
Master thesis
Computing Science

Radboud University University of Glasgow

Extracting Structured Web Content
using Deep Neural Language Models

Finding order amidst the chaos

Author:
Gijs Hendriksen
s4324544

First supervisor/assessor:
Prof.dr.ir Arjen de Vries

a.devries@cs.ru.nl

Second supervisor:
Dr Jeff Dalton

jeff.dalton@glasgow.ac.uk

Second assessor:
Dr.ir Faegheh Hasibi
f.hasibi@cs.ru.nl

August 23, 2022

Acknowledgements

I would like to express my deepest appreciation to both of my supervisors,
Jeff Dalton and Arjen de Vries, for their invaluable guidance and feedback.
I am also extremely grateful to the other members of GRILL Lab at the
University of Glasgow - Sophie Fischer, Carlos Gemmell, Iain Mackie, Paul
Owoicho, Federico Rossetto, Ivan Sekulić and Alessandro Speggiorin - for
sharing their expertise, providing me with new insights, assisting me wher-
ever possible and generally making my time in Glasgow an amazing expe-
rience. Finally, I would like to thank my girlfriend, Kimberley Frings, for
proofreading and providing feedback on parts of my thesis and motivating
and supporting me throughout the entirety of the project.

Abstract

Structured information extraction from the Web plays an important role in
many large-scale automated systems, required to enable varying downstream
applications. In this thesis, we propose an information extraction method
leveraging deep neural language models to extract entity attributes from
HTML documents. Our proposed model traverses the DOM tree to split the
page into subtrees and encodes these into sequences capturing the HTML
structure. It then performs attribute extraction on each of these sequences,
reranking the results to obtain a final prediction. We evaluate our models on
the SWDE dataset and obtain results on par with the state of the art. We
argue that the segmentation of a page into several smaller sequences helps
the model distil structured information from a web page, and empirically
show that the inclusion of the HTML structure in the sequence increases
performance.

Contents

1 Introduction 3

2 Background 5
2.1 Neural language models . 5

2.1.1 Representation . 5
2.1.2 Transformers . 6
2.1.3 BERT . 11

2.2 Structured information extraction 12
2.2.1 Structured Web Data Extraction (SWDE) dataset . . 13
2.2.2 Evaluation metrics . 14

3 Research objectives 17
3.1 Motivation . 17
3.2 Opportunities . 18
3.3 Challenges . 18
3.4 Research questions and scope 19

4 Methods 21
4.1 Design . 21

4.1.1 Segmentation . 21
4.1.2 HTML representation 22
4.1.3 Extraction versus generation 25
4.1.4 Segment aggregation 26

4.2 Implementation . 28
4.2.1 Preprocessing . 28
4.2.2 Language models . 31

5 Experiments and evaluation 34
5.1 Experimental setup . 34
5.2 Experiment tracking . 35
5.3 Context sizes . 36
5.4 Sequence representation . 38
5.5 Comparison with baselines . 41

1

5.6 WebKE reproduction . 43
5.6.1 Data split . 43
5.6.2 OpenIE to ClosedIE mapping 43
5.6.3 Results . 44
5.6.4 Discussion . 45

5.7 Zero-shot setting . 47
5.8 Failure analysis . 49

5.8.1 Performance per website 49
5.8.2 Failure types . 50
5.8.3 Reranking failures . 52

5.9 Discussion . 54

6 Conclusions 56

7 Future work 57
7.1 Evaluation on alternative datasets 57
7.2 Multi-value attributes and multi-entity pages 58
7.3 Reranking segment predictions 59
7.4 Generalisation across websites 59

A Appendix 67
A.1 Attribute-level performance 67
A.2 Attribute-level performance for different context sizes 69
A.3 Attribute-level performance for the zero-shot setting 71
A.4 ClosedIE to OpenIE mapping 73
A.5 Failure types . 74
A.6 Attribute-level mean reciprocal rank of correct predictions . . 90

2

Chapter 1

Introduction

The internet has become a massive source of information. Be it recipes,
medical information or random trivia, almost anything you can think of can
nowadays be found on the Web. With all this knowledge readily available,
automated systems that require vast amounts of data - such as personal
assistants or conversational agents - can be improved like never before.

However, most of this information is contained in semi-structured content.
Although the layout of a web page is structured using HTML, the actual
content of the page is written by people for other people to read, and as such
mostly consists of natural language. How much information an automated
system can use from any given website depends on its ability to distil the
relevant information on a page into a structured format it can use.

To make this task easier, many websites are now incorporating structured
data markups in their websites. They use a vocabulary defining classes and
relations for many different types of entities from different domains, and
annotate their HTML markup in such a way that an automated system can
easily detect which entities occur on the page and what their properties
are. To standardise usage of structured data markups across the Web, the
Schema.org vocabulary [11] was introduced, which has since been adopted
by many different websites.

As of October 2021, roughly 40% of websites are using structured data
markups on their web pages [1]. These structured pieces of data power many
downstream applications, the most well-known being info boxes in search re-
sults or email confirmations. However, more than half of the websites on
the internet do not supply these structured data markups yet. And, because
it takes some level of technical knowledge to implement these formats in a
website, it is unlikely we will ever reach a point where all information on the
Web will be made available in such a structured fashion.

3

In this thesis, we propose another method of extracting structured content
from semi-structured web pages. Our method does not rely on annotations
created and maintained by the owner of the website. Instead, we make use
of recent advances in pre-trained neural language models such as BERT [9]
to understand segments of a page and detect relevant pieces of data auto-
matically. We evaluate our model on the Structured Web Data Extraction
(SWDE) dataset [13] and compare our results against several baseline archi-
tectures. We also investigate how well our model can adapt to new, unseen
websites once it has been trained on a separate set of websites.

Contrary to existing work, our models use a simple algorithm to split a
webpage into segments and represent each of these segments as a sequence
of text. We investigate the following research questions in depth (Chapter
3):

• How can we leverage powerful neural language models to enable effec-
tive attribute extraction?

• How does the size of the HTML segment influence the performance of
the model?

• How can we encode the structure of the HTML segment into sequences
of text in a meaningful and effective way?

• How well do our models generalise to new, unseen websites?

With our setup, we are able to fine-tune off-the-shelf neural language mod-
els without changing the architecture of the model or adjusting the input
embeddings (Chapter 4). Though this approach works well on the standard
information extraction task, our models have trouble adjusting to unseen
websites in the zero-shot setting (Chapter 5).

4

Chapter 2

Background

2.1 Neural language models

Over the last decade, deep learning has been used extensively for a wide
variety of tasks. Neural networks have shown to perform very well on tasks
with numerical input data. For instance, convolutional neural networks have
significantly advanced the area of computer vision, and recurrent neural net-
works have been used widely to handle data of sequential nature, such as time
series. However, it is not as straightforward to efficiently translate natural
language processing tasks to a deep learning approach.

2.1.1 Representation

The first challenge of posing natural language processing as a deep learning
task is representation. Since machine learning models work on numeric data,
we somehow need to transform the input text. A basic approach treats the
input sequence as a ‘bag-of-words’, by simply counting occurrences of each
token in the sequence and representing those counts as a vector. However, the
dimensionality of these vectors quickly becomes very large and the vectors
themselves sparse, as each vector has to contain counts for each token in
the vocabulary, and each sequence contains only a small number of distinct
tokens. More importantly, this representation disregards all structure and
grammar the original text contained, which severely limits its expressiveness.

Another representation, which would keep the order of the text intact, is to
‘one-hot’ encode each token in the input sequence and stack these encodings
to obtain the full representation of the sequence. Again, each vector contains
a position for each token in the vocabulary, where the value of that position
is 1 if the encoded token is equal to that vocabulary token, and 0 otherwise.
Thus, for a vocabulary of size V and a sequence of length N , the one-hot

5

representation of the input sequence would be a N × V matrix with a single
1 on each row, and a 0 in all other positions.

One-hot encoded text also suffers from large and sparse input vectors (even
more so than the bag-of-words approach), as each token vector must be as
long as the size of the vocabulary. This could in theory be solved by limiting
the size of the vocabulary, but that would mean we can no longer represent
all possible input sequences. To limit the size of the input embeddings, but
still be able to represent all inputs, we can tokenise the input into subword
units. With this approach, less common words are split into subcomponents.
For instance, the word ‘amazingly’ can be split into tokens ["amazing",
"##ly"], where the ## characters indicate that the token is connected to
the previous token. To generate the vocabulary, one usually starts with
a vocabulary of single characters, and then repeatedly finds likely token
combinations (A,B) and replaces both tokens with a single token AB. This
procedure is repeated until the desired vocabulary size is reached.

The subword unit approach is used in most modern neural language models.
Examples of tokenisation methods that use this technique are Byte Pair
Encoding (BPE) [31, 30], WordPiece [36] and SentencePiece [18].

Besides ensuring all words can be represented using a limited vocabulary
size, the subword approach has an additional benefit. Consider the previ-
ous example, where ‘amazingly’ is tokenised as ["amazing", "##ly"]. By
splitting the word like this, we automatically obtain information on both the
meaning of the word (by the base ‘amazing’) and the fact that it is an adverb
(by the suffix ‘-ly’). As a result, we can jointly learn the semantic meaning
of many adverbs in the text at the same time, as most will include the same
token for the ‘-ly’ suffix.

2.1.2 Transformers

Because of the sequential nature of natural language, the first deep learn-
ing efforts in natural language understanding (NLU) made use of recurrent
neural networks, such as Long Short-Term Memory networks (LSTMs) [14].
These recurrent models process the input sequentially, by keeping track of
a hidden state ht at time step t, and using that to process token xt+1 from
the input sequence and produce ht+1. The hidden state captures the infor-
mation of all previous tokens in the input, meaning the sequential nature of
the input text is conserved. However, this method of sequential processing
makes it impossible to train these models in a parallel manner, something
which has become increasingly important as sequences, model architectures
and datasets kept growing.

Another way to process sequential data is to use convolutional neural net-
works. In these models, the network learns a set of convolutional filters of a

6

fixed window size, that slide over the input sequence. Although this method
does allow for parallelised training, dependencies over spans longer than the
window size can no longer be captured in a single layer of the model. As a
result, learning long-distance dependencies in the text becomes a more diffi-
cult problem, which needs to be addressed by stacking several convolutional
layers on top of each other.

In 2017, Vaswani et al. proposed the Transformer architecture as an efficient
and effective architecture for dealing with sequences of text [33]. The Trans-
former architecture provides the basis for the majority of applications using
state-of-the-art neural language models.

Overview

An overview of the architecture of the Transformer model can be found in
Figure 2.1. Like many established architectures before it, the Transformer is
a sequence-to-sequence model consisting of an encoder stack and a decoder
stack. The encoder takes an input sequence and transforms it into an encod-
ing. The decoder takes the encoding from the encoder and the start of an
output sequence and produces the next token in the output. By starting with
an empty sequence, and iteratively decoding a single token and appending
it to the output sequence, the model can generate full sequences as output.
Hence, the name: “sequence-to-sequence”.

Multi-head attention

At the heart of the Transformer architecture lies the attention mechanism.
Specifically, the Transformer implements scaled dot-product attention, which
is also illustrated in Figure 2.2a. An attention layer receives a list of queries
Q, keys K and values V . The output is a weighted average of each of the
values in V , where the weights are computed based on the queries and keys.
Specifically, the attention is computed as:

Attention(Q,K, V) = W × V

with

W = softmax
(
Q×KT

√
dk

)
,

where dk is the dimension of the keys and queries. The scaling factor 1√
dk

is
included to limit the problem of vanishing gradients in the softmax function.

In the Transformer architecture, self-attention plays an important role. Self-
attention is described as attention in which the queries, keys and values all
come from the same place. In the encoder, for instance, self-attention is used
to ensure each token in the input sequence can attend to each other token in
the input sequence. This allows the attention layer to model relationships

7

Figure 2.1: A general overview of the Transformer architecture, with an
encoder stack (left) and a decoder stack (right). Image taken from [33].

8

(a) Scaled dot-product attention. (b) Multi-head attention.

Figure 2.2: Attention mechanisms in the Transformer architecture. Images
taken from [33].

and dependencies between different tokens in the input sequence. Since self-
attention spans the entire input sequence, dependencies between any two
tokens can be modelled in a single attention layer, as opposed to the multiple
layers required for a convolutional model.

While the self-attention mechanism can efficiently model dependencies be-
tween tokens, the weighted averaging in the output makes it difficult to
model multiple dependencies for a single token in the input sequence. For
instance, take the following sentence: “John said he was feeling unwell”. For
the token ‘he’, there is an obvious dependency with the token ‘John’. How-
ever, to correctly model the full meaning of the sentence, the model should
also capture a dependency between ‘he’ and ‘unwell’. With a single attention
layer, the model only learns an averaged dependency on both parts of the
input sequence. To overcome this issue, the Transformer uses multi-head at-
tention instead. See Figure 2.2b for an illustrated overview of the multi-head
attention mechanism.

With multi-head attention using h heads, the queries, keys and values are
projected into h different representations each. For each combination Qi, Ki

and Vi, we compute headi = Attention(Qi,Ki, Vi). Then, the outputs of all
attention heads are concatenated and projected back into dmodel dimensions.
Formally:

MultiHead(Q,K, V) = Concat(head1, . . . , headh)×WO

9

with
headi = Attention(Q×WQ

i ,K ×WK
i , V ×W V

i),

where WQ
i , WK

i , W V
i and WO are parameter matrices that are learned

during training.

In the case of self-attention, Q, K and V all contain the same values (albeit
projected in different ways): either the encoded input sequences (e.g. the
one-hot encoded vector representation of ["j", "##oh", "##n", "said",
"he", "was", "feeling", "un", "##well"]), or the embedding outputs
of the previous transformer layer.

In Figure 2.1, we see that the encoder consists of N stacked encoder blocks.
Each encoder block consists of a multi-head self-attention layer, followed by
a simple position-wise feed-forward network. Both the attention layer and
feed-forward network are combined with residual connections, meaning the
output of each sub-block is summed up with its input, after which the result
is normalised.

The decoder consists of N stacked decoder blocks, which also contain a multi-
head self-attention layer and position-wise feed-forward network. However,
since the sequence the decoder receives as input is generated iteratively,
tokens in the output sequence should only be allowed to attend to tokens
that occur earlier in the sequence. Hence, the self-attention layer in the
decoder blocks is masked, to ensure this restricted attention is enforced. Also,
the decoder block somehow needs to incorporate the output of the encoder
into its output. To do so, the decoder block contains an extra multi-head
attention layer in between the other two layers, which obtains its keys and
values from the encoder’s output, and its queries from the preceding self-
attention layer. And finally, the decoder ends with a linear layer with a
softmax activation, to output token-level probabilities.

Positional encoding

Unlike the recurrent and convolutional models, the Transformer’s attention
mechanism does not inherently take the order of the inputs into account.
To account for the fact that natural language is an ordered sequence of
tokens, the Transformer adds a positional encoding to the input sequence.
For each token, which is represented by a vector of dimension d, the positional
encoding consists of two interleaved sinusoids, one a sine and one a cosine.
Formally, for a token at position pos, the positional encoding is vector PE
of length d, with, for 0 ≤ i < d/2:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)

10

By choosing sinusoids to represent the positional information, the model
should also be able to handle sequences longer than the ones seen during
training time.

2.1.3 BERT

To train a complex and large model such as the Transformer, you need
access to a large amount of training data. Since labelled data for supervised
objectives is generally costly to obtain and not available in abundance, most
models nowadays make use of unsupervised pre-training. With pre-training,
the model is first trained on a large corpus of textual content without labels,
where the goal is to gain a general understanding of the natural language
used in the documents. After the model has been pre-trained sufficiently, it
is fine-tuned on the labelled data of the supervised task.

Since pre-training is unsupervised, the pre-training objective should force
the model to gain an understanding of natural language, without supply-
ing external labels. Early pre-training objectives often included the task of
predicting the next token in a sentence [7, 24]. However, with this objec-
tive, each token is only conditioned on the preceding tokens, meaning the
model will never learn to incorporate the full sequence in the representation
of a specific token. To allow for bi-directional text understanding, Devlin
et al. introduced their model BERT (Bidirectional Encoder Representations
from Transformers) with the masked language modeling (MLM) pre-training
objective [9].

BERT is a standard Transformer encoder stack, without the decoder. It
is pre-trained on the BooksCorpus [41] and English Wikipedia. The MLM
objective used to pre-train BERT randomly selects 15% of the tokens in the
input sequence. From these tokens, 80% will be replaced by a special [MASK]
token, 10% will be replaced by a random token in the vocabulary, and 10%
will be left unchanged. The model is then asked to reproduce the full input
sequence. Since random parts of the input sequence are corrupted, the model
is forced to capture the relationship between different parts of the sequence.
Applications of BERT to NLP tasks have shown a basic level of semantics
got encoded in the network’s structure and parameters.

Besides the MLM objective, BERT is also pre-trained with the next sentence
prediction (NSP) objective. For the NSP objective, BERT encodes two sen-
tences A and B by joining them with a separator token [SEP] and prepend-
ing a special [CLS] token. The resulting sequence would thus be: "[CLS] A
[SEP] B". BERT also includes embeddings EA and EB to denote, for each
token, whether they belong to sequence A or sequence B. The output of the
encoder for the [CLS] token can be seen as the combined representation of
the entire input sequence and is consequently used for classification of the

11

full sequence. The NSP objective then follows as a binary classification on
A and B, where the output indicates whether B is the correct sentence to
follow A.

Because of the MLM pre-training objective, BERT can effectively learn the
meaning of a sentence and the dependencies between words within a se-
quence. The NSP objective, on the other hand, allows BERT to capture the
relationship between different sentences altogether. By combining the two,
BERT gains a reasonable understanding of natural language, which proves
effective when fine-tuning it on a variety of downstream tasks.

2.2 Structured information extraction

Structured information extraction describes the general task of extracting the
values of structured attributes from unstructured or semi-structured docu-
ments. Generally, the task is considered in two different settings: closed
information extraction (ClosedIE) and open information extraction (Open-
IE).

In the ClosedIE setting, the schema of the entity is considered to be known.
In other words, the set of attributes that can be found for a specific entity
is fixed and known before the extraction happens. The task is then to find,
for every attribute in the schema, the corresponding value(s) in a specific
document.

In the OpenIE setting, the set of attributes is not known. Hence, the task
not only requires the model to extract attribute values, but also the corre-
sponding relation. In general, OpenIE is defined as the extraction of triples
⟨s, r, o⟩ from webpages, where s is the subject entity, r is the relation type,
and o is the object/value.

Early approaches for information extraction made use of wrapper induction
to extract attributes from a web page. A wrapper defines an exact set of
rules to select one or more specific elements from a webpage. Examples of
such rules are the surrounding tokens for an attribute, such as and
[19], or XPath queries [12]. While wrappers can be very precise, they do
not generalise well to new websites and run the risk of breaking when the
site structure is updated. They also require manual annotation of at least a
couple of pages for each website, which is a labour-intensive process.

To reduce the amount of manual annotation necessary, several alternatives
have been considered. For instance, WEIR [5] uses data redundancy in
partially overlapping web sources to find relevant rules for a given page.
Hao et al. [13] describe an approach where general features are learned for
HTML DOM nodes, that translate well to unseen websites. CERES [20]

12

Table 2.1: Overview of the SWDE dataset.

Vertical #Pages Attributes

Auto 17,923 model, price, engine, fuel-economy
Book 20,000 title, author, ISBN-13, publisher, publish-date
Camera 5,258 model, price, manufacturer
Job 20,000 title, company, location, date
Movie 20,000 title, director, genre, MPAA-rating
NBA player 4,405 name, team, height, weight
Restaurant 20,000 name, address, phone, cuisine
University 16,705 name, phone, website, type

and OpenCeres [21] moved away from manual annotations altogether, and
instead are trained using a domain-specific knowledge base.

More recent approaches try to learn general representations of HTML DOM
trees, e.g. by generating node-level embeddings [40] or by representing the
DOM tree using a context-free grammar [6]. Other approaches use pre-
trained Transformer networks and apply varying methods to incorporate
the HTML information into the network. For instance, [8] encodes HTML
tags and attribute values into the sequence, and adds additional positional
encodings to represent several tree-based features of the DOM node. [37]
also adds the tag and certain attribute values into the sequence, but uses
the positional encodings to incorporate visual 2D position information. The
model in [34] contains additional attention mechanisms that are used to
encode the DOM tree and learn the relationships between the DOM nodes
and textual content.

2.2.1 Structured Web Data Extraction (SWDE) dataset

In order to test and evaluate ClosedIE extraction methods, the Structured
Web Data Extraction (SWDE) dataset [13] was created. The SWDE dataset
contains entity pages (i.e. pages with a single subject entity) for 8 different
verticals, each with 10 websites. For each vertical, 3 to 5 attributes were
picked, and all pages for the vertical were annotated for those specific at-
tributes. An overview of the verticals and corresponding attributes can be
found in Table 2.1.

Due to the limited set of attributes per vertical, the SWDE dataset is not
particularly suited for the evaluation of OpenIE models. For that reason, an
expanded version of the dataset was created for the ‘movie’, ‘NBA player’
and ‘university’ domains [21]. The Expanded SWDE dataset contains all the

13

relations found on each specific page, instead of being limited to at most 5
relations per vertical. This allows it to be used to evaluate OpenIE systems.

The SWDE dataset has been around for over a decade and is established in
the information extraction literature as the standard dataset for evaluating
information extraction systems. This makes it a perfect dataset to evaluate
our models and compare them against the existing literature.

2.2.2 Evaluation metrics

Global metrics

Evaluating an information extraction system can be done by viewing the
extraction problem as a classification over all triples ⟨s, p, o⟩. An extracted
triple is then correct if all of s, p and o match the corresponding values of
a ground truth triple. Using this classification approach, we can compute
precision, recall and F1 scores over the entire evaluation set. This evaluation
method can be used for both ClosedIE and OpenIE systems.

To account for slight, meaningless differences between the extracted values
and ground truth values, we normalise both sets of values by removing punc-
tuation and double whitespace. We define the sets of triples Rtrue

d and Rpred
d

for ground truth and predicted relations of document d, respectively:

ŷd,a = Normalise(GT(d, a))

yd,a = Normalise(Extract(d, a))

Rtrue
d = { ⟨d, a, ŷd,a⟩ | a ∈ Attrs(d) }

Rpred
d = { ⟨d, a, yd,a⟩ | a ∈ Attrs(d) },

where Attrs(d) is the set of ClosedIE attributes for document d, Nor-
malise is the normalisation procedure introduced above, GT(d, a) is the
ground truth value of attribute a for document d, and Extract(d, a) is our
model’s prediction for the value of attribute a for document d.

Using these definitions, we formally define the global metrics as:

Pd =
|Rpred

d ∩Rtrue
d |

|Rpred
d |

Rd =
|Rpred

d ∩Rtrue
d |

|Rtrue
d |

F1,d = 2 · Pd ·Rd

Pd +Rd

14

To obtain aggregated metrics over the entire dataset, we macro-average the
metrics over all documents.

P =
1

|D|
∑
d∈D

Pd

R =
1

|D|
∑
d∈D

Rd

F1 =
1

|D|
∑
d∈D

F1,d,

where D is the set of documents.

When performing statistical significance tests for the global metrics, we con-
sider Pd, Rd and F1,d to be random variables. We then compare the (vari-
ation between the) distributions of these variables for two different models,
and perform a paired Wilcoxon signed-rank test to determine, per metric,
whether one of the two models performs significantly better than the other.
For each of our significance tests, we use a significance level of α = 0.01.

Instance-level metrics

A limitation of measuring exact triple matches is that it disregards the cases
where an extracted attribute is partially correct. For instance, a predicted
date of ‘January 3rd’ does not exactly match the ground truth of ‘January
3rd, 2019’. However, it is more correct than other values like ‘July 30th’,
and we would like for that to be reflected in the evaluation metrics. To do
so, we can borrow metrics from the question answering domain [26].

In question answering, the goal is to extract an answer to a question from
a given context. Evaluation is done on a per-question basis. Again, both
the predicted answer and the ground truth answer(s) are normalised, i.e.
double whitespace, punctuation and articles (a/an/the) are removed. With
these normalised values, two metrics are defined. The exact match (EM)
metric measures whether the prediction fully matches one of the ground
truth answers and, as such, disregards partial matches. As such, it can also
be described as the accuracy over the normalised values. The F1 metric
treats each answer as a bag of words, and computes the F1 score between
the prediction and each of the ground truth answers. As a result, the F1

metric captures overlap between two answers and rewards partial matches,
though it disregards the order of the tokens in the answers.

The EM and F1 metrics are computed for every question and are averaged
over all questions in the evaluation set to obtain a final score. In the extrac-
tion task, we consider each combination of webpage and attribute to be a
question, and the attribute value to be the answer. Then, we average over
all web pages and attributes to obtain the evaluation score.

15

These question answering metrics have been used for the evaluation of infor-
mation extraction models in [34], where the authors have kept the names of
the metrics consistent with their names in the question answering domain:
EM and F1. However, to avoid confusion between the previously introduced
classification F1 score and this instance-level F1 score, we have opted to use
a different name for the second metric: weak match, or WM.

Formally, we can define the EM and WM metrics for each document d and
attribute a ∈ Attrs(d) as follows:

EMd,a =

{
1 if ŷd,a = yd,a

0 otherwise

Pd,a =
|Tokens(yd,a) ∩Tokens(ŷd,a)|

|Tokens(yd,a)|

Rd,a =
|Tokens(yd,a) ∩Tokens(ŷd,a)|

|Tokens(ŷd,a)|

WMd,a = 2 ·
Pd,a ·Rd,a

Pd,a +Rd,a
,

where Tokens converts a value to a bag of words by splitting the value on
whitespace. The performance over the entire evaluation set is computed by
averaging the EM and WM scores over all queries.

NQ =
∑
d∈D
|Attrs(d)|

EM =
1

NQ

∑
d∈D,a∈Attrs(d)

EMd,a

WM =
1

NQ

∑
d∈D,a∈Attrs(d)

WMd,a

To determine whether one of two models performs significantly better than
the other, we again consider EMd,a and WMd,a to be random variables and
perform a paired Wilcoxon signed-rank test (with α = 0.01) to determine
whether the variation between the models is statistically significant.

Note that this set of metrics can only be used for the ClosedIE setting, as it
requires us to have a concrete set of attributes per webpage. In the OpenIE
setting, we try to extract all possible attributes, making it impossible to
frame the task as a question-answering problem.

Throughout the remainder of this thesis, we will refer to the first set of
metrics (P , R and F1) as global metrics, while we refer to the second set of
metrics (EM and WM) as instance-level metrics.

16

Chapter 3

Research objectives

3.1 Motivation

While the Web contains vast amounts of information, large-scale automated
systems often require data in a particular, structured form. For instance,
search engines can use knowledge of structured data on websites to enrich
search results with infoboxes and question-answering modules (or “entity
cards”). Likewise, virtual assistants can assist much better with tasks if they
can understand the requirements of the task and have knowledge of other
task-specific attributes.

Recognising which parts of a webpage are significant and correspond to which
type of information is a task that is trivial for humans to perform. For in-
stance, when opening a page with a recipe, one immediately notices the
title of the recipe, the required ingredients and the instructional steps. This
insight comes from both the fact that people can understand the textual con-
tents of the webpage instantly and relate that to their common knowledge,
but also from the expectations one has of the layout of the page. A title of
a recipe is usually found at the start of the page, and marked as a heading
with larger font size, bold text and possibly a different colour.

For machines, this distinction is a lot harder to make. They can read the
HTML source code, parse the layout information from it, and render the page
so it is viewable by people. However, webpages are only semi-structured. Of
course, HTML introduces structure in the layout of the page. However, the
actual contents of the page still mostly consist of natural language, which
makes it difficult for machines to understand what structured data is repre-
sented on the page - especially because computers lack the natural language
understanding capabilities and common knowledge that humans possess.

17

3.2 Opportunities

Recent advances in neural language models [33, 9, 25] have significantly
improved the language understanding capabilities of computer systems. By
combining these models with the structural information that HTML gives
us, we could come closer to mimicking the insights that allow people to
intuitively recognise and understand structured data on web pages.

Lack of training data is usually a big issue with the usage of supervised
models. Especially if we want to train large, complex language models, we
need access to a large amount of labelled data. While several datasets exist
for the information extraction task, they are merely useful for evaluation
purposes - they are not large or varied enough to enable training for models
that can extract many different types of data from many different websites.

In recent years, a lot of effort has been put into making structured data more
accessible to automated systems like search engines [11, 22]. By incorporat-
ing structured data annotations in their pages and adhering to a pre-defined
schema (such as Schema.org [11]), website owners have made it increasingly
more feasible for machines to understand what structured data is present on
the page, and informed them about the relevant attribute values. While this
has already become a useful data source for search engines and other parties,
these annotations are still missing from more than half of the internet [1].
Conversely, the annotations that we have, on the other half of the internet,
can double as a source of training data. By using the annotations provided
on certain websites, we can train a model that learns what the data for a
specific schema type looks like. If general and accurate enough, this model
can then serve as a way to extract information from other websites that do
contain structured data but lack the annotations.

3.3 Challenges

Given the success with transformer model models throughout NLP tasks, we
would naturally consider a transformer-based model for structured informa-
tion extraction as well. Although they are very powerful, transformer-based
neural language models suffer from size limitations. Since the attention
mechanism’s memory requirements grow quadratically with the length of
the input sequence, many of these models only support sequences with a
certain maximum length. For example, BERT and T5 use a maximum input
sequence of 512 tokens. Webpages are generally longer documents, that do
not fit in such limited sequence lengths. Thus, to avoid prohibitively expen-
sive resource requirements, we need a way to circumvent these issues, either
by splitting the input into separate subsequences or by using a different
attention mechanism.

18

Since different websites on the Web are created by different people and con-
sist of different layouts and contents, there is a lot of variety in the HTML
structure between different pages. This means that a model should not just
memorise the structure of the documents in the training set. Instead, if it is
to work across many different pages on the internet, it needs to learn more
general relations between DOM nodes and their contents.

In the task of information extraction, the type of attribute that is being
extracted can impact the effectiveness of a model by a large margin. For
instance, Foley et al. [10] showed that more regular fields like dates and
locations were more easily recognisable than attributes that are longer and
more varied, such as titles or descriptions. For a general approach that is
effective for many types of structured data, our models need to be able to
handle these different types and representations of attributes accurately.

3.4 Research questions and scope

The ultimate goal of this thesis is to propose a system that can extract
structured data from HTML pages. We will explore in which way neural
language models can help achieve this objective. We also investigate the role
of HTML structure and consider ways in which to incorporate the structural
information given by the HTML in our model. These objectives are studied
in terms of the following research questions:

RQ I. How can we leverage powerful neural language models to enable
effective attribute extraction?

a) Are encoder-only or sequence-to-sequence language models
more effective for the information extraction task?

RQ II. How does the size of the HTML segment influence the performance
of the model?

RQ III. How can we encode the structure of the HTML segment into se-
quences of text in a meaningful and effective way?

RQ IV. How well do our models generalise to new, unseen websites?

Given the context of using structured data annotations from Schema.org as
training data for our models, it makes sense to assume that we have access
to a schema for our data types. As a result, we will only be considering
the ClosedIE setting in this research. Whether the developed methods also
prove useful and effective for the OpenIE domain has to be considered in
future research.

19

In practice, many structured data types will have multi-valued attributes
(such as ingredients for a recipe, or actors in a movie). However, we decided
to limit the scope of our research to the extraction of a single value per
attribute. The reason for doing this is two-fold. First, the extraction of
single-value attributes is a simpler problem than the multi-value case, which
allows us to study the problem in a more general setting. Second, the current
state-of-the-art ClosedIE systems all report their findings for the single-value
case. By assuming a similar setup, we ensure our approach is comparable to
the other systems.

Similarly, the scope of our research is limited to the extraction of attributes
on entity pages, i.e. web documents that only discuss a single entity. This
limitation follows from the choice of using the SWDE dataset (Section 2.2.1)
for evaluation purposes.

20

Chapter 4

Methods

4.1 Design

A general overview of our model can be found in Figure 4.1.

4.1.1 Segmentation

As mentioned in Section 3.3, HTML documents are unlikely to fit in the
maximum sequence length of 512 tokens that is maintained by many neural
language models. One way to circumvent this problem is to truncate the
documents up to the first 512 tokens. However, this approach clearly breaks
the model’s ability to extract data from later parts of the page. Other
approaches [2, 39, 3] have been introduced that do not employ (quadratic)
full self-attention, but rather use a combination of windowed and global
attention to make the complexity of the attention mechanism linear in terms
of the length of the input sequence.

A way to still be able to use full self-attention but also handle longer doc-
uments is to split the document into different segments. Each segment can
then be processed separately, and the outputs for each segment can be ag-
gregated to obtain the final output for the full document. An issue with the
segmentation approach, though, is that you might split highly contextually
dependent parts of the sequence into separate segments. In the information
extraction task, you might split an attribute from the label that announces
it or even split the value itself in half. To overcome this, you could use a slid-
ing window, where segments are partially overlapping. This ensures for each
feature of interest that there is always at least one segment that contains the
full context necessary to extract the value.

Since we are working with semi-structured HTML data, we opted for a dif-
ferent approach. The layout of a document is defined by the DOM tree,

21

Figure 4.1: An overview of our proposed model. Documents are first split
into segments, and each segment is represented as a sequence of text. Each
segment is fed into an information extraction model, and the results for
segments are ranked to output the final prediction for a given document.

meaning nodes that are contextually dependent on one another are more
than likely contained in the same DOM subtree. Instead of segmenting the
document on a token basis, we can thus segment the page by taking different
subtrees of the DOM tree. At which depth we cut off a specific subtree de-
pends on the size of the context that we want to take into account. If we go
down deeper into the tree structure, we will have less context to work with,
and the models are likely to learn more local features. If we segment higher
up in the tree, our context will be larger and our models can pick up more
global features, at the cost of a higher memory requirement.

To obtain segments of a page that fit within a certain context length c, we
simply traverse the DOM tree. For every node n, we try to represent that
node and its children with the representation Rn we introduce in Section
4.1.2. If it fits within the context size c, we produce Rn as a representation
for the entire subtree that has n as its root. If not, we traverse the tree
further down and try to segment each of n’s children individually. This ap-
proach ensures we find segments with a maximum context size while ensuring
their representations are sequences of at most c tokens. Our segmentation
procedure is also illustrated in Figure 4.2.

In order to see the effect different context sizes have on the performance of
our models (RQ II), we experimented with maximum context sizes of 128,
256 and 512 tokens.

4.1.2 HTML representation

In Section 3.2, we mentioned that the structure of the HTML document can
be very useful in understanding what type of data is represented on the page.
Not only can we use the layout of nodes in the tree structure, the types of the
nodes (e.g. div or span), and their attributes (e.g. id or class) can also be
highly informative. As a result, we would like to incorporate these features
of the HTML document into our input sequences.

22

Figure 4.2: Our tree-based segmentation procedure. The tree is traversed
until a subtree can be represented in the specified sequence length. The
top-level div and the second div cannot be represented in C tokens, so they
are split into multiple segments.

<div class="container">
<h1>This is a heading</h1>
<p id="description">
This is the description.
</p>

</div>

Listing 4.1: An example HTML fragment.

A simple method for encoding the HTML document in a sequence is to
traverse the tree in-order and insert the HTML tags into their corresponding
location in the sequence. An example encoding of the HTML fragment in
Listing 4.1 would be:

<div> class=container <h1> This is a heading <p> id=description
This is the description.↪→

By separating the attributes from the HTML tags and adding the tags as
special tokens to the tokeniser, the model can define a clear meaning for
each of the different tags. Although this approach seems attractive due to
its simplicity, it does require the model to ‘reconstruct’ the input tree based
on this representation - a task that could be significantly harder for the
model to learn than understanding the semantics of a natural language text.

Instead, our representation is still created by traversing the DOM tree and
producing the text nodes in-order. We do not include the HTML tags in
their corresponding points in the sequence, though, but we prefix every text

23

node with the representation of their a most recent ancestors. This ensures
that the tree structure is embedded into the sequence, at the cost of requir-
ing a longer sequence to represent the same subtree and only including the
information of a fixed amount of ancestors.

Each parent element is represented as a combination of its tag name, and (if
present) its id and class attributes. We represent each such value with the
sequence p[i][t] [value], where [i] is the ancestor level (i.e. the distance
from that node to the current text node) and [t] represents the type of the
value (t, i or c for tag name, id and class, respectively). The fragment in
Listing 4.1 would then be represented as the following sequence:

p1t div p1c container p0t h1 This is a heading p1t div p1c
container p0t p p0i description This is the description.↪→

We hypothesise the following features of this representation:

• Representing the a most recent ancestors before each text node allows
the model to understand relationships between the ancestors of a node
and the contents of that node more easily. This is because the hierarchy
of HTML nodes is made explicit in the encoded sequence, and the
model does not have to learn complex tree-like relationships itself.

• By representing the tags as p[i]t [tagname], we do not force the
model to learn the semantic meaning of each individual HTML tag
(such as <div> and <p>). Instead, we allow it to learn that p[i]t
represents a HTML tag, and [tagname] supplements this meaning by
giving it more information on the type of HTML tag. This allows the
model to obtain a more general understanding of the HTML structure.

• Since the ancestor index [i] is a number, and the surrounding char-
acters are letters, the tokeniser will almost be guaranteed to split this
information triplet into distinct tokens. As a result, it should be able
to learn the meaning of each aspect of the encoding separately. In
other words, it might learn that p represents an HTML node, [i] rep-
resents how distant or relevant that node is to the current text node,
and that t, i and c represent different types of information of that
specific ancestor.

Since the encoding of ancestors takes up quite a big portion of the result-
ing sequence, the size of the context a segment can capture decreases as
we incorporate more HTML information. As a result, we need to make a
trade-off between the level of detail with which we represent ancestors on the
one hand, and the size of the subtrees we want to be able to fit in a single
segment on the other hand. To find a representation that balances these
requirements (thus answering RQ III), we performed an experiment investi-
gating the performance of our models with different HTML representations.

24

4.1.3 Extraction versus generation

When working with large language models, a choice must be made be-
tween using an encoder-only model or an encoder-decoder (i.e. sequence-to-
sequence) model. As far as we are aware, no existing literature touches upon
the benefits of one over the other in the setting of information extraction.
However, the setup of our task is similar to the task of question answering
[26], where the model is provided with a query and a context, and the goal is
to find the span of text in the context that best matches the query. Hence,
we consider the usage of both types of models in the question-answering do-
main and hypothesise how their advantages and disadvantages might extend
to our research.

Encoder-only models like BERT [9] and SpanBERT [17] are used by append-
ing two classification heads on top of the encoder, one that predicts the token
at the start of the span containing the answer, and one that predicts the end
of the span. The span that has the highest joint probability of start and
end position is produced as the predicted answer. The null answer (i.e. the
prediction that the context does not contain the answer) is produced by pre-
dicting the [CLS] token as both the start and end token. Encoder-decoder
models produce the output by taking the encoded query and input sequence
and using autoregressive decoding to generate the expected answer. The null
answer is produced by generating the empty sequence.

A major advantage of the encoder-only models is that the span selection pro-
cedure guarantees that the predicted answer is a part of the provided context.
The lack of a decoder makes the model easier to train, and inference is faster
as no auto-regressive decoding is required. However, the training procedure
of an encoder-only model is a bit more involved, as it needs ground-truth
labels on the exact start and end positions of each answer in the training
set.

In recent years, sequence-to-sequence models like T5 [25] have been shown to
outperform the encoder-only models in the question-answering task SQuAD
[26]. The fact that the sequence-to-sequence framework allows for a unified
approach in handling a variety of text-based problems makes it an attractive
solution for pre-training and fine-tuning on many tasks. In fact, the pub-
lished T5 models are already pre-trained on the SQuAD task, which could
prove beneficial as the information extraction task can be defined similarly.
Additionally, the fact that the output is generated means we can directly use
the ground-truth labels as training targets, instead of having to locate these
in the input sequence to assign the corresponding start and end positions. A
disadvantage of the sequence-to-sequence model is that purely generating the
answer does not guarantee that the predicted attribute is a part of the input
sequence, and the model might even hallucinate and produce nonsensical

25

outputs. To alleviate this issue, one might make use of constrained auto-
regressive decoding [29] or copy mechanisms [38]. In our experiments with
sequence-to-sequence models, we opted for the former (see Section 4.2.2).

Since neither of the architectures is inherently better than the other, we
experimented with both setups to research empirically which of the archi-
tectures works best for our problem (thus answering RQ I.a).

As a final note, the tree-like structure of the HTML documents also allows
us to frame the information extraction task as node classification (or ‘node
tagging’), as is implemented in [8, 40]. Instead of selecting or generating the
appropriate value from the text, we could assume that a specific DOM node
(or subtree) exists whose textual content is exactly equal to the attribute
value. Under that assumption, the task can be reduced to the selection of the
node that contains the attribute value. While this sounds like a reasonable
hypothesis, we decided to stick with the more general approach of extracting
a span of text from the document. We did not carry out further experiments
to test whether the assumption is valid, nor did we implement a node tagging
variant of our model. We believe this could be picked up in future research,
though (see Section 7.2).

4.1.4 Segment aggregation

As mentioned in Section 4.1.1, each document is segmented into a number
of different, non-overlapping sequences. For each of the sequences, we try
to extract the requested attribute. The resulting prediction is a (possibly
empty) span of text, and a corresponding confidence score. The confidence
is computed in different ways for the encoder-only and the encoder-decoder
models, which we will discuss in more detail in Section 4.2.2.

To produce a final document-level prediction for an attribute, we need to
somehow aggregate or rank the predictions made for each of the segments.
We do this using a very basic approach:

• If any of the segments contain a non-empty prediction, we select the
non-empty prediction with the highest confidence.

• If all predictions for each of the segments are empty, we conclude that
the attribute was not found.

Especially note the requirement that all segments must produce an empty
prediction before we can conclude that the attribute was not found. Oth-
erwise, we might accidentally produce the empty output, even though the
attribute was present on the page. Consider the case where we split the page
into two segments. The first segment contains only gibberish and very clearly
does not contain a valid value for the attribute. Our model will produce the
empty output with very high confidence. The second segment does contain

26

the attribute, but the model is less certain than for the previous case - e.g.
because the attribute is difficult to recognise. As a result, the confidence
for the correct prediction would be lower than the confidence for the empty
prediction, and the model would conclude that the requested attribute is not
present on the page.

In exploratory experiments, we have tested the usefulness of including a
confidence threshold. Instead of outputting values with (too) low confidence
scores, the model would decide that the attribute was not found on the
page. This turned out to rather hurt than increase the model’s performance,
though, and we have refrained from using a confidence threshold in the re-
mainder of our experiments.

As each segment is processed independently, the models only consider local
context, and the ranking is based on local confidence scores. To incorpo-
rate more of the global context into the models, one could consider using
additional information on the position of each segment in the webpage. For
instance, one could render the input pages with a web browser and extract
the 2D positions and sizes from the rendered page (similar to [37]). This
would also allow the incorporation of additional features like font size or
colour. However, rendering each webpage before extracting information in-
curs a high cost, and the rendering process could not easily be changed
without breaking the compatibility between the training and inference data.
Additionally, crawled webpages used for information extraction might rely
on outdated and no longer existing resources (like stylesheets), which makes
this approach suboptimal in practice.

An alternative and more efficient solution we considered is to use the index
of each segment as a weak signal for their position on the page. Since the
DOM tree is traversed in-order, this index contains some information on the
(relative) position of a segment on the page. Preliminary analyses showed
that attributes are often clustered close to each other in specific segments,
usually at the start of the page. However, experiments leveraging this insight
did not provide any increase in performance, and we had to discontinue this
approach due to time constraints.

Aside from using positional information to influence the predictions and con-
fidence scores of the model, we could also improve the ranking functionality
of the model. In an approach similar to Fusion-in-Decoder [16], we could en-
code each of the segments separately, and select the best scoring candidates
to pass on to another reranker or decoder. Our initial attempts at incor-
porating a separate reranker for the top candidates did not yield promising
results, though, and we again had to abandon the approach because of time
constraints. However, we still see this as a viable direction for future work.

27

4.2 Implementation

In this section, we discuss the specifics of the implementation of our system.
The code used for our experiments can be found on GitHub1. Our experiment
dashboard will be published on Weights & Biases2.

4.2.1 Preprocessing

To parse the HTML documents and traverse the HTML tree, we used the
lxml library3. The pseudocode for the segmentation procedure can be found
in Algorithm 1.

For each node we traverse, we encode it in the representation introduced
in Section 4.1.2 using the Representation method. If the representation
was empty we return the empty set, as no segments could be found. If
the representation is larger than the sequence length limit C, we traverse
each of the node’s children and extract all segments from the corresponding
subtrees. Note that setting C to be too small might cause large leaf nodes
to be skipped, as their content is too large to represent in a single segment
but they cannot be split into further subtrees.

If the representation does fit in the desired sequence length, we take it as
a representation for a single segment. For each segment, we also need to
keep track of which attribute values it contains. To do so, we normalise all
attribute values and check whether these normalised values are contained
in the segment’s textual representation (i.e. the representation without any
HTML encodings). The Normalise method is the same normalisation as
the one used in our metrics (see Section 2.2.2), meaning it transforms the text
to lowercase, strips whitespace and punctuation and removes the articles ‘a’,
‘an’ and ‘the’. When searching for the attribute value in the segment’s text,
we want to ensure that the attribute values are only found if they are separate
words, and not when they are contained in other words. For instance, we
do not want the MPAA rating ‘R’ to be matched with every sequence that
contains a single letter ‘r’. Instead, the Contains method creates a regular
expression of the value by surrounding it with \b (word boundary) escape
characters. By pattern matching with this regular expression, we ensure the
attributes that we find always contain full tokens.

Every attribute can have zero or more values associated with it for a specific
document. For each attribute, we keep track of all of the values of that
attribute that are contained in the segment text. For every combination of
these values (i.e. every tuple in the Cartesian product of the value sets), we
produce a separate segment with the found HTML representation and the

1https://github.com/gijshendriksen/master-thesis/
2https://wandb.ai/gijshendriksen/information_extraction
3https://lxml.de

28

https://github.com/gijshendriksen/master-thesis/
https://wandb.ai/gijshendriksen/information_extraction
https://lxml.de

Algorithm 1 Our segmentation algorithm Segment(n, C, A)
Require: n, an lxml HTML node
Require: C ≥ 0, the maximum length of each segment
Require: A, the ground truth attribute values for the current document
Ensure: n is split into a set of segment representations S with each |S| ≤ C
R← Representation(n)
if |R| = 0 then

return ∅
else if |R| > C then

Segments← ∅
for child ∈ Children(n) do

Segments← Segments ∪ Segment(child, C,A)
end for
return Segments

else
Segment← AssociativeArray({′text′ ⇒ R})
Segments← {Segment}
Text← Normalise(TextRepresentation(n))

for (attr, values) ∈ A do
values← {val | val ∈ values,Contains(Text,Normalise(val))}
if Empty(values) then

Segments← {S [attr ⇒ null] | S ∈ Segments}
else

Segments← {S[attr ⇒ val] | S ∈ Segments, val ∈ values}
end if

end for
return Segments

end if

29

corresponding set of values. To illustrate, suppose we have a single segment
with representation R and attributes attr1, attr2 and attr3. If both attr1
and attr2 have two values present in this segment, and attr3 has none, we
obtain four different segments:

{′text′ ⇒ R, attr1 ⇒ A1, attr2 ⇒ B1, attr3 ⇒ null}
{′text′ ⇒ R, attr1 ⇒ A1, attr2 ⇒ B2, attr3 ⇒ null}
{′text′ ⇒ R, attr1 ⇒ A2, attr2 ⇒ B1, attr3 ⇒ null}
{′text′ ⇒ R, attr1 ⇒ A2, attr2 ⇒ B2, attr3 ⇒ null}

By not limiting ourselves to a single attribute value per segment, our models
should be able to better recognise all different types of values for a given
attribute. This should in turn improve the performance of the model, as it
will have a more general understanding of what the attribute represents.

We note that our method of annotating each segment like this can lead to
ambiguous annotations. For instance, if a book description contains mentions
of the book’s author, our annotation method will detect that the author is
included in the segment containing the description, even though there are
other parts of the page where the author is mentioned more recognisably.
Likewise, a page about an NBA player might also contain a list of all NBA
teams, and our annotation method will recognise the player’s team in that
list. As a result, our models will be trained to not only predict attribute
values in their most obvious place on the page, but also on all other mentions
throughout the page. This might lead them to focus more on the meaning
and format of the attribute, rather than the HTML structure indicating
that the attribute can be found there. However, we argue that the more
recognisable attribute mentions on a page should be picked up by the model
with a higher confidence, causing it to prefer the correct value over other
possibly correct values. Also, it is non-trivial to only annotate the segments
that specifically state the attribute value and ignore other segments that
randomly mention the attribute value. Our annotation method ensures we
always pick up all attribute values on a page, without making assumptions
about which annotations to keep and which to discard.

We set up our preprocessing pipeline in such a way that we only have to
extract the segments and generate the representations once. For each website
in each vertical, we generate a single CSV file containing all the segments
for that website. To allow experiments with different context sizes, we pre-
process the data for the context sizes C ∈ {128, 256, 512}. We implemented
multi-processing to speed up the pipeline by handling multiple web pages in
parallel.

30

4.2.2 Language models

Our models are implemented using PyTorch [23], and we used the Hugging
Face [35] library for pre-trained language models and tokenisers.

Encoder-only

For the encoder-only setup we use the BertForQuestionAnswering model
and the BertTokenizerFast tokeniser. This model implements a standard
BERT [9] model followed by two classification heads: one for the start po-
sition of the span and one for the end position. We initialise the model
and tokeniser from the SpanBERT/spanbert-base-cased4 repository, which
provides the pre-trained models of SpanBERT [17]. SpanBERT is a variant
of BERT that was pre-trained with an added objective of predicting miss-
ing spans of text from a sequence, a setting particularly well-suited for span
extraction tasks.

To extract an attribute from a segment, we encode the inputs using the
default method in the question-answering domain: we concatenate the at-
tribute name and the segment representation, separated by the separation
token. Given an <attribute> and a <segment representation>, we thus
use the following sequence:

[CLS] <attribute> [SEP] <segment representation> [EOS]

The BERT tokeniser automatically assigns the token type 0 to the tokens
that make up the attribute name and the token type 1 to the tokens in
the segment representation. This allows the model to properly distinguish
between the query and the context.

The target of the encoder-only model consists of positions for the start and
end of the span containing the attribute value. To prepare these for the train-
ing samples, we re-use the approach from the preprocessing procedure: we
search for the target value (normalised and turned into a regular expression)
in the segment representation. This gives us the exact index of the first and
last character of the attribute value. Then, we tokenise the input sequences,
and we use the char_to_token method of the BertTokenizerFast encod-
ings to translate these character indices to token indices. If the attribute
value is not present in the segment, we train the model to predict an empty
span by assigning the [CLS] token as both the start and end of the span
(i.e. posstart = posend = 0). The loss function used to train the model is the
average cross entropy loss over both the start and end positions.

The BertForQuestionAnswering model contains two output heads, one each
for the logits of the start and end positions. To turn this into a probability

4https://huggingface.co/SpanBERT/spanbert-base-cased

31

https://huggingface.co/SpanBERT/spanbert-base-cased

distribution over all possible spans, we construct a matrix Σ, where Σi,j

contains our approximation of P (posstart = i, posend = j). To fill Σ, we
apply the following procedure:

1. We mask all token positions that are not part of the context or the
[CLS] token, to ensure the predicted span is always either the null
response or part of the segment representation.

2. We compute the softmax over the start and end positions, to turn
both of them into a tensor of probabilities. We obtain vectors σstart
and σend, where σstart,i ≈ P (posstart = i) and σend,j ≈ P (posend = j).
For all masked positions p, we have σstart,p = σend,p ≈ 0.

3. We turn the two tensors into the N×N matrix Σ = σT
start×σend. This

initialises Σ such that Σi,j = σstart,i · σend,j , which is our estimate of
P (posstart = i)P (posend = j) and, in turn, P (posstart = i, posend = j).

4. We set the probabilities Σi,j to 0 for all i > j, as these cases indicate
a situation where the end of the span is predicted to be somewhere
before the start of the span.

5. We set the probabilities Σ0,i and Σi,0 to 0 for i > 0, to ensure the
[CLS] token can only be included as part of the span if both the start
and end positions point to it.

The remaining non-zero values represent the probabilities for all possible,
valid spans. To turn this into a prediction, we select the combination of
posstart and posend that has the highest probability. The corresponding
probability Σposstart,posend

is returned as the model’s confidence.

Sequence-to-sequence

For the sequence-to-sequence (encoder-decoder) setup we used the Hugging
Face T5ForConditionalGeneration model and T5TokenizerFast tokeniser.
The T5ForConditionalGeneration model implements the standard T5 [25]
model that is used for unified sequence-to-sequence learning. We initialise
the model and tokeniser from the t5-base checkpoint.

Again, we encode the inputs to the model similar to the approach taken for
T5 in the question-answering domain: we produce a single sequence where
we use prefixes attribute: and context: to signify the different parts of
the input. The same query we have seen above is now encoded as:

attribute: <attribute> context: <segment representation> </s>

Note that the T5 tokeniser uses </s> as the end of sequence token instead of
[EOS], and that the sequence does not contain any [CLS] or [SEP] tokens.

32

The target of the sequence-to-sequence model is the exact value of the at-
tribute. Since the sequence-to-sequence model generates the output auto-
regressively, we do not need specific preprocessing to prepare the targets for
training and we can simply use the tokenised targets to compute the loss
and train the model. The loss is then the token-level cross-entropy loss. In
the case that a segment does not contain the requested attribute, the model
will output the empty sequence - more specifically, the sequence consisting
of only the end of sequence token </s>.

To obtain the confidence for a prediction, we distinguish between two cases:

• The greedy decoding strategy averages over the probabilities of each
predicted token in the generated sequence. This ensures the confidence
of the model is invariant to the length of the prediction, and we only
look at the likelihood that each token in the sequence is correct.

• The beam search strategy takes the final beam score of the generated
sequence. This represents the confidence that the model has for this
specific sequence compared to the other most likely candidates. As
such, it is a good signal for the overall confidence of the model.

In our experiments, we implement a custom logits processor5 to constrain
the decoder output: we only allow it to generate token sequences that also
occur in the tokenised context (as also mentioned in Section 4.1.3). As a
result, the T5 model also extracts a span of the context, rather than purely
generating it.

We have experimented with the usage of beam search (with a beam size of 3)
in the output generation of the decoder. However, the gained performance
increase was only minimal, and the beam search significantly increased the
cost and duration of validation and evaluation steps. As a result, running
the T5 experiments with beam search enabled became largely infeasible, and
we refrained from using beam search in our final experiments.

5https://huggingface.co/docs/transformers/internal/generation_utils#
transformers.LogitsProcessor

33

https://huggingface.co/docs/transformers/internal/generation_utils#transformers.LogitsProcessor
https://huggingface.co/docs/transformers/internal/generation_utils#transformers.LogitsProcessor

Chapter 5

Experiments and evaluation

The research questions introduced in Section 3.4 cannot be answered using
theoretical or analytical approaches. Rather, to empirically measure the per-
formance of our models in different configurations, we define and perform a
variety of experiments. In this chapter, we describe each of these experiments
and discuss the results obtained for each of them.

5.1 Experimental setup

For our experiments, we created a random train/validation/test split of the
SWDE dataset with an 8:1:1 ratio. We then preprocessed the data with the
preprocessing procedure explained in Section 4.2.1.

For every experiment, we train a separate model for each of the verticals in
the dataset. Each model is trained for 50,000 gradient steps, where every
training step is executed with an effective batch size of 64. To ensure an equal
batch size throughout all our experiments, we apply gradient accumulation
in the cases where we cannot fit the full batch size in our GPU’s memory. In
other words, if the batches that fit on the GPU are smaller than 64 samples,
we accumulate the gradients of multiple of these batches (up until we’ve
processed 64 samples) before we update the network’s parameters. We use a
linear learning rate scheduler with a base learning rate of 5 · 10−5 and 1,000
warmup steps.

Every 1,000 training steps, we perform a validation step. Since performing
validation on the entire validation set each time would greatly slow down
training, we sample a random subset of 150 documents for every valida-
tion step. The validation metric we aim to optimise during training is the
instance-level WM score. We use model checkpointing to save the best-
performing model weights for each training run. After 20 validation steps

34

(i.e. 20,000 training steps) without an improvement in the WM score, we
apply early stopping and terminate the training run.

After training has been completed, we reload the model checkpoint with the
highest validation performance. We evaluate the model on the full validation
and test set, as well as an equally sized random subset of the training set.

Since every page only contains a handful of mentions of the correct attribute
value, most of the segments extracted from a page will not contain a mean-
ingful value. To account for this imbalance during training, we apply a
custom sampling strategy. We ensure half of the samples in a batch do con-
tain a value for the requested attribute, and the other half does not. We also
ensure that the attribute types for the segments that do contain a value are
balanced: every attribute type occurs roughly as many times in a batch as
all other attribute types.

Our experiments are conducted on NVIDIA GeForce RTX 3090 GPUs. A
single full training run takes anywhere from 4 hours up to a full day, depend-
ing on the model architecture used and context size.

Similar to other recent research [37, 8, 40], we have not performed hyper-
parameter tuning for values like the learning rate, batch size or optimiser.
We feel these hyperparameters can always be optimised as an additional im-
provement later on, so we decided to focus our research on experimentation
with different representations and setups instead. We argue that these are
likely to be more impactful than premature hyperparameter tweaking. Aside
from that, each training setup requires 8 training runs of at least 4 hours
each, meaning a hyperparameter sweep would become costly very quickly.

5.2 Experiment tracking

Because we run a large number of experiments, we invested into the machine
learning operations (or MLops [32]) aspects of this part of the research. To
schedule, monitor and archive each of our experiments, we make extensive
use of Weights & Biases (W&B) [4]. We store all our datasets (i.e. the
original dataset, the data splits and the preprocessed data) as Artifacts1 in
our W&B workspace. We log the training loss and all validation metrics to
our workspace as well. After the final evaluation of a model, we update the
run summary to contain the evaluation metrics for each split, and we store
the segment- and document-level predictions as W&B tables.

Each experiment is set up as a W&B Sweep2, which can be defined as a way
to perform automatic hyperparameter searches. To start a sweep, we define

1https://wandb.ai/site/artifacts
2https://wandb.ai/site/sweeps

35

https://wandb.ai/site/artifacts
https://wandb.ai/site/sweeps

the necessary configuration values in a YAML file and initialise the sweep.
Then, we can start ‘agents’ that will request runs from the server and execute
them. After completing a training run, the agent requests a new run, all the
way until the server indicates that all experiments have been completed.

The W&B sweeps are particularly useful to set up our experiments such that
they are executed for each vertical. By including the vertical (and possibly
other hyperparameters such as the architecture or context size) as a sweep
parameter, we can start any number of agents and they will continue running
until all experiments have been completed. This allows for optimal usage of
resources, as our GPUs will not be sitting idle as long in between training
runs.

Since all of our experiment tracking happens in a single W&B workspace, it
is very easy to keep an overview of:

• The experiments we run, and how they are configured;

• The performance of each model;

• The predictions of each model;

• The training and validation history of each model;

• The dataset types and versions used for each experiment.

Collecting all experiments and data in a single workspace and publishing
this workspace improves the reproducibility of our research, as an additional
benefit.

5.3 Context sizes

As mentioned in Section 4.1.1, the context size of the segments likely affects
the model’s ability to extract different types of attributes. To investigate
the differences in performance between context sizes and answer RQ II, we
ran an experiment where we tested out different context sizes with the same
model and representation. In these experiments, we used the encoder-only
BERT model and the HTML representation introduced in Section 4.1.2. We
varied the context sizes between 128, 256 and 512.

The results of this experiment can be found in Table 5.1. As can be seen, the
instance-level performance increases slightly for larger context sizes (though
at a cost of lowered precision), likely due to the model being able to use
more of the surrounding information in its prediction. Table A.2 additionally
displays the attribute-level performance of the models for each context size.
Interestingly, the context size heavily influences the model’s performance for
specific attributes. For instance, the model with the lowest context size of
128 tokens outperforms the larger contexts for movie genre and restaurant

36

Table 5.1: Performance of a BERT model for different context sizes. Best
performing models are highlighted in bold. The ‘ensemble’ model takes the
predictions of each of the different context sizes and produces the one with
the highest confidence.
Results marked with † are significantly (p < 0.01) higher than the model
using a context size of 128.

Global Instance
Context size P R F1 EM WM

128 0.96 0.94 0.95 0.97 0.97

256 0.94 0.94 0.94 0.97 0.97†

512 0.94 0.94 0.94 0.97† 0.98†

Ensemble 0.95 0.95† 0.95† 0.99† 0.99†

address. The model with the largest context size of 512 tokens, on the other
hand, clearly outperforms the others on movies’ MPAA rating and NBA
players’ height and weight. Inspecting the differences in more detail, we
notice that for some websites the HTML leaf nodes containing these fields
are too large to fit in a context of 128 or 256 tokens. This highlights an
issue with our segmentation approach, where important leaf nodes might be
skipped if the HTML encoding becomes larger than the maximum context
size.

The results for this experiment suggest that certain attributes benefit from
a model that is focused on a smaller, local context (for a higher precision),
while others need more of the surrounding context to allow for a good per-
formance. The model that uses a context size of 256 tokens finds the middle
ground between the two extremes and seems to provide a good balance be-
tween the performances of the smaller and larger context sizes.

Also, the quadratic memory requirement of the attention mechanism in our
transformer-based models implies that doubling the context size also quadru-
ples the amount of required memory. Since our GPUs can only fit a limited
amount of data at a time, this forces us to reduce the batch size by a factor of
four, which significantly slows down training. Because the performance gain
for the largest context size of 512 is negligible, choosing for a context size of
256 ensures we can keep our training time reasonable. Hence, all subsequent
experiments are performed using a context size of 256 tokens.

37

<div class="main container">
<h1 id="title__pageTitle">This is a heading</h1>
<p id="description">
This is the description.
</p>

</div>

Listing 5.1: The example HTML fragment from Listing 4.1, revisited.

5.4 Sequence representation

In Section 4.1.2, we discussed the different features of our segment repre-
sentations. To address RQ III and test the usefulness of different types
of representation, we train our models on different versions of the SWDE
dataset, each preprocessed using a different representation. We distinguish
between the following representations:

Text baseline To see the benefits of incorporating HTML information, we
test a baseline system that contains only the textual contents in a
segment. The HTML fragment in Listing 5.1 will be encoded as:

This is a heading This is the description.

HTML baseline This representation implements the ‘simple’ HTML en-
coding as discussed in Section 4.1.2 and implemented in [37]. It sur-
rounds an HTML node’s contents with an opening and closing tag and
inserts the node’s id and class attributes right after the opening tag.
The resulting representation of Listing 5.1 is the following:

<div> class=main class=container <h1> id=title__pageTitle
This is a heading </h1> <p> id=description This is the
description. </p> </div>

↪→

↪→

Expanded HTML This representation is the main representation intro-
duced in Section 4.1.2, where we encode the a most recent ancestors
and their attributes. However, we experiment with various settings for
this representation, to see the added benefit of each part of the repre-
sentation. Specifically, we perform experiments to answer the following
questions:

• Should we include the id and/or class of a node in the encoding
of a node, alongside its tag?

• Should we encode the id and/or class for all types of nodes, or
only for a subset of very general HTML tags that do not carry
any semantic meaning? The intuition here is that tags like h1
or table reveal more information about the contents of the node
than generic tags such as div or span. By limiting the number of

38

tags that get a full encoding, we might fit a larger context window
into a single segment, which, in turn, might improve the model’s
performance.

• Should we split attribute values into separate sub-components?
For instance, the id of the h1 tag in Listing 5.1 is a longer string
that actually consists of three main parts: title, page and title.
Tokenisation gives no guarantees about how these composed at-
tribute values will be tokenised, so splitting them manually might
improve the model’s ability to recognise the different parts of the
attribute value.

The results of these experiments are summarised in Table 5.2. Interestingly,
the text baseline itself already performs well, which shows that the text
surrounding an attribute value is quite indicative of its location in the doc-
ument. The simple HTML baseline degrades performance, while our HTML
encoding seems to help the models to perform better. Specifically, the in-
clusion of the id attribute increases performance, especially if we split its
value into multiple sub-components. The inclusion of the class attribute
improves the precision of our models, but seems to hurt the recall. After
inspecting this drop in recall in more detail, we conclude that the inclusion
of class attributes tends to cause the encoded sequence to exceed the max-
imum allowed length of 256 tokens. As a result, certain subtrees containing
the target attribute value could no longer be encoded in the provided token
limit, causing the model to miss the corresponding values altogether. Finally,
we note that separating HTML attribute values into their sub-components
marginally increases performance, while only encoding these values for a
subset of tags hurts performance to a point below even the text baseline.

The decreased performance after including class attributes again highlights
the problem with our approach that the length of the encoded sequence is
bounded by the full attention mechanism in the transformer architecture. If
we incorporate more information into the representation of a single segment,
it becomes more likely that we can no longer fit certain subtrees into these
sequences. For the model to perform optimally, we need to strike a balance
between incorporating larger contexts and more encoded HTML information,
while still keeping the sequence lengths within the desired limits.

39

Table 5.2: Performance of our information extraction models for the Movie
domain, using different representations. Best results are marked in bold.
For our encoding, the ‘ID’ column specifies whether the id attribute was en-
coded, the ‘Class’ column specifies whether the class attribute was encoded,
the ‘Split’ column specifies whether attribute values were separated into their
sub-components, and the ‘Subset’ column specifies whether we limit the id
and class encodings to div, span, a and p tags. For all configurations of
our encoding, a = 3 ancestors are encoded.
Results marked with † are significantly (p < 0.01) higher than the model
using our custom HTML encoding without including class or ID attributes.
Results marked with ‡ are significantly (p < 0.01) higher than the text base-
line.

ID C
la

ss

Sp
lit

Su
bs

et Global Instance
P R F1 EM WM

Text baseline 0.95 0.94 0.94 0.94 0.95†

HTML baseline 0.94 0.93 0.93 0.93 0.94

Our
HTML
encoding

- - - - 0.95 0.94 0.94 0.94 0.95

- D - - 0.96†‡ 0.93 0.95 0.93 0.94

- D D - 0.96†‡ 0.93 0.94 0.93 0.93D - - - 0.96†‡ 0.95†‡ 0.96†‡ 0.95†‡ 0.96†D D - - 0.96†‡ 0.93 0.94 0.93 0.93D D D - 0.96†‡ 0.93 0.94 0.93 0.93D D D D 0.94 0.92 0.93 0.92 0.93D D - D 0.94 0.92 0.93 0.92 0.93D - D - 0.96†‡ 0.96†‡ 0.96†‡ 0.95†‡ 0.96†‡

40

5.5 Comparison with baselines

From the results in Sections 5.3 and 5.4, we conclude that the best config-
uration of our models is the setup in which we use a context size of 256
tokens and encode the HTML alongside the id value of each node split into
sub-components. To answer RQ I, we need to evaluate how well our model
with this setup performs compared to state-of-the-art information extrac-
tions models. Thus, we compare our model with the following recently pro-
posed information extraction models, each of which has also been evaluated
on the SWDE dataset.

WebFormer [34] A transformer architecture for ClosedIE that includes
HTML nodes in the transformer blocks using graph attention. For
text tokens, the model limits the memory requirement of the attention
mechanism by employing relative attention, allowing for the efficient
processing of larger documents. The model also includes attention
patterns between HTML nodes and text nodes, learning a general un-
derstanding of the document. The model predicts the start and end of
a span, similar to our encoder-only models.

WebKE [37] An OpenIE method that uses a pre-trained BERT model en-
riched with (1) extended positional embeddings, (2) 2D position infor-
mation of HTML nodes in the document, and (3) inclusion of HTML
start and end tags in the sequence. The model first uses the pre-trained
encoder to extract areas of interest small enough to fully fit into a sin-
gle sequence, after which it sequentially predicts OpenIE relations and
their corresponding objects. Though the method is intended to be
used for OpenIE, the paper also reports very high performance mea-
surements for ClosedIE on the regular SWDE dataset.

SEP [6] A method that defines a set of context-free grammars to describe
webpages and their contents. The paper shows that extraction is possi-
ble by using these grammars as wrappers and defines the task of finding
a grammar that best describes a set of web pages. The grammars are
generated by modelling the task as a search problem and applying the
A∗ search algorithm.

The results of our comparison can be found in Table 5.3. For WebFormer and
SEP, we report the performances as reported in their respective papers. We
were unable to reproduce WebFormer’s results in spite of extensive efforts,
including consultation of the original authors. We encountered SEP at a
later time during this project and were unable to find a published method
for reproducing their results. For WebKE, we could eventually reproduce
their results, so we report both the performance from their paper and the
results obtained by our own reproduction. This reproduction of WebKE is
explained in detail in Section 5.6.

41

Table 5.3: Performance of our extraction models, compared to several strong
baselines. Best results are marked in bold. For WebFormer and SEP, the
reported numbers are taken from the respective papers. For WebKE, we
report both the numbers from their paper and our reproduction of their
numbers.

Global Instance
Model P R F1 EM WM

WebFormer - - - 0.87 0.92

SEP 0.94 0.93 0.94 - -
WebKE (theirs) - - 0.97 - -
WebKE (ours) 0.79 0.65 0.67 0.65 0.67

Ours (BERT) 0.95 0.95 0.95 0.98 0.98

Ours (T5) 0.42 0.43 0.43 0.43 0.46

Note that WebFormer and WebKE apply a fully random train/validation/test
split with an 8:1:1 ratio, similar to our approach. However, SEP generates
a wrapper from a sample of only 20 pages per website, meaning it needs
significantly less training data.

Immediately, we notice that the BERT models obtain high performance,
while the T5 models stay behind. We are unsure why the sequence-to-
sequence approach does not seem to work well, since it has been proven
effective in the question-answering domain [25]. We hypothesise that the
pre-training of T5 has taught it to produce sequences of natural language,
while many of the attributes in the dataset do not follow the same patterns
as natural language. As a result, the decoder is not quite capable of gener-
ating the correct sequences. For the remainder of this thesis, we therefore
focus on the encoder-only BERT models.

We can see that our models can outperform the strong baselines of Web-
Former and SEP. Our segmentation approach combined with full attention
outperforms WebFormer’s full document input with relative attention mech-
anisms - even with the added attention mechanisms representing the HTML
structure. In fact, the text-only baseline (Table 5.2) also outperforms the
results from WebFormer, indicating that the difference in performance lies
not only in the method of incorporating HTML structure.

Comparison with SEP is less obvious, as their approach is substantially dif-
ferent from ours, and their models require significantly less training data.
Nevertheless, our models seem to outperform the SEP baseline, albeit by a
smaller margin than they outperform WebFormer.

42

WebKE as published does seem to outperform our models, but we were
unable to reproduce their results ourselves. In the end, we were unable
to find a conclusive explanation to these differences in performance. The
comparison with WebKE is discussed in more detail in the next section.

5.6 WebKE reproduction

Since the authors of WebKE made their code publicly available, we were able
to run their models and compare their results to ours in more detail. To do
so, we downloaded their code from GitHub3 and followed their instructions
to download the preprocessed dataset and model checkpoints.

5.6.1 Data split

For a fair comparison, we applied the exact same data split that was used
in their preprocessed dataset. The supplied preprocessed data consists of
24,879 files in the training set and 2,763 files in the test set. By taking
the ground truth labels contained in the preprocessed data and comparing
those with the labels from the Expanded SWDE dataset, we were able to
uniquely map the vast majority of these files back to their corresponding
webpages. For 22 pages in the training set (≈ 0.09%) and 5 pages in the test
set (≈ 0.18%), we were unable to perform the reverse mapping to a unique
page, as the provided labels overlapped with multiple pages. Since these
ambiguous cases only made up a small portion of the dataset, we opted to
discard these from our split altogether.

Similar to the approach taken for WebKE, we split the training set further
into a training and validation set, so that we end up with the desired 8:1:1
split.

5.6.2 OpenIE to ClosedIE mapping

WebKE is an OpenIE system and, as such, was trained and evaluated on the
Expanded SWDE dataset, which contains only the Movie, NBA player and
University domains. As a result, WebKE does not output a single predic-
tion for every type of attribute in the schema, but rather it outputs a ⟨r, o⟩
tuple for every relation and object on the page. To compare this system to
our ClosedIE method, we need to map the OpenIE relations to the ClosedIE
attributes we have been using, and vice versa. For each website in each verti-
cal, we checked all the relations present in the Expanded SWDE dataset and
mapped them back to their ClosedIE counterparts. The resulting mappings
can be found in Appendix A.4.

3https://github.com/redreamality/webke

43

https://github.com/redreamality/webke

Table 5.4: Comparison between our model and WebKE on the regular SWDE
dataset. Best results per vertical are marked in bold.
Results where our model performs significantly (p < 0.01) better than
WebKE are marked with †. Results where WebKE performs significantly
(p < 0.01) better than our model are marked with ‡.

Global Instance
Vertical Model P R F1 EM WM

movie
WebKE 0.88 0.60 0.69 0.58 0.61

Ours 0.93† 0.88† 0.90† 0.87† 0.88†

nbaplayer
WebKE 0.92‡ 0.61‡ 0.74‡ 0.61 0.65

Ours 0.56 0.56 0.56 0.59 0.82†

university
WebKE 0.94 0.75 0.81 0.76 0.76

Ours 0.96† 0.96† 0.96† 0.96† 0.98†

For each of our experiments, we only evaluate WebKE and our models on
the subset of attributes that exist in both the OpenIE and ClosedIE domains
(per website).

5.6.3 Results

Since WebKE and our models have been trained on a different set of labels (of
the Expanded SWDE and normal SWDE dataset, respectively), we compare
the models on both datasets.

Comparison on SWDE

For the comparison on the regular SWDE dataset, we can use our own
model’s output as-is. For WebKE, we map the OpenIE labels in their pre-
dictions back to their ClosedIE counterparts and ignore all labels that do not
exist in the OpenIE domain. To obtain a single prediction for each attribute
(as opposed to the multiple labels that can be produced in OpenIE), we
assume the most desirable situation for WebKE and choose the value that is
most similar to one of the ground truth values.

With this setup, we can simply compute the global and instance-level metrics
introduced in Section 2.2.2. As mentioned previously, we do not include
attributes that do not exist in the OpenIE domain for a specific website. The
comparison between our model and WebKE on the regular SWDE dataset
can be found in Table 5.4.

44

As can be seen, our model significantly outperforms WebKE on the Movie
and University domains. For the NBA player domain, our model obtains
a higher instance-level WM score, though it performs poorly for the global
metrics. While these results seem to imply that our setup is more effective
than WebKE for two domains and less effective in the other, it is important
to keep in mind that WebKE was trained as an OpenIE system on the
Expanded SWDE dataset. We cannot draw a firm conclusion whether the
differences in performance can be attributed to the different architectures,
or whether they simply stem from the fact that both systems were trained
with a different purpose and dataset.

Comparison on Expanded SWDE

To carry out the same comparison on the Expanded SWDE dataset, we
map the OpenIE labels that occur in the WebKE predictions, as well as
the Expanded SWDE ground truth labels, to their ClosedIE variants, again
ignoring any relations that do not exist in the OpenIE domain. We convert
our predictions to the correct format by taking each available attribute per
document and, if we predict a non-empty value for that attribute, converting
it to a ⟨r, o⟩ tuple. As we did earlier, we skip attributes for websites that do
not have an OpenIE counterpart.

Given these sets of tuples per document, we normalise the predicted and
ground truth attribute values and compute the precision, recall and F1 over
all tuples, macro-averaged over all documents. The normalisation step was
not performed in the original evaluation of WebKE. However, due to the
differences in training data, our model outputs values for an attribute in a
different format than WebKE, such that a fully exact match is rare and hard
to achieve. We discuss these discrepancies in more detail in Section 5.6.4.

The results of our comparison on the Expanded SWDE dataset can be found
in Table 5.5. In this case, our model outperforms WebKE for the Movie
domain, while WebKE performs better in the NBA player and University
domains. Note that, in contrast to the evaluation on the regular SWDE
dataset, WebKE has an inherent advantage in this evaluation - both due to
its ability to output multiple values per attribute and because it was trained
on the OpenIE task’s data.

5.6.4 Discussion

As mentioned for both evaluation settings, the one-to-one comparison be-
tween our model and WebKE is not straightforward. The fact that both
models were trained on different datasets with a different set of labels im-
plies it is unfair to evaluate them on the ClosedIE setting only, and we have
to include the Expanded SWDE dataset for our evaluation.

45

Table 5.5: Comparison between our model and WebKE on the Expanded
SWDE dataset. Best results per vertical are marked in bold.
Results where our model performs significantly (p < 0.01) better than
WebKE are marked with †. Results where WebKE performs significantly
(p < 0.01) better than our model are marked with ‡.

Vertical Model P R F1

movie
WebKE 0.80‡ 0.48 0.60

Ours 0.79 0.63† 0.70†

nbaplayer
WebKE 0.69‡ 0.66‡ 0.68‡

Ours 0.66 0.59 0.62

university
WebKE 0.90‡ 0.95 0.92‡

Ours 0.68 0.94 0.79

We compared the labels of both the regular and Expanded SWDE datasets
and noticed that both datasets suffer from representation problems. In the
regular SWDE dataset, values can contain HTML entities (such as)
or unnecessary prefixes (e.g. ‘Weight:’), while the labels in the Expanded
SWDE dataset often contain meaningless and superfluous whitespace.

For the two versions of the SWDE dataset specifically, it turns out that
values for the same attribute and the same website can differ, unexpectedly.
For instance, the regular SWDE dataset can include a prefix ‘Height:’ in the
attribute value, while the Expanded SWDE dataset uses it as the predicate.
As a result, our model is trained to include the prefix in the output, while
WebKE is not. Consequently, two models trained on the same websites with
similar goals are producing different outputs, and depending on the dataset
used, either could be correct.

We argue that the inclusion of these HTML artefacts in the dataset distracts
from the goal of the models: extracting values for specific attributes from
a document. Normalising the attribute values in the metrics (e.g. remov-
ing whitespace and punctuation) may alleviate this problem for evaluation
purposes to some degree, but does not take away the fact that models are
trained to also predict these HTML artefacts. Possible solutions could be to
clean the labels from the existing datasets or to create new datasets entirely.
With the current abundance of structured data annotation on the Web, it
should be feasible to construct new, standardised datasets for structured
data extraction with minimal effort (as was also done in [34]).

Nevertheless, if we compare our own system to WebKE analytically, we en-
counter several major differences. WebKE’s preprocessing requires visual

46

rendering of each document in a web browser to compute positional infor-
mation of all HTML elements. As discussed in Section 4.1.4, this approach
is costly and not robust to changes in the configuration of the chosen web
browser. Also, the extended positional information and vocabulary used by
WebKE require access to a non-standard BERT model and encoder, while
our own approach simply fine-tunes a standard pre-trained BERT model.
Finally, WebKE is pre-trained on the webpages in the SWDE dataset, which
might give it a hidden advantage in evaluation on both the regular and Ex-
panded SWDE datasets.

Although the empirical comparison between our model and WebKE is incon-
clusive due to differences between the regular and Expanded SWDE datasets,
our model seems to be easier to set up and use - both because preprocessing is
less costly and because it only requires fine-tuning of a standard pre-trained
language model. This simplicity makes it more attractive to be used in a
practical setting.

5.7 Zero-shot setting

In the ideal situation, we would train our models on a set of web pages with
structured data annotations and use them on new, unseen websites. To test
the generalisation capabilities of our models (RQ IV), we therefore continue
to perform experiments in a zero-shot setting. For each vertical, we split the
websites into 5 folds of 2 websites each. We perform a cross-fold validation
where we use one fold for testing, one for validation, and the remaining 3
folds (6 websites) are used for training. We then average our performance
over 4 different setups. To evaluate our zero-shot performance, we compare
our model against the following baselines:

LANTERN [40] A model that learns representations for each HTML node
by incorporating textual embeddings, discrete page features and inter-
node relationships. Extraction is defined as a node tagging task, where
classification is performed for each node to determine the attribute it
contains (if any).

DOM-LM [8] An encoder-only transformer model that inserts several fea-
tures of the HTML structure into the encoder model by adding them
to the token and positional embeddings. To split the document into
subtrees that are small enough to be handled by the transformer, a
sliding window is passed over the tree structure, adding and pruning
certain nodes to stay within a certain token limit. Extraction is again
defined as a node tagging task, where separator tokens specify the start
of each node’s content and classification is performed for each of these
separator tokens.

47

Table 5.6: Performance of our extraction models in the zero-shot setting,
compared to two strong baselines. Best performances are marked in bold.
For the baseline models, we report the numbers from their respective papers.

Global Instance
P R F1 EM WM

LANTERN - - 0.94 - -
DOM-LM - - 0.78 - 0.96
Ours 0.66 0.60 0.62 0.60 0.69

Unfortunately, both LANTERN and DOM-LM only report performance for
few-shot and zero-shot settings, which is why we could not include them
in the regular evaluation setting. WebFormer, SEP and WebKE, on the
other hand, do not report performance for the zero-shot setting, meaning
we cannot include them in our comparison of zero-shot performance. We
were also unable to produce zero-shot results for WebKE ourselves, as their
pre-trained models were already trained on all websites in the dataset.

The results of the zero-shot experiment are summarised in Table 5.6. For
both baselines, we report the results that were reported in their respective
papers. For LANTERN, we use the performance of the models that were
trained on 5 seed websites and evaluated on the remaining 5 websites. For
DOM-LM, we report the performance of the models that were trained on
10% of the data of 5 seed websites, validated on a different website and
evaluated on the remaining 4 websites. Our models were trained on data
from 6 websites, and 2 websites were used for validation and testing each.

From these results, we can see that our models do not generalise as well
as both baselines. We hypothesise that, during training, our models have
learned the specific structure of documents in the training set, rather than
more general interpretations of the HTML structure and content. This ex-
plains why our models do perform well in the regular case but fall behind
in the zero-shot setting. Part of this could also be explained by the limited
context size and HTML information we can incorporate in our limited se-
quence length, preventing our models from learning general, long-distance
dependencies in the DOM tree.

In Appendix A.3, we provide the zero-shot performance of our models per
attribute. We see that performance is high for attributes like website and
ISBN. This is likely because these values have very specific formats, and as
such are more easily recognisable from their value alone. More generic values
like movie titles suffer most in the zero-shot setting, again highlighting our
model’s difficulty with understanding more general structural elements.

48

Figure 5.1: Instance-level WM performance for each website per vertical and
attribute.

5.8 Failure analysis

In this section, we perform a more in-depth failure analysis of our models.
Specifically, the goal is to figure out in what cases our models fail, and why.

5.8.1 Performance per website

While the metrics introduced in Section 2.2.2 provide us with a useful method
of comparing different approaches, they inherently summarise the perfor-
mance of the models over all verticals, attributes and websites. They give
us the information that our method fails in roughly 2-5% of the cases, yet
they do not indicate whether these failures are evenly distributed over all
verticals and websites, or whether they occur mostly in specific cases.

To gain more insight into this distribution, we plot the performance of our
models for each website, per vertical and attribute in Figure 5.1. We can
clearly see that the failures are not evenly distributed: failures are mostly
found in specific websites. Similarly, the attribute-level performance (Table
A.1) shows optimal performance for many attributes but poor performance
for some others (such as NBA player height or weight). This indicates that
failures do not simply occur randomly. Rather, there are structural issues
with certain websites and attributes that our models have trouble dealing
with. In the next section, we investigate these issues in more depth.

49

5.8.2 Failure types

To gain a better understanding of the types of encountered failures, we in-
spect a random sample of failures and categorise them into different types.
For each attribute per vertical, we sample 20 failures, where we denote a
prediction as a failure if the exact match (instance-level EM) metric is equal
to 0. The complete overview of sampled failures can be found in Table A.7.

We distinguish the following failure types:

Incorrect value The model has produced a sensible value, but it is incor-
rect for the requested attribute. An example of this type of failure is
the case where the model extracts an author name from the webpage,
but they are not the author of the book that is the subject entity of
the page. Likewise, the model can extract a correct cuisine from a
document, but it does not fit the restaurant that the page is about.

Incomplete value The model was able to find the correct value on the
page, but it only extracted part of it.

Missed attribute The model could not find a value for the requested at-
tribute, even though it is mentioned on the page.

Nonexistent attribute The model has produced a value for the requested
attribute, but the page does not contain a ground truth value for that
attribute.

Nonsense The model has produced a value for the attribute, but it does
not represent a sensible or possibly correct value for it.

HTML encodings The value extracted by the model contains artefacts of
our HTML encoding, such as p1t li p0t a.

Normalisation error The value extracted by our model is actually correct,
but the normalisation step of the EM metric subtly fails, causing the
EM metric to report it as an error instead. This happens, for instance,
when different types of quotation marks are used (e.g. ’ instead of ')
that are not discarded in the punctuation removal. Or, the ground
truth value could contain unicode characters that are not present in
the predicted values, but which are also not removed when normalising
the values.

Multiple values The span extracted by our models actually contains mul-
tiple values, all of which are correct for the requested attribute.

Spelling mismatch The ground-truth and predicted values actually con-
tain the same value, but they are spelled in a different way.

50

Figure 5.2: Distribution of failure types.

The distribution of each of the failure types is visualised in Figure 5.2. As can
be seen, almost a third of the failures can be attributed to the model selecting
values that appear sensible the requested attribute, but are incorrect for the
current document. These are the cases in which the model appears to be
focusing on the meaning of the value, rather than the surrounding HTML
context. It could be that the correct value is found elsewhere on the page,
but is lost in the reranking step. We analyse this situation in more detail in
Section 5.8.3.

Another large portion (∼ 23%) of the failures are caused by the model missing
attribute values altogether. A large part of these missing attribute failures
occur for specific websites and attributes. For instance, the movies’ MPAA
rating is often missed on IMDb, and the NBA players’ height and weight
are usually missed on the Fox Sports website. After inspecting these specific
failures more closely, we conclude that these values are missed because the
surrounding context is too large to be represented in a single HTML segment.
By solving this inherent shortcoming of our approach (e.g. by moving to
a different segmentation approach or adjusting the way in which HTML
context is incorporated in the input), it should be possible to resolve these
failures.

The normalisation errors, which account for roughly 17% of the failure cases,
actually point to an error in the normalisation process part of computing the
metrics. While reported as failures by our metrics (and not unlikely, also

51

reported as such by other papers using the SWDE dataset), they should in
fact not be counted as erroneous predictions.

In the cases where our model produces incomplete attribute values (∼ 12%),
it is actually able to accurately find the location of the correct attribute
value. However, the span-based extraction approach allows for cut-offs at
incorrect positions. This can be resolved by switching from a span-based
extraction method to a node tagging approach (similar to [40, 8]).

After inspecting the failures in which parts of our HTML encodings are
present, we note that both the start and the end of the extracted span con-
tain correct values for the requested attributes. Hence, these cases actually
fall in the same category as the ‘multiple value’ instances, adding up to
roughly 8% of the total failures. These errors can be explained by the way
in which we predict the start and end positions of the spans. Because the
start and end logits are computed separately, the model assumes their prob-
abilities are independent. In practice, though, they are highly dependent.
If an attribute has several correct possible values in a sequence, the start
and end positions should both refer to the same attribute value, instead of
independently choosing different values and resulting in a prediction span-
ning multiple values. To alleviate this problem, we could condition the end
position probabilities on the start position, ensuring they are not computed
independently. Alternatively, opting for a node tagging approach instead of
span selection would remove this problem altogether.

The remaining 8% of failures seem to be semi-random quirks of our model.
The nonexistent values appear to occur when a value is found that seems
suitable for the requested attribute, rather than the model focusing on spe-
cific areas of the HTML document and realising the requested attribute does
not appear on the page. Most of the nonsensical values are predictions of
the location ‘al’, which might be caused by the model learning through a set
of examples that that specific combination of letters is short for the state
of Alabama. Likewise, the prediction of the numerical value 543 for a ‘loca-
tion’ field could be explained as the model trying to predict a postal code,
even though it is incorrect in this instance. Again, these issues highlight our
model’s tendency to focus on the semantic value of an attribute, rather than
using specific cues in the HTML structure to find the correct value.

5.8.3 Reranking failures

As explained in Section 4.1.4, our model tries to extract a value from each
segment of an HTML document and aggregates the resulting values to obtain
a final prediction. As a result, it is possible that a correct value is extracted
from a segment, but another (incorrect) value with a higher confidence is
produced as output instead. This could explain some of the failures we

52

Figure 5.3: Rank distribution of the segments with a correct predicted value.

saw in the previous section. To gain some more insight into the number of
times this happens, we compute the rank of the correct prediction for each
document and attribute. In other words, we sort the segments and their
predictions for each document by the model’s confidence score, and then
compute the 1-based index of the segment containing the best prediction
(i.e. the one with the highest instance-level WM score).

The distribution of these ranks is shown in Figure 5.3. In an ideal ranking,
where the confidence scores perfectly order the segments in terms of accuracy,
all ranks should be equal to 1. After all, we only output the correct value
if the corresponding segment has the highest confidence. However, we can
clearly see that there are many cases where the rank is higher than 1, each of
which will result in the model producing an incorrect prediction. Table A.8
additionally displays the attribute-level mean reciprocal rank (MRR) of the
correct segment predictions, showing that reranking only fails for a handful
of specific attributes such as book authors, movie directors or genres, and
restaurant addresses. From Table A.7, we see that these attributes are the
ones for which our models often produce sensible values that are incorrect
for the entity at hand (that we denote with failure type ‘incorrect value’).
Since these values seem correct for the given attribute, it makes sense that
the model assigns them a high confidence score. Ideally, though, the model
should be able to use cues of the surrounding HTML structure to see that the
value seems correct but is in a weird position on the page, in turn lowering
its confidence for that specific value.

53

To improve the performance of the model in the cases where the confidence
scores are not sufficient for a proper ranking, a more sophisticated reranker
could also prove helpful (see Section 7.3).

5.9 Discussion

Through our experiments, we have encountered the following answers to each
of our research questions.

RQ I. Our models perform well empirically on the regular extraction
task. We have seen that the segmentation approach works well for
extraction purposes - better than using the full-document input
with a relative attention mechanism like WebFormer does.

a) With our setup, the encoder-only approach outperforms the
sequence-to-sequence methods on the information extraction
task by a large margin.

RQ II. The segment size must strike a balance between being long enough
to allow for larger HTML subtrees and more HTML information
to be encoded, but short enough to keep the model’s memory
footprint reasonable. Depending on the attribute and the web
pages at hand, either a smaller or a larger context size could prove
more effective.

RQ III. The inclusion of HTML information into the sequence improves
our models beyond using textual content only. Our custom en-
coding outperforms the simple HTML baseline of including open-
ing and closing HTML tags in-order, and we have shown empir-
ically that the inclusion of id and class attributes (and split-
ting them into sub-components) increases the performance of the
model. However, including too much of the HTML information
can cause the representation of certain nodes to exceed the max-
imum allowed context size, and the models could miss attribute
values in these nodes as a result.

RQ IV. At the moment, our models do not generalise well enough to new,
unseen websites to be used in practice. Zero-shot performance is
better for certain attributes with a specific format, but in gen-
eral our models do not acquire enough understanding of the page
structure that they can leverage when performing extraction on
new websites.

54

The major shortcoming of our approach - which came up in our experiments
multiple times - is that the limited sequence length poses a limitation on the
amount of information that can be encoded in our sequences. As a result, we
have to carefully decide which information to include in our representation
lest we pass this length limit and miss out on certain attributes. Our cur-
rent setup already suffers from these problems, missing certain attributes for
certain websites because the relevant context cannot be encoded in a single
segment. The limited context span (and thus, limited amount of HTML in-
formation that can be encoded) have as a result that our models have trouble
generalising to new, unseen websites.

To counteract these issues, we might need to rethink how HTML information
is represented in our models. An idea to significantly reduce the length of
the encoded sequences is to inject the relevant HTML information into the
embeddings passed to the encoder rather than inserting them in the sequence.
This approach is also taken in [8], but they use a set of hand-crafted features
limited to superficial information on the HTML structure. Ideally, we would
also include the values of the id and class attributes of each node. In
initial exploratory experiments, we used our HTML encodings with SBERT
[27] to transform these encodings into embeddings. By adding these to the
token and position embeddings, we were able to obtain promising results.
However, due to time constraints, we were unable to explore this alternative
representation in more detail, and are forced to leave it up for future work.

55

Chapter 6

Conclusions

From our results in Chapter 5, it is clear that our models perform on par
with state-of-the-art models in recent literature - sometimes even surpassing
them. However, the results in the zero-shot domain show that we still need
improvements in that area before these models can be used in a practical
setting. The ideal setup of training the models on websites containing struc-
tured microformat annotations (as described in Section 3.2) requires high
performance on new, unseen websites, and our models do not generalise well
enough to be useful for this purpose yet. Other approaches [8, 40] have shown
promising results in that regard, and can be combined with our method.

Nevertheless, we have shown our approach of segmenting a document into its
subtrees and processing each segment individually generally performs better
than handling the full document at a time. Even in the case where we
do not incorporate HTML structure, we can outperform several recent and
much more complicated baselines. Our findings also show empirically that
the inclusion of HTML structure in the input sequence is beneficial to the
extraction capabilities of an extraction model, and increases performance
beyond the text-only approach.

Our experiments with the SWDE (and Expanded SWDE) dataset have re-
vealed that the ground truth values in both datasets are of a very specific
format and include artefacts of the input HTML. Examples of these artefacts
include encoded HTML entities, superfluous whitespace, and incomplete at-
tribute values. As a result, models trained and evaluated on these datasets
are implicitly also evaluated on their ability to copy these artefacts, which
is not a desirable property for models in practical applications. It makes a
comparison between results on the two different datasets difficult, even if the
underlying data remains the same. We conclude that future research might
benefit from evaluating on alternate datasets - alongside the SWDE dataset
- similar to [10, 34, 8, 6].

56

Chapter 7

Future work

Although our models perform well empirically, throughout this thesis we have
mentioned several limitations of our approach. In this chapter, we discuss
these limitations in more detail and suggest possible ways to solve them in
future research.

7.1 Evaluation on alternative datasets

All of our experiments were performed and reported on the SWDE dataset.
In the literature, this dataset has been established as the default for informa-
tion extraction tasks, which makes it highly suitable for comparison against
other state-of-the-art approaches. However, the dataset was created over a
decade ago, and the Web has changed significantly in recent years - both in
terms of content and in terms of page structure. This decreases the mean-
ingfulness of evaluating on the SWDE dataset, as its contents and labels
might no longer be representative of the current state of websites containing
structured information. Besides that, we have seen that the labels for the
SWDE dataset contain several artefacts from the HTML structure that af-
fect the evaluation, through aspects that should not matter in an information
extraction system.

To account for these disadvantages of the SWDE dataset, it would be insight-
ful to also evaluate our models and other baselines on alternative (newer)
datasets. That way, we would test the model’s performance on a more recent
sample of the Web, which gives more insight into the model’s validity, i.e.
the viability of using the model in a practical application.

A handful of suitable datasets have been developed recently, such as the
Klarna Product Page Dataset [15] and the PLAtE dataset [28]. An attrac-
tive alternative is to use Schema.org microformat annotations (e.g. from the

57

WebDataCommons project [22]) to generate a dataset containing a wide va-
riety of verticals and entity types. This also fits in nicely with the setup
proposed in Section 3.2, where we discuss the possibility of using these an-
notations as training data for real-world applications. An additional benefit
is that the data from WebDataCommons is updated yearly, making it easier
to generate datasets that accurately reflect a recent sample of the Web.

7.2 Multi-value attributes and multi-entity pages

Our current ClosedIE setup only allows the model to extract a single value
per document, for any given attribute. However, this is not always a fair
assumption, as many attributes can realistically have multiple values. For
instance, a movie can have multiple directors or actors, and a system that
can only extract a single value might provide an end user with incomplete in-
formation. In other situations, it is even more important to retrieve multiple
values per attribute. For example, given a recipe, both the list of ingredients
and the list of tasks need to be extracted completely, or the recipe will no
longer make sense.

To achieve this, our architecture needs to be adjusted to output multiple
values per attribute. This could be done by predicting multiple spans per
segment and adjusting the aggregation method to output multiple values as
well. To extract multiple spans from a given sequence, we could change the
softmax in the start and end position logits to a sigmoid function to obtain
probabilities per token, and apply a threshold to keep only those spans that
the model is confident enough about.

Another approach would change the purpose of the model from a span ex-
traction task to a node classification task, where each node is either labelled
as containing an attribute value or not. With this approach, the aggrega-
tion method simply collects the text contents of each node that contains an
attribute value.

In a similar vein, our current method only supports single-entity documents,
such as webpages about a specific movie or book. To allow for a larger
amount of information to be extracted from the Web, it would be useful if
our model could handle multi-entity pages as well, such as pages that contain
an overview of popular movies or a list of books for sale. The suggestions
for extracting multi-value attributes should also make it possible to extract
attributes for multiple entities in a single document, though the aggregation
step should be adjusted to assign each attribute value to the correct subject
entity.

58

7.3 Reranking segment predictions

As we have seen in Section 5.8.3, our models may extract the correct value of
the attribute from a specific segment, but then encounter a higher confidence
for an (incorrect) value in another segment. In that case, our prediction will
be incorrect, even though the value could have been extracted successfully.

To remedy this problem, we could add an improved reranker in the aggrega-
tion step. Its purpose would be to take the segments, their predictions and
possibly other useful information (such as the BERT embeddings of the seg-
ment or its position on the page) and rerank the extracted results based on
the likelihood that each of them is correct. As a result, we should no longer
have the issue that our model outputs an incorrect value if the correct value
was found somewhere else on the page.

7.4 Generalisation across websites

In Section 5.7, we have shown that our model’s performance in the zero-shot
setting is inadequate. We hypothesised that this is due to our model learning
very concrete, easily identifiable features of the HTML documents instead
of learning more general representations. As a result, our models overfit on
the specific HTML structure of the training set and lack the generalisability
to perform well for unseen websites.

A possible solution to this problem could be to develop more general fea-
tures for the HTML contents instead of the a most recent ancestors we are
currently using. Alternatively, we could try to (pre-)train the models with
data from a larger selection of websites, which should allow them to pick up
on more general patterns and focus less on the layout of only a handful of
websites. Similarly, we could experiment with possible data augmentation
strategies to add more variations to the HTML structure of the training
data, achieving the same goal but without the need for a large selection of
different websites in the training set.

59

Bibliography

[1] Web Data Commons Extraction Report - October 2021 Cor-
pus. URL: http://webdatacommons.org/structureddata/2021-12/
stats/stats.html.

[2] Joshua Ainslie, Santiago Ontañón, Chris Alberti, Vaclav Cvicek,
Zachary Fisher, Philip Pham, Anirudh Ravula, Sumit Sanghai, Qifan
Wang, and Li Yang. ETC: Encoding Long and Structured Inputs in
Transformers. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang
Liu, editors, Proceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2020, Online, November
16-20, 2020, pages 268–284. Association for Computational Linguistics,
2020. doi:10.18653/v1/2020.emnlp-main.19.

[3] Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The
Long-Document Transformer. CoRR, abs/2004.05150, 2020. arXiv:
2004.05150. URL: https://arxiv.org/abs/2004.05150.

[4] Lukas Biewald. Experiment Tracking with Weights and Biases, 2020.
URL: https://www.wandb.com/.

[5] Mirko Bronzi, Valter Crescenzi, Paolo Merialdo, and Paolo Papotti. Ex-
traction and Integration of Partially Overlapping Web Sources. Proc.
VLDB Endow., 6(10):805–816, 2013. URL: http://www.vldb.org/
pvldb/vol6/p805-bronzi.pdf, doi:10.14778/2536206.2536209.

[6] Valerio Cetorelli, Paolo Atzeni, Valter Crescenzi, and Franco Mil-
icchio. The Smallest Extraction Problem. Proc. VLDB Endow.,
14(11):2445–2458, 2021. URL: http://www.vldb.org/pvldb/vol14/
p2445-crescenzi.pdf, doi:10.14778/3476249.3476293.

[7] Andrew M. Dai and Quoc V. Le. Semi-supervised Sequence Learning.
In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama,
and Roman Garnett, editors, Advances in Neural Information Process-
ing Systems 28: Annual Conference on Neural Information Processing
Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pages

60

http://webdatacommons.org/structureddata/2021-12/stats/stats.html
http://webdatacommons.org/structureddata/2021-12/stats/stats.html
https://doi.org/10.18653/v1/2020.emnlp-main.19
https://arxiv.org/abs/2004.05150
https://www.wandb.com/
http://www.vldb.org/pvldb/vol6/p805-bronzi.pdf
http://www.vldb.org/pvldb/vol6/p805-bronzi.pdf
https://doi.org/10.14778/2536206.2536209
http://www.vldb.org/pvldb/vol14/p2445-crescenzi.pdf
http://www.vldb.org/pvldb/vol14/p2445-crescenzi.pdf
https://doi.org/10.14778/3476249.3476293

3079–3087, 2015. URL: https://proceedings.neurips.cc/paper/
2015/hash/7137debd45ae4d0ab9aa953017286b20-Abstract.html.

[8] Xiang Deng, Prashant Shiralkar, Colin Lockard, Binxuan Huang, and
Huan Sun. DOM-LM: Learning Generalizable Representations for
HTML Documents. CoRR, abs/2201.10608, 2022. arXiv: 2201.10608.
URL: https://arxiv.org/abs/2201.10608.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. In Jill Burstein, Christy Doran, and Thamar Solorio, ed-
itors, Proceedings of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7,
2019, Volume 1 (Long and Short Papers), pages 4171–4186. Associa-
tion for Computational Linguistics, 2019. doi:10.18653/v1/n19-1423.

[10] John Foley, Michael Bendersky, and Vanja Josifovski. Learning to Ex-
tract Local Events from the Web. In Ricardo Baeza-Yates, Mounia Lal-
mas, Alistair Moffat, and Berthier A. Ribeiro-Neto, editors, Proceedings
of the 38th International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, Santiago, Chile, August 9-13, 2015,
pages 423–432. ACM, 2015. doi:10.1145/2766462.2767739.

[11] R. V. Guha, Dan Brickley, and Steve MacBeth. Schema.org: Evolution
of Structured Data on the Web: Big data makes common schemas even
more necessary. Queue, 13(9):10–37, November 2015. doi:10.1145/
2857274.2857276.

[12] Pankaj Gulhane, Amit Madaan, Rupesh R. Mehta, Jeyashankher Ra-
mamirtham, Rajeev Rastogi, Sandeepkumar Satpal, Srinivasan H. Sen-
gamedu, Ashwin Tengli, and Charu Tiwari. Web-scale information ex-
traction with vertex. In Serge Abiteboul, Klemens Böhm, Christoph
Koch, and Kian-Lee Tan, editors, Proceedings of the 27th Interna-
tional Conference on Data Engineering, ICDE 2011, April 11-16, 2011,
Hannover, Germany, pages 1209–1220. IEEE Computer Society, 2011.
doi:10.1109/ICDE.2011.5767842.

[13] Qiang Hao, Rui Cai, Yanwei Pang, and Lei Zhang. From one tree
to a forest: a unified solution for structured web data extraction. In
Wei-Ying Ma, Jian-Yun Nie, Ricardo Baeza-Yates, Tat-Seng Chua, and
W. Bruce Croft, editors, Proceeding of the 34th International ACM
SIGIR Conference on Research and Development in Information Re-
trieval, SIGIR 2011, Beijing, China, July 25-29, 2011, pages 775–784.
ACM, 2011. doi:10.1145/2009916.2010020.

61

https://proceedings.neurips.cc/paper/2015/hash/7137debd45ae4d0ab9aa953017286b20-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/7137debd45ae4d0ab9aa953017286b20-Abstract.html
https://arxiv.org/abs/2201.10608
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1145/2766462.2767739
https://doi.org/10.1145/2857274.2857276
https://doi.org/10.1145/2857274.2857276
https://doi.org/10.1109/ICDE.2011.5767842
https://doi.org/10.1145/2009916.2010020

[14] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory.
Neural Comput., 9(8):1735–1780, 1997. doi:10.1162/neco.1997.9.8.
1735.

[15] Alexandra Hotti, Riccardo Sven Risuleo, Stefan Magureanu, Aref
Moradi, and Jens Lagergren. The Klarna Product Page Dataset:
A Realistic Benchmark for Web Representation Learning. CoRR,
abs/2111.02168, 2021. arXiv: 2111.02168. URL: https://arxiv.org/
abs/2111.02168.

[16] Gautier Izacard and Edouard Grave. Leveraging Passage Retrieval with
Generative Models for Open Domain Question Answering, February
2021. Number: arXiv:2007.01282 arXiv:2007.01282 [cs]. URL: http:
//arxiv.org/abs/2007.01282.

[17] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettle-
moyer, and Omer Levy. SpanBERT: Improving Pre-training by Rep-
resenting and Predicting Spans. Trans. Assoc. Comput. Linguistics,
8:64–77, 2020. URL: https://doi.org/10.1162/tacl_a_00300, doi:
10.1162/tacl_a_00300.

[18] Taku Kudo and John Richardson. SentencePiece: A simple and lan-
guage independent subword tokenizer and detokenizer for Neural Text
Processing. In Eduardo Blanco and Wei Lu, editors, Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2018: System Demonstrations, Brussels, Belgium, October 31
- November 4, 2018, pages 66–71. Association for Computational Lin-
guistics, 2018. doi:10.18653/v1/d18-2012.

[19] Nicholas Kushmerick, Daniel S. Weld, and Robert B. Doorenbos. Wrap-
per Induction for Information Extraction. In Proceedings of the Fif-
teenth International Joint Conference on Artificial Intelligence, IJCAI
97, Nagoya, Japan, August 23-29, 1997, 2 Volumes, pages 729–737.
Morgan Kaufmann, 1997.

[20] Colin Lockard, Xin Luna Dong, Arash Einolghozati, and Prashant Shi-
ralkar. CERES: Distantly Supervised Relation Extraction from the
Semi-Structured Web. Proc. VLDB Endow., 11(10):1084–1096, June
2018. Publisher: VLDB Endowment. doi:10.14778/3231751.3231758.

[21] Colin Lockard, Prashant Shiralkar, and Xin Luna Dong. OpenCeres:
When Open Information Extraction Meets the Semi-Structured Web.
In Jill Burstein, Christy Doran, and Thamar Solorio, editors, Proceed-
ings of the 2019 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1

62

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/2111.02168
https://arxiv.org/abs/2111.02168
http://arxiv.org/abs/2007.01282
http://arxiv.org/abs/2007.01282
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.18653/v1/d18-2012
https://doi.org/10.14778/3231751.3231758

(Long and Short Papers), pages 3047–3056. Association for Computa-
tional Linguistics, 2019. doi:10.18653/v1/n19-1309.

[22] Hannes Mühleisen and Christian Bizer. Web Data Commons - Ex-
tracting Structured Data from Two Large Web Corpora. In Chris-
tian Bizer, Tom Heath, Tim Berners-Lee, and Michael Hausenblas,
editors, WWW2012 Workshop on Linked Data on the Web, Lyon,
France, 16 April, 2012, volume 937 of CEUR Workshop Proceed-
ings. CEUR-WS.org, 2012. URL: http://ceur-ws.org/Vol-937/
ldow2012-inv-paper-2.pdf.

[23] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. page 12.

[24] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever.
Improving Language Understanding by Generative Pre-Training.

[25] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Ex-
ploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020. URL:
http://jmlr.org/papers/v21/20-074.html.

[26] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang.
SQuAD: 100,000+ Questions for Machine Comprehension of Text. In
Jian Su, Xavier Carreras, and Kevin Duh, editors, Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, pages 2383–
2392. The Association for Computational Linguistics, 2016. doi:10.
18653/v1/d16-1264.

[27] Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence Embed-
dings using Siamese BERT-Networks. In Kentaro Inui, Jing Jiang, Vin-
cent Ng, and Xiaojun Wan, editors, Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pages
3980–3990. Association for Computational Linguistics, 2019. doi:
10.18653/v1/D19-1410.

[28] Aidan San, Jan Bakus, Colin Lockard, David M. Ciemiewicz, Yangfeng
Ji, Sandeep Atluri, Kevin Small, and Heba Elfardy. PLAtE: A Large-

63

https://doi.org/10.18653/v1/n19-1309
http://ceur-ws.org/Vol-937/ldow2012-inv-paper-2.pdf
http://ceur-ws.org/Vol-937/ldow2012-inv-paper-2.pdf
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410

scale Dataset for List Page Web Extraction. CoRR, abs/2205.12386,
2022. arXiv: 2205.12386. doi:10.48550/arXiv.2205.12386.

[29] Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. PICARD:
Parsing Incrementally for Constrained Auto-Regressive Decoding from
Language Models. In Marie-Francine Moens, Xuanjing Huang, Lucia
Specia, and Scott Wen-tau Yih, editors, Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language Processing, EMNLP
2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 Novem-
ber, 2021, pages 9895–9901. Association for Computational Linguistics,
2021. doi:10.18653/v1/2021.emnlp-main.779.

[30] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural Ma-
chine Translation of Rare Words with Subword Units. In Proceed-
ings of the 54th Annual Meeting of the Association for Computational
Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Vol-
ume 1: Long Papers. The Association for Computer Linguistics, 2016.
doi:10.18653/v1/p16-1162.

[31] Yusuke Shibata, Takuya Kida, Shuichi Fukamachi, Masayuki Takeda,
Ayumi Shinohara, Takeshi Shinohara, and Setsuo Arikawa. Speeding
up pattern matching by text compression. In Italian Conference on
Algorithms and Complexity, pages 306–315. Springer, 2000.

[32] Mark Treveil, Nicolas Omont, Clément Stenac, Kenji Lefevre, Du Phan,
Joachim Zentici, Adrien Lavoillotte, Makoto Miyazaki, and Lynn Heid-
mann. Introducing MLOps. O’Reilly Media, 2020.

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Atten-
tion Is All You Need. In Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and
Roman Garnett, editors, Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Sys-
tems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 5998–
6008, 2017. URL: https://proceedings.neurips.cc/paper/2017/
hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

[34] Qifan Wang, Yi Fang, Anirudh Ravula, Fuli Feng, Xiaojun Quan, and
Dongfang Liu. WebFormer: The Web-page Transformer for Structure
Information Extraction. In Frédérique Laforest, Raphaël Troncy, Elena
Simperl, Deepak Agarwal, Aristides Gionis, Ivan Herman, and Lionel
Médini, editors, WWW ’22: The ACM Web Conference 2022, Virtual
Event, Lyon, France, April 25 - 29, 2022, pages 3124–3133. ACM, 2022.
doi:10.1145/3485447.3512032.

64

https://doi.org/10.48550/arXiv.2205.12386
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/p16-1162
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1145/3485447.3512032

[35] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond,
Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi
Louf, Morgan Funtowicz, and Jamie Brew. HuggingFace’s Transformers:
State-of-the-art Natural Language Processing. CoRR, abs/1910.03771,
2019. arXiv: 1910.03771. URL: http://arxiv.org/abs/1910.03771.

[36] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao,
Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaob-
ing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo,
Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei
Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol
Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s
Neural Machine Translation System: Bridging the Gap between Hu-
man and Machine Translation. CoRR, abs/1609.08144, 2016. arXiv:
1609.08144. URL: http://arxiv.org/abs/1609.08144.

[37] Chenhao Xie, Wenhao Huang, Jiaqing Liang, Chengsong Huang, and
Yanghua Xiao. WebKE: Knowledge Extraction from Semi-structured
Web with Pre-trained Markup Language Model. In Gianluca Demar-
tini, Guido Zuccon, J. Shane Culpepper, Zi Huang, and Hanghang
Tong, editors, CIKM ’21: The 30th ACM International Conference
on Information and Knowledge Management, Virtual Event, Queens-
land, Australia, November 1 - 5, 2021, pages 2211–2220. ACM, 2021.
doi:10.1145/3459637.3482491.

[38] Song Xu, Haoran Li, Peng Yuan, Youzheng Wu, Xiaodong He, and
Bowen Zhou. Self-Attention Guided Copy Mechanism for Abstractive
Summarization. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and
Joel R. Tetreault, editors, Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, ACL 2020, Online, July 5-
10, 2020, pages 1355–1362. Association for Computational Linguistics,
2020. doi:10.18653/v1/2020.acl-main.125.

[39] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua
Ainslie, Chris Alberti, Santiago Ontañón, Philip Pham, Anirudh
Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big Bird: Trans-
formers for Longer Sequences. In Hugo Larochelle, Marc’Aurelio
Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin, editors, Advances in Neural Information Processing Sys-
tems 33: Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
2020. URL: https://proceedings.neurips.cc/paper/2020/hash/
c8512d142a2d849725f31a9a7a361ab9-Abstract.html.

65

http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1609.08144
https://doi.org/10.1145/3459637.3482491
https://doi.org/10.18653/v1/2020.acl-main.125
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html

[40] Yichao Zhou, Ying Sheng, Nguyen Vo, Nick Edmonds, and Sandeep
Tata. Learning Transferable Node Representations for Attribute Ex-
traction from Web Documents. In K. Selcuk Candan, Huan Liu, Leman
Akoglu, Xin Luna Dong, and Jiliang Tang, editors, WSDM ’22: The
Fifteenth ACM International Conference on Web Search and Data Min-
ing, Virtual Event / Tempe, AZ, USA, February 21 - 25, 2022, pages
1479–1487. ACM, 2022. doi:10.1145/3488560.3498424.

[41] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Ur-
tasun, Antonio Torralba, and Sanja Fidler. Aligning Books and Movies:
Towards Story-like Visual Explanations by Watching Movies and Read-
ing Books. In Proceedings of the IEEE international conference on com-
puter vision, pages 19–27, 2015.

66

https://doi.org/10.1145/3488560.3498424

Appendix A

Appendix

A.1 Attribute-level performance

Table A.1: Attribute-level performance of our best BERT configuration.

Global Instance
Vertical Attribute P R F1 EM WM

Auto

engine 0.88 0.88 0.88 0.99 1.00

fuel_economy 0.90 0.90 0.90 0.99 0.99

model 1.00 1.00 1.00 1.00 1.00

price 1.00 1.00 1.00 1.00 1.00

Book

author 0.95 0.95 0.95 0.95 0.96

isbn_13 1.00 1.00 1.00 1.00 1.00

publication_date 0.89 0.89 0.89 1.00 1.00

publisher 0.99 0.99 0.99 0.99 0.99

title 0.98 0.98 0.98 0.98 0.99

Camera
manufacturer 0.99 0.99 0.99 0.99 0.99

model 0.94 0.94 0.94 0.99 1.00

price 0.99 0.99 0.99 1.00 1.00

Job

company 0.90 0.90 0.90 1.00 1.00

date_posted 0.70 0.70 0.70 1.00 1.00

location 1.00 1.00 1.00 1.00 1.00

title 1.00 1.00 1.00 1.00 1.00

Continued on next page

67

Table A.1: Attribute-level performance of our best BERT configuration.

Global Instance
Vertical Attribute P R F1 EM WM

Movie

director 0.93 0.93 0.93 0.93 0.94

genre 0.91 0.91 0.91 0.91 0.92

mpaa_rating 0.85 0.85 0.85 0.86 0.86

title 0.99 0.99 0.99 0.99 0.99

NBA player

height 0.59 0.59 0.59 0.90 0.91

name 0.80 0.80 0.80 0.99 1.00

team 0.68 0.68 0.68 0.98 0.98

weight 0.59 0.59 0.59 0.90 0.90

Restaurant

address 0.87 0.87 0.87 0.97 0.98

cuisine 0.97 0.97 0.97 0.97 0.97

name 0.88 0.88 0.88 0.98 0.99

phone 0.99 0.99 0.99 1.00 1.00

University

name 1.00 1.00 1.00 1.00 1.00

phone 0.80 0.80 0.80 0.95 0.98

type 1.00 1.00 1.00 1.00 1.00

website 0.96 0.96 0.96 1.00 1.00

68

A.2 Attribute-level performance for different con-
text sizes

Table A.2: Performance of a BERT model for different context sizes. Perfor-
mance is reported using the instance-level WM score. The best performing
context size for a given attribute is marked in bold.

Context size
Vertical Attribute 128 256 512

Auto

engine 1.00 1.00 1.00

fuel_economy 1.00 1.00 1.00

model 1.00 1.00 1.00

price 1.00 1.00 1.00

Book

author 0.98 0.98 0.97

isbn_13 1.00 1.00 1.00

publication_date 1.00 1.00 1.00

publisher 1.00 1.00 1.00

title 0.97 0.99 1.00

Camera
manufacturer 0.99 0.99 0.99

model 0.99 1.00 1.00

price 1.00 0.99 1.00

Job

company 0.90 1.00 1.00

date_posted 1.00 1.00 1.00

location 1.00 1.00 1.00

title 1.00 1.00 1.00

Movie

director 0.95 0.94 0.95

genre 0.98 0.88 0.86

mpaa_rating 0.86 0.84 0.93

title 0.98 0.99 1.00

NBA player

height 0.82 0.90 0.91

name 1.00 1.00 1.00

team 1.00 1.00 1.00

weight 0.79 0.90 0.90

Restaurant

address 0.99 0.83 0.81

cuisine 0.98 0.97 0.96

Continued on next page

69

Table A.2: Performance of a BERT model for different context sizes. Perfor-
mance is reported using the instance-level WM score. The best performing
context size for a given attribute is marked in bold.

Context size
Vertical Attribute 128 256 512

name 0.99 0.99 0.99

phone 1.00 1.00 1.00

University

name 1.00 1.00 1.00

phone 0.80 0.98 0.99

type 0.99 1.00 1.00

website 1.00 1.00 1.00

70

A.3 Attribute-level performance for the zero-shot
setting

Table A.3: Performance of our extraction models in the zero-shot setting,
per attribute.

Global Instance
Vertical Attribute P R F1 EM WM

Auto

engine 0.42 0.42 0.42 0.42 0.50

fuel_economy 0.59 0.59 0.59 0.65 0.68

model 0.61 0.61 0.61 0.61 0.89

price 0.39 0.39 0.39 0.45 0.56

Book

author 0.76 0.76 0.76 0.76 0.79

isbn_13 1.00 1.00 1.00 1.00 1.00

publication_date 0.20 0.20 0.20 0.20 0.39

publisher 0.38 0.38 0.38 0.38 0.58

title 0.64 0.64 0.64 0.64 0.69

Camera
manufacturer 0.81 0.81 0.81 0.81 0.89

model 0.77 0.77 0.77 0.77 0.86

price 0.36 0.36 0.36 0.36 0.56

Job

company 0.63 0.63 0.63 0.60 0.65

date_posted 0.29 0.29 0.29 0.41 0.54

location 0.45 0.45 0.45 0.45 0.65

title 0.64 0.64 0.64 0.64 0.71

Movie

director 0.76 0.76 0.76 0.76 0.82

genre 0.75 0.75 0.75 0.75 0.81

mpaa_rating 0.64 0.64 0.64 0.66 0.67

title 0.22 0.22 0.22 0.22 0.24

NBA player

height 0.80 0.80 0.80 0.66 0.79

name 0.68 0.68 0.68 0.68 0.71

team 0.52 0.52 0.52 0.64 0.74

weight 0.75 0.75 0.75 0.62 0.80

Restaurant

address 0.27 0.27 0.27 0.26 0.42

cuisine 0.54 0.54 0.54 0.54 0.60

Continued on next page

71

Table A.3: Performance of our extraction models in the zero-shot setting,
per attribute.

Global Instance
Vertical Attribute P R F1 EM WM

name 0.45 0.45 0.45 0.44 0.46

phone 0.71 0.71 0.71 0.71 0.82

University

name 0.72 0.72 0.72 0.72 0.86

phone 0.60 0.60 0.60 0.72 0.73

type 0.69 0.69 0.69 0.69 0.82

website 0.78 0.78 0.78 0.78 0.94

72

A.4 ClosedIE to OpenIE mapping

Table A.4: ClosedIE to OpenIE mapping for the Movie domain

Website director genre mpaa_rating title

allmovie Director Genres MPAA Rating -
amctv Director: Genre/Type: MPAA Rating: -
hollywood Director - - -
iheartmovies Directed by Genres MPAA Rating -
imdb Director:

Directors:
Genres: Motion Picture Rating -

metacritic Director: Genre(s): Rating: -
rottentomatoes Directed By: Genre: Rated: -
yahoo Directed by: Genres: MPAA Rating: -

Table A.5: ClosedIE to OpenIE mapping for the NBA player domain

Website height name team weight

fanhouse Height - Team Weight

foxsports Ht - - Wt

espn Height - - Weight

msnca Height: - Team: Weight:

si Height: - - Weight:

slam Height - - Weight

usatoday Height: - - Weight:

yahoo Height - - Weight

Table A.6: ClosedIE to OpenIE mapping for the University domain

Website name phone website type

collegeprowler - - - Control:

ecampustours - - - Affiliation

embark - Phone: - School Type:

matchcollege - General Phone: Website Type:

usnews - - Web site: Institutional Control:

73

A.5 Failure types

Table A.7: Overview of failure types for randomly sampled failures.

Document Attribute True value Predicted value Failure type

auto/cars/0431 engine 170-hp, 2.5-liter H-4 (regular gas) 170 - hp, 2. 5 - liter h - 4 (regular
gas) p2t table p1t tr p0t td 224 -
hp, 2. 5 - liter h - 4 (premium

HTML gibberish

auto/cars/0510 engine 158-hp, 2.4-liter I-4 (regular gas) acceleration (2. 4 - liter Different value
auto/cars/0515 engine 310-hp, 4.6-liter V-8 (regular gas) 310 - hp, 4. 6 - liter v - 8 (regular

gas) p2t table p1t tr p0t td 381 -
hp, 5. 7 - liter v - 8 (flexible ; e85

HTML gibberish

auto/cars/0600 engine 182-hp, 2.4-liter I-4 (regular gas) 182 - hp, 2. 4 - liter i - 4 (regular
gas) p2t table p1t tr p0t td 264 -
hp, 3. 0 - liter v - 6 (flexible ; e85

HTML gibberish

auto/aol/0107 model 2011 Subaru Impreza Outback
Sport

2011 subaru impreza Incomplete value

auto/aol/0839 model 2010 Mitsubishi Eclipse Spyder 2010 mitsubishi eclipse Incomplete value
book/barnesandnoble/1544 author Arthur Benjamin benjamin Incomplete value
book/bookdepository/1975 author David Else lonely planet Different value
book/booksamillion/0118 author J. K. Rowling scholastic Different value
book/booksamillion/0788 author John Bomm sam butcher Different value
book/booksamillion/1464 author Jane Yolen jane yolen p2t div p2i content p2c

wrap p1t div p1c module p1c details
p0t h3 and p2t div p2c module p2c
details p1t h3 p0t a mark teague

HTML gibberish

book/booksamillion/1753 author C. W. Randolph john lee Different value
book/booksamillion/1793 author Zig Ziglar napoleon hill Different value

Continued on next page

74

Table A.7: Overview of failure types for randomly sampled failures.

Document Attribute True value Predicted value Failure type

book/booksamillion/1897 author Robert Louis Stevenson robert louis stevenson p2t div p2i
content p2c wrap p1t div p1c mod-
ule p1c details p0t h3 and p2t div
p2c module p2c details p1t h3 p0t a
avi

HTML gibberish

book/buy/1225 author Agnes F. Vandome agnes f. vandome p2t table p1t tr
p0t td & nbsp ; p2t tr p1t td p0t a
john mcbrewster

HTML gibberish

book/christianbook/0225 author John Haberer jack haberer Different value
book/deepdiscount/0469 author Henry Cloud henry cloud p2t div p2c col - content

p2c clearfix p1t ul p0t li, p2t ul p1t
li p0t a lisa guest

HTML gibberish

book/deepdiscount/0739 author Dr. Anna Klebanov dr. anna klebanov p2t div p2c col
- content p2c clearfix p1t ul p0t li,
p2t ul p1t li p0t a dr. john mighton

HTML gibberish

book/deepdiscount/1478 author Alyssa Shaffer alyssa shaffer p2t div p2c descrip-
tion - wrap p1t ul p0t li, p2t ul p1t
li p0t a chris freytag

HTML gibberish

book/waterstones/0452 author brady publishing Nonexisting value
book/waterstones/0942 author Richard Templar prentice - hall Different value
book/waterstones/1092 author automobile association Nonexisting value
book/waterstones/1121 author Joel Rickett hairy bikers Different value
book/waterstones/1240 author Henrietta Thompson moleskine Different value
book/waterstones/1309 author Alexander Games tommy cooper Different value
book/waterstones/1694 author Tsunetomo Yamamoto kodansha international Different value
book/barnesandnoble/0058 isbn_13 9781616889364 9781416576617 Different value

Continued on next page

75

Table A.7: Overview of failure types for randomly sampled failures.

Document Attribute True value Predicted value Failure type

book/barnesandnoble/0971 isbn_13 9781616802448 9780375975318 Different value
book/abebooks/0674 publication_date 1987 Nonexisting value
book/deepdiscount/0958 publication_date 09/01/2010 08 / 01 / 2010 Different value
book/deepdiscount/0983 publication_date 09/01/2010 08 / 01 / 2010 Different value
book/deepdiscount/1254 publication_date 09/01/2010 08 / 01 / 2010 Different value
book/deepdiscount/1855 publication_date 04/30/2010 07 / 30 / 2010 Different value
book/abebooks/0687 publisher ballantine books Nonexisting value
book/abebooks/1195 publisher pan books Nonexisting value
book/abebooks/1352 publisher eden books Nonexisting value
book/deepdiscount/1168 publisher Del§ta del § ta No error
book/barnesandnoble/0227 title Mastering the Art of French Cook-

ing Boxed Set
mastering the art of french cooking Incomplete value

book/barnesandnoble/0285 title Treasure Island (Barnes & Noble
Classics Series)

ambassadors Different value

book/barnesandnoble/0377 title The End Missed attribute
book/barnesandnoble/0762 title Med-Surg Success Missed attribute
book/barnesandnoble/1069 title Eating Well After Weight Loss

Surgery
Missed attribute

book/barnesandnoble/1093 title Forbidden Fantasies wicked Different value
book/barnesandnoble/1152 title Betty Crocker’s Diabetes Cookbook Missed attribute
book/barnesandnoble/1419 title James Cameron’s Avatar avatar Incomplete value
book/barnesandnoble/1939 title Interpretation of Dreams (Barnes &

Noble Classics Series)
irma dream Different value

book/barnesandnoble/1997 title Forgotten Realms fourth magic Different value

Continued on next page

76

Table A.7: Overview of failure types for randomly sampled failures.

Document Attribute True value Predicted value Failure type

book/borders/0257 title Twain’s The Adventures of Huckle-
berrry Finn: The Manga Edition

twain ’ s the adventures of huckle-
berrry finn : the manga edition

Incomplete value

book/borders/0271 title The Omnivore’s Dilemma: A Natu-
ral History of Four Meals

omnivore ’ s dilemma : a natural
history of four meals

Incomplete value

book/borders/0315 title A Groom of One’s Own groom of one ’ s own Incomplete value
book/borders/0636 title Second Nature: A Gardener’s Edu-

cation
second nature : a gardener ’ s edu-
cation

No error

book/borders/0780 title The Memory Keeper’s Daughter memory keeper ’ s daughter Incomplete value
book/borders/0909 title Somewhere Inside: One Sister’s

Captivity in North Korea and the
Other’s Fight to Bring Her Home

somewhere inside : one sister ’ s cap-
tivity in north korea and the other ’
s fight to bring her home

No error

book/borders/1017 title Band of Brothers: E Company,
506th Regiment, 101st Airborne
from Normandy to Hitler’s Eagle’s
Nest

band of brothers : e company, 506th
regiment, 101st airborne from nor-
mandy to hitler ’ s eagle ’ s nest

No error

book/borders/1085 title Merriam-Webster’s Spanish-English
Dictionary

merriam - webster ’ s spanish - en-
glish dictionary

No error

book/borders/1190 title Jack London’s The Call of the Wild:
The Graphic Novel

jack london ’ s the call of the wild :
the graphic novel

No error

book/borders/1387 title Coach Wooden’s Pyramid of Suc-
cess

coach wooden ’ s pyramid of success No error

camera/amazon/1073 manufacturer Samsung canon Different value
camera/buy/0010 manufacturer OLYMPUS-CAMERAS olympus Incomplete value
camera/buy/0261 manufacturer OLYMPUS-CAMERAS olympus Incomplete value
camera/buy/0279 manufacturer Memorex pentax Different value
camera/buy/0285 manufacturer GENERAL IMAGING COMPANY ge Incomplete value

Continued on next page

77

Table A.7: Overview of failure types for randomly sampled failures.

Document Attribute True value Predicted value Failure type

camera/buy/0341 manufacturer OLYMPUS-CAMERAS olympus Incomplete value
camera/onsale/0012 manufacturer Pentax Imaging pentax Incomplete value
camera/onsale/0121 manufacturer Pentax Imaging pentax Incomplete value
camera/amazon/0534 model Sony Cyber-shot ■? DSC-TX5

10.2MP CMOS Digital Camera
with 4x Zoom with Optical Steady
Shot Image Stabilization and 3.5
inch Touch Screen LCD in Silver +
4GB Accessory Kit

sony cyber - shot dsc - tx5 10. 2mp
cmos digital camera with 4x zoom
with optical steady shot image sta-
bilization and 3. 5 inch touch screen
lcd in silver + 4gb accessory kit

Accent mismatch

camera/amazon/0986 model Panasonic Lumix DMC-FZ35
12.1MP Digital Camera w/18x
Optical Zoom (Black) BigVAL-
UEInc 8GB Battery/Charger Filter
Kit/Lens Accessory Saver Bundle
V

panasonic lumix dmc - fz35 12. 1mp
digital camera w / 18x optical zoom
(black) bigvalueinc 8gb battery
/ charger filter kit / lens accessory
saver bundle

Incomplete value

camera/buy/0047 model Sony DSC-S980 Cyber-shot 12
Megapixel Digital Camera with 4x
Optical Zoom, 2.7" LCD, Face De-
tection & SteadyShot™ Digital Im-
age Stabilization, Black

sony dsc - s980 cyber - shot 12
megapixel digital camera with 4x
optical zoom, 2. 7 " lcd, face detec-
tion & digital image stabilization,
black

Accent mismatch

camera/jr/0130 price 149. 99 Nonexisting value
camera/jr/0234 price 99. 95 Nonexisting value
job/jobtarget/0214 company Association of American Medical

Colleges (AAMC)
aamc Incomplete value

job/jobtarget/0299 company Tufts University - Medford tufts university Incomplete value
job/jobtarget/1231 company Flagstar Bancorp, Inc. flagstar bank Incomplete value
job/jobtarget/1602 company Tufts University - Medford tufts university Incomplete value

Continued on next page

78

Table A.7: Overview of failure types for randomly sampled failures.

Document Attribute True value Predicted value Failure type

job/monster/0149 company TPI (Tech Providers, Inc.) unixsabham Different value
job/monster/0366 company Collabera per diem Different value
job/monster/0604 company TechExpo Top Secret cyber27 Different value
job/monster/0684 company DSCI apo ae Different value
job/monster/0749 company KBW Financial Staffing and Re-

cruiting
unspecified Different value

job/monster/0944 company Dell multiple locations Different value
job/monster/1193 company Technical Staffing Specialists Inc javadevmon Different value
job/monster/0836 date_posted date : 11 - 2 - 2010 Nonexisting value
job/careerbuilder/0947 location US-CT-Hartford Missed attribute
job/careerbuilder/1432 location US-AZ-Gilbert Missed attribute
job/careerbuilder/1436 location US-CA-Garden Grove Missed attribute
job/job/1207 location Union, New Jersey montvale, new jersey Different value
job/monster/0684 location APO AE 543 Nonsense
job/hotjobs/0407 title > MANAGER, TECHNICAL

PROGRAM MANAGEMENT
manager, technical program man-
agement

Incomplete value

job/hotjobs/0996 title > Marcom Specialist marcom specialist Incomplete value
job/jobcircle/0256 title Medical Advisor/ Associate

Director ■?
medical advisor / associate director Accent mismatch

job/jobtarget/0694 title Associate FileMaker Developer differentiators Different value
job/nettemps/1279 title Job Title Consultant - Tier 3 / L3

support - 3 positions
consultant - tier 3 / l3 support - 3
positions

Incomplete value

movie/allmovie/0774 director Agnès Jaoui agnes jaoui Accent mismatch
movie/allmovie/0936 director Pedro Almodóvar pedro almodovar Accent mismatch
movie/allmovie/1324 director Ron Clements bob goldthwait Different value

Continued on next page

79

Table A.7: Overview of failure types for randomly sampled failures.

Document Attribute True value Predicted value Failure type

movie/allmovie/1855 director Annabel Jankel peter hyams Different value
movie/hollywood/0691 director François Girard francois girard Accent mismatch
movie/iheartmovies/0857 director Pedro Almod ■? var pedro almodvar Accent mismatch
movie/iheartmovies/1228 director Gary Weis gary weis p2t ul p1t li p0t a tamra

davis
HTML gibberish

movie/iheartmovies/1482 director Scott McGehee naomi foner Different value
movie/iheartmovies/1902 director Pedro Almod ■? var pedro almodvar Accent mismatch
movie/imdb/1477 director Jennifer Flackett joseph kwong Different value
movie/metacritic/0104 director Timothy Bj ■? rklund timothy bjrklund Accent mismatch
movie/metacritic/1712 director Ishir ■? Honda ishir honda Accent mismatch
movie/msn/0022 director Barry Poltermann charles nelson Different value
movie/msn/0845 director Paul Barnett paul barnett p2t div p2c moviein-

fodirectedbydiv p1t div p1c
movieinfodirectorcharacters p0t
span, p2t div p2c movieinfodirec-
torcharacters p1t span p0t a unsu
lee

HTML gibberish

movie/rottentomatoes/0304 director Eric Styles joseph lees Different value
movie/rottentomatoes/1129 director Fr ■? d ■? ric Mitterrand frederic mitterrand Accent mismatch
movie/yahoo/1097 director Émile Gaudreault (II) emile gaudreault (ii Accent mismatch
movie/yahoo/1109 director john schmidt Nonexisting value
movie/yahoo/1635 director greg germann Nonexisting value
movie/yahoo/1933 director Ariel Schulman andrew jarecki Different value
movie/allmovie/0902 genre Horror horror comedy Multiple values
movie/iheartmovies/0227 genre Comedy comedy p2t ul p1t li p0t a horror HTML gibberish

Continued on next page

80

Table A.7: Overview of failure types for randomly sampled failures.

Document Attribute True value Predicted value Failure type

movie/iheartmovies/0254 genre Mystery mystery p2t ul p1t li p0t a thriller HTML gibberish
movie/iheartmovies/0362 genre Comedy comedy p2t ul p1t li p0t a drama HTML gibberish
movie/iheartmovies/1166 genre Biography biography p2t ul p1t li p0t a drama HTML gibberish
movie/iheartmovies/1700 genre Drama crime Different value
movie/iheartmovies/1919 genre Horror musical - horror Multiple values
movie/msn/0019 genre Romance comedy Different value
movie/msn/0081 genre Sci-Fi comedy Different value
movie/msn/0627 genre Action comedy Different value
movie/msn/0921 genre Comedy documentary Different value
movie/msn/1032 genre Action comedy Different value
movie/rottentomatoes/0301 genre Art House & International comedy Different value
movie/rottentomatoes/1306 genre Kids & Family musical Different value
movie/rottentomatoes/1361 genre Drama horror Different value
movie/rottentomatoes/1381 genre Drama documentary Different value
movie/rottentomatoes/1402 genre Drama music Different value
movie/rottentomatoes/1808 genre Drama horror Different value
movie/rottentomatoes/1983 genre Mystery & Suspense horror Different value
movie/yahoo/1844 genre animation Nonexisting value
movie/allmovie/0835 mpaa_rating P Missed attribute
movie/allmovie/1466 mpaa_rating P Missed attribute
movie/allmovie/1978 mpaa_rating P Missed attribute
movie/imdb/0207 mpaa_rating Rated PG-13 for some sexual con-

tent.
Missed attribute

movie/imdb/0328 mpaa_rating Rated PG for mild language. Missed attribute

Continued on next page

81

Table A.7: Overview of failure types for randomly sampled failures.

Document Attribute True value Predicted value Failure type

movie/imdb/0459 mpaa_rating Rated R for pervasive language and
some sexual content.

Missed attribute

movie/imdb/0462 mpaa_rating Rated PG-13 for intense martial
arts violence and a scene of sensu-
ality.

Missed attribute

movie/imdb/0491 mpaa_rating Rated R for strong language, some
graphic violence and a scene of sex-
uality.

Missed attribute

movie/imdb/0737 mpaa_rating Rated R for sexual content, nudity,
language and a brief violent image.

Missed attribute

movie/imdb/0824 mpaa_rating Rated PG-13 for some innuendo. Missed attribute
movie/imdb/0839 mpaa_rating Rated R for language, brief strong

violence and some sexual images.
Missed attribute

movie/imdb/0873 mpaa_rating Rated R for language. Missed attribute
movie/imdb/0916 mpaa_rating Rated R for language, some drug

content and brief nudity.
Missed attribute

movie/imdb/0957 mpaa_rating Rated R for horror violence, some
sexual content and language.

Missed attribute

movie/imdb/1162 mpaa_rating Rated PG-13 for a strong beating
and elements of domestic abuse.

Missed attribute

movie/imdb/1221 mpaa_rating Rated PG-13 for mature thematic
material including violence, drink-
ing and smoking.

r Missed attribute

movie/imdb/1633 mpaa_rating Rated PG-13 for intense sequences
of frenetic violence and menace, dis-
turbing images and some sensuality.

Missed attribute

Continued on next page

82

Table A.7: Overview of failure types for randomly sampled failures.

Document Attribute True value Predicted value Failure type

movie/imdb/1697 mpaa_rating Rated PG for some mild peril and
rude humor.

Missed attribute

movie/imdb/1716 mpaa_rating Rated PG-13 for language and sex-
ual content.

Missed attribute

movie/imdb/1814 mpaa_rating Rated R for strong sexual content
and language.

Missed attribute

movie/allmovie/0066 title Victor/Victoria victor Incomplete value
movie/amctv/0602 title Girl, Interrupted interrupted Incomplete value
movie/amctv/0924 title Mon Oncle d’Amérique mon oncle d’amerique Accent mismatch
movie/amctv/1433 title Séraphine seraphine Accent mismatch
movie/amctv/1446 title Caché cache Accent mismatch
movie/hollywood/1092 title Piñero pinero Accent mismatch
movie/hollywood/1657 title P2 tomorrow are Different value
movie/iheartmovies/0026 title A Guide to Recognizing Your Saints

(2006)
recognizing your saints (2006 Incomplete value

movie/iheartmovies/0981 title Novios b ■? lgaros, Los (2003) novios blgaros, los (2003 Accent mismatch
movie/iheartmovies/1821 title T ■? ky ■? Nagaremono (1966) tky nagaremono (1966 Accent mismatch
movie/msn/0020 title P2 Missed attribute
movie/rottentomatoes/0106 title Goodbye, 20th Century (Zbogum

na dvaesetiot vek) (1999)
goodbye Incomplete value

movie/rottentomatoes/0207 title H ■? ndler der vier Jahreszeiten (The
Merchant of Four Seasons)

hndler der vier jahreszeiten (the
merchant of four seasons

Accent mismatch

movie/rottentomatoes/0252 title Mad, Sad & Bad (2009) mad sad & bad Incomplete value
movie/rottentomatoes/0644 title Venkovsk ■? Ucitel (The Country

Teacher)
venkovsk ucitel (the country
teacher

Accent mismatch

Continued on next page

83

Table A.7: Overview of failure types for randomly sampled failures.

Document Attribute True value Predicted value Failure type

movie/rottentomatoes/1114 title Sex and Lucia (Luc ■? a y el sexo) sex and lucia (luca y el sexo Accent mismatch
movie/rottentomatoes/1732 title L’ Amour l’Apr ■? s-Midi (Chloe in

the Afternoon) (Love in the After-
noon)

l’amour l’aprs - midi (chloe in the
afternoon) (love in the afternoon

Accent mismatch

nbaplayer/foxsports/0002 height 6’ 5" Missed attribute
nbaplayer/foxsports/0037 height 6’ 9" Missed attribute
nbaplayer/foxsports/0046 height 6’ 10" Missed attribute
nbaplayer/foxsports/0054 height 6’ 10" Missed attribute
nbaplayer/foxsports/0067 height 7’ 0" Missed attribute
nbaplayer/foxsports/0084 height 6’ 2" Missed attribute
nbaplayer/foxsports/0087 height 6’ 7" 6. 1 Different value
nbaplayer/foxsports/0125 height 6’ 10" Missed attribute
nbaplayer/foxsports/0153 height 7’ 1" Missed attribute
nbaplayer/foxsports/0183 height 7’ 1" Missed attribute
nbaplayer/foxsports/0186 height 6’ 10" Missed attribute
nbaplayer/foxsports/0188 height 6’ 6" 6. 0 Different value
nbaplayer/foxsports/0189 height 6’ 9" Missed attribute
nbaplayer/foxsports/0231 height 6’ 9" Missed attribute
nbaplayer/foxsports/0251 height 7’ 0" Missed attribute
nbaplayer/foxsports/0313 height 6’ 11" Missed attribute
nbaplayer/foxsports/0334 height 6’ 10" Missed attribute
nbaplayer/foxsports/0340 height 6’ 7" Missed attribute

Continued on next page

84

Table A.7: Overview of failure types for randomly sampled failures.

Document Attribute True value Predicted value Failure type

nbaplayer/foxsports/0414 height 6’ 8" 6. 2 p2t table p1t tr p0t td league
average p2t table p1t tr p0t td 8. 2
p2t table p1t tr p0t td league leader
p2t table p1t tr p0t td 27. 4

HTML gibberish

nbaplayer/foxsports/0419 height 6’ 7" Missed attribute
nbaplayer/usatoday/0142 name Jeremy Lin jeremey lin Spelling mismatch
nbaplayer/wiki/0269 name Emanuel Ginóbili emanuel ginobili Accent mismatch
nbaplayer/wiki/0407 name Donté Greene donte greene Accent mismatch
nbaplayer/foxsports/0002 weight 200 Missed attribute
nbaplayer/foxsports/0020 weight 245 Missed attribute
nbaplayer/foxsports/0046 weight 240 Missed attribute
nbaplayer/foxsports/0054 weight 255 Missed attribute
nbaplayer/foxsports/0067 weight 235 Missed attribute
nbaplayer/foxsports/0071 weight 210 Missed attribute
nbaplayer/foxsports/0125 weight 240 Missed attribute
nbaplayer/foxsports/0183 weight 250 Missed attribute
nbaplayer/foxsports/0188 weight 230 Missed attribute
nbaplayer/foxsports/0189 weight 225 Missed attribute
nbaplayer/foxsports/0231 weight 210 Missed attribute
nbaplayer/foxsports/0280 weight 175 Missed attribute
nbaplayer/foxsports/0313 weight 246 Missed attribute
nbaplayer/foxsports/0325 weight 259 Missed attribute
nbaplayer/foxsports/0334 weight 240 Missed attribute
nbaplayer/foxsports/0340 weight 215 Missed attribute
nbaplayer/foxsports/0352 weight 265 Missed attribute

Continued on next page

85

Table A.7: Overview of failure types for randomly sampled failures.

Document Attribute True value Predicted value Failure type

nbaplayer/foxsports/0355 weight 207 Missed attribute
nbaplayer/foxsports/0395 weight 260 Missed attribute
nbaplayer/foxsports/0419 weight 230 Missed attribute
restaurant/opentable/1523 address Boston, MA 02116 boston Incomplete value
restaurant/restaurantica/0561 address 101 S New York St al Nonsense
restaurant/restaurantica/0653 address 1508 Highway 62 al Nonsense
restaurant/restaurantica/1225 address 569 N 2nd St al Nonsense
restaurant/restaurantica/1259 address 815 Indianapolis Ave al Nonsense
restaurant/restaurantica/1657 address 3230 23rd Ave al Nonsense
restaurant/restaurantica/1705 address 928 Grand Ave al Nonsense
restaurant/restaurantica/1749 address 710 Harrison Ave al Nonsense
restaurant/restaurantica/1890 address 136 Simsbury Rd al Nonsense
restaurant/restaurantica/1996 address 328 Pemberwick Road al Nonsense
restaurant/urbanspoon/0203 address 2764 Aurora Ave chicago Different value
restaurant/urbanspoon/0538 address 164 Old Mill Ave knoxville Different value
restaurant/urbanspoon/0561 address 223 Jackson Sq knoxville Different value
restaurant/urbanspoon/0931 address 1051 Conestoga Rd philadelphia Different value
restaurant/urbanspoon/1190 address 121 Park Ln seattle Different value
restaurant/urbanspoon/1816 address 63 Church Street birmingham Different value
restaurant/urbanspoon/1862 address 333 Littleton Rd boston Different value
restaurant/usdiners/1467 address 1837 W GUADALUPE RD, phoenix Different value
restaurant/usdiners/1571 address Naples, FL 34102 naples Incomplete value
restaurant/usdiners/1705 address 2533 Constance St 2533 constance st p2t tr p1t td p0t

span p0c news (3rd st
HTML gibberish

Continued on next page

86

Table A.7: Overview of failure types for randomly sampled failures.

Document Attribute True value Predicted value Failure type

restaurant/gayot/0139 cuisine French french bistro Incomplete value
restaurant/gayot/0987 cuisine American california Different value
restaurant/gayot/1189 cuisine Italian cafe Different value
restaurant/gayot/1423 cuisine Mediterranean tapas Different value
restaurant/gayot/1517 cuisine Café eclectic Different value
restaurant/gayot/1740 cuisine California small plates Different value
restaurant/gayot/1743 cuisine Brewpub pub Incomplete value
restaurant/gayot/1822 cuisine Seafood hot plates Different value
restaurant/gayot/1829 cuisine French georgian Different value
restaurant/gayot/1884 cuisine American cafe Different value
restaurant/restaurantica/0870 cuisine Asian buffet Different value
restaurant/restaurantica/0873 cuisine Asian buffet Different value
restaurant/restaurantica/0953 cuisine Asian mexican Different value
restaurant/urbanspoon/0102 cuisine American pizza Different value
restaurant/urbanspoon/0401 cuisine Pub Food irish Different value
restaurant/urbanspoon/0666 cuisine Sandwiches/Subs italian Different value
restaurant/urbanspoon/0753 cuisine Bakery pizza Different value
restaurant/urbanspoon/0951 cuisine Wine Bar french Different value
restaurant/urbanspoon/1819 cuisine Bakery japanese Different value
restaurant/urbanspoon/1862 cuisine Burgers chicken Different value
restaurant/gayot/0094 name Gilly’s gilly ’ s No error
restaurant/gayot/0332 name BC Café bc cafe Accent mismatch
restaurant/gayot/0430 name Fisher’s Café & Pub fisher’s cafe & pub Accent mismatch
restaurant/gayot/0543 name Café on the Green cafe on the green Accent mismatch

Continued on next page

87

Table A.7: Overview of failure types for randomly sampled failures.

Document Attribute True value Predicted value Failure type

restaurant/gayot/0967 name Bouchée bouchee Accent mismatch
restaurant/gayot/1085 name Café Greek cafe greek Accent mismatch
restaurant/gayot/1189 name Oliveto Café oliveto cafe Accent mismatch
restaurant/gayot/1410 name Café Metropol cafe metropol Accent mismatch
restaurant/gayot/1535 name Derek’s derek ’ s No error
restaurant/gayot/1543 name Eddie V’s Prime Seafood eddie v ’ s prime seafood No error
restaurant/gayot/1884 name Wilde Roast Café wilde roast cafe Accent mismatch
restaurant/gayot/1955 name New Orleans Cake Café & Bakery new orleans cake cafe & bakery Accent mismatch
restaurant/opentable/0139 name Generations Restaurant generations Incomplete value
restaurant/urbanspoon/0181 name Amélie’s French Bakery & Cafe amelie’s french bakery & amp ; cafe Accent mismatch
restaurant/urbanspoon/0542 name Captain Ernie’s Fish House Restau-

rant
captain ernie ’ s fish house restau-
rant

No error

restaurant/urbanspoon/0758 name Bogotá Latin Bistro bogota latin bistro Accent mismatch
restaurant/urbanspoon/1793 name Golden Temple Natural Grocery

& Café
golden temple natural grocery &
amp ; cafe

Accent mismatch

restaurant/usdiners/0339 name Café Polonia cafe polonia Accent mismatch
restaurant/zagat/1312 name mar’sel mar ’ sel No error
restaurant/zagat/1370 name Café Prima Pasta cafe prima pasta Accent mismatch
restaurant/restaurantica/0917 phone 9 (280) 632-1388 280) 632 - 1388 Incomplete value
university/embark/0060 phone 480 545-8755 480 926 - 1371 Different value
university/embark/0147 phone 205-226-4696 205 - 226 - 3074 Different value
university/embark/0237 phone 888-227-3552 612 - 339 - 8022 Different value
university/embark/0313 phone 216 241-2930 216 241 - 5432 Different value
university/embark/0314 phone 440 473-6273 440 473 - 0530 Different value

Continued on next page

88

Table A.7: Overview of failure types for randomly sampled failures.

Document Attribute True value Predicted value Failure type

university/embark/0826 phone 616 965-3931 616 965 - 8850 Different value
university/embark/0852 phone 352 787-3747 352 365 - 3501 Different value
university/embark/0856 phone 409 983-4921 409 984 - 6000 Different value
university/embark/0945 phone 310-338-2848 310 - 338 - 2899 Different value
university/embark/0973 phone 617 595-6768 617 595 - 3560 Different value
university/embark/0981 phone 570-348-6234 570 - 961 - 4763 Different value
university/embark/1061 phone 989 328-2111 989 328 - 2950 Different value
university/embark/1394 phone 559 448-8282 559 448 - 8250 Different value
university/embark/1438 phone 707-664-2778 707 - 664 - 2060 Different value
university/embark/1562 phone 423 892-9882 423 892 - 5006 Different value
university/embark/1796 phone 940-565-2681 940 - 565 - 2408 Different value
university/studentaid/0177 phone 800 968-6920 (toll free) 719 336 - 2248 p2t tr p1t td p0t b

800 968 - 6920 (toll free
HTML gibberish

university/studentaid/0347 phone 800 MBBC-WIS (toll free) 920 261 - 9300 p2t tr p1t td p0t b
800 mbbc - wis (toll free

HTML gibberish

university/studentaid/0962 phone 800 460-1328 (toll free) 214 333 - 7100 p2t tr p1t td p0t b
800 460 - 1328 (toll free

HTML gibberish

university/studentaid/1331 phone 800 300-7420 (toll free) 209 667 - 3122 p2t tr p1t td p0t b
800 300 - 7420 (toll free

HTML gibberish

university/embark/1035 website 273 E. Erie Street Missed attribute
university/matchcollege/1421 website http: Missed attribute

89

A.6 Attribute-level mean reciprocal rank of correct
predictions

Table A.8: Attribute-level mean reciprocal rank (MRR) of correct segment
predictions.

Vertical Attribute MRR

Auto

engine 1.00

fuel_economy 1.00

model 1.00

price 1.00

Book

author 0.98

isbn_13 1.00

publication_date 1.00

publisher 1.00

title 1.00

Camera
manufacturer 1.00

model 1.00

price 1.00

Job

company 0.99

date_posted 1.00

location 1.00

title 1.00

Movie

director 0.98

genre 0.96

mpaa_rating 1.00

title 0.99

NBA player

height 1.00

name 1.00

team 0.98

weight 1.00

Restaurant

address 0.97

cuisine 0.98

name 1.00

Continued on next page

90

Table A.8: Attribute-level mean reciprocal rank (MRR) of correct segment
predictions.

Vertical Attribute MRR

phone 1.00

University

name 1.00

phone 0.99

type 1.00

website 1.00

91

	Introduction
	Background
	Neural language models
	Representation
	Transformers
	BERT

	Structured information extraction
	Structured Web Data Extraction (SWDE) dataset
	Evaluation metrics

	Research objectives
	Motivation
	Opportunities
	Challenges
	Research questions and scope

	Methods
	Design
	Segmentation
	HTML representation
	Extraction versus generation
	Segment aggregation

	Implementation
	Preprocessing
	Language models

	Experiments and evaluation
	Experimental setup
	Experiment tracking
	Context sizes
	Sequence representation
	Comparison with baselines
	WebKE reproduction
	Data split
	OpenIE to ClosedIE mapping
	Results
	Discussion

	Zero-shot setting
	Failure analysis
	Performance per website
	Failure types
	Reranking failures

	Discussion

	Conclusions
	Future work
	Evaluation on alternative datasets
	Multi-value attributes and multi-entity pages
	Reranking segment predictions
	Generalisation across websites

	Appendix
	Attribute-level performance
	Attribute-level performance for different context sizes
	Attribute-level performance for the zero-shot setting
	ClosedIE to OpenIE mapping
	Failure types
	Attribute-level mean reciprocal rank of correct predictions

