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Abstract

As a core component of modern information retrieval (IR), ranking systems aim
to present users with a sorted list of documents that match their query. Learning
to rank, a research direction that employs supervised machine learning techniques,
optimizes a ranking model by combining hundreds of ranking features. However,
traditional learning to rank (LTR) approaches that rely on expert annotations
for training face significant challenges, such as the difficulty of obtaining accurate
relevance labels.

Researchers have proposed using user interaction data, such as click data, as an
alternative to expert annotations for training Unbiased Learning to Rank (ULTR)
models. These models include counterfactual and online LTR and aim to learn
unbiased ranking models from potentially biased user interaction data. Recent
developments in this field, such as the ability to combine online and counterfactual
LTR in a single method, present exciting opportunities for further research and
innovation.

This thesis critically analyzes the computational efficiency of previous state-of-
the-art intervention-aware estimators which unify online and counterfactual LTR.
The main goal of this research is to contribute to the development of efficient and
effective methods for counterfactual bias estimation and model training. Since
the existing method is impractical due to its time-consuming nature, this research
explores a range of strategies to reduce runtime without compromising performance
compared to the state-of-the-art intervention-aware method. The goal is for faster
methods to perform more interventions and thus be more efficient.

By evaluating a number of different approaches, such as speeding up bias esti-
mation using Plackett-Luce ranking models and using iterative training instead of
training ranking model from scratch, this thesis aims to advance our understand-
ing of intervention-aware estimator and its potential applications in real-world IR
systems.

1



Contents

1 INTRODUCTION 3
1.1 Ranking Systems and Applications . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 BACKGROUND 6
2.1 Learning to Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Supervised Learning to Rank . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Plackett-Luce Ranking Model and PL-Rank Algorithm . . . . . . . . . . . 7
2.4 Unbiased Learning to Rank . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Click Models for Web Search . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Counterfactual Learning to Rank . . . . . . . . . . . . . . . . . . . . . . . 9

2.6.1 Position Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6.2 Item-Selection Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6.3 Trust Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6.4 Intervention-Oblivious Estimator . . . . . . . . . . . . . . . . . . . 11
2.6.5 Intervention-Aware Estimator . . . . . . . . . . . . . . . . . . . . . 12

3 METHODS 14
3.1 Bias Estimation Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Frequency Estimation (Original Intervention-Aware Estimator) . . 15
3.1.2 Plackett-Luce Estimation . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.3 Direct Estimation Using Displayed Rankings . . . . . . . . . . . . 16
3.1.4 Utilizing Displayed Rankings with Additional Rankings . . . . . . 17
3.1.5 Frequency Expectation Calculation . . . . . . . . . . . . . . . . . . 17

3.2 Model Training Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 EXPERIMENTAL SETUP 18
4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Ranking Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Click Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Experiment Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 EXPERIMENTAL RESULTS 20
5.1 Runtime Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Bias Estimation Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3 Model Training Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4 Real-Time Interactive Simulation . . . . . . . . . . . . . . . . . . . . . . . 27

6 CONCLUSION 30
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2



1 INTRODUCTION

1.1 Ranking Systems and Applications

In recent decades, the Internet has experienced explosive growth in the amount of infor-
mation available. This has made efficient and effective information retrieval (IR) more
important than ever, and IR systems have become essential for applications that depend
on them to deliver accurate and relevant results to users [37].

Ranking is the core task of modern information retrieval and aims to present the user
with a sorted list of documents that match their query. Formally, given a query q and a
set of documents D matching this query, the ranking system must order the documents
d ∈ D by some criterion, such that the most relevant ones appear at the top of the
list displayed to the user. Ranking systems have been used in a variety of applications,
including search engines and recommendation systems. For example, search engines
such as Google, Bing, etc. use ranking algorithms to determine the relevance of web
pages to a user’s explicit query [15]. Similarly, recommendation systems like those used
by Amazon, Netflix, and YouTube use ranking algorithms to recommend products or
content that match a user’s interests, which are equivalent to using implicit queries to
search. These systems are designed to provide users with the most relevant and useful
information or recommendations based on their individual preferences and behavior.

Over the years, many ranking models have been proposed and used in the IR field.
Traditional ranking models include Boolean Retrieval Models [28], Vector Space Models
[27], Probabilistic Ranking Models [30, 31] and PageRank [2], etc. As the amount of
web data grows, current web search engines are no longer satisfied with using a single
ranking model. To improve the accuracy of retrieving the most relevant search results,
researchers naturally think of studying how to combine these ranking features and create
more effective new models. Building ranking models with hundreds of ranking features
using supervised machine learning techniques, known as learning to rank (LTR) [13], has
become a well-established research direction in the field of IR over the past two decades
due to machine learning’s demonstrated ability to combine multiple features.

In the LTR field, we think of the ranking system as a scoring function that assigns
a score to each candidate document based on a given query and the ranking features
of the document. The objective is to learn an optimal scoring function so that the
most relevant documents are ranked first. There are several metrics that are commonly
used to evaluate whether this objective has been achieved, such as Mean reciprocal rank
(MRR), Mean average precision (MAP) and Discounted Cumulative Gain (DCG). The
problem of learning to rank is often defined as an optimization problem for one of these
metrics.

However, traditional learning to rank approaches that use supervised learning meth-
ods for training face certain challenges. One such challenge is obtaining accurate rele-
vance labels: Traditional LTR methods rely on expert annotations as the judgment of
relevance, that is, experts have to annotate the relevance of each query-document pair
[29]. There are some limitations with annotated datasets: (i) Creating them is a very
expensive and time-consuming work. Therefore, only very large companies like Yahoo!
and Microsoft who offer search service have the capacity to collect such datasets [4, 25];
(ii) Gathering data from private documents like emails and having experts annotate
them is unethical and would constitute a serious breach of privacy [34]; (iii) Annotated
data often disagrees with the preferences of many users [29].

Therefore, practitioners in the field of LTR often use user interaction data, specifi-
cally user click data, as a common alternative to annotated datasets for training their
models. In these methods, we do not know the true relevance labels, but we can infer
relevance indicators from click data. User interaction data solves some of the problems
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associated with annotated datasets.: (i) Interaction data is free and can be collected by
any service provider [26]; (ii) Interaction data can be collected without showing experts
sensitive items for annotation [34]; (iii) Interaction data reflect the preferences of each
user. However, interaction data also has specific disadvantages: (i) It requires the use of
cookies to track the user’s browsing activity (such as clicking on specific buttons, logging
in, or recording history), which may violate user privacy; (ii) Click data is a very noisy
signal because human behavior is unpredictable, users may click or not click for various
reasons [5]; (iii) Relevance indicators from click data are also biased: (1) Position bias:
users are more likely to examine, and click higher ranked items [6]. (2) Trust bias: users
are more likely to click on on higher-ranked items that they do not actually like [1]. (3)
Item-selection bias: not all the documents can be displayed in one ranking [21].

Researchers proposed Unbiased Learning to Rank (ULTR) [16] to learn unbiased
ranking models from biased user interaction data, such as click data. There are two
main families of methods for unbiased learning to rank: Counterfactual Learning to
Rank (Counterfactual LTR) and Online Learning to Rank (Online LTR). Online LTR
learns from real-time interaction with users [38, 20], while Counterfactual LTR learns
from historical interactions [34, 12]. These two methods have been studied separately un-
til Oosterhuis et al. [22] proposed a novel intervention-aware estimator that is designed
for both online and counterfactual LTR. The authors demonstrate that the intervention-
aware estimator outperforms existing estimators in terms of performance. Furthermore,
the intervention-aware estimator’s data efficiency increases when online intervention oc-
curs. This means that with more interventions, less data is required to achieve optimal
performance or, with the same amount of data, more interventions will lead to higher
performance.

1.2 Research Questions

In this thesis, I explore the potential of making the intervention-aware estimator, a
previously proposed approach for learning from user interactions, more efficient. While
the intervention-aware estimator is able to reach performance comparable to state-of-
the-art online and counterfactual LTR methods [22], it is not without limitations and
challenges. One significant issue is the heavy computational load associated with the
method. This limits the number of interventions that can be practically applied, thereby
reducing data efficiency and algorithm performance. As a result, this approach may not
be suitable for online applications that need to respond quickly to user preferences.
The lengthy update process, which takes hours to complete, may make this approach
impractical for real-time online applications.

To address these limitations and enhance the practicability of intervention-aware
estimators, this thesis focuses on optimizing the method to reduce computational load
and overall runtime without compromising performance. By monitoring and analyzing
the runtime of various steps, including bias estimation and model training, I am able
to identify bottlenecks and areas for improvement. This study aims to explore various
methods for reducing the time required for bias estimation. Additionally, I delve into
potential strategies to accelerate the model training process. To see how reduced runtime
translates into performance gains in realistic settings, I introduce a novel experimental
setup that simulates the effect of interventions on real-time online LTR. By addressing
these research questions, I aim to contribute to the development of fast and accurate
intervention-aware counterfactual estimators for online learning to rank.

There are several opportunities to save time in this algorithm. One approach to
achieve this is through the monitoring and analysis of the runtime of the entire pro-
cess, including the individual components such as bias estimation and model training.
After identifying bottlenecks and areas for improvement, targeted solutions can be im-
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plemented to reduce overall runtime. Accordingly, the first research question of this
thesis is:

RQ1 How much time does each step of the intervention-aware approach use while learn-
ing from (simulated) user interactions?

The analysis shows that bias estimation and model training are the most time-consuming
components, the rest of the thesis will focus on how to improve the efficiency of these
parts, aiming to significantly reduce the overall runtime of the algorithm.

RQ2 Among the five bias estimation methods—Frequency Estimation, Plackett-Luce
Estimation, Direct Estimation Using Displayed Rankings, Utilizing Displayed Rankings
with Additional Sampled Rankings, and Computing Expectations Based on Query Fre-
quency— which method has the shortest runtime for bias estimation while maintaining
the performance?

I delve into a series of strategies to improve the efficiency of the bias estimation process.
This exploration includes different numbers of sampled rankings, different estimation
methods, different data for estimation and innovative ways of computing expectations.
The goal of these methods is to significantly reduce the time required for bias estimation
while maintaining or enhancing result accuracy.

After determining the most effective algorithm for bias estimation, we use this as a foun-
dation to explore various approaches for reducing the time required for model training.

RQ3 Among approaches like setting different maximum epoch values, iterative training
with and without regularization techniques such as weight decay, which techniques yield
the most efficient model training process while upholding or enhancing result accuracy?

These approaches include, but are not limited to, setting different maximum epoch val-
ues, implementing different model initialization strategies, such as starting from scratch
or using an iterative approach. By carefully evaluating the impact of these approaches
on runtime and model performance, I aim to identify the most effective methods for
accelerating the model training process while maintaining or improving the accuracy of
the results.

Through the optimization of the bias estimation and model training processes, I identify
the most effective methods for saving the time for these steps. However, in my experi-
mental setup, I do not consider the time required to generate user interaction data. In a
real-world interactive system, the user’s interaction with the system and the update of
the system’s logging policy are independent processes. To see how reduced runtimes can
translate into performance gains in realistic settings, I introduce a novel experimental
setting that simulates the effect of interventions on real-time online LTR.

RQ4 Does the reduced running time of the intervention-aware approach result in a
meaningful difference in responsiveness?

By doing so, I aim to get insight into how efficiency interventions could translate into a
faster and better performance thus a more responsive user experience with the system
due to the more frequent updating of the system.
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2 BACKGROUND

2.1 Learning to Rank

Learning to rank is an application of machine learning to build effective ranking mod-
els. As the name implies, it optimizes a ranking model by applying machine learning
methods. The model should rank the documents in order of relevance, preference, or
importance [13]. A ranking model is simply a ranking function that scores candidate
documents given features about the query-document pairs and then sorts them in de-
scending order based on the score. More formally, given a collection of documents D
and a query q, a ranking system orders the documents d ∈ D according to a scoring
function fθ. The goal of learning to rank is to find the parameters θ for fθ that leads to
the optimal ranking.

The existing learning to rank algorithms can be divided into three approaches: point-
wise, pairwise, and listwise approaches. The pointwise approaches directly use regression
or classification based algorithms to predict the exact value of relevance for each doc-
ument. The pairwise approaches consider the relative order between two documents,
which can be seen as a binary classification task. The listwise approaches try to opti-
mize the ranking metrics of the whole ranking, such as NDCG and so on. Experiments
comparing different learning to rank algorithms on several benchmark datasets show
that listwise approaches generally outperforms pairwise and pointwise approaches [32].

2.2 Supervised Learning to Rank

Generally, LTR methods assume that each document d has a relevance label with respect
to a query q [13], which can be modeled as the probability that a user thinks item d is
relevant to query q: P (R = 1 | q, d). In the LTR field, we think of the ranking system
as a scoring function that assigns a score to each candidate document based on a given
query and the ranking features of the document. Subsequently, these documents are
ordered to form a ranking y. Hence, the primary goal is to learn an optimal scoring
function m(d) so that the most relevant documents are placed at the top of the ranking.

Let π be a ranking policy used to generate rankings for users, which can be understood
as a probabilistic distribution over rankings given a specific query. In this context,
π(y | q) is the probability that the ranking policy π will present ranking y to the user
for the given query q. Ideally it is important to consider all possible rankings that a
policy can generate. The reward associated with a single ranking is denoted by R(y).
Now, let R(q) represent the metric reward for query q under a ranking policy π, which
is computed as the expected reward for all possible rankings:

R(q) =
∑
y∈π

π(y | q)R(y). (1)

The problem of learning to rank is often defined as an optimization problem for ranking
metrics. R(y) can represent different relevance ranking metrics by choosing different θd,
for example, Discounted Cumulative Gain (DCG):

R(y) =
∑
d∈y

θdP (R = 1 | q, d), θd =
1

log2
(
rank(d | y) + 1

) . (2)

Then the overall metric reward R of this ranking policy π usually has the following
form, which can be understood as the expected reward of a ranking system over the
distribution of queries searched by users, in which P (q) is the probability that a user
searches for query q:

R = Eq[R(q)] =
∑
q

P (q)R(q). (3)
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Thus, supervised LTR will try to optimize π to maximize R, given the relevance label
P (R = 1 | q, d) [13, 35]. However, in practice, the relevance label is difficult to obtain
directly.

2.3 Plackett-Luce Ranking Model and PL-Rank Algorithm

As mentioned in Section 2.2 about the distribution over rankings, the Plackett-Luce
(PL) ranking model [23, 14] is often used to model this distribution [3, 8, 18, 17]. In the
PL ranking model, m(d) represents the score of a certain item d, then the probability of
d is chosen to be the kth item in ranking y from the set of items D is:

π(d | y1:k−1, D) =
em(d)

1[d /∈ y1:k−1]∑
d′∈D\y1:k−1

em(d′)
. (4)

So the probability of the overall ranking is the product of the placement probabilities of
each individual item:

π(y) =

K∏
k=1

π(yk | y1:k−1, D). (5)

Unlike deterministic ranking models, the PL ranking model is possible for LTR methods
to optimize ranking metrics directly, since the PL ranking model is fully differentiable.
Typically, for a single query, the metric reward R(q) is calculated as I show in Equation
1, where ρyk

represents the relevance label the relevance label of the k-th item in ranking
y, and the relevance is weighted by θk. R(q) can represent different kinds of relevance
ranking metrics by choosing different θk, for example, if θk = 1

log2(k+1) , then R(q) will

be the expectation of DCG@K on the ranking policy π:

R(q) =
∑
y∈π

π(y | q)R(y) =
∑
y∈π

π(y | q)
K∑

k=1

θkρyk︸ ︷︷ ︸
DCG@K

. (6)

To maximize R(q), the gradient of R(q) w.r.t. the general scoring function m is:

δ

δm
R(q) =

∑
d∈D

[
δ

δm
m(d)

]
· λd, (7)

in which,

λd = Ey

[( K∑
k=rank(d,y)

θkρyk

)
−

rank(d,y)∑
k=1

π(d | y1:k−1)

( K∑
x=k

θxρyx

)]
. (8)

This is the PL-Rank-1 algorithm [17]. In practice, it is infeasible to compute this gradient
exactly since λd is the expectation over all possible rankings. Luckily, we can first
estimate λd using N sampled rankings, each ranking is of length K, and then estimate
the gradient for all D items, so the computational complexity is O(D ·N ·K). In order
to improve the sample efficiency, Oosterhuis also proposed the PL-Rank-2 algorithm [17]
with same computational complexity by rewriting the λd:

λd = Ey

[( K∑
k=rank(d,y)+1

θkρyk

)
+

rank(d,y)∑
k=1

π(d | y1:k−1)

(
θkρd −

K∑
x=k

θxρyx

)]
. (9)
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In Oosterhuis’s subsequent work [18], he proposed the PL-Rank-3 algorithm by using
the following property:

rank(d,y)∑
k=1

π(d | y1:k−1) = ef(d)
(rank(d,y)∑

k=1

1∑
d′∈D\y1:k−1

ef(d′)

)
, (10)

and three new vectors: PRy,d, DRy,d and RIy,d:

PRy,i =

min(i,K)∑
k=i

θkρyk
, PRy,d = PRy,rank(d,y)+1,

RIy,i =

min(i,K)∑
k=1

PRy,k∑
d′∈D\y1:k−1

ef(d′)
, RIy,d = RIy,rank(d,y),

DRy,i =

min(i,K)∑
k=1

θk∑
d′∈D\y1:k−1

ef(d′)
, DRy,d = DRy,rank(d,y),

(11)

which enable:

λd = Ey

[
PRy,d + ef(d)

(
ρdDRy,d −RIy,d

)]
. (12)

The novel PL-Rank-3 algorithm computes the same approximation with O(D · (N +K))
given N sampled rankings.

2.4 Unbiased Learning to Rank

Supervised LTR comes with several limitations due to its reliance on supervised learning
and expert annotations, for example, finding the true relevance label P (R = 1 | q, d) is
quite infeasible in many practical cases [34].

In response to this challenge, practitioners turn to user interaction data, particularly
user click data, as a common alternative for model training. Despite not knowing the
true relevance labels, these methods infer relevance indicators from the user interactions.
User interaction data offers various advantages. Firstly, it is freely available and can be
collected by any service provider without the need for expert intervention [26]. Secondly,
gathering interaction data does not involve exposing sensitive content to experts, thus
preserving user privacy [34]. Lastly, this data more closely matches the preferences of
individual users [11]. However, click data is inherently biased. Several biases, such as
position bias (users are more likely to examine, and click higher ranked items [6]), trust
bias (users are more likely to click on on higher-ranked items that they do not actually
like [1]), and item-selection bias (not all the documents can be displayed in one ranking
[21]), prevent us from simply using click data as relevance labels.

To learn unbiased ranking models from such biased user interaction (click) data,
researchers proposed Unbiased Learning to Rank (ULTR) [16]. There are two main
families of methods for unbiased learning to rank: Counterfactual Learning to Rank
(Counterfactual LTR) and Online Learning to Rank (Online LTR). Online LTR learns
from real-time interaction with users [38, 20], while Counterfactual LTR learns from
historical interactions [34, 12].

2.5 Click Models for Web Search

Click models are a class of statistical models used to understand user behavior in web
search with a ranked list of items. It is very important to developing click models.
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Firstly, by modeling user behavior with click data, we can gain a better understanding
of users, ultimately leading to an improved search experience. Moreover, such a model
can be used to predict document relevance for items not directly observed, as we do
in Counterfactual LTR. Furthermore, experiments with real users may not always be
feasible in many cases. In such situations, accurate user simulations based on well-
defined click models become very important. In summary, click models make user clicks
in web search easier to understand user behavior, build evaluation metrics, approximate
document relevance, and perform simulation experiments by using probabilistic graphical
models [5].

There are several types of click models, each with its own assumptions. Some common
click models include random click model (RCM) [5], rank-based click model (RCTR) [10],
document-based click model (DCTR) [6] and position-based click model (PBM) [5, 6].
The random click model (RCM) [5] is a simple and widely used click model, which as-
sumes that users click on documents randomly, without considering the relevance of the
documents. In other words, regardless of the quality of the ranking, each document is as-
signed an equal probability of being clicked. This sharply contrasts with the rank-based
click model (RCTR) [10] and document-based click model (DCTR) [6], which respec-
tively assume that the click probability of a document depends only on its rank or its
relevance. While the Position-Based Model (PBM) follows the examination hypothesis,
which states that users will click on a document if and only if they examine it and are
attracted to it (and therefore click after having examined it) [5, 6]:

P (C = 1) = P (E = 1) · P (A = 1) = P (E = 1) · P (C = 1 | E = 1), (13)

where P (E = 1) is the examination probability and P (C = 1 | E = 1) is the conditional
probability of clicking on the document given that it is examined.

It should be emphasized that attractiveness here refers to the true or perceived
relevance of the document, so the probability of a document being clicked can be factored
as:

P (C = 1) = P (E = 1) · P (C = 1 | E = 1)

=

{
P (E = 1 | k) · P (R = 1 | q, d), R is true relevance

P (E = 1 | k) · P (R̃ = 1 | E = 1, q, d). R̃ is perceived relevance

(14)

Joachims et al. [10] show that the examination probability of the document often de-
pends heavily on its rank or position k, while the true relevance R (perceived relevance
R̃) depends on both the query q and document d by introducing query-document pairs.
A probabilistic graphical model representation of this model is shown in Figure 1.

2.6 Counterfactual Learning to Rank

Counterfactual LTR algorithms leverage historical user interactions. Instead of consid-
ering clicks directly as biased relevance indicators, these algorithms re-weight clicks to
debias potential biases present in the interaction data [9]. Through this approach, we
learn a ranking model that aims to mitigate the impact of biases and provide more
accurate relevance indicators.

2.6.1 Position Bias

Position bias, in the context of information retrieval, means users are more likely to
click on or interact with documents that are presented at the top of the ranking list,
regardless of their actual relevance or quality. To correct for position bias to ensure fair
and unbiased rankings, Wang et al. [34] and Joachims et al. [12] proposed the Inverse
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Figure 1: Graphical representation of the position-based model. E is the random variable
for examination, R is the random variable for true relevance, k means position, rank, d
is document identifier, q is query identifier.

Propensity Scoring based estimator, which re-weight clicks according to the examination
probabilities.

As I mentioned before, in a basic Position-Based Model (PBM), a click depends
jointly on the examination E and relevance R:

P (C = 1 | q, y, d) = P (E = 1 | q, y, d) · P (C = 1 | E = 1, q, y, d)

= P (E = 1 | k) · P (R = 1 | q, d).
(15)

The main idea is that if the examination probability P (E = 1 | k) is positive, the position
bias for each click can be corrected. Intuitively, this condition exists because documents
that cannot be examined can never receive clicks [21]. Thus, the relevance indicator of
IPS estimator is:

P (R = 1 | q, d) = P (C = 1 | q, y, d)
P (E = 1 | k)

. (16)

Additionally, Joachims et al. [12] proved that it is still unbiased under click noise. In
fact, all recent counterfactual LTR methods are based on this IPS estimator.

2.6.2 Item-Selection Bias

The IPS estimator described in Section 2.6.1 is only unbiased if there is no item-selection
bias. That is, all relevant documents need to have a non-zero examination probability
in every ranking, which means that all relevant documents must be displayed to the
users in every ranking. However, in real search engines, the most common situation is
that the system is set to only display the top-K documents, and users cannot examine
documents other than top-K.

To correct for this bias, we have to consider all possible rankings under the logging
policy π. Because this way, even if all relevant documents cannot be displayed in one
top-K ranking at the same time, they may be examined by users in different top-K
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rankings. This leads to a policy-aware estimator [21]:

P (C = 1 | q, π, d) =
∑
y

π(y | q) · P (C = 1 | q, y, d)

=
∑
y

π(y | q) · P (E = 1 | q, y, d) · P (C = 1 | E = 1, q, y, d)

=
∑
y

π(y | q) · P (E = 1 | y, d) · P (R = 1 | q, d)

= P (R = 1 | q, d) ·
∑
y

π(y | q) · P (E = 1 | y, d).

(17)

Thus, the relevance indicator of policy-aware estimator is:

P (R = 1 | q, d) = P (C = 1 | q, π, d)∑
y π(y | q) · P (E = 1 | y, d)

. (18)

2.6.3 Trust Bias

There also may be situations where users trust the ranking system and are therefore
more likely to click on documents they perceive as relevant, even if they are not actually
relevant. This is what we call a trust bias [10]. Vardasbi et al. [33] prove that IPS
estimator cannot correct for trust bias. As an alternative, they introduce an affine
estimator based on the idea of perceived relevance R̃:

P (C = 1 | q, y, d) =P (E = 1 | q, y, d) · P (C = 1 | E = 1, q, y, d)

=P (E = 1 | k) · P (R̃ = 1 | E = 1, q, y, d)

=P (E = 1 | k) ·
∑

R∈{0,1}

P (R̃ = 1, R | E = 1, q, y, d)

=P (E = 1 | k) ·
∑

R∈{0,1}

P (R̃ = 1 | E = 1, R, k) · P (R | q, d).

(19)

To simplify the notation, I follow Vardasbi et al. [33] and adopt:

αk = P (E = 1 | k) ·
[
P (R̃ = 1 | E = 1, R = 1, k)− P (R̃ = 1 | E = 1, R = 0, k)

]
,

βk = P (E = 1 | k) · P (R̃ = 1 | E = 1, R = 0, k),
(20)

the Eq. 19 can be simplified to

P (C = 1 | q, y, d) = αk · P (R = 1 | q, d) + βk. (21)

This affine estimator penalizes the document displayed at rank k by βk while also
reweighting by 1

αk
:

P (R = 1 | q, d) = P (C = 1 | q, y, d)− βk

αk
. (22)

2.6.4 Intervention-Oblivious Estimator

However, while the affine estimator correct for position bias and trust bias, it cannot
correct for item-selection bias, the policy-aware estimator correct for position bias and
item-selection bias, it cannot correct for trust bias. Oosterhuis et al. [22] introduced an
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intervention-aware estimator, which is the first to effectively correct for all three biases
simultaneously.

Before introducing intervention-aware estimator, I want to introduce intervention-
oblivious estimator first. The intervention-oblivious estimator [22] combines a policy-
aware estimator with an affine estimator, meaning it also corrects for position bias, trust
bias, and item-selection bias simultaneously. In the estimator, we need to consider both
π and R̃:

P (C = 1 | q, π, d) =
∑
y

π(y | q) · P (C = 1 | q, y, d)

=
∑
y

π(y | q) · P (E = 1 | q, y, d) · P (C = 1 | E = 1, q, y, d)

=
∑
y

π(y | q) · P (E = 1 | y, d) · P (R̃ = 1 | E = 1, q, y, d)

=
∑
y

π(y | q) · P (E = 1 | y, d) ·
∑

R∈{0,1}

P (R̃ = 1, R | E = 1, q, y, d).

(23)

Simplify it in the same way:

αy,d = P (E = 1 | y, d) ·
[
P (R̃ = 1 | E = 1, R = 1, y, d)− P (R̃ = 1 | E = 1, R = 0, y, d)

]
,

βy,d = P (E = 1 | y, d) · P (R̃ = 1 | E = 1, R = 0, y, d).

(24)

Finally, we get the intervention-oblivious estimator:

P (R = 1 | q, d) =
P (C = 1 | q, π, d)−

∑
y π(y | q)βy,d∑

y π(y | q)αy,d

=
P (C = 1 | q, π, d)− Ey[βy,d | π, q]

Ey[αy,d | π, q]
.

(25)

2.6.5 Intervention-Aware Estimator

In the intervention-oblivious estimator, we only consider one single policy π, which can
be understood as the method is designed for the scenario where the logging policy is
static, that is, the logging policy is the same at any time steps. In a real search engine,
this is obviously impossible. What we need to consider is that the logging policy may
be updated at any time when collecting data.

Although Oosterhuis et al. [22] have proved that even in this case the intervention-
oblivious estimator is still unbiased, the authors also mentioned that we still cannot
ignore deploying different logging policies at different time steps. So they proposed the
intervention-aware estimator in the same paper [22], which takes into account all logging
policies: ΠT = {π1, π2, ..., πT } employed to collect the data. Notably, this estimator also
successfully mitigates position bias, item-selection bias, and trust bias:

P (R = 1 | q, d) =
P (C = 1 | q,ΠT , d)− 1

T

∑T
t=1

∑
y πt(y | q)βy,d

1
T

∑T
t=1

∑
y πt(y | q)αy,d

=
P (C = 1 | q,ΠT , d)− Et,y[βy,d | ΠT , q]

Et,y[αy,d | ΠT , q]
.

(26)

A notable difference from intervention-oblivious estimator is that in intervention-aware
estimator the expectation is over all logging policies ΠT , rather than a single logging
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policy π. Although this difference may seem subtle, experimental results show that there
is a huge performance difference. It is for this reason that my thesis focuses on making
intervention-aware estimators better.

For clarity, I will present its algorithmic details in Algorithm 1. Its input requires a
starting policy (π0), a choice of ranking metric θ (Equation 6), the α and β parameters
(Equation 24), a set of intervention timesteps Φ, and the final timestep T .

Algorithm 1 Original Intervention-Aware Estimator[22]

1: Input: Starting policy: π0; Metric weight function: θ;
Inferred bias parameters: α and β;
Interventions steps: Φ; End-time: T .

2: D ← {} // initialize data container

3: π ← π0 // initialize logging policy

4: for i ∈ Φ do
5: D ← D ∪ gather(π, i− | D |) // observe i− | D | timesteps

6: π ← optimize(D, α, β, π0, θ) // optimize based on available data

7: D ← D ∪ gather(π, T− | D |) // expand data to T

8: π ← optimize(D, α, β, π0) // optimize based on final data

9: return π

The algorithm starts by initializing an empty set to store the gathered interaction
data (Line 2) and initializes the logging policy with the provided starting policy π0

(Line 3). Then for each timestep i in Φ, from last intervention timestep |D| to current
intervention timestep i, the dataset is expanded using the current logging policy π to
display rankings to users, and the resulting interactions are added to D (Line 5). Then
the starting policy π0 is optimized using the available data in D, which will be the new
logging policy π (Line 6). Each iteration results in an intervention that generates a
new policy that replaces the old logging policy, changing the way future data is logged.
After the Φ iterations are done, more data is collected so that |D| = T (Line 7)and the
optimization is performed one last time (Line 8). The resulting policy is the final result
of this process.
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3 METHODS

In this chapter, I will discuss the methodology of this thesis. The thesis builds upon the
intervention-aware estimator as introduced in Section 2.6.5. This work forms the basis
for the subsequent optimization work and analysis in this thesis.

In my method, I will use the same inputs and follow most of the steps and settings
from Algorithm 1. What I will focus on modifying and improving is the optimization
process (Line 6), which is to use the collected data to optimize the starting policy and get
a new logging policy. The algorithm will go through this optimization in each iteration
(intervention), if it can be made more effective, it will greatly improve the efficiency of
the entire algorithm, allowing more interventions to be run.

The optimization process (Line 6) is divided into two main steps in Algorithm 2.
The first step is bias estimation, which is used to derive the relevance indicator from
the click data: P (R = 1 | q, d) = ρd. The second step is model training, using the
relevance indicator ρd derived from the previous step as the relevance label, and then
follow supervised LTR (PL-Rank-3) to train the ranking model. I will focus on improving
these two steps.

Algorithm 2 Optimization Process

1: Input: Starting policy: π0; Metric weight function: θ;
Inferred bias parameters: α and β; Click data: D;
Logging policys: ΠT = {π1, π2, ..., πT }.

2: ρd ← estimate(D, α, β,ΠT ) // estimate relevance indicator

3: π ← PL-Rank-3(α, β, ρd, π0, θ) // train a new logging policy

4: return π

3.1 Bias Estimation Efficiency

In the original intervention-aware estimator, in order to derive the unbiased relevance
indicator, we need to first calculate the expected α and β over all logging policies ΠT =
{π1, π2, ..., πT }:

P (R = 1 | q, d) = P (C = 1 | q,ΠT , d)− Et,y[βy,d | ΠT , q]

Et,y[αy,d | ΠT , q]

=
P (C = 1 | q,ΠT , d)− 1

T

∑T
t=1

∑
y πt(y | q)βy,d

1
T

∑T
t=1

∑
y πt(y | q)αy,d

.

(27)

However, for each logging policy πt, it is computationally infeasible to exactly compute
the probability πt(y | q) of all possible rankings, so we need to transform the original
equation into:

P (R = 1 | q, d) = P (C = 1 | q,ΠT , d)− Et,y[βy,d | ΠT , q]

Et,y[αy,d | ΠT , q]

=
P (C = 1 | q,ΠT , d)− 1

T

∑T
t=1

∑
k∈{1,2,...,K} πt(k | q, d)βk

1
T

∑T
t=1

∑
k∈{1,2,...,K} πt(k | q, d)αk

.

(28)

For a single ranking y for query q, let k be the rank at which document d is displayed
in ranking y, so αy,d = αk, βy,d = βk. This allows us to convert the probability of the
ranking y under current logging policy πt(y | q) into the probability that document d is
ranked as the k-th document under current logging policy πt(k | q, d), which is something
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that we can estimate with a practical sampling strategy. In my thesis, following Equation
28, I explore various different methods to improve the efficiency and accuracy of the
estimation.

3.1.1 Frequency Estimation (Original Intervention-Aware Estimator)

To estimate πt(k | q, d), Oosterhuis et al. [22] propose to sample N additional rankings
for every query under the current logging policy, and calculate the probability that each
preselected document of the query is ranked in different positions through frequency
estimation. Every time the logging policy is updated (intervention), N additional rank-
ings are sampled again for estimation, all probabilities are updated accordingly. It is
important to note that, often in real-world scenarios, users will only be shown the top-K
results, which means, it is impossible to include all preselected documents in a single
ranking. This is illustrated in the following example in Table 1.

Ranking 1st (y1) 2nd (y2) 3rd (y3)

y(1) d1 d2 d3

y(2) d2 d1 d3

y(3) d1 d2 d3

Table 1: Sampled Rankings

Assuming a query q has four preselected documents {d1, d2, d3, d4}, three additional
rankings are sampled for estimation. If only relying on frequency estimation, the proba-
bility of d4 being ranked in each position will be 0, which would make the denominator
in Equation 28 equal to 0. The solution is to use frequency estimation for all positions
except the last one, while the probability of the last position must be calculated accord-
ing to the Plackett-Luce ranking model. In the Plackett-Luce (PL) ranking model, m(d)
represents the score of a certain document d, then the probability of d is chosen as the
k-th item in ranking y from the set of documents D is:

π(d | y1:k−1, D) =
em(d)

1[d /∈ y1:k−1]∑
d′∈D\y1:k−1

em(d′)
. (29)

Specifically, when k < K, the estimation is the observed frequency: 1
N

∑N
i=1 1[d = y

(i)
k ];

when k = K, the estimation is the expectation of Equation 29 over the observed rankings:
1
N

∑N
i=1 π(d | y

(i)
1:k−1, D). Finally, the probabilities of ranking each document at different

positions are listed in Table 2.

Doc π(k = 1 | q, d) π(k = 2 | q, d) π(k = 3 | q, d)

d1
2
3

1
3 0

d2
1
3

2
3 0

d3 0 0 em(d3)

em(d3)+em(d4)

d4 0 0 em(d4)

em(d3)+em(d4)

Table 2: Frequency Estimation
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It should be pointed out that using this method, many probabilities will be zero when
k < K, which may lead to underestimation of certain propensities, or at least inaccurate
estimates.

3.1.2 Plackett-Luce Estimation

To explore Research Question 2 in section 1.2, I first follow the original intervention-
aware estimator to generate N additional rankings for estimation. However, instead of
using frequency estimation for positions k < K like in the original method, I employ the
Plackett-Luce ranking model for each position k to exactly calculate the probability of
selecting document d as the k-th document in each sampled ranking y and then average
them. That is, for each k, the estimation is the expectation of Equation 29 over the

observed rankings: 1
N

∑N
i=1 π(d | y

(i)
1:k−1, D).

I use the same sampled rankings in Table 1, according to the Plackett-Luce ranking
model, the probability of each document being ranked in different positions is shown in
Table 3.

Doc π(k = 1 | q, d) π(k = 2 | q, d)

d1
em(d1)

em(d1)+em(d2)+em(d3)+em(d4)
1
3 ·

em(d1)

em(d1)+em(d3)+em(d4)

d2
em(d2)

em(d1)+em(d2)+em(d3)+em(d4)
2
3 ·

em(d2)

em(d2)+em(d3)+em(d4)

d3
em(d3)

em(d1)+em(d2)+em(d3)+em(d4)
2
3 ·

em(d3)

em(d2)+em(d3)+em(d4) +
1
3 ·

em(d3)

em(d1)+em(d3)+em(d4)

d4
em(d4)

em(d1)+em(d2)+em(d3)+em(d4)
2
3 ·

em(d4)

em(d2)+em(d3)+em(d4) +
1
3 ·

em(d4)

em(d1)+em(d3)+em(d4)

Doc π(k = 3 | q, d)

d1 0

d2 0

d3
em(d3)

em(d3)+em(d4)

d4
em(d4)

em(d3)+em(d4)

Table 3: Plackett-Luce Estimation

In summary, the two methods mentioned above require a lot of additional rankings for
estimation every time the logging policy is changed (intervention). This would obviously
make the estimation inefficient. One solution is to sample as little as possible rankings,
that is, to make N as small as possible. Another solution is to not sample the additional
rankings at all.

3.1.3 Direct Estimation Using Displayed Rankings

At each time step, the previous methods uniformly sample a user-issued query and gen-
erate a ranking display to the user according to the logging policy, and user interactions
are simulated on this ranking. However, it is wasted if the displayed rankings are only
used to collect user interactions. In this way, I directly use the rankings displayed to
the users during the interaction process to estimate π(k | q, d) by means of frequency
estimation, thus saving a lot of time.
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3.1.4 Utilizing Displayed Rankings with Additional Rankings

In addition to simply using displayed rankings, it is also possible to extend the collected
interaction data from one ranking to N rankings. This means that I only sample ad-
ditional rankings for queries searched by users during the interaction process, not for
every query. This method can be seen as a combination of generating new rankings
and directly using existing rankings. In order to be able to compare with the original
intervention-aware estimator, I still use frequency estimation in this approach.

3.1.5 Frequency Expectation Calculation

The three alternatives I mentioned above mainly consider using different methods to
estimate π(k | q, d), either changing the estimation algorithm or changing the data
used for the estimation. The method I now propose will no longer consider estimating
π(k | q, d), but uses a completely new method to calculate the expectation of α and β,
given π(k | q, d) is known (which has been estimated by using the original intervention-
aware estimator). In all previous methods, the expectation is computed over all logging
policies ΠT = {π1, π2, ..., πT }. However, in this approach, the expectation is computed
over the distribution of user-issued queries. For example, when the logging policy is π1,
the user searches for q twice, and when the logging policy is π2, the user searches for q
once, then the expectations for α and β in Equation 28 are as follows:

Et,y[βy,d | ΠT , q] =
2

3

∑
k∈{1,2,...,K}

π1(k | q, d)βk +
1

3

∑
k∈{1,2,...,K}

π2(k | q, d)βk,

Et,y[αy,d | ΠT , q] =
2

3

∑
k∈{1,2,...,K}

π1(k | q, d)αk +
1

3

∑
k∈{1,2,...,K}

π2(k | q, d)αk.

(30)

The advantage of this method is that if a query is not searched by users, then there is
no need to estimate the bias for this query, because it will be weighted by 0.

3.2 Model Training Efficiency

For Research Question 3, this thesis focuses on speeding up the model training process
within an intervention-aware estimator. I explore different methods to save time in
model training. One approach is to set a maximum epoch value. This can be a fixed
value or a varying maximum epoch value. Another approach is using iterative training.
In Line 3, the new logging policy πt is obtained by training from scratch:

πt ← PL-Rank-3(α, β, ρd, π0, θ). (31)

This means that we have to train from the starting policy π0 every intervention, which
can take a lot of time. Therefore, I propose trying iterative training, where the new
logging policy πt is trained from the last logging policy πt−1:

πt ← PL-Rank-3(α, β, ρd, πt−1, θ). (32)

I get this inspiration from online machine learning [36], which refers to the process of
continuously updating model parameters as new data becomes available. This approach
is particularly useful when dealing with streaming data or scenarios where the distribu-
tion of data may change over time, which is a good fit for the situation I am facing: at
each intervention, newly arriving data will be collected by the newly deployed logging
policy.

Iterative training builds on previous model, allowing the model to learn from new
data without losing knowledge already learned. This can lead to faster convergence and
fewer training epochs.
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4 EXPERIMENTAL SETUP

In this thesis, I use the semi-synthetic experimental setup that is common in existing
work on unbiased LTR [16, 21, 22, 20, 12, 9, 33]. In this setup, I simulate a web-search
scenario by sampling queries and documents from a commercial search dataset, while user
interactions and rankings are simulated using probabilistic click models. The advantage
of this setup is that it allows us to investigate the effects of online interventions on a
large scale while also being easy to reproduce by researchers without access to real search
scenarios.

4.1 Dataset

I use the one of the largest publicly-available LTR industry datasets: Yahoo! Learning
to Rank Challenge dataset [4]. This dataset consists of 29,921 queries with 709,877
query-document pairs. There are 699 features for query-document pairs, and five expert-
judged relevance labels {0, 1, 2, 3, 4}. The dataset is divided into training set, test set
and validation set. The training and validation sets are used to simulate training clicks
and validation clicks, and the test set is used to evaluate the performance of the current
(logging) policy.

4.2 Ranking Model

To start, I randomly select 20 queries from training set and use supervised LTR to
optimize a ranking model as the start logging policy π0 in Algorithm 1. The resulting
start ranking model has much better performance than a randomly initialized model,
yet still leaves room for improvement.

All ranking models are neural networks with two hidden layers, each containing 32
hidden units with sigmoid activations. Models are optimized using policy gradients
estimated with PL-Rank-3 [18]. All policies apply a softmax to the document scores
produced by the ranking models to match the Plackett-Luce ranking model. Clipping is
only applied on the training clicks, denominators of any estimator are clipped by 10/

√
|D|

to reduce variance. Early stopping is applied based on counterfactual estimates of the
loss using (unclipped) validation clicks.

4.3 Click Simulation

I simulate up to 107 clicks (aka time steps) per run. The number of training clicks
and validation clicks is always chosen as the ratio between the number of training
and validation queries in the dataset. The size of Φ (the intervention steps) is 50
per run, and the time steps in Φ are evenly spread on an exponential scale. At each
time step, I simulate a user-issued query by uniformly sampling from the training or
validation set. The preselected documents for this query are then ranked according
to the current logging policy, and user interactions are simulated on the top-5 docu-
ments of the overall ranking using a probabilistic click model. I apply Equation 21
with αtop−5 = [0.35, 0.53, 0.55, 0.54, 0.52] and βtop−5 = [0.65, 0.26, 0.15, 0.11, 0.08]; the
relevance probabilities P (R = 1 | d, q) = 0.25 · relevance label(d, q). The parameters of
α and β are chosen based on previous work by Agarwal et al. [1], who inferred them
from real-world user behavior. In doing so, our goal is to simulate an environment with
realistic levels of position bias, item-selection bias, and trust bias.
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4.4 Experiment Details

In order to select an appropriate number of interventions for all subsequent experiments,
I first compare different number of interventions (|Φ| = {10, 20, 50, 100, 200}) using the
original intervention-aware estimator in Section 3.1.1. I then choose the most suitable
50 interventions as the basis for all subsequent experiments.

To address Research Question 1, I use the original intervention-aware estimator with
|Φ| = 50 interventions and N = 1000 sampled rankings as the baseline model. I measure
the runtime of each part, including bias estimation and model training, as well as the
total runtime.

For Research Question 2, I compare different numbers of sampled rankings (N =
{10, 100, 1000}), different estimation methods (as described in Section 3.1.2), different
data for estimation (as described in Sections 3.1.3 and 3.1.4) and different ways of com-
puting expectations (as described in section 3.1.5).

For Research Question 3, I experiment with different maximum epoch values, both
fixed and varying: max epochs = {6, ⌊log10(|D|)⌋ − 1}. I also compare training from
scratch with iterative training with and without regularization techniques such as weight
decay.

In Research Question 4, in order to understand the potential performance gains of
these accelerations in real-world settings, I introduce a novel experimental setup that
simulates the impact of interventions on real-time learning curves. Specifically, during
the process of bias estimation and model training, users are also generating data. This
means that all click data generated during this period is used as training data for the
next model training. I simulate three user interaction systems of different scales, that
is, {1000, 1500, 3600} logged queries are generated per second. I set up this simulation
environment to observe the performance of the algorithm during the whole one-hour
simulation.

Finally, it is important to note that each experimental result is the average of 20
independent runs. Figures plot the mean and shaded areas represent 90% confidence
intervals. The performance metric used in all experiments is Normalized Discounted
Cumulative Gain (NDCG).
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5 EXPERIMENTAL RESULTS

First of all, in order to select an appropriate number of interventions for all subse-
quent experiments, I consider Figure 2 which displays the performance of the original
intervention-aware estimator proposed by Oosterhuis et al. [22] with different number
of interventions.

Figure 2: Comparison of different number of interventions. Results based on an average
of 20 runs, shaded area indicates the 90% confidence intervals.

From this figure, we can see that as the number of logged queries (clicks) increases,
the NDCG score also increases. This suggests that as more data is collected, the per-
formance of the estimator improves. Additionally, we can see that higher numbers of
interventions result in higher NDCG scores. In particular, the performance of 50, 100,
and 200 interventions is better than that of 10 and 20 interventions most of the time.
This suggests that using more interventions can ultimately improve the performance of
the estimator. However, it is difficult to determine from the figure which of the three
(50, 100, or 200 interventions) performs better. Therefore, considering that more in-
terventions lead to longer runtime, I decide to use 50 interventions in all subsequent
experiments, since it uses the least amount of time while achieving the optimal perfor-
mance.

5.1 Runtime Analysis

To answer the Research Question 1: how much time does each step of the intervention-
aware approach use while learning from user interactions, I consider Figure 3 which
displays the runtime of each part of the optimization process in Algorithm 1, including
bias estimation and model training, as well as the total runtime.

From this figure, we can observe that the total runtime is approximately 9500 seconds,
of which about 3000 seconds are used for bias estimation and the remaining 6500 seconds
are used for model training. Additionally, we can see that the runtime used for estimation
increases linearly with the number of interventions, while the slope of the total runtime
and the runtime used for training becomes steeper. This is because in each intervention,
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Figure 3: Runtime of the baseline model, the original intervention-aware estimator with
50 interventions and 1000 sampled rankings per query. Results based on an average of
20 runs.

the number of additional rankings generated for estimation remains constant, resulting in
a consistent increase in estimation runtime. On the other hand, as the model becomes
more complex and more click data is used for estimation, leading to more accurate
estimates, the runtime for model training increases at a faster rate.

Overall, this figure provides valuable insights into the runtime of the entire optimiza-
tion process, and give me a clear direction for the next step in improving the efficiency
of the algorithm: saving time for bias estimation and model training. We can see that
initially most of the time is spent on bias estimation, but later the training time over-
takes it. Therefore, my focus will be on these two parts, as each is important at different
stages of the learning process.

5.2 Bias Estimation Efficiency

To answer the Research Question 2: which of the methods mentioned in Section 3.1,
result in the shortest runtime for bias estimation while maintaining the performance, I
consider Figure 4 which displays how different numbers of sampled rankings and different
kinds of estimation methods affect performance.

First, I consider the left column of Figure 4 which displays performance of different
kinds of estimation methods, including Frequency Estimation, Plackett-Luce Estimation,
Direct Estimation Using Displayed Rankings, Utilizing Displayed Rankings with Addi-
tional Rankings and Frequency Expectation Calculation. The three sub-figures from top
to bottom represent the performance when N = {10, 100, 1000}, respectively. From the
figure, it can be seen that, no matter what the value of N , when using Direct Estimation
with Displayed Rankings (green line) and Utilizing Displayed Rankings with Additional
Rankings (red line), there is a significant performance gap compared to the other three
methods. These two methods have one thing in common, they both estimate bias based
on (extended) collected interaction data, which lead to inaccurate estimations related
to queries that have not been searched by users, resulting in low performance. We can
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Figure 4: Comparison of different numbers of sampled rankings and different kinds of
estimation methods. Left: the performance of different methods with the same number
of sampled rankings; Right: the performance of the same method with different numbers
of sampled rankings. Results based on an average of 20 runs, shaded area indicates the
90% confidence intervals.

conclude that neither method is suitable for improving the efficiency of estimation, as
they cannot even guarantee performance.

I therefore turn to the right column of Figure 4 which shows the performance of
the remaining three methods: Frequency Estimation, Plackett-Luce Estimation, and
Frequency Expectation Calculation when estimated using three different numbers of
rankings. We see that, except for the Frequency Estimation with N = 10, which have
obvious performance loss, the remaining eight configurations all have almost the same
performance curves. This means that a smaller number of additional rankings is sufficient
to compute accurate estimates for all three methods.

Given that the eight configurations above maintain optimal performance, it is im-
portant to compare their runtime (both total time and total estimation time) to decide
which configuration is most efficient. I consider Figure 5 which displays total time and
Figure 6 which displays total estimation time of eight different configurations for bias
estimation.

First, from the left column of Figure 5, it can be seen that when N = 10, the Plackett-
Luce Estimation method takes the least time, about 6700 seconds; when N = 100, the
Frequency Estimation method takes the least time, about 7100 seconds; when N = 1000,
the Frequency Expectation Calculation method takes the least time, about 8400 seconds.
This suggests that when N takes different values, the method that takes the least time

22



is also different. Then look at the right column of Figure 5, we can observe that no
matter what method is used, as the number of sampling rankings increases, the time
will naturally become longer. In summary, when considering the shortest total time,
the best configuration is the Plackett-Luce Estimation method with N = 10 additional
sampled rankings per query for estimation.

Figure 5: The total time of the remaining eight configurations which maintain optimal
performance. Left: the total time of different methods with the same number of sampled
rankings; Right: the total time of the same method with different numbers of sampled
rankings. Results based on an average of 20 runs.

Second, from the left column of Figure 6, we can find that, unlike the left column of
Figure 5 (total time), the Frequency Expectation Calculation method is always the least
time-consuming for the total estimation time, and it is significantly lower than the other
two. And when we look at the right column, we can see that fewer sampled rankings can
indeed reduce the estimation time very significantly. So we can know from the sub-figure
in the last row of the right column that, among all eight configurations, the Frequency
Expectation Calculation method with N = 10 additional sampled rankings takes the
shortest estimation time, which is about 120 seconds.

In summary, I can answer Research Question 2 and conclude that the configuration
(the Plackett-Luce Estimation method with N = 10) that takes the shortest total time
and the configuration (the Frequency Expectation Calculation method with N = 10)
that takes the shortest estimation time, respectively. I keep both configurations and
experiment separately. Particularly for the latter one, it has the shortest estimation
time, but its total time is still higher than the other configuration. This indicates that
it spends more time on model training, making it more necessary to optimize the model
training process.
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Figure 6: The total estimation time of the remaining eight configurations which
maintain optimal performance. Left: the total estimation time of different methods
with the same number of sampled rankings; Right: the total estimation time of the
same method with different numbers of sampled rankings. Results based on an average
of 20 runs.

5.3 Model Training Efficiency

To better understand why the maximum epoch should be set, and what the maximum
epoch value should be, I first consider the figure 7, which displays the performance of the
estimator and the number of epochs which is determined by the early stopping procedure
required to complete model training in an intervention. This allows me to spot room for
improvement in runtime.

We can observe that from |D| = 106 to |D| = 107, the performance of the estimator
does not improve much, but the number of epochs required to complete the model
training increases. So I set different maximum epoch values, both fixed and varying:
max epochs = {6, ⌊log10(|D|)⌋ − 1}, as shown by the dotted line in the figure, all model
training stops when the dashed line is reached.

To answer the Research Question 3: what methods, including setting different max-
imum epoch values, iterative training with and without weight decay, result in the most
efficient model training process with maintained or improved accuracy of the results, I
consider Figure 8 which shows the effect of setting the maximum epoch and Figure 9
which shows the effect of utilizing different model initialization strategies.

It can be seen from Figure 8 that setting the maximum epoch can indeed reduce
the running time while maintaining performance, However, depending on the specific
maximum epoch value, the reduction time is also different. Comparing the two sub-
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Figure 7: Comparison of two optimal configurations. Top: Performance of the two
optimal configurations. Bottom: Last epoch for the two optimal configurations. Results
based on an average of 20 runs, shaded area indicates the 90% confidence intervals.

figures in the last row of Figure 8, it can be concluded that max epochs = ⌊log10(|D|)⌋−1
saves significantly more time than max epochs = 6. In addition, it should be noted that
even if the training time is optimized by setting the maximum epoch, the configuration
(the Frequency Expectation Calculation method with N = 10) still takes a little more
time than the configuration (the Plackett-Luce Estimation method with N = 10).

I analyze Figure 9 in the same way, and from Figure 9 we can see that its situation is
just the opposite of that of Figure 8. We can find that after applying iterative training,
although the running time is greatly reduced, this has a very bad impact on performance.
When we look at the left column, we can see that without weight decay, iterative training
completely destroys the original performance, even though it significantly reduces the
running time.

When we turn to the right column of Figure 9, we can observe that when we apply
weight decay, the Plackett-Luce Estimation method regains its original performance,
while the Frequency Expectation Calculation method performs just as poorly as when I
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Figure 8: Performance and runtime effects of applying the maximum epoch. Left:
max epochs = 6. Right: max epochs = ⌊log10(|D|)⌋ − 1. Results based on an aver-
age of 20 runs, shaded area indicates the 90% confidence intervals.

Figure 9: Performance and runtime effects of applying iterative training. Left: Without
weight decay. Right: With weight decay. Results based on an average of 20 runs, shaded
area indicates the 90% confidence intervals.

do not apply weight decay.
It can be seen from Figure 8 and Figure 9 that after optimizing the model training

process, the configuration (the Plackett-Luce Estimation method with N = 10) is always
better than the configuration (the Frequency Expectation Calculation method with N =
10), so next, I will only use the configuration (the Plackett-Luce Estimation method with
N = 10) for experiments.

In the final analysis of Research Question 3, I will combine the two methods (Iterative
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Training with Weight Decay and Scaling max epoch) and compare its performance with
the baseline model and the optimal models obtained from each previous analysis. I
consider Figure 10, which shows the comparison between the optimal model obtained
from each of my previous analysis and the baseline model.

Figure 10: Comparison of 4 different optimal methods (from the previous analysis) and
the baseline model. Top: Performance. Bottom: Runtime. Results based on an average
of 20 runs, shaded area indicates the 90% confidence intervals.

From Figure 10, we can see that, compared with the Baseline Estimator (the
original intervention-aware estimator using frequency estimation with N = 1000 sampled
rankings), estimators applying iterative training have a certain loss in performance,
and there is also a slight penalty in performance for estimator applying the maximum
epoch, while the estimator without any optimization of the training process maintains
the performance. All of them reduce the running time to a certain extent.

Putting it all together, I answer the Research Question 3 positively: the Fastest
Estimator involves utilizing N = 10 additional sampled rankings for Plackett-Luce Es-
timation and entails employing scaling max epochs and iterative training with weight
decay. Moreover, for optimal performance with minimal runtime, the overall Best Es-
timator is to employ only the Plackett-Luce Estimation alongside N = 10 additional
sampled rankings, without any optimization of the model training process.

5.4 Real-Time Interactive Simulation

To answer the Research Question 4: does the reduced running time of the intervention-
aware approach result in an meaningful difference in responsiveness, I consider Figure
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11 which displays the performance and the number of interventions of three different
estimators in interactive systems with different user sizes during one-hour simulation.

Figure 11: Comparison of Baseline Estimator, Fastest Estimator and Best Esti-
mator in user interaction systems with different user sizes (the number of logged queries
generated per second is different) during one-hour simulation. Left: Performance. Right:
Number of interventions. Results based on an average of 20 runs, shaded area indicates
the 90% confidence intervals.

It can be clearly observed from the left column of Figure 11 that in the initial stage of
the user-system interaction I simulated, both Fastest Estimator and Best Estimator
are significantly better than the Baseline Estimator. This is due to the faster inter-
vention of Fastest Estimator and Best Estimator, that is to say, less time is required
to complete a logging policy update. As the number of logged queries increases, the per-
formance of the three estimators gradually tends to be consistent, and finally converges.
It can be clearly seen that there is still a small gap between the Fastest Estimator
and the Baseline Estimator, while Best Estimator ends up slightly outperforming
the other two estimators. Because the analysis in Section 5.3 concludes that Best Esti-
mator not only greatly reduces the running time, allowing more interventions, but also
maintains the optimal performance.

At the same time, comparing the number of interventions of the three different esti-
mators in the right column of Figure 11, we can find that the Fastest Estimator has
the most number of interventions and is significantly ahead of the other two estimators.
Although this makes the Fastest Estimator achieve fairly good performance in the
initial stage of the simulation, it is consistently the worst in the final performance. The
reason is that when more and more data are available and the model becomes more and
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more complex, too frequent interventions (updates) will cause the model to fail to learn
complete information from the data.

Thus, I answer the Research Question 4 positively: the running time saved by Best
Estimator which only optimizes the bias estimation but not the model training does
translate into the responsiveness of the interactive system, achieving faster and better
performance.
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6 CONCLUSION

6.1 Summary

In conclusion, this thesis builds upon the intervention-aware estimator, a previously pro-
posed approach for learning from user interactions, and explores the potential of making
this estimator more efficient. The main focus of this thesis is to optimize the method to
reduce computational load and overall runtime without compromising performance.

In response to Research Question 1, the study identifies bias estimation and model
training as critical time-consuming stages and highlights the need for enhancing their
efficiency. Addressing Research Question 2, the Plackett-Luce Estimation method with
N = 10 additional sampled rankings is found to take the shortest total time, while the
Frequency Expectation Calculation method with N = 10 additional sampled rankings
demonstrates the shortest total estimation time. These findings prompt further investi-
gation into optimizing model training. Research Question 3 concludes that the Fastest
Estimator involves utilizing N = 10 additional sampled rankings for Plackett-Luce Es-
timation and entails employing scaling max epochs and iterative training with weight
decay. However, for optimal performance with minimal runtime, the Best Estimator
suggests using only Plackett-Luce Estimation with N = 10 rankings. Lastly, Research
Question 4 establishes that the saved runtime through the Best Estimator really helps
to improve the responsiveness of the interactive system.

By addressing these research questions, this thesis aims to contribute to the de-
velopment of fast and accurate intervention-aware counterfactual estimators for online
learning to rank. I finally conclude that the time saved by faster bias estimation and
model training can lead to more interventions, and more interventions can indeed bring
higher performance to a certain extent, but too frequent intervention within a certain
period of time can degrade performance. The best strategy to achieve a faster and
better performance thus a more responsive user experience with the system is to use
faster bias estimation methods combined with more adequate and complete but rela-
tively slower model training methods for online learning to rank with intervention-aware
counterfactual estimators.

6.2 Future Work

First, future work could extend the analysis to other publicly available LTR industry
datasets, such as MSLR-WEB30k [24] and Istella LETOR [7] . Second, future focus may
be on scenarios where α and β are not given and need to be estimated by expectation-
maximization (EM) methods. Additionally, future research will explore the potential of
applying double robust (DR) estimation for click data [19].
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