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Abstract	
More	and	more	 companies	 see	 the	 added	value	 that	 computing	 in	 a	 cloud	
native	 environment	 can	 bring.	 As	 such	 Thales	 is	 looking	 for	 ways	 to	
incorporate	 cloud	 native	 computing	 in	 their	 products.	 Thales	 develops	
combat	management	systems	for	navy	ships.	Therefore,	a	high	certainty	of	
data	delivery	within	the	ship	is	necessary.	In	the	current	infrastructure	used	
in	 these	products,	 quality	of	 service	 assurance	 is	 implemented.	This	 study	
focuses	 on	 how	 quality	 of	 service	 can	 be	 safeguarded	 in	 a	 cloud	 native	
environment.	 We	 tried	 to	 apply	 tools	 that	 can	 be	 used	 for	 safeguarding	
quality	 of	 service	 in	 non-cloud	 native	 environments,	 in	 a	 cloud	 native	
environment.	 During	 this	 study	 we	 found	 that	 currently	 there	 exists	 no	
Container	Network	Interface	(CNI)	that	allows	us	to	make	quality	of	service	
assurances	within	a	cloud	native	environment.		
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Chapter	1		

1 Introduction	
Thales	is	an	organization	that	has	multiple	business	lines	in	the	Netherlands	
for	 which	 they	 provide	 services.	 These	 business	 lines	 are	 cyber	 security,		
defense	 and	 transportation.	Within	 this	 thesis	 we	will	 put	 a	 focus	 on	 the	
defense	business	line.	One	of	the	products	Thales	offers	in	the	naval	domain	
is		Thales’	combat	management	system	named	Tacticos,	which	can	connect	to	
almost	 every	 sensor	 and/or	 weaponry.	 Another	 product	 line	 that	 Thales	
offers	is	all	about	sensory	equipment,	such	as	radars	with	various	ranges	of	
distance	that	can	be	installed	and	work	together	with	Tacticos.	

Thales	 is	 going	 to	 renew	 the	 infrastructure	 of	 their	 Combat	 Management	
System	 Tacticos	 and	 will	 move	 towards	 an	 infrastructure	 consisting	 of	
distributed	microservices,	governed	with	Kubernetes.	The	decision	towards	
this	 new	 infrastructure	 is	 the	 amount	 of	 overhead	 on	 physical	 resources,	
among	other	things.		On	this	infrastructure	multiple	levels	of	network	traffic	
exist,	ranging	from	mission	critical	data,	such	as	radar	tracks,	to	low	priority	
data,	such	as	back-ups.	

1.1 	Research	Questions	

In	 this	 study	 we	 focus	 on	 the	 question	 how	 quality	 of	 service	 can	 be	
safeguarded	in	a	cloud	infrastructure	consisting	of	distributed	microservices	
with	Kubernetes.	First,	we	look	at	the	existing	literature,	and	we	answer	what	
quality	of	 service	entails.	Next,	we	 look	at	ways	of	 safeguarding	quality	of	
service	 in	 the	current	 infrastructure.	We	 then	 look	at	what’s	different	 in	a	
cloud	native	environment	and	subsequently	try	to	apply	the	existing	tools	in	
a	cloud	native	environment.		Our	main	problem	is	the	following:	
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“How	can	quality	of	service	be	safeguarded	within	a	cloud	native	environment?”	

This	research	is	split	in	three	different	parts,	namely:	

1. Literature	study	
2. Analysis	of	current	technology	
3. Experimentation	

To	answer	the	main	problem	we	have	defined	the	following	sub-questions:	

1. Literature	study	
1.1. How	 can	 quality	 of	 service	 be	 best	 described?	

Quality	 of	 service	 is	 mentioned	 in	 many	 research	 papers	 and	
different	perspectives	on	quality	of	service	exist.	By	answering	this	
question,	 we	 will	 show	 what	 views	 exist	 and	 which	 views	 are	
relevant	 for	 this	 research.	 	After	having	 taken	all	 these	views	 into	
account	we	will	formalize	a	definition	which	will	be	used	during	the	
rest	of	the	research.	

1.2. How	 is	 quality	 of	 service	 safeguarded	 in	 a	 conventional	
network?	
With	this	question	we	will	investigate	what	tools	currently	exist	to	
ensure	 quality	 of	 service	 in	 conventional	 network	 solutions.	 By	
answering	 this	 question,	 we	 also	 research	 if	 some	 of	 these	
applications	can	be	mapped	onto	IT	infrastructures	that	are	built	in	
cloud	native	environments.	

1.3. What	are	the	shortcomings	or	barriers	of	quality	of	service	in	a	
conventional	network?	 	
For	us	to	present	a	decent	solution	to	the	research	question	or	main	
problem,	we	must	first	note	what	exactly	is	not	up	to	par	within	the	
current	solutions	that	aim	to	provide	quality	of	service.	

2. Analysis	of	cloud	technology	
2.1. How	 is	 quality	 of	 service	 safeguarded	 in	 a	 cloud-native	

environment	 with	 microservices	 and	 software	 defined	
networking?	
By	answering	 this	question	we	define	 a	baseline	of	 knowledge	on	
how	quality	of	service	can	be	ensured	in	a	cloud	native	environment.	
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This	means	that	we	compare	information	from	this	question	with	the	
answers	 to	 question	 1.2	 so	 that	 we	 know	 what	 the	 essential	
differences	between	the	two	environments	are.	

2.2. How	 can	 different	 Kubernetes	 pods	 be	 connected	 to	 enable	
quality	of	service?	 	
A	 multitude	 of	 network	 tools	 exist	 for	 container	 orchestration	
software,	 such	 as	 Kubernetes.	 These	 network	 tools	 have	 different	
implementations	and	as	such	they	also	have	multiple	ways	of	being	
connected	with	each	other.	By	answering	this	question,	we	will	lay	a	
foundation	on	how	different	tools	can	be	implemented	within	a	cloud	
native	environment.	

3. Experimentation	
3.1. How	do	different	tools	that	enable	quality	of	service,	differ	from	

each	other	in	a	test	environment?	 	
At	this	stage	of	the	research,	we	compare	how	the	different	network	
plugins	that	we	found	in	question	2.2	perform	in	different	settings	
and	 test	 environments.	 With	 the	 outcome	 of	 these	 tests,	 we	 will	
develop	a	model	on	how	quality	of	service	can	be	safeguarded.	

1.2 Contributions	

With	this	thesis	we	aim	to	provide	the	following	contributions:	

• An	analysis	of	what	is	currently	available	for	safeguarding	quality	of	
service.	

• A	clear	distinction	between	how	conventional	IT	infrastructures	and	
cloud	native	infrastructures	are	built.	

• An	overview	of	how	quality	of	service	can	be	safeguarded	in	a	cloud	
native	environment	and	current	barriers	and	limitations.	

• Support	 for	 Thales	 in	 the	 development	 of	 their	 new	 naval	 combat	
management	system.	
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1.3 Outline	 	

As	mentioned	earlier,	this	study	is	split	into	four	main	parts.	Apart	from	these	
three	 parts	 we	 discuss	 background	 information	 relevant	 to	 the	 study	 in	
chapter	2.	The	first	part	focuses	on	the	literature	study	and	can	be	found	in	
chapter	3.	In	chapter	3	we	form	a	definition	of	quality	of	service.	Afterwards,	
we	discuss	 how	quality	 of	 service	 can	 be	 enabled	 in	 a	 conventional	 (non-
cloud)	environment	and	why	this	environment	doesn’t	suffice	anymore.	 In	
chapter	4	we	 investigate	what	 technology	 currently	exists	 in	 regards	with	
quality	of	service	and	a	cloud	native	environment.	

Following	 the	 analysis	 of	 the	 current	 state	 of	 technology,	 we	 put	 these	
methods	to	the	test	in	chapter	5.	This	entails	testing	multiple	environments	
and	tools	in	such	a	way	that	we	can	draw	meaningful	conclusions	from	this	
data.		

In	chapter	6	we	discuss	studies	related	to	this	subject.	Finally,	we	present	our	
recommendations	 for	 safeguarding	 quality	 of	 service	 in	 a	 cloud	 native	
environment	in	chapter	7	and	reach	a	conclusion	in	chapter	8.	
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Chapter	2	

2 Background	
In	this	chapter	we	will	give	some	background	 information	on	the	research	
topic.	This	information	will	give	some	context	on	the	terminology	used	in	this	
research	thesis.	

2.1 	Containers	

Isolation	of	applications	in	conventional	infrastructures	is	done	by	running	
each	application	on	their	own	virtual	machine(s).	A	virtual	machine	can	be	
seen	as	a	virtualized	computer	or	server.	This	virtualization	is	done	by	a	so-
called	 hypervisor,	which	 runs	 directly	 on	 the	 infrastructure.	 These	 virtual	
machines	have	a	set	amount	of	virtual	CPU	and	RAM,	but	most	of	the	time	
these	 resources	 aren’t	 being	 used	 to	 the	 fullest	 by	 the	 application	 on	 the	
virtual	machine.	By	running	applications	on	their	own	virtual	machine,	we	
create	a	huge	overhead	on	the	available	resources	(Scheepers,	2014).		

This	 overhead	 is	 due	 to	 two	main	 reasons.	 First,	we	 see	 that	 each	 virtual	
machine	gets	its	own	piece	of	hardware	from	the	infrastructure	to	use.	This	
means	that	in	case	the	virtual	machine	does	not	fully	use	its	capacity	these	
resources	cannot	be	utilized	by	another	virtual	machine.	The	second	reason	
that	tells	us	why	overhead	increases	is	that	every	virtual	machine	has	its	own	
complete	operating	system	on	which	the	application	runs.		
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Figure	1	-	Infrastructure	with	virtual	machines	(Raza	&	Kidd,	2020)	

Containers	are	similar	to	the	virtual	machines	being	used	already,	but	they	
are	 built	 upon	 a	 more	 lightweight	 concept.	 Containers	 use	 a	 lightweight	
version	 of	 the	 operating	 system	 and	 application	 specific	 resources.	 This	
reduces	the	number	of	resources	needed	for	each	virtualized	application	and	
thus	 reduces	 overhead.	 Pahl	 (2015)	 also	 notes	 that	 there	 is	 a	 difference	
between	the	intention	of	containers	and	virtual	machines.	Virtual	machines	
mostly	speak	of	the	allocation	of	hardware,	while	containers	are	mostly	a	tool	
for	delivering	applications.	



9	

	

Figure	2-	Infrastructure	with	containers	(Raza	&	Kidd,	2020)	

2.2 	Kubernetes	

Kubernetes	 is	a	so-called	orchestrator	and	able	to	deploy	applications	that	
have	been	containerized.		Since	it	has	been	introduced	in	2014	it	has	become	
the	 standard	 API	 for	 building	 cloud	 native	 applications.	 Burns,	 Beda,	 &	
Hightower	(2017)	describe	that	there	are	four	main	reasons	why	containers	
and	container	APIs,	such	as	Kubernetes,	are	so	popular	these	days,	namely:	

1. Velocity	
In	the	current	time	updates	to	software	are	no	longer	distributed	via	CDs,	
but	web	based	and	at	shorter	intervals.	

2. Scalability	
With	 the	 containerization	 of	 applications	 we	 are	 more	 able	 to	 scale	
applications	on	the	aspect	they	really	need	to	be	scaled.	
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3. The	abstraction	of	the	IT	infrastructure	
Kubernetes	is	an	application-oriented	API,	which	means	that	we	no	
longer	look	at	applications	like	virtual	machines.	

4. Efficiency	
Due	to	the	fact	that	we	no	longer	think	of	applications	as	virtual	machines	
we	can	run	applications	from	the	same	hardware	as	other	applications	

2.3 	Thales	domain	

In	modern	warships	we	have	the	“combat	information	center”	(CIC).	this	is	a	
fortified	part	 of	 any	war	 vessel.	 The	CIC	 functions	 as	 a	 tactical	 center	 and	
provides	processed	information	of	the	near	battlespace,	or	area	of	operations.	
The	information	being	collected	in	the	CIC	is	used	by	the	commanding	officer	
to	make	decisions.	The	information	being	shown	could	for	instance	be	radar	
tracks,	which	registers	each	and	every	subject	in	the	near	surrounding.	The	
software	within	the	CIC,	Tacticos,	supports	the	operating	crew	by	creating	an	
automated	situation	awareness	through	the	integration	of	multiple	sensors,	
performing	threat	analyses	and	generating	combat	engagement	plans.		

This	essentially	means	that	in	the	CIC	information	from	a	lot	of	systems	of	the	
vessel	is	combined,	such	as	radar	tracks,	status	of	missile	launchers	and	the	
guns	on	deck.	The	radar	tracks	are	part	of	the	mission	critical	information,	
because	they	are	also	used	for	the	guidance	systems	of	the	missiles	and	guns	
(and	thus	for	the	attack/defense	mechanisms	of	the	ship).	All	this	information	
is	 gathered,	 processed	 and	 used	 for	 battle	 circumstances	 by	 the	 Thales	
combat	management	system,	Tacticos.	

The	problem	at	hand	is	that	there	is	so	much	data	generated	by	all	sorts	of	
systems	within	 the	 vessel	 that	 quality	 of	 service	must	 be	 safeguarded	 for	
certain	kinds	of	data,	such	as	these	radar	tracks,	while	data	like	backups	or	
video	streams	have	lower	priority	and	could	be	delayed	for	some	time	or	in	
certain	cases	be	completely	dropped.		

Another	difficulty	is	that	these	streams	of	data	are	not	constant.	There	are	big	
differences	 between	 data	 streams	 when	 a	 ship	 finds	 itself	 in	 a	 combat	
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situation	 versus	 the	 situation	when	 the	 ship	 is	 in	 a	 peace	 situation.	 	 In	 a	
combat	situation	the	ship’s	radar	will	perform	at	its	peak	for	an	as	accurate	
as	 possible	 situational	 awareness	 of	 the	 surrounding	 area.	 Furthermore,	
stabilization	data,	used	to	compensate	the	ship’s	weapon	and	radar	system	
against	 the	 ship’s	 movement,	 needs	 to	 be	 sent	 to	 for	 instance	 a	 gun.	
Meanwhile	radar	tracks	also	need	to	be	sent	to	the	gun	for	guidance	to	the	
target.	You	can	probably	imagine	that	in	a	situation	like	this	network	traffic	
is	much	more	critical	 than	when	the	ship	 is	 in	some	sort	of	 “peace”	mode,	
when	updates	to	the	system	are	applied.	
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Chapter	3	

3 Literature	on	conventional	
networks	

In	this	chapter	we	discuss	the	theoretical	part	of	this	study.	Here	we	answer	
the	 research	questions	1.1,	1.2	 and	1.3.	This	means	 that	 after	 reading	 this	
chapter	we	have	a	definition	of	what	quality	of	service	is	in	the	context	of	this	
thesis,	how	quality	of	service	is	safeguarded	in	a	conventional	network	and	
why	we	move	away	from	the	conventional	environment.	

3.1 	How	can	quality	of	service	be	best	
described?	

In	this	section	we	will	dive	into	the	question	how	quality	of	service	can	be	
best	 described	 from	 different	 perspectives	 on	 the	 topic.	 Specifically,	 we	
consider	these	distinct	viewpoints:		

1. The	technical	side	of	quality	of	service,	which	includes	metrics.	
2. The	organizational	side	of	quality	of	service,	where	metrics	are	used	

as	values	for	what	is	acceptable	and	what	is	not	acceptable.	
3. The	end	user	perspective	on	quality	of	service.	This	part	is	covered	in	

the	organizational	view	on	quality	of	service.	

With	this	information	we	will	formulate	a	definition	of	quality	of	service,	that	
fits	within	the	scope	of	this	research.	This	definition	is	subsequently	used	for	
the	rest	of	the	study;	which	means	that	the	testing	and	formalization	will	be	
based	on	this	definition.	
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3.1.1 Technical	view	on	Quality	of	Service	
The	default	way	for	IP	packages	to	travel	the	internet	is	that	they	have	a	best	
effort	mode.	This	means	 that	we	 try	 to	deliver	 every	package	 in	 a	 correct	
manner,	but	when	congestion	starts	to	happen,	we	do	not	ensure	that	every	
package	reaches	its	destination	(Ponnappan,	Yang,	Radhakrishna,	&	Braun,	
2002).		

Quality	of	service	is	all	about	how	an	application	performs	within	a	specific	
network.		We	do	this	through	resource	management.	This	quality	of	service	
can	 be	 accomplished	 by	 reserving	 bandwidth,	 prioritizing	 the	 different	
network	packages,	monitoring	for	change	within	the	network	and	by	scaling	
resources	according	to	the	needs	of	the	application	(Adis,	2003).	

To	measure	 the	quality	of	our	 service	we	need	 to	know	how	our	network	
performs.	This	means	that	there	should	be	some	characteristics	within	our	
network	and	our	application,	that	makes	it	possible	for	us	to	know	if	the	user	
experience	 with	 regards	 to	 the	 application	 is	 satisfied	 with	 the	 network	
capacity	and	rules	we	have	in	place.			 There	are	several	basic	characteristics	
that	are	used	to	measure	with	what	sort	of	quality	a	network	package	arrives	
at	 the	 receiver.	 The	 following	 characteristics	 are	 crucial	 when	 looking	 at	
quality	of	service	(Szigeti,	Hatting,	Barton,	&	Briley,	2013):	

- Delay	(or	latency):	This	is	the	amount	of	time	it	takes	for	a	network	
package	to	reach	the	endpoint	of	the	receiver	from	the	endpoint	of	the	
sender.	

- Jitter	(or	delay	variation):	This	is	the	variation,	or	difference,	in	the	
end-to-end	delay	in	arrival	between	sequential	packets.	

- Packet	drops:	This	 is	 a	measure	of	 the	number	of	packets	 that	 are	
received	 by	 the	 receiving	 endpoint	 compared	 to	 the	 number	 of	
packages	sent	by	the	sending	party,	expressed	as	a	percentage	or	in	
absolutes.	

- Bandwidth:	 The	 amount	 of	 data	 that	 can	 be	 sent	 through	 a	 data	
connection.		
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By	monitoring	 these	metrics,	we	 can	get	 an	overview	of	how	 the	network	
environment	is	performing	and	see	possible	patterns	appear.	By	recognizing	
the	patterns	of	activity	within	the	network	we	enable	the	possibility	of	scaling	
up	or	down	in	the	resources	allocated	for	the	specific	application	and	thus	we	
get	closer	to	safeguarding	quality	of	service.	

3.1.2 Organizational	view	on	Quality	of	Service	
When	we	talk	about	quality	of	service	and	network	infrastructures,	Service	
Level	 Agreements	 (SLAs)	 immediately	 come	 to	mind.	 SLAs	 are	 a	 contract	
between	a	provider	and	a	customer.	For	instance,	between	a	cloud	provider	
or	a	data	center	and	a	streaming	service.	The	streaming	service	wants	some	
sort	of	guarantee	from	the	cloud	provider	that	their	infrastructure	is	on	par	
with	the	needs	of	the	streaming	service.	This	form	of	guarantee	is	provided	
by	making	use	of	service	level	agreements.	In	this	SLA	the	cloud	provider	and	
the	streaming	service	define	the	outer	bounds	wherein	the	application	will	
be	able	 to	 show	normal	behavior.	 If	 the	 cloud	provider	does	not	meet	 the	
requirements	set	in	the	SLA,	hefty	fines	can	be	applied	due	the	fact	that	the	
streaming	service	quality	lowers.	

For	us	to	know	the	normal	behavior	of	an	application,	we	need	to	know	the	
standard	 or	 acceptable	 behavior	 of	 the	 application.	 These	 restrictions	 on	
behavior	need	to	be	formalized	in	so	called	Service	Level	Objectives	(SLOs).	
In	these	SLOs	topics	such	as	availability,	latency	and	capacity	are	considered	
(Hashman,	2019).	An	example	of	an	SLO	would	be	in	the	form	of	“There	may	
be	a	maximum	package	drop	of	2%”.	An	SLA	would	then	consist	of	a	multitude	
of	these	SLOs.	

We	 know	when	 things	 are	 going	wrong	 by	 observing	 the	 behavior	 of	 the	
application	(with	metrics)	and	comparing	these	values	with	the	values	that	
are	set	earlier	 in	 the	SLO.	 In	other	words,	we	can	say	that	 the	end	user	or	
management	expectations	are	declared	in	the	SLO	and	with	this	we	are	able	
to	commit	to	safeguarding	quality	of	service.	

Szigeti,	Hatting,	Barton,	&	Briley	 (2013)	also	state	 that	 it	 is	 critical	 to	 first	
develop	 these	 business	 or	 organizational	 targets	 the	 application	 should	
adhere	to,	before	even	talking	about	the	technical	implementation	of	quality	
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of	 service.	This	entails	 that	 service	 level	 requirements	must	be	 set	 for	 the	
application.	With	these	requirements	we	can	 look	for	tooling	that	matches	
the	requirements	or	start	designing	policies	that	enable	quality	of	service.	

As	mentioned	in	the	introduction	of	this	section,	we	also	have	the	user	view	
on	quality	of	service	to	discuss.	There	isn’t	much	literature	on	this	topic,	apart	
from	taking	surveys	and	monitoring	customer	satisfaction.	When	we	go	back	
to	our	example	of	the	cloud	provider	and	the	streaming	service	we	can	say	
that	 the	 streaming	 service	 does	 not	 want	 any	 form	 of	 video	 buffering.	 A	
requirement	 like	 this	 would	 be	 mentioned	 in	 the	 SLA	 and	 this	 would	 be	
translated	into	one	or	more	SLO	targets.	Therefore,	we	can	say	that	if	the	SLA	
and	SLOs	are	set	correct	the	end	user	will	have	a	satisfying	experience.		

3.1.3 Defining	Quality	of	Service	
Now	 that	 we	 have	 seen	 the	 different	 views	 on	 quality	 of	 service	 we	 will	
formalize	 a	 definition	 of	 quality	 of	 service,	 suited	 for	 this	 study.	 This	
definition	 of	 quality	 of	 service	 will	 be	 the	 foundation	 of	 the	 rest	 of	 the	
research.	Summarized	we	see	that	quality	of	service	entails	two	main	views:	
the	organizational	and	the	technical	view.	The	core	of	the	technical	view	is	
that	 we	monitor	 and	 control	 the	 flow	 of	 network	 packages	 based	 on	 the	
metrics	we	 see	 in	 our	monitoring.	We	 compare	 these	metrics	 against	 the	
values	we	get	from	the	SLOs,	which	in	turn	are	derived	from	the	SLAs.	When	
we	combine	this	information	we	get	to	the	following	definition:	

Quality	of	service	entails	giving	the	end	user	a	satisfiable	experience,	which	is	in	
line	with	the	set	organizational	objectives.	

This	can	be	achieved	via	constant	monitoring	of	the	environment,	resource	
management,	 scaling	 applications	 up	 or	 down	 and	 controlling	 the	 flow	 of	
network	packages.	
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3.2 	How	is	quality	of	service	
safeguarded	in	a	conventional	
network?	

As	 mentioned	 in	 section	 3.1.1	 quality	 of	 service	 is	 accomplished	 with	
management	tools	that	reserve	bandwidth,	prioritize	usage,	monitor	change	
and	scale	resources	according	to	the	current	usage	and	needs.		

There	is	a	multitude	of	tools	that	can	be	implemented	to	safeguard	quality	of	
service	in	a	conventional	network.	Naturally	we	would	like	some	monitoring	
tools,	but	in	general	there	are	three	groups	of	tools	that	can	improve	network	
quality	(Szigeti,	Hatting,	Barton,	&	Briley,	2013):	

- Classification	and	marking	tools	
- Policing,	shaping	and	markdown	tools	
- Congestion	management	or	scheduling	tools	

In	this	section	we	investigate	how	these	network	management	tools	can	be	
implemented	for	a	conventional	network.	When	we	speak	of	a	conventional	
network,	we	talk	about	a	network	infrastructure	that	is	not	cloud	native.	To	
add	some	more	detail;	we	speak	of	conventional	networks	in	the	case	that	
switches	and	other	networking	devices	are	physical	hardware	devices.	Now	
that	we	move	towards	a	cloud	native	environment,	we	see	that	these	physical	
hardware	devices	are	being	replaced	by	a	virtual	equivalent	of	these	devices.	
It	must	be	noted	that	these	virtual	devices	run	on	physical	devices	which	are	
connected	via	a	physical	infrastructure.	

The	outline	of	this	section	is	as	follows:	 first	we	describe	each	kind	of	tool	
used	for	safeguarding	quality	of	service	in	a	generic	manner.	After	this	brief	
overview	 we	 give	 an	 in-depth	 explanation	 of	 how	 such	 a	 tool	 can	 be	
implemented.			
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3.2.1 Monitoring	
The	first	thing	we	must	do	to	enable	quality	of	service	 is	using	monitoring	
tools.	How	else	would	we	know	what	the	situation	in	our	environment	is	like?	
This	monitoring	can	be	done	on	multiple	locations	within	our	environment	
such	 as	monitoring	 the	 CPU	 usage	 of	 our	 application	 servers,	 but	 for	 this	
research	 question	 we	 limit	 the	 research	 to	 network	 monitoring.	 This	
monitoring	is	done	on	the	service	level	objectives	that	are	derived	from	the	
service	level	agreement	that	is	agreed	upon	between	provider	and	end	user.		

As	 mentioned	 earlier,	 these	 service	 level	 objectives	 are	 measurable	
characteristics	within	 the	 network,	 such	 as	 delay,	 jitter,	 the	 percentage	 of	
packages	 dropped	 and	 bandwidth.	 Lee,	 Kim,	 Hong	 and	 Lee	 (2002)	 divide	
these	characteristics	into	the	following	quality	of	service	parameters:	

1. Availability	
2. Delivery	
3. Latency	
4. Bandwidth	
5. Mean	Time	Between	Failure	(MTFB)	
6. Mean	Time	to	Restore	Service	(MTRS)	

In	this	study	we	won’t	take	MTFB	and	MTRS	into	account	as	they	have	no	link	
with	the	network	connection	and	are	therefore	out	of	scope.	

The	 quality	 of	 service	 parameters	 can	 be	 split	 into	 network	 performance	
metrics	(NPMs).	These	NPMs	can	be	divided	in	the	following	four	categories	
and	their	respective	metrics	(Lee,	Kim,	Hong,	&	Lee,	2002):		
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Availability	 Loss	(Delivery)	 Delay	(Latency)	 Utilization	
(Bandwidth)	

• Connectivity	 • One	 way	
loss	

• One	 way	
delay	

• Capacity	

• Functionality	 • Round	 trip	
loss	

• Round	 trip	
delay	

• Bandwidth	

	 	 • Delay	
variance	
(jitter)	

• Throughput	

Table	1	-	Network	Performance	Metrics	

First,	we	have	the	category	Availability.	There	we	have	the	NPMs	Connectivity	
and	Functionality.	These	metrics	can	be	measured	as	in	‘a	device	is	reachable’	
or	 ‘we	 receive	 functional	 data	 from	 application	 x’,	 but	 apart	 from	 these	
statements	 we	 can’t	 measure	 anything	 related	 to	 performance.	 It	 is	
connected/functional	or	not.		

The	second	category	is	Loss.	One	way	loss	is	the	amount	of	network	packages	
lost	 in	 a	network	 stream	 from	a	 sender	A	 to	a	 receiver	B.	Round	 trip	 loss	
measures	 the	 number	 of	 packages	 lost	 during	 a	 transmit.	 Apart	 from	 the	
number	of	packages	lost	this	metric	also	shows	if	the	package	lost	gets	lost	
during	sending	or	during	reflection.	

Delay	entails	three	network	performance	metrics.	The	One	way	delay		is	
the	amount	of	time	it	takes	for	a	message	from	sender	A	to	be	received	by	
recipient	B.	Round	trip	delay	also	known	as	Round	trip	time	is	the	amount	of	
time	that	passes	when	a	message	 is	sent	 from	A,	received	by	B	and	that	A	
receives	an	acknowledgement	of	successful	 transfer.	 	The	 last	metric	 from	
this	category	is	Jitter.	This	displays	the	variance	in	the	delays.	

The	last	category	is	Utilization.	The	first	metric	is	Capacity.	Usually	this	is	a	
given,	for	example,	the	cable	between	point	A	and	point	B	can	transmit	data	
at	a	rate	of	10	gigabit	per	second.	Bandwidth	is	the	rate	at	which	a	network	
stream	may	be	sent.	Throughput	is	the	actual	speed	of	the	network	stream.	
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The	NPMs	mentioned	above	are	quite	different.	 Some	are	measurable,	but	
don’t	 really	 have	 a	 performance	 scale,	 while	 other	metrics	 are	more	 of	 a	
given.	Therefore,	there	exist	multiple	types	of	tooling	to	measure	these	NPMs.		

There	are	 three	 types	of	network	monitoring	 tools.	The	 first	 type	 is	active	
monitoring.	 Active	 monitoring	 includes	 doing	 performance	 tests	 on	 the	
network,	 which	 enables	 us	 to	 monitor	 our	 connectivity,	 delay	 and	 loss	
metrics	 and	 bandwidth	 utilization.	We	 can	 also	 apply	 passive	monitoring.	
This	enables	us	to	measure	the	utilization	metrics	within	our	environment.	
Passive	 monitoring	 is	 mostly	 done	 on	 the	 forwarding	 devices	 within	 the	
network	 infrastructure.	 Traffic	 statistics,	 for	 instance,	 are	 automatically	
gathered	by	a	switch	and	can	be	requested	for	monitoring	goals.	At	last,	we	
have	 the	 SNMP	agents.	 SNMP-agents	 can	be	used	 to	 retrieve	management	
data	of	the	client.	Through	the	collecting	of	this	information,	we	can	measure	
functionality	and	throughput	metrics	(Lee,	Kim,	Hong,	&	Lee,	2002).	

These	metrics	on	themselves	don’t	improve	our	network,	but	they	give	us	a	
better	understanding	of	where	 in	our	 environment	 congestion	 takes	place	
and	what	other	forms	of	potential	hiccups	might	be	present.	

3.2.2 Classification	and	marking	tools	
Network	 flows	 of	 traffic	 can	 be	 analyzed	 to	 classify	 the	 network	 packets	
within	 the	 flow	 and	 consequently	marked.	 In	 essence	 this	means	 that	we	
make	a	difference	between	the	IP-packets	we	send	and	receive.		

First	 the	 IP	packages	 are	marked	differently.	 	 This	marking	 is	done	 in	 the	
header	of	the	network	packet.		In	the	case	of	an	IPv4	package	this	is	called	the	
DSCP	field	and	the	traffic	class	field	in	case	of	an	IPv6	package.		

The	 classification	 of	 IP	 packages	 is	 done	 based	 on	 the	 marking	 in	 the	 IP	
header	fields.	This	in	turn	leads	to	IP	packages	belonging	to	different	network	
classes.	With	these	classes	we	can	say	that	class	X	has	higher	priority	on	the	
network	 than	 class	 Y.	 The	 analysis	 of	 these	 network	 flows	 is	 done	 on	 the	
access	switches	of	an	environment.	This	has	as	effect	that	the	analysis	needs	
only	to	be	done	once	within	an	environment	(Xiao	&	Ni,	1999).	
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3.2.2.1 DSCP	trust	mode	
We	discussed	using	the	DSCP	field	in	a	network	package	as	a	classification	
mechanism.	By	classifying	these	network	packages,	we	can	place	them	at	the	
queue	with	 the	correct	priority	on	a	switch.	Some	applications	can	set	 the	
DSCP	value	by	 themselves,	while	others	don’t.	This	means	 that	we	 cannot	
always	believe	that	the	priority	of	a	network	package	is	the	same	as	the	value	
the	network	package	has	in	its	DSCP	field.	

To	make	 sure	 that	 the	 network	 packages	 receive	 the	 correct	 priority	 it	 is	
possible	to	overrule	the	value	that	is	written	in	the	DSCP	field.	Cisco	switches	
have	three	different	types	of	handling	these	DSCP	values.	The	first	mode	is	
‘Basic	Mode’.	In	this	mode	we	trust	that	the	DSCP	value	is	correct	and	network	
traffic	is	handled	as	such.	The	next	mode	available	on	the	Cisco	switches	is	
the	 ‘Advanced	Mode’.	 In	 this	mode	we	make	use	of	 an	Access	Control	List	
which	helps	us	to	give	the	right	priorities	to	specific	network	traffic.	The	third	
option	is	to	not	take	these	different	priorities	into	account	and	just	make	use	
of	a	best	effort	mentality	(Cisco,	n.d.).	

As	 the	 reader	might	 have	 guessed	 it	 is	 not	 possible	 to	 use	more	 than	one	
different	mode	at	the	same	time	on	the	same	device.	As	we	just	mentioned	
the	third	mode	has	no	different	priorities	and	takes	a	best	effort	approach.	In	
the	advanced	mode	we	generally	trust	no	one	and	use	the	Access	Control	List	
for	prioritizing	and	we	have	the	Trust	mode	where	we	accept	the	value	of	the	
DSCP	field.	

Although	we	are	not	able	to	use	more	than	one	mode	on	one	device,	we	do	
want	 to	 make	 use	 of	 different	 modes	 on	 different	 devices.	 On	 the	 access	
switches,	or	switches	that	are	connected	to	the	end	users	we	don’t	want	to	
trust	the	DSCP	value	of	the	network	packages	as	this	could	lead	to	end	users	
damaging	the	quality	of	service	within	our	network	by	flooding	the	network	
with	high	priority	packages.	This	means	that	on	the	access	switches	we	want	
to	use	Advanced	Mode	if	we	want	some	level	of	quality	of	service	at	this	point	
in	 the	 network.	 If	 we	 don’t	 need	 quality	 of	 service	 for	 some	 part	 of	 the	
network,	we	can	make	use	of	the	best	effort	class.	On	the	core	switches	we	
want	to	trust	every	network	package,	as	these	switches	are	meant	to	forward	
data	as	fast	as	possible,	without	verifying	what	is	in	the	package.	
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3.2.2.2 Access	Control	List	
An	Access	Control	List	(ACL)	allows	us	to	apply	rules	to	incoming	and	external	
traffic	on	a	network	switch.	With	an	access	control	list,	we	are	able	to	block	
certain	types	of	 traffic	on	the	basis	of	 IP	address,	protocol	(TCP/UDP)	and	
port	number,	but	in	the	context	of	quality	of	service	this	is	not	used.	An	access	
control	list	doesn’t	allow	for	deep	packet	inspection	telling	us	what	type	of	
traffic	 is	 being	 handled.	 However,	 based	 on	 the	 origin/destination,	 the	
protocol	and	the	port	number,	we	have	a	good	understanding	of	what	kind	of	
traffic	is	being	handled.	

Now	that	we	know	what	kind	of	traffic	passes	through	our	ACL	on	the	switch,	
we	can	label	these	kinds	of	traffic	by	editing	their	traffic	class	or	DSCP	value	
in	the	IP-header.	Furthermore,	we	can	classify	different	types	of	traffic	and	
map	this	class	to	a	specific	queue	on	the	switch.	With	this	queueing	we	can	
ensure	that	the	network	classes	get	the	right	priority	on	the	switch	(Is5com,	
n.d.).		

This	has	a	positive	impact	on	the	delay	of	higher	priority	network	packages,	
while	network	packages	with	no	or	low	priority	will	experience	a	negative	
impact	on	the	delay	of	network	packages.	The	same	can	be	said	on	the	topic	
of	package	drops.	All	in	all,	we	can	say	that	these	Access	Control	Lists	are	used	
as	classification	and	marking	tools.		

3.2.3 Policing,	shaping	and	markdown	tools	
We	can	create	different	classes	of	network	traffic.	Each	network	class	gets	its	
own	 portion	 of	 the	 network	 resources	 allotted.	 It	 can	 still	 happen	 that	
network	 packages	 need	 to	 be	 dropped,	 delayed	 or	 re-marked	 to	 avoid	
congestion	when	traffic	exceeds	the	available	resources.	

Xiao	&	Ni,	(1999)	explain	that	an	SLA	describes	what	the	requirements	of	a	
specific	application	are.	It	is	the	responsibility	of	the	user/customer	to	make	
sure	to	not	go	out	of	the	bounds	that	are	set	in	the	SLA.	The	user	can	prevent	
the	network	traffic	going	out	of	these	bounds	by	making	use	of	shaping.	This	
entails	 that	 the	 outgoing	 (egress)	 routers	 on	 the	 user	 side	will	 shape	 the	
network	traffic	such	that	peak	traffic	will	stay	within	these	bounds.	On	the	
provider	side	policing	tools	are	used	to	verify	that	traffic	towards	the	user	
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(ingress)	adheres	to	the	bounds	set	in	the	SLA.	Szigeti	et	al.	(2013)	mention	
that	if	during	peak	traffic,	traffic	exceeds	bounds,	shaper	tools	try	to	flatten	
this	peak	by	buffering	and	delaying	traffic.	

3.2.3.1 Shaping	
An	example	of	such	a	shaper	is	a	token	bucket	algorithm.	With	a	token	bucket	
algorithm	we	 can	 send	network	packages	 at	 high-speed	bursts,	 for	 a	 very	
short	while,	to	stay	within	the	bandwidth	limits.	After	a	time	limit,	we	are	able	
to	send	network	packages	again	at	a	high	burst	speed	(Medhi	&	Ramasamy,	
2018).	This	will	help	providing	a	satisfiable	connection	on	for	instance,	a	VoIP	
channel,	for	as	long	as	our	rate	of	sending	data	isn’t	taking	more	time	than	an	
acceptable	 delay	 of	 speech	 in	 the	 call.	 This	 is	 an	 example	 of	 a	 shaping	
mechanism	 that	affects	outgoing	network	 traffic.	Due	 to	 the	 constant	 time	
intervals	between	the	sending	of	data	we	gain	a	non-variable	amount	of	jitter.		
This	in	turn	leads	to	a	higher	quality	connection.	

3.2.3.2 Policing	
Policing	tools	are	there	to	verify	that	the	packages	being	sent	adhere	to	these	
set	requirements.		These	policing	tools	are	used	at	the	providing	side	of	the	
SLA.	If	network	traffic	exceeds	the	bound	that	are	set	in	the	SLA	these	policing	
tools	will	be	used	to	drop	packages.		

Cisco	 has	 developed	 two	 policing	 algorithms.	 Committed	 Access	 Rate	 and	
Class-Based	 policing	 (Heggi,	 Abd	 El-Kader,	 Eissa,	 &	 Baraka,	 2009).	 Both	
policing	 algorithms	 use	 a	 Token	 Bucket	 algorithm.	 In	 case	 ingress	 traffic	
exceeds	 the	 limits	of	 inbound	traffic	 the	Committed	Access	Rate	algorithm	
drops	 network	 traffic	 to	 stay	 within	 the	 limit.	 Class-Based	 policing	 drops	
network	 traffic	 while	 also	 taking	 the	 priority	 of	 a	 network	 package	 into	
account	by	looking	at	the	DSCP	value	of	a	network	package.			

3.2.4 Congestion	management	or	scheduling	tools	
Networks	 are	 built	 with	 switches	 and	 routers.	 These	 devices	 forward	
information	to	the	next	switch,	router	or	end	device.	If	the	input	stream	of	
such	 a	 device	 exceeds	 the	 output	 rate	 of	 the	 device	 congestion	will	 arise	
(Bernet,	2000).	



23	

Enabling	quality	of	service	with	congestion	management	entails	that	network	
streams	must	be	grouped	and	put	 into	 specified	queues	at	 the	 forwarding	
devices.	This	buffering	only	happens	when	congestion	starts	to	appear	but	
placing	 the	 network	 packets	 in	 queues	 (of	 different	 importance)	 always	
happens.	Congestion	management	is	built	upon	two	main	ideas	(Szigeti	et	al,	
2013):	

1. Queuing:	When	congestion	starts	to	appear	at	the	forwarding	device	
network	packages	will	be	ordered	in	output	queues	each	with	their	
own	class	of	 importance.	Some	types	of	network	traffic	do	not	 fare	
well	with	 being	 queued.	 These	 kinds	 of	 traffic	 should	make	 use	 of	
Admission	Control	 techniques	and	should	wait	 to	be	sent,	until	we	
know	that	there	is	enough	room	for	these	packages	on	the	network.	

2. Scheduling:	 Because	 of	 the	 different	 classifications	 of	 network	
packages	with	regards	to	quality	of	service,	there	must	be	some	sort	
of	scheduling	management.	Bernet	(2000)	describes	the	scheduling	
as	traffic	handling	mechanisms,	which	are	subject	to	policies	that	are	
set	 by	 network	 administrators.	 This	 means	 that	 the	 scheduling	 is	
dependent	on	the	service	level	objectives	of	the	organization.	

The	buffering	is	done	in	the	memory	of	a	forwarding	device,	such	as	a	router	
or	a	switch.	Since	this	memory	is	a	limited	resource	on	the	forwarding	device,	
it	is	impossible	to	have	an	infinite	length	of	packages	waiting	in	queue.	This	
ultimately	means	that	when	the	buffer	size	is	full,	that	packages	need	to	be	
dropped.	There	exist	a	multitude	of	algorithms	or	tools	to	keep	these	buffers	
from	 overflowing.	 We	 present	 an	 example	 of	 a	 scheduling	 and	 queueing	
algorithm	in	the	next	two	sections.	

3.2.4.1 Load	Balancing	
One	of	the	easiest	ways	to	create	a	higher	quality	experience	is	by	monitoring	
the	load	of	the	environment.	When	we	know	where	in	our	infrastructure	load	
is	getting	high	or	congestion	starts	to	appear,	only	then	we	know	where	we	
can	scale	our	environment	and	decrease	the	load.	This	scaling	can	be	done	by	
adding,	 for	 instance,	 an	 extra	 application	 server	 or	 another	 switch	 to	 the	
environment	(NGINX,	n.d.).	By	decreasing	the	load,	we	lower	the	amount	of	
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congestion,	 where	 load	 was	 high.	 This	 means	 that	 load	 balancing	 is	 a	
congestion	management	tool.		

Congestion	 has	 a	 negative	 effect	 on	 the	 percentage	 of	 dropped	 packages,	
because	when	congestion	starts	to	get	critically	high,	packages	most	certainly	
will	be	dropped,	if	allowed.	By	balancing	the	load,	we	lower	the	amount	of	
congestion	of	a	specific	object,	which	has	a	positive	effect	on	the	percentage	
of	dropped	packages.	

A	load	balancer	needs	to	redirect	a	network	package	to	the	correct	endpoint.	
In	other	words,	a	load	balancer	needs	to	schedule	network	traffic.	An	example	
of	 such	a	scheduling	algorithm	 is	Round	Robin.	Round	Robin	 is	one	of	 the	
simplest	 load	 balancing	 algorithms.	 Say	 you	 have	 K	 amount	 of	 endpoints.	
Round	 Robin	 algorithm	will	 schedule	 package	 N	 at	 endpoint	 N.	 The	 next	
package	N+1	 is	 sent	 to	endpoint	N+1,	until	 endpoint	K	 is	 reached	and	 the	
cycle	starts	again	(Hidayat,	Azzery,	&	Mahardiko,	2020).	

3.2.4.2 Package	dropping	
Although	we	can	make	use	of	load	balancers	to	lower	the	load,	it	is	not	always	
possible	to	scale	in	resources.	This	means	that	in	certain	circumstances	traffic	
needs	to	be	dropped	to	prevent	the	buffers	of	forwarding	devices	to	overflow.	

An	example	of	such	an	algorithm	that	drops	packages	on	a	forwarding	device	
is	 the	 RED	 algorithm.	 The	 problem	 with	 the	 RED	 algorithm	 concerning	
quality	of	service,	 is	that	the	package	being	dropped	is	random.	This	could	
lead	to	the	dropping	of	packages	with	critical	information.	To	make	sure	that	
packages	with	higher	priority	don’t	get	dropped	we	can	also	make	use	of	the	
WRED	protocol.	This	is	in	essence	the	same	as	the	RED	protocol,	only	we	are	
able	 to	 add	weight	 to	 a	 package	 	 (Kesh,	Nerur,	&	Ramanujan,	 2002).	 This	
weighing	of	the	network	package	is	done	based	on	the	traffic	class	field	or	
DSCP	field.	(Szigeti	et	al,	2013).	

3.2.5 Summary	
In	 this	 section	we	 talked	about	how	quality	of	 service	 can	be	 safeguarded	
within	a	conventional	environment.	The	first	step	we	take	is	to	monitor	our	
environment	and	keep	track	of	our	Network	Performance	Metrics	(NPMs).	
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These	 NPMs	 are	 shown	 in	 Table	 1.	 Now	 that	 we	 know	 where	 potential	
bottlenecks	 in	 our	 environment	 take	 place,	 we	 are	 more	 capable	 of	
safeguarding	quality	of	service.	The	gathering	of	these	NPMs	can	be	done	via	
three	types	of	monitoring:	

1. Active	monitoring	through	performance	tests	
2. Passive	monitoring	on	forwarding	devices	
3. Using	SNMP-agents	

The	second	way	that	we	can	safeguard	quality	of	service	is	by	influencing	how	
network	traffic	is	transmitted	within	our	environment.	The	tooling	that	we	
can	use	to	influence	network	traffic	can	be	divided	into	three	categories:	

1. Classification	and	Marking	tools	
2. Policing,	Shaping	and	Markdown	tools	
3. Congestion	Management	or	Scheduling	tools	

Within	Classification	and	Markdown	tools	we	have	DSCP	and	ACL.	DSCP	can	
be	used	to	add	the	priority	of	a	package	into	the	IP	header.	With	an	ACL	we	
can	read	to	what	type	of	class	a	package	belongs	and	put	it	on	the	according	
queue	on	a	forwarding	device.	

Policing,	Shaping	and	Markdown	tools	most	often	make	use	of	a	Token	Bucket	
algorithm	that	allows	us	to	shape	egress	traffic	(by	making	use	of	a	buffer)	in	
a	way	that	our	sending	throughput	stays	within	our	set	limit.	Token	Bucket	
algorithms	 can	 also	 be	 used	 in	 a	 policing	 function.	 This	 entails	 that	 the	
algorithm	drops	traffic	that	exceeds	our	set	limit.	

We	 can	 manage	 congestion	 by	 making	 use	 of	 a	 load	 balancer.	 This	 load	
balancer	needs	a	scheduling	algorithm	to	determine	to	where	network	traffic	
should	be	sent.	An	example	of	such	an	algorithm	is	Round	Robin.	Queuers	on	
the	 other	 hand	 determine	 how	 congestion	 at	 a	 queue	 should	 be	 handled.	
Queuers	can	drop	packages	with	algorithms	such	as	RED	and	WRED.	

In	 conclusion,	 we	 can	 safeguard	 quality	 of	 service	 in	 a	 conventional	
environment	by	monitoring	our	environment	and	making	use	of	one	or	more	
of	the	tools	mentioned	above.	
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3.3 What	are	the	shortcomings	or	
barriers	of	quality	of	service	in	a	
conventional	network?	

In	 this	 section	 we	 answer	 the	 question	 on	 what	 the	 shortcomings	 of	 a	
conventional	 infrastructure	 are.	 By	 answering	 this	 question,	 we	 also	 give	
some	 explanation	 why	 the	 usage	 of	 cloud	 computing	 keeps	 increasing.	
Section	3.3.1	is	added	to	give	some	extra	context	to	the	situation	but	will	not	
help	us	to	answer	the	research	question	above.	

3.3.1 Resource	management	
In	conventional	network	infrastructures	we	see	that	every	application	runs	
on	one	or	more	application	servers.	This	application	server	is	built	with	a	set	
of	hardware	requirements.	For	instance,	the	machine	must	be	equipped	with	
32GB	 of	 RAM.	 In	 most	 cases	 an	 application	 has	 peak	 traffic	 at	 specific	
intervals	and	thus	the	application	server	is	equipped	for	this	peak	traffic.	At	
other	times	the	application	server	doesn’t	nearly	reach	the	usage	of	this	peak	
traffic.	In	a	conventional	IT	infrastructure,	it	isn’t	possible	to	dedicate	some	
of	the	RAM	the	application	server	has	to	other	application	servers	in	need	of	
resources,	since	this	RAM	is	physically	present	in	the	application	server.	

This	 means	 that	 resources	 can	 be	 better	 utilized	 when	 the	 problem	 of	
physically	 allotted	 resources	 is	 taken	 away.	 By	 moving	 to	 a	 cloud	 native	
infrastructure,	we	no	 longer	use	physical	 application	 servers.	 	 Instead,	we	
move	towards	an	environment	where	we	have	a	pool	of	resources	and	virtual	
machines	or	containers	get	a	portion	of	the	resources	available	in	the	pool.	
This	 in	 turn	reduces	 the	amount	of	overhead	while	deploying	applications	
(Truong-Huu,	Koslovski,	Anhalt,	&	Montagnat,	2011).	
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3.3.2 Scalability	
Another	topic	where	the	conventional	 infrastructure	comes	short	 is	on	the	
topic	of	scalability.	As	mentioned	in	the	chapter	on	resource	management,	we	
scale	by	adding	another	physical	server,	or	any	other	object	for	that	matter.	
Due	to	this	changing	being	a	physical	activity	it	will	always	take	at	least	the	
time	it	takes	to	add	the	physical	object	to	the	environment.	It	can	also	happen	
that	 there	 is	 no	 physical	 room	 to	 add	 another	 physical	 device	 into	 the	
environment	and	scaling	up	on	one	part	means	scaling	down	on	another.		

This	is	where	going	to	a	cloud	native	environment	seriously	gets	interesting.		
When	moving	towards	a	cloud	native	environment	we	use	more	and	more	
virtual	 machines	 and	 containerized	 applications	 in	 our	 environment.	 	 By	
making	use	of	applications	that	are	‘containerized’	we	also	lose	an	overhead	
on	resources,	due	to	not	completely	running	a	new	virtual	machine	(including	
a	 complete	 operating	 system)	 in	 this	 virtual	 pool	 of	 resources	 (Xie,	 Yuan,	
Zhou,	&	Cheng,	2018).	These	containers	can	be	automatically	deployed	based	
on	how	an	application	is	performing.	When	an	application	has	its	peak	usage	
new	containers	can	be	started	to	decrease	the	 load	on	the	application	and	
when	 usage	 of	 the	 application	 normalizes,	 containers	 can	 be	 stopped	 and	
resources	can	be	given	back	to	the	pool	of	resources	(Kubernetes,	2021).	

3.3.3 Physical	nature	of	a	network	
IT	 networks	 in	 a	 conventional	 infrastructure	 are	mostly	 placed	 in	 a	 non-
dynamic	 environment.	 If	 packages	 need	 to	 be	 sent	 out	 of	 the	 own	
environment,	we	need	to	place	a	router	and	we	keep	it	placed	to	maintain	the	
ability	of	sending	these	packages.	These	hardware	devices	can	be	configured	
automatically,	but	need	human	intervention,	to	function	properly.	By	moving	
towards	 a	 cloud	 native	 environment,	 we	 start	 to	 make	 use	 of	 virtualized	
hardware	as	mentioned	above.	This	virtualization	process	also	applies	to	the	
network	hardware.	Virtual	routers	and	switches	are	available	for	these	cloud	
native	environments.	This	means	that	also	these	kinds	of	virtual	hardware	
can	be	created	with	software	(Clayman,	Maini,	Gallis,	Manzalini,	&	Mazzocca,	
2014).	The	ability	of	software	being	able	to	add	virtual	network	hardware	
into	 the	 environment	 makes	 the	 environment	 more	 fluid	 than	 the	
conventional	 situation.	 Apart	 from	 the	 software	 being	 able	 to	 add	
functionality,	we	also	need	to	do	less	configuration	manually.		
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3.3.4 Summary	
In	 this	 section	we	 investigated	 the	 quality	 of	 service	 shortcomings	 in	 the	
conventional	environment	are	and	thus	indirectly	why	an	organization	would	
move	to	a	cloud	native	environment.		

In	 short	 it	 comes	 down	 to	 that	 a	 cloud	 native	 environment	 reduces	 the	
amount	of	overhead	on	hardware.	By	reducing	the	overhead,	we	have	more	
room	for	scaling	of	our	applications.	This	can	be	done	by	horizontally	scaling	
(adding	 more	 servers)	 or	 vertical	 scaling	 (adding	 more	 resources	 to	 one	
object,	 for	 instance	 a	 server).	 In	 a	 conventional	 environment	 a	 lot	 of	 the	
configuration	of	servers	and	forwarding	devices	needs	to	be	done	manually.	
This	process	can	be	automated	with	the	help	of	software	 in	a	cloud	native	
environment,	 which	 in	 turn	 leads	 to	 a	 more	 fluid	 environment	 than	 a	
conventional	environment.	 	
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Chapter	4	

4 Analysis	of	cloud	technology	
In	this	chapter	we	explore	the	possible	ways	of	safeguarding	quality	of	service	
in	a	cloud	native	environment.	This	includes	looking	at	what	currently	exists	
and	how	this	cloud	native	environment	could	be	connected.	

4.1 How	is	quality	of	service	
safeguarded	in	a	cloud	native	
environment	with	microservices?	

As	we	discussed	in	earlier	sections,	quality	of	service	is	safeguarded	through	
constant	monitoring	of	the	environment,	resource	management	and	scaling	
applications	up	and	down.	This	will	not	change	when	making	use	of	a	cloud	
native	environment,	but	how	we	can	apply	these	tactics	does	change.	In	this	
chapter	we	investigate	the	characteristics	that	are	already	there	in	a	cloud	
native	environment	and	how	we	can	adapt	these	to	ensure	quality	of	service.	
Again,	 resource	 management	 does	 not	 help	 us	 to	 answer	 the	 research	
question,	but	it	is	such	an	essential	part	of	the	subject	that	we	have	added	it	
to	the	thesis.	

4.1.1 Resource	Management	
As	we	move	from	a	conventional	infrastructure	with	physical	hardware	to	an	
infrastructure	 with	 virtualized	 hardware,	 the	 way	 we	 manage	 these	
resources	also	changes.	In	a	cloud	native	environment	we	make	use	of	pools	
of	physical	hardware.	Virtualized	hardware	can	request	resources	from	these	
pools.	
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To	make	sure	that	every	application	has	access	to	the	resources	it	needs	to	
perform	we	have	to	make	use	of	resource	scheduling.	There	is	a	multitude	of	
algorithms	 that	 can	 take	on	 the	 job	of	 this	 scheduling,	but	we	won’t	 go	 in	
depth	of	this	theory,	due	to	it	not	helping	us	answer	the	research	question.	In	
short,	we	need	algorithms	within	the	cloud	native	environment	that	schedule	
which	task	is	performed	on	which	part	of	the	hardware	pool.	The	better	the	
scheduler	is	at	allocating	resources	for	the	process,	the	less	overhead	we	have	
on	our	physical	resources.	An	example	of	a	best	effort	algorithm	is	the	Round	
Robin	Algorithm,	which	is	a	CPU	scheduler.	With	Round	Robin	every	process	
gets	an	even	amount	of	processing	power.	In	this	way	a	queue	of	processes	is	
being	handled	and	new	processes	are	added	to	the	end	of	the	queue	(Pradhan,	
Behera,	&	Ray,	2016).	Other	algorithms	exist,	which	also	support	Quality	of	
Service	 by	 giving	weight	 to	 the	 processes	 in	 the	 queue,	 such	 as	Weighted	
Round	Robin.		

4.1.2 Monitoring	
As	mentioned	in	the	introduction	quality	of	service	is	ensured	via	monitoring,	
resource	management	and	scaling.	In	this	section	we	look	into	how	a	cloud	
native	 environment	 can	 be	monitored	 and	what	 kind	 of	 tooling	 currently	
exists	with	this	purpose.		

In	section	3.2.1	we	described	the	three	categories	of	monitoring	that	we	can	
use	 for	 network	 monitoring:	 active	 monitoring,	 passive	 monitoring	 and	
making	 use	 of	 SNMP	 agents	 to	 test	 the	 functionality	 of	 our	 environment.	
When	moving	towards	a	cloud	native	environment	the	metrics	that	enable	us	
to	safeguard	quality	of	service	do	not	change	(Cignoli,	2016).	This	means	that	
the	four	basic	metrics	we	described	in	section	3.1.1	are	still	relevant,	although	
Cignoli	has	added	a	fifth	metric,	quality	of	service.		Cignoli	actually	means	an	
implementation	of	the	DSCP	tag.		In	line	with	the	rest	of	the	study	we	see	this	
as	a	way	of	enabling	quality	of	service	and	therefore	not	as	a	new	metric.		

The	way	 in	which	a	cloud	native	environment	 is	monitored	however,	does	
Change.	 In	 the	 conventional	 environment	we	monitor	 forwarding	 devices,	
such	 as	 switches,	 but	 as	we	make	 use	 of	 a	 cloud	 native	 environment	 this	
physical	monitoring	extends	to	the	monitoring	of	virtual	devices.	All	in	all,	the	
way	 in	which	we	monitor	 quality	 of	 service	metrics	 does	 not	 change	 that	
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much	when	moving	 to	 a	 cloud	 native	 environment	 combined	with	 virtual	
networks.	However,	we	need	to	monitor	more	‘entities’	as	we	get	virtual	and	
physical	devices	in	the	same	environment.			

4.1.3 Scalability	
As	 mentioned	 in	 section	 3.3.2	 on	 scalability	 it	 takes	 at	 least	 the	 time	 to	
perform	a	physical	action,	to	scale	up	or	down	in	a	conventional	environment.		
We	see	 that	 in	a	 cloud	native	environment	all	physical	 components	of	 the	
conventional	 infrastructure	get	 their	virtual	counterparts.	This	means	 that	
there	is	no	physical	action	required	to	enable	the	scaling	of	an	application,	as	
we	do	not	make	use	of	physical	objects	in	the	cloud	native	environment.	

We	are	able	to	scale	on	different	levels	within	a	cloud	native	environment.	
First,	we	have	the	horizontal	scaling	where	we	add	new	virtual	components	
to	lessen	the	load	on	the	existing	component.	This	can,	for	instance,	be	done	
by	firing	up	another	application	server	during	peak	usage	of	the	application.	
The	addition	of	another	application	server	makes	it	so	that	we	have	another	
server	 that	 can	 handle	 the	 requests.	 This	 allows	 us	 in	 case	 of	 starting	
congestion	at	server	1,	to	start	server	2	which	helps	to	reduce	the	congestion	
and	thus	helps	us	safeguard	quality	of	service.		

Another	possibility	is	to	vertically	scale	a	virtual	object.	An	example	of	this	is	
by	adding	more	RAM	to	the	object,	but	most	operating	systems	do	require	a	
reboot	 for	 these	 changes	 to	 be	 effective	 (Patibandla,	 Kurra,	 &	Mundukur,	
2012).	As	mentioned	above	we	don’t	have	 to	perform	a	physical	 action	 to	
actually	add	these	resources	to	the	object	that	needs	to	scale.	This	allows	us	
to	define	rules	on	when	the	virtual	object	needs	to	be	scaled.	By	making	use	
of	this	automated	scaling,	we	can	in	turn	reduce	the	amount	of	overhead	on	
resources.	 Vertical	 scaling	 allows	 us	 to	 increase	 the	 resources	 and	
performance	of	a	virtual	object.	This	in	turn	leads	to	a	virtual	object	that	can	
process	more	requests	and	therefore	helps	us	safeguarding	quality	of	service.	

4.1.4 Kubernetes	
With	the	new	software	platform	that	is	currently	in	development	by	Thales,	
Thales	is	moving	toward	a	cloud	native	environment	based	on	Kubernetes.	
Therefore,	 we	 lay	 a	 foundation	 on	 how	 the	 tooling	 that	 we’ve	 discussed	
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earlier	can	be	applied	in	an	environment	with	Kubernetes.	The	information	
in	this	section	is	a	summary	of	the	Kubernetes	documentation	that	is	relevant	
to	 quality	 of	 service.	 Apart	 from	 monitoring,	 resource	 management	 and	
scaling	 Kubernetes	 does	 not	 enable	 us	 to	 take	 quality	 of	 service	
measurements	on	the	networking	level.	For	us	to	make	use	of	such	tooling	
we	need	external	developed	container	network	interfaces.	We	will	elaborate	
on	these	plugins	in	section	4.2.		

4.1.4.1 Classification	of	pods	
Kubernetes	has	 three	 types	of	 classifications	at	 the	 ready	 for	 the	different	
pods	 within	 Kubernetes.	 Pods	 are	 the	 smallest	 deployable	 objects	 within	
Kubernetes,	but	they	can	host	a	multitude	of	containers	running	on	them.	The	
classifications	for	these	pods	are:	

1. Guaranteed	
Pods	 that	 need	 consistent	 and	 good	 performance	 should	 get	 the	
Guaranteed	classification.	These	pods	have	top	priority	and	will	not	be	
killed	unless	they	exceed	their	limits.	

2. Burstable	
Burstable	pods	have	a	minimal	resource	guarantee,	but	if	more	resources	
are	available	pods	may	use	these	resources.	Under	pressure	these	pods	
might	be	killed	when	no	best	effort	pod	exists.	

3. Best	effort	
Best	effort	pods	are	treated	with	the	lowest	priority	and	are	the	first	to	
be	killed	when	under	pressure.	These	pods	can	however	access	
resources	when	available.	

4.1.4.2 Resource	management	
For	these	classifications	to	function	correctly,	resource	management	must	be	
considered	when	creating	the	pods.	Kubernetes	makes	use	of	two	different	
types	of	resources:	CPU	and	RAM.	Both	resources	represent	a	virtual	instance	
of	 the	physical	 resources.	This	 enables	us	 to	 request	0.1CPU	 for	 a	 specific	
container.	Each	pod	must	make	clear	the	requested	amount	of	RAM	and	CPU.	
If	these	specifications	are	not	set	when	creating	the	pods,	the	default	class	for	
these	pods	is	Best	effort.	
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If	the	request	and	limit	are	exactly	the	same,	Kubernetes	will	assign	the	class	
of	Guaranteed	to	the	pod.	In	case	the	limit	is	higher	than	the	request	amount,	
the	pod	will	be	given	the	class	Burstable.	When	no	limit	and	request	size	is	
specified,	the	pod	will	be	classified	as	Best	effort.	

Before	the	creation	of	the	pod	the	Kubernetes	scheduler	will	first	check	if	the	
intended	node	to	place	the	pod	on	meets	the	resource	requirements	of	the	
pod	before	placing	the	pod.	

4.1.4.3 Monitoring	
The	resource	status	of	a	pod	is	by	default	visible	in	the	pod	status.	The	metrics	
that	are	being	shown	automatically	are	only	the	usage	of	RAM	and	CPU.	This	
does	not	restrain	us	from	making	use	of	third-party	tools	that	enable	us	to	
view	all	available	metric	data,	such	as	Prometheus.		It	should	be	noted	that	
these	 metrics	 only	 report	 the	 resource	 status	 of	 the	 node	 and	 don’t	 say	
anything	about	the	functionality	of	the	application.	

4.1.4.4 Scalability	
Kubernetes	 has	 implemented	 their	 so-called	 Horizontal	 Pod	 Autoscaler	
(HPA).	This	enables	us	to	automatically	scale	our	pods	depending	on	current	
resource	utilization.	These	resources	can	be	the	amount	of	RAM	or	CPU	used,	
but	 we	 are	 also	 able	 to	 scale	 on	 custom	metrics.	 The	 HPA	 compares	 the	
resource	utilization	with	 the	 limits	 that	 are	 set	on	 creation	of	 the	pod.	By	
default,	 the	 HPA	 does	 this	 every	 fifteen	 seconds,	 but	 this	 interval	 can	 be	
changed.	 	
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4.2 How	can	different	pods	be	
connected	to	enable	quality	of	
service?	

Kubernetes	 itself	 has	 functionality	which	 enables	 network	 communication	
between	 different	 nodes	 and	 pods.	 Apart	 from	 this	 basic	 functionality	 so	
called	Container	Network	Interfaces	(CNIs)	exist.	These	allow	us	 to	have	a	
more	fine-grained	control	over	the	network	traffic	within	an	environment.		
In	Table	2	and	Table	3	we	show	the	different	CNIs	that	exist	for	Kubernetes	
and	at	the	same	time	have	functionalities	that	enable	quality	of	service.	These	
CNIs	are	divided	into	three	different	categories:	

1. Encapsulation:	These	CNIs	make	use	of	an	overlay	network,	which	acts	as	
an	 abstraction	 layer	 for	 services	 within	 the	 Kubernetes	 cluster	 to	
communicate	 with	 each	 other.	 Due	 to	 the	 encapsulation	 and	
decapsulation	of	network	packages,	performance	decreases.	

2. Non-encapsulation:	 These	 CNIs	 do	 not	 rely	 on	 an	 overlay	 network	 to	
enable	 communication	 within	 the	 Kubernetes	 cluster	 and	 therefore	
should	 have	 a	 higher	 throughput	 than	 CNIs	 that	 make	 use	 of	
encapsulation.	

3. Virtual	switches:	These	CNIs	mimic	the	functionalities	that	are	offered	by	
a	 physical	 switch.	 This	 means	 that	 CNIs	 that	 make	 use	 of	 these	
techniques,	 in	theory	should	offer	the	most	customizations	that	can	be	
related	to	quality	of	service.	
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In	the	category	of	non-encapsulating	CNIs	we	see	that	Calico	is	the	only	one	
which	by	default	uses	this	network	infrastructure	and	has	basic	functionality	
for	quality	of	service.	

Name	 Description	 Category	
Cilium	 Supports	eBPF	

Supports	Kubernetes	
network	policy	controls	
Supports	service	load	
balancing	
Supports	connectivity	of	
multiple	Kubernetes	
clusters	
Supports	cluster	wide	
policies	

Encapsulation	

Flannel	 Enables	basic	network	
connectivity	within	the	
cluster	
Does	not	have	support	
for	network	policies	

Encapsulation	

Kube-OVN	 Supports	network	
policies	with	ACLs	
Supports	multi-cluster	
networking	
Supports	configuration	
options	for	quality	of	
service,	such	as	
ingress/egress	traffic	
rate	

Encapsulation	

Table	2	–	Encapsulation	Container	Network	Plugins	

With	the	encapsulation	network	infrastructure,	we	have	more	CNIs	to	choose	
from.	Flannel	is	very	basic,	but	Cilium	and	Kube-OVN	have	some	quality	of	
service	tools	available.	
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Name	 Description	 Category	

Antrea	 Supports	OVS,	which	has	
better	performance	than	
iptables	
Supports	Kubernetes	
network	policy	controls	
Supports	tiering	of	
policies,	rule	priorities	
and	cluster-level	
policies	
Uses	Open	vSwitch	

Virtual	switch	

Contiv-VPP	 Supports	traffic	policies	 Virtual	switch	

Open	vSwitch	 Supports	traffic	queuing	
and	shaping	

Virtual	switch	

Table	3	–	Virtual	Switch	Container	Network	Plugins	

In	the	Virtual	Switch	category,	we	see	that	most	CNIs	offer	basic	quality	of	
service	mechanisms	 and	 Antrea	 delivers	 some	mechanisms	 that	 integrate	
with	a	Kubernetes	environment.	
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Chapter	5	

5 Experiments	
In	 this	 chapter	we	 experiment	with	 different	Kubernetes	 environments	 to	
research	their	capability	on	enabling	quality	of	service.	This	chapter	covers	
research	question	3.1,	“How	do	different	tools	that	enable	quality	of	service	
differ	from	each	other	in	a	test	environment?”.	The	results	of	this	chapter	will	
help	us	gain	insight	on	how	CNIs	can	be	used	to	safeguard	quality	of	service.	

As	mentioned	in	section	3.2	there	are	three	types	of	tooling	that	can	be	used	
to	safeguard	quality	of	service	in	a	conventional	network.	These	categories	
and	some	of	 their	practical	 implementations	are	shown	 in	Table	4.	During	
this	study	we	try	to	use	these	types	of	tooling	to	safeguard	quality	of	service	
in	a	cloud	native	environment	with	Kubernetes.	

Classification	and	
marking	tools	

Policing,	 shaping	 and	
markdown	tools	

Congestion	
Management	

• Add	priority	to	
network	stream	

• Police	ingress	
traffic	

• Load	Balancer	

• Move	network	
streams	to	correct	
class	queue	

• Shape	egress	
traffic	

• Drop	packets	with	
for	example	WRED	
algorithm	

Table	4	-	Quality	of	Service	implementations	

At	the	moment	of	writing	these	tools	are	not	yet	developed	for	the	CNI,	or	still	
very	basic	in	their	functionality.	A	classification	via	a	DSCP	tag	is	something	
that	we	can	easily	add	to	our	network	packages	and	by	adding	this	tag	we	can	
prioritize	network	traffic.	An	ACL,	if	supported	by	the	CNI,	is	very	basic	and	
only	has	a	firewalling	function	between	Kubernetes	objects.	
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On	the	subject	of	policing,	shaping	and	markdown	tools	we	can	currently	use	
the	bandwidth	plugin,	which	is	supported	by	most	CNIs.	With	the	bandwidth	
plugin	 we	 can	 limit	 the	 rate	 at	 which	 ingress	 (incoming)	 and	 egress	
(outgoing)	traffic	is	sent	to	and	from	pods.	This	traffic	is	handled	by	a	token	
bucket	algorithm	to	shape	it	according	to	the	rate	limit.	Cilium	has	its	own	
implementation	of	a	bandwidth	limiter	called	the	Bandwidth	Manager.	This	
Bandwidth	Manager	only	supports	egress	rate	limiting	(shaping)	and	doesn’t	
support	 the	 policing	 of	 ingress	 traffic.	We	 can	 only	 functionally	 test	 these	
plugins	and	if	these	work	as	intended,	they	can	be	used	as	a	tool	for	quality	of	
service.	Apart	from	these	functionality	tests	we	cannot	do	a	performance	test	
on	these	tools.	

A	 load	 balancer	 can’t	 be	 used	 as	 a	 test	 for	 quality	 of	 service.	With	 a	 load	
balancer	we	would	scale	the	application	and	thus	increase	resources.	A	load	
balancer	will	help	us	decrease	congestion,	but	this	would	not	help	us	reaching	
a	 higher	 quality	 of	 service	 level	 when	 resources	 cannot	 be	 increased.	
Ultimately,	this	also	means	that	we	cannot	test	quality	of	service	support	for	
a	CNI	with	a	load	balancer.	

Functionality	 such	 as	 dropping	 packages	 in	 case	 queues	 are	 starting	 to	
overflow	is	not	possible	with	the	current	technology.	We	had	hoped	that	CNIs	
would	 have	 implemented	 a	 congestion	 management	 technique	 such	 as	
AC/DC	TCP	as	mentioned	by	He,	et	al.,	2016,	but	no	CNI	has	this	implemented	
as	of	yet.	

We	had	hoped	that	CNIs	based	on	virtual	switch	technology	would	provide	us	
with	 a	 programmable	 environment,	 just	 like	 regular	 virtual	 switches.	
Unfortunately,	this	is	not	(yet)	the	case.		

In	section	4.1.4	we	discussed	three	quality	of	service	classes	that	exist	within	
Kubernetes;	Guaranteed,	Burst	and	Best	Effort.	We	can’t	use	these	quality	of	
service	classes	within	our	tests,	because	these	quality	of	service	classes	only	
have	impact	on	CPU	and	memory	metrics.	They	do	not	affect	network	metrics	
and	have	no	relation	with	a	CNI.	
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All	 in	 all,	 there	 is	 lot	 of	 functionality	 that	 we	 can’t	 test	 at	 the	 moment.	
However,	we	can	still	experiment	with	adding	priority	to	a	network	stream	
via	a	DSCP	 tag.	On	 the	 topic	of	 the	policing	and	shaping	of	network	 traffic	
there	are	also	some	experiments	that	can	be	done.	These	will	follow	in	section	
5.1.	

5.1 	Approach	

In	 this	section	we	 look	at	how	we	approach	 the	experiments.	As	 there	are	
quite	 a	 few	 CNIs	 to	 choose	 from	 and	 only	 limited	 time,	 we	 focus	 in	 this	
research	 on	 one	 CNI	 each	 from	 the	 different	 categories	 we	 described	 in	
section	 4.2.	 Therefore,	 we	 perform	 these	 experiments	 with	 Calico	 (Non-
encapsulation),	Cilium	(Encapsulation)	and	Antrea	(Virtual	Switch)	as	these	
CNIs	promote	that	they	support	more	quality	of	service	features	than	other	
CNIs.	There	are	two	different	environments	that	we	want	to	test:	

1. Intra	node	traffic	
2. Inter	node	traffic	

With	the	intra	node	traffic	or	internal	node	tests	we	can	test	how	the	three	
CNIs	compare	to	each	other	when	traffic	stays	within	the	machine.	With	inter	
node	 traffic	 or	 external	 node	 tests	 we	 can	 see	 how	 performance	 changes	
when	network	traffic	must	leave	the	virtual	environment	and	needs	to	use	
physical	connections.	

We	can	test	quality	of	service	implementations	from	two	categories	in	these	
setups.	First,	we	want	to	verify	if	giving	priority	to	network	traffic	via	a	DSCP	
tag	 is	possible.	Afterwards,	we	verify	 if	 shaping	egress	 traffic	 and	 limiting	
ingress	traffic	is	possible.	Shaping	egress	traffic	and	limiting	ingress	traffic	is	
tested	with	 the	bandwidth	plugin	 that	 can	be	added	 to	 the	CNI.	 In	 section	
3.2.1	we	discussed	 three	different	 types	of	monitoring.	As	we	 are	 actively	
measuring	 how	 our	 Network	 Performance	 Metrics	 change	 under	 certain	
conditions,	we	are	making	use	of	active	monitoring	tools.	
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In	our	priority	via	DSCP	test	we	perform	a	baseline	test,	where	we	don’t	use	
quality	 of	 service	 settings.	 We	 test	 the	 Network	 Performance	 Metrics	 we	
described	 in	 section	 3.2.1.	 We	 use	 the	 following	 three	 tools	 to	 test	 these	
NPMs:	

Iperf3:	One	way	loss,	Bandwidth,	Throughput	and	Jitter	
Owamp:	One	way	delay	
Twamp:	Round	trip	delay	and	Round	trip	loss	
	

With	the	baseline	test	we	can	verify	the	performance	of	the	CNI	when	we	add	
congestion	 on	 the	 network.	 Afterwards,	 we	 add	 congestion	 by	 adding	 a	
second	network	 stream.	 In	 our	 third	 test	we	 give	priority	 to	 one	network	
stream	via	a	DSCP	tag,	to	verify	how	the	CNI	handles	these	types	of	traffic.	

The	test	setup	for	the	intra	node	traffic	can	be	seen	in		Figure	3.	In	this	setup	
we	have	four	pods	on	one	node.	First,	we	want	to	verify	what	the	capacity	is	
within	this	virtual	network.		We	can	measure	this	maximum	capacity	within	
the	virtual	network	through	an	iperf3	test	from	pod	A	to	pod	C.	This	is	
measured	by	using	the	following	command	on	pod	A	“iperf3	-c	ip-address-
pod-c	-u	-b	0”.	This	measurement	is	done	ten	times	per	CNI,	and	the	highest	
value	is	our	capacity.	We	measure	a	capacity	of	2174Mbit/s	for	Calico,	
3920Mbit/s	for	Cilium	and	3541Mbit/s	for	Antrea.	
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Figure	3	–	Test	setup	Intra	node	traffic	

The	second	test	scenario	 is	 for	network	streams	that	 leave	the	Kubernetes	
node	and	need	to	connect	to	a	Kubernetes	node	placed	in	the	same	cluster.		
This	 setup	 is	 shown	 in	 Figure	4.	 In	 this	 test	 setup	we	have	 two	machines	
connected	to	the	internet,	while	also	having	a	direct	connection	to	each	other.	
This	allows	us	to	download	the	necessary	software	on	the	machines	and	to	
test	 without	 using	 intermediate	 forwarding	 devices.	 This	 means	 that	 all	
Kubernetes	related	traffic	is	sent	via	the	direct	cable	connection	between	the	
two	nodes.	



42	

	

Figure	4	–	Overview	setup	inter	node	traffic	

Now	that	we	are	testing	with	two	physical	machine	the	first	step	is	to	make	
sure	the	clocks	of	 the	two	nodes	are	synchronized.	On	Node-1	we	install	a	
NTP	server.	This	allows	us	 to	synchronize	 the	clocks	between	Node-1	and	
Node-2.	

The	cluster	view	of	the	external	node	traffic	is	shown	in	Figure	5.	Traffic	in	
this	setup	goes	from	virtual	(within	the	pod)	to	physical	(when	it	leaves	the	
node).	 This	 means	 that	 the	 capacity	 now	 changes	 to	 the	 maximum	
throughput	 our	 physical	 cable	 supports.	 In	 our	 test	 setup	 we	 use	 cat5e-
cables,	which	should	give	us	a	capacity	of	1000Mbit/sec.	By	performing	an	
iperf3	 test	 from	 a	 pod	 on	 Node-1	 directly	 to	 a	 pod	 on	 Node-2	 we	 get	 a	
maximum	 throughput	 of	 the	 CNI.	We	measure	 a	 maximum	 bandwidth	 of	
950Mbit/s	for	Calico,	916Mbit/s	for	Cilium	and	912Mbit/s	for	Antrea.	
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Figure	5	–	Inter	node	traffic	cluster	view	

5.2 	Baseline	

Now	that	we	know	the	capacity	of	our	inter	and	intra	node	networks	we	can	
perform	 the	 baseline	 test.	 By	 doing	 these	 baseline	 tests	 we	 can	 set	 a	
foundation	 for	 the	 congestion	 tests,	 but	 we	 can	 also	 compare	 the	 CNI	
(categories)	 with	 each	 other.	 As	 mentioned	 in	 section	 5.1	 we	 have	 three	
testing	 tools	 that	we	use	 for	 the	baseline,	 congestion	 and	 congestion	with	
prioritization	(via	a	DSCP	tag)	tests:	

1. Iperf3	
2. Owamp	
3. Twamp	

During	these	tests	we	expect	a	package	drop	rate	of	0%	or	close	to	0%	as	we	
stay	within	the	maximum	capacity	of	our	environments.	

5.2.1 Iperf3	
In	Table	5	we	show	the	results	of	our	intra	node	iperf3	baseline	tests.	The	
Bandwidth,	 Jitter	 Sender	 and	 Lost	 Sender	 are	 omitted	 from	 this	 table	 to	
increase	readability.	In	our	intra	node	tests	the	bandwidth	is	the	same	as	the	
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capacity	of	the	environment.	Jitter	Sender	and	Lost	Sender	both	had	a	value	
of	zero.	Apart	from	Capacity	the	columns	in	this	table	are	averages.		

The	first	thing	that	catches	the	eye	is	the	capacity	and	throughput	of	Cilium.	
Antrea	 also	 scores	 high	 at	 capacity	 and	 throughput,	 while	 Calico	 keeps	
behind.	 	When	we	 look	 at	 the	 jitter	 and	 package	 drop,	we	 see	 that	 Calico	
scores	best.	This	indicates	that	Calico	has	the	most	consistent	connection.	

	 Capacity	 Throughput	
Sender	

Throughput	
Receiver	

Jitter	
Receiver	
in	ms	

Lost	
Receiver	

Calico	 2174	
Mbit/s	

1592,5	
Mbit/s	

1588,9	
Mbit/s	

0,0011	 0,233%	

Cilium	 3920	
Mbit/s	

2539,7	
Mbit/s	

2517,5	
Mbit/s	

0,0022	 0,871%	

Antrea	 3541	
Mbit/s	

2368,1	
Mbit/s	

2350,3	
Mbit/s	

0,0032	 0,761%	

Table	5	–	Intra	node	iperf3	results	

In	Table	6	we	see	 the	results	of	 the	 inter	node	 iperf3	baseline	 tests.	Some	
columns	are	omitted	to	improve	readability	of	this	table.	This	concerns	the	
columns	Capacity,	Jitter	Sender	and	Lost	Sender.	The	Jitter	Sender	and	Lost	
Sender	were	0	in	every	test.	The	capacity	is	the	link	speed	of	the	cable,	which	
is	1Gbit/s.		A	reference	to	the	complete	data	set	can	be	found	in	Appendix	A.	

	 	



45	

	 Bandwidth	
in	Mbit/s	

Throughput	
Sender	 in	
Mbit/s	

Throughput	
Receiver	 in	
Mbit/s	

Jitter	
Receiver	
in	ms	

Lost	
Receiver	
in	%	

Calico	 950	 950	 947,4	 0,019	 0,247	

Cilium	 916	 894,5	 893,6	 0,013	 0,103	

Antrea	 912	 898,3	 896,7	 0,014	 0,165	

Table	6	-	Inter	node	iperf3	results	

5.2.2 One-way	active	measurement	protocol	
The	results	of	our	intra	node	owamp	tests	are	shown	in	Figure	6.	The	results	
of	 this	 test	 are	 very	 close	 together.	 We	 can	 say	 that	 Calico	 has	 the	 most	
consistent	connection,	and	that	Antrea	is	the	fastest.		

	

Figure	6	–	Intra	node	owamp	

In	Figure	7	we	see	the	results	of	inter	node	owamp	tests.	None	of	the	CNIs	
encountered	package	loss	during	this	test,	so	these	results	are	omitted	from	
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the	figure.	Here	we	see	that	Antrea	has	the	least	amount	of	jitter,	which	means	
that	this	is	the	most	stable	connection.	Cilium	has	the	lowest	average	one	way	
delay	median	and	is	thus	the	fastest	CNI	in	this	test.	

	

Figure	7	-	Inter	node	owamp	

5.2.3 Two-way	active	measurement	protocol	
Unfortunately,	we	couldn’t	do	the	twamp	test	for	Antrea,	due	to	twamp	not	
supporting	the	NAT	infrastructure	of	Antrea1.	The	results	of	Calico	and	Cilium	
are	shown	in	Table	7.	For	this	test	it	also	holds	that	there	were	no	dropped	
packages	and	 to	 increase	 the	 readability	we	omitted	 this	 column	 from	the	
results.	There	 is	no	difference	in	performance	of	the	NPMs	between	Calico	
and	Cilium.	

	 	

	
1	https://github.com/perfsonar/owamp/issues/49	

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45

Calico

Cilium

Antrea

One-way active measurement protocol - Baseline

Average Jitter in ms Average One way delay median in ms



47	

CNI	 Round	trip	loss	 Round	trip	delay	in	ms	

Calico	 0	 0,3	

Cilium	 0	 0,3	

Table	7-	Intra	node	twamp	results	

In	Table	7	we	show	the	inter	node	twamp	results.	The	results	are	again	very	
close,	but	Cilium	provides	a	faster	connection.	

CNI	 Average	Packages	Lost	
(Round	Trip	Loss)	

Average	 Round	 Trip	
median	delay	in	ms	

Calico	 0	 0,60	

Cilium	 0	 0,54	

Figure	8	-	Inter	node	twamp	

5.2.4 Problems	with	intra	node	testing	
	During	 the	 experiments	 with	 intra	 node	 testing	 we	 encountered	 some	
strange	 behavior	 with	 our	 test	 software.	 With	 the	 TCP-protocol	 we	 can	
generate	60Gbit/s	of	throughput	with	ease	with	Iperf3	when	using	parallel	
streams.	The	usage	of	multiple	network	streams	simultaneously	is	to	verify	
the	 maximum	 throughput	 within	 our	 environment.	 When	 using	 the	 UDP	
protocol	 we	 can	 get	 a	 maximum	 throughput	 of	 around	 7Gbit/s.	 We	 can	
increase	 the	 number	 of	 parallel	 streams	 with	 UDP	 traffic	 as	 well,	 but	
unexplainable	 package	 drop	 starts	 to	 appear	 quickly.	We	 tried	 contacting	
Iperf3	on	their	GitHub	page2,	but	we	did	not	get	an	answer	that	helped	us	
solve	the	problem.	

The	problem	is	that	we	need	the	UDP	protocol	to	set	a	capacity	limit	in	our	
intra	node	environment	 so	 that	every	 test	 runs	under	 the	 same	condition.	

	
2	https://github.com/esnet/iperf/issues/1263	
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This	can	be	done	at	the	capacities	that	we	mentioned	in	section	5.1,	but	we	
know	that	this	is	nowhere	near	the	actual	capacity	of	the	environment.		

This	 means	 that	 we	 can	 perform	 baseline	 tests,	 but	 we	 cannot	 use	 this	
environment	 to	observe	meaningful	quality	of	service	differences	between	
CNIs.	Using	TCP	for	congestion	and	congestion	with	prioritization	testing	in	
the	intra	node	testing	is	no	good	alternative	as	well.	The	reason	for	this	is	that	
we	are	not	able	set	the	capacity	at	which	a	test	will	run.	This	means	that	we	
are	not	in	control	of	the	test	environment	and	therefore	we	cannot	conclude	
much	from	results	that	are	gathered	this	way.	Therefore,	the	congestion	and	
congestion	 with	 prioritization	 tests	 are	 only	 done	 in	 the	 inter	 node	
environment.	

Another	 problem	 that	 we	 ran	 into	 is	 that	 we	 could	 not	 test	 all	 network	
performance	metrics	for	Antrea	as	mentioned	in	section	5.2.3.	This	has	to	do	
with	how	Antrea	is	designed	and	we	cannot	work	around	this	design.	

5.3 	Congestion	

In	our	congestion	test	we	will	add	a	network	stream	parallel	to	the	original	
stream	so	that	we	can	investigate	how	a	CNI	tries	to	deal	with	congestion	on	
itself.	We	 create	 the	 congestion	by	 running	 an	 iperf3	 instance	next	 to	 our	
regular	test	tool.	This	iperf3	instance	will	try	to	use	the	complete	capacity	in	
our	environment.	Due	to	the	problems	with	our	intra	node	tests	this	test	will	
only	be	done	in	a	inter	node	environment.	

5.3.1 Iperf3	
In	Table	8	we	see	our	iperf3	results	of	the	congestion	test.	The	capacity	of	the	
environment	 is	still	 the	same	and	this	also	holds	 for	 the	bandwidth	of	our	
CNIs.	The	capacity	is	1Gbit/s	and	the	maximum	bandwidth	is	950Mbit/s	for	
Calico,	916Mbit/s	for	Cilium	and	912Mbit/s	for	Antrea.	

The	 first	 thing	 that	 catches	 the	 eye	 in	 this	 table	 is	 that	 with	 Calico	 the	
throughput	at	the	receiver	end	seems	to	be	halved	when	having	two	network	
streams	trying	to	send	at	maximum	bandwidth.	The	next	thing	that	stands	
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out	is	that	both	Calico	streams	have	a	package	drop	of	50%.		We	can	say	that	
Calico	 by	 default	 makes	 use	 of	 a	 best	 effort	 way	 of	 delivering	 packages,	
because	all	metrics	seem	to	be	(close	to)	equally	divided.	

When	we	look	at	Cilium	and	Antrea,	we	see	that	both	network	streams	get	
around	half	of	the	maximum	bandwidth	we	could	reach	with	the	CNI.	From	
this	we	can	conclude	 that	both	Cilium	and	Antrea,	by	default,	make	use	of	
their	integrated	load	balancer	to	distribute	network	traffic	evenly.	Apart	from	
this	we	also	see	that	Cilium	has	the	least	number	of	packages	dropped	and	
that	Cilium	is	the	most	stable	CNI	(least	amount	of	jitter)	in	general	in	this	
test	setup.	

	 Throughput	
Sender	in	
Mbit/s	

Throughput	
Receiver	in	
Mbit/s	

Jitter	
Receiver	in	
ms	

Lost	
Receiver	in	
%	

Calico	
Stream	1	

950	 473,5	 0,025	 50	

Calico	
Stream	2	

950	 473,5	 0,037	 50	

Cilium	
Stream	1	

460,3	 459,8	 0,023	 0,018	

Cilium	
Stream	2	

460,3	 460	 0,028	 0,062	

Antrea	
Stream	1	

456,2	 455,7	 0,047	 0,060	

Antrea	
Stream	2	

456,2	 455,8	 0,025	 0,072	

Table	8	-	Congestion	iperf3	
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5.3.2 One-way	active	measurement	protocol	
We	see	the	results	of	the	owamp	test	in	Figure	9.	Again,	no	CNI	experienced	
package	loss,	so	this	metric	is	omitted	from	the	figure.	Antrea	has	the	most	
consistent	connection,	while	Cilium	has	the	quickest	connection.	Calico	has	
the	least	consistent	connection	of	these	three	CNIs	and	is	also	the	slowest	in	
this	test.	

	

Figure	9	–	Owamp	and	congestion	

5.3.3 Two-way	active	measurement	protocol	
From	the	information	in	Table	9	we	can	conclude	that	Cilium	is	quicker	than	
Calico.	 This	 is	 surprising	 as	 Cilium	 encapsulates	 packages	 before	 sending	
them.		
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CNI	 Average	Packages	
Lost	(Round	Trip	
Loss)	

Average	Round	Trip	
median	delay	in	ms	

Calico	 0	 1	

Cilium	 0	 0,62	

Table	9	–	Twamp	and	congestion	

5.3.4 Summary	
Both	Calico	network	streams	send	at	the	maximum	bandwidth	and	exceeding	
the	capacity	of	this	environment	in	our	iperf3	test.	This	led	to	a	package	drop	
of	50	percent	on	both	streams.	Cilium	and	Antrea	however,	made	use	of	their	
integrated	load	balancer.	This	slowed	traffic	at	the	sender,	but	it	also	led	to	
almost	no	package	loss	compared	to	Calico.	Cilium	is	the	best	at	keeping	the	
package	 drop	 percentage	 as	 low	 as	 possible,	 whilst	 also	 having	 the	most	
stable	 connection	when	we	 look	at	 jitter.	 	 	 In	our	owamp	 test	we	see	 that	
Antrea	provides	the	most	consistent	connection,	whilst	Cilium	is	the	quickest	
CNI,	and	Calico	performs	the	worst.	The	twamp	test	could	not	be	done	for	
Antrea	and	Cilium	is	quicker	than	Calico	in	this	test.	

5.4 	Congestion	and	prioritization	

Now	 that	 we	 know	 the	 performance	 of	 each	 CNI	 while	 network	 traffic	 is	
congested,	we	want	to	find	out	if	we	can	prioritize	network	traffic	by	adding	
a	 DSCP	 tag.	 The	 environment	 is	 the	 same	 as	 during	 the	 baseline	 and	 the	
congestion	test.	So,	the	capacity	is	still	1Gbit/s	and	the	maximum	bandwidth	
is	950Mbit/s	for	Calico,	916Mbit/s	for	Cilium	and	912Mbit/s	for	Antrea.	

5.4.1 Iperf3	
In	this	test	we	verify	the	impact	of	adding	a	DSCP	tag	to	one	network	stream,	
whilst	 having	 a	 parallel	 network	 stream	using	 the	 same	network	 cable	 to	
transfer	data.	When	we	look	at	the	data	we’ve	collected	in	Table	10,	we	see	
that	these	metrics	are	quite	like	the	metrics	we	got	in	our	congestion	without	
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prioritization	tests.	This	means	that	adding	a	DSCP	did	not	have	any	effect	in	
this	test.	

Calico	still	uses	the	best	effort	approach	and	sends	everything,	which	results	
in	a	fifty	percent	package	drop	on	both	network	streams.	Antrea	and	Cilium	
still	make	 use	 of	 their	 integrated	 load	 balancer,	 but	 Cilium	 seems	 to	 do	 a	
better	overall	job	than	Antrea.	

CNI	 Throughput	
Sender	in	
Mbit/s	

Throughput	
Receiver	in	
Mbit/s	

Jitter	
Receiver	in	
ms	

Lost	
Receiver	in	
%	

Calico	
Stream	1	

950	 473,4	 0,030	 50	

Calico	
Stream	2	

950	 474,4	 0,033	 50	

Cilium	
Stream	1	

460,7	 460,5	 0,023	 0,039	

Cilium	
Stream	2	

460,8	 460,7	 0,027	 0,035	

Antrea	
Stream	1	

456,2	 456,2	 0,026	 0,034	

Antrea	
Stream	2	

456,2	 456,1	 0,028	 0,045	

Table	10	-	Iperf3	congestion	and	prioritization	

5.4.2 One-way	active	measurement	protocol	
We	also	added	the	DSCP	tag	to	the	owamp	test	while	the	environment	was	
congested.	Antrea	still	has	the	most	consistent	connection	and	this	time	also	
the	 fastest	 way	 of	 delivering	 packages.	 It	 seems	 that	 Cilium	 has	 some	
struggles	with	the	DSCP	tag	during	this	test	and	scores	the	same	as	Calico.	
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When	we	compare	these	results	with	the	congestion	test,	we	see	that	Antrea	
performs	the	same.	The	one-way	delay	of	Cilium	performs	worse	and	Calico	
performs	slightly	better	than	in	the	congestion	test.	

	

Figure	10	–	Owamp	and	congestion	with	DSCP	

5.4.3 Two-way	active	measurement	protocol	
In	our	twamp	test	with	DSCP	we	see	that	Calico	scores	the	same	as	without	a	
DSCP	tag.	Just	as	in	our	owamp	test	Cilium	performs	worse	when	adding	a	
DSCP	tag.	Cilium	still	has	a	lower	average	round	trip	delay,	which	means	that	
Cilium	is	faster	than	Calico	in	this	test.	These	results	are	similar	to	the	results	
of	the	congestion	test.	
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CNI	 Average	Packages	Lost	
(Round	Trip	Loss)	

Average	 Round	 Trip	
median	delay	in	ms	

Calico	 0	 1	

Cilium	 0	 0,7	

Figure	11-	Twamp	and	congestion	with	DSCP	

5.4.4 Summary	
Now	that	we	have	the	results	of	our	third	test	setup	we	can	compare	this	with	
the	results	of	our	congestion	test.	The	iperf3	results	of	our	congestion	test	
can	 be	 seen	 in	Table	 8.	We	 see	 that	 the	 results	 of	 the	 congestion	 and	 the	
results	of	our	congestion	with	prioritization	tests	are	roughly	the	same.	This	
means	that	the	DSCP	tag	did	not	result	into	better	performance	in	the	iperf3	
test.	In	the	one-way	active	measurement	test	we	note	a	slightly	increase	in	
performance	for	Calico	with	a	DSCP	tag.	Cilium	performs	slightly	worse	with	
the	DSCP	tag	and	Antrea	performs	roughly	the	same.	In	our	two	way	active	
measurement	 test	we	 see	 that	 Calico	 has	 the	 same	 performance	 and	 that	
Cilium	performs	slightly	worse.	From	this	we	can	conclude	that	we	cannot	
use	the	DSCP	tag	to	make	a	prioritized	stream	perform	significantly	better.	

5.5 	Policing	and	shaping	of	traffic	

As	mentioned	earlier	we	can	use	the	bandwidth	plugin	to	limit	the	throughput	
or	rate	of	our	network	traffic.	This	means	that	we’ve	set	the	limit	X	and	traffic	
above	limit	X	is	not	allowed	for	the	pod	that	this	plugin	applies	to.	We	tested	
the	functionality	of	this	plugin	for	the	three	CNIs.	We	only	have	test	results	
for	egress	bandwidth	 limiting	 (shaping).	We	don’t	have	results	 for	 ingress	
bandwidth	limiting	(policing)	as	we	encountered	the	following	error	‘control	
socket	 has	 closed	 unexpectedly’	 during	 the	 tests	 with	 Calico	 and	 Antrea,	
while	Cilium	does	not	support	policing	as	a	design	choice.		

In	 Figure	 12	 we	 see	 the	 bandwidth	 plugin	 at	 work	 within	 the	 Calico	
environment.	We’ve	set	the	bandwidth	limit	at	1Mbit/s.	It	seems	that	it	takes	
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a	 bit	 for	 the	 bandwidth	 plugin	 to	 start	 working.	 Generally	 speaking,	 the	
bandwidth	plugin	functions	correctly,	but	sometimes	the	limit	was	exceeded	
in	 time	 interval	1-2.	After	 three	seconds,	 throughput	always	stayed	within	
bounds.	

In	Figure	13	we	show	the	bandwidth	plugin	functioning	with	traffic	that	stays	
within	the	node.	This	graph	closely	represents	the	graph	that	represents	the	
inter	node	 test	 scenario.	 Indeed,	 the	 results	 don’t	 vary	much	between	 the	
inter-	 and	 intra-node	 test	 cases.	 From	 this	 we	 can	 conclude	 that	 Calico	
supports	this	feature	equally	within	the	virtual	network	as	well	as	two	nodes	
being	connected	with	a	single	physical	cable.	

	

Figure	12	–	Calico	Bandwidth	plugin	inter	node	
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Figure	13-	Calico	bandwidth	plugin	intra	node	

In	 the	 case	 of	 Cilium,	 the	 documentation	 already	 says	 that	 Cilium	 only	
supports	 their	 Bandwidth	 Manager	 for	 inter	 node	 communications.	 This	
entails	that	limiting	bandwidth	within	the	node	is	not	possible.	Both	cases	are	
tested,	 and	 the	Bandwidth	Manager	 indeed	 does	 not	 kick	 in	when	 testing	
intra	node	communications.	The	results	of	 the	 inter	node	communications	
are	shown	in	Figure	14.	We	see	that	the	Bandwidth	Manager	of	Cilium	limits	
the	 throughput	 better	 than	 the	 Bandwidth	 plugin	 used	 by	 Calico.	 The	
maximum	 reached	 throughput	 is	 only	 1,487Mbit/s	 with	 a	 bandwidth	 of	
200Mbit/s,	while	Calico	has	an	average	throughput	of	65Mbit/s	in	the	first	
second	of	limiting.	

800

8000

80000

0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10Th
ro

ug
hp

ut
 in

 K
bi

t/
s

Time interval in seconcds

Effects of the bandwidth plugin - Calico Intra 
Node

Average throughput in Kbit/s Limit in Kbit/s



57	

	

Figure	14	–	Cilium	bandwidth	plugin	
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Figure	15	–	Antrea	Bandwidth	plugin	Inter	Node	

	
Figure	16	–	Antrea	Bandwidth	plugin	Intra	Node	
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not	(yet)	support	intra	node	limiting	of	throughput	and	that	Cilium	only	limits	
egress	 traffic.	 Policing	 on	 ingress	 traffic	 won’t	 be	 implemented	 due	 to	 a	
design	choice.	In	case	intra	node	traffic	needs	to	be	limited,	Antrea	seems	to	
limit	 throughput	 better	 than	 Calico	 in	 the	 first	 second.	 After	 the	 first	 two	
seconds	they	are	both	able	to	limit	the	throughput.	

5.6 	Summary	

In	this	chapter	we	tried	to	safeguard	quality	of	service	within	a	cloud	native	
environment.	We’ve	used	two	different	test	environments:	 intra-	and	inter	
node.	We	used	three	different	types	of	CNIs	for	these	tests;	Calico	as	a	non-
encapsulating	CNI,	Cilium	which	uses	encapsulation	and	Antrea	which	 is	a	
virtual	switch	CNI.	In	these	environments	we’ve	done	two	different	tests.	In	
our	first	test	we	made	use	of	the	DSCP	tag	to	prioritize	network	traffic	during	
congestion.	In	our	second	test	we	evaluated	shaping	and	policing	capabilities	
of	each	CNI.	Other	ways	of	safeguarding	quality	of	service,	that	can	be	used	in	
a	conventional	network	are	not	(yet)	available.	This	means	that	safeguarding	
quality	of	service	in	a	cloud	native	environment	is	still	very	primitive.	

In	our	first	test	we	see	that	adding	priority	to	a	network	stream	via	a	DSCP	
tag	does	not	work.	This	holds	for	both	the	intra-	and	inter	node	environment.	
In	 the	 intra	node	environment	we	couldn’t	do	all	experiments.	The	testing	
software	 could	 not	 generate	 enough	 traffic	 to	 reach	 the	 capacity	 of	 this	
environment.	 Therefore,	 experiments	 that	 are	 based	 on	 congestion	 don’t	
produce	 reliable	outcomes.	 In	our	baseline	 test	we	see	 that	Calico	has	 the	
most	consistent	connection	and	the	lowest	percentage	of	dropped	packages.	
Cilium	is	the	fastest	CNI	in	this	environment.			

In	 the	 inter	 node	 test	 we	 see	 that	 Calico	 has	 the	 highest	 bandwidth	 and	
doesn’t	make	use	of	an	internal	load	balancing	mechanism	to	keep	traffic	in	
check.	This	means	that	more	traffic	can	be	sent	than	the	receiving	end	can	
handle.	 This	 causes	 package	 loss.	 Cilium	 and	 Antrea,	 however,	 have	 a	
mechanism	 that	 does	 not	 send	 more	 traffic	 than	 can	 be	 handled.	 The	
throughput	halves	for	both	the	CNIs	and	other	NPMs	are	similar.	In	the	end	
none	of	the	CNIs	support	priority	network	streams	via	DSCP.	 
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During	 our	 policing	 and	 shaping	 experiments	 we	 also	 encountered	 some	
problems.	 Cilium	 does	 not	 support	 intra	 node	 shaping,	 which	means	 that	
Cilium	cannot	always	be	used	for	traffic	shaping.	Calico	and	Antrea	make	use	
of	the	bandwidth	plugin	to	shape	network	traffic	and	perform	similar.	In	the	
inter	node	environment	however,	Cilium	is	faster	at	shaping	network	traffic	
to	 within	 the	 set	 limits.	 All	 in	 all,	 traffic	 shaping	 does	 work	 in	 certain	
situations.	In	these	situations	traffic	shaping	can	be	used	to	safeguard	quality	
of	service,	because	it	allows	us	to	limit	bandwidth	usage	on	each	pod.	This	
way	we	can	reserve	bandwidth	for	our	traffic	with	a	higher	priority.	

Policing	is	not	yet	fully	supported	at	the	time	of	testing,	while	Cilium	doesn’t	
support	policing	as	a	design	choice.	Performance	tests	with	iperf3	on	Calico	
and	Antrea	did	not	go	well.	When	traffic	is	sent	at	a	throughput	close	to	the	
policing	rate,	policing	won’t	happen	at	all.	When	we	raise	the	volume	of	traffic	
iperf3	sends	traffic	at	high	speed,	which	gives	us	more	indications	that	the	
bandwidth	 plugin	 doesn’t	 intervene.	 Tests	 subsequently	 time	 out	with	 an	
error.	All	 in	all,	we	can	conclude	 that	policing	 is	not	yet	a	viable	option	 to	
safeguard	quality	of	service.		
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Chapter	6	

6 Related	work	
In	this	chapter	we	discuss	earlier	studies	that	are	relevant	to	this	one.	The	
number	of	studies	 into	 this	subject	 is	 relatively	 low,	due	 to	 the	 field	being	
upcoming.	 It	 must	 also	 be	 noted	 that	 there	 has	 been	 some	 research	 into	
quality	of	service	and	Kubernetes	or	any	other	cloud	native	environment,	but	
most	often	 it	does	not	 really	 touch	 the	subject	of	 this	 study.	 	Most	 studies	
investigate	 the	 automatic	 scaling	 of	 pods,	 or	 horizontal	 scaling,	 like	 we	
mentioned	in	this	study,	but	have	no	real	interest	in	quality	of	service	with	
Container	Network	Interfaces.	
	

6.1 	Benchmarking	CNIs	

A	study	on	the	subject	of	performance	benchmarking	with	Kubernetes	CNIs	
has	been	done	by	Liffredo	in	2020.	The	focus	of	this	study	did	not	especially	
focus	on	quality	of	service,	but	raw	performance	tests	are	performed.	Liffredo	
described	Key	Performance	Indicators	and	includes	Throughput,	Latency	and	
CPU	usage.	As	you	can	see	this	differs	from	our	study	where	we	focus	more	
on	 quality	 of	 service	 and	 include	 metrics	 such	 as	 jitter,	 which	 tell	 us	
something	about	the	stability	of	the	connection.	

UDP	 throughput	 in	 the	 study	 done	 by	 Liffredo	 also	 encounters	 the	 same	
problems	as	we	have	run	into.	Liffredo	also	notices	slow	UDP	throughput	in	
an	 intra-node	 environment,	 but	 has	 not	 found	 an	 explanation	 for	 this	
behavior.	The	tool	used	for	these	kinds	of	test	is	iperf3.	I	conclude	that	there	
could	be	two	situations:	
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1. UDP	throughput	is	significantly	worse	in	an	intra-node	environment	
compared	to	an	inter-node	environment.	

2. There	is	a	bug	within	a	testing	utility	which	is	widely	used	for	network	
performance	testing.	

We	have	the	 idea	that	 it	could	be	option	2	which	we	mentioned	 in	section	
5.2.4.	In	order	to	fix	this	behavior,	contacted	iperf3	via	their	GitHub	page	but	
have	gotten	no	answer	that	helped	us	redeem	the	problem3.	This	means	that	
we	cannot	be	sure	of	what	causes	this	behavior.	

6.2 	Quality	of	Service	classes	

Xu,	 Rajamani,	 &	 Felter	 performed	 some	 research	 on	 implementing	 the	
existing	Kubernetes	quality	of	service	classes	on	the	subject	of	networking.	
Kubernetes	 implements	 the	 three	 classes	Garanteed,	Burst	 and	Best	Effort.	
These	are	related	to	CPU	and	memory	usage.	Xu	et	al.	created	these	classes	to	
give	priority	to	network	flows.	

In	 their	 proceedings	 Xu	 et	 al.	 state	 that	 their	 implementation	 works	 as	
expected	and	that	they	can	safeguard	quality	of	service	in	this	manner.	Xu	et	
al.	 describe	 how	 they	 implemented	 this	 technology.	 They	 developed	 this	
technology	 in	 such	 a	 way	 that	 it	 is	 independent	 of	 the	 CNI.	 This	
implementation	is	placed	directly	in	the	Linux	kernel	of	a	pod.		Furthermore,	
a	working	product	has	not	been	distributed.	In	our	study	we	focus	on	how	
quality	of	service	can	be	safeguarded	with	the	help	of	CNIs.	This	means	that	
this	 solution	 is	 at	 odds	 with	 our	 research,	 but	 even	 if	 we	 wanted	 to	
experiment	with	this	technology,	we	couldn’t	due	to	it	not	being	distributed.	
Therefore,	the	solution	that	is	presented	by	Xu	et	al.	is	out	of	scope	for	this	
study.		

	 	

	
3	https://github.com/esnet/iperf/issues/1263	
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Chapter	7	

7 Discussion	
The	research	problem	we	answered	during	this	study	is	“How	can	quality	of	
service	be	safeguarded	in	a	cloud	native	environment”.	We	tried	to	apply	tools	
that	can	be	used	for	quality	of	service	in	a	non-cloud	native	environment,	to	
a	cloud	native	environment.	There	were	three	tools	that	we	tested:	

1. Giving	network	traffic	priority	via	DSCP	
2. Shaping	
3. Policing	

The	 results	 of	 our	 tests	 indicate	 that	 none	 of	 these	 tools	 functioned	
completely,	or	they	didn’t	function	at	all	in	combination	with	the	CNIs	that	we	
tested.	 This	 means	 that	 it	 is	 not	 possible	 with	 the	 current	 technology	 to	
safeguard	 quality	 of	 service	 within	 a	 cloud	 native	 environment	 and	 that	
Thales	 cannot	 use	 this	 technology	 in	 the	 current	 form	 for	 their	 naval	
products.	

Limitations	of	this	study	include	that	only	three	CNIs	are	tested	due	to	time	
constraints.	 Furthermore,	 we	 couldn’t	 perform	 all	 tests	 for	 an	 intra	 node	
environment,	due	to	UDP	being	faster	than	TCP	in	our	tests.	This	indicates	
that	 the	maximum	network	capacity	couldn’t	be	utilized	 in	 this	 test	 setup.	
This	 in	 turn	 makes	 congestion	 tests	 in	 such	 an	 environment	 at	 the	 least	
unreliable	and	therefore	these	tests	have	not	been	performed.	We	found	yet	
another	limitation	in	our	testing	software.	The	testing	software	couldn’t	run	
tests	 for	every	CNI,	due	 to	 the	 infrastructure	one	of	 the	CNIs	relies	on	not	
being	 supported	 by	 the	 two-way	 active	 measurement	 protocol.	 We	 do	
however	believe	that	this	does	not	have	a	big	influence	on	our	results	as	other	
NPMs	 show	 no	 difference	 in	 the	 prioritization	 of	 network	 traffic,	 with	 or	
without	a	DSCP	tag.	
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For	 CNIs	 to	 support	 quality	 of	 service	 we	 believe	 that	 a	 first	 step	 to	
safeguarding	quality	of	service	 is	 the	ability	of	prioritizing	network	traffic.	
CNI	 vendors	 could	 implement	 this	 by	making	 use	 of	 the	work	 of	 Xu	 et	 al.	
mentioned	 in	 section	 6.2.	 The	 three	 tested	 CNIs	 seem	 to	 have	 partial	
functionality	 on	 the	 topic	 of	 the	 shaping	 of	 network	 traffic	 and	 no	
functionality	for	the	policing	of	traffic.	We	believe	that	shaping	has	somewhat	
more	priority	than	policing	as	policed	traffic	most	often	gets	retransmitted	
and	 therefore	 makes	 the	 environment	 busier.	 If	 these	 features	 would	 be	
implemented	 by	 CNI	 vendors,	 we	 believe	 that	 this	 would	 enable	 us	 to	
safeguard	quality	of	service	in	a	cloud	native	environment.	
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Chapter	8	

8 	Conclusion	
In	this	study	we	set	out	to	answer	the	question	“How	can	quality	of	service	be	
safeguarded	within	a	cloud	native	environment.”	We	started	by	defining	what	
quality	of	service	precisely	entails	and	came	up	with	following	definition:	
	
“Quality	of	service	entails	giving	the	end	user	a	satisfiable	experience,	which	is	
in	 line	 with	 the	 set	 organizational	 objectives.”	 This	 can	 be	 achieved	 via	
constant	 monitoring,	 controlling	 the	 flow	 of	 network	 packages	 and	 the	
scaling	of	applications.	

We	 identified	 three	 main	 ways	 of	 monitoring	 (active,	 passive	 and	 using	
SNMP-agents)	and	defined	nine	Network	Performance	Metrics	that	we	use	
for	displaying	the	quality	of	a	network	stream.		

After	the	literature	research	we	see	that	there	are	three	main	categories	of	
tools	that	can	be	used	to	safeguard	quality	of	service	in	a	non-cloud	native	
environment.	These	categories	are:	

- Classification	and	marking	tools	
- Policing,	shaping	and	markdown	tools	
- Congestion	management	or	scheduling	tools	

We	 found	 out	 that	 the	 only	 quality	 of	 service	 tools	 we	 could	 test	 for	 the	
Container	 Network	 Interface	 (CNI)	 that	 connects	 the	 cloud	 native	
environment	are	classification	of	network	traffic	via	a	DSCP	tag	and	making	
use	of	policing	and	shaping	tools.	This	means	that	 in	this	study	we’ve	only	
made	use	of	 active	monitoring	 tools	 to	gather	performance	metrics.	Other	
tools	such	as	an	Access	Control	List	are	absent	in	current	CNIs	or	are	too	basic	
to	have	quality	of	service	capabilities.	Of	course,	we	can	scale	an	application	
in	a	Kubernetes	environment,	but	this	does	not	directly	affect	the	CNI	and	is	
out	of	scope	for	this	study.		
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For	our	experiments	we	used	Calico,	Cilium	and	Antrea	as	our	CNI.	In	our	
priority/classification	experiment	we	see	that	we	can	in	fact	add	a	DSCP	tag	
to	a	network	stream	and	thereby	indicate	priority	for	this	network	stream.	
The	CNIs	however,	did	not	treat	network	streams	any	different	as	can	be	
seen	in	our	iperf3,	owamp	and	twamp	results.	In	some	cases	the	DSCP	tag	
led	to	slightly	worse	results.	This	means	that	adding	a	DSCP	tag	to	a	network	
stream	did	in	general	not	affect	our	Network	Performance	Metrics.	During	
these	tests	we	encountered	that	Cilium	and	Antrea	have	a	built-in	
mechanism	for	load	balancing,	which	could	be	of	benefit	for	a	cloud	native	
environment,	but	this	is	not	investigated	further	as	we	weren’t	able	to	
influence	this	behavior.	
	
Policing	should	be	possible	for	Calico	and	Antrea	via	the	bandwidth	plugin.	
We	couldn’t	retrieve	useful	data	for	this	experiment.	When	throughput	was	
near	our	policing	throughput	limit,	traffic	wouldn’t	be	policed.	In	case	our	
policing	limit	was	set	at	1Mbit/s	and	throughput	set	at	100Mbit/s	the	test	
failed	to	complete,	because	of	time	outs.	This	indicates	that	policing	is	not	a	
viable	quality	of	service	option	in	the	current	state.	
	
Shaping	of	network	streams	is	functional,	but	needs	a	second	or	two,	before	
the	CNIs	start	shaping	network	traffic.	Calico	and	Antrea	use	the	bandwidth	
plugin	for	shaping	functionality,	while	Cilium	has	its	own	implementation	to	
enable	traffic	shaping.	In	our	experiments	we	see	that	Antrea	and	Calico	
perform	roughly	the	same,	but	that	Cilium	does	a	better	job	at	shaping	
network	traffic.	
	
Now	that	we	have	this	information,	we	can	say	that	at	the	moment	it	isn’t	
possible	to	safeguard	quality	of	service	in	a	cloud	native	environment.	The	
reasons	are	that	existing	tools	that	can	be	used	to	enable	quality	of	service	
are	not	(yet)	implemented	in	the	CNIs	that	existed	during	the	duration	of	
this	study.	 	
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Appendix	

10 Appendix	A	
The	tables	containing	test	results	are	too	big	to	fit	on	standard	sized	pages.	
Therefore,	 I	 have	 made	 these	 results	 publicly	 available	 on	 the	 following	
GitLab	page:	https://gitlab.com/thesis47/quality-of-service.	This	repository	
contains	the	inter	and	intra	node	tests	for	each	CNI	as	well	as	an	overview	of	
all	CNIs.	


