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Abstract

Currently, the interpretation of medical images needs to be done by trained
specialists, due to the required domain knowledge of the task. Considering
the amount of data and the time limitations of the specialists automating
this task is highly valuable. Therefore, automatic lesion detection is a pop-
ular research task as it would free the resources of medical experts for other
tasks. To train lesion detection models a lot of data is needed. The data
collection and annotation poses an especially difficult problem within the
medical context. Due to the personal nature of medical data, it is rarely
publicly available and CT scans are a relative costly medical image proce-
dure. For the annotation of the data we need to have medical experts do
the labeling which adds to the costs and whose time is already bound by
the daily work in the hospital.

In this thesis we investigate if the medical reports that radiologists write
in the clinical context can be leveraged to automate the annotation process.
To incorporate the text information within the visual lesion detection task
a multimodal model is needed.

We adapt the MDETR model [1] to handle medical data. Although the
performance of the proposed model is below the state of the art, we give
insights that can be used to build systems supporting medical staff in their
daily work and providing annotated data for machine learning projects.
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Chapter 1

Introduction

Currently, the interpretation of medical images needs to be done by trained
specialists, due to the difficulty of the task. Considering the amount of data
and the time limitations of the specialists automating this task is highly
valuable. In this thesis we focus on lesion detection.

Lesion is a broad term for any disruption of tissue.1 This damaged tissue
is visible in medical images (such as X-ray or CT), and needs to be tracked
and possibly investigated to learn whether a threat - such as a tumor - is
present. CT imaging is one possible modality to determine lesion locations
as they give a detailed 3D image of the inside of the body. This level
of detail given by a CT scan is an advantage and disadvantage at the same
time. The lesions in question are often only a few millimeters in size, making
them hard to distinguish within the large number of single images (slices)
of a CT scan. This makes the interpretation of the scans time-consuming.
Therefore, automatic lesion detection is a popular research topic as it would
free the resources of medical experts for other tasks.

To train such models a lot of data is needed. The data collection and
annotation poses an especially difficult problem within the medical context.
Due to the personal nature of medical data, it is rarely publicly available
and CT scans are a relative costly medical image procedure. The cost is not
only quantified in terms of the equipment and time needed to set up a scan
but also the high radiation load on patients. Therefore CT scans are only
done when necessary.

Annotation of the data poses another problem as we need to have medical
experts do the labeling which adds to the costs and whose time is already
bound by the daily work in the hospital. At the moment the quality of
the available annotations at the Radboudumc is poor. Improvements of the
annotations will be highly useful for other research projects. This problem
is not limited to the Radboudumc. New ways to generate annotated data
will be highly beneficial for further research in the field of automatic lesion

1See: https://medical-dictionary.thefreedictionary.com/lesion
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detection in general.
In this thesis, we therefore investigate if the medical reports that ra-

diologists write in the clinical context can be leveraged to automate the
annotation process. We explore if the addition of textual data has a posi-
tive influence on the lesion detection task. Also, we test how using image
data from different sources (hospitals) influences the detection sensitivity.

As medical reports are already produced, using this data would not add
to the workload of a radiologist. Most information that would be needed
to annotate a scan is included in the report, alas in a free-text format.
Therefore some form of processing is needed to structure the information.
For that we use a Named Entity Recognition (NER) tagger which is able to
tag the information in the reports that is important for this task.

Our model is based on MDETR [1] which addresses the problem of object
detection and labeling for general object detection by combining image data
with the captions describing the image. To match this approach with our
problem we split the reports in sentences and the CT scans in slices. The
reports already contain information regarding which slices of the scan the
radiologist is referring to. With this information we can filter the relevant
slices and thus reduce the amount of data we need to process, as well as
reduce the false detection rate (as we only select slices where a lesion is
present). Also, we reduce the original 3D CT data to 2D slices.

Using this approach enables us to combine the two modalities and ad-
dress the detection problem as well as the labeling of the CT slices using
a single model. The resulting pipeline produces bounding box annotations
that can be used for further research. The automatic annotations are easy
and quick to validate by hand compared to annotating completely by hand.

The main contributions of this thesis are:

1. Adjusting an existing multimodal model to work within a medical
context

2. Building of an annotation pipeline

3. Analyzing the importance of the data origin

4. Comparing the influence of the used loss functions used for object
detection and lesion detection

5. Investigating the benefit of using a multimodal model over a classic
detection model for lesion detection

4



Chapter 2

Related Work

As our problem consists of multiple aspects we look at each of them indi-
vidually in this chapter. We look at the state of automatic lesion detection
in medical imaging, multimodal models within a general context and the
medical domain, analyze the advantages and disadvantages of end-to-end
models and consider difficulties that are particularly important when label-
ing medical data.

In Section 2.6 we lay out the concepts of the literature that form the
basics of our model.

2.1 Lesion Detection

The object detection task is defined as the detection of object instances
from several classes in a given image [2]. In cases where objects from mul-
tiple classes are detected it is often combined with the classification of the
detected object (discussed in Section 2.2). Object detection in general im-
ages and photographs is a task that is extensively researched, however when
transferring those methods to the medical domain special care is needed.
Lesions are any tissue disruptions. Those lesions can be for example tumors
or wounds that need to be observed or the result of any other condition
that leads to damaged tissue. Most lesions are only a few millimeter in size.
This is one of the biggest differences to general object detection, where the
majority of objects cover large parts of the image (as they are the focus of
the image when it is created). Another considerable difference is the visual
properties of the images. Normal images are usually RGB images while
medical images use different systems depending on the modality.

Many research projects are done on computer tomography (CT) images
as it is the most universally applicable method of detecting lesions. However,
other methods such as PET-CT, X-rays for lungs, MRI for the prostate or
the brain are used as well. CT images are made by measuring the density of
bones and tissues by using the same technology as X-ray images. In contrast
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to 2D X-ray images, during a CT scan the X-ray source is rotated around
the body. With each rotation an image slice is constructed; the slices are
then stacked together to create a 3D view.1

As reliable automatic lesion detection can have a great impact on the
healthcare system, there are numerous projects researching different aspects
of the problem.

CT scans are 3-dimensional, but 3D models are complex, one aspect of
research is the incorporation of 3D context into the model. In the follow-
ing part we discuss some approaches that incorporate context information
without processing the whole 3D scan.

Yan et al. [3] use the slice below and above the slice of interest to mimic
the RGB structure. This makes it possible to use models designed for RGB
images as backbone. The feature maps are then concatenated and used
together with the output of the region proposal in the position-sensitive
region of interest pooling. The feature maps provide a 3D context to the
proposed regions.

Cai et al. [4] follow a similar approach of using three slices where the
middle slice is the target image. To fuse the feature maps, a series of con-
volution layers is used. At each convolution stage the feature maps are
concatenated and upsampled for the final detection.

In contrast to these two approaches Lung et al. [5] do not include 3D
context. The proposed ROSNet aims to extract robust features by adapt-
ing a pyramid scheme of upsampling and downsampling. These high- and
lowlevel features are concatenated before the detection stage. This nested
structure enables the detection of small lesions.

Yan et al. [6] apply the feature pyramide scheme as well as the three-
channel 3D context applied by [3].

Another problem when working with medical images are noisy images.
Due to the general small size of lesions, denoising images without loosing
lesion information is challenging. Additionally, measuring the quality of
denoised medical images is cumbersome. To deal with these problems Chen
et al. [7] proposes to connect the denoising task with the detection task. This
ensures that the denoising network’s ability to preserve important features
is improved.

2.2 Joint Learning vs. Separate Training

In cases where both detection and classification of objects in images is re-
quired, for example lesion detection combined with lesion type classification,
two main strategies are used. The traditional method trains a detection
model, of which the output is fed into the classification model ([8; 9; 10; 11]).

1https://www.nibib.nih.gov/science-education/science-topics/

computed-tomography-ct
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With increasing computing power, researchers often use end-to-end models
that perform both tasks simultaneously ([12; 13]).

End-to-end models have the advantage that the performance of classifi-
cation is not completely dependent on the performance of the detection task,
as in a two stage model where the classifier learns from the output of the
detection model. The end-to-end model can also increase the performance
of both tasks as it can identify information in the data that is important
for both tasks. For example, features such as shape and color are not only
important to find the object’s position in the picture, but for the label as
well.

However, training two separate models is not as resource intensive as
end-to-end models, as end-to-end models are generally more complex. With
increasing complexity more data is needed to train end-to-end models [14].
The growing need for data poses a challenge in itself as the data annotation
can be difficult to scale.

We use an end-to-end model in our experiments, the details can be found
in Section 2.6.5.

2.3 The medical label problem

With the growing use of deep models within the medical domain, larger
labeled datasets are needed. Labeling medical data by hand poses a chal-
lenge as medical experts are expensive and hard to come by for this task.
The process itself is not scalable to huge datasets. Secondly, classification
problems often have to deal with the long tail problem. This means that
there are many rare cases, and for those rare cases only limited examples
are available for training a machine learning model.

To increase the dataset sizes and heterogeneity while reducing the anno-
tation costs, automating the process is necessary. To automate the labeling
process, different approaches exists to include other information that is gen-
erated within the medical context. Such data can be annotations on medical
images (used by Yan et al. [15] for DeepLesion) or radiology reports that are
written by radiologist for the purpose of the diagnosis (used by Yan et al.
[16] for LesaNet). The two approaches differ not only in the data used but
also in the objective. Yan et al. [15] created DeepLesion to investigate the
lesion detection task with a large database. Therefore, it has only bounding
box annotations. LesaNet gathers not only bounding box annotations, but
class labels as well. The following outlines both labeling approaches in more
detail.

Deep Lesion is a public dataset created by the National Institutes of
Health’s Clinical Center. The CT images in the dataset come from 4,400
unique patients and have ∼32,000 annotated lesions [15]. The dataset pro-
vides annotation on a single key slice only, but provides 30mm extra slices
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above and below the annotated slice. The bounding box labels of DeepLesion
where gathered using bookmarked images. These bookmark annotations are
created by the radiologists routinely to mark important findings (e.g. as ref-
erence points). Those bookmarks include the position and diameter of the
lesions. These measurements are taken along the longest diameter of the
lesion and the diameter perpendicular to the longest diameter, along the
measured plane. The measurements are then transformed to bounding box
coordinates by enclosing the measurements with a rectangular box including
a 20 pixel padding in each direction.

LesaNet [16] tackles the annotation problem by defining a hierarchical
ontology based on RadLex [17] which is a radiology lexicon. The defined
ontology contains the categories ‘body parts’, ‘types’ and ‘attributes’ for
lesions. The reports the authors are working with contain bookmarks for
lesions. Bookmarks are hyperlinks that are inserted by the radiologist in the
report linking to the image of interest. Such sentences, containing one or
more bookmarks in combination with the ontology, are then used to mine
relevant labels for a given lesion. Given a lesion image, the LesaNet model is
able to predict those labels even for rare cases and retrieve lesions from the
database with the same labels (but not necessarily the same appearance).

It is important to note that neither the DeepLesion nor the LesaNet
approach produce fully annotated images, as in both cases it relies on the
annotations that are made within the diagnosis process. The goal of the
annotator in this case is to mark interesting lesions and not all lesions. This
limitation needs to be kept in mind when analysing negative predictions
made by a model.

2.4 Deep Lesion state of the art

Due to the amount of data, DeepLesion is a popular dataset for research
used for example by [6; 5; 3] previously mentioned. The performance of these
models is hard to compare, as the metrics used are not directly comparable.
For this reason we only name the metrics of models we can (approximately)
compare.

The MULAN model by Yan et al. [6] achieves an average sensitivity of
86.12 % at the detection task on the test set of DeepLesion. The 3DCE
model by Yan et al. [3] measures sensitivity at various false positives (FPs)
per image and compares it to several baseline models. Their best performing
model achieves 80.7 % sensitivity at 2 FPs per image using 27 images for
context. Li et al. [18] MVP-Net improves 3DCEs results to 87.6 % sensitivity
at 2 FPs per image, while only using 9 slices for context.
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2.5 Multimodal detection

In their survey on multimodal learning with transformers, Xu et al. [19]
state that transformers have many advantages, such as scalability in mod-
elling different modalities and tasks. These advantages make transformer
architectures a prominent choice for multimodal learning for numerous ap-
plications. Each modality has its own properties and may carry different
parts of information, combining these can lead to a more robust model.
Various examples exist that show the capability of multimodal learning for
different tasks [20]. As there seems to be no clear definition of the term
’multimodal learning’, we limit ourselves to research that combines text and
image modalities as input for the purpose of a joint embedding. This strat-
egy can be utilized for various downstream tasks. Among the most popular
tasks are (zero-shot) classification e.g. [21], image captioning [22] and (vi-
sual) question answering [23].

Within the non-medical domain multimodal learning has shown its
strength for zero-shot classification [21]. Rare diseases are often not present
at all during training (for the lack of training data), so this is especially
interesting in a medical domain, where the variety and scarcity of training
data is often a challenge (see Section 2.3).

Naturally, multimodal learning is explored for multiple tasks within the
medical domain as well with promising results ([24], [25], [26]).

Li et al. [24] explores the existing vision and language models LXMERT,
VisualBERT, UNIER and PixelBERT and their ability to adapt to chest X-
ray findings classification. The authors find an improvement compared to
CNN-RNN models, as well as an advantage of the joint text-image embed-
ding compared to only text embedding.

Zhang et al. [25] propose a pre-training method for image and text en-
coders that aligns the encoded representation of a given image-text pair.
This results in the representation of a related image-text pair being closer
together than a unrelated one. Resnet50 is used as the image encoder and
BERT is used as the text encoder. The alignment is achieved via a con-
trastive loss that is computed for both modalities to preserve mutual in-
formation. The trained encoders are tested on image classification, image-
image retrieval and text-image retrieval. The results show an improvement
compared to the baseline models among all tasks, suggesting that the en-
coders benefit from the alignment with a different modality. It is interesting
to note, that after pre-training both encoders can be used separately in
downstream tasks and achieve a better performance compared to the single-
modality trained encoder.

Müller et al. [26] propose a mathematical framework to align text and
image representation of X-rays. They use their proposed framework to intro-
duce a pre-training method ‘Localized representation learning from Vision
and Text (LoVT)’ that extends ConVIRT [25]. The authors show that their
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proposed method enables obtaining results comparable to previous work
with less training data, if the reports are used. For the alignment, local
encodings are used to compute a global encoding. An attention mechanism
is used to align the text and image encoding.

2.6 Preliminaries

In this thesis we want to train a model combining textual information with
images. We used a model that consists of a text backbone and an image
backbone, whose output is merged together for the final prediction (see
Figure 2.2). We explored different options for the two backbones. This
section introduces the basics of the architectures and concepts we adopted
for our purpose.

2.6.1 ResNet

After its introduction in 2016 [27], ResNets gained popularity due to their
performance, even with deep architectures. The residual connections that
skip one or more layers allow for stacking more layers without losing perfor-
mance due to the vanishing gradient problem [28]. Therefore ResNets are a
popular choice as image backbones.

2.6.2 VGG

VGG, introduced by Simonyan and Zisserman [29], is a convolutional neural
network. It is designed to be as simple as possible while having a deep
architecture. VGG uses only convolutional layers with a single filter size,
together with max pooling. This allows architecture depth of 16-19 layers
where the VGG16 variant is a popular choice for image backbones ([16],
[30]).

2.6.3 Transformer

The transformer, a neural network architecture introduced by Vaswani et al.
[31], has gained increasing popularity due to its performance with various
complex problems such as Natural Language Processing (NLP). In contrast
to previous approaches, transformers are able to pay attention to dependen-
cies even in long input sequences. This makes transformer models a great
choice for all sequence-to-sequence tasks, especially translation. A trans-
former has an encoder and decoder stage: first encoding the input token by
token before computing the output in the decoder stage. Since the intro-
duction there were many variants developed using the same principle and
transformer attention building blocks (see Figure 2.1). Among them are
models of the BERT family.
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Figure 2.1: The attention block as it was introduced by Vaswani et al. [31]

2.6.3.1 BERT

BERT (Bidirectional Encoder Representations from Transformers) by De-
vlin et al. [32] uses transformer attention heads to improve over earlier work
on various NLP tasks. While the BERT architecture uses the attention
mechanism of the original transformers, the input sequence is processed as
a whole and not token by token. Furthermore, only the encoder is used.

There are different variants of the original BERT architecture, modifying
the number of encoder layers, hidden dimensions and attention heads.

Because the pretraining of BERT models requires not only large datasets
but also considerable computation power, there are various pretrained mod-
els released to be used in further research projects. This saves resources.
In the following we name a few pretrained models that are relevant for our
research.

Bertje [33] and RobBERT [34] are two variants of BERT that were
trained on the Dutch language. They are set apart by the data and BERT
architecture used. Bertje uses a 12GB corpus that is selected based on
quality considerations of the content (for example the removal of Twitter
data)[33]. RobBERT uses the Dutch OSCAR corpus which is 39GB large
[34] and is based on RoBERTa [35] a variant of BERT that refined the
pretraining procedure to improve the performance of BERT models.

BioBERT [36] is trained on general English texts retrieved from the
English Wikipedia and books as well as English biomedical text corpora
collected from PubMed abstracts and PMC full-text articles. The authors
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aim to improve performance of biomedical text mining tasks, as biomedical
texts contain many domain specific nouns that are not well understood by
a general purpose BERT model.

2.6.4 DETR

The DEtection TRansformer (DETR) by Carion et al. [37] is an end-to-
end object detection and labeling model for images, using the transformer
architecture. Due to the use of Hungarian bipartite matching loss, which
assigns each prediction to a ground truth, prediction for multiple objects
can be done in parallel. Each predicted bounding box is assigned one class
label of a fixed set of labels.

The bipartite matching computes the best pairwise matching of a list of
bounding box predictions and ground truths, that minimizes a pairwise cost
function Lmatch(yi, ŷσ(i)) for a permutation of N elements σ ∈ GN .

σ̂ = argmin
σ∈GN

N∑
i

Lmatch(yi, ŷσ(i))

DETR eliminates the need for special components that encode prior knowl-
edge. Instead a ResNet backbone is used to extract image features (any
other CNN can be used as backbone as well) followed by a transformer for
the actual labeling and prediction output.

2.6.5 MDETR

We base our own model on MDETR, a multi-modal model for bounding box
object detection and labeling by Kamath et al. [1]. In contrast to DETR
the labels are not assigned based on a fixed set of labels, but using a caption
that describes the input image. Therefore the labeling is not limited to a
fixed set of class labels. Only the objects that are mentioned in the caption
are detected. How we adapt the base model to work with the medical data
can be found in Section 3.1.

Figure 2.2: The DETR and MDETR model
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MDETR builds on DETR [37]. DETR consists of an image backbone
with a transformer. MDETR adds a textual backbone to retrieve features
from both modalities. See Figure 2.2 for an overview of the components and
how MDETR extends the DETR model. The features from both backbones
are transposed to a shared dimension after which they are concatenated
and input in the transformer. The final output consists of 100 bounding
box coordinates, together with a probability distribution per box over the
caption to determine the label assigned to the box. To be able to detect
less than 100 objects the input caption is appended a token representing ’no
object’.

The model is trained using the L1, GIoU (see Section 2.6.6) and con-
trastive align loss inspired by InfoNCE [38]. The goal of the contrastive
align loss is the alignment of the encoding of the two modalities. So that
visual tokens and their textual counterpart are closer together than unre-
lated tokens. Given that L is the maximum number of tokens and N is the
maximum number of objects, the loss functions are defined as follows:

lo =

N−1∑
i=0

1

|T+
i |

∑
j∈T+

i

−log

(
exp(o⊤i tj/τ)∑L−1

k=0 exp(o
⊤
i tk/τ)

)

lt =

L−1∑
i=0

1

|O+
i |

∑
j∈O+

i

−log

(
exp(t⊤i oj/τ)∑N−1

k=0 exp(t⊤i ok/τ)

)

T+
i is the set of textual tokes that object oi needs to align. Similarly,

O+
i is the set of objects that token ti needs to align with. The temperature

parameter τ is set to 0.07. The final contrastive align loss value is computed
by taking the average of lo and lt. To determine which predictions corre-
spond best to which target the same bipartite matching loss used in DETR
is used here as well [1].

2.6.6 Generalized Intersection over Union

Generalized Intersection over Union (GIoU) was first introduced by Rezatofighi
et al. [39] and is defined as:

GIoU =
|A ∩B|
|A ∪B|

− |C \ (A ∪B)|
|C|

= IoU − |C \ (A ∪B)|
|C|

It is frequently used as evaluation metric for object detection. The GIoU
is an update of the intersection over union (IoU) in an effort to better reflect
the difference between non overlapping predictions. The IoU is 0 in all cases
where there is no overlap. The GIoU metric has values between -1 and 1,
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Figure 2.3: A comparison of the intersection and GIoU of two boxes with
the same size (10x10). The red line is the GIoU threshold value of 0.5.

where non overlapping bounding boxes have a GIoU value < 0 (note that
overlapping boxes can have a negative GIoU value as well).

Nonetheless, the GIoU has its weaknesses. As Figure 2.3 shows there
are cases with (nearly) similar intersection area but with a GIoU above
and below the threshold. This does not make the metric less useful but
we decided to include another metric that is not area based to get a more
complete impression of the performance of our models. We discuss this
‘center distance’ metric in the next section

2.6.7 Center distance

As previously discussed, one disadvantages of the GIoU metric is that it
is only considering the overlapping and non-overlapping areas. Therefore,
predictions that are equally close to the ground truth can have a different
GIoU value. To consider the closeness of prediction and ground truth in our
evaluation as well, we also introduce the center distance metric. Which we
define as:

C dist = ln(
|centergt − centerpred|

sizegt lesion ∗ 0.5
+ 1)

Considering an example of two bounding boxes of the same size, we can
see in Figure 2.4 how the GIoU and center distance change compared to
each other. We can clearly see cases where the GIoU is below the threshold
but the center distance is the same as cases above the threshold.
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Figure 2.4: Comparison of the GIoU and center distance metric using a
10x10 bounding box.
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Chapter 3

Method

In this Chapter we describe the details of our method. We performed mul-
tiple experiments where we test various configurations of text and image
backbones for the DETR and MDETR models. In Section 3.1 we show the
details of the adjustments we made to the base model MDETR [1] to suite
our medical data.

We provide the details of the datasets which were used for finetuning.
Part of the data is collected from real world medical data and therefore needs
to be pre-processed to fit our needs. The details about the pre-processing
can be found in Section 3.2. In Section 3.3 we describe the details of the
pretraining and training of the models.

3.1 Model Adjustments

We made multiple adjustments to the MDETR and DETR models to better
suit our medical data. The original model outputs 100 predictions, which
is disproportionate to our data where a maximum of three lesions per slice
is present. In theory a slice can contain more than three lesions, but we
found that in our datasets one to two lesions is the norm with three lesion
being the upper limit (see Tables 3.2 to 3.4 for the number of lesions in each
dataset). For this reason we reduced the model output to three predictions.

For the DETR model we had to remove the class loss (cross-entropy
loss) as we do not have a finite set of class labels for all our data. This does
mean that during pretraining our model will not learn features combining
both modalities, which could result in a lower performance compared to the
original DETR model. However, after fine-tuning the MDETR model, this
problem should be solved.

As mentioned before, there is a considerable difference between medical
images and general images that (M)DETR is trained on. To enable the
model to better learn specialized features, we only use medical images for
training. For the same reason, we adapted the backbones of the model after
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testing different options for the image and the text backbone. The image
backbone is pretrained using the Deep Lesion dataset instead of (M)DETRs
model weights. The details of the pretraining can be found in Section 3.3.
For the textual backbone, we use pretrained BERT models that were trained
on general Dutch data or English biomedical data.

3.1.1 Image backbone

For the image backbone, we tested multiple ResNet variants and VGG16.
Both architectures are frequently used by related work, but their relative
effectiveness is unclear and the literature inconclusive.

Yan et al. [15] tested multiple models as backbone that vary in complex-
ity such as VGG16, ResNet50, DenseNet-121 and AlexNet for their model.
They found that VGG16 lead to the highest accuracy on the validation set.

Carion et al. [37] reports results of DETR using a ResNet-50 and ResNet-
101 backbone. Based on these results the authors of the MDETR model
selected ResNet-101 as their backbone, but also tested EfficientNetB3 and
EfficientB5 where the performance difference between backbones is small.

Lee et al. [30] used a modified VGG16 in their Single Shot MultiBox
Detector for focal liver lesion detection.

Chen et al. [7] used ResNet50 in their Lesion-Inspired Denoising Network
in the detection part of the network to extract features before the region
proposal.

As there seems to be no clear preference, we will investigate empirically
the difference between the effectifeness of these architectures for our prob-
lem. Additionally, we looked at the difference between networks initialized
with pre-trained ImageNet [40] weights compared to random initialization.
As Raghu et al. [41] suggest, using ImageNet weights has no significant ad-
vantage over random initialisation. However, this does not hold for small
datasets where the ImageNet weights are beneficial mostly for larger net-
works. In contrast to Raghu et al. [41], Zhang et al. [25] found that ImageNet
initialisation results in better learned image representations for medical im-
ages. Again, we will explore this issue empirically in our experiments in
Chapter 4.

3.1.2 Text Backbone

For the text backbone we used BioBERT by Lee et al. [36], RobBERT by
Delobelle et al. [34] and Bertje by de Vries et al. [33]. All three models are
used in the NER tagger that was developed to process the radiology reports
(see Section 3.2.2.2 for details). They all have a similar overall performance
but different strengths when it comes to the accuracy of the single tag types,
we cannot conclude from the results which model is better suited for our
data. Therefore we wanted to test the same models on this task as well.
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Dataset name Source Number of in-
stances

Number of
patients

Modality

DeepLesion NIH 31972 4400 image only

Dreport UMC 4041 1617 image + text

DGSPS UMC 15044 3106 image only

Table 3.1: An overview of the different datasets used.

(a) DeepLesion (b) DGSPS (c) Dreport

Figure 3.1: A comparison of the bounding box sizes within the three different
datasets.

As previously mentioned, BioBERT is pretrained on English biomedi-
cal text corpora. While our data is Dutch, we found similarities between
the biomedical terms in both languages. During development of the NER
tagger (see Section 3.2.2.2) we found only slight differences between the per-
formance of the English model and the two Dutch models RobBERT and
Bertje. For the NER tagger we used an ensemble of all three models.

3.2 Data

We first use the Deep Lesion dataset [15], for pre-training (see Sections 3.2.1
and 3.3). We also collected our own data, from anonymized medical data
collected at the Radboudumc. We compile two different datasets: The
DGSPS dataset uses Grayscale Softcopy Presentation State Storage objects
(explained in Section 3.2.2.1) to annotate slides from CT scans. The Dreport

dataset links a part of the annotated slices with a sentence from the radiol-
ogy report using a NER tagger.

3.2.1 Deep Lesion

Deep Lesion, as previously mentioned, is a public dataset by the National
Institutes of Health’s Clinical Center. The CT images in the dataset come
from 4400 unique patients and have ∼32,000 annotated lesions [15] (see
Table 3.1). As the reports for the CT scans are not publicly available, we
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Number of images with

split number of images 1 lesion 2 lesions 3 lesions total lesions

train 22390 21981 399 10 22809

val 4777 4684 91 2 4872

test 4805 4711 93 1 4900

Table 3.2: The number of images in each split and the number of lesions on
each image in DeepLesion.

Number of images with

split number of images 1 lesion 2 lesions 3 lesions total lesions

train 2847 2798 42 1 2885

val 649 635 14 0 663

test 543 536 7 0 550

Table 3.3: The number of images in each split and the number of lesions on
each image in Dreport.

are unable to use this dataset for the training of the whole model. However,
the large number of annotated images makes it perfect to train the visual
component of the backbone. The Deep Lesion dataset provides annotation
on a single key slice only, but provides 30mm context slices above and below
the annotated slice. We sample the slice above and below the annotated slice
to get a three channel input data similar to RGB images (see Figure 3.2).
This will provide the model with some context of the lesion.

Figure 3.2: Illustration on how we sample the annotated slice together with
context.
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Number of images with

split number of images 1 lesion 2 lesions 3 lesions total lesions

train 9349 9349 0 0 9349

val 2899 2899 0 0 2899

test 2796 2796 0 0 2796

Table 3.4: The number of images in each split and the number of lesions on
each image in DGSPS.

3.2.2 Radboudumc datasets

3.2.2.1 Raw data

We have access to ∼250.000 Dutch radiology reports together with the cor-
responding CT scans. The data was collected between 2000 and 2021. The
reports are written in a free text format. Guidelines prescribe the contents
of a report but it is up to the doctor how to write the report. Therefore, no
useful assumptions on the structure of the report can be made.

The Grayscale Softcopy Presentation State Storage (GSPS) is a DICOM
service that stores additional information that affects the display of an im-
age1. We have access to GSPS objects for a subset of the CT scans that we
could collect. Included in this information are graphical annotations that are
made by the radiologist. There is no information available what is present
at those coordinates. The list contains size information as well, however
this is not fully reliable, as each GSPS object gets assigned the closest text
label, but multiple GSPS objects can get assigned the same same text label.
This means that lesions with different sizes can get assigned the same size
extracted from the same text label.

To collect text information for our datasets, we process the radiology
reports using an NER tagger. The details are described in Section 3.2.2.2.
After that we are able to combine the information with the GSPS objects
to retrieve our final dataset of image-text pairs (Dreport). The process is de-
scribed in detail in Section 3.2.2.3. The GSPS objects that are not matched
with a report sentence are used together with the DeepLesion dataset for
pretraining (DGSPS). Both Radboudumc datasets are split on patient level,
using the same split as DeepLesion (70% training, 15% validation, 15% test).
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Figure 3.3: Examples of sentences labeld by the NER tagger

3.2.2.2 NER tagger

To process the information in the radiology reports, a NER tagger is devel-
oped that is able to tag which words contain which information [42]2. The
following tags are assigned:

• Type: The type of lesion

• Location: The organ or structure the lesion is located at

• Position: The position of the lesion. e.g right, left etc.

• MixedPosLoc: Words that are not explicit position or location infor-
mation but a mix of both. e.g. para-aortaal

• Slice: The CT scan slice the lesion is visible

• Size: The size of the lesion

• Characteristics: Words describing the lesion

The model uses an ensemble of the pretrained transformer models Bertje,
RobBERT and BioBERT which were fine tuned on 1000 hand-labeled sen-
tences. As the models are not able to predict the relation between the tags,
the choice was made to work on sentence level only. The same sentence
could in theory contain information about multiple lesions, however in re-
ality we saw a limited number (usually 1-3) of similar lesions described in
one sentence. The finetuning dataset was sampled from sentences from the
radiology reports, that contain slice and size information, using a simple
regular expression to guarantee that at least one lesion is mentioned in the
sentence. However, this limits the model to a specific sentence structure.
As the model is only trained on those positive examples it is likely to be less
accurate when presented with different sentences.

1See https://dicom.offis.de/dispcons.php.en.
2The tagger was developed during an internship, which is not publicly available. Details

and the report can be made available on request.
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3.2.2.3 Dreport dataset

To create the dataset, we are especially interested in the ‘Slice’, ‘Size’ and
‘Type’ tags resulting from using the tagger discussed in the previous para-
graph. The slice information consists of the CT scan series and one or
multiple image numbers. The image numbers can be compared to the Z-
coordinate of the GSPS objects to find candidates for the precise position of
the lesion(s) mentioned in the sentence. If multiple possible candidates are
found, the size information is compared to each other with an error margin
of 0.5mm. We are able to match ∼4000 locations with sentences from the
report for 1704 different patients (see Table 3.1). The sentences are filtered
with the same regular expression as used with the NER tagger, to ensure the
best performance. A random subset of the resulting matches are then hand
checked for sanity. This automatic matching speeds up the labeling process
significantly. Finally, we sample the slice above and below the found lesion
location for context and to get a 3D input image similar to RGB images so
no adjustments need to be made to the model in this regard.

3.2.2.4 DGSPS dataset

The DGSPS dataset consists of the scan slices that contain GSPS objects, but
could not be annotated with a sentence from the accompanying report. This
dataset contains 15044 scans from 3106 different patients (see Table 3.1),
about half of the DeepLesion samples but from a similar number of unique
patients.

3.3 Training

We want to create a model based on MDETR, but as mentioned previously,
initial experiments have shown that the number of samples in the Dreport

dataset is not sufficient to train the whole model at once. Also finetuning the
existing general object detection model is not an option for the same reason.
In the following we discuss a number of approaches tho help overcome this
situation. The goal is to utilize the datasets we have as efficient as possible.
In this Section we describe the setup for each of the experiments.

3.3.1 Pretraining

We have two datasets without additional text information. To use them
to pretrain our model we pretrain only the image component in our model.
We refer to this setting as the DETR model as the resulting setup is similar
to the model by Carion et al. [37]. As mentioned previously, however, in
contrast to the original DETR model, we cannot use the class loss due to
the missing class labels. As the second pretraining setting we only train
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the image backbone without transformer. This way, we explore various
image backbone options and select the best one for the DETR and MDETR
experiments.

3.3.1.1 Image backbone only

As mentioned earlier, ResNet and VGG16 are popular choices for image
backbones. Depending on the task some suggest that VGG16 achieves a
better performance and some ResNet. Therefore, we decided to explore
those architectures for our image backbone. Specifically, we test ResNet18,
ResNet34, ResNet50, ResNet101 and VGG16. We use the DeepLesion dataset
and perform bounding box regression with one output bounding box. We
also experiment with the initialisation of the model with ImageNet weights.
All backbones are trained using the L1 and generalized intersection over
union (GIoU) loss, a learning rate of 10−5 with exponential decay and
a batch size of 4. Based on the results of these experiments we chose
ResNet101 as the backbone for our subsequent experiments (see Section 4.1.1.1).

We used the trained ResNet backbones to finetune the MDETR model
with the Dreport dataset. All of those models output identical bounding
boxes regardless of the image input. The output bounding box positions
change only slightly during training. None of the models was able to learn
well enough with the limited data. This shows that pretraining only the
image backbone is not enough. This problem particularly shows up with
larger ResNet image backbones, which increase the complexity of the model.
Therefore, we proceed with training the image backbone together with the
classification transformer.

3.3.1.2 Image backbone + transformer (DETR)

Inspired by the DETR paper, which the MDETR model is based on, we
pretrain the image backbone together with the transformer. This has the
advantage that the transformer is already trained on the image features.
However due to the absence of labels we cannot use the class loss that
DETR uses and we reduce the transformer size to 2 encoders and decoders
to compensate for the dataset size (see Section 4.1.2.1 for details about the
transformer size).

Additionally, we performed a loss ablation analysis to compare to the
analysis Carion et al. [37] did on their original DETR model. We compare
our results with the Carion et al. [37] in Section 4.1.2.2.

Lastly, as we work with data from different sources the question arises
how similar this data is and how well models will generalise across the dif-
ferent sources. We test different combinations of training data regarding the
resulting sensitivity on the test data:

1. training on DeepLesion only
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2. training on DGSPS images only

3. mixing 20% of the DGSPS images together with DeepLesion

4. finetune the DeepLesion only model on DGSPS images

We tried higher percentages of the DGSPS dataset, but the results did
not change much while the computational power and training time needed
increased greatly. We therefore restrict our final analyses reported here to
the above mentioned experiments.

For all experiments we train for 300 epochs using a leaning rate of 10−4

and 10−5 for the image backbone with a learning rate drop after 200 epochs.

3.3.2 Finetuning

Both pretraining settings are fine-tuned using the Dreport dataset. Similar
to the image backbone we tested multiple pretrained BERT models as text
backbone described in Section 2.6.3.1. We finetune for 20 epochs using a
learning rate of 10−5, 10−6 and 50−5 for the model, image backbone and
text backbone respectively with an exponential decay.

3.4 Evaluation

To evaluate our models we use two metrics: Generalized Intersection (GIoU)
over Union [39] and center distance. With each metric we focus the evalua-
tion on a different aspect of the overall performance on the task. The GIoU
is area based while the center distance looks at the distance between the
center points of the bounding boxes. We use the same threshold of 0.5 for
the GIoU, as commonly used in the literature. For the center distance we
use a threshold of 1. We report the sensitivity for each model using each of
the metrics.
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Chapter 4

Experiments

In this chapter we present and analyse the results of our experiments as
described in Section 3.3. First we explore the two ways of pretraining in
Section 4.1. Next in Section 4.2 we analyse the effect of adding the text
information to our model. All experiments where conducted on the cluster
of the research group. The cluster consists of 25 machines. There are a
number of different GPUs available (rtx2080i, gtx1080i, gtx1080, gtxtitanx,
titanxp); each experiment gets assigned one machine.

4.1 Pretraining

A central challenge with all deep learning models is gathering enough data.
This is especially difficult within the medical domain, as gathering (and
sharing) medical data always raises privacy concerns. As we were not able to
gather as many text-image data pairs as the MDETR model [1] is originally
trained on, we explore in this section how we can pretrain the model using
image data only. Even with this strategy we still do not have a comparable
amount of data. However, it does enable us to closely examine how the
model learns.

In this section we present the results of pretraining. We test two set-
tings: training only the image backbone and training it together with the
transformer (DETR). We test image backbones from the ResNet family as
well as VGG16 all pretrained on ImageNet as well as randomly initialised.
Since DETR uses two loss functions, we perform an ablation analysis on the
loss functions to gain insight into how the DETR model learns.

4.1.1 Image Backbone

4.1.1.1 Image Backbone only

As we can see from Figures 4.1a and 4.1b, using the image backbones ini-
tialised with pretrained ImageNet weights leads to a large increase in sensi-
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(a) The sensitivity of the back-
bones based on the GIoU metric.

(b) The sensitivity of the back-
bones based on the center dis-
tance metric.

Figure 4.1: The sensitivity of the backbones.

tivity compared to random initialisation. These findings are in line with [41]
and [25], in that initialisation with pretrained ImageNet weights is especially
beneficial for larger networks and small target datasets. The impact of Im-
ageNet initialisation on sensitivity is not as large for VGG16 and ResNet18
as it is for the larger networks. However, all models have an overall low
sensitivity with the sensitivity increasing with the model complexity, with
an exception being the performance of ResNet34 and ResNet50 where the
ResNet34 performs better. This is only a small discrepancy but even with
tweaking various hyperparameters we were not able to achieve a score similar
to the ResNet34.

As we can see comparing both Figures 4.1a and 4.1b the performance
difference manifests not only in terms of bounding box size and overlap
as it is tested with the GIoU, but the distance between ground truth and
prediction in a similar way. Nonetheless, a higher percentage of predictions
that is not considered correct by the GIoU is close enough to the ground
truth to be considered useful, where only the shape is still off (examples
shown in Figure 4.2).

4.1.2 DETR

As only pretraining the image backbone does not yield satisfying results, we
try the approach by Carion et al. [37], to train the transformer together with
the image backbone. We analyse the influence of the two loss functions by
doing a loss ablation analysis in Section 4.1.2.2. We investigate how the data
source and target configuration influences model sensitivity in Section 4.1.2.3
using image data from the Radboudumc (the DGSPS dataset that has the
same source as the Dreport dataset) as well as data from a different hospital
(the DeepLesion dataset). The training time of one epoch of the DETR
models took 30− 50 min, resulting in a total training time of ∼ 1− 2 weeks
for 300 epochs. Finetuning DETR on a part of the DGSPS dataset took 2,5
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Figure 4.2: Examples of errors made by the pretrained ImageNet ResNet101
model trained on the DeepLesion dataset. Green boxes are the ground truth
annotations, red boxes the predictions.

hours in total.

4.1.2.1 Transformer size

The original DETR and MDETR model use 6 encoder and decoder layers.
Tests showed that reducing the size to 2 layers each is necessary to achieve a
preliminary reasonable performance with our datasets. Models with a larger
transformer size output the same bounding box prediction constantly, for
every input image. This implies that we either need more data or need to
reduce the complexity of the model. The COCO 2017 dataset [43], used
to train DETR, has 118K training instances while DeepLesion has 32K in-
stances and our DGSPS dataset has no more than 15K instances. We are
unable to collect additional data, so we have resorted to reducing the trans-
former depth to 2 encoder and decoder layers each in all DETR and MDETR
experiments.

4.1.2.2 GIoU and L1 loss

The authors of the DETR model [37] report, in an ablation analysis with
the two losses GIoU and L1, that the GIoU loss is the most informative. As
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GIoU based Distance based

Model # correct
predicted
instances

sensitivity # correct
predicted
instances

sensitivity

L1 loss only 309 0.063 858 0.18

GIoU loss only 51 0.01 226 0.05

Both 90 0.018 829 0.17

Table 4.1: the results of the loss ablation analysis using the two evaluation
methods.

we can see in Table 4.1 we observe the opposite in our experiment, where
the model trained on L1 only performs better than alternative models using
GIoU or both.

There are multiple possible explanations for this. First of all, as we
can see in Figure 3.1a, the variation in bounding box size is limited in our
data and the bounding boxes cover only a small part of each slice. DETR
is trained using the COCO dataset [43] where the objects present in the
picture vary more by size (for example an elephant in a picture covers a
larger portion of the picture than the human next to it). Furthermore, the
authors of [37] say that the classification cross-entropy loss is crucial and
can thus not be removed during training (as opposed to GIoU or L1 losses).
However, we did not use a cross-entropy loss function as we do not have a
fixed set of class labels due to the nature of our data and the sentence based
labeling (see Section 3.1 for more information).

When considering the example of a picture with a human standing next
to an elephant, the combination of class prediction and bounding box pre-
diction can impact each other positively. Predicting the elephant class con-
sequently means a larger bounding box and a larger bounding box has a
higher chance of having a class label related to larger objects. The absence
of the class prediction in our case could mean that the model needs to rely
more on the location information than size which is enforced by the L1 loss.
Another aspect to consider is how distinct classes are. In the COCO dataset
[43] the objects are structurally more distinct (a human just looks different
to an elephant) than in the Dreport dataset.

As noted by Zheng et al. [44], predictions of models that are trained
using the GIoU loss initially tend to increase in size, until the target is first
touched. After reaching that point in the training process, the bounding
boxes shrink to the right proportion, while moving to the correct location.
This process results in slow convergence. We observe a similar initial be-
haviour here. The predicted bounding boxes of the GIoU-only model are
quite large, which may very well indicate that more training epochs would
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GIoU based Distance based

DeepLesion DGSPS Dreport (without text) DeepLesion DGSPS Dreport (without text)

DeepLesion only 0.057 0.006 0 0.225 0.028 0.0288

DeepLesion + 20% DGSPS mixed 0.241 0.029 0 0.3 0.095 0

DeepLesion only finetuned on 20% DGSPS 0.015 0.072 0 0.096 0.165 0.0396

DGSPS only 0.014 0.004 0.011 0.078 0.052 0.043

Table 4.2: The sensitivity across the various test sets of DETR trained on
numerous data settings

GIoU based Distance based

DeepLesion DGSPS Dreport (without text) DeepLesion DGSPS Dreport (without text)

DeepLesion only 0.252 0.001 0 0.447 0.015 0

DeepLesion + 20% DGSPS mixed 0.256 0.049 0 0.443 0.169 0

DeepLesion only finetuned on 20% DGSPS 0.025 0.048 0 0.152 0.160 0

DGSPS only 0.004 0.003 0 0.083 0.059 0

Table 4.3: The sensitivity across the various test sets of ResNet101 trained
on numerous data settings.

be needed for an optimal performance.
Looking at our performance metrics we see that the location which is

trained with the L1 loss is usually correct. However, the bounding box
size is often incorrect (low GIoU). This supports our observation that the
model has trouble working out the bounding boxes. Adding the GIoU based
loss only slows down training but does not improve the overall quality of
predictions. Therefor we conclude that in our setting it is not necessary to
use the GIoU loss.

4.1.2.3 Combining datasets

As Table 4.2 shows there is a large difference in performance across the
different test sets. Mixing or finetuning on the other datasets definitely
helps the performance on the DGSPS set compared to training only on DGSPS

data. Notably, mixing both datasets has not only an advantage on the
DeepLesion dataset over finetuning but also over the model trained solely
on the DeepLesion data. Looking at the performance at 2 false positives per
image (see Table 4.4) shows a similar picture. This is surprising, especially
as we cannot see the same pattern when repeating the experiments using
ResNet101 (see Table 4.3).

A possible explanation could be that the distribution of lesion sizes of

GIoU based Distance based

DeepLesion DGSPS Dreport (without text) DeepLesion DGSPS Dreport (without text)

DeepLesion only 0.059 0.006 0 0.225 0.028 0.03

DeepLesion + 20% DGSPS mixed 0.245 0.029 0 0.302 0.095 0

DeepLesion only finetuned on 20% DGSPS 0.016 0.072 0 0.096 0.165 0.041

DGSPS only 0.014 0.004 0.011 0.075 0.052 0.045

Table 4.4: Sensitivity at 2 FPs per image.
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FPs per image 0 1 2

DL only 1 0 0.059

DL + 20% DGSPS mixed 0 0.129 0.245

DL only finetuned on 20% DGSPS 0 0 0.016

DGSPS only 0 0 0.014

Table 4.5: Sensitivity at various FPs per image on the DeepLesion test set.

the DGSPS dataset includes more larger lesions than the DeepLesion dataset.
Even if the DeepLesion dataset contains more instances overall, these tend
to be smaller. Combining both datasets together results in a more varied
dataset that prevents the model from overfitting. However, the DeepLesion
samples are still the largest portion of the data, which explains the larger
gain for this dataset. The sensitivity of the mixed model is roughly four
times higher than trained solely on DeepLesion. Finetuning on the other
hand overwrites part of the features learned with the specific features for
the DGSPS data. The basic features of the pretrained model help to boost
the sensitivity, explaining the higher sensitivity.

Taking a closer look at the sensitivity on the DeepLesion dataset at
various FPs per image in Table 4.5 shows that the mixed dataset model and
the DGSPS only model both are stronger with lower FPs per image compared
to the other models. A possible reason is that the DeepLesion dataset has
more samples with multiple lesions in one slice.

Nonetheless, all approaches do not give us decent results on the Dreport

data. In fact it is zero in all cases except the model trained only on DGSPS

data. As the images from both datasets originate from the same hospital it
is surprising that the performance in this case is so low.

In general the DETR and MDETRmodels are prone to overfitting, which
results in outputting the same bounding box, roughly in the center of the
image, independent of the input image. This is similar to the issue we
described previously that forced us to reduce the transformer size (see Sec-
tion 4.1.2.1). The difference is that the bounding boxes during the training
of a larger transformers barely change, while in this case they do vary in the
beginning of the training process but then soon converge to a single box.
To resolve this issue using the DGSPS dataset required lowering the learning
rate (compared to the learning rate used for DeepLesion). This overfitting
issue does not occur when using ResNet101.

4.2 Finetuning

In this section we present the results on the influence of textual data on the
detection model. We compare three BERT variants as text backbones and
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Text backbone DETR pretrained no pretraining

GIoU based Distance based GIoU based Distance based

BioBERT 0.0378 0.1045 0.0072 0.108

Bertje 0.054 0.1153 0.0126 0.1009

RobBERT 0.0162 0.097 0.0072 0.1027

None 0.0000 0.0467 0.0072 0.054

Table 4.6: The sensitivity of MDETR on the Dreport test set.

compare them to a model without the text backbone. Each of the MDETR
models took ∼ 10 hour of total training time.

4.2.1 Text Backbone

The results suggest that adding textual information to our model enhances
the model sensitivity compared to finetuning on the images only. The pre-
training described in the last section proves to be useful. Interestingly,
without pretraining the performance of all models is really similar. The
only exceptions are the model without text backbone, where the predictions
are farther away from the ground truth, and the BERTje text backbone,
which is a little better than the rest in terms of GIoU.

It is surprising that the RobBERT backbone sensitivity is lower than
that of the BERTje backbone considering that BERTje is trained on a third
of the data RobBERT is trained on. Also, RobBERT is based on RoBERTa
which is designed to train a BERT model more efficiently. BERTje on the
other hand has been trained on a curated dataset that is collected with a
focus on qualitative aspects of the texts. As the difference in performance
is small, this comparison is informal and no conclusion should be drawn
from the difference observed. However, it could be the case that more text-
image pair data would increase the difference. It could be an indication
that more data is not always favourable over qualitative selection criteria.
We see a similar tendency with our image datasets. The DGSPS dataset
was assembled using a pipeline with as little human interaction as possible.
Therefore there was no manual reviewing of all samples. We observed ample
noisy points in the form of, for example, multiple slightly different bounding
boxes for the same lesion. The Dreport dataset is a subset of these images
with a reference in the report. This leads to a substantially smaller dataset
while still improving the qualitative aspect.

Despite these uncertainties we can conclude that both the biomedical
aspects as well as the Dutch aspects of the text backbones are important.
Consequentially, having a BERT model that is trained on Dutch radiology
reports could be capable of combining the positive aspects of both text
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backbones. See Figure 4.3 for some good predictions of the MDETR models.
Building on the DETR DeepLesion-only model from Section 4.1.2.2 im-

proves the sensitivity of the models with the RobBERT text backbone only
slightly, but using the two other text backbones in the models increases sen-
sitivity even more. It is interesting that the DETR DeepLesion-only weights
are counterproductive when leaving out the text information. The perfor-
mance is even lower than that of the DETR DGSPS only model (compare
Table 4.2) in terms of GIoU. This supports our theory that the accom-
panying sentences include information that enhances the lesion detection
sensitivity of our model.

Figure 4.3: Examples of (nearly) good predictions made by the three
MDETR models. Green boxes are the ground truth annotations, red boxes
the predictions.
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Chapter 5

Conclusions and Future
Work

In this thesis we have studied how data from different sources and modalities
impact the performance of the DETR and MDETR models. The goal was
to gain insight in the working of the model to translate the results from
the original object detection model to the medical domain. Compared to
the previous work using DeepLesion (see section 2.4) the performance is
substandard. Despite the overall weak performance of all models we tested,
our experiments show that adding textual information indeed boosts the
performance compared to an image only model.

We encountered problems with unstable training resulting in a model
that makes the same prediction for every image. Due to resource limitations
we were only able to use a batch size of 4, while the original model has a batch
size of 64, which could not only have influenced the overall performance but
explain the stability issue as well.

Our results give various insights in the data, model loss and model de-
tails that can be used in future work to improve medical lesion detection
models. There are multiple points that could be explored in future research
to improve the performance of our models:

GIoU loss: Using the MDETR and DETR model, it would be interest-
ing to explore other loss functions to replace the GIoU, like the DistIoU
presented by Zheng et al. [44] who saw a faster convergence and better per-
formance adding the loss to various state-of-the-art models such as YOLO
v3 and faster R-CNN for bounding box regression.

Bounding boxes: We reduced the output from 100 bounding boxes to 3
in our experiments. Another interesting approach would be to investigate
bounding box fusion of overlapping boxes.
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DETR training: The DeepLesion dataset provides lesion type informa-
tion that could be transformed into class labels for training the DETR
model, determining the importance for detection as well as the difference
to training on full sentences.

DGSPS dataset: Even with careful compilation of the datasets we noticed
some noise especially in the DGSPS dataset. Currently the GSPS objects
coordinates are considered to be center points of a possible lesion. However,
GSPS objects can be other forms of annotation such as circles and lines as
well. Differentiating between GSPS objects would improve the data quality
of the DGSPS dataset and the annotation pipeline. The annotation pipeline
could not only be valuable for this research but be used as a helpful tool for
all research needing bounding box annotations on medical images.

NER tagger: The annotation pipeline for the Dreport dataset could be
improved by adding more handlabeled sentences to train the NER tagger
[42]. The current training sentences were pre-selected using a regular ex-
pression. Thus favouring a certain sentence structure. Labeling more data
without the regular expression pre-filtering would result in a more varied
dataset that improves the NER tagger reliability, thus make it possible to
process whole reports.

ImageNet initialisation: As mentioned previously, within the medical
domain small details are often crucial and medical images differ greatly from
images from the general object detection domain. Therefore avoiding Ima-
geNet initialisation for a model in the mediacl domain could improve results.
However, to achieve that, a dataset of comparable size is needed to train the
image backbone. As the ImageNet images are vastly different to the medical
images, a network only trained on medical images can learn better domain
specific features in the lower layers.

Summarizing, the current model is not fully comparable with the related
work. However, if the problems mentioned above are addressed, we expect
a better overall performance. The biggest challenge is how to obtain a large
and representative dataset. Within the medical domain, a long tail of rare
cases makes it hard to collect enough samples for every phenomenon to
observe. This limitation of the domain is an overall challenge in medical
research.

In a more general direction, further research aiming for a deeper un-
derstanding of the information of the text and image modalities and their
contribution to detection models would help building more efficient meth-
ods combining modalities. As within the medical domain small details are
often crucial, translating general object detection research is but a start. As
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the data shortage is a continuous struggle for medical research the genera-
tion of images is an interesting route of research as well. Chambon et al.
[45] for example uses text prompts to generate images of chest X-Rays. In
their experiments those prompts are artificially generated. Having real live
examples could provide details for the image generator resulting in more ac-
curate depictions of the text description. Understanding the dependencies
of the two modalities would help encoding the small details that are often
more important in the medical domain that in a general image domain. The
generation of images could be used as an augmentation method.

The original MDETR model is not only capable of bounding box detec-
tion, but can be trained for other downstream tasks such as segmentation
and question answering. Those tasks are of interest in the medical domain
as well. Segmentation for example is used to provide measurements of le-
sions automatically. Fusion of different predictions improve the quality of
the measurements [46]. Medical visual question answering could speed up
the lookup process of certain structures within an image for medical experts.
Combining all possible predictions of the model could enable us to integrate
the model within a hospital setting to speed up processes around the diagno-
sis (looking up lesions, measuring and possible comparing of measurements
over time).

All in all, we give insights that can be used to build systems supporting
medical staff in their daily work and providing annotated data for machine
learning projects.
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