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Abstract

Conversational search is the process of retrieving a document to a user, based
on the user’s question, in the form of conversational sentences. One of the common
approaches is to use a pipeline of reformulating the user’s input to make it easier
to answer, retrieving a list of documents based on the user’s query, and reranking
them so that the best answer is returned to the user.

However, previous work reported that the scores seemed to get worse the longer
the conversation goes on, and hypothesised that this is due to the models working
worse on later turns. Our goal was to test whether this assumption is true and, if
so, could we make the models work better on longer conversations.

Using the data from TREC CAsT 2020 version, we tested the assumption by
setting up our own pipeline, inspired by the methods that reached the best scores in
TREC CAsT 2020, focusing on approaches that use data from previous turns. The
approach consisted of a BM25 retriever, a T5 reranker and a T5 query rewriter.
We tried variations of the method to address this problem.

We show that the drop in performance in conversational question answering
models is not always correlated with the conversation length, but it can be an
artifact of the data; e.g., topic shift in later conversation turns.
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1 Introduction

Conversational systems are increasingly being integrated into various everyday appli-
cations, due to their improved accuracy and user-friendly nature. Amazon Alexa and
Apple Siri are two examples of conversational systems that provide a variety of useful
features. One such feature is conversational search, which is the process of interacting
with a system in a conversational manner via natural language to retrieve information.

Conversational search systems aim to give the user an experience of conversation
instead of inputting questions into a search system (for example; google). As part of the
conversational search system, there is an information retrieval system that looks at the
user’s question and retrieves a document that most suits it. When humans converse,
we commonly start by giving context in the first sentence, so that the other person
understands what the conversation is going to be about. The same is done when talking
to a conversational system, which means the first question is usually self-sufficient and
easily answerable. A question we type into a search bar is very similar to this. The
questions in the conversation from there onward are generally structured differently, as
we commonly omit context when continuing a conversation, assuming that the other
person is keeping track of what has been said so far. This is a trivial problem for
humans, but not for computers. Computers can only do what they are told and given
detailed instructions on how to do. For search systems to understand the context and
give proper information back to the user, the retrieval pipeline needs to be altered or
the users need to still consider the conversation system a search engine. The focus is
always on the first option because the goal is to make the user’s experience as simple as
possible.

In recent years, research on the topic has been done as part of the TREC Converas-
tional Assistance Track (CAsT), which aims to improve conversational search system
retrieval. The track establishes a yearly objective for researchers, breaking down the
challenging task of conversational system retrieval into smaller, more easily manageable
problems. They challenge all the participants to work on the same project using the
same data and rules. In the 2020 version, the goal was to return the best possible block
of information, called a passage, for each turn of conversations, where each conversation
has a different length and focus. The given data was specifically made so that the query
(question) the user has at any given turn can, but does not have to, depend on previous
queries and retrieved passages. The previous tracks gave data that depended only on
previous queries and ignored the returned passages. This meant that more attention
needed to be paid to the passages in 2020 than in previous years.

The main focus of this paper is exploring how conversation history and
conversation length influence the quality of conversation retrieval. This means
that a dataset where each turn depends on all the previous conversation history is
optimal for our research, which is exactly what the TREC CAsT 2020 dataset offers.

1.1 Approach

Our approach to study the aforementioned research question is to employ a pipeline
consisting of the following steps:

• Query Rewriter

• Retriever

• Reranker

The query rewriter is responsible for the process of changing the user’s query to make
it easier for a computer to understand, so that data with more dense information is sent
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to the retriever [8, 14, 25]. This typically means disambiguating the query, making the
question answerable by itself without any knowledge of the context. It is needed as the
user commonly not repeating some of the words used in previous queries due to the
illusion of talking to a human, making the later turns in the conversation more difficult
for the conversation system to answer correctly. The user’s question is considered a
search query while the returned document is simplified into a shorter text we will refer
to as a passage. The retriever is given the user’s query, goes through all the possible
passages in the given corpora and returns a large list of possibly relevant documents
along with their relevance scores. The focus in this part of the pipeline is on a high
recall. A reranker shifts the list of documents, so that they are ordered by how likely
they are to be useful. It decides which returned document is the most likely to have
the data the user is looking for, focusing on high precision. The passage placed on the
first spot is the one that will be shown to the user. The retriever and reranker steps
mentioned are normal steps in retriever systems, while query rewriting is added to help
with a lack of context in the queries.

1.2 Objective

It is reported that the length of the conversation influences the drop in quality in later
turns [11]. We will be testing whether this is true or not. In Figure [1] we see that the
manual runs have a straighter line than the canonical and automatic runs, which dip
down over time. The manual runs use a manually rewritten query which represents the
optimal query that would allow the retriever and reranker to find the optimal passage
from the corpora. This means that the red line in the graph is not influenced by the
query rewriter. The blue and yellow lines, on the other hand, are influenced by the query
rewriter, and this shows us how big the average mistake of all the query rewriters in the
TREC CAsT 2020 competition was. Due to the increase of the mistake over turn depth,
the assumption is that the conversation length is to blame for the drop in canonical and
automatic NDCG@3 scores. We will take a detailed look at the data and the quality
of the models over longer conversations and try to see whether this is the case or if
something else is responsible for this drop. If we were to give an optimal query to the
retriever/reranker system, we should get the best passage returned to us, irrespective of
which turn it is. The conversation length only influences how the user formulates the
query, meaning that the user could be giving more difficult queries as time goes on. If,
on the other hand, our query rewriter does its job well and turns the queries into ones
that the retriever can work better with, the results of the overall process will improve.
This means the focus will be on query rewriting, as the retriever and reranker are not
affected by the difference in conversation length if the query is written properly. We look
at the performance of the query rewriters using conversation history (previous queries
and returned passages) in different ways, focusing on those shown to work best so far
[11].

1.3 Approach

The method we use for testing is a mix of BM25 for retrieval, MonoT5 for reranking, and
a T5 query rewriter. The focus is on different variations of the rewriter using the data
from previous turns, meaning the reranker and retriever will stay the same through all
the experiments. We run two different query rewriter models; the baseline model from
TREC CAsT 2021 and a pre-trained T5 model we fitted by using the approach given by
h2oloo [25]. The TREC baseline model is used to give us a simple and thoroughly tested
baseline to which we can compare the one we fit ourselves. Query rewriting data usage
approaches are modeled after the ones used by h2oloo [25], in which they work with all
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Figure 1: NDCG@3 at varying conversation turn depths from TREC CAsT 2020
overview paper [10]. The y-axis shows the NDCG@3 score while the x-axis shows the
turn depth, focusing on the first 10 turns. Manual results outperform canonical and
automatic results showing us that the query rewriting is underperforming.

previously rewritten or raw queries in addition to the sentence in the previous returned
passage most similar to the current turn query. Although this method has achieved
good results, we try to change some aspects that we assume could be improved. We
also try to use text summarization to replace sentence similarity. Text summarization
is used to create smaller chunks of data that consist of more concise information taken
from the conversation history. This way the rewriter has the greatest amount of useful
data and the least amount of irrelevant data which could hinder results.

The first part of our paper focuses on creating a pipeline inspired by common TREC
CAsT submissions, more precisely h2oloo. H2oloo was a contestant in 2020 TREC
CAsT track that reached one of the best results. Since the main focus of our paper
is the influence of conversation history on retrieval, we focus on the query rewriting
aspect of their paper, ignoring their retrieval and reranking approach and using basic
methods instead. We go through the aforementioned paper and try to build our own
model that reaches the same BLEU score they had. In case some information in the
written process is not given, we use knowledge from other papers to fill in the blanks.
This also includes testing the best method they reported against slight alterations that
use more or less conversation history data, which they claim work worse. Some of the
results they showed point to less data being better for the quality of the rewriter, while
others show the opposite. We will test this out and come to a final conclusion as to
which is better.

This paper tries to answer two research questions, while the focus is always on the
influence of conversation history on the results of conversation retrieval.

RQ1: How does turn depth influence query rewriting results?
The most important part of our paper is doing an in-depth analysis of the data,
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showing and examining the different aspects of the models through graphs to see if
conversation length influences the quality of the conversation retrieval. So far, the re-
search has shown that a longer conversation leads to a lower accuracy both for the query
rewriting and for the relevant paragraph returned. It has been assumed that the length
itself is what influences this drop. We took a detailed look at whether this is the case.
If not, we made assumptions as to what might be the cause through what our graphs
and data showed.

RQ2: Could the method be altered to lower the quality drop in longer
conversations using text summarization?

We examine different aspects of the model pipeline and how to improve them, or
to be more precise, we look for methods that would lower the drop in quality as time
goes on. We discuss the drop in quality shown in Figure 1. Our goal is therefore to make
simple changes to the h2oloo method with the intent of lowering the drop in quality of
automatic and canonical runs by using the data more optimally so that conversation
length is less of an issue. We use a different method of extracting information from the
passages than the one used by h2oloo. Instead of taking one sentence most similar to
the current query (which is what h2oloo did), we summarized the passage into chunks
of varying lengths to see if the summarized data is more useful during query rewriting.
In theory, the shorter length of the summarized chunk compared to the passage’s length
should lead to less data hindering the query rewriter, while the density of the data used
should lead to the relevant information still being available to the model.

1.4 Contribution

This work looks into the influence of conversation length on retrieval performance. By
referring to the existing work, we successfully achieve competitive results for TREC
CAsT 2020. The code is publicly available 1 and can be used for further research on the
relationship between conversation length and retrieval performance.

We show through a detailed analysis of the data that the turn depth of the con-
versation does not directly influence the quality of the retrieval. The NDCG@3 scores
actually get better until the middle of the conversation, and then get worse close to the
end. We hypothesise that the improvement in the middle is due to the model learning
the topic and getting better with it over time, while the lower scores at the end are due
to conversations changing subtopics later on. We believe a different dataset is needed to
test this out in more detail (a dataset with conversations focusing heavily on one topic,
and conversations with obvious topic shifts in later turns), as well as more research into
hindering topic shift’s influence on information retrieval.

We also try using summarization to improve the quality and consistency of the data
taken from conversation history. We saw no improvement in the average scores when
using summarization compared to sentence similarity, but we did see an improvement in
the consistency of the scores, meaning the scores fluctuate less on different depths. This
could indicate that summarization is a stable approach for conversation history usage.

1https://github.com/jkoprcina/ConversationSearchQueryReformatterTesting
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2 Related Work

Conversational Search is a conversation between a user and a bot (computer) and
consists of turns where the user asks questions and is given relevant passages which
should answer his question [6]. This becomes harder the longer the conversation goes
on as the user tends to find it more natural to talk to the bot as if talking to a real per-
son. Because of this, problems like word zero anaphora, topic change and topic return
are common. Real people deal with this intuitively but it creates problems for a bot.
An example conversation is given in Figure 2. All of this leads to worse scores as the
conversation goes on. There is a downward trend from an average of approximately 0.3
at the first turn to an average of 0.23 by turn eight, which can be seen in Figure 3 The
aim of conversational search is to allow users to communicate naturally but still get the
information they want. Research has been done on this but not using common features.
TREC CAsT 2 has been started as a way to focus scientists on this problem. TREC
CAsT 2019. [9] and 2020 [10] show a trend where query reformulation, document rank-
ing and document reranking are the main aspects that are being worked on to improve
this. We will be looking at multiple types of approaches to this problem and they can
all be seen summed up in tables 1 and 2

Figure 2: An example of how queries (here called ”utterences”) change as the conversa-
tion developes. Figure taken from the 2019. TREC CAsT overview paper [9].

2.1 Query Rewriting

Query Rewriting is the process of changing the query so that it contains all the needed
information. The process should remove all ambiguous terms so that the ranker has an

2https://www.treccast.ai/
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Figure 3: A graph showing how the NDCG@3 values get lower on average further in the
conversation. TheNDCG@ score is shown on the y axis and the turn depth, indicating
which turn in the conversation is taking place, is indicated on the x axis. The trend is
not visible in manual approaches but only in automatic ones which indicates that proper
query reformatting would solve this problem. Graph taken from the 2019. TREC CAsT
overview paper [9].

easier job finding proper data to return to the user. So far this has been done mainly
by either changing the query itself ([26]) or adding more text as additional information
to the query ([44, 25, 14]). Most of the research so far has focused on looking at only
past queries to find the data needed to rewrite the current turn query ([44, 14]). Some
also took a look at part answers and those commonly get better results ([8, 25, 39, 3]).
There is also a small subset of papers that uses a different approach all-together like
[16]. Sadly the amount of papers that use responses is too low for us to come to an
educated conclusion on what is better and how to best approach it. We will now talk a
bit about some of the approaches that do and do not use the responses.

QuReTeC [44] uses bidirectional transformers to find which words in the previous
queries that are relevant to the current one. This is done using a classification model
which is fed the queries and the context (consisting of previous turn queries). The out-
put is a binary value for each word in the context which states whether the word is
relevant to the current turn query. The current query is then fed to the transformer
alongside the words labeled as relevant with a SEP tag in between, so that BERT can
differentiate which part is which. The output should be a new query which contains all
the needed data for the ranker/reranker to find the needed information for the user. The
upside of this approach is that BERT can be fed using a bag-of-words approach, which
means that the order of the words appended to the query does not matter much. This
on the other hand is bad because knowledge can be lost that way. Sometimes word order
is important to create certain phrases. Another downside here is that the model only
searches through the previous queries and ignores the previous retrieved passages, which
can mean a loss of relevant information. A possible way to work around this would be
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Table 1: A table showing the mentioned pipelines and the methods each one used in
different steps. We can see that the most common retriever is BM25 (used in approxi-
mately 5 out of 6 situations), and all the mentioned rerankers are build upon different
transformers. 5 out of 6 query rewriter are also build upon different transformers with
the exception of HBKU.

Method Name NDCG@3 Retriever Reranker Query Rewriter
QuReTeC 0.341 QL with Dirichlet smoothing Reciprocal Rank Fusion BERT

h2oloo 0.458 BM25 BERT-large T5
GRILL 0.398 BM25/monoBERT duoBERT BERT
SBER 0.457 BM25 T5-based T5
USI 0.339 BM25 ALBERT ALBERT

HBKU 0.313 BM25 BERT Tf-idf relevance feedback

Table 2: This table shows how different methods used conversation history. We see that
half of them do not use passage data in any way. Two of them use similar sentences from
passages which is the method we plan to test. For query usage we have more variety
but most still use simple raw queries.

Method Name Queries Passages
QuReTeC all queries none

h2oloo all previous rewriten queries most similar sentence from paragraph
GRILL all queries none
SBER previous query most similar to current most similar sentence from paragraph
USI previous relevant raw queries none

HBKU current query current turn passages

to also use parts of the most relevant returned passages to enhance the context. The
next method does something similar to what we advise.

H2oloo [25] reached the best automatic results in the 2020 version of TREC CAsT.
It gives a query plus a self-made context to a T5 [36] transformer model, which then
returns the reformatted query. The model is trained on CANARD [12]. The context is
created by adding all the previous reformatted queries and also the sentence from the
last returned document most similar to the current query. The later part is done by
going through each sentence in the returned paragraph and calculating the similarity
using a simple keyword count measure. Keywords were all words in the sentence that are
a noun, verb or adjective by POS tagging. This outperformed using all the reformatted
queries plus a sentence from the top returned document from every past turn. Sadly,
this means that only the last turns answer is used in the context which means that a
lot of possibly useful data might have been lost. It could also mean that focusing on
only the last turn is optimal and maybe the conversation search is more a hindrance
than help. We would also like to point out how the similarity measure used here is very
simple. Sentence length is not taken into account which gives an advantage to longer
sentences. Word order is also not observed so important phrases would be given too
little relevance. Only three POS tags are looked at which means many words could
have been neglected. We will look at this in more detail later as we will be using and
changing this method in our work.

GRILL [14] uses a Transformer [43] that is initialised with pre-trained weights from
BART[23] trained on Wikipedia and fine tuned on a summarization task. They try two
approaches, one they call BART-FC, where the model tries to reproduce the original
sequence of queries and the re-written final query, and one called BART-LT where it
just produces the final query. BART-LT showed to be more effective. This method
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completely ignores conversation answer history and only focuses on the queries. The
reasoning given for this by the paper is that the data set has a low frequency of response
dependencies and that they will therefore ignore it. This is true although we do not
consider it enough to ignore the data completely. We will see will this method work
better when we add data from the answers as well.

Semantic-based ellipsis reduction is used by [8] to tackle query reformatting. We
will call this paper SBER from now on. The paper calls their model T5-CQR (T5
based coreference query reformation) because it removes coreference and is based on
a T5 sequence to sequence model trained on CANARD. Previous turn dialog followed
by the current query were given to the T5-CQR model which would give as output a
coreference free query. After removing coreferences it expanded the current query with
the most similar query written so far. Then it turns all relevant passages into queries
using a Doc2Query model [31] and again adds the one most similar one to the current
query. This twice expanded query is now the reformulated query used for retrieval.
The similarity is calculated using a Transformer model fine-tuned on a natural-language
inference data set. This paper is interesting as it is outperformed by h2oloo but it does
something very similar. Because of this, we can assume which parts helped h2oloo work
better. Mainly the first difference we see is that it used all of the previous reformatted
queries as context while SBER used only the most similar one. This indicates that the
previous queries have needed knowledge that helps the current turn give better answers.
There is also the difference in the similarity measures being more complex in SBER,
which might suggest a simpler one is better. They both concatenate only one sentence
from the last turn retrieved passages so we can not compare is more better or worse.

USI [39] submitted 4 different runs. Out of the 4, three use query reformatting. The
first using only current turn query, the second using the current turn query and last
turns query plus most relevant passage, and the third one using the current query and
three most relevant query-passage pairs from the history so far. This query-passage pair
relevance is calculated using an ALBERT-based [22] model trained on CAsTUR [4], a
data set containing labels which determine which of the previous queries in a conver-
sation can be used to improve the current one. The downside of this is that it uses
only raw queries (non-reformatted ones). The fourth approach used queries rewritten
by GPT-2 [35] which were given by the organisers. Sadly the first three runs do not
beat the baseline BERT model which indicates that more work needs to be done. The
approach using three most relevant turns and the one using only the current turn query
beat out the one using only previous turns query by a significant amount, meaning that
the query from the previous turn is not always the one depended upon, which goes
against what the TREC CAsT overview suggests (we will get to that in the next part
of the related section).

HBKU [3] is an improvement on the TREC CAsT 2019. winner, historical query
expansion model (HQE) [45]. HQE did query reformulation using topic and subtopic
keywords extracted from previous queries. It would then feed them into a BM25 ranker
and BERT reranker trained on MS MARCO. The HBKU paper went on to add terms
from the most relevant returned passages. This step is a type of pseudo-relevance feed-
back (PRF) and they called it passage query expansion (PQE). The algorithms worked
such that the HQE step would take place first, giving then the reformated queries to the
ranked, BM25, which would return relevant passages. After this the PQE would take
relevant terms from the top-k retrieved passages. Relevance was judged using a TF-IDF
score (more on this in a later section of the related work). Top terms from the top-k
passages were then added to the already reformatted query and then given to the BERT
reranker. For their runs they took top 3 relevant words from top 3 relevant returned
passages for PQE. 2 of their runs differentiate between queries that are ambiguous and
those that are not, reformatting only those that are considered ambiguous. Unlike other
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methods, this one uses passages returned in the same turn as the reformatting is hap-
pening and not in previous ones. Sadly, even though all 4 approaches beat the baseline,
the one that did the best was the last one, that expanded only implicit queries and
did not use PQE in during BERT reranking. This would show that adding terms from
this turn’s passages did not improve the results. It also shows that it is better to not
change queries that are already not ambiguous, probably as we introduce possible errors
by doing so. The authors of the paper believe that their approach of TF-IDF was too
simple and that using something more complicated could have improved their results.
We agree and think that it could have also been useful to try and do things such as use
last turns relevant passages or less/more than 3 terms/passages during the PQE stage.
Changing BERT for a T5 could have also helped improve results slightly. Sadly, as this
approach by HBKU was tested on the 2020 TREC CAsT data set and the origian HQE
on the 2019. one, we can not compare them to each other. We believe the approach used
by h2oloo and SBER are a step in the right direction so we plan to test the h2oloo one
out (because it reached better results) while however changing the similarity measure
they used.

The 2020 TREC CaST track overview [10] gives a great view of what the state-of-
the-art is. For starters, they indicate that 86% submitted papers used previous history
as context and those that did not did about 31% worse on average. Sadly the data used
is not perfect. Out of the 208 turns only 61 depended on previously returned responses
while 140 depended on previous queries. This already gives an unfair advantage to
methods that ignore the responses and focuse on the queries. There is also the problem
of a small amount being ”hard” dependencies. This means the query depends on more
than only the last turn query or response. Only about 15% query and 8% response
dependencies are ”hard”. This favours methods that only look at the last turn. It is
more common that looking further back will cause data drift (adding unneeded data)
than it is to help. This becomes even worse when we see that only 2% of dependencies
are ”hard” response dependencies. This explains why the method by h2oloo that uses
only a sentence from the last turns most relevant passage outperforms their approach
that takes a sentence from every previous turns most relevant passage. The overview
points out that the papers that use the responses only slightly outperform those that
do not. This would mean that the methods using responses have a long way to go
before they can be considered usable in practice. This all raises the question of how
good was the data set used in the first place. The data set was said to mimic real
world interaction but had a very low degree of response dependency. This could mean
that either the data did not do a good job in mimicking real-world scenarios or that in
reality those dependencies are rare. The first raises a serious problem as it is difficult
to create a large data set as funds are needed. The data being good on the other-hand
could also mean that in real-life people really tend to rely mostly on the start of the
conversation and the last part they talked about. This would mean methods should
continue focusing their attention to these as they have so far while trying to maybe give
minimal attention to the parts in between. [32] is an example of a paper that observed
how their method works when looking at different depths (turns in the conversation).
Their F1 score went down from 79.6 to 77.7 on the CoQA [37] data set and from 65.4 to
59.3 on the QuAC [13] data set when they did not use previous responses meaning the
responses really were useful in getting a better score. The score actually fell less when
previous queries were not used (from 79.6 to78.0 on CoQA and 65.4 to 64.7 on QuAC).
They also showed that different data sets have a different preferred amount of previous
queries and answers used. CoQA had little improvement when more turns were added
but still showed some improvement. QuAC on the other hand improved by a lot (about
10) by using two turns but then the score started going down. The writers assume this
is because of a more common topic change in the QuAC data set compared to CoQA.
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2.2 Ranking/Reranking

After the query is reformatted so that it is self sufficient to show what data needs to be
returned, we use ranking models to return the top n most relevant documents. After we
have the top n, we extract the single most relevant document, this is called re-ranking.
This is what papers tend to do but not all do, some have only a ranker and some have
multiple rerankers [3]. The focus of the starting ranker is more on recall than precision
as the aim of this step is to greatly narrow down the number of documents under con-
sideration. The reranker on the other hand fouses on narroving down all the documents
that are left and finding that one that is best to return. GRILL reaches best manual
results in the 2020 TREC CAsT [10]. As the manual results use manually rewritten
queries, therefore ignoring the query rewriting aspect of the task, we will assume that
the best manual result actually has the best ranking and reranking. Because of this we
will look at GRILL as the optimal approach and use it in our paper. The ranking is
done using BM25 or a SDM [27] (Sequential Dependency Model) which return the top
1000 documents for the rewritten query, SDM giving better results. MonoBERT [29]
performs bi-encoding of the query and document to give the relevance of the document
to the query. The 1000 documents are then reranked according to the relevance scores.
DuoBERT [30] is used as a second level of reranking. It is a pair-wise system where
two documents are given to BERT alongside the query and separators. Due to the
time complexity being O(l2) the paper decided to take only the top 10 most relevant
documents as decided by monoBERT. DuoBERTs results are then compared to each
other and normalized before taking the best one and finally returning that document
to the user. A possible way to try and improve this is using T5 instead of monoBERT
as it is shown to get better results, but the size of it could mean slower computation.
Some other approaches include h2oloo’s usage of tightly coupled teacher distillation [24]
which incorporates dual encoders and spare representation from BM25. They use Col-
BERT [21] for their teacher model and duel encoders with BERT-base for their student
model, both trained on the MS MARCO [7] passage ranking data set. Document re-
ranking is done using a T5 model with pre-defined weights and fine tuned for paired
(query, document) text relevance ranking, again on the MS MARCO data set. [42]
used a simple BM25 ranker and a BERT-large reranker fine-tuned on the MARCO data
set. The reranker is improved additionally by adding a reading comprehension model
using RoBERTa-Large trained to predict an answer given a text. The score given by
RoBERTA would be summed to the one given by BERT to give the final ranking. For
some reason RoBERTA was used instead of T5 even though it was shown that T5 is the
state-of-the-art for question answering. These are some of the approaches used so far
concerning query reformulation and ranking/reranking. TREC CAsT 2020 shows how
these and many other compare to each other. Among other methods there are a few
that use answers to boost their performance, most commonly taking the top n relevant
passages and extracting data from them. Sadly they all used different reanking/rerank-
ing methods so we can not judge their query reformulation methods to each other.

2.3 Alternative Approaches

Most papers use the query rewriting, retrieval and reranking approach, as that is now
becoming the standard. [19] tried using entity linking instead. Their goal was to under-
stand the effect of Entity information on a BERT-based retrieval model, a mix between
monoBERT and E-BERT. They use entity information in an entity-enhanced BERT
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model and apply it to rank documents, then perform pointwise re-ranking based on
monoBERT. They inject entity embeddings along with BERT wordpiece embeddings to
their BERT model using an entity linker. The approach did not give an improvement
compared to other pipelines used in the TREC CAsT 2021 track. Nonetheless, they no-
ticed that their entity-enriched model works better on entity-related documents rather
than general news articles, which could lead to further research in that area.

2.4 Conversation History Summarization

2.4.1 Summarizing conversation history in the aspect of the current query

The main focus of this paper will be on using the answer passages given in previous
turns and trying to extract knowledge that could improve this turn. We will be keeping
the same approach of ranking/reranking throughout all the query reformulation methods
we try so we can properly compare them. As stated above in the query reformulation
part, there are some papers that focus mainly on previous questions like GRILL [14]
and QuReTeC [44] and some that introduce using the answers alongside the questions
such as h2oloo [25],SBER [8] and HBKU [3]. H2oloo and SBER use answers but not
heavily. They extract sentences most similar to the queries. We plan to use multiple
other methods to see whether better results can be reached. Some methods we plan to
use include text summarization and similarity measures.

2.4.2 Text summarization

Automatic text summarization is the process of taking a large text and creating a
smaller summary of it that keeps as much of the relevant data as possible [28, 5]. It
is a non trivial task that started out in order to summarize large numbers of science
papers. In the start simple approaches such as counting non-trivial words were used.
State-of-the-art approach has been reached using the T5 model and we plan to use that
one in the paper. It was trained on the non-anonymized version [38] of the CNN/Daily
Mail data set [15]. As it is only one of the tasks the model is used for, text summa-
rization is indicated with ”TL;DR” (meaning ”Too long, didn not read”, which is a
common abbreviation). Because of it is long character sequence, beam search [41] was
used to improve the score. This is a sequence-learning approach that uses a multilay-
ered Long Short-Term Memory(LSTM) to map the input sequence to a vector of a fixed
dimensionality, and then another deep LSTM to decode the target sequence from the
vector. Improvements were seen in all metrics compared to methods so far especially
when looking at the ROUGE-2-F score.

2.5 Similarity measures

We find similarity measures important to our work as they point to similar knowledge
being talked about in different parts of the search system. In h2oloo’s example this was
the current turns query and the previous turns retrieved passages. We are looking at
them separately to see could something have been done better and can we improve it in
out own method. Similarity measures are functions that show how similar two sentences
are [2]. The simplest similarity measure is word count, the more words two sentences
have in common the more similar we say they are. This of course gives an advantage
to long sentences so something like dividing by the summed number of words in both

13



sentences divided by 2 would be a simple way to remove that. The paper [2] tests 14
similarity measures split into three classes; word overlap, those based on term-frequency
(TF) and linguistic measures. We will be testing out one method from each class that
had the overall best score on all the tested data sets. Phrasal overlap [34] is a word
overlap measure that takes into account phrase lengths and their occurrence rate. TF-
IDF Vector similarity is a simple TF model that will turn our paragraph into a vector
whose features consist of indexing words. Values are calculated using the term-frequency
inverse-document-frequency method (TF-IDF) and similarity is then calculated using a
cosine similarity between the values of two sentences. Identity is a subtype of this [17]
and the score is instead derived from the sum of inverse document frequency of the words
that appear in both sentences normalized by the overall lengths of the sentences and the
relative frequency of a word between the two sentences. For linguistic measures we have
a combination of word order (simwo) and a simplified variation of semantic similarity
measure (simsem). simwo is defined as the normalized difference of word order between
the two sentences while simsem is defined as determining sentence similarity based on
the sum of maximum word similarity scores of words in the same part-of-speech class
normalized by the sum of sentence’s lengths. This paper focused mostly on similarity
between sentences and not on larger texts which benefits us as we will be comparing the
paragraph parts to queries which are commonly single sentence questions.

Another of the approaches we plan to try is using various types of entity information.
Papers like [20, 16] try to use entity linking (EL) [40] to extract knowledge from the
passages. The main focus of [20] was testing how well modern EL methods work in con-
versational search. They looked at multiple data sets and state-of-the-art methods. The
results all-together were mediocre and showed how EL techniques need more research
to be usable. This is also important for our paper as it shows how methods using the
whole history beat out the ones using only the last turn on the CAsT data set. Sadly
this research did not take into account returned passages and focused only on queries so
we can not reach much conclusion there. [16] went a step further and tried to make a
new model that would work better on conversational systems. They used a BERT-based
model which they injected with entity information. To sum it up, they created a word-
space using Wikipedia2Vec [18] and then, using a linear transformation, combined the
embeddings into BERTs wordpiece vector space. This is used for the retrieval model.
Query reformatting was avoided by using the manual approach, which meant gold stan-
dard or manually reformatted queries were used instead. The results were sadly worse
than when using just BERT without injecting the embeddings because of the difficulty
to perform entity linking for conversations [20] and the lack of their model’s adaptation
for the news article in the TREC CAsT document collection [16].
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Figure 4: A diagram showing the high-view of the program cycle for one turn.

3 Approach

3.1 Task

The TREC Conversation search Task consists of user queries [q1, ..., qi−1, qi], which are
answered by passages [p1, ..., pj−1, pj ]. Each cycle of query - passage pairs is called a
turn (t). Conversation depth indicates the conversation length, or in other words, the
number of turns in a conversation. Let qi be the current user query. Let [q1, ..., qi−1]
and [p1, ..., pj−1] together be the conversation history. Given the conversation history
and qi, the task of the retriever is to return a list of relevant passages D. The reranker
takes D and reorders it so that the optimal passage is ranked first.
Query rewriting is the process of taking qi and changing it so that it does not depend
on the context from conversation history, therefore making it self-answerable.

3.2 Method Overview

We follow [25, 14, 8, 39] to rank relevant passages for each conversation turn using a
pipeline consisting of a T5 query rewriter, BM25 retriever and a MonoT5 reranker.

The approach takes one conversation at a time and processes it turn by turn. The
first turn of every conversation starts by taking the first raw query q1 and giving it to
the BM25 retrieval model. The model returns 1000 passages, which are then given to
the MonoT5 [29] reranker. The reranker gives relevance scores to all the passages, and
the one with the best score is returned to the user. From the second turn onward, the
process gets an extra step; before the query is given to the retrieval model, it is given to
a query rewriter. This is either the T5 model we trained ourselves or the one provided by
the TREC CAsT organizers that is used as the 2021 TREC CAsT baseline. The query is
given to the model alongside data collected from conversation history in different ways.
The rewriter returns a query that does not depend on any context. The rest of the cycle
is the same as the one for the first turn, the difference being the rewritten query is given
to the retrieval model instead of the raw query. This process is the same through all
our runs. The changes are made to the way in which we use conversation history, which
varies from using raw or rewritten data, summarized passages and simple samplings.

3.3 Retriever

The retriever used in the experiments is BM25, which is the most used retriever in the
TREC CAsT 2020 track, as well as the one used in the baseline model of the track. The
exact implementation is search by Pyserini 3. The parameters used are k1 = 0.9 and b
= 0.4. We also tried k1=1.2, b=0.75, as these hyperparameters were used in the 2020
BM25 TREC CAsT baseline model, but it did not improve the scores.

3https://github.com/castorini/pyserini
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3.4 Reranker

The reranker used is a MonoT5 implementation by Pygaggle 4. Using T5 for reranking
was inspired by the TREC CAsT 2021 track [11], which used it in its baseline runs. As
our focus is not on the retriever and reranker, we chose two models that are easy to
implement and have been shown to achieve good results in previous research.

3.5 Query Rewriter

Starting from the second turn of a conversation, the query is sent to the query rewriter
before it is sent to the retriever. The query rewriter changes the query so that it does
not depend on context (it can be self-answerable).

We use two different options for our model; the one given by the TREC CAsT 2020
as the baseline, which we refer to as the baseline model, and one we train ourselves
following the guidelines given in h2oloo’s paper [25], which is the main one we will be
focusing on. We refer to it as h2oloo.

The baseline model is tested by participants of the TREC CAsT 2020 and the pa-
rameters are taken from castorini 5. We are mainly using it to check the quality of our
own model.

The h2oloo model is inspired by the h2oloo’s paper [25] as it achieved one of the best
results in the 2020 CAsT. The main difference between their model and the common
approach that year is the usage of both the previous query and passage data when
constructing the new query. Most other methods did not involve using previous passage
data and just focused on the queries.

We say that the model is inspired by h2oloo instead of a reproduction of it due to
a few limitations. Firstly, h2oloo’s paper does not go into detail as to how they train
their query rewriter, they only give a short explanation which is not enough for a good
reproduction. The explanations for using previous passage data are also very general,
mentioning no stemming or text processing, which we then assumed was used. We could
not completely reproduce the process. Secondly, we do not use the same retriever as
them, therefore the results could easily be influenced by that, as well as the lack of
computational power on our end. We will nonetheless try to reach similar results to
theirs.

We start by taking a pre-trained version of T5-base called simplet5 6. We then follow
the accompanying google colab code to train the model further for query rewriting.
When training the T5 model following h2oloo’s method, we use training data of 10000
samples and a validation of a 1000 samples. Parameters were set to:

source max token len = 400

target max token len = 50

batch size = 8

maximum epoch = 10

Even though the maximum epoch is set to 10, the evaluation loss does not go down
past the second epoch, therefore the second epoch is used during inference. The param-
eters are set by us because they were not given in the h2oloo paper.

Due to the limited amount of resources, we focus on reproducing the results reached
by h2oloo using the T5-base model, ignoring the ones reached by the T5-large model,
assuming our model would likewise simply reach slightly better results if trained on the

4https://github.com/castorini/pygaggle
5https://huggingface.co/castorini/t5-base-canard/tree/main
6https://github.com/Shivanandroy/simpleT5
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large version. The data used for training the model is the CANARD dataset 7. During
training, the data is given to the model in the form of an input, called the source text,
and an output called the target text. The source text contains a list of all previous
queries in addition to the current query concatenated with a ” ||| ” in between. This
is not found in detail in the h2oloo paper [25] but is instead assumed after looking at
the usage of the TREC CAsT baseline castorini model 8. The target text is a sentence
denoting how the rewritten query should look. One source text and one target text are
called one sample.

The T5 model is then added to our pipeline. We use different ways of adding infor-
mation from the conversation history to the query rewriting process. To start off, we
test the methods that h2oloo used to see if the model reaches the same results. We take
the most relevant passage from the previous turn and go through all of its sentences.
Each sentence has all its words stemmed and then removed if they are not a noun, verb
or adjective. The raw query is processed the same way. The processed sentence from
the passage shown to have the most word overlap with the processed raw query are
considered the most similar. If none of the sentences have any word overlap then no
sentence is taken and an empty string is passed along instead. Spacy 9 and NLTK 10

libraries are used for the processing of sentences. The five methods mentioned in the
h2oloo paper are:

• Query only - all previous raw queries

• Naive - all previous raw queries and all passages

• Type a - all previous raw queries, all similar sentences so far and a new similar
sentence form the previous passages

• Type b - all previous raw queries in addition to a similar sentence form the previous
passages

• Recursive - all previous rewritten queries as well as a similar sentence from the
previous passages

Out of the mentioned methods, the paper does not give results for the Naive method
and we assume they did not run it, due to the very large amount of tokens it would
have had, easily going over the maximum of 512 tokens allowed. A better visualisation
can be seen in figure 5 taken from h2oloo’s paper. The query only method is not shown
in the mentioned image as is not talked about extensively in the paper but the scores
were mentioned.

3.6 Summarization methods

The methods explained are taken from h2oloo’s paper with some improvising on our end
due to the process not being explained in great details. We saw earlier in Figure 1 that
the curve of the manual runs shows only a small drop in performance as the conversa-
tion depth increases, while the automatic and canonical runs performance significantly
decreases as the conversation goes on. The goal of our second research question is to
see if the score on later turns could be improved by changing the way we use data in
the query rewriting process.

7https://paperswithcode.com/dataset/canard
8https://huggingface.co/castorini/t5-base-canard/tree/main
9https://spacy.io/

10https://www.nltk.org/
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Figure 5: The image, taken from [25], show the four different data that h2oloo used for
query rewriting. Some different terminology is used compared to our paper; utterance
is another name for ”raw query”, while system response is the passage returned to the
user.

The methods h2oloo reported are different from the other competitors because they
use a most similar sentence from the previous paragraph for query rewriting. Looking
at their process we see that the similarity measure used is very simple.

H2oloo used a simple word count that gives the amount of same words in each
sentence in the paragraph compared to the current query. We think hypothesise this
simple approach can be improved by applying some changes to it.

The approach we focus on uses a text summarizer to make the paragraph we give
to the query rewriter smaller and more concise. The previous goal of taking the most
similar sentence is to take the most useful data from the passage and give it to the
rewriter. A better approach could be summarizing the paragraph into one sentence,
hoping the summarized text will have a higher density of relevant data. We try a few
different variations, mainly focusing on different lengths of summaries.

We use the same T5-base from simpleT5 11 and fit it for text summarization. For
training data we use a simple newspaper headline dataset that goes with the simpleT5
colab notebook. The data is organised into sample and target text (x and y). Sample
text is the news article with a pretext, summarize, as shown in the original T5 paper
[36]. Target text is the headline paired with the article. The goal of the training is for
the model to learn to reach the headline when given the news article. 10000 samples are
used for training and 1000 for validation.

The parameters are similar to training the query rewriter:

source max token len = 512

target max token len = 50

11https://github.com/Shivanandroy/simpleT5
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Figure 6: The table is taken from [25] and displays their results. We can see that their
best performing method when using T5-base is Query-only with a BLEU score 63.75,
while the best T5-large run is Recursive with a BLEU score of 65.23. Certain numbers
were highlighted by us in blue and yellow and were not in the original paper.

batch size = 8

maximum epoch = 10

The input to the summarization model varies for each method, but it is always a
variation of previous best passage data. The output is always a chunk of text whose
size varied depending on the run. This chunk of text is then given to the query rewriter
alongside the raw query. Next we will explain some of the variations used. We use the
term short when the summary is between 2 and 10 words, medium when it is between 5
and 30 words, and long for summaries between 10 and 50 words. We test the following
setup:

• One short/medium summarized passage

Takes the previously returned passage and summarizes it to short or medium
length.

• All passages summarized to short/medium texts and then combined

Takes each of the previously returned passages, summarizes it to either short or
medium size, and then concatenates the results.

• All passages combined and then summarized to short/medium/large texts

Takes all of the previously returned passages, concatenates them and then sum-
marizes them either to a short, medium, or large size.
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4 Evaluation

4.1 Data

We use the data from the TREC Conversational Assistance Track CAsT 2020. The focus
of the TREC CAsT 2020 was using a dataset where qi depends on previous queries and
previous passages. We chose this one specifically because the goal of our paper is to
show how conversation history and conversation length influences conversation retrieval.

The collection from which the passages are returned consist of the MS MARCO
passage collection12 [7] and the Wikipedia collection13 from the TREC CAR paragraph
collection V2.0. The TREC CAR collection is transferred into a .json format for easier
usage, while the MS MARCO collection is already in that format, therefore needing no
preprocessing. Both collections were then combined to create an index file. This index
is used for the BM25 model for passage retrieval.

For evaluation, we use the evaluation data provided by the TREC CAsT 2020 called
2020 manual evaluation topics v1.0.json. It consists of 25 conversations ranging from 6
to 13 turns of conversation depth; shown in figure 7. When calculating the overall score
of a method, we use all turns, but when showing the scores in graphs, we show only
the ones for the first 10 turns following the experiments from the CAsT overview paper
[10]. Each turn of the evaluation data has a raw query, a manually rewritten query,
and an Id. The manually rewritten query shows how the raw query should look after
it has been changed to be self-answerable, which is useful when calculating the BLEU
and Rouge scores used for evaluating the query rewriter. The id is the identifier of an
example ideal passage found in the corpus to be returned for the given query.

We also use the qrel file. This is the main evaluation file for retrieval and reranking in
the TREC CAsT 2020. All the groups taking part in the research sent in their top 1000
documents for every turn in every conversation. The TREC organizers took the top n
documents from every run and annotated them manually, adding a relevance scale of 0
to 4, showing how relevant the passage is to the given query. These scores would later
be used to calculate the NDCG@3 score, which is the main score used for evaluating
how well the models perform. The official retrieval scores in the track are calculated
using the qrel file, as well as our own.

We use the CANARD dataset14 [12] for training the query rewriting T5 model.
The dataset is made for question-in-context rewriting and consists of conversations with
different depths, where each turn has a raw query, the passage returned in the turn
before, and the gold standard rewritten query.

4.2 Evaluation Metrics

The evaluation methods used are NDCG@3, BLEU, and ROUGE. NDCG@3 which
looks at the top 3 retrieved documents is considered when evaluating the retriever and
reranker, while BLEU and ROUGE is used for evaluating the query rewriting. NDCG@3
is chosen because it is the official metric used in TREC CAsT track as well as the h2oloo
paper. BLEU is chosen as it is being used in the h2oloo paper and allows us to compare
our results to theirs. We decided to use the ROUGE score following [1], who used it
to measure the performance of query rewriting. Same as in their paper, we used the
ROUGE-l version, which focuses on the Longest Common Subsequence (LCS for short)
instead of the ROUGE-n as ROUGE-n focuses on n-grams same as the BLEU score.

12https://msmarco.blob.core.windows.net/msmarcoranking/collection.tar.gz
13http://trec-car.cs.unh.edu/datareleases/v2.0/paragraphCorpus.v2.0.tar.xz
14https://paperswithcode.com/dataset/canard
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Figure 7: A graph showing how many conversations reach different turn depths. It is
noticeable that there is a sharp decline at turn 9, which means less than half of the
conversations reach that far. This leads to the data being less dependable when looking
at the model’s quality at turn 9 and 10.

We use the official trec eval library 15 for NDCG@3, the 0.3 package bleu 16 for
BLEU, and the 1.1 py-rouge 17 implementation for ROUGE.

To calculate NDCG@3, we run the code all the way through and save the scores the
retriever gives us, which would be a value of how good the top 1000 documents BM25
returned earlier are. We then give this txt document to the trec eval script and get the
NDCG@3 scores.

The mentioned BLEU implementation is a python version of the original BLEU
metric [33]. Each turn is calculated by itself and an average of all of them is taken
when giving the final results. When calculating scores for turn depths all turns of those
depths are taken and averaged over. Meaning that when calculating the average BLEU
score for turn 3, we will take all the BLEU scores calculated for every conversation at
turn 3 and then calculate their average. This means all conversation depths are treated
equally, although larger depths (e.g. 10) are reached less frequently than others. We
notice that for 5 conversations on turn 1, the raw query and the manually rewritten
query (the golden standard for how the rewritten query is supposed to look) do not
match. This is not expected as query rewriting is not applied on turn 1 therefore these
two should always be identical. We leave it as is as the difference in results is minor.

15https://github.com/usnistgov/treceval
16https://github.com/zhijing-jin/bleu
17https://pypi.org/project/py-rouge/
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4.3 Experimental setup

The runs are split into three main categories; manual, canonical and automatic. The
manual run skips the query rewriting step, using ground truth rewritten queries instead.
This gives the best possible NDCG@3 score and has three purposes. Firstly, it showes
whether or not our retriever/reranker reaches the results that TREC CAsT 2020 sub-
missions did on average, and serves as a sanity-check for our experiments. Secondly, it
will show whether performance really does minimally drop as the conversation goes on
when the optimal query is used, as is shown in figure 1. Third, it is used as a goal to
reach when using h2oloo query rewriter instead of the manual gold standard query.

Canonical testing uses ground truth retrieved passages, meaning that the pipeline is
given the optimal passages using the ids from the evaluation data. On turns after the
first, the previous passage is sent to the query rewriter. This way the rewriting does
not depend on the quality of the data returned by the retriever or the reranker. These
runs are therefore a great way to measure our query rewriter performance. We can also
compare them to the standard runs to get an even better idea of how large the impact
of adding previous conversation history to our model is.

Standard automatic runs use no ground truth data. They run the full pipeline;
retriever, reranker and query rewriter, using raw data. These runs are our main focus
when comparing our methods to each other as they show how good our methods would
be in a real world scenario. They will be compared to the h2oloo and TREC CAsT
overview paper results as those are the main focus there too.
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Table 3: Table showing NDCG@3 scores of some of the main methods we discuss in our
paper; our best run using both the query rewriter we trained ourselves and the one we
took from TREC CAsT 2021 baseline, h2oloo’s best run as well as the baseline model
score in the 2020 TREC CAsT.

Method NDCG@3
Query-only (h2oloo paper [25] 0.452
Query-only (our using TREC CAsT 2021 query rewriter) 0.3939
Query-only (our h2oloo inspired) 0.3494
TREC CAsT - 2020 baseline 0.30

5 Results

Our first goal is creating a pipeline that works on par with the rest of the TREC CAsT
2020 submissions, so that we can further use it to reach conclusions.

We start this by mimicking the query rewriting process used in the h2oloo paper
[25]. We compare our results to the models that h2oloo reached using the T5 model.
Due to a lack of computational power, we mainly look at the results they reached using
T5-base. We assume that the model would have given slightly better results if trained
using T5-large because we saw the same trend in h2oloo’s paper [25] as well as the
original T5 paper [36]. In Table 3 we see the results the h2oloo [25] paper produced as
well as two of our results; using a query rewriter we trained ourselves, and the one using
the TREC CAsT 2021 baseline query rewriter.

The table shows that when looking at the methods run on the T5 query rewriter we
trained ourselves, the query-only method reaches good results. Had it been submitted
in the TREC CAsT 2020 with that score it would have placed us in 7th place which we
decided is good enough. We also see that it outperforms the TREC CAsT 2020 baseline
method by about 0.0494 while losing to the h2oloo method by about 0.1, which was in
fact the method with the highest NDCG@3 score that year. On the other hand, the best
method when we ran the pipeline using the TREC CAsT 2021 baseline query rewriter
is Query only, which reached a score of 0.3939. This loses to h2oloo’s best method by
0.053, and is 0.093 better than the TREC CAsT 2020 baseline.

In Table 4 we see the BLEU score comparison of our runs with the runs in the h2oloo
paper. Our runs do not manage to reach the same BLEU scores as the h2oloo paper.
We can also see that the canonical scores are only a slight improvement compared to
our automatic scores, which shows that the problem is the query rewriter and not the
retriever and reranker (as the optimal passage is used).

We decided that these scores are good enough to go forward with the analysis of the
data using the mentioned methods as they outperform most of the submissions in the
TREC CAsT 2020 overview paper [10].

5.1 H2oloo-inspired method run score analysis

5.1.1 Analysis

In this section, we mainly look at three important graphs: NDCG@3 (Figure 8), BLEU
(Figure 9) and ROUGE (Figure 10) score graphs. Each shows the change in scores for
a different metric across different conversation depths. We took the metric scores of
the four methods we copied from h2oloo, and then average them at each turn to get a
good visualisation of how their methods scores change as conversation length increases.
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Table 4: Results of the four methods used in the h2oloo paper. We show the BLEU
score they reported as well as the results from our own automatic and canonical runs
of the same methods. Our runs reach a noticeably lower score than the ones h2oloo
reported.

Method h2oloo Our Automatic Our Canonical
Recursive 62.18 51.93 52.63
Type-b 63.12 52.67 53.31
Query only 63.75 51.77 51.77
Type-a — 51.71 52.32

The focus is on using the query rewriter we trained ourselves but we also mention other
scores.

When analysing the trend of the curves we see some simliarity and differences be-
tween Figure 8 and Figure 1. The automatic curve looks almost exactly the same up
to turn 6. At turns 7 and 9 our methods have a dip upwards, while theirs have a dip
downwards. The canonical line is less similar but we can still see the same trend. Our
canonical line falls down on turns 4, 5 and 10 which does not happen in the TREC CAsT
overview paper. The problem with this analysis is that a part of the difference happens
in the last two turns, 9 and 10, where we have a lot less data (11 and 7 conversations
respectively, instead of the usual 25). Looking at the data, we do not clearly find
any trend that the performance drops by increasing Conversation turns

When analysing the query rewriting scores, it is more proper to look at the BLEU
and ROUGE score curves. Neither TREC CAsT overview nor the h2oloo paper have
curves for showing their BLEU and ROUGE scores, which means we could not compare
this part to their papers. In Figure 9 we see the BLEU score of the mentioned methods.
The turns at which the scores reach the best value are actually turns 6 and 8, both for
the automatic and canonical runs. We see that the score drops at turns 2 and 3, then
slowly gets better. At turns 9 and 10 it drops down again. In Figure 10 we see the
ROUGE score. Here, the same as with the BLEU score, we see a drop at turns 2 and
3, then an increase. From turns 4 to 8 the curve is almost flat, meaning the score does
not change much. At turn 9 we again see a drop but at turn 10 we see it go up. All
together when looking at the BLEU and ROUGE scores we see a very similar trend. A
drop happens early on, then the scores get better before going down again late in the
conversation. For both metrics, the scores do not vary much at different turn depths,
meaning that even when we have the curve going up and down, it is not by much.
We can not see any trends that support the hypothesis when looking at the
BLEU and ROUGE metrics

The three graphs do not show strong evidence to support the hypothesis of conver-
sation length influencing the quality of the model. NDCG seems to fall down at turns 2
and 4 while BLEU and ROUGE dip down at turns 2 and 3, which is early on. The fact
that they get better around the middle of the conversation goes against the hypothe-
sis. We, however, emphasize that fluctuations of scores for turns 9 and 10 should be
considered carefully, because of a lack of data.

5.1.2 Discussion

We believe we can give an explanation to the curve going up and down by taking a
more detailed look at the methods we use. We use conversation history to improve the
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Figure 8: A graph representing the average NDCG scores for the four methods we
implemented (following h2oloo [25]), calculated separately at different turns. The blue
line represents the automatic runs, while the yellow line represents the canonical ones.

query rewriting part of our pipeline, meaning that the longer a conversation goes on
following the exact same topic, the better the results should be, due to our model using
data from previous turns and therefore getting better at that specific topic. This would
explain the improvement of scores in the middle of the conversation, as the longer we
follow the same topic, the better the model is at returning passages connected to it. On
the other hand, this makes the model more sensitive to minor changes to the subtopic.
This means that the model focuses more and more on the exact details we are talking
about, and therefore will get confused over slight changes in the topic. We believe that
these changes in subtopic in later turns are to the reason for the lower scores at turn 9
and 10. This is called topic shift and is actually a known problem.

5.2 Improving results using summarization

5.2.1 Analysis

In order to test and improve this, we tried using summarisation instead of similarity.
The hypothesis that runs using less data will outperform the ones using more data

in later turns of a conversation, due to the model being less confused by changes in the
topic. This would prove that the problem is not the length of the conversation but the
methods used for calculating the scores.

Another hypothesis is that those runs using only the previous turn data will also work
better as the conversation length increases. This would also prove that the problem is a
shift in topics, as methods using less data from previous turns should be hindered less
when faced with a change in topics.

We will again be looking at three important graphs; NDCG@3 (Figure 11), BLEU
(Figure 12) and ROUGE (Figure 13) score graphs, constructed in the same manner
explained in the previous section. Instead of using the h2oloo inspired runs, which
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Figure 9: A graph showing the BLEU scores of the 4 methods we ran (copied from
h2oloo [25]), averaged over at different turns. The blue line represents the automatic
runs, while the yellow line represents the canonical ones.

Figure 10: A graph showing the ROUGE scores of the 4 methods we ran (copied from
h2oloo [25]), averaged over at different turns. The blue line represents the automatic
runs, while the yellow line represents the canonical ones.
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Figure 11: A graph showing the NDCG scores of the methods we ran using summa-
rization, averaged over at different turns. The blue line represents the automatic runs,
while the yellow line represents the canonical ones.

use sentence similarity, we will now be averaging over methods using summarization to
collect previous turn paragraph data. We will again be focusing on runs using our own
query rewriter.

We see in Figure 11 a similar logic to the h2oloo methods Figure 8. The NDCG@3
scores seem to fall down after turn 1, here falling till turn 5, after which they rise up and
start falling again. The scores fluctuate less, and the whole curve is similar to a straight
line. The main differences between the two figures are the fluctuations the h2oloo method
figure has, upward at turn 3, and downward at turns 8 and 10. The BLEU score (shown
in Figure 12) and ROUGE scores (Figure 13) are almost identical to the earlier h2oloo
BLEU and ROUGE score Figures 9 10. Only difference is the increase in BLEU score
at turn 10 in the summarization BLEU score Figure. The BLEU and ROUGE graphs
did not show any new information or signs of improvement. The NDCG@3 score also
does not improve, or does so very slightly. On the other hand, we could look at the
straightness of the curve of the NDCG score as a type of improvement, as it shows the
methods are more stable when working with different turn lengths. We see that the
scores lower less at later turns. We do not see a significant different in scores
when adding summarization to our methods.

5.2.2 Discussion

In Tables 5 and 6 we will now compare the results of the summarization methods to
those of the h2oloo methods for runs using both our query rewriter and the 2021 TREC
CAsT baseline model.

Table 5 shows that the one short summarized method reaches the best scores out
of all our runs when using the query rewriter we trained ourselves, meaning that our
usage of summarization helped improve the scores slightly. The second best method is
Query only, which was also the best method for h2oloo when they used T5-base. This
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Figure 12: A graph showing the BLEU scores of the methods we ran using summariza-
tion, averaged over at different turns. The blue line represents the automatic runs, while
the yellow line represents the canonical ones.

Figure 13: A graph showing the ROUGE scores of the methods we ran using summa-
rization, averaged over at different turns. The blue line represents the automatic runs,
while the yellow line represents the canonical ones.
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Table 5: Table showing runs ordered by NDCG score when all the methods are run
using the T5-base query rewriter we trained ourselves.

Data usage type NDCG@3 BLEU
one short summarized paragraph 0.3596 50.63
query only 0.3494 51.77
all passages summarized short then combined 0.3464 51
type b 0.3418 52.67
all rewritten queries 0.3333 52.13
all paragraphs combined then summarized mid 0.3324 50.37
Recursive 0.3306 51.92
one mid summarized paragraph 0.3305 50.52
all paragraphs combined then summarized long 0.3298 51.61
Type a 0.3274 51.71
all paragraphs combined then summarized short 0.3251 49.39
all paragraphs summarized mid then combined 0.3177 48.77
all rewritten queries all similar sentences 0.3063 51.43

would mean that the methods using conversation history data hinder the score instead of
helping it. In general, we see that our summarization methods perform similarly to the
h2oloo methods, sometimes getting better scores, but never a significant improvement,
and we therefore can not really say that they help the model work better when using our
query rewriter. Another concern is that the metrics do not follow each other, namely
the BLEU scores are sometimes actually better for the lower NDCG@3 scores shown in
Table 5.

Table 6 shows the Query Only method reaches the best scores when we switch to
using the TREC CAsT 2021 baseline query rewriter, again reinforcing the idea that
the extra information only lowers the scores and is not something that should be used
in this way. It reaches a score of 0.3939, which is 0.0457 better than when using our
query rewriter. We can also see in the table that the methods we copied from h2oloo
outperform the summarization variations we ran ourselves. The NDCG@3 metric follows
the BLEU score metric properly here, meaning the runs with the best NDCG score also
have the best BLEU score, and vise-versa.

The different order of the methods when switching query rewriters is unusual. This
leads us to believe that the query rewriting methods used by h2oloo work better the
more the query rewriter is trained, as the TREC CAsT 2021 baseline is trained on more
data than our model is.

Nonetheless, we see that using summarization does not increase the general average
scores of the methods used by h2oloo. We can on the other hand say that it helps
stabilize the scores, as the Figure 11 has a much straighter curve than Figure 8, which
means summarization could be a good potential way to create a process that works
optimally on different turn depths.
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Table 6: Table showing runs ordered by NDCG score when all the methods are run
using the T5 query rewriter used as the baseline for TREC CAsT 2021.

Data usage type NDCG@3 BLEU
query only 0.3939 52.67
type b 0.3899 52.62
all rewritten queries 0.3854 52.21
Recursive 0.3804 52.21
Type a 0.3649 52.46
all rewritten queries all similar sentences 0.3622 52.52
all passages combined then summarized long 0.3548 50.57
one short summarized paragraph 0.3524 49.89
one mid summarized paragraph 0.3492 50.39
all paragraphs summarized mid then combined 0.3477 48.77
all passages combined then summarized short 0.3443 49.74
all paragraphs combined then summarized mid 0.3405 49.05
all passages summarized short then combined 0.3251 49.66

6 Conclusion

In this thesis we have focused on exploring the influence of conversation length on
retrieval scores in conversational systems. The TREC CAsT overview paper [10] showed
the increase in turn depth lowers the scores. By making our own pipeline, inspired by
h2oloo [25] and other papers from the 2020 competition, we created our own pipeline to
test the hypothesis.

Looking at the graphs and data the h2oloo method runs gave us, we concluded that
we can not say that conversation length influences a drop in retrieval quality. The
scores seen in Figure 8 show an increase from turn 2 to turn 6, which would indicate
the methods work better the longer the conversation is, but the scores also drop down
from then to turn 10, which would indicate the opposite.

We claim that this is due to our models learning the conversation data over time
and therefore giving better and better results, until a topic shift happens later in the
conversation which confuses the model and makes it give lower scores.

Using summarization instead of sentence similarity did not yield an improvement in
scores. The BLEU and ROUGE scores were almost identical to the h2oloo methods,
while the NDCG score had slight variations. We also see the curve is more straight
when compared to the h2oloo method graph, meaning the methods are more stable and
better suited for working on longer conversation.

To sum up, we can not find any evidence supporting the hypothesis. We believe
that a new dataset should be created which focuses on more strongly keeping to the
same topic, with no shifting, to be able to run research and reach a valid and strong
conclusion.

We also want to emphasise the stability of the NDCG curve when using summariation
methods and point out that more research should be done in using summarization for
helping retrieval methods using conversational history.
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