
Radboud University Nijmegen

Institute of Computing and Information Sciences

Towards Improving the Performance of
Model Driven Optimisation
From Domain Models to Low-Level Encodings and Back

Master Thesis Software Science

Author:
Lars van Arragon

Supervisor:
dr. Daniel Strüber

Second Supervisor:
dr. CDN (Diego) Damasceno

Second reader:
dr. Nils Jansen

December 2021

Abstract

The �eld of Model Driven Optimisation combines the two �elds of Model Driven Development
and Search Based Software Engineering. Models are used as �rst class citizens that represent
the optimisation problem within Search Based Software Engineering upon which the optimisation
algorithms are applied. A meta model is used to describe a modelling language which is used
as ruleset to de�ne the initial population of the search space. Exploration operators, which are
ideally also models, and evaluation functions are subsequently used to explore the space. During the
exploration of the search space the models that are usually big and complex are copied often. This
slows down the performance of an optimisation algorithm signi�cantly. There exist multiple tools
that implement Model Driven Optimisation, we focus on MDEOptimiser. Within this thesis we
provide the �rst steps towards improving the performance of Model Driven Optimisation techniques
by contributing an encoding of these models that does not replace, but compliments them. We
include a formal framework for expressing what such an encoding looks like, together with a Java
library that implements these ideas in the context of MDEOptimiser. Additionally, we evaluate
the improvements to the performance and o�er meaningful discussion on the results that includes
pointers to where future research can be conducted.

1

Contents

1 Introduction 3

2 Background 4

2.1 Model Driven Optimisation . 4

2.2 De�nitions . 8

3 Research Questions / Concerns 12

4 Concept 12

4.1 Initial Concept . 12

4.2 Assumptions . 13

4.3 Restrictions . 14

4.4 Proposed Encoding . 14

5 Evaluation methodology 19

6 Implementation 21

6.1 Next Release Problem . 21

6.2 Class Responsibility Assignment . 22

7 Results 23

7.1 Next Release Problem . 23

7.2 Class Responsibility Assignment . 27

8 Discussion 34

9 Conclusion 35

10 Future work 35

References 37

2

1 Introduction

In the �eld of Model Driven Optimisation [28] the two �elds of Model Driven Engineering [21] and
Search Based Software Engineering [13] are combined. Model Driven Optimisation uses models to
represent the optimisation problem and directly applies the search space exploration and �tness
evaluation to them. There exist several tools that apply this concept like MDEOptimiser [4],
MoMOT [7], Viatra-DSE [1], and FitnessStudio [23].

Within Model Driven Optimisation, a user de�nes a meta model that describes a modelling lan-
guage which all models in the population follow. They also specify the space exploration and
�tness evaluation applied to the models. During the execution of the optimisation algorithm the
population is frequently copied as the algorithm evolves and evaluates them. In practice, these
models are big data structures with a lot of information which makes the copying of them slow.
While Model Driven Optimisation has great bene�ts to expressiveness and usability, the slow
performance on big models is one of the main drawbacks of this approach.

This thesis contains the �rst steps towards improving the performance of Model Driven Optimi-
sation using low-level encodings as the basis upon which the optimisation algorithms are applied.
To alleviate the drawback we attempt to encode the model in such a way that we do not com-
pletely replace the model, but so that we can use them together and they complimentary of each
other. We focus on the MDEOptimiser with its accompanying case studies as basis to evaluate
our contributions.

We include a formal framework for expressing what an encoding looks like for any given model
instance and meta model. Based on this framework we implemented a Java library for encoding
any meta model with model instance that is expressed within the EMF framework. With this
library we conduct several experiments to validate that the performance of the copying during the
algorithm is indeed improved. We also contribute a meaningful discussion on the results of these
experiments and provide pointers to where future research can be conducted.

The �rst section will contain the background information surrounding the topic of model based
optimisation techniques. We introduce two case studies upon which we have done experiments.
Additionally we describe the de�nitions and assumptions we use throughout the thesis. After
the background information we introduce the research questions within the thesis that we aim to
answer. We follow this up by explaining the concept of the encoding both formally and implemented
within a Java library. To then verify that these concepts work we describe a methodology for doing
experiments on the case studies to measure the performance of both the encoding based and model
based approaches. We then introduce the implementation of these experiments, after which we
evaluate the results. We then discuss the results, introduced concept and the problems that arose
during the thesis. Lastly we conclude by summarising our contributions, the questions we answered
and the questions we raised. Together with some pointers for further research to develop this �eld.

All of the code written for this thesis including the �gures containing the results can be found on
GitHub 12.

1https://github.com/larsvanarragon/mde_optimiser-hilo/tree/nobitset
2https://github.com/larsvanarragon/mde_optimiser/tree/encoding

3

https://github.com/larsvanarragon/mde_optimiser-hilo/tree/nobitset
https://github.com/larsvanarragon/mde_optimiser/tree/encoding

2 Background

In the following sections we will explain the background of the concepts used within this thesis.
We will include some explanations of the case studies we use to measure certain aspects of our
contributions.

2.1 Model Driven Optimisation

The concept of Model Driven Optimisation (MDO) stems from the combination of Model Driven
Engineering (MDE) and Search Based Software Engineering (SBSE). Its idea is that models can
be used as a declarative problem formulation for the complex problem domains within software
engineering [28], and can then be subsequently used as the solution representation in search based
optimisation techniques. This idea enables users to approach the problem with domain-speci�c
knowledge instead of a low-level technical encoding that replaces the models.

2.1.1 Model Driven Engineering

Model Driven Engineering (MDE) is a paradigm where models are not just used for documentation
but are �rst class citizens within the space of software artifacts [21]. A tutorial on the subject in [3],
notes that models directly represent their subject to allow for a more direct coupling of problems to
solutions. The information within these models is intended to be used by some tooling that is able
to bridge the gap between the domain concepts and implementation technologies. An example of
this idea is a tool that translates models adhering to the UML standard to executable Java code.

2.1.2 Search Based Software Engineering

The goal of Search Based Software Engineering is to reformulate Software Engineering problems
as search based optimisation problems [12] and address them using meta-heuristic techniques.
At its core, SBSE is comprised of two ingredients: a representation of the problem at hand and
the de�nition of a �tness function which operates on this representation [13]. The problem at
hand then becomes an optimisation problem where the software engineer intends to maximize the
result of the �tness function by searching within the realm of possible solutions for optimal and
near-optimal candidates. For practicality search based algorithms usually include mechanisms for
generating new candidate solutions from existing solutions and a way to apply the �tness function
to all solutions. At the start of such an algorithm an initial set of candidate solutions is prede�ned.

As an example suppose the question: `What is the smallest set of test cases that cover all branches
in this program?'. This is called the budgeted maximum coverage problem where we attempt to
minimize the budget [16]. A simple representation of this problem would be a bit vector in which
each bit represents a test case and is used within the set. The �tness function can then evaluate
the solutions based on the amount of used test cases and how much the selected test cases cover
all branches in the program. The initial set of candidate solutions can be a randomly generated
set of bit vectors. An example for the mechanism for creating new candidate solutions would be
to take the �ttest candidates and mutate them slightly while also keeping a few of the current �t
candidates.

4

One concept that is relevant in this thesis is a Pareto front. When we have a multi-objective
optimisation algorithm where the population is evaluated using multiple �tness functions we do
not simply have one `best' candidate solution. In this case we have an entire front of good solutions
that balance the multiple objectives in di�erent ways. This concept is called the Pareto front. In
general, a Pareto front contains candidate solutions that contain a `best' balance. For further
reading on Pareto fronts we refer to [26]. It can be the case that we have two Pareto fronts where
one of them has better solutions than all or part of the solutions in the other. This concept is what
we call how much a Pareto front A dominates another Pareto front B. We can quantify this using
the Hypervolume indicator, which indicates in percantages how much one Pareto front dominates
another. For further reading on Hypervolume indicators we refer to [8].

2.1.3 Combination

The work of Zschaler and Mandow in [28] proposes that instead of creating a separate secondary
encoding for the problems, the models and meta-models should directly be used as input for the
optimisation algorithms. This way the optimisation algorithms can make use of all the information
present in these models. They state that current encodings of the models do not preserve well-
formedness and have di�culty ensuring locality.

Applying the entire optimisation algorithm to a model means that this model is copied and trans-
formed many times resulting in a high number of computations. These models are usually complex
data structures which contain a lot of information, of which some of this information is static in its
nature. In the example given in [28] of the Zoo DSL we can see that the objects do not change, but
only their relationships with each other. It is reasonable to imagine that the optimisation could be
done more e�ciently by using an encoding to focus on the part that needs to be optimised while
storing static information elsewhere. By this we mean that we do not aim to create an encoding
that completely replaces the model. We aim to contribute an encoding that brings all the relevant
information for optimising the model to a low level. The model then compliments the encoding
by providing it the information which remains static or does not need to be encoded. This also
ensures that improvements to the need of repair, well-formedness and locality as mentioned in [28]
are preserved.

2.1.4 MDEOptimiser

In order to obtain a qualitative comparison for the contributions of this thesis a concrete tool in
which to implement it should be picked. For this purpose we have picked the tool MDEOptimiser
introduced in [4]. The MDEOptimiser tool follows a model based approach and is built atop the
Eclipse Modelling Framework [22] [27], the Henshin model transformation language [24] [18] [2],
and the MOEA evolutionary search framework [10] [11]. The reasoning for this choice is that
the tool has shown a better performance than another tool with a similar, but slightly di�erent
encoding [14]. To obtain this result they have measured the performance of MDEOptimiser using
several case studies. Another reason is that MDEOptimiser is a follow up paper from [28] where
they introduced the idea of combining MDE and SBSE. The case studies also form an excellent
starting point for implementing ideas for the improvements.

5

There exist several other tools that also facilitate model driven optimisation. We brie
y mention
these tools here with relevant references. They can be used to further deepen the reader's knowledge
of what is available within the domain of model driven optimisation.

ˆ Marrying Search-based Optimization and Model Transformation Technology (MoMOT) [7]

ˆ VIATRA Design Space Exploration Framework (VIATRA-DSE) [1], [20]

ˆ FitnessStudio [23]

2.1.5 Eclipse Modelling Framework

The Eclipse Modelling Framework (EMF) is a modelling framework and code generation facility
for building Java application based on structured data models. Within EMF a user can describe
class models from which Java code is generated. These models can be stored statically in �les and
be retrieved during runtime. The EMF is used within MDEOptimiser to de�ne meta models and
model instances for the optimisation problems a user has. Such a class diagram is an example of a
meta model, and the concrete classes that follow this diagram is an example of a model instance.

2.1.6 MOEA Framework

The MOEA evolutionary search framework allows a user to de�ne an optimisation problem with
its corresponding �tness functions, evolution operators and evolution algorithm. For our purposes
we only have to implement the optimisation problem, de�ne its population and how it evolves.
We leave the �tness functions to the case studies provided by MDEOptimiser and the evolution
algorithm to those implemented by MOEA. There are three important classes we have to instan-
tiate; namely, the AbstractProblem, Variable and Variation classes. The Variable class represents
a single member of the population, and a population has many such variables. To mutate these
variables the Variation class is used. This class describes what happens to a non-empty array
of parents when they evolve. A single run of the framework can concatenate such Variations to
describe complex evolution behavior. Lastly, the AbstractProblem class describes how to evaluate
Variables and how to instantiate new Variables when creating a new population.

2.1.7 Henshin

Within MDEOptimiser the Henshin model transformation language is used to de�ne the explo-
ration operator for the search based algorithm. Such a model transformation is called a Henshin
rule and is in itself a model. The model contains a pattern that has to be matched within the
model. It also describes what happens to the pattern when the Henshin rule is applied. This can
be done by changing references, creating and deleting objects and even altering attributes within
the objects. The Henshin rules are described using the aforementioned EMF and are applied to
the models by MDEOptimiser instantiating them within MOEA.

6

	Introduction
	Background
	Model Driven Optimisation
	Definitions

	Research Questions / Concerns
	Concept
	Initial Concept
	Assumptions
	Restrictions
	Proposed Encoding

	Evaluation methodology
	Implementation
	Next Release Problem
	Class Responsibility Assignment

	Results
	Next Release Problem
	Class Responsibility Assignment

	Discussion
	Conclusion
	Future work
	References

