialization. In this step, all b digits of the state
are initialized to zero [6, 7].

The second step is the absorbing phase. In this phase, the outer part
of the state is added to the r-digit input message blocks, interleaved with
applications of Tq [6, 7].

56

Figure 10: The sponge construction Z = Sponge[f, pad, r](M, l) [6].

After all message blocks are absorbed, the squeezing phase starts. In
this final phase, the outer part of the state is returned as output blocks,
interleaved with applications of Tq [6, 7]. The number of output blocks is
determined by the parameter l given to the sponge construction: the output
is truncated to, in total, l digits [7].

Note that, besides the original sponge structure, there also exist keyed
sponges [40], in which Tq can be used as well. In keyed sponges, a key
K is given as additional parameter. An example of using such key is in
the initialization step: instead of initializing everything to zero, one could
initialize the inner part of the sponge with K [40]. This construction can
then be used for message authentication (by using a tag resulting from the
sponge) or keystream generation (truncated to the length l) [40].

7.2 Duplex Construction

A cryptographic scheme that is closely related to the sponge construction
and has an equivalent security is the duplex construction [6]. The duplex
construction can be denoted by Z = Duplex[f, pad, r](σ, l) where f is ei-
ther a permutation or a transformation operating on b digits, pad a certain
padding rule, r the bitrate, σ the input string/message and l the output
length [7]. A visualization of a duplex construction can be seen in Figure 11.
Note that σ = (σ0, σ1, . . . , σo), Z = (Z0, Z1, . . . , Zo) and l = (l0, l1, . . . , lo).
This is because “unlike a sponge function that is stateless in between calls,
the duplex construction results in an object that accepts calls that take an
input string and return an output string that depends on all inputs received
so far” [7].

57

Figure 11: The duplex construction Z = Duplex[f, pad, r](σ, l) [6].

An instance of a duplex construction is called a duplex object D =
Duplex[f, pad, r] and operates on b digits [7]. Again, as f is either a permu-
tation or transformation, one could use Tq in this place. Duplexing with this
setting then starts with initializing all digits of the state to zero [7]. After
this, one can send the following to the initialized state: D.duplexing(σ, l)
where σ denotes an input string and where l represents the number of digits
that will be output [7]. When D receives this command, it pads σ according
to the provided padding rule, adds the result to the outer part of the state,
applies Tq and, in the end, returns the outer part of the state truncated to l
digits [7].

Just like keyed sponges existed, keyed duplexes also exist. Again, the
key can be used in the initialization step [40]. This set-up can be used for
authenticated encryption [40], of which SpongeWrap [50] an example is.

7.3 Encryption Scheme Ciminion

Ciminion is an “encryption scheme minimizing the number of field multipli-
cations in large binary or prime fields, while using a very lightweight linear
layer” [25]. Its encryption scheme is a nonce-based stream-encryption scheme
[25] and is shown in Figure 12.

In Figure 12, one can see two permutations: the permutation pC that
takes a nonce and two keys as input and the permutation pE whose output
is added to the plaintext to obtain the ciphertext. As the inverse of these
permutations is never used – neither in encryption nor in decryption [25] –
one could replace such permutation with a transformation. This means that
Tq could be used as one of these permutations pC or pE .

58

Figure 12: Encryption over F2n using Ciminion [25]. Note that encryption over
Fp is similar: one should replace ⊕ by + (the addition modulo p) [25].

Encryption using Ciminion then works as follows. First, the permutation
pC takes a nonce ℵ and two subkey elements K1 and K2 as input and outputs
an intermediate state [25]. The permutation pE is then applied to the state
and the output is truncated to two elements such that plaintexts P1 and
P2 can be encrypted [25]. Note that it can happen that one needs more
plaintext to be encrypted. In this case, the intermediate state should be
expanded by “repeatedly performing an addition of two subkey elements to
the intermediate state, then followed by a call to the rolling function rol ”
[25]. After this rolling function, two more plaintexts P2i and P2i+1 can be
encrypted after applying the permutation PE to the resulting state [25].

7.4 Authenticated Encryption Scheme Elephant

Elephant is a “family of lightweight authenticated encryption schemes” [8].
The mode of Elephant is a “nonce-based encrypt-then-MAC construction,
where encryption is performed using counter mode and message authenti-
cation using a variant of the protected counter sum MAC function” [9]. A
visualization of Elephant is shown in Figure 13.

59

A1

P

A2

mask1,0K
P

AℓA

maskℓA−1,0
K

· · ·

P

C1

mask0,2K
P

CℓC

maskℓC−1,2
K

· · · P

mask0,0K

⌊·⌋t T

P

N∥0n−m

mask0,1K
P

N∥0n−m

maskℓM−1,1
K

M1 MℓM

C1 CℓM

· · ·

Figure 13: The authenticated encryption scheme Elephant [9]. Encryption is
shown in the upper half of the figure. In the encryption, the message is padded
as M1, . . . ,MlM

n← M and the ciphertext equals C = ⌊C1, . . . , ClM ⌋|M | [9]. The
authentication is shown in the lower half of the figure. In the authentication, the
nonce and associated data are padded as A1, . . . , AlA

n← N ||A||1 and the ciphertext
is padded as C1, . . . , ClC

n← C||1 [9].

As can be seen in Figure 13, the method of authenticated encryption
takes a key K, a nonce N , associated data A and message M as input and
outputs a ciphertext C and a tag T [9]. Note that this ciphertext and tag
are obtained using a permutation P.

If one wants to decrypt the obtained ciphertext C, one should provide
the decryption algorithm with a key K, a nonce N , associated data A, the
ciphertext C and the belonging tag T [9]. It then either returns the message
M (if the tag is correct) or returns ⊥ (if the tag is incorrect) [9]. Note that
decryption uses the same permutation P as in the encryption process.

As the same permutation P is used in encryption and decryption, and
because the permutation is only evaluated in the forward direction [8, 9],
one could replace this permutation with a transformation like we did for
Ciminion. Therefore, one could use Tq for authenticated encryption using it
as the permutation P in Elephant.

60

Chapter 8

Case Study: Ternary
Transformation τ in T3

In this chapter, we will treat an example instance of T3 called τ . First, we
encode the trits to a set of bits and after this, we define arithmetic of the
trits using this encoding. Then, we will clarify the state τ will operate on.
Following on this, the round function of τ is established using the avalanche
behavior. Then, we will look into the cryptanalysis as described in the
previous chapters. To finish off, we describe how τ could be implemented in
code.

8.1 Encoding of Trits

To obtain an efficient (hardware) implementation of τ , we need an efficient
way of doing arithmetic in F3. This is possible by implementing the round
function with only shift and bitwise Boolean instructions. However, this
requires us to encode trits with a set of bits. Note that this does not change
the specification of τ as this choice is only important for the implementation.

As one bit can only encode two values, we will look into an encoding
using two bits. As there are multiple possibilities to assign two bits to each
trit value, it yields that this encoding can also be established in multiple
ways. Other researches [13, 31] have already invested time in finding an
efficient representation. Their findings were that the representations in Table
7 proved to be good candidates.

Note that the first bit of an encoded value x is denoted by x0 and the
second bit by x1. Hence, if e.g., trit value 1 is encoded with x = 10, we have
x0 = 1 and x1 = 0.

All these encodings are good candidates as they can perform addition in
F3 in six logical instructions [13, 31], which is proven to be the minimum
number of logical instructions for F3-addition [31]. Note that, with encoding
1, addition can be performed by using only six logical instructions if ANDN is

61

Table 7: Promising encodings of trits with two bits [13, 31].

Trit value 0 Trit value 1 Trit value 2
1. 00 01 10
2. 00 10 11
3. 11 01 10
4. 00 01 11

counted as one instead of two instructions [31].
In our research, we will be using encoding 2. Besides an efficient method

for addition, this encoding namely also provides efficient implementations
for subtraction [13], negation [13], squaring and addition of a square. The
specifications of all these operations are given in the following sections.

8.2 Arithmetic for τ

After having defined the encoding of trits, we can describe how to do addi-
tion, subtraction, negation and squaring in F3.

8.2.1 Addition

Addition of two terms in F3 using encoding 2 can be done using six bitwise
operations [13]. In order to perform the operation r = a+b where a, b, r ∈ F3,
four intermediate values t, u, v, w ∈ F2 are needed. Addition in F3 is achieved
by following the steps in Figure 14.

a0
a1

b0
b1

t

u

v

w

r0

r1

t← a0 ⊕ b1
u← a1 ⊕ b0
v ← t⊕ a1
w ← u⊕ b1
r0 ← v ∨ w
r1 ← t ∧ u

Figure 14: Addition in F3.

8.2.2 Subtraction

Subtraction of two terms in F3 using encoding 2 can be done by first negating
the second operand and then using the addition formula. However, there is
a more efficient way as described in [13]. To calculate r = a − b = a + 2b
where a, b, r ∈ F3, again only six bitwise operations are needed. We will only

62

use one intermediate value t ∈ F2. Subtraction in F3 can then be defined as
shown in Figure 15.

a0
a1

b0
b1

t r0

r1

t← a0 ⊕ b0
r0 ← t ∨ (a1 ⊕ b1)
r1 ← (t⊕ b1) ∧ (b0 ⊕ a1)

Figure 15: Subtraction in F3.

8.2.3 Negation

Negation in F3 is equal to multiplication with two and, using encoding 2,
can be done in just one bitwise operation [13]. Note that the result of the
negation of a ∈ F3 is again stored in r ∈ F3: see Figure 16.

a0
a1

r0
r1

r0 ← a0

r1 ← a0 ⊕ a1

Figure 16: Negation in F3.

8.2.4 Squaring

Squaring a trit using encoding 2 is for free, i.e., it does not cost any bitwise
operations. This is the case as the second bit will always be 0 and the first
bit does not need to be changed in order to obtain the square value r = a2

where a, r ∈ F3. This can be seen in Figure 17:

a0
a1

0c

r0

r1

r0 ← a0

r1 ← 0

Figure 17: Squaring in F3. Here, 0c indicates the constant value 0.

63

8.2.5 Addition of a Square

Computing the addition of a square using encoding 2, i.e., if we want to
compute r = a+ b2 where a, b, r ∈ F3, one could first square and follow this
computation by an addition. This would lead to a cost of 6 + 0 = 6 bitwise
operations. However, as the result of squaring always yields 0 in the second
bit, we automatically get b1 = 0 in the addition formula. As it holds that
x ⊕ 0 = x, the addition of a square can be done in 4 operations instead of
6 by using two intermediate values u, v ∈ F2. Addition of a square in F3 is
achieved by following the steps in Figure 18.

a0
a1

b0

v

u

r0

r1

u← a1 ⊕ b0
v ← a0 ⊕ a1
r0 ← v ∨ u
r1 ← a0 ∧ u

Figure 18: Addition of a square in F3.

8.2.6 Addition of Three Terms

Recall that the mixing layer θ is constructed as a sum of multiple state digits.
As θ of our instance τ uses addition of three terms (as elaborated upon in
Section 8.4.1), the following question arises: “Is there a more efficient way
of adding three trits than twice adding two trits?”. In other words: can
we perform addition of three terms in F3 in less than 6 · 2 = 12 bitwise
operations? We investigated this but unfortunately could not find a more
efficient method.

We looked at all four encodings listed in Table 7 and tried to find a
method to add three trits by using less than 12 bitwise operations. We tried
so by using brute-force, but also studied methods as described in [41, 43].
Several algorithms rely on minimizing a sub-circuit and then automatically
minimizing the full circuit [41, 43]. However, as proved by [31], the minimum
number of logical instructions for F3-addition is equal to six. This thus
means that the sub-circuit is already optimized and thus, though this way,
we cannot optimize the full circuit used to add three trits.

Even though we could not find a more optimal method for addition of
three terms in F3, it is possible that it still exists. This is left as future work.

64

8.3 State of τ

The state that τ will operate on is equal to the one shown in Figure 2. This
means that we will be using d = 3 rows and 2m = 26 = 64 columns, which
yields a state size of n = d · 2m = 3 · 64 = 192.

8.4 Possible Values of the Parameters in τ

In Section 3.3, we have discussed what the possible values of the parameters
of all step functions are for Tq. Here, we will discuss the possible parameter
values explicitly for τ and pick the parameter values we start off with. In the
next section, Section 8.5, these choices will be tweaked if deemed necessary.

8.4.1 Parameter t in θ

In Section 3.3.1 we learned that the associated polynomial of the mixing
layer, S ← S ·

∑n−1
j=0

(
cj ·Xj

)
mod Xn − 1, should be coprime to the poly-

nomial Xn − 1. The first step we take is choosing the parameters cj in such
a way that this happens. For τ , we will choose c0 = 1, c1 = 2, ct = 1 and
all other cj = 0. We do this because our goal is to minimize the number of
operations for efficiency, while keeping good propagation properties. Using
the sum of three terms is a result of the experiments conducted in Section
8.5. The associated polynomial of θ can then be represented as

S ← S · (1 + 2X +Xt) mod Xn − 1 .

Now, in order to make this polynomial invertible, we should pick a suitable
value t. As n = 192 for τ , this invertibility constraint yields 71 possible
values for t :

t ∈ {3, 5, 9, 11, 13, 17, 19, 21, 25, 27, 29, 33, 35, 37, 41, 43, 45, 49, 51, 53, 57, 59,
61, 65, 67, 69, 73, 75, 77, 81, 83, 85, 89, 91, 93, 97, 99, 101, 105, 107, 109,

113, 115, 117, 121, 123, 125, 129, 131, 133, 137, 139, 141, 145, 147, 149,

153, 155, 157, 161, 163, 165, 169, 171, 173, 177, 179, 181, 185, 187, 189} .

Next to this constraint, we want the parameter t to be small, but not too
small for trail search, i.e., we want t < 15 [30, 37]. We therefore initially
choose t = 5. This way, when looking at the two-dimensional representation,
θ uses a state trit from each y ∈ {0, 1, 2} and is small, but not too small.

Note that the first θ we tested was originally containing four terms:

S ← S · (1 +X +X2 +Xt) mod Xn − 1 .

65

Here, the parameter t = 6 was chosen with a similar reasoning. The 46
values for which this expression is invertible are namely the following:

t ∈ {4, 6, 12, 14, 20, 22, 28, 30, 36, 38, 44, 46, 52, 54, 60, 62, 68, 70, 76, 78, 84, 86,
92, 94, 100, 102, 108, 110, 116, 118, 124, 126, 132, 134, 140, 142, 148, 150,

156, 158, 164, 166, 172, 174, 180, 182, 188, 190} .

As can be read in Section 8.5, this θ was deemed less appropriate for usage
in the round function R.

8.4.2 Parameters ri in ρ

As described in Section 3.3.2, there are not a lot of restrictions on the values
for the ri parameters: we only need to make sure that ri ̸= rj for i ̸= j holds,
that r0 = 0 and that ri for i > 0 are non-zero. Therefore, for τ , we start off
with the parameters r0 = 0, r1 = 11 and r2 = 35.

8.4.3 Parameter g in γ

Recall that the parameter g should obey one rule as stated in Section 3.3.3.
It should be coprime to n = 192. The possible values for g for which this
condition holds are:

g ∈ {1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 65,
67, 71, 73, 77, 79, 83, 85, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119,

121, 125, 127, 131, 133, 137, 139, 143, 145, 149, 151, 155, 157, 161, 163

167, 169, 173, 175, 179, 181, 185, 187, 191} .

The value for parameter g that we initially choose in τ is 7. It is thus not
bigger than 15 such that the value is considered to be small, but not too
small.

Note again that γ is not invertible, but could be made invertible by
adding a constraint on a state digit as explained in Section 3.3.3.

8.5 Avalanche Behavior of τ

In this section, we will study the avalanche behavior of τ and report on
the worst-case values. Note that these experiments are only conducted with
input differences with Hamming weight 1 with 1 as the value for the difference
digit. This is because of what was explained in Section 4.2: each pair (x, x−
1) with difference 1 can equivalently be seen as (x − 1, x) with difference
−1. As the order does not matter, a difference digit with value 1 is thus
equivalent to those with the value −1 ≡ 2.

66

8.5.1 Mixing Layer θ With Four Terms

We start off by using the following operations and parameters in the round
function R = γ ◦ ρ ◦ θ :

θ : si ← si + si+1 + si+2 + si+t with t = 6 ;

ρ : si ← si+3ri mod 3
with r0 = 0, r1 = 11 and r2 = 35 ;

γ : si ← si + (si+g)
2 with g = 7 .

The results of the avalanche behavior of τ are shown in Table 8a.

Table 8: Results of the diffusion analysis.

(a) Avalanche behavior of the mixing layer with four terms.

Round(s) 0 1 2 3 4 5 6 7
Dav 1 8 50 142 191 192 192 192
wav 1.0 6.7 34.1 87.8 122.9 127.8 127.8 127.8
Hav 0.0 4.0 38.8 130.1 188.4 192.0 192.0 192.0

(b) Avalanche behavior of the mixing layer with three terms.

Round(s) 0 1 2 3 4 5 6 7
Dav 1 6 33 116 185 192 192 192
wav 1.0 5.0 22.9 69.9 115.6 127.5 127.9 127.9
Hav 0.0 3.0 24.3 97.7 177.4 191.9 192.0 192.0

(c) Avalanche behavior after changing the ρ parameters.

Round(s) 0 1 2 3 4 5 6 7
Dav 1 6 34 126 191 192 192 192
wav 1.0 5.0 23.6 75.1 122.9 127.8 127.9 127.9
Hav 0.0 3.0 25.2 107.2 185.7 192.0 192.0 192.0

8.5.2 Mixing Layer θ With Three Terms

As can be seen in Table 8a, the avalanche metrics are roughly converged after
5 rounds. Even though the results are good using this mixing layer, it uses
three additions, which cost 3·6 = 18 bitwise operations as has been explained
in Section 8.2.1. We would like to use a θ with only two additions and/or
subtractions (needing only 12 bitwise operations) and see if similar results
can be obtained. Therefore, we will test the following set-up regarding the

67

round function R = γ ◦ ρ ◦ θ :

θ : si ← si + 2si+1 + si+t with t = 5 ;

ρ : si ← si+3ri mod 3
with r0 = 0, r1 = 11 and r2 = 35 ;

γ : si ← si + (si+g)
2 with g = 7 .

Results of the avalanche behavior using this lighter θ is shown in Table 8b.
Now, the avalanche metrics converge after roughly 6 rounds instead of

after 5 rounds. Even though τ needs one round more to converge, it only
requires 72+24 = 96 bitwise operations for 6 rounds instead of 90+20 = 110
bitwise operations for 5 rounds as the heavier θ requires. Here, the first
summation terms are the bitwise operations needed for the linear layer and
the second summation terms are the bitwise operations needed for the non-
linear layer as elaborated upon in Section 8.2. Because of this, we prefer a
mixing layer with only two additions and/or subtractions instead of a mixing
layer with three additions.

Instead of using the parameter t = 5, other options can be considered
as well. Because t should be small but not too small, we will check options
below 15. This thus means that the values t ∈ {3, 5, 9, 11, 13} are checked.
Our initial choice, t = 5, performs best along with t = 11. The other options,
t ∈ {3, 9, 13} perform worse. As we prefer a smaller parameter over a larger
one, the initial choice t = 5 is kept.

Note that other flavors of θ are also available: instead of using the poly-
nomial 1+2X+Xt as before, one can also use the polynomials 1+X+2Xt,
1 + 2X2 + Xt and 1 + X2 + 2Xt. The polynomial 1 + X + 2Xt is invert-
ible for inter alia the values t ∈ {3, 4, 5, 6, 8, 9, 11, 12, 13, 14}, the polynomial
1+ 2X2 +Xt for e.g., t ∈ {3, 6, 7, 10, 11} and 1+X2 +2Xt is invertible for,
for instance, t ∈ {6, 8, 10, 12}. All these values were tested. The polynomial
1 + X + 2Xt with parameter t = 5 yielded the exact same results as was
obtained in Table 8b. Besides this, we could obtain similar results with four
set-ups: 1 +X + 2Xt with parameter t = 11, 1 +X + 2Xt with parameter
t = 14, 1+2X2+Xt with parameter t = 10 and 1+X2+2Xt with parameter
t = 10. Since the parameters that provide a good result are either larger
than t = 5 or exactly equal to t = 5, there is no reason to switch to another
polynomial in the mixing layer θ.

8.5.3 Testing Different Parameters for ρ

After fixing the parameter for θ, we would like to try and improve the
avalanche behavior by looking at the parameters r1 and r2 in ρ. Note that
r0 is still fixed to zero. A lot of combinations of different values were tested
for these parameters. Notable results were, for instance, r1 = 11 and r2 = 54
and r1 = 34 and r2 = 47, but the best results were obtained with the param-
eter set r1 = 1 and r2 = 24. This is a bit counter-intuitive: intuition would

68

propose parameters not too close together, but apparently the combination
of 0, 1 and 24 performs better. This thus means that the current best set-up
for round function R = γ ◦ ρ ◦ θ is:

θ : si ← si + 2si+1 + si+t with t = 5 ;

ρ : si ← si+3ri mod 3
with r0 = 0, r1 = 1 and r2 = 24 ;

γ : si ← si + (si+g)
2 with g = 7 .

The avalanche behavior of this new set-up can be seen in Table 8c.

8.5.4 Testing Different Parameters for γ

Keeping the parameters t, r0, r1 and r2 fixed as discussed in the previous
sections, one can still tweak the parameter g of the non-linear layer γ. We
tested the values g ∈ {1, 5, 7, 11, 13}. This resulted in finding out that g ∈
{1, 5, 13} performed worse than g = 7 and that g = 11 performed similar to
g = 7. To not increase the parameter g for minimal to no improvement, the
initial parameter for γ is kept. Note that if other parameter combinations
are taken for θ and ρ, g might need to change to obtain equally good results.

8.6 Round Function of τ

After investigating the avalanche behavior of τ with different parameters
in the previous section, we can conclude that, from now on, we will use
the parameter set c0 = 1, c1 = 2, c5 = 1, cj = 0 for j ∈ {0, . . . , 191} \
{0, 1, 5}, r0 = 0, r1 = 1, r2 = 24 and g = 7. The round function R = γ ◦ ρ ◦ θ
with its final parameters can thus be noted down as:

θ : si ← si + 2si+1 + si+5 ;

ρ : si ← si+3ri mod 3
with r0 = 0, r1 = 1 and r2 = 24 ;

γ : si ← si + (si+7)
2 .

8.7 Differential and Linear Propagation Properties
of τ

The tools as provided in Section 5.6 and Section 6.7 can be used to find the
differential and linear propagation properties of τ . Recall that the results
are linked to the parameter g = 1 in the non-linear layer. One should thus
not forget that τ uses the parameter g = 7 in γ and that because of this
multiplicative shuffles are needed.

The tools as provided in the Algorithms 2, 3 and 4 are available in Python
for τ at https://github.com/DVerbakel/MasterThesis.

69

https://github.com/DVerbakel/MasterThesis

8.8 Implementation of τ

In this section, we will explain how we implemented τ in code (in C). The
software implementation can be found at https://github.com/DVerbakel/
MasterThesis.

Having encoding 2, i.e., {0 7→ 00, 1 7→ 10, 2 7→ 11}, our implementation
will represent the 192-trit state as six 64-bit words. The 64-bit words are
used as the number of columns equals 64, which results in no left-over space
in a word. Besides this, instead of having 3 rows with trits, 6 rows should
be used for the bit encoding, because each trit is encoded using two bits.

Just like the original state, columns are numbered from left to right (from
0 to 63). However, the rows of the implementation state are numbered in
the reverse direction: they are numbered from top to bottom (from 0 to 5).

To convert a 3 × 64 state to the 6 × 64 state in the implementation,
one should perform the following steps for each element i of row j where
i ∈ {0, . . . , 63} and j ∈ {0, 1, 2} :

1. If a 0 is encountered on position i in row j, then:

a. 0 should be written on position i in row 4− 2 · j;
b. 0 should be written on position i in row 5− 2 · j.

2. If a 1 is encountered on position i in row j, then:

a. 1 should be written on position i in row 4− 2 · j;
b. 0 should be written on position i in row 5− 2 · j.

3. If a 2 is encountered on position i in row j, then:

a. 1 should be written on position i in row 4− 2 · j;
b. 1 should be written on position i in row 5− 2 · j.

The conversion to the new state representation is shown in Figure 19.

0
0
1

0
0
2

0
0
0

1
0
0

0
0
0

1
1
0

. . .

. . .

. . .

0
2
0

0 1 2 3 4 5 . . . 63
0
1
2

(a)

0
0
0
0
0
1

0
0
0
0
1
1

0
0
0
0
0
0

0
1
0
0
0
0

0
0
0
0
0
0

0
1
0
1
0
0

. . .

. . .

. . .

. . .

. . .

. . .

0
0
1
1
0
0

0 1 2 3 4 5 . . . 63
5
4
3
2
1
0

(b)

Figure 19: (a) Example state s for τ . (b) Implementation of the example state
s for τ in code using encoding 2.

If we want to apply our round function to the implementation state, we
should keep in mind that trits are encoded using two bits.

70

https://github.com/DVerbakel/MasterThesis
https://github.com/DVerbakel/MasterThesis

For the mixing layer θ this means that we should first do subtraction
as defined in Section 8.2.2 and after this perform an addition as defined in
Section 8.2.1. A visualization of this step is shown in Figure 20.

0

64

128

129

1

65

. . .

. . .

. . .

. . .

. . .

. . .

69

133

5

. . .

. . .

. . .

. . .

. . .

. . .

63

127

191

subtraction
a b

r

addition
a b

r

0

64

128

129

1

65

. . .

. . .

. . .

. . .

. . .

. . .

69

133

5

. . .

. . .

. . .

. . .

. . .

. . .

63

127

191

Figure 20: A schematic overview of the θ operation on the implementation state.
Here, it is shown that the state digit s0 is adapted by θ resulting in the state digit
θ(s0). In the figure the state digits si are denoted as i. Note that the parameter
t = 5 is used and that a, b and r are the inputs and outputs of subtraction and
addition as defined in respectively Section 8.2.2 and Section 8.2.1.

The shuffle layer ρ does not change a lot because of this representation:
instead of shifting row 1 with r1 and row 2 with r2, we shift rows 0 and 1
with r2 and rows 2 and 3 with r1: see Figure 21. Again, note that the rows
are numbered in the reverse direction in our implementation.

≪ r1
≪ r1
≪ r2
≪ r2

Figure 21: A schematic overview of the ρ operation on the implementation state.
Here, it is shown that row 4 and 5 are not shifted, that row 2 and 3 are shifted with
r1 and that row 0 and 1 are shifted with r2.

71

For the last step function, the non-linear layer γ, we simply perform
addition of a square as defined in Section 8.2.5. This operation is shown in
Figure 22.

0

64

128

129

1

65

. . .

. . .

. . .

. . .

. . .

. . .

135

7

71

. . .

. . .

. . .

. . .

. . .

. . .

63

127

191

addition of square
a b

r

0

64

128

129

1

65

. . .

. . .

. . .

. . .

. . .

. . .

135

7

71

. . .

. . .

. . .

. . .

. . .

. . .

63

127

191

Figure 22: A schematic overview of the γ operation on the implementation state.
Here, it is shown that the state digit s0 is adapted by γ resulting in the state digit
γ(s0). In the figure the state digits si are denoted as i. Note that the parameter
g = 7 is used and that a, b and r are the inputs and output of addition of a square
as defined in Section 8.2.5.

72

Chapter 9

Conclusions and Future Work

In this thesis, we have investigated how to design an efficient q-ary trans-
formation with good propagation properties. We did this by first defining
the family of q-ary transformations Tq. After this, we generalized the con-
cepts of avalanche behavior and differential cryptanalysis from the binary
case to be applicable to q-ary transformations. For the linear cryptanalysis,
we made a generalization of binary linear cryptanalysis to p-ary transfor-
mations. Having defined these, we looked into the differential and linear
propagation properties of the non-linear layer γ : si ← si + (si+g)

2 of Tq.
We found that there exists a dual relation of the DP of γ and the LP of
γ, namely DPγ(b, a) = q−HW(b) and LPγ(u, v) = p−HW(v). We also found
a dual relation of the DP and LP related to squaring: DPs(b, a) = 1

q and
LPs(u, v) =

1
p . The consequence of this similarity is that masks propagate

as differences over γ. Concretely, with f−1 : Fn
p → Fn

p defined as f−1(x) = y
where ∀i : y−i = xi, we could find that for v = f−1(b) and u = f−1(a) it
holds that DPγ(b, a) = LPγ(u, v). Such dual relations are for a non-linear
mapping an intriguing property that is believed to only occur in our γ and
the mapping χ3 as used in Xoodoo. Additionally, we also provided tools in
order to perform differential and linear trail search on Tq. These tools are
for finding the minimum reverse weight, showing that the Hamming weight
represents the minimum direct weight and how to find compatible input and
output differences and/or masks. Besides this, we looked into possible prac-
tical applications of Tq. Last, but not least, we provided a case study of
transformation τ in T3. Notable was the efficient software implementation
with dedicated arithmetic using the encoding {0 7→ 00, 1 7→ 10, 2 7→ 11} and
the results of the investigation into the avalanche behavior. These avalanche
tests were used to choose concrete parameter values of the steps mappings.
From these experiments we found that the rotation offsets r0 = 0, r1 = 1 and
r2 = 24 of the shuffle layer ρ performed better than more spread out values,
i.e., values that are not too close together, as intuition would propose.

73

In this research, we left some parts as future work: these are other in-
teresting aspects to analyze. First of all, one could generalize the linear
cryptanalysis to q-ary transformations. One could also perform the actual
(differential and linear) trail search on Tq for which we provided the tools.
Another possibility would be to do more research regarding an efficient hard-
ware and software implementation of an instance of Tq. This could be done
by following a similar reasoning as in Chapter 8, finding an efficient way on
how to do addition of three terms or perhaps by writing optimized assembly
code for, for example, an Arm Cortex-M4 processor. Alternatively, research
could be done to investigate the effects of adding a fourth step function,
namely a round constant addition. One could also define concrete instances
for the practical applications like the sponge construction, duplex construc-
tion, encryption scheme Ciminion or authenticated encryption scheme Ele-
phant. Lastly, one could investigate algebraic attacks over Fq and look into
the algebraic degree of Tq.

74

Bibliography

[1] Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and
Tyge Tiessen. MiMC: Efficient Encryption and Cryptographic Hashing
with Minimal Multiplicative Complexity. Cryptology ePrint Archive,
Paper 2016/492, 2016. https://eprint.iacr.org/2016/492.

[2] Thanos Antoulas, Richard Baraniuk, Steven Cox, Benjamin Fite,
Roy Ha, Michael Haag, Matthew Hutchinson, Don Johnson, Ricardo
Radaelli-Sanchez, Justin Romberg, Phil Schniter, Melissa Selik, and
JP Slavinsky. Signals and Systems. Rice University, Houston, Texas,
USA, 2008.

[3] Steven Arno and Ferrell S. Wheeler. Signed digit representations of min-
imal Hamming weight. IEEE Transactions on Computers, 42(8):1007–
1010, 1993.

[4] Thomas Baignères, Jacques Stern, and Serge Vaudenay. Linear Crypt-
analysis of Non Binary Ciphers. In Carlisle Adams, Ali Miri, and
Michael Wiener, editors, Selected Areas in Cryptography, pages 184–
211. Springer Berlin Heidelberg, Heidelberg, Germany, 2007.

[5] Paul Bamberg and Shlomo Sternberg. A course in mathematics for
students of physics. Press Syndicate of the University of Cambridge,
The Pitt Building, Trumpington Street, Cambridge CB2 1RP, 1988.

[6] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles
van Assche, and Ronny van Keer. The sponge and duplex construc-
tions. https://keccak.team/sponge_duplex.html, 2022. Last ac-
cessed: April 18, 2023.

[7] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles van Assche.
Cryptographic sponge functions. https://keccak.team/files/CSF-0.
1.pdf, January 2021. Last accessed: June 27, 2023.

[8] Tim Beyne, Yu Long Chen, Christoph Dobraunig, and Bart Men-
nink. Elephant. https://www.esat.kuleuven.be/cosic/elephant/,
May 2021. Last accessed: May 30, 2023.

75

https://eprint.iacr.org/2016/492
https://keccak.team/sponge_duplex.html
https://keccak.team/files/CSF-0.1.pdf
https://keccak.team/files/CSF-0.1.pdf
https://www.esat.kuleuven.be/cosic/elephant/

[9] Tim Beyne, Yu Long Chen, Christoph Dobraunig, and Bart
Mennink. Elephant v2. https://csrc.nist.gov/CSRC/media/
Projects/lightweight-cryptography/documents/finalist-round/
updated-spec-doc/elephant-spec-final.pdf, May 2021. Last
accessed: May 30, 2023.

[10] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryp-
tosystems. In Menezes A.J. and Vanstone S.A., editors, Advances in
Cryptology-CRYPT0’ 90, pages 2–21. Springer Berlin Heidelberg, Hei-
delberg, Germany, 1991.

[11] Alex Biryukov and Christophe Cannière. Linear Cryptanalysis for Block
Ciphers. In Henk C. A. van Tilborg, editor, Encyclopedia of Cryptog-
raphy and Security, pages 351–354. Springer US, Boston, MA, USA,
2005.

[12] Céline Blondeau and Benoît Gérard. Multiple Differential Cryptanaly-
sis: Theory and Practice. In Joux A., editor, Fast Software Encryption,
pages 35–54. Springer Berlin Heidelberg, Heidelberg, Germany, 2011.

[13] Tomas Boothby and Robert W. Bradshaw. Bitslicing and the Method of
Four Russians Over Larger Finite Fields. ArXiv, abs/0901.1413, 2009.

[14] Nicolas Bordes, Joan Daemen, Daniël Kuijsters, and Gilles Van Ass-
che. Thinking Outside the Superbox. Cryptology ePrint Archive, Paper
2021/293, 2021. https://eprint.iacr.org/2021/293.

[15] Christina Boura, Margot Funk, and Yann Rotella. Differential analysis
of the ternary hash function Troika. Cryptology ePrint Archive, Paper
2023/036, 2023. https://eprint.iacr.org/2023/036.

[16] David M. Burton. The History of Mathematics: An Introduction.
McGraw-Hill Publishing Company, New York, NY, USA, seventh edi-
tion, 2011.

[17] Jeff Connelly, C Patel, A Chavez, and P Nico. Ternary Computing
Testbed: 3-Trit Computer Architecture. PhD thesis, California Poly-
technic State University, 1 Grand Ave, San Luis Obispo, CA 93407,
USA, 2008. Computer Engineering Department.

[18] Joan Daemen. Cipher and Hash Function Design Strategies based on
linear and differential cryptanalysis. PhD thesis, KU Leuven, Leuven,
Belgium, 1995. https://cs.ru.nl/~joan/papers/JDA_Thesis_1995.
pdf.

[19] Joan Daemen. Xoodoo, Xoofff and differential propagation, September
2022. Lecture slides Cryptology, Autumn 2022, Institute for Computing
and Information Sciences Radboud University.

76

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/elephant-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/elephant-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/elephant-spec-final.pdf
https://eprint.iacr.org/2021/293
https://eprint.iacr.org/2023/036
https://cs.ru.nl/~joan/papers/JDA_Thesis_1995.pdf
https://cs.ru.nl/~joan/papers/JDA_Thesis_1995.pdf

[20] Joan Daemen and Gilles Van Assche. Differential Propagation Anal-
ysis of Keccak. In Anne Canteaut, editor, Fast Software Encryption
- 19th International Workshop. Revised Selected Papers, volume 7549
of Lecture Notes in Computer Science, pages 422–441. Springer, March
2012.

[21] Joan Daemen, Seth Hoffert, Gilles Van Assche, and Ronny Van Keer.
The design of Xoodoo and Xoofff. IACR Transactions on Symmetric
Cryptology, 2018(4):1–38, December 2018.

[22] Joan Daemen, Bart Mennink, and Jan Schoone. Introduction to Cryp-
tography Lecture Notes 2022, August 2022. Additional Lecture material
Introduction to Cryptography, Applied Cryptography and Cryptology,
Summer 2022, Institute for Computing and Information Sciences Rad-
boud University.

[23] Joan Daemen and Vincent Rijmen. Correlation Analysis in GF(2n).
In The Design of Rijndael: The Advanced Encryption Standard (AES),
pages 181–194. Springer Berlin Heidelberg, Heidelberg, Germany, 2020.

[24] Cunsheng Ding, Dingyi Pei, and Arto Salomaa. CHINESE REMAIN-
DER THEOREM: Applications in Computing, Coding, Cryptography.
World Scientific, October 1996.

[25] Christoph Dobraunig, Lorenzo Grassi, Anna Guinet, and Daniël Kui-
jsters. Ciminion: Symmetric Encryption Based on Toffoli-Gates over
Large Finite Fields. Cryptology ePrint Archive, Paper 2021/267, 2021.
https://eprint.iacr.org/2021/267.

[26] Stephen H. Friedberg, Arnold J. Insel, and Lawrence E. Spence. Linear
Algebra. Pearson Education, London, UK, 2013.

[27] Lorenzo Grassi. Bounded surjective quadratic functions over ℧n
p for

mpc-/zk-/fhe-friendly symmetric primitives. Cryptology ePrint Archive,
Paper 2022/1313, 2022. https://eprint.iacr.org/2022/1313.

[28] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab
Roy, and Markus Schofnegger. Poseidon: A New Hash Function for
Zero-Knowledge Proof Systems. In USENIX Security Symposium, 2021.

[29] Jim Hefferon. Linear Algebra. Orthogonal Publishing L3C, 2020. Fourth
edition.

[30] Solane El Hirch, Silvia Mella, Alireza Mehrdad, and Joan Daemen. Im-
proved Differential and Linear Trail Bounds for ASCON. Cryptology
ePrint Archive, Paper 2022/1377, 2022. https://eprint.iacr.org/
2022/1377.

77

https://eprint.iacr.org/2021/267
https://eprint.iacr.org/2022/1313
https://eprint.iacr.org/2022/1377
https://eprint.iacr.org/2022/1377

[31] Yuto Kawahara, Kazumaro Aoki, and Tsuyoshi Takagi. Faster Imple-
mentation of ηT Pairing over GF(3m) Using Minimum Number of Log-
ical Instructions for GF(3)-Addition. In Steven D. Galbraith and Ken-
neth G. Paterson, editors, Pairing-Based Cryptography – Pairing 2008,
pages 282–296. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[32] Stefan Kölbl, Elmar Tischhauser, Patrick Derbez, and Andrey Bog-
danov. Troika: a ternary cryptographic hash function. Designs, Codes
and Cryptography, 88(1):91–117, August 2019.

[33] Dexter Kozen and Marc Timme. Indefinite Summation and the Kro-
necker Delta. Computing and Information Science Technical Reports,
October 2007.

[34] Rudolf Lidl and Harald Niederreiter. Introduction to finite fields and
their applications. Cambridge University Press, 1986. (Reprinted 1988).

[35] Rudolf Lidl and Harald Niederreiter. Finite Fields, volume 20. Cam-
bridge University Press, 1997. Second edition. (Reprinted 2000).

[36] Mitsuru Matsui. Linear Cryptanalysis Method for DES Cipher. In
Helleseth T., editor, Advances in Cryptology - EUROCRYPT ’93, pages
386–397. Springer Berlin Heidelberg, Heidelberg, Germany, 1994.

[37] Alireza Mehrdad, Silvia Mella, Lorenzo Grassi, and Joan Daemen. Dif-
ferential Trail Search in Cryptographic Primitives with Big-Circle Chi:
Application to Subterranean. IACR Transactions on Symmetric Cryp-
tology, 2022(2):253–288, June 2022.

[38] Silvia Mella. Trail search in permutations, October 2022. Lecture slides
Cryptology, Autumn 2022, Institute for Computing and Information
Sciences Radboud University.

[39] Silvia Mella, Joan Daemen, and Gilles Van Assche. New techniques
for trail bounds and application to differential trails in Keccak. IACR
Transactions on Symmetric Cryptology, 2017(1):329–357, March 2017.

[40] Bart Mennink. Keyed Sponges, March 2022. Lecture slides Applied
Cryptography, Spring 2022, Institute for Computing and Information
Sciences Radboud University.

[41] Theodosis Mourouzis. Optimizations in Algebraic and Differential
Cryptanalysis. PhD thesis, University College London, Gower Street,
London, WC1E 6BT, 2015. Department of Computer Science.

[42] Tristan Needham. Visual Complex Analysis. Oxford University Press,
New York, USA, 1997.

78

[43] NIST. Contacts: René Peralta, Meltem Sönmez Turan, Luís T.A.N.
Brandão. Circuit Complexity. https://csrc.nist.gov/Projects/
circuit-complexity, February 2023. Last accessed: April 18, 2023.

[44] Kenneth H. Rosen. Discrete Mathematics and Its Applications.
McGraw-Hill Publishing Company, New York, NY, USA, seventh edi-
tion, 2012.

[45] Thierry Simon, Lejla Batina, Joan Daemen, Vincent Grosso, Pedro
Maat Costa Massolino, Kostas Papagiannopoulos, Francesco Regazzoni,
and Niels Samwel. Friet: An Authenticated Encryption Scheme with
Built-in Fault Detection. In Anne Canteaut and Yuval Ishai, editors, Ad-
vances in Cryptology – EUROCRYPT 2020, pages 581–611, New York
City, USA, 2020. Springer International Publishing.

[46] Murray R. Spiegel, John J. Schiller, and R. Alu Srinivasan. Schaum’s
Outlines of Probability and Statistics. McGraw-Hill Publishing Com-
pany, New York, NY, USA, fourth edition, 2013.

[47] Michael Spivak. Calculus. Publish or Perish, Inc., third edition, 1994.

[48] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to
Data Mining. Pearson Education, London, UK, 2006.

[49] A. F. Webster and S. E. Tavares. On the Design of S-Boxes. In H.C.
Williams, editor, Lecture Notes in Computer Science, Advances in Cryp-
tology - CRYPTO ’85, LNCS 218, pages 523–534, Berlin, DE, 1986.
Springer-Verlag Berlin Heidelberg.

[50] Tolga Yalçın and Elif Bilge Kavun. On the Implementation As-
pects of Sponge-Based Authenticated Encryption for Pervasive Devices.
In Smart Card Research and Advanced Applications, pages 141–157.
Springer Berlin Heidelberg, 2013.

79

https://csrc.nist.gov/Projects/circuit-complexity
https://csrc.nist.gov/Projects/circuit-complexity

	Introduction
	Related Work
	Our Contribution
	Outline

	Preliminaries
	Finite Field Fq
	Vector Spaces
	Standard Basis ei
	Activity Patterns
	Runs

	Affine Spaces
	Transformations
	Iterated Transformations

	Functions
	Hamming Weight
	Kronecker Delta
	Transpose

	Complex Numbers

	Structure of the Family of Transformations Tq
	Structure of the State Array
	Structure of the Round Function
	Mixing Layer
	Shuffle Layer
	Non-Linear Layer

	Possible Parameters in the Round Function
	Parameters cj in
	Parameters ri in
	Parameter g in

	Avalanche Behavior
	Input and Output Differences
	Avalanche Probability Matrix
	Avalanche Dependence
	Avalanche Weight
	Avalanche Entropy

	Differential Propagation
	Differentials
	Differential Probability
	Round Differentials
	Differential Trails
	Trail Search
	Trail Extension in the Forward Direction
	Trail Extension in the Backward Direction
	Trail Cores
	Search Strategy Used in Trail Search

	Differential Propagation Properties of in Tq
	Tools for Differential Trail Search on Tq
	Non-invertibility of

	Linear Propagation
	Correlation
	Linear Approximations
	Linear Mask Propagation Through a Linear Layer
	Linear Mask Propagation Through of Tq

	Linear Potential
	Relation Between Hamming Weight and LP
	Non-invertibility of

	Round Linear Approximations
	Linear Trails
	Trail Search
	Trail Extension in the Forward and Backward Direction
	Search Strategy Using Trail Cores

	Tools for Linear Trail Search on Tq

	Practical Applications of Tq
	Sponge Construction
	Duplex Construction
	Encryption Scheme Ciminion
	Authenticated Encryption Scheme Elephant

	Case Study: Ternary Transformation in T3
	Encoding of Trits
	Arithmetic for
	Addition
	Subtraction
	Negation
	Squaring
	Addition of a Square
	Addition of Three Terms

	State of
	Possible Values of the Parameters in
	Parameter t in
	Parameters ri in
	Parameter g in

	Avalanche Behavior of
	Mixing Layer With Four Terms
	Mixing Layer With Three Terms
	Testing Different Parameters for
	Testing Different Parameters for

	Round Function of
	Differential and Linear Propagation Properties of
	Implementation of

	Conclusions and Future Work

