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Abstract

Concurrent software has become increasingly important in today’s world; but reasoning formally
about such programs is hard. The programming language Go offers a paradigm for writing programs
that do not rely on memory sharing as a primary means of communication between processes. While
this should make it easier to reason about concurrency, methods for formal verification of programs
written in Go are absent.
In this thesis, we will investigate the capabilities of the Why3 verification platform to fill this gap.

We first apply it to verify the complexity of heapsort, check an early program proof by Alan Turing,
and solve other logical problems. We then use it as the foundation of a verification method for
concurrent Go programs. With this method, we can verify partial correctness and liveness properties
for concurrent programs written in a small subset of Go, using a high degree of automation. This
technique is designed to be implementable as a tool, which could — if extended further — allow the
partial verification of a larger range of Go programs.
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1. Introduction
Reasoning about the correctness of programs is as old as the field of computer science itself. In
1949 Turing described a method for reasoning about the correctness of a process that computes n!
using only addition [1]. Turing imagines a situation where someone sits down to check whether this
computational procedure actually does what it purports to do, and states:

In order to assist the checker, the programmer should make assertions about the various
states that the machine can reach.

Twenty years later, Hoare would propose formally defining the meaning of the programming lan-
guages we use, and a method of stating and checking such assertions with mathematical rigour [2].
It is still implied in this proposal that verification of a program is a manual, tedious, time-consuming
and therefore a costly and error-prone activity, because someone has to perform the formal proofs.
Hoare’s assumption that the cost of errors would eventually increase to a point where correctness

proofs would become economically profitable has proven to be incorrect. Machine time is virtually
free, and removing defects from software that has already been shipped happens all the time — even
if that software has been shipped to Mars [3]. Software testing is still the main method of preventing
bugs.
Painful mistakes in critical software such as Apple’s ‘goto fail’ [4] show that that approach leaves

much to be desired. Patching a security vulnerability does not help users whose systems have already
been exploited. Embedded software is all around us, including in systems where its failure can mean
loss of life. In such cases, the arguments in favour of formal verification are still sound: the challenge
is to make it practical by reducing its cost.

1.1. Computer-aided reasoning
A major factor limiting the practical use of software verification as proposed by Hoare was that of
doing formal proofs by hand. In present times, systems have been developed which remedy this
situation by automation, removing the possibility of errors introduced by tedium, and significantly
speeding up the process of finding a proof; or which have the ability to check a user-supplied proof
mechanically and rigorously, thus ensuring its soundness. Prominent categories of these are:

Interactive Theorem Provers Prime examples of these are Coq [5], Isabelle/HOL [6], and PVS [7].
All of these provide a formal system which is rich in expressive power. Proofs in these systems
must still be provided by the user, but are verified by a computer. Interactive theorem provers,
while large programs in themselves, are usually built around a small trusted core so that they
instil a high degree of confidence in the proofs.

Automated Theorem Provers The E theorem prover [8] and SPASS [9] fall into this category. These
operate on the basis of a less expressive first-order logic, but find proofs without human inter-
vention. This is usually based on refutation: to prove a proposition these systems try to derive
a contradiction from its negation.

Satisfiability Solvers Examples of these are Alt-Ergo [10], CVC3 [11], CVC4 [12] and Z3 [13]. These
operate on the basis of pure propositional logic (SAT solvers) or a subset of first-order logic
with extensions for performing such things as basic arithmetic (Satisfiability Modulo Theories)
These typically use a variant of the DPLL algorithm [14] to find a logical model satisfying a
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set of clauses, or show that none exists. As above, a proposition is proved by showing that its
negation is not satisfiable by any model.

Model Checkers These allow the user to write a specification as a system of non-deterministic finite
automata. Statements about a system are expressed in temporal logic, which are mechanically
checked for all reachable states. SPIN [15] and NuSMV [16] are good examples.

When it comes to theorem provers, this classification is rather muddled, however. Most interactive
theorem provers have support for a large degree of automation, and automated theorem provers can
be instructed to look for proofs in a certain way. Also, all interactive theorem provers mentioned have
a means to call external automated provers. In fact, the distinction between automated theorem
provers and SMT solvers is of no real significance for our discussion, and we will generally use the
term automated theorem prover to refer to both kinds of systems. On the other hand, model checking
on the one hand and theorem proving on the other are very different, due to the differences in the
way knowledge is represented in these systems.

1.2. Software analysis toolchains
Being able to perform large proofs is only one aspect of software verification. Perhaps even more
important is the semantics of the programming language used. Modern programming languages
have large specifications, and are also increasingly complex. If a programming language is officially
standardized, it is usually in the form of a document written in standardese — language which is
legalistic and often vague, and functions more like a contract upon implementers of the language
than as a useful reference for the user.
Furthermore, when given a program fragment, it is hard to manually identify what exactly should

be checked to verify it; especially since verification will often involve excluding a multitude of corner
cases that are easily missed by a user, such as risks of pointer aliasing, integer overflow, ensuring
that data structures remain in a well-behaved state when an exception occurs, and data races in
multi-threaded environments.
To ensure validity of program verification, it is therefore necessary to also have a mechanical

means of obtaining the formal conditions that must be satisfied for the program in question to be
correct. Again, systems have been developed which assist with this, of which we should mention the
following:

• OpenJML [17], the successor to ESC/Java, which generates verification conditions for programs
written in Java in the form of propositions to be checked by SMT solvers.

• VCC [18] by Microsoft Research; this translates concurrent C programs to an intermediate
language called Boogie. This intermediate language is then used to obtain verification condi-
tions to be verified by Z3. Alternatively, it is also possible to use Boogie in concert with the
Isabelle/HOL theorem prover [19].

• VeriFast [20], developed at the University of Leuven, is a tool based on separation logic for
verification of C and Java programming languages. Like VCC, it uses Z3 to check the generated
verification conditions.

• Frama-C [21], a suite of static analysis tools for C programs. One of these is the Jessie [22]
plugin for generating verification conditions using the Why3 [23] verification framework. In
this case, C programs are also translated to an intermediate language — WhyML — similar to
the approach taken by VCC. Why3 will be discussed in more depth in the next chapter.

All of these systems also come equipped with some form of specification language (not part of the
targeted programming language itself) for stating the necessary pre-conditions and post-conditions
to be used for verification.

7



On a cautionary note, these and similar tools produce results that are mostly only valid for the
semantics of a single implementation (which are usually not explicitly stated), or don’t fully support
the more infelicitous constructions of the target language. For instance, consider the following C
declaration:

int x = (x=3) + (x=4);

This explicitly has undefined behaviour, as x is written to twice before a point in the program has
been reached where all side-effects of expressions are guaranteed to have occurred. Value analysis
with Frama-C will show, however, that it considers x to contain 8 afterwards. Running VCC will
produce a warning, but also allows the verification of x==8.1 VeriFast complains on syntactic grounds:
according to it, the variable x is not in scope during the initializing expression.
A more rigorous approach would be to base a verification toolchain on an explicit, machine-readable

formal version of a programming language specification, such as the one produced in the Formalin
project [24]. The downside of this approach is the (current) lack of support for proof automation.
Another promising development is the arrival of new programming languages that are as practical

as C, but avoid situations such as the above; or which contain a richer type system. Examples of
this are the programming languages Rust [25] — which integrates the concept of data ownership
into its type system — and Go [26], which is essentially an attempt at re-design of the C language.
The disadvantage of these languages is that academic interest in them is much less than for more
well-established languages, and so tools for formal verification of these languages are largely absent.

1.3. Concurrent programming
Modern computer systems usually consists of multiple CPU’s. Software running on these systems
can be optimized to make use of this parallelism by breaking a problem in small chunks that can
be solved independently. This presents a special challenge, but also a more urgent need for software
verification:

• Existing programming language specifications have been slow to catch up and standardize the
guarantees (or lack thereof) given to multi-threaded software.

• In a single-threaded environment, non-determinism arises sparingly and consistently — for
example, the order of evaluation of function arguments may be unspecified, but we can rea-
sonably expect it to remain the same from one invocation to the next. In a multi-threaded
environment, this is no longer true. Without explicit synchronization, it becomes impossible
to tell what will happen exactly when.

• Various means for synchronization between threads exist, ranging from low-level primitives
such as atomic variables, semaphores, mutexes and condition variables to higher level features
such as promises, futures, and message passing. Using these can be tricky, and reasoning about
the behaviour of programs involving these primitives in interesting ways is hard.

• Tools which allow static analysis of multi-threaded programs have only recently arrived. Older
systems such as OpenJML are (currently) not able to take into account effects that may arise
from interaction between multiple threads.

Model checkers are well-positioned to deal with this inherent non-determinism. Experience has
shown that they can be used without much training to verify properties of (or detect bugs in) simple
concurrent programs that go unnoticed when reasoned about by an experienced programmer [27].
But they have their drawbacks as well; in particular, it may not always possible to construct an
accurate model for a given program.

1Which is consistent with the behaviour exhibited by Microsoft’s compiler
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1.4. Research question
The observations of the previous sections leads us to the main research question of this thesis.
The Go programming language, which is heavily influenced by Hoare’s communicating sequential

processes (CSP) [28], is our main motivation. A major appeal of Go is that concurrency is deeply
part of its implementation — it is easy and practical to write efficient programs consisting of many
thousands of concurrently executing subroutines that do not need to rely on data sharing for com-
munication. The language design team actively encourages programmers to think of concurrency as
a means of structuring a program, not necessarily just as an optimization strategy. Another appeal
of Go is that it is a rather simple language, both in terms of its syntax, its type system, and memory
model — as it has been specifically designed to be easily implementable, in contrast with a language
such as C++.
This design choice should already make the non-concurrent parts of Go an easy target for devel-

oping formal verification tools — although this would present a significant amount of work, such
work has been done before. This thesis therefore investigates whether and how Go’s concurrency
primitives can be reasoned about using a readily available verification platform. Why3 is a natural
choice for this, as it allows for a high degree of flexibility.
The outline of the rest of this thesis is as follows.

• In Chapter 2 we will discuss the Why3 verification framework.

• Chapter 3 contains a number of case studies of simple but non-trivial non-concurrent programs
and show how they can be verified using automated theorem proving by using the Why3
platform.

• Chapter 4 will briefly introduce the Go programming language, and describe the features
marking it as an interesting target for concurrent software verification.

• Chapter 5 will describe a method for modelling a class of concurrent programs, correspondent
with a small fragment of Go, in Why3. We will argue that this method can be in principle
be used to verify properties of concurrent programs using automated theorem provers. This
approach (and its drawbacks) will be demonstrated by verifying a concurrent version of a prime
number sieve.

• Chapter 6 will discuss the results and offer suggestions for future work.

1.4.1. Reproducibility of results
In the interest of reproducibility, and since development of the aforementioned tools progresses
rapidly, this section will list the verification tools used in the process of writing this thesis.

Why3 0.86.3 compiled using OCaml version 4.01.0

Alt-Ergo 0.99.1 compiled using OCaml version 4.01.0

CVC3 2.4.1 as packaged in the Debian GNU/Linux 8 distribution.

CVC4 1.4 compiled using GCC 4.9.2.

Z3 4.4.1 compiled using GCC 4.9.2.

Eprover 1.8 compiled using GCC 4.9.2.

SPASS 3.7 as packaged in the Debian 8 GNU/Linux distribution.

Coq 8.4pl4 as packaged in the Debian 8 GNU/Linux distribution.
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All tests and examples were performed on a low-budget AMD64 laptop running Debian 8 (“Jessie”).
It should be noted that we have deliberately avoided the use of proprietary software, and especially

software which is only available in binary form; all programs mentioned above are publicly available
under an open source software license in some form.
All material related to this thesis will be made available at http://github.com/squell/why3-go.

1.5. A verification primer

1 L0: mov r9, 1
2 mov r11, 1
3 L1: mov r12, r11
4 cmp r9, r10
5 jae L3
6 mov r8, 1
7 L2: add r11, r12
8 inc r8
9 cmp r8, r9

10 jbe L2
11 inc r9
12 jmp L1
13 L3: ret

Figure 1.1.: Computing n!

Turing’s verification method mentioned at the start of this chapter can be
observed in Figure 1.2. We do not know whether he is working on the basis of
an actual program for the Manchester Mark 1; he only provides an illustration
of a program by giving us a control flow graph. While his method is basically
sound and easy to understand, his attempt is not flawless in its execution,
and sadly his presentation does not appear to have been very influential [1].
However, the control flow he presents can be implemented faithfully in

x86-64 assembly language, shown in Figure 1.1. This is still an instructive
example to demonstrate the process of modern program verification.2 In this
program, it is assumed that the natural number n resides in register r10 at
the start, which we will write as r10 = n We can now make the following
assertions, which are based on the ones given by Turing:

• r10 = n throughout the program.

• Whenever we are ready to execute the instruction labelled L1, it is the
case that 1 ≤ r9, and r11 = r9!. Also, r9 > n implies that r9 = 1.

• Whenever we are at label L2, 1 ≤ r8 ≤ r9 < n, r12 = r9!, and r11 = r8 ⋅ r9!.

• At label L3, r11 = n!, as desired.

The first assertion can be easily verified, as the register r10 is not used as a destination register
anywhere. Checking the other assertions requires deductive reasoning: we have to establish that
they hold whenever whenever we transfer control to their respective entry points; consequently they
may be used to prove other properties beyond that point.
For example, the second assertion holds when we reach L1 the first time (since r9 = r11 = 1).

During verification of the fourth assertion, we may assume that it holds when we reach L3, since the
only way to reach it is by taking the jump in line 5. But then we also know that r9 ≥ n, which means
that either r9 = n and so r11 = n!, or r9 > n, which means that r9 = 1 and therefore by necessity n = 0.
In this case we have r11 = 1! = 0!, and so again r11 = n!. Identifying the steps necessary to complete
the verification of the second and third properties is left as an exercise to the reader.

2Especially if the reader hesitates at the sight of machine code.
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Copyright Computer Laboratory, University of Cambridge. Reproduced by permission.

Figure 1.2.: Turing’s original handwritten verification attempt, from the Turing Digital Archive.
Note that Turing uses the peculiar notation ⌞n to denote n!.
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2. The Why3 verification platform
Why3 is a modular proof system developed for deductive program verification using a high degree of
automation. In this chapter we will discuss its important features. The aim is to give a general feel
for the strengths and drawbacks of the system.
At the time of writing, Why3 [23] is under active development at INRIA by the Toccata project, and

has its roots in research performed by Jean-Christophe Filliâtre in the area of verifying imperative
programs using type theory [29]. This was followed in 2001 by the release of the Why tool, which
could be used to produce verification conditions for programs written in a simple programming
language for the proof assistants Coq [5] and PVS [7]. Other verification tools were created on top
of this, such as Krakatoa for the verification of Java programs, and Caduceus for C programs [30] —
which was then superseded by the Jessie plugin for the Frama-C static analysis platform [22, 21].
In 2010, Why3 was introduced to replace the earlier Why version, with a more powerful language,

improved syntax, and an API to allow for easier user extensions. In addition to Jessie and Krakatoa,
Why3 is being used as a back-end for the verification of Ada programs by the SPARK 2014 tool [31],
and the verification of cryptographic proofs in the EasyCrypt project [32].

2.1. Overview of Why3
Two related languages characterize the Why3 platform. The first of these (which we will simply
call Why) is a purely logical language which is based on a typed first-order logic, with extensions
to support polymorphism, algebraic data types, and (co)inductive predicates. The second language,
called WhyML, is a simple yet sufficiently powerful programming language which is used for modelling
programs for the purpose of generating verification conditions expressed in Why.

Why3 has only limited capability to reason about logic by itself, however; its main purpose is to
translate its languages into input for various automated or interactive theorem provers. This design
can be graphically represented as follows:

WhyML programs

Why logic

Alt-Ergo CVC3 CVC4 E Z3 Coq Isabelle/HOL

automated provers interactive provers

Both languages are modular in design. To use any definition, a user has to explicitly include the
module that contains it. Also, not using a module means the theorems it introduces will not be
visible to theorem provers. This is an important feature which serves three purposes:

• It improves the human readability of code written in Why/WhyML, similar to modern pro-
gramming languages that use modularity and namespaces to decompose large programs into
functionally self-contained parts.
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• Reducing the amount of irrelevant information presented to external provers improves their
performance, allowing for scalability of the system.

• By restricting the exposure of modules to each other, it means that Why3 has a coarse-grained
mechanism for determining the interdependency of theorems, as this information cannot be
determined by examining the output of theorem provers.

The last two facts also imply that it is beneficial in Why3 to structure formalizations in many insular
components, as opposed to building a large ‘kitchen sink’ collection of theorems and definitions. This
principle can be readily observed in Why3’s standard library.
The WhyML programming language is syntactically quite similar to ML [33]. However, it is

primarily an imperative programming language, supporting control-flow primitives as while/for-
loops and exceptions, as well as familiar data types as mutable arrays. For verification purposes,
WhyML has some features that are not commonly found in other programming languages. For
instance, it has syntax for stating pre- and post-conditions, loop invariants, and allows writing
so-called ‘ghost’ code, whose only function is to aid in verification.
Out of these conditions, Why3 extracts verification conditions from WhyML programs, using a

weakest-precondition procedure [34]. Under certain conditions it is also possible to translate WhyML
programs into OCaml, and run them directly.
While Why3 is aimed at automated verification, this does not mean that it is a fully automatic

system — in all but the most trivial WhyML programs, some form of logical transformation must
still be applied to propositions in the logical language before they are simple enough to be solved by
automated provers. This has to do with the that the logic of Why3 is a logic of compromise: it is
chosen to be at a sufficiently expressive level to be easy to use, but it is not the native input language
for any of the external provers [35]. Also, it is often the case that an automated prover struggles
with a large conjunction, but can prove every term in it quickly if it is presented piece-by-piece,
or that different provers are needed to prove different parts of the conjunction. This kind of proof
transformation is done during a interactive proof session from within the Why3 IDE.
As an example, consider the following proposition in Why, which states that the square of an odd

number is also an odd number:
1 theory Example
2

3 use import int.Int
4 predicate odd (x: int) = exists k: int. x = 2*k+1
5

6 function square (x: int): int = x*x
7

8 goal odd_square:
9 forall x: int. odd x -> odd (square x)

10

11 end

Loading this into a proof session, and trying various theorem provers, we end up in the situation
depicted in Figure 2.1. We find that the automated theorem provers E and SPASS can prove the goal
straight away (although E requires 9 seconds), Z3 doesn’t reach a conclusion within the set time limit
(of 30 seconds), and the other theorem provers quickly conclude that they cannot decide either way.
Other less common but possible outcomes would be that a theorem prover finds a counterexample,
runs out of available memory, or encounters an internal error. At the right hand side of the window,
the source code is listed, with highlights to indicate the current proof state.
By pressing the Compute button, Why3 applies the compute_in_goal transformation: it applies all

computations that it reasonably can — expanding the definitions of the predicate odd and function
square — resulting in a transformed proof task. Running the same theorem provers again results
in the situation depicted in Figure 2.2. This new state of affairs turns out to be detrimental to the
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Figure 2.1.: Example Why3 proof session

Figure 2.2.: Why3 proof session after applying a transformation
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time needed by SPASS, but benefits E. Also, CVC4 can now prove this fact instantly. We can also
examine what exactly the transformation has changed by changing to the Task pane, which lists the
current proof goal as Why code.
A proof session like this will be saved when we exit the IDE, and can be resumed or replayed at

a later moment. If the theory under consideration has changed, Why3 detects which proofs are no
longer up-to-date and marks them as obsolete. In addition, it marks all proofs which may depend
on a proposition whose proof is obsolete as obsolete as well [36].

2.2. The Why language
The logical language Why3 allows the declaration of types, function symbols and predicates. These
can be left abstract, or given a definition. New types can be created as record types or (potentially
recursive) algebraic data types. For example, given the types:

type boxed ’a = { item: ’a; wraps: int }
type wrap ’a = Only ’a | Wrap (wrap ’a)

we can define the recursive function:

function shrinkwrap (obj: wrap ’a): boxed ’a
= match obj with
| Only x -> { item = x; wraps = 0 }
| Wrap x -> let y = shrinkwrap x in { item = y.item; wraps = y.wraps+1 }
end

Functions defined in this direct way must always be totally defined; it would be an error to omit
the Wrap x in the pattern match. This also means that all terms in the logic language must be
terminating; Why3 checks this automatically, and in many simple cases this suffices. In other cases,
this does not work — for example, an inverse function of shrinkwrap would need to be recursive in
its integer argument. In the present version of Why3 this means another method of defining such
a function has to be used; we will examine such a way in Section 2.3.4. In future versions this
limitation may be lifted [23].
A related property of Why3 is that all types must have at least one inhabitant; the above definition

is rejected if we had omitted the case Only ’a, since in that case there does not exist a (finite) object
for the type.
It is possible to write partially defined functions and predicates by using axiomatic definitions:

predicate five int
axiom five_def:
five 5

This predicate is demonstrably true only for the number five; but it is also never demonstrably false.
This kind of incomplete information is pervasive in Why3. For example, the value div 1 0 is not
defined; but the type system demands that it is a valid expression of type int — we just don’t know
what it is. This does not prohibit its use in subsequent calculations, and so, perhaps surprisingly,
the following goal is provable:

use import int.Int
use import int.EuclideanDivision
goal div_identity:
forall k: int. k * div k k = k

In a significant departure from pure first-order logic, Why3 also supports the definition of inductive
predicates; these introduce the predicate symbol as the least possible relation satisfying the definition.
For instance, we can define the following equivalence relation on objects of type wrap ’a:
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inductive similar (wrap ’a) (wrap ’a) =
| similar_0: forall x y: ’a. x = y -> similar (Only x) (Only y)
| similar_l: forall x y: wrap ’a. similar x y -> similar (Wrap x) y
| similar_r: forall x y: wrap ’a. similar x y -> similar x (Wrap y)

Using this relation, we can prove that not similar (Only 1) (Only 2) by applying the inversion_pr
transformation described below, which would not the case had we defined the predicate axiomatically.
Another extension is the addition of higher-order functions and predicates, by using the built-in

HighOrd theory, these become available so we can write a function such as:
use HighOrd
function mapbox (f: ’a->’b): boxed ’a -> boxed ’b
= \x. { item = f x.item; wraps = x.wraps }

When using the HighOrd theory, currying and lambda abstractions also become useful tools, and so
the language supports these as well. Function types can also be used for bound variables in logical
quantifiers:

goal identity: exists f: int->int. f 2 = 3

However, since all automated theorem provers only support first-order logic, this is of limited use.
Logical facts in the Why logical language are introduced by three types of declarations:

Axioms A logical formula declared as an axiom is provable by definition.
If an axiom deals with newly introduced symbols, it is possible to establish criteria under which
it is harmless. For instance, if P is a axiomatic statement concerning a user-defined symbol,
and we can establish that for any statement Q in which this symbol does not occur, P → Q is
provable only if Q itself is provable, then the axiom is admissible [37]. However, for obvious
reasons, checking this is something that has to be done manually by the user.

Goals A logical formula declared as a goal must be proved; we already have seen these in the above.

Lemmas A logical formula declared as a lemma must be proved as well, but in any declaration
following it, it is added to the set of assumed logical facts.

In conclusion, the Why language can best be viewed as a mostly first-order logic, with a total
functional programming language for describing entities in the universe of discourse.

2.2.1. Modularization in Why3
Declarations in Why must be put in a theory; these can then be used in other theories. We have
already seen several examples of this; for example, we had to import int.Int to be able to multiply
two integers using the * operator. When using a theory, the user has control over how its definitions
are introduced. When using use import directive, all definitions will be visible within in the current
namespace; when using use export, they will become part of its namespace, and so will become
visible to other theories that use the one being defined. If not importing a theory, a qualified identifier
can be chosen by the user. As an example:

use import int.EuclideanDivision as E
use int.ComputerDivision as C

This will make the div function from the EuclideanDivision theory — which has nicer mathemat-
ical properties — visible as div and E.div, and at the same time allow us to use reason about the
way division is defined by ordinary programming languages by referencing C.div.
Another possibility is to clone a theory. When we do this, the theory in question is not simply

made accessible, but all of its definitions are copied into a new theory, which is then used instead.
When doing this, we have the ability to provide an instantiation for types, functions and predicates
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that were left abstract in the original theory. Axioms governing these abstract symbols the original
theory are cloned as well; to avoid risks of inconsistency, these can (and should) be turned into goals
and lemmas. For example, consider the following attempt to apply the principle of induction to
show that all integers are the same:

predicate all_are_equal (n: int)
= forall m: int. n = m

clone int.SimpleInduction
with predicate p = all_are_equal, goal base, goal induction_step

This will fail to verify because the base case is false (since clearly not all integers are equal to 0).
However, if we forgot to add goal base, Why3 will accept this (as the induction step is provable)
without warning.
The WhyML language, explained further on, has a similar system of modularization, except that

its declarations are bundled together in so-called modules instead of theories. The only distinction
is that a module is allowed to contain WhyML code, whereas a theory cannot.

2.2.2. Logical transformations
As we have already discussed briefly, it is often the case that some manual intervention from within
the Why3 IDE is required for automated theorem provers to work. Some of these transformations
are rather specialized, but it is possible to distinguish three broad categories:

Computational transformations We have already used an instance of this in the example of Fig-
ure 2.2. Two of are so commonly applicable that they have a dedicated button in the IDE: the
inline_goal transformation, which replaces function and predicate symbols by their defini-
tions in the current goal, and compute_in_goal which applies other rewrite rules as well.

Eliminating transformations These are simplification strategies which remove features of the Why3
language which may not be handled well by theorem provers, and replace them by abstract
symbols that are axiomatically defined. For example, the following goal turns out to be sur-
prisingly hard for automated provers:

constant everything: set int = comprehension (\x: int. x = 42)
constant universe: set int = everything
goal question: universe = everything

But by applying the eliminate_definition transformation, the proof task is transformed
into something entirely trivial:

constant everything
axiom everything_def: everything = comprehension (\x: int. x = 42)
constant universe: set int
axiom universe_def: universe = everything
goal question: universe = everything

Note that the compute_in_goal transformation also solves the original goal, without needing
to resort to an external theorem prover at all.

Splitting transformations These represent strategies to break up large or complex propositions into
smaller ones. The most common example of this is the split_goal transformation, which
transforms a conjunction into a set of goals for each of its constituent terms. Also in this
category are induction strategies for inductive predicates (induction_pr, inversion_pr) and
algebraic data types (induction_ty_lex).
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It is generally hard to to decide beforehand which transformation to apply to goals; when we are
verifying many goals, this usually is a trial-and-error process during a proof session in the IDE. Some
idea of what makes a proof difficult for automation can also be obtained by trying to ‘debug’ a goal
by using an interactive theorem prover. For example, if we try to prove the question goal shown
above, loading it into Coq gives us the proof obligation:

Parameter fc2: (Z -> bool).
Parameter fc3: (Z -> bool).
Axiom fc_def2 : forall (x:Z), ((fc2 x) = true) <-> (x = 42%Z).
Axiom fc_def3 : forall (x:Z), ((fc3 x) = true) <-> (x = 42%Z).
Theorem life : ((comprehension fc2) = (comprehension fc3)

Which, of course, involves arriving at a proof state where the functions fc2 and fc3 can be shown
to have the same effect. One way to do this is by applying of set extensionality axiom provided by
Why3:

apply set.Set.extensionality.
repeat intro.
repeat rewrite comprehension_def.
rewrite fc_def2.
rewrite fc_def3.
intuition.

But clearly this involves some creative thinking on the part of the user. The problem here seems to
be that Why3 replaces the two constants with their definition as it generates input for provers; by
applying the eliminate_definition transformation this is bypassed.
Like the choice of which external prover to run for which goal, transformations applied by the

user are remembered between proof sessions, and so verifying (or in Why3 terminology, replaying) a
completed Why3 session by a different user does not require this kind of interaction, as long as they
are provided with the files in which Why3 stores the proof session in addition to the Why/WhyML
sources.

2.2.3. Example: Tarski’s fixed point theorem
To demonstrate a non-trivial use of Why’s logic language, we will use it to develop a theory to
formalize a well-known set-theoretic theorem, and show how we can use that theory elsewhere.

Theorem (Tarski’s fixed point theorem). Given a set A and a function f ∶ P(A) → P(A), if for
any X,Y ⊆ A it holds that f(X) ⊆ f(Y ), than there exists a µ such that µ = F (µ).

An idiomatic way to formalize this in Why3 is to build a theory around abstract symbols for A
and f , which can be instantiated by the user. The skeleton for this is as follows:

1 theory Tarski
2

3 use import set.Set
4

5 type t
6

7 function f (set t): set t
8

9 axiom f_is_monotonic:
10 forall x y: set t. subset x y -> subset (f x) (f y)
11

12 goal f_has_fixpoint:
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13 exists x: set t. f x = x
14

15 end

Lines 5 and 7 introduce the abstract symbols for the function f operating on sets of type t. The
type t fulfils the role of the set A — its only role is to denote the elements that the powerset domain
is built on top of. This subtle difference is, of course, a result of the fact that the foundation of
Why3’s logic language is a typed logic. In fact, to reason about sets we need to import the definitions
and axioms of set theory in line 3.
One might optimistically load this theory in Why3 and check whether it can prove the stated goal

automatically. Unsurprisingly, this will not succeed.
As is often the case with computer-assisted theorem proving, our first task is then to figure out

why the theorem should hold at all, by finding an informal proof.

Informal Proof. Let P ∶= {X ⊆ A ∶ f(X) ⊆ X} be the set of pre-fixpoints of f , and then consider
µ ∶= ⋂P . We will show that µ is the desired fixpoint by showing the inclusions f(µ) ⊆ µ and µ ⊆ f(µ).
By its construction, µ ⊆ X for all X ∈ P , and therefore f(µ) ⊆ f(X) by monotonicity of f , and

since f(X) ⊆ X, we also have f(µ) ⊆ X. Since this is the case for all X ∈ P , f(µ) is also a subset
of ⋂P , and thus we have shown the first inclusion. But then, again by monotonicity of f , we also
have f(f(µ)) ⊆ f(µ); i.e. f(µ) ∈ P , and so it follows that µ ⊆ f(µ), as desired.

The above argument roughly can be divided into two parts:

• Construct the intersection of the set of pre-fixpoints of f .

• Verify that it is a fixed point by showing both inclusions.

Why3’s support for set theory does not contain a function equal to the ⋂-operator out of the box,
but it is easy to construct using the set.SetComprehension theory:

1 use import set.SetComprehension
2

3 function intersect (fam: set (set t)): set t
4 = comprehension (\x: t. forall y: set t. mem y fam -> mem x y)

which we can then use to define µ:

6 constant prefixpoints: set (set t) =
7 comprehension (\x: set t. subset (f x) x)
8

9 constant mu: set t = intersect prefixpoints

We then introduce three lemmas.

11 lemma fmu_subset_of_mu:
12 subset (f mu) mu
13

14 lemma mu_subset_fmu:
15 subset mu (f mu)
16

17 lemma mu_is_fixpoint:
18 f mu = mu

If we retry to prove this theory in Why3, we find out that the lemmas fmu_subset_of_mu and
mu_is_fixpoint are still intractable for our suite of theorem provers.
In the case of fmu_subset_of_mu, after experimenting with and refining various lemmas that help

prove this goal, it becomes clear that automated provers benefit by explicitly stating a fact about
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intersections that the observant reader may have noticed was conspicuously taken for granted in the
informal proof above.

Proposition. For any collection of sets S, the intersection ⋂S is the greatest common subset of all
sets in the collection. That is:

• ⋂S ⊆X, for all X ∈ S.

• Whenever Y ⊆X for every X ∈ S, we also have Y ⊆ ⋂X.

Which we can easily formulate and get proven automatically in Why3:
lemma intersect_common_subset:
forall fam: set (set t).
forall x: set t. mem x fam -> subset (intersect fam) x

lemma intersect_greatest_common_subset:
forall fam: set (set t), s: set t.
(forall x: set t. mem x fam -> subset s x) -> subset s (intersect fam)

In the case of the goal mu_is_fixpoint, what is needed is of course the fact that if X ⊆ Y and
Y ⊆X, that it follows that X = Y .
By inspecting the set.SetGen theory to find out what makes this fact difficult, we discover that

Why3 defines the predicate == to mean that two sets have the same members, and then relates this
to ordinary equality by adding the axiom of extensionality for sets. So we can try to replace the
final lemma with:

lemma fmu_equiv_of_mu:
f mu == mu

The resulting theory can be proven (after judicious use of the eliminate_definition or inline_goal
transformation on selected goals) by all theorem provers tested (Alt-Ergo, CVC3, CVC4, Z3, E);
each goal can also be proven easily using a handful tactics in Coq. Using just Alt-Ergo, the entire
theory can be verified in less than half a second.
The Tarski theory can now be used to get the fixed point for any monotonic function on sets by

cloning it, supplying concrete instances for the abstract type and function symbols, and stating that
the given function satisfies the axiom:

1 theory Example
2

3 use import int.Int
4 use import set.SetComprehension
5

6 function shift (s: set int): set int
7 = add 0 (map \x: int. x+1) s
8

9 clone Tarski with type elt = int, function f = shift, goal f_is_monotonic
10

11 goal shift_has_fixpoint:
12 exists s: set int. shift s = s
13

14 end

As a by-product of developing this theory, we have introduced a new function symbol (intersect)
and by iterative refinement developed two useful lemmas about it, which both are more generally
applicable than the theorem we set out to prove. It would now be good programming practice to
spin this off into a separate compact theory that can be re-used elsewhere.
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2.2.4. Example: Solving the Dining Philosopher’s problem
A common use of automated provers is to find solutions to problems by encoding the problem as a
logical puzzle. Even though Why3 was not developed with this goal in mind, we will show that it
can be used for such a purpose.
For this, we will examine the well-known problem of the Dining Philosophers [38]. In this concur-

rency problem, five philosophers are situated at a circular table behind five plates of food, with a
fork placed between each of them. All philosophers will want to eat, but to do that, they must pick
up the forks on either side of their plates in some order, and they will have to wait if their neighbour
is holding their fork. Once they have picked up a fork, however, they will not put it down until they
have taken a bite.
It is not difficult to show that given this set of requirements, the philosophers have a problem: if

at the start all philosophers pick up the fork to their right, no forks remain on the table, but no one
will be able to eat, since nobody is in possession of both forks. Being unable to eat also means they
are equally unable to put down the one fork already in their right hand. Thus we have arrived at a
deadlock, which (in this sense quite literally) leads to starvation.
A solution to break the deadlock is to impose a strict order in which the forks will be taken from

the table. If we impose the rule that four of the philosophers always pick up their right fork first,
and instruct the fifth to do this in the reverse order, no deadlock can arise.
One possible way to model this problem is to model it as a non-deterministic finite automaton,

and then show that no deadlock can occur if the above solution is used. Naturally, this approach
lends itself very well to model checkers for exactly this reason. When using a theorem prover, it is
less simple, as the machinery for a state transition system then has to be modelled explicitly.
An approach more suitable to automated theorem proving is to create a set of constraints that must

be satisfied by the entire state space of the problem. In anthropomorphic terms, this is approaching
the problem as if we have a photograph of five philosophers eating, and deducing on that basis
alone whether they are following the rules given above, and if they are, whether or not they are in
a deadlocked situation.
A benefit of this is that we can work abstractly; all that is required is that any state in our

original problem is a model of the set of constraints — we do not need to capture every detail of the
problem, or explicitly exclude all situations which are not part of the state space. With this in mind,
we develop a logical specification for the Dining Philosophers. We begin by defining the structure of
the logical domain:

1 type philosopher
2 type fork
3

4 function left philosopher: fork
5 function right philosopher: fork
6

7 predicate grasped philosopher fork

That is, we assign left-hand and right-hand side forks to philosophers by a function, and define a
predicate which should be interpreted as stating that a philosopher holds a fork in her hand.
We can now write down the constraints of the puzzle as a set of axioms. First of all, there

are enough right-hand side and left-hand side forks for each philosopher. This can be ensured by
requiring that both functions are injective:

9 axiom fork_availability:
10 forall p q. (right p = right q \/ left p = left q) -> p = q

Also, philosophers are not allowed to use any other fork but those:

11 axiom bounded_resource:
12 forall p, f. grasped p f -> (f = left p \/ f = right p)
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A fork can only be held by a single philosopher at any time:

13 axiom mutual_exclusion:
14 forall p q, f. grasped p f -> grasped q f -> p = q

Every fork is shared between (at least) two philosophers; that is, if a fork is a left-hand fork for some
philosopher, it is the right-hand fork for someone else, and vice versa:

15 axiom shared_resource:
16 forall f. exists p q. f = left p /\ f = right q

Note that in all cases, since the types of the quantified variables can be inferred from their use, they
can be safely omitted.
An implication of the proposed solution is that there is always a philosopher who cannot be empty

handed if she is holding a fork in her right hand; and that for all other philosophers the converse is
true:

17 axiom lefties_and_righties:
18 exists lefty. forall p. if p = lefty then grasped p (right p) -> grasped p (left p)
19 else grasped p (left p) -> grasped p (right p)

Note that the name lefty in this proposition is somewhat misleading; for example, if all philosophers
are holding either two forks or none, then any of them fits the requirement for lefty. However, the
existence of exactly one lefty ensures that this axiom is always satisfied, which is all that matters.
Finally, we are left with formulating the property we wish to check. Suppose we are in a reachable

state where there is a philosopher whose forks are not being held by a neighbour. Then we are
clearly not in a deadlock, as this philosopher is either eating, or able to pick up a fork. So we can
state:

20 goal dining:
21 exists p. (forall q. grasped q (right p) -> p = q) /\
22 (forall q. grasped q (left p) -> p = q)

The resulting theory can be loaded into the Why3 IDE; the theorem provers SPASS is able to
prove it within 15 seconds.
The verification time can be further improved by adding this lemma just before the previous goal:

lemma left_forks_are_all_forks:
(forall p. exists q. grasped q (left p)) -> forall f. exists q. grasped q f

When we do this, CVC3 can verify the entire theory nearly instantaneously.
Note that the specification is very general. A restaurant in Hilbert’s Grand Hotel with an infinite

amount of philosophers sitting at a table for one with just one fork on it is also a model, a situation
with a table where five right-handed philosophers are in a deadlock while a left-handed philosopher
is eating happily by himself on a separate table is another. This also shows that the absence of
deadlock does not mean an absence of starvation.

2.3. The WhyML programming language
We now turn our attention to the programming language used by Why3 for the actual purpose of
software verification. The reader may at this point get confused — for we have already seen that
the Why logic language can be used for a limited form of functional programming.
However, these limitations make it too far removed from commonly used imperative languages; in

particular, the notion of a state is entirely lacking. Therefore a second language – WhyML – is needed.
It is stateful in nature and well-suited to imperative programming. Another major difference is that
whereas a function in the Why language essentially defines a rewrite rule — where any occurrence of

22



the function call can be substituted by its body (as performed by the inline_goal transformation) —
subroutines defined in WhyML define a contract expressed in the form of user-supplied preconditions
and postconditions. For example:

1 let square (x: int): int
2 requires { odd x }
3 ensures { odd result }
4 = x*x

When calling this function from some other point, Why3 will generate a verification condition to
check that the argument given is odd, and assume that the result is odd as well; but it will have no
knowledge at that point that the result is equal to the square of the input; for that, we should have
explicitly specified:

ensures { result = x*x }

WhyML extends the type system of the Why language in two aspects:

• Record fields can be designated as mutable; these can be updated using the <- assignment
syntax.

• It is possible to specify a type invariant for user-defined data types, which is then checked at
(and only at) function entry/exit.

For example:

1 type oddint = { mutable value: int }
2 invariant { exists k: int. self.value = 2*k+1 }
3

4 let square_by_ref (x: oddint)
5 ensures { x.value = old (x.value*x.value) }
6 = x.value <- x.value*x.value

In this case, calling the procedure square_by_ref modifies the provided argument in-place; neces-
sitating the use of the old keyword to reference the value of x before calling the function. The type
invariant for oddint ensures that a verification condition will be added to ensure that the result is
an odd value.
The WhyML standard library comes with several familiar data types that have mutable fields,

most notably the types ref ’a and array ’a. which make programming with mutable data easier
than in the above example. One of the restrictions not found in ordinary programming language is
that aliasing of function arguments containing mutable data is forbidden, and that recursive data
type definitions are not allowed to contain mutable data types — which also means that it is not
possible to implement e.g. a destructively updated linked list in WhyML.

WhyML allows the creation of recursive functions using the let rec syntax. In this case, ter-
mination of the function can be proven by adding a variant declaration. This should denote an
expression that diminishes during each recursive call; this can be an algebraic data type or an inte-
ger expression (that is guaranteed to remain non-negative), or a lexicographic ordering of multiple
expressions separated by commas; for instance:

1 let rec ackermann (m n: int)
2 requires { m >= 0 /\ n >= 0 }
3 ensures { result >= 0 }
4 variant { m, n }
5 = if m = 0 then
6 n+1
7 else if n = 0 then

23



8 ackermann (m-1) 1
9 else

10 ackermann (m-1) (ackermann m (n-1))

If a (recursive or non-recursive) function is not supposed to terminate, this can be indicated by
marking it as such by using the keyword diverges.
To allow for the verification of functions containing loops, loop invariants must be added by the

user pertaining to all mutable data that is modified during the loop body. Loop termination is
guaranteed when using for-loops; when using while-loops (or the loop construct), the user again
has to specify a variant for each loop, as with recursive functions.

WhyML does not have a break or return statement, but programs are capable of non-local transfer
of control flow by raising exceptions. If an exception is not caught in any try/with block, this means
a function has an alternative means of terminating, and so in this case the user is required to specify
an exceptional post-condition.
To assist complicated proofs, or to explicitly verify properties of a program, it is also possible to

insert assertions at arbitrary locations in a WhyML program. These are analogous to the three types
of logical declarations of Why. A statement introduced via an assume keyword is simply assumed
to be true at the point in the program it occurs, a check can be used to verify a desired property
but cannot be used to prove other facts, and an assert functions as a lemma — it generates a proof
obligation but can also be used to prove subsequent facts. The use of assert statements is also
beneficial when debugging proofs.
Note that all declarations that are valid in the Why language are also valid in WhyML. So, programs

can be freely mixed with lemma’s, and function/predicate declarations expressed in the Why language.
Such declarations reside in a separate namespace which is accessible from WhyML, which means that
WhyML programs can use them — but not the other way around — or re-define them (without
altering their meaning at the Why level).

2.3.1. Example: Sieve of Eratosthenes
As an demonstration of a small WhyML program, we will verify the ancient algorithm for finding all
prime numbers up to a given limit m. In prose, this algorithm can be described as follows [39]:

1. Enumerate all integers between 2 and m.

2. Let p be the smallest number of this set; it is a prime number, add it to the set of discovered
primes.

3. Remove all multiples of p from the list, including p itself.

4. Repeat steps 2 and 3 until the input set has been depleted.

A WhyML model of this algorithm, expressed using Why3’s theory for handling finite sets of
integers, is listed in Figure 2.3, complete with all annotations to allow it to be automatically verified.
Its post-condition on line 12 expresses the fact that the result of this function is a set containing
exactly all the prime numbers less than m.
A crucial step in proving the correctness of the above algorithm is, of course, determining why

after removing all multiples of p it follows that the new smallest number on the list is automatically
a prime number. To show this, we establish (in the first loop invariant) the property that if a number
is in the input set, then all its positive divisors (except 1) are also in this set. This is clearly true
initially, and also preserved in each iteration by the third step. From this loop invariant it can be
deduced that the smallest number has no other divisors except itself and 1, and so is a prime number.
Showing that this algorithm doesn’t accidentally ‘skip’ prime numbers might be intuitively obvious,

but still needs to be proven rigorously as well. To do this, we use the second loop invariant, which
states that all prime numbers less than m are present in the combination of the input set and the
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1 module PrimeNumberSieve
2

3 use import ref.Ref
4 use import set.Fsetint
5 use import set.FsetComprehension
6 use import number.Divisibility
7 use import number.Prime
8

9 function sieve (n: int) (s: set int): set int = filter (\x. not (divides n x)) s
10

11 let primes (m: int): set int
12 ensures { forall n: int. prime n /\ n < m <-> mem n result }
13 = let nums = ref (interval 2 m) in
14 let primes = ref empty in
15 while not (is_empty !nums) do
16 invariant { forall n k: int. mem n !nums /\ 2 <= k /\ divides k n -> mem k !nums }
17 invariant { forall n: int. prime n /\ n < m -> mem n (union !nums !primes) }
18 invariant { forall n: int. mem n !primes -> prime n /\ n < m }
19 invariant { forall n: int. mem n !nums -> 2 <= n < m }
20 variant { cardinal !nums }
21 let p = min_elt !nums in
22 assert { subset (add p (sieve p !nums)) !nums };
23 primes := add p !primes;
24 nums := sieve p !nums;
25 done;
26 !primes
27

28 end

Figure 2.3.: Prime number sieve in WhyML

set of discovered primes. Initially, this is clearly true (as the input set contains all numbers); at
termination (when the input set has become empty), it implies that we have discovered all the prime
numbers.
The third and fourth invariant will seem rather pedantic; these simply state that nothing else

is added to set of discovered primes, or the input set, during execution. Proving termination can
be done in various ways; for example by taking the cardinality of the input set as the variant. By
adding the assertion on line 22, it is possible to verify this variant automatically.
Loading this module into Why3, it can be verified in less than half a minute by both CVC3 and

CVC4, after applying the split_in_goal transformation.

2.3.2. Abstract reasoning in WhyML
Like the Why language, declarations in WhyML can be left abstract. By introducing functions using
the val keyword instead of let, the function body can be omitted, and any post-conditions of the
function is simply accepted without question. If abstract functions have side effects (i.e., they alter
mutable data), these must be explicitly stated, unlike ordinary functions, where Why3 is able to
deduce them from the function definition. As an example:

1 val post_increment (x: ref int): int
2 writes { x }
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3 ensures { result = old !x /\ !x = old !x+1 }

Without the writes annotation, calling this function would introduce an inconsistency by allowing
!x = !x+1 to become provable. In the above case, a function body satisfying the specification can
easily be provided, and so the above declaration should morally be avoided.

WhyML also allows individual expressions to be abstract, using the expression “any type”. An
optional post-condition can be provided to partially specify the result. For example, to model a dice
roll, we could use the non-determinism implied by the following abstract expression:

let dice = any int ensures { 1 <= result <= 6 } in (* .... *)

Instead of leaving out information, another method of achieving abstraction is that of hiding it.
As stated earlier, WhyML programs have — in principle — full access to declarations expressed at
the Why logical level. This may expose too much internal details of the logical model to the WhyML
execution environment. For instance, an array in WhyML is modelled internally as a record holding
a length field and a mutable map; but programs should treat it as a primitive type. WhyML allows
to hide such information by declaring model types:

1 type wrap ’a model Only ’a | Wrap (wrap ’a)

In this case, the identifiers Only and Wrap are contained within the namespace of the Why sub-
language, and no longer accessible from WhyML programs. The same holds for functions. To use
the shrinkwrap function as given on page 15 in WhyML programs, we have to explicitly create a
separate abstract WhyML-function, whose result is identical to that of the Why-function:

3 val shrinkwrap (obj: wrap ’a): boxed ’a
4 ensures { result = shrinkwrap obj }

WhyML also allows preventing certain parts of a program from interfering with the proof of other
parts, by wrapping it in an abstract-block:

1 let x = ref 0 in
2 abstract ensures { !x > old !x }
3 x := !x+1
4 end

Code that appears after the abstract block will only know that x has been incremented, but not
by how much. This can be helpful when developing proofs for larger WhyML programs, as altering
the body of an abstract block will preserve earlier proofs outside it. It can also help in reducing the
amount of redundant information presented to automated theorem provers, allowing them to work
more efficiently.

2.3.3. Using ghost code to aid verification
In certain cases, additional computation may be necessary only for properly specifying verification
conditions. For example, consider the following WhyML function for computing the inverse of b
modulo a:

1 let mult_inverse (a b: int)
2 requires { a > 1 /\ b > 0 /\ gcd a b = 1 }
3 ensures { mod (result * b) a = 1}
4 = let (a, b) = (ref a, ref b) in
5 let (t0,t1) = (ref 0, ref 1) in
6 let (s0,s1) = ghost (ref 1, ref 0) in
7 ’Begin:
8 while !b <> 1 do
9 invariant { !s0*(at !a ’Begin) + !t0*(at !b ’Begin) = !a > 0 }
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10 invariant { !s1*(at !a ’Begin) + !t1*(at !b ’Begin) = !b > 0 }
11 invariant { gcd !a !b = 1 }
12 variant { !b }
13 let q = div !a !b in
14 (t0,t1) := (!t1, !t0 - q * !t1);
15 (s0,s1) := (!s1, !s0 - q * !s1);
16 (a,b) := (!b, mod !a !b)
17 done;
18 !t1

In this case, the extended Euclidean algorithm is being followed, using the table-driven method [40].
It is clear that in this code, actually computing s0 and s1 serves no purpose and can be erased from
the function without altering its behaviour. However, actually doing this would hinder verification
by making it harder to state an easily verifiable loop invariant.

Why3 supports ghost code precisely for situations such as these [41]. Expressions and declarations
(including record fields and function parameters) can be marked as ghost, which then becomes part
of their type. Why3’s type system ensures non-interference: ghost code is not allowed to influence
non-ghost code, or have non-ghost side-effects. This also means that ghost code, unlike non-ghost
code, is required to be terminating.
The ‘ghostness’ of an expression propagates through all WhyML code that is exposed to it, making

it ghost as well, and subject to the same restrictions. For example, an ordinary function being passed
a ghost value as an argument is considered a ghost function for the duration of that call. The benefit
of ghost code is two-fold:

1. If using WhyML as an intermediate language, ghost code can be safely added anywhere to ease
verification, since Why3’s type system ensures it will have no effect on the non-ghost part of
the program.

2. If Why3 is being used to extract OCaml programs from WhyML code, ghost-code is erased
from the resulting program.

Note that, as mentioned in [41], it can be useful to think of ghostness as a property pertaining to
information flow. Information that is contained in ghost code is ‘classified’ — it is unable to find its
way or influence towards non-ghost or ‘unclassified’ code.

2.3.4. Writing proofs using let lemmas
Given a ghost function with precondition P and postcondition Q that returns nothing, it is clear
— due to the non-interference property — that it can be called explicitly at any point in a WhyML
program when P holds to obtain the knowledge that Q also holds. Logically, this is equivalent to
having the implication P → Q everywhere in a program.
To be able to use such an implication directly, and implicitly, WhyML supports the concept of

let lemma’s. When a WhyML procedure is declared as such, it is bound to the same restrictions as
other ghost procedures, but in addition the implication captured by its pre- and post-conditions is
added to the set of logical facts, which can then be used to prove other facts anywhere in a WhyML
module.
Another way of viewing this is that the function body of a let lemma serves as the proof for the

logical statement implied by its pre- and post-conditions — instead of using logic to verify properties
of WhyML programs, we can use WhyML programs to prove logical facts. While complicated proofs
can also be discharged using interactive theorem provers, proofs using let lemmas have the advantage
of being part of the Why3 environment, and having a more declarative feel to them, both of which
makes them easy to use.
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For example, suppose we want to use the fact that if two sorted sub-ranges of an array are a
permutation of each other, that they are in fact identical. As often with such ‘obvious’ truths, no
automatic prover seems able to prove it. However, the recursive let lemma:

1 let rec lemma sorted_permut_eq (a b: array int) (l u: int)
2 requires { permut a b l u /\ sorted_sub a l u /\ sorted_sub b l u }
3 ensures { array_eq_sub a b l u }
4 variant { u }
5 = assert { permut b a l u };
6 if l < u then begin
7 assert { a[u-1] = b[u-1] };
8 sorted_permut_eq a b l (u-1);
9 end

can be quickly proven by Alt-Ergo. As a corollary, it can now be quickly proven by CVC3, CVC4
and Z3 that:1

11 lemma sorted_permut_all:
12 forall a b: array int. permut_all a b /\ sorted a /\ sorted b -> array_eq a b

Since in this way, WhyML programs can be used to influence logical facts known at the level of
its Why sub-language, it also provides a means for WhyML programs to define functions in Why
in an indirect way — by defining a Why function as returning an arbitrary element of a set of
outcomes, and then proving that this set is not empty by writing a let lemma, thereby proving that
the function is well-defined.
For example, suppose we want to introduce a log function for integers. Directly writing this as a

Why function is impossible, as it would necessitate a recursive definition that Why3 cannot prove to
be terminating:

function log (base x:int): int
= if x < base then 0 else 1 + log base (div x base)

But we can define a predicate defining the relation between the input and result of the integer log
function:

1 predicate is_log_of (base x result: int)
2 = result >= 0 /\ power base result <= x < power base (result+1)

We can then use this as described to create a function:
4 function log (base x: int): int
5 = choose (comprehension (\e. is_log_of base x e))

But to be able to use this function meaningfully, we need to show that it is well-defined, i.e. that
there are circumstances in which the set used in its definition is not empty. We do this using a
constructive proof in WhyML. It is easy to define a suitable log function function imperatively:

7 let log (base x: int): int
8 requires { base > 1 /\ x > 0 }
9 ensures { is_log_of base x result }

10 = let (n, y) = (ref 0, ref 1) in
11 while !y <= x do
12 invariant { 0 <= !n /\ 0 < !y = power base !n <= x*base }
13 variant { x - !y }
14 n += 1; y *= base;
15 done;
16 (!n-1)

1Note that there is no extensionality principle for arrays — it cannot be deduced that a = b.
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So, given the stated preconditions, this function produces a witness for the fact that the set of
outcomes contains at least one element, which is precisely what we need. And although this is a
perfectly ordinary WhyML function, it can be used from within a let lemma to produce this witness
as well:

18 let lemma log_is_well_defined (base x: int)
19 requires { base > 1 /\ x > 0 }
20 ensures { is_log_of base x (log base x) }
21 = log base x; ()

Note again that the log identifier on line 21 calls the WhyML function, whereas the identifier on line
20 denotes the Why function.
Of course, we could also have defined the log function by stating the proposition proven by the

let lemma using an axiom; but the above approach has the advantage that it does not allow us to
introduce inconsistencies in the system.
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3. WhyML verification case studies
In this chapter, we will apply Why3 to three verification tasks. In the first task, we will verify
heapsort implemented in WhyML, and then show how Why3 can also be used to prove its complexity.
Secondly, we will use WhyML as a modelling language to finish the proof for the small assembly
program encountered in Section 1.5. Thirdly, we will examine how WhyML can be used to perform
reachability analysis, which we will need later for verifying liveness in Go programs. We set ourselves
the target of using only automated proofs to discharge the resulting proof obligations.

3.1. Verifying heapsort
Heapsort is a well-known comparison sorting algorithm with a worst-case (and average-case) com-
plexity of O(n logn) comparisons and swaps. Together with quicksort, it is widely used in practical
software, as it forms one part of the introsort algorithm [42] that is used in the GNU C++ standard
library.
Heapsort has been verified before in Why3 [43], but in a indirect manner — by first creating a

model for binary heaps in Why3 and then building a heapsort using that. This method also requires
manual proofs in the Coq assistant to prove certain lemmas.
We set ourselves a more direct target: verify the implementation of the heapsort algorithm as it

is commonly presented, by directly manipulating an array representing the heap.
To be a correct sorting algorithm, three conditions must be met by a procedure:

1. Elements in the final array appear in order.

2. The final array is a permutation of the array given as input.

3. The procedure must terminate.

All conditions are necessary; if we drop one, it is not hard to come up with an algorithm which
can be proven (in Why3) to satisfy the remaining two but might fail to sort the input. The last
requirement, it could be argued, is something of an artefact of Hoare logic: a postcondition only
specifies what happens if a procedure terminates, and so termination is needed to ensure they will
actually hold. On the other hand, since a sorting algorithm should terminate when it has achieved
its purpose, and every array can be sorted (given a suitable partial order), it also follows for that
reason that termination is required.
An abstract WhyML function for sorting an array of integers which satisfies these conditions can

be specified as follows:

val sort (a: array int): unit
writes { a }
ensures { forall n m: int. 0 <= n <= m < length a -> a[n] <= a[m] }
ensures { permut_all (old a) a }

Here, the array is passed by reference and modified in-place; the first post-condition states that the
resultant array is sorted. The second post-condition uses a predicate from the array.ArrayPermut
module to express that the output is a permutation of the input. Another, stronger predicate we
will use later on is permut_sub, which not only expresses that two arrays are permutations of each
other, but also that they are an exact match outside a given range.
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Heapsort operates on the principle of a binary heap, which is a fully balanced binary tree where
the value stored in every node is guaranteed to be not greater than the value stored in its parent
node — thus, the root of the heap contains its largest element. Since the heap is fully balanced, it
can be represented using a simple array, where the root of the heap is at index 0, and the children
of the node with index i are located at index 2i+ 1 and 2i+ 2. A careful implementation can use the
same array that is being sorted for (temporarily) storing the heap.
The heapsort implementation we will consider consists of three routines:

• A function make_heap which permutes the input array so that it initially satisfies the heap
property.

• The function sort, which extracts the top element from a heap, and places it at the end of the
array, thereby shrinking the heap. The previous element found at that location is re-inserted
into the heap.

• An auxiliary routine, push_down which moves an element downward in the heap to the correct
location.

This last function is the most complicated routine of the heapsort algorithm, and so we will consider
it first; it is listed in Figure 3.1. When calling this function, the input array should satisfy the heap
property for the range [pos, limit), except that the element at location pos may be in an incorrect
location, to be moved further down. When it terminates, it has re-established the heap property.
Three auxiliary definitions are used in its annotations:

function parent (pos: int): int = div (pos-1) 2

predicate heap (a: array int) (l u: int) =
forall i. l <= parent i /\ i < u -> a[i] <= a[parent i]

predicate broken_heap (a: array int) (l u: int) (h: int) =
(forall i. l <= parent i /\ i < u /\ parent i <> h -> a[i] <= a[parent i]) /\
(forall i. l <= parent h < h = parent i /\ i < u -> a[i] <= a[parent h])

The heap predicate expresses that the array a satisfies the heap property (as discussed informally
above) for indices in the range [l, u). The broken_heap predicate relaxes this somewhat, to allow the
heap to have a hole node at index h. This value of its contents should still not be greater than any
of its parents, but other than that it is not considered part of the heap. The other listed conditions
and loop invariants concern themselves with ensuring that all array indices remain within bounds,
and that the function only permutes its input, and should be obvious.
By successive calls to the push_down function, we can incrementally construct a heap out of any

array. The make_heap function listed in Figure 3.2 demonstrates this. In this case, the postconditions
and loop invariants are simply a succinct explanation of what the function is doing.
The sort function, finally, combines the two other functions — it calls make_heap to transform

the input into a heap, and at each step, after extracting an element from the heap, re-instates the
heap property by a call to push_down. Two first two loop invariants deserve special attention. The
first states that the the output array is slowly becoming sorted, and is necessary for achieving the
postcondition. The second captures the consequence of extracting the largest element of the heap at
each step — namely, that all elements remaining in the heap will be less than the elements already
extracted.
To verify this second loop invariant, we need the fact that, indeed, the top element of the heap is a

largest element of the heap. To prove this requires some extra manipulation in Why. First, we define
an inductive predicate which corresponds with the transitive closure of the parent-child relation in
the heap:
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1 inductive descendant int int =
2 | Refl: forall n: int. descendant n n
3 | Step: forall p q: int. p <= q /\ descendant p (parent q) -> descendant p q

This can be used to prove the following consequence of the heap property:

5 lemma descendant_order:
6 forall a: array int, limit p q: int.
7 0 <= p <= q < limit <= length a /\ heap a p limit /\ descendant p q -> a[p] >= a[q]

Which can be easily proven by automatic provers after applying the induction_pr transformation.
We also need that all indices are a descendant of the root index 0; which is, of course, a simple case
of applying the principle of strong induction:1

9 predicate descendant_of_0 (n: int) = descendant 0 n
10 clone int.Induction with predicate p = descendant_of_0, constant bound = zero

Both facts combined imply the desired property about heaps we need to help finish the proof of the
sort function:

12 lemma heap_top:
13 forall a: array int, limit m: int.
14 0 <= m < limit <= length a /\ heap a 0 limit -> a[0] >= a[m]

Trying to verify all three routines, we discover that the hardest remaining challenge for automated
provers turns out to be proving the permut_all and permut_sub loop invariants —- which may
seem rather odd, as a simple static analysis could already determine that we only ever modify the
array by swapping two elements. However, adding the following last lemma solves this problem:

lemma permut_sub_transitive:
forall a b c: array int, l u: int.
permut_sub a b l u -> permut_sub b c l u -> permut_sub a c l u

This completes the effort needed for verification — the resultant module can be completely verified
by automated provers (after suitably using the inline_goal and split_goal in some choke points),
using a combination of Alt-Ergo, CVC4 and Z3, in less than a minute of CPU time.
This case study also demonstrates another advantage of using Why3 for verification of software

— after finding a succinct set of annotations, the resultant program is not just verified, but also
self-documenting. In principle, anyone familiar with first-order logic and programming should be
able to understand (roughly) why a WhyML program is correct, even without running Why3.

3.1.1. Verifying the complexity of heapsort
In addition to verifying the functional correctness, we may also be interested in a non-functional
property of a program. In the case of heapsort, such a property is the claim that it sorts an array
using O(n logn) comparison.
To verify this with WhyML, we can introduce a ghost counter, and a function which acts like an

the identity function, but as a side effect updates the ghost counter:

1 val ghost count: ref int
2

3 let event (expr: ’a): ’a
4 ensures { !count = old !count+1 /\ result = expr }
5 = count += 1; expr

1Instead of cloning int.Induction, we could also have used a simple let lemma
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1 let push_down (a: array int) (pos: int) (limit: int)
2 requires { 0 <= pos < limit <= length a }
3 requires { broken_heap a pos limit pos }
4 ensures { heap a pos limit }
5 ensures { permut_sub (old a) a pos limit }
6 = ’Start:
7 let cur = ref pos in
8 while !cur*2+1 < limit do
9 invariant { pos <= !cur }

10 invariant { broken_heap a pos limit !cur }
11 invariant { permut_sub (at a ’Start) a pos limit }
12 variant { limit - !cur }
13 let child = ref (!cur*2+1) in
14 if !child+1 < limit && a[!child] < a[!child+1] then
15 child := !child+1;
16 if a[!cur] < a[!child] then begin
17 swap a !cur !child;
18 cur := !child;
19 end else
20 cur := limit;
21 done

Figure 3.1.: Heap insertion function

23 let make_heap (a: array int)
24 ensures { heap a 0 (length a) }
25 ensures { permut_all (old a) a }
26 = ’Start:
27 for i = div (length a) 2-1 downto 0 do
28 invariant { heap a (i+1) (length a) }
29 invariant { permut_all (at a ’Start) a }
30 push_down a i (length a);
31 done

Figure 3.2.: Heap initialization function

33 let sort (a: array int)
34 ensures { forall n m: int. 0 <= n <= m < length a -> a[n] <= a[m] }
35 ensures { permut_all (old a) a }
36 = ’Start:
37 make_heap a;
38 ’Loop:
39 for i = length a-1 downto 1 do
40 invariant { forall n m: int. i < n <= m < length a -> a[n] <= a[m] }
41 invariant { forall n m: int. 0 <= n <= i < m < length a -> a[n] <= a[m] }
42 invariant { heap a 0 (i+1) }
43 invariant { permut_all (at a ’Start) a }
44 swap a 0 i;
45 push_down a 0 i;
46 done

Figure 3.3.: The selection sort loop

33



To verify the complexity of heapsort then only requires wrapping the array element comparisons in
the function push_down (on lines 14 and 16) in a call to the event function, and adding appropriate
post-conditions and loop invariants to each function.
For instance, utilizing the log function as we have defined in section 2.3.4, we can add the following

loop invariant to the function push_down:

invariant { !count - at !count ’Start <= 2*log 2 (if !cur >= limit
then limit else !cur+1) }

which is sufficient to prove a new postcondition:

ensures { !count - old !count <= 2*log 2 limit }

By applying the same process to make_heap and sort, we can then obtain as final post-condition
for the function sort, proving its bound of O(n logn) comparisons:

ensures { let n = length a in !count - old !count <= 4*n*log 2 n }

Adding these extra invariants and post-conditions comes at a price, however. While the new post-
conditions and loop invariants dealing are discharged easily enough by automated theorem provers,
the extra informational ‘baggage’ means that several of the original verification conditions can no
longer be verified automatically (within a reasonable amount of time), even though we added nothing
to the non-ghost semantics of the program.
To re-establish full automatic verification the proof, we need to add several assertions to the code,

as well as allowing automated provers to run longer. Verifying the heapsort algorithm in this manner
requires just over three minutes of CPU time on our test machine. The resulting module is listed in
Appendix A.

3.2. Verifying simple assembly programs
In Section 1.5, we briefly mentioned Turing’s proof attempt for a function which computes n!, gave
a modern assembly language version in Figure 1.1, and stated several assertions that were claimed
to be sufficient to prove its correctness, but left the full proof as an exercise to the reader.
We will now show how we can complete the verification by translating the given x86-64 code into

WhyML. To do this, we need to create an ad-hoc model for the instructions used, and find some way
to model the unstructured control flow into WhyML. The approach that we take here consists of the
following parts:

• Partition the assembly code in basic blocks, each of which starts at a labelled instruction and
ends right before the next labelled instruction.

• Translating the instructions inside each basic block in a one-to-one correspondence into WhyML
statements.

• Wrap the translated blocks in a simple state machine that handles the transition from one
basic block to the next one.

Verification of assembly language using Why3 has been previously examined in more depth in [44], in
the context of MIX programs. There is a definite similarity here; the prime difference is that we use
WhyML primitives instead of a more explicit sequentialization process, and that we will also prove
termination of the program given.
We begin with building a crude, but sufficient model for the arithmetic operations used in the

code, which includes the carry and zero flags:

8 val cf: ref bool
9 val zf: ref bool
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10

11 val cmp (a b: int): unit
12 writes { cf, zf }
13 ensures { a = b <-> !zf }
14 ensures { a < b <-> !zf }
15

16 val add (a b: int): int
17 writes { cf, zf }
18 ensures { result = a+b }
19

20 val inc (a: int): int
21 writes { cf, zf }
22 ensures { result = a+1 }

Note that, like Turing, we ignore the representational issues of numbers on computers, i.e. possible
issues caused by two’s complement and wrap around.
Next, we define an algebraic data type corresponding with the labels present in assembly code (for

use in our state machine), and two exceptions which are used to model jmp and ret instructions.

24 type label = L0 | L1 | L2 | L3
25

26 exception Jump label
27 exception Return

The idea here is most instructions will be executed sequentially; a jump should interrupt this flow,
and exceptions are a natural means of expressing this in WhyML. After catching the Jump exception,
it is easy to transfer execution in the WhyML model to the corresponding basic block.
We can also reach a label by simply falling into it after executing the instruction preceding it; in

this case we need to transfer control (in our state machine) to the next basic block, and so we need
to explicitly specify the order of the program labels:

29 constant undefined: label
30

31 function next (l: label): label =
32 match l with L0 -> L1 | L1 -> L2 | L2 -> L3 | L3 -> undefined end

And now all that is left is translating the assembly code of Section 1.5 and the associated assertions
into WhyML. For notational convenience, the CPU registers are modelled as an array of size 16. Since
we will be using the Return exception to signify the conclusion of the program, we specify the result
in the form of an exceptional post-condition.

34 let x86fac (n: int) (r: array int)
35 requires { length r = 16 }
36 requires { r[10] = n >= 0 }
37 raises { Return -> r[11] = fact n }
38 = let ip = ref L0 in
39 loop
40 invariant { n = r[10] }
41 invariant { !ip=L1 -> 1 <= r[9] /\ r[11]=fact r[9] /\ (r[9] > n -> r[9]=1) }
42 invariant { !ip=L2 -> 1 <= r[8] <= r[9] < n /\ r[12]=fact r[9] /\ r[11]=r[8]*fact r[9] }
43 invariant { !ip=L3 -> r[11]=fact n }
44 try
45 match !ip with
46 | L0 -> r[9] <- 1;
47 r[11] <- 1;
48 | L1 -> r[12] <- r[11];
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49 cmp r[9] r[10];
50 if not !cf then raise (Jump L3);
51 r[8] <- 1;
52 | L2 -> r[11] <- add r[11] r[12];
53 r[8] <- inc r[8];
54 cmp r[8] r[9];
55 if !cf || !zf then raise (Jump L2);
56 r[9] <- inc r[9];
57 raise (Jump L1);
58 | L3 -> raise Return
59 end;
60 ip := next !ip
61 with
62 Jump pos -> ip := pos
63 end
64 end

This code has been written to closely resemble the assembly version given in Figure 1.1: every
instruction maps to precisely one WhyML statement. The invariants are the same as the assertions
given in Section 1.5.
Starting a Why3 proof session with the above definitions, we find that the verification condition

for x86fac can be verified by Alt-Ergo in a couple of seconds, without any proof transformations.

3.2.1. Proving termination
So far, we have ignored termination of this program. But, as Turing also pointed out:

Finally the checker has to verify that the process comes to an end. Here again he should
be assisted by the programmer giving a further definite assertion to be verified. This may
take the form of a quantity which is asserted to decrease continually and vanish when the
machine stops.

He then proposes the quantity (r10−r9)ω2+(r9−r8)ω+k, where k is a quantity which is decreasing
for successive labels [1]. This is equivalent to using a lexicographic ordering on these three separate
expression, which is supported by Why3.
Sadly, plugging this expression into the above model, we will discover that it is incorrect: if we

execute the basic block corresponding with the label L1, the register r8 gets set to 1. In many cases
this will cause the quantity r9 − r8 to increase. This seems to be an error on Turing’s part, as the
same problem occurs in his original diagram if we move from state C to state E (see Figure 1.2 on
page 11). A smaller, more pedantic problem is the initialization that occurs at the beginning of the
program: we are not told the initial value of r9, and so r10 − r9 cannot be proven to decrease when
executing the basic block corresponding to label L0.
Luckily, it is possible to identify a different quantity: the algorithm increments r11 until it reaches

n!, and so we can use this as the basis for proving termination. To be precise, we can add the
following variant to the loop above:

variant { fact n - if !ip=L0 then 0 else r[11], 3 - (to_int !ip) }

Which defines a lexicographic ordering on the pair n! − r11 (avoiding the unspecified value of r11 at
the start of the program), and a value which decreases with successive labels. In this definition we
use the following trivial translation from program labels to integers:

function to_int (l: label): int =
match l with L0 -> 0 | L1 -> 1 | L2 -> 2 | L3 -> 3 end

Proving that this variant is strictly decreasing in the above code is relatively easy even by hand.
However, automated theorem provers find it difficult to show that the quantity n! − r11 remains
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non-negative, and so we need to add the following lemmas stating trivial facts about the factorial
function:

let rec lemma fact_monotone (n m: int)
requires { n >= m >= 0 }
ensures { fact n >= fact m >= 0 }
variant { n }

= if n > m then fact_monotone (n-1) m else
if n > 0 then fact_monotone (n-1) (n-1)

lemma fact_order:
forall n: int. 0 <= n -> n*fact n < fact (n+1)

lemma fact_order_corollary:
forall n m k: int. 0 <= k <= m < n -> k*fact m < fact n

Alt-Ergo can verify most of these; E is needed to prove the post-condition of the let lemma.
Using these lemmas, Alt-Ergo is able to prove correctness and termination of the factorial function

written in assembly. The total CPU time needed for verification does not exceed one minute.

3.3. Reachability analysis using WhyML
WhyML provides the absurd keyword to allow us to prove that code may be unreachable; it is
equivalent to an assert { false } statement. For example, in the following loop, it is clear that x
cannot ever be higher than 1000:

1 for x = 0 to 1000 do
2 if x > 1000 then absurd;
3 done

However, we would like to also reason about the reachability of code. In simple cases we can
solve this problem by introducing a ghost bool variable, which is set to true at the location whose
reachability we want to prove, and subsequently check at the end of the function whether the ghost
bool variable has become true. However, this technique will not work if a program may contain
non-terminating code:

1 let reached = ref false in
2 let x = ref 0 in
3 while true do
4 if prime !x then begin
5 (* this code is reachable *)
6 reached := true
7 end;
8 x := !x+1;
9 done;

10 check { !reached }

Here, the final check is useless, since the post-condition of the while loop will allow us to prove
anything. This indicates the need to perform the check at an earlier point. This involves a kind a
‘backward’ reasoning that is not natively supported by WhyML. In this section we propose a logical
hack which does allow us to do this.
The general idea is that we add a hidden state variable, called obligation, which keeps track of

logical facts that must provably hold at the end of a function:
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1 type obligation model { ghost mutable value: bool }
2

3 val ghost obligation: obligation
4

5 function (?) (x: obligation): bool
6 = x.value
7

8 val ghost init (): unit
9 writes { obligation }

10 ensures { ?obligation }
11

12 val ghost oblige (x: bool): unit
13 writes { obligation }
14 reads { obligation }
15 ensures { ?obligation <-> x /\ old ?obligation }

We declared this variable as ghost to prevent it from having an effect on ordinary WhyML code.
The above code is not special at all: an obligation is essentially a ref bool with a restricted set
of operations. The trick lies in applying it to propositions that are undecidable at the point of call
to oblige, but which become provable at the locations we are interested in. By recording these
propositions in the global variable obligation, they are tracked throughout the program until we
eventually reach those points.
For example, we can define an abstract type and predicate to reason about locations and whether

they have been reached, and a WhyML abstract function allowing the use of this predicate at the
WhyML level as a ghost value:

1 type location
2 predicate reached location
3

4 val ghost reached (id: location): bool
5 ensures { result = reached id }

We can then use this to show that the following for loop will eventually hit a prime number:

7 init();
8 let x_prime = any location in
9 oblige (reached x_prime);

10 for x = 0 to 1000 do
11 invariant { x > 37 -> ?obligation }
12 if prime x then begin
13 assume { reached x_prime } (* reachable code *)
14 end
15 done;

The loop invariant ensures that, after we have hit the number 37, all obligations have been fulfilled.
However, the same technique can now also be applied to non-terminating code: replacing the for
loop with a while will not alter the validity of the loop invariant.
We can also reason about a statement being reached multiple times, instead of just once. In this

case, we need to alter the location type to make it mutable:

1 type dummy
2 type location = { ghost mutable dummy: dummy }

and introduce an abstract function to replace the assume statement in the previous example, which
also produces a fresh proposition whose truth value is again undecidable:
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4 val ghost satisfy (id: location): unit
5 writes { id }
6 ensures { old (reached id) }

This can then be used to show that, in the previous for loop, whenever we find a prime number
less than 37, we will find another prime:

1 let x_prime = any location in
2 oblige (reached x_prime);
3 for x = 0 to 1000 do
4 invariant { ?obligation <-> (x > 37 \/ reached x_prime) }
5 if prime x then begin
6 satisfy x_prime;
7 if x < 37 then
8 oblige (reached x_prime);
9 end

10 done;
11 check { ?obligation }

In this case, the check at the end of the for loop will succeed, ensuring that all obligations that
were entered into during execution are fulfilled.
It can also be useful to show that in non-terminating programs, certain statements can be reached

infinitely many times. In the case of the prime number loop we have been using, this obviously
requires a Why3 proof that there are an infinite number of primes, which can be done in a remarkably
declarative fashion, as shown in Figure 3.4. This module can be proven automatically using a
combination of Alt-Ergo, CVC3 and E.
In a non-terminating program, the final check can obviously not be relied upon. In order to show

that obligations will be fulfilled, we instead introduce the notion of a conditional variant. This is
a quantity which must be shown to decrease during each iteration, unless some initial condition
became provable. We would like to denote this in WhyML using the syntax:

variant { not condition -> quantity }

But since this is not available, we can emulate its behaviour by inserting a check at the end of
the while loop which generates exactly the same verification condition as WhyML’s variant, but
with the implication added. When a while loop has a conditional variant, we know that one of two
things must be the case: either the condition specified in the variant must eventually become true
in a finite number of iterations, or the loop will terminate before it reaches that point.
In the case of the prime number loop we have been demonstrating, a suitable conditional variant

is the distance between x and some arbitrary prime number greater than x, which we can maintain
as a ghost variable, to conceptually use the conditional variant:

variant { not ?obligation -> !next_prime - !x }

In actual WhyML, this approach results in the following program:

1 init();
2 let x_prime = any location in
3 let ghost next_prime = ref 2 in
4 let x = ref 0 in
5 oblige (reached x_prime);
6 while true do
7 invariant { ?obligation <-> reached x_prime }
8 invariant { prime !next_prime /\ (!x < !next_prime \/ prime !x) }
9 ’Begin:

10 if prime !x then begin
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11 next_prime := some_larger_prime !x;
12 satisfy x_prime;
13 oblige (reached x_prime);
14 end;
15 x := !x+1;
16 check { "expl:conditional variant decrease"
17 not (at ?obligation) ’Begin ->
18 0 <= at (!next_prime - !x) ’Begin /\
19 (!next_prime - !x) < at (!next_prime - !x) ’Begin
20 };
21 done;

In general, the notion of a conditional variant is applicable to more than the examples we have
given. For example, in a lot of software, simple termination is not an interesting property, or even
an undesirable one — it is much more important that a program does not hang, i.e. enter a state
from which point on it will never be able to produce any side-effects. By specifying a conditional
variant, such properties can be proven.

1 module InfinitePrimes
2

3 use import int.Int
4 use import number.Prime
5 use import number.Divisibility
6 use import ref.Ref
7

8 let rec fac (n: int): int
9 ensures { 0 < result /\ forall p. 1 <= p <= n -> divides p result }

10 variant { n }
11 = if n > 1 then n*fac(n-1) else 1
12

13 let lemma finite_prime_contradiction (n: int)
14 requires { forall p: int. prime p -> p <= n }
15 ensures { false }
16 = let prod = fac n in
17 assert { exists p: int. prime p /\ divides p prod /\ divides p (prod+1) }
18

19 goal Euclid:
20 forall n: int. exists p: int. p > n /\ prime p
21

22 use import set.SetComprehension
23

24 function some_larger_prime (n: int): int
25 = choose (comprehension (\p: int. p > n /\ prime p))
26

27 lemma some_larger_prime_def:
28 forall n: int. some_larger_prime n > n /\ prime (some_larger_prime n)
29

30 end

Figure 3.4.: WhyML code to prove the existence of an infinite number of primes

40



4. The Go programming language
The Go programming language [26] was developed at Google by Rob Pike, Ken Thompson and Robert
Griesemer, and had its first major release in 2012. It is firmly the Algol tradition of languages, with a
static type system and imperative constructs. Its syntax owes much to C, and is in some respects even
more spartan in nature by leaving out most symbols not necessary for disambiguating a program; it
can be viewed as a modern re-imagining of a higher-level version of C.
The most interesting aspect of Go is perhaps that, unlike most programming languages which

add features, Go’s actually removes features deemed to be unnecessary and tries to be simpler. Its
designers stress that it is not an experimental language, and that Go in fact does not contain any
fundamentally new ideas about programming; its language definition has, as a result, changed very
little after its initial release.
The rationale given for the development of Go is that the complexity of modern programming lan-

guages hinders productivity. For example, complex type hierarchies in object-oriented programming
languages must usually be thought out before all information that should influence their design
is known; and changing such a design later is costly. The complexity of programming languages
also influences the toolchain which must be used to implement them, which as a result becomes
less efficient. For example, in C++, compilation may actually involve running meta-programs at
compile-time.
In this chapter, we will briefly demonstrate Go syntax, and list some of its interesting features,

before taking a more in-depth view into its concurrency model. It is assumed the reader is familiar
with common higher level programming languages.

4.1. A Go primer
The syntax of Go is essentially a simplified and reduced version of that of C. For example, in an
if or for statement, the parentheses around the condition are no longer necessary. Also, while the
grammar formally requires a semicolon, in many cases the lexer automatically inserts these while
processing a source file; allowing us to write:

1 package main
2

3 import "fmt"
4 import "os"
5

6 func main() {
7 if len(os.Args) <= 1 {
8 fmt.Println("Hello world!")
9 } else {

10 for i := 1; i < len(os.Args); i++ {
11 var str string = os.Args[0]
12 fmt.Println("Hello", str)
13 }
14 }
15 }
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Since the lexer for Go inserts semicolons at the end of lines, a K&R coding style — with the opening
brace at the end of the line the starts a block — is enforced in Go. Also, the braces in the if
statement are not optional, unlike in C.
Another interesting difference between Go and C is its style of declarations. On line 11, the

keyword var introduces the variable str of type string, and initializes it. Go can deduce the type
of the variable from its initializing expression, and so we might as well have written:

11 var str = os.Args[i]

In fact, Go offers an even more terse syntax, called the shorthand declaration, achieving the same:

11 str := os.Args[i]

Go’s type system supports many of the same types that C does. One difference is that, unlike C,
but much like Pascal, arrays are a primitive type, and their (fixed) size is part of their static type;
e.g. an array of four integers ([4]int) is a different type than [5]int. Since this would make arrays
almost unusable [45], Go adds a second array-like type in the form of a slice, which present a view
on some underlying array. A slice type is declared by simply leaving out the length from an array
declaration. Slices can be used to more safely handle many situations which would require pointer
arithmetic in C:

1 package main
2

3 import "fmt"
4 import "errors"
5

6 func binsearch(s string, a []string) (string, error) {
7 for len(a) > 0 {
8 mid := len(a) / 2
9 switch {

10 default:
11 return a[mid], nil
12 case s > a[mid]:
13 a = a[mid+1:]
14 case s <= a[mid]:
15 a = a[:mid]
16 }
17 }
18 return "", errors.New(s + " not found!")
19 }
20

21 var names = []string{"Arthur", "Ford", "Trillian", "Zaphod"}
22

23 func main() {
24 s, err := binsearch("Marvin", names)
25 if err != nil {
26 fmt.Println(err)
27 }
28 fmt.Println(s)
29 }

Other things to note in this example:

• Go does not have a distinct while loop; a for loop is used instead in which the first and third
expressions are eliminated.
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• The switch statement is generalized, and does not have the automatic fall-through behaviour
as in C.

• Functions can return multiple values; the illustration of using an error value to indicate
whether an item has been found is in fact idiomatic in Go, since the language does not support
exceptions.

Go’s syntax for types is entirely different from C, and perhaps closest in notation to Algol68 [46];
they can be read simply from left to right. To take an extreme example:

type continuation func ([]*int) (*[64]func(int), continuation)

This declares continuation to be the type of a function which takes a slice of pointers to int
as an argument and returns a pointer to an array of 64 functions (which take an int and return
nothing), and another object of the type continuation.

4.1.1. Memory allocation
Go is a garbage collected language, and there is no need to explicitly mention how objects get
allocated — static analysis is used instead to determine which objects may leak out of a function.
Those that do not leak are simply allocated on the stack. For instance, to create a simple linked
list, it suffices to use:

1 type list struct {
2 name string
3 next *list
4 }
5

6 func mklist(args ...string) (result *list) {
7 tail := &result
8 for _, s := range args {
9 obj := list{s, nil}

10 *tail, tail = &obj, &obj.next
11 }
12 return
13 }

Note that in this case, we have also used Go’s named result feature, as well as a range-based for loop
to iterate over the variable number of arguments given. The compiler will find out that obj must
be allocated dynamically, and will do so.

Go’s memory management also allows function objects to do more than is possible using function
pointers in C. For example, the following function constructs a function which could be used for
appending elements to a list efficiently:

14 func builder(tail **list) func(string) {
15 return func(s string) {
16 obj := list{s, nil}
17 *tail, tail = &obj, &obj.next
18 }
19 }

So, after calling:
var phil *list = nil
f := builder(&phil)
f("Hobbes")
f("d’Holbach")
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The effect would be the same as if we had simply called
phil := mklist("Hobbes", "d’Holbach")

4.1.2. Interfaces
Go does not support object orientation in the usual sense of the word; there are no class hierarchies.
However, it is possible to create methods for structures:

20 func (data *list) greet(prefix string) {
21 for ; data != nil; data = data.next {
22 fmt.Println(prefix, data.name)
23 }
24 }

Which allows us to call mklist("Freek","Freek").greet("Hello"). In case we implement similar
methods for different object types, an interface can be created to get a form of dynamic dispatch:

25 type Greetable interface {
26 greet(string)
27 }

Now, automatically, any type which has methods conforming to this interface can be used as an
instance of it. So, if we add the following type:

28 type empty struct {}
29

30 func (e empty) greet(prefix string) {
31 fmt.Println(prefix,"world")
32 }

We can write code such as:
1 func main() {
2 var x Greetable
3 x = empty{}
4 x.greet("Hello")
5 x = mklist("Freek", "Freek")
6 x.greet("Hello")
7 }

Which will output:

Hello world
Hello Freek
Hello Freek

This is similar to the use of virtual methods in object-oriented languages; except that no complicated
type hierarchy needs to be created.

4.2. Concurrency in Go
The designers cite Hoare’s idea of Communicating Sequential Processes (CSP) [28] as their primary
influence for the model of concurrency implemented in Go. Instead of using threads and locks, Go’s
concurrency model is built around the idea of goroutines and channels.
A goroutine is essentially a coroutine, except that like a thread, it is also allowed to run simultane-

ously with other goroutines. Two goroutines can communicate by sending a message over a channel.
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1 package main
2

3 import "fmt"
4

5 func sieve(in chan int, out chan int) {
6 myPrime := <-in
7 out <- myPrime
8 filt := make(chan int)
9 go sieve(filt, out)

10 for n := range in {
11 if n%myPrime != 0 {
12 filt <- n
13 }
14 }
15 }
16

17 func main() {
18 outp := make(chan int)
19 inp := make(chan int)
20 go sieve(inp, outp)
21 go func() {
22 for x := 2; ; x++ {
23 inp <- x
24 }
25 }()
26 for n := range outp {
27 fmt.Println(n)
28 }
29 }

Figure 4.1.: Concurrent prime number sieve in Go

This communication happens synchronously; i.e., whenever a goroutine A want to send a message
to B, it must wait until B has read this message before the execution of A can proceed. Channels
in Go are statically typed, but may otherwise communicate any allowed data type — which includes
other channels.
A key idea in Go is that concurrency is not just an means of making software run faster, but

can also function as an organizing model for software. The idea being that large software can be
understood as being composed of various independent processes which communicate with each other.
Therefore, Go allows and encourages a programmer to create as many separate goroutines as needed.
Whether these processes are in fact run simultaneously is an implementation detail — the Go

runtime may in fact run these processes by using simple cooperative multitasking, or use as many
threads as there are goroutines, or (most commonly) a combination of both. The user has some
control over the amount of threads used by setting an environment variable (GOMAXPROCS).
As an example of goroutines, consider the program in Figure 4.1. This program implement the

Sieve of Eratosthenes (encountered in Section 2.3.1) as a concurrent program, by starting (recur-
sively) a new goroutine for every prime number encountered; and so we will quickly be in a situation
where thousands of goroutines are operating concurrently.
This is far from efficient, since the overhead involved in sending messages between so many in-

stances of sieve is larger compared to the actual work performed by each goroutine. However, it
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does illustrates the flexibility of Go’s concurrency model. A similar program in C using threads
is much harder to write correctly, and starting thousands of threads will quickly overpower the
operating system.
If a channel is only used by a function as an input- or output-only channel (such as in the prime

number sieve), this can be indicated in its type; for example, in the prime number sieve, we would
have replaced the signature of the function sieve with:

5 func sieve(in <-chan int, out chan<- int) {

To indicate that in is used for input and out for output.1
Channels may be shared between any number of goroutines; if multiple goroutines are trying to

send or receive on a channel, two will non-deterministically be selected for synchronization. It is also
possible to wait for communication on more than one channel by using the select statement. For
example:

1 select {
2 case x := <-a:
3 fmt.Println("received", x, "from a")
4 case x := <-b:
5 fmt.Println("received", x, "from b")
6 }

This will wait for reception of a message on either channel a or channel b.

4.3. Dining Philosophers
As an illustration of Go’s concurrency features, we will revisit the Dining Philosopher problem
from Section 2.2.4, and show how it can be reproduced in Go. Note that in this problem, the
difficulty is the presence of mutual exclusion: The forks represent a shared resource which can only
be owned by (at most) a single process at a time. This notion is best captured by the use of mutexes.
Implementing it using channels may therefore seem somewhat odd, but it also illustrates the concept
of synchronization between goroutines nicely.
Using a chan int to communicate the availability of each fork, we can capture the behaviour of a

philosopher by a goroutine that, after waiting for the reception of a message indicating the availability
of the right and left fork, then sends a message to indicate that it is eating. Subsequently, to signal
the return of both forks to table, a message is sent to the corresponding channels.

1 func Philosopher(id int, eating chan int, left chan int, right chan int) {
2 for {
3 x := <-right
4 y := <-left
5 eating <- id
6 right <- x
7 left <- y
8 }
9 }

The actual values of x and y don’t matter, as we will show in a moment. Also note that the order
in which the forks are put down is fixed.
The above routine seems superficially similar to a solution based on mutexes, but is different in

the sense that we also require a process communicating at the other end of the provided communi-
cation channels. In the case of the eating channel, this can simply be a process reporting that the
philosopher is eating. For the forks, it is tempting to let each Philosopher processes communicate

1Note the direction of the <- as either pointing to or away from the keyword chan
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directly with its neighbours — but this would imply that philosophers don’t actually put down the
forks on the table, but hand each other the fork directly, because two processes must synchronize
when communication over an unbuffered channel takes place. To get an appropriate model, we need
an extra process type which represents the location on the table for each fork:

11 func Table(id int, fork chan int) {
12 for {
13 fork <- id
14 <-fork
15 }
16 }

When started as a goroutine, this routine is ready to hand one fork out to the first process that
wants it; and after that, is ready to receive it back again. Again, the actual value that is sent over
the channel is not important. Using these two building blocks, all that is left is to initialize the
communication channels and processes:

18 func main() {
19 var forks [5]chan int
20 for i := range forks {
21 forks[i] = make(chan int)
22 go Table(i, forks[i])
23 }
24

25 var eating = make(chan int)
26 for i := range forks {
27 go Philosopher(i, eating, forks[i], forks[(i+1)%5])
28 }
29

30 for {
31 fmt.Printf("philosopher %d eating\n", <-eating)
32 }
33 }

The function main, which defines the start of the Go program, consists of three parts. In the first
part, the variable forks is declared as an array of 5 channels used for sending/receiving integers.
Each element of this array still needs to be initialized, which is handled in the subsequent for-loop.
Also, for each fork, the function Table is started as a goroutine. The second part similarly creates
the eating channel, and starts the philosophers. Note that in line 25, the type of the variable
declaration is missing — it can be deduced from the initializing expression make(chan int). We
could also have used the shorthand declaration eating := make(chan int) at this point. The final
for-loop should be self-explanatory.

Analysis
To see why the previous section models the Dining Philosopher problem, we can provide an informal
argument consisting of three relevant observations about the given code fragments:

1. We assign a notion of ownership to each fork. Initially each fork is owned by a Table goroutine.

2. Ownership is transferred by sending a message on the channel corresponding to the fork. By
inspecting the code we may convince ourselves that only a single process can be the owner of
a fork at any given time.

3. Lastly, obviously a Philosopher can only eat when it is in possession of both forks, and it
relinquishes ownership of both after having eaten.
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This doesn’t mean that every fork is always transferred to its Table process when a Philosopher
puts it down: if multiple goroutines are trying to receive (or send) a message, the scheduler will
arbitrarily select one which succeeds, making the other goroutines wait. Since both a Table and
Philosopher process may be listening on a channel corresponding to a fork, it may happen that
a fork is transferred directly between philosophers, as described earlier. In this sense, the Table
processes are just there to allow a philosopher to put down a fork regardless of the appetite of its
neighbour.
When this program is actually executed on a system with only a single thread (i.e., GOMAXPROCS =

1), the output of the program will show that each philosopher gets to eat in turn, with the de-
terministic behaviour of the scheduler unintentionally avoiding the deadlock scenario. However, if
we increase the number of threads available (GOMAXPROCS ≥ 2), it will eventually happen that the
main function is waiting for a philosopher to start eating, whilst all philosophers are waiting for
the availability of a fork. When this happens, the program will exit with a fatal error, complaining
about a deadlock.
The observant reader may wonder why we have not used a fmt.Printf call in the body of a

Philosopher directly, instead of sending a message to the eating channel, only for it to get translated
into a print statement body of main anyway. The answer has to do with the execution model of Go:

1. By making func main wait on a channel serviced by the Philosophers, we get a runtime error
when no goroutine can proceed.

2. If we replace the final loop in main with an empty loop (“for {}”), the Philosopher goroutines
are not guaranteed to get CPU time, unless we yield it explicitly by using the runtime function
runtime.Gosched.

This is the result of a goroutine being a hybrid between a coroutine than a thread: Go will only
execute them if there is a thread available, and one sure way to make one available is by making the
current process dependent on its execution. This feature of goroutines is important to keep in mind,
as it implies that not all goroutines are created equally: the main function comprises the only thread
whose progress of execution we are to actually care about. Whenever it communicates via a channel,
this responsibility for progress is passed on to the goroutine(s) connected to that channel, which
may in turn pass it on to other goroutines, and so on. This aspect of communication being directly
linked to the notion of progress heavily informs the way we model this aspect of Go programs in
Why3 in chapter 5.
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5. Modelling Go with WhyML
In this chapter, we will first restrict the range of allowed Go programs to a small subset; we will then
show how we can verify weak correctness — that is, correctness under the assumption that liveness
is assured — for programs written in this subset. After that we will extend this primitive model to
allow us to prove the strong correctness of a concurrent program.
The fragment of the Go language that we will consider is illustrated by Figure 5.1. This fragment,

which we will refer to as Go−, is similar to a simple while-type language extended with channels.
In particular, the only data types we admit are int, bool and chan int; furthermore, the only
permissible actions on a chan int are sending/receiving data, and passing it to goroutines. All
non-local control flow (such as break and return) are eliminated. These are not hard to implement
in Why3 using exceptions, but we have not found them necessary in what follows. To keep our
verification examples simple, we will pretend that the data type int can hold unbounded integers;
modelling int as an integer which is at least 32 bits in size is not hard in WhyML, but would
complicate proofs, and for our present discussion would be an unnecessary distraction.

stmt ::= var-decl | chan-decl
| ident = expr ;
| expr
| for expr block
| if expr block else block
| go expr ;
| send-or-recv ;

block ::= { stmt* }

var-decl ::= ident := expr ;

chan-decl ::= ident := make(chan int) ;

send-or-recv ::= ident <- expr | ident := <- expr

fun-decl ::= func ident ( [ param-list ] ) [type] { stmt* return [expr ]}

param-list ::= ident type [, param-list]

type ::= int | bool | <-chan int | chan<- int

expr ::= ( expr ) | unary-op expr | expr bin-op expr | fun-call
| ident | number | true | false

unary-op ::= - | !

binary-op ::= + | - | / | * | % | < | <= | > | >= | == | != | && | ||

fun-call ::= ident ( [ arg-list ] )

arg-list ::= expr [, arg-list]

program ::= package main ; fun-decl*

Figure 5.1.: Grammar of the Go− language used for verification
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5.1. Static analysis of Go− programs
We place restrictions on the types of concurrency allowed in Go−. These should be verified using
a static analysis before verification using Why3 can commence, and are intended to bring Go more
closer to a form where it is amenable to proof techniques developed for CSP:

Unidirectionality A goroutine must use each channel it is given (or that it creates) solely as an input
or an output channel; so, for example, we disallow the following construction:

1 func bounce_1(c chan int) {
2 x := <-c
3 c <- x
4 }

No sharing of channels At any point in a program, every channel has (at most) one process respon-
sible for reading from it, and (at most) one process responsible for writing to it, prohibiting
code such as:

1 func sink(in <-chan int} { <-in }
2

3 func main() {
4 c := make(chan int)
5 go sink(c)
6 go sink(c) // c may not be read by two processes
7 c <- 5
8 }

As well as:

1 func main() {
2 c := make(chan int)
3 go sink(c)
4 <-c // c may not be read by both main and sink

Static knowledge of data flow It must be possible to statically determine which processes are re-
sponsible for channels which are created inside a function. As a consequence, goroutines may
only be started at the outermost lexical level; i.e. not inside an if or for statement. For
the same reason, channels may not be copied, or passed around to or returned from ordinary
functions, prohibiting constructions such as:

1 func foo(par bool) <-chan int {
2 c := make(chan int)
3 if par {
4 go sink(c) // may not start a goroutine here
5 } else {
6 sink(c) // cannot pass c to ordinary function
7 }
8 }

These restrictions are designed to ensure that at every point during execution, we can meaningfully
talk about two processes being connected via a channel, where one acts as a receiver and the other
as a sender. In other words, at every send or receive statement we can visualize the data flow of a
program as a directed graph where every channel corresponds to exactly one edge in the graph.
For example, consider the following Go code:
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1 func echo(in <-chan int, out chan<- int) {
2 for {
3 x := <-in
4 out <- x
5 }
6 }
7

8 func summer(x <-chan int, y <-chan int, result chan<- int) {
9 u,v,w := make(chan int), make(chan int), make(chan int)

10 go echo(u, v)
11 go echo(v, w)
12 for {
13 tmp := <-x
14 u <- tmp
15 a := <-w
16 b := <-y
17 result <- a + b
18 }
19 }
20

21 func main {
22 x, y, result := make(chan int), make(chan int), make(chan int)
23 go summer(x, y, result)
24 x <- 37
25 y <- 5
26 n := <-result
27 }

The function main launches summer as a goroutine; As soon as its execution reaches the point at
line 14, we can statically deduce the following data flow graph:

main()

summer(x,y,result)

echo(v,w)echo(u,v)

x y result

u

v

w

Since summer is the current process, i.e. whose execution we are considering, we have drawn it
using double lines. The edge corresponding to the channel u has been coloured blue to indicate that
it is about to be activated. After executing the send statement, the summer function will then wait
for reception of a message on the channel w. This will only be able to proceed if, in between, the
two instances of the echo function have communicated with each other over the channel v. We will
call a channel such as v that is not directly connected to a process, but that is part of the data flow
graph a forwarding channel, as its function is to forward the communication initiated by the current
process to other processes.
The channels that were passed as arguments — x, y and z — were drawn using dashed lines to

indicate that, from the point of view of the summer function, they connect to an unknown process,
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which we indicate by drawing the node for main using dots. Since communication over these channels
are what drives the execution of a goroutine, we will we will call the processes that are assumed to
be connected at the other end of these channels a requesting process. Processes that were spawned
by summer we will denote as child processes, which in this case are the two instances of echo.
A forwarding channel can be connected directly to a requesting process. Also, a requesting process

does not necessarily have to be equal to a parent process. For instance:

1 func adder(x <-chan int, y <-chan int, result chan<- int) {
2 u, v := make(chan int), make(chan int)
3 go echo(x, u)
4 go echo(v, result)
5 for {
6 b := <-y
7 a := <-u
8 v <- a + b
9 }

10 }
11

12 func main() {
13 x, y := make(chan int), make(chan int)
14 z, result := make(chan int), make(chan int)
15 go adder(x, y, result)
16 go echo(result, z)
17 x <- 37
18 y <- 5
19 n := <-z
20 }

In this case, the data flow graph of the situation at line 7 has become more complicated: A

main() echo(result,z)

adder(x,y,result)

echo(v,result)echo(x,u)

x
y

result

u v

The function adder now has two requesting processes: main, and an instance of echo. The channels
x and result are now forwarding channels, as they do not connect to adder. At the chosen line,
adder is trying to receive a message over the channel x, which will require the echo(x,u) process to
in turn receive one from main. Note that the existence of the channel z is not known to the function
adder as it can only be reached by going through a node for a requesting process, about which adder
has no knowledge, and so we have left it out of the graph.
Before a channel is connected to a process, we call the channel inoperative; we will disallow any

send or receive operation on such a channel, and so do not need to consider this case further.
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5.2. Translating non-concurrent Go to WhyML
The non-concurrent parts of Go− map onto WhyML in a straightforward fashion. Let J−K denote a
translation on the abstract syntax tree of a Go− program. We define this translation using Table 5.1.
We use the ellipsis notation (ai . . .) to denote repetition of a syntax element; its exact meaning on
the left-hand side should be clear from the context and the grammar listed in Figure 5.1. On the
right-hand side, if zero syntax elements have matched the ellipsis, its translation should result in an
empty expression. Some name mangling will be needed to prevent Go identifiers from clashing with
names in the WhyML environment; we indicate this by using the notation ℵn for the mangled version
of the identifier n. Note that in the translation of a function declaration, we need to explicitly copy
the function arguments, since they can be used as local variables in Go code, but not in WhyML.

J func f (ai τi, . . .) [τ] {
Sj . . .
return [r]

} K

fun-decl
ZÔ⇒ let JfK (JaiK: JτiK) . . . =

Jai := ai;K;. . .
JSjK;. . .
JrK

J int K
type
ZÔ⇒ int

J bool K
type
ZÔ⇒ bool

J { Si . . . } K
stmt
ZÔ⇒ begin JSiK;. . . end

J n := x ; K
stmt
ZÔ⇒ let ℵn = ref JxK in ()

J x = y ; K
stmt
ZÔ⇒ JxK := JyK

J for x S K
stmt
ZÔ⇒ while JxK do JSK done

J if x S else T K
stmt
ZÔ⇒ if JxK then JSK else JT K

J expr ; K
stmt
ZÔ⇒ JexprK

J ( e ) K
expr
ZÔ⇒ ( JeK )

J op x K
expr
ZÔ⇒ JopK JeK

J x op y K
expr
ZÔ⇒ (JopK) JxK JyK

J f (ai, . . . ) K
expr
ZÔ⇒ ℵf (JaiK). . .

J ident K
expr
ZÔ⇒ !ℵident

J constant K
expr
ZÔ⇒ constant

J op K
op

ZÔ⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

not if op = ‘!′

div if op = ‘/′

mod if op = ‘%′

= if op = ‘==′

<> if op = ‘!=′

op otherwise

Table 5.1.: Translation schema for sequential Go− to WhyML
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For adding logical annotations to Go− code, we apply the convention that these must be given in
comments, using Why syntax. As an example, consider the following function written in Go−:

1 //why3: use import number.Divisibility
2 //ensures: forall m. 1 <= m <= n -> divides m result
3 //variant: n
4 func fac (n int) int {
5 r := 1;
6 if n > 1 { r = n*fac(n-1); }
7 else { }
8 return r
9 }

Which we can, by strictly applying the transformation scheme above (handling expressions in an
obvious manner), be translated into:

1 use import number.Divisibility
2

3 let rec fac (n: int)
4 ensures { forall m. 1 <= m <= n -> divides m result }
5 variant { n }
6 = let n = ref n in ();
7 let r = ref 1 in ();
8 if !n > 1 then begin r := !n * fac (!n - 1); end else begin end;
9 !r

In the examples that follow, we will not rigidly adhere to the structure of the grammar in Figure 5.1,
but continue to write idiomatic Go in such a way that a semantically equivalent transformation from
Go→ Go− is obvious. Similarly, since we are performing the translation to WhyML by hand, we will
also allow ourselves to perform transformations on the generated WhyML code. In the fac example
above, the if-statement can be made much more readable by simply writing it as:

8 if !n > 1 then r := !n * fac (!n - 1);

However, the translation from Go to WhyML is designed with a program for automatic translation in
mind, similar to the Jessie plugin for Frama-C [22]; due to time constraints we have not developed
such a tool yet.

5.3. Verifying weak correctness
Many methods for extending Hoare logic to prove the correctness of concurrent programs have
been proposed. In a 1976 paper, Owicki and Gries [47] already describe a very general method for
proving the correctness of concurrent programs, by introducing an await B then S primitive which
executes the statement S atomically as soon as the condition B becomes true. While this primitive
is too powerful to be implemented directly in a programming language, they show how it can be
used to model other, more easily implemented, mechanisms such as semaphores. This mechanism
could in principle be used to model the concept of synchronous communication channels as well.
Proof techniques directly targeting CSP programs are presented in [48] and [49] — the approach

we will take bears a lot of resemblance to these, exploiting the similarity of Go to CSP programs.
Both treatments start with the concept of weak correctness, verifying conditions under the assump-

tion that liveness (or at least, the absence of deadlock) is guaranteed. This is conceptually similar
to using classical Hoare logic to prove properties without an accompanying proof of termination.
The technique for proving weak correctness of concurrent programs can be broken up into three

separate parts [48]:
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1. A sequential proof of each process involved, by adding rules to a system for non-concurrent
proofs (such as provided by vanilla WhyML) for sending an receiving over a channel, which will
involve adding some assumptions that are not provable from within the process.

2. A satisfaction proof to show that the assumptions made in the sequential proofs are valid when
multiple processes are combined into a concurrent program.

3. A non-interference proof to show that concurrently running processes do not interfere with the
assertions of the sequential proof. As shown in [50], many of these proofs can be avoided.

These three parts are a necessary ingredient of any concurrent proof technique. For instance, the
proof technique by [49] dispenses with non-interference proofs by not relying on shared variables,
and has an mechanism which performs a similar role to that of a satisfaction proof as part of the
rule of parallel composition of programs.
Our WhyML model can also be explained in the context of these three ingredients. We will also

dispense with non-interference proofs, by disallowing the sharing of state between processes.1
The sequential proof is, of course, performed by extending the translation of the previous section

with operations on channels. We also insert assertions which take care of the satisfaction proof
obligations for channels directly connected to a process.
Finally, a procedure is used to generate WhyML assertions for providing the satisfaction proof

obligations needed to ensure the weak correctness of communication that occurs over a forwarding
channel.

5.3.1. Modelling Go channels
We model Go channels using the WhyML module listed in Figure 5.2. It uses an interface similar
to the WhyML array module — except that where arrays have a fixed size and mutable contents,
a channel consists of fixed contents (representing the communication history) and a mutable size:
once an element has been sent over a channel, it becomes part of the known communication history
over that channel.
The use of a full communication history, instead of just reasoning about a single element that

is sent over a channel, derives from the proof technique used by [49]; it allows us to reason about
communication without resorting to explicitly shared ghost variables between processes.
The current end of the known communication history can be obtained using the cursor function.

Outside the known history, the contents are unspecified; in particular, nothing meaningful can be said
about the future of a communication channel. The function last can be used if we are only interested
in the most recent element sent. A chan is declared as a model type (as discussed in Section 2.3.2),
so that it cannot be manipulated by WhyML programs except through the four functions that make
up its interface.
Note that we could also have opted to make the communication history mutable. In that case,

only the post-condition of the forward function — whose purpose will be explain in Section 5.3.3
— needs to be strengthened by adding:

ensures { forall i: int. i < cursor (old q) -> (old q)[i] = q[i] }

The downside of mutable contents is that it becomes harder for provers to see that elements that
were previously sent remain part of the history. This is a similar problem to the one encountered in
Section 3.1, where automated provers had difficulties checking that an array is a permutation of its
original value, even though the only operation performed on it are repeated swaps of two elements.
It may also necessitate the use of extra loop invariants.
However, since chan is a model type, and the interface does not allow WhyML code access to the

contents field separately from the pointer field, it is not possible for an inconsistency to arise. We
are further helped by the fact that WhyML itself also disallows creating aliases of mutable types:

1In line with the Go advice: “Do not communicate by sharing memory; instead share memory by communicating.”
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1 module Chan
2

3 use import array.Array
4 use import map.Map as M
5 use import int.Int
6

7 type chan ’a model { contents: map int ’a; mutable pointer: int }
8 invariant { 0 <= self.pointer }
9

10 function enqueued (x: ’a) (q: chan ’a): chan ’a
11 = { contents=q.contents[q.pointer<-x]; pointer=q.pointer+1 }
12

13 function get (q: chan ~’a) (i: int): ’a = M.get q.contents i
14 function ([]) (q: chan ~’a) (i: int): ’a = get q i
15

16 function cursor (q: chan ~’a): int = q.pointer
17 function last (q: chan ~’a): ’a = get q (cursor q - 1)
18

19 val make unit: chan ’a
20 ensures { result.pointer = 0 }
21

22 val send (x: ~’a) (q: chan ~’a): unit
23 writes { q }
24 ensures { q = enqueued x (old q) }
25

26 let recv (q: chan ~’a): ’a
27 writes { q }
28 ensures { q = enqueued result (old q) }
29 = let x = any ’a in send x q; x
30

31 val forward (q: chan ~’a): unit
32 writes { q }
33 ensures { q.pointer >= old q.pointer }
34

35 end

Figure 5.2.: WhyML model for weakly correct Go channels
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1 let send_two (x y: chan int) =
2 send 1 x;
3 send 2 y
4

5 let main() =
6 let x = make(): chan int in
7 send_two x x

In this case, WhyML will complain about line 7 that:

This application creates an illegal alias

Since this is the case, it is vastly preferable to use the guarantees offered by the type system of Why3
to ensure the soundness of our construction, instead of explicitly generating proof obligations.
Ideally, the same would hold for the type invariant: since no operation allows us to construct a

channel with a negative size, it should trivially hold with no explicit proof needed. However, since
Why3 only assumes type invariants at function entry, we are required to add loop invariants for every
channel modified in a while loop to allow Why3 to know that the type invariant is preserved.
Translating communication statements is simple; we extend the translation operator J−K defined

in Table 5.1 with the following rules:

J chan<- τ K
type
ZÔ⇒ chan JτK

J <-chan τ K
type
ZÔ⇒ chan JτK

J n := make(chan int); K
chan-decl
ZÔ⇒ let ℵn = make(): chan int in ()

J go fun − call K
go-stmt
ZÔ⇒ (* empty *)

J ch <- e; K
stmt
ZÔ⇒ send JeK ℵch

J n := <-ch; K
stmt
ZÔ⇒ let ℵn = ref(recv ℵch)

Table 5.2.: Translation schema for Go channel operations to WhyML

To easily state properties about the communication history, we also introduce an auxiliary module,
listed in Figure 5.3, which introduces several predicates over channels to use with supporting lemmas:

• mem x ch, which states that the element x is a member of the known communication history
of the channel ch.

• mem_sub x ch i j, which states that the element x is in the communication history with an
index in the range [i, j).

• mem_add x ch ch′, which states the element x has become part of the communication history
of ch after its cursor position was at the one indicated by ch′. This is useful to use in WhyML
in combination with the old keyword, e.g: mem_add 5 x (old x) can be used to express the
notion that the number 5 has been sent over the channel x after a process has acquired it.
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1 module Mem
2

3 use import Chan
4 use import int.Int
5

6 predicate mem_sub (e: ’a) (q: chan ’a) (a b: int)
7 = exists i: int. a <= i < b <= cursor q /\ q[i] = e
8

9 predicate mem (e: ’a) (q: chan ’a)
10 = mem_sub e q 0 (cursor q)
11

12 lemma mem_0: forall x: ’a, q: chan ’a.
13 0 <= cursor q -> mem x (enqueued x q)
14

15 lemma mem_S: forall x y: ’a, q: chan ’a.
16 mem x q -> mem x (enqueued y q)
17

18 lemma mem_sub_0: forall x: ’a, q: chan ’a, i: int.
19 0 <= i <= cursor q -> mem_sub x (enqueued x q) i (cursor q + 1)
20

21 lemma mem_sub_S: forall x y: ’a, q: chan ’a, i j: int.
22 mem_sub x q i j -> mem_sub x (enqueued y q) i j
23

24 lemma mem_sub_R: forall x: ’a, q: chan ’a, i’ j’ i j: int.
25 0 <= i <= i’ <= j’ <= j <= cursor q -> mem_sub x q i’ j’ -> mem_sub x q i j
26

27 predicate mem_add (e: ’a) (q: chan ’a) (old_q: chan ’a)
28 = mem_sub e q (cursor old_q) (cursor q)
29

30 lemma mem_add_R: forall x: ’a, q u v: chan ’a.
31 cursor v <= cursor u -> mem_add x q u -> mem_add x q v
32

33 end

Figure 5.3.: WhyML support module for reasoning about channel communication histories

5.3.2. Sequential verification of concurrent programs
An important part is still missing: when a WhyML function calls the recv function, it is only
guaranteed to obtain the next item from the channel, about which we know nothing. To remedy
this, right after calling recv, we have to insert an assumption about the communication history of
the channel. This is highly similar to the seemingly dubious Hoare rule for communication given in
[48], which in Go-syntax would look like:

{P} x := <-ch {Q}

which is then validated during the satisfaction proof, by verifying that for all possible matching send
statements of the form {P ′} ch<-y {Q′} the implication (P ∧ P ′)→ (Q ∧Q′) is valid.
In our approach, each channel that is passed to a goroutine P as an argument should have accom-

panying annotations which specify the condition that the function requires to hold after receiving a
message from the requesting process: these are then simply assumed in the function at that point.
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Similarly, annotations should be given to express the guarantees that a function provides to a re-
questing process when it sends a message over a channel; these are then checked at that point.
Conversely, in the function that launched P as a goroutine, assertions are inserted after sending a

message to validate the assumptions made above, and upon reception the guarantees provided by P
may be assumed. Since this is analogous to ordinary function calls in WhyML, we can express these
conditions naturally using the notion of channel-related pre- and post-conditions. For example:

1 //requires: cursor input = cursor output = 0
2 //requires[input]: odd (last input)
3 //ensures[output]: odd (last output)
4 //ensures[output]: cursor input = cursor output
5 func squarer(input <-chan int) (output chan<- int) {
6 //invariant: cursor output = cursor input
7 for {
8 x := <-input
9 output <- x

10 }
11 }

The first precondition is a regular precondition, which is checked when this function is launched as
a goroutine: in this case the provided channels may not have been used before.
The second annotation is the channel precondition for input. It just expresses the fact that the

last integer sent must be odd. This is also guaranteed for the integer being sent. The final channel
postcondition for output simply states that this function will send exactly as much as it receives.
Channel pre- and postconditions must, like regular pre- and post-conditions, be expressed in

terms of function parameters, but are otherwise unrestricted. In particular, we can refer to the
entire communication history; not just the last element, and allow the use of the old keyword to
refer to the state channels were in when the goroutine was started.
If we translate the above Go function to WhyML, also adding the assertions in the manner just

described, we get a function which looks like this:
1 let squarer (input: chan int) (output: chan int)
2 requires { cursor input = cursor output = 0 }
3 = while true do
4 invariant { 0 <= cursor input /\ 0 <= cursor output }
5 invariant { cursor output = cursor input }
6 let x = ref (recv input) in
7 assume { odd (last input) };
8 send (!x * !x) output;
9 assert { cursor output = cursor input };

10 assert { odd (last output) };
11 done

The loop invariant on line 4 has to be added to ensure the type invariant of the channels input and
output, as described in Section 5.3.1; otherwise, it is a straightforward translation of the Go code.
If a program launches the function squarer as a goroutine, then after every send to the input

channel, an assert is inserted to verify the channel pre-condition, validating the assumption made
above, and similarly, assumptions will be inserted after every receive. For example:

1 x := make(chan int)
2 y := make(chan int)
3 go squarer(x, y)
4 x <- 42
5 result := <-y
6 //check: odd result
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Will translate to WhyML as:
1 let x := make(): chan int in
2 let y := make(): chan int in
3 (* go squarer(x, y) *)
4 assert { cursor x = cursor y = 0 };
5 send 42 x;
6 assert { odd x[cursor x - 1] };
7 let result = ref(recv y) in
8 assume { odd y[cursor y - 1] };
9 check { odd !result };

Launching a goroutine has little immediate effect: its only influence is that its precondition is checked
(see line 4). Note that the channel pre-condition on line 6 is violated, since 42 is not an odd integer.

5.3.3. Generating satisfaction proof obligations
To finish our verification technique for weak correctness, we must now generate the appropriate
satisfaction proof obligations for communicating processes; that is, show that all the assumptions we
made in a function that is used as a goroutine are validated by assertions made in other functions.
If we perform the sequential verification process described in the previous section for a function

P , we see that we have already inserted all the assertions needed to guarantee the satisfaction of
channels that are directly connected to P . To be more precise, when we send a message over the
channel u:

• If the message is to a requesting process, we have asserted P ’s channel post-condition for u,
this validating the assumptions made about u in the requesting process.

• If the recipient is a child process, we have asserted the child’s channel pre-condition for u,
validating the assumptions made inside the child process.

As we have seen in the data flow graphs for the summer and adder functions on pages 51 and 51,
there may also exist forwarding channels, which are required to operate successfully for a program
to be correct. For example, in the case of the data-flow graph for the summer, it must also be shown
that the channel pre-condition of echo(v,w) for v is satisfied by the channel post-condition for v of
the echo(u,v).
In the case of the adder function, there are two forwarding channels connected to a requesting

process. In this case, it must be shown that adder’s channel pre-condition for x satisfies the channel
pre-condition for x echo(x,u), and similarly, that the channel post-condition for result of the process
echo(v,result) implies adder’s post-condition for the same channel.
Since we have no control or knowledge about the amount of messages sent over a forwarding

channel, we have defined the forward function in Figure 5.2 in order to move its cursor by an
unspecified amount. After forward has been called, we can then insert an appropriate assertion.
For example, in the case of summer, after the translation of the send operating on line 14 in the
program on page 51, we can emit the following WhyML code to emit a satisfaction obligation:

1 (* [[ u <- tmp ]] *)
2 send !tmp u;
3 assert { precondition of echo(u,v) };
4 forward v;
5 assert { postcondition of echo(u,v)
6 -> precondition of echo(v,w) };

In the case of adder on page 52, reading from channel u requires generating a satisfaction obligation
for the forwarding channel x, but not for the forwarding channel result, since it is not part of the
data-flow path leading towards the channel u:
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1 (* [[ x := <-u ]] *)
2 let x = ref(recv u) in
3 assume { postcondition of echo(x,u) };
4 forward x;
5 assert { precondition of adder(x,y,result)
6 -> postcondition of echo(x,u) };

In Section 5.4.4, verification of forwarding channels is an important part of verifying the liveness
of Go programs. To see why generating these assertions is necessary even if we are only interested
in weak correctness, consider the following program:

1 //ensures[out]: forall i. 0 <= i < cursor out -> out[i] = x
2 func source(x int, out chan<- int) {
3 out <- x
4 }
5

6 //requires[in]: forall i. 0 <= i < cursor in -> in[i] >= 0
7 //ensures [out]: forall i. 0 <= i < cursor in -> out[i]*out[i] <= in[i]
8 //ensures [out]: cursor out = cursor in
9 func root(in <-chan int, out chan<- int) {

10 x := <-in
11 out <- int(math.Sqrt(float64(x)))
12 }
13

14 func main() {
15 x, y := make(chan int), make(chan int)
16 go source(-1, x)
17 go root(x, y)
18 sqrt := <-y
19 //assert: sqrt*sqrt <= -1
20 }

Clearly, this program should not pass verification, as the assertion indicates an inconsistency. If
we had sent the value −1 to the root process directly, the explicit check of its precondition would
cause verification to fail. In this case, a child process is communicating with root on behalf of the
current process; generating an assertion for the forwarding channel x as just described causes this
precondition to be tested as well.
The general procedure for generating verification conditions for forwarding channels is as follows.

After sending or receiving a message from within a process P over the channel u, proceed along the
following steps:

1. Construct the static data flow graph for the channel operation (see pages 51 and 52)

2. Find every forwarding channel that is relevant to the current operation. These are all the edges
in the data flow graph that are reachable via a path that leads from u and does not contain P
itself. Furthermore, all edges on the path must be oriented in the same direction as u.

3. For every channel v found, emit the forward instruction followed by an assertion in the form
of an implication which captures its satisfaction proof obligations.

This same procedure is also to be followed as soon as a goroutine is launched which turns a channel
into a forwarding channel.
The fact that forward grows the communication history of a channel by an unspecified number

of elements is important to ensure the non-interference of logical assertions that involve forwarding
channels — while it is allowed to reason in a general sense about the communication history (as
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guaranteed by the post-conditions of the involved goroutines), a proof of correctness is not allowed
to depend on the exact current size of this history — as the processes can communicate with each
other at any time.

5.3.4. Example: Verifying the concurrent prime number sieve
As a more complete example of the verification method we have developed in the previous sections,
we will verify the weak partial correctness of the concurrent prime number sieve introduced in
Section 4.1. We first need to rewrite this algorithm to comply with the restrictions of Go−. In
particular, we need to eliminate the lambda function and for-each loop. Subsequently, the program
needs to be annotated in the style of WhyML. The result is listed in Figure 5.4. It consists of three
functions, which we will examine in order.

Verification of the function generate The channel post-condition of the function generate states
that if the communication history is of size n, then it will contain all numbers in the range [init, n+
init). Note that this is an underspecification: it does not necessarily specify the order in which they
will be generated.
Translating generate to WhyML is a straightforward application of Section 5.3.2, since there are

no forwarding channels present at any moment.

1 let generate (init: int) (out: chan int)
2 requires { cursor out = 0 }
3 = ’Start:
4 let x = ref init in
5 while true do
6 invariant { "expl:type invariant preservation" 0 <= cursor out }
7 invariant { forall x: int. init <= x < cursor out + init <-> mem x out }
8 invariant { cursor out+init = !x }
9 send !x out;

10 assert { "expl:channel postcondition"
11 forall x: int. init <= x < cursor out + init <-> mem x out };
12 x := !x+1;
13 done

This WhyML version can be verified quickly using just CVC4.

Verification of the function sieve The pre-condition of the function sieve should be compared
to the first loop invariant in the algorithm presented in Section 2.3.1; as it fulfils essentially the same
function. The post-condition is again a underspecification: the function will output prime numbers,
and it is forbidden to generate them spontaneously — but in principle the post-condition does allow
for it to skip any prime number, or to repeatedly output the same prime number.
The loop invariants govern the communication histories of the channels filt and out; in particular

we need to remember that we have already sent the prime number p.
The channel out becomes a forwarding channel after it is handed to the (recursively) launched

goroutine. We mark the starting point of that separate goroutine by asserting its pre-condition,
emitting the label Entry_sieve (to be able to refer to the initial state of its channel arguments),
and a call to the forward function to make its position indeterminable.
Since out is a forwarding channel, we need to generate a forwarding condition on line 30..
Note that an assertion (on line 31 in Figure 5.4, and line 27 in the WhyML code) is needed to help

the verification process along.

1 let sieve (src: chan int) (out: chan int)
2 requires { cursor src = 0 }
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1 package main
2

3 import "fmt"
4

5 //requires: cursor out = 0
6 //ensures[out]: forall x: int. init <= x < cursor out + init <-> mem x out
7 func generate(init int, out chan<- int) {
8 x := init
9 //invariant: forall x: int. init <= x < cursor out + init <-> mem x out

10 //invariant: cursor out + init = !x
11 for {
12 out <- x
13 x++
14 }
15 }
16

17 //requires: cursor src = 0
18 //requires[src]: forall x: int. mem x src -> 2 <= x /\ forall d: int. 2 <= d ->
19 // divides d x -> mem d src
20 //ensures[out]: forall x: int. mem_add x out (old out) -> mem x src /\ prime x
21 func sieve(src <-chan int, out chan<- int) {
22 p := <-src
23 out <- p
24 filt := make(chan int)
25 go sieve(filt, out)
26 //invariant: forall x: int. mem x src /\ not (divides !p x) <-> mem x filt
27 //invariant: mem_add !p out (at out ’Start)
28 for {
29 n := <-src
30 if n%p != 0 {
31 //assert: forall x: int. mem x src /\ not (divides !p x) /\ x <> !n ->
32 // mem x filt
33 filt <- n
34 }
35 }
36 }
37

38 func main() {
39 outp := make(chan int)
40 inp := make(chan int)
41 go sieve(inp, outp)
42 go generate(2, inp)
43 for {
44 n := <-outp
45 //check: prime !n
46 fmt.Println(n)
47 }
48 }

Figure 5.4.: Concurrent prime number sieve in Go, annotated
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3 = ’Start:
4 let p = ref (recv src) in
5 assume { "expl:channel precondition" sieve_pre src };
6

7 send !p out;
8 assert { "expl:channel postcondition" sieve_post src out (at out ’Start) };
9

10 let filt = make(): chan int in
11 assert { "expl:goroutine precondition" cursor src = 0 };
12 ’Entry_sieve:
13 forward out;
14 assert { "expl:channel forward" sieve_post filt out (at out ’Start)
15 -> sieve_post src out (at out ’Start) };
16

17 while true do
18 invariant { "expl:type invariant preservation"
19 0 <= cursor src /\ 0 <= cursor out /\ 0 <= cursor filt }
20 invariant { forall x: int. mem x src /\ not (divides !p x) <-> mem x filt }
21 invariant { mem_add !p out (at out ’Start) }
22

23 let n = ref (recv src) in
24 assume { "expl:channel precondition" sieve_pre src };
25

26 if (mod !n !p <> 0) then begin
27 assert { forall x. mem x src /\ not (divides !p x) /\ x <> !n -> mem x filt };
28 send !n filt;
29 assert { "expl:channel precondition" sieve_pre filt };
30 forward out;
31 assert { "expl:channel forward" sieve_post filt out (at out ’Start)
32 -> sieve_post src out (at out ’Start) };
33 end;
34 end
35 done

To allow for readability of the WhyML model, we have defined predicates for the pre- and post-
conditions that were found in the Go annotated program:

predicate sieve_pre (src: chan int) =
forall x: int. mem x src -> 2 <= x /\ forall d. 2 <= d -> divides d x -> mem d src

predicate sieve_post (src out old_out: chan int) =
forall x: int. mem_add x out old_out -> mem x src /\ prime x

During verification, this extra layer of definition actually hinders automated provers, requiring extra
computational transformations to remove them. For example, it is necessary to add

meta "rewrite_def" predicate sieve_pre
meta "rewrite_def" predicate sieve_post

To allow the use of the compute_specified transformation, which allows us to selectively unfold
these definitions. Still, using a combination of Alt-Ergo, CVC3 and CVC4, this function can be
automatically verified in less than a minute of CPU time.

Verification of main The function main contains no annotations or loop invariants; but since it
spawns two goroutines, the WhyML model is not as succinct. Again note that on line 18 a channel
forwarding assertion has to be generated, since inp is a forwarding channel.
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1 let main ()
2 = let outp = make(): chan int in
3 let inp = make(): chan int in
4 assert { "expl:goroutine precondition" cursor inp = 0 };
5 ’Entry_sieve:
6 assert { "expl:goroutine precondition" cursor inp = 0 };
7 ’Entry_generate:
8 forward inp;
9 assert { "expl:channel forward"

10 forall x: int. 2 <= x < cursor inp + 2 <-> mem x inp
11 -> sieve_pre inp };
12 while true do
13 invariant { "expl:type invariant preservation"
14 cursor inp >= 0 /\ cursor outp >= 0 }
15 let n = ref (recv outp) in
16 assume { "expl:channel postcondition" sieve_post inp outp (at outp ’Entry_sieve) };
17 forward inp;
18 assert { "expl:channel forward"
19 forall x: int. 2 <= x < cursor inp + 2 <-> mem x inp
20 -> sieve_pre inp };
21 end;
22 check { prime !n };
23 (* fmt.Println(!n) *)
24 done

The verification conditions generated by this function can all be discharged by Alt-Ergo in less than
5 seconds.

5.4. Verifying strong correctness
Up to this point, we have no bothered with the possibility of deadlocks. However, due to the ease with
which goroutines can be strung together, this is an important topic. Consider again the functions
summer and adder, but now in simplified form:

1 func summer(x <-chan int, y <-chan int, result chan<- int) {
2 a := <-x
3 b := <-y
4 result <- a + b
5 }
6

7 func adder(x <-chan int, y <-chan int, result chan<- int) {
8 b := <-y
9 a := <-x

10 result <- a + b
11 }

These functions are not interchangeable in all circumstances; but they are hard to distinguish using
just weak correctness. Another shortcoming of weak correctness is that programs that do trigger
deadlocks may end up in a logically inconsistent state. For example, consider the following function:

1 //ensures[less]: x < 0
2 //ensures[more]: x > 0
3 func cmp(x int, less chan<- int, more chan<- int) {
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4 if x < 0 { less <- x }
5 if x > 0 { more <- x }
6 }

Clearly, the two post-conditions are inconsistent with each other, but they both are perfectly valid,
as the function cmp will never be able to activate both channels. However, if a program tries to
read from both channels, it will cause a deadlock. In our model of weak correctness, it results in an
inconsistent state:

1 x, y := make(chan int), make(chan int)
2 go cmp(1,x,y)
3 a := <-x
4 b := <-y
5 //check: 1 = 2

Which in the WhyML translation can be proven, since it translates to:

1 let x = make(): chan int
2 let y = make(): chan int
3 let a = ref (recv x) in
4 assume { 1 < 0 };
5 let b = ref (recv y) in
6 assume { 1 > 0 };
7 check { 1 = 2 }

In some sense, this is in the spirit of Hoare logic: if the operation <-y terminates, it will indeed be
true that 1 = 2, just as would be the case had we replaced <-y it with an infinite loop. When using
Hoare logic, this problem is solved by providing an associated termination proof. For concurrent
programs, the equivalent is a proof that deadlocks cannot occur.
Both [48] and [49] use the same method for proving the absence of deadlocks, which basically

requires performing an exhaustive search of all possible combinations of synchronization between
send/receive statements, and then showing the conjunction of all their respective preconditions
either leads to a contradiction — i.e., the state cannot happen — or that progress can be made in
that state. This is somewhat similar to the technique we used in Section 2.2.4 to prove the absence
of deadlocks in the Dining Philosophers problem.
A downside of that approach is that it is hard to implement for Go; for example, in the prime

number sieve of Figure 5.4, the number of matching communication pairs is essentially infinite, since
the function sieve recursively launches itself as a goroutine. Secondly, in many cases a stronger
notion of liveness than the mere absence of deadlock is actually a more interesting property. For
example, if we connect the function sieve to a slightly different goroutine which sends it all numbers
starting with 1, it will only produce output once:

1 func main() {
2 x := make(chan int)
3 y := make(chan int)
4 go generate(1, x)
5 go sieve(x, y)
6 <-y
7 <-y // blocks forever
8 }

However, this blocking situation is not a deadlock; the two goroutines are in fact very busily searching
for a number that is not divisible by 1!
Therefore, we want to provide the stronger guarantee of liveness, which we in this case define as

the ability of the primary goroutine — that is, the one that main starts in — to make progress. In
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Section 3.3, we have already discussed a technique that can be used to ensure progress in a program.
It is this idea that we combine with the notion of weak correctness to arrive at a verification technique
for strong correctness of concurrent Go programs.

5.4.1. Liveness annotations
To reason about liveness, we add a new kind of proposition: a liveness annotation, in the form of the
expression p => ch. A liveness annotation simply expresses the fact that process p will guarantee
that a send or receive operation on the channel ch will not block.
As an example, consider again the echo process as defined on page 51. When echo is launched

as a goroutine, it will guarantee to synchronize first on the channel input, and after that alternate
between the two channels output and input. We could therefore annotate it as follows:

1 //startup: this => input
2 //ensures[input]: this => output
3 //ensures[output]: this => input
4 func echo(input <-chan int, output chan<- int) {
5 //obligation: this => input, variant: 0
6 for {
7 x := <-input
8 output <- x
9 }

10 }

Here the identifier this denotes the goroutine echo itself. A new annotation (startup) is necessary
to specify the immediate effects of launching echo as a goroutine; as the only effect can be that some
channels become safe to synchronize with, this must invariably be a liveness annotation. In this case
echo guarantees to synchronize with input.
The following two annotations are channel-related post-conditions, and express the synchronizing

behaviour of echo described informally. Note that the model for strong correctness also allows input
channels to have post-conditions, unlike the model for weak synchronization where they would have
served no logical purpose.
A new type of loop invariant is introduced to keep track of the current synchronization obligation

of a function. Since echo promises to read from the channel input at startup, and after writing to
output, this should be this => in. The obligation annotation also requires a conditional variant,
which is a quantity stated to decrease until the obligation is met. In this case, the obligation is
fulfilled by the first statement of the loop body, and so this variant is trivial.
A process communicating with an instance of an echo goroutine needs some way to denote this

instance. We do this by adding a process annotation to statements launching a goroutine. For
example:

1 func main() {
2 i, o := make(chan int), make(chan int)
3 //process: echo1
4 go echo(i,o)
5 u <- 5
6 //invariant: echo1 => o
7 for {
8 a := <-o
9 i <- a

10 }
11 }
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After the statement a := <-o, the post-condition for echo1 will ensure that the channel i can be
written to, after which the loop invariant is re-established.
The annotation echo1 => i expresses something markedly different than this => i: in the first

case, some other process is giving a guarantee that can be relied upon; in the latter, a guarantee
is given that formally binds the current process to perform a certain action. There is a deliberate
asymmetry in this model: whenever two processes are involved with each other, one is responsible
for providing guarantees, whilst the other is relying on them. Guarantees are given to requesting
processes (as defined in Section 5.1) by the current process; and relied upon by the current process
when dealing with child processes. Most importantly, a goroutine is not required to ensure that its
child processes can always make progress (as indeed was not the case in most examples we used
throughout this chapter).
This asymmetry has two important consequences:

1. It allows local reasoning; a current process only has to reason about its child processes in
order to prove that communicating with it will succeed — and a goroutine is only required to
guarantee its liveness to its instantiating process.

2. It also allows us to reason compositionally: the liveness of a goroutine follows by combining
the liveness properties of any child processes it communicates with. At some point, this will
result in correctness proof for the primary goroutine of a Go program (i.e., the one that starts
main).

The annotations we have described in this section suffice to reason about communication that
happens across channels that are directly connected to the current process. When forwarding chan-
nels are relevant to the correctness of a function, extra annotations are required — we will handle
this case in Section 5.4.4 below.

5.4.2. Strengthening the model for Go channels
To implement the annotations described in the previous section, we adapt the Go model for channels
given in Section 5.3.1, and combine it with the Obligation module developed in Section 3.3; it is
listed in Figure 5.5. The primary modifications are:

• A predicate for the liveness annotation => has been added; as well as a type to model processes,
and a global object this to denote the current process.

• The send and recv operations now also take an extra argument indicating the process that is
responsible for ensuring the liveness of the channel.

These functions now also require (as a precondition) that they will not block; i.e., that the
mentioned process has guaranteed that it possible to send or receive on the given channel.
This means that, similar to out-of-bounds array accesses, liveness is now a sine qua non for
the verification of a concurrent Go program.

• A predicate handled is used for exactly the same purpose as the location type in Section 3.3
— it is true for all channel objects that for which the synchronization obligations has been
fulfilled, because a send or receive can be proven to have been performed on them.

• A function ch[Q<-P] replaces the forward function; it captures the transfer of one element
between two processes, instead of indeterminably many. It again is only used for generating
verification conditions of forwarding channels between processes P and Q, in Section 5.4.4.
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1 module Chan
2

3 use import array.Array
4 use import map.Map as M
5 use import int.Int
6 use export obligation.Obligation
7

8 type id
9

10 type chan ’a model { contents: map int ’a; mutable pointer: int; id: id }
11 invariant { 0 <= self.pointer }
12

13 function enqueued (x: ’a) (q: chan ’a): chan ’a
14 = { contents=q.contents[q.pointer<-x]; pointer=q.pointer+1; id=q.id }
15

16 type process model { mutable state: id }
17 val this: process
18

19 predicate handled (q: chan ~’a)
20 predicate (=>) (p: process) (q: chan ~’a)
21

22 function get (q: chan ~’a) (i: int): ’a = M.get q.contents i
23 function elem (q: chan ~’a): map int ’a = q.contents
24 function ([]) (q: chan ~’a) (i: int): ’a = get q i
25

26 function cursor (q: chan ~’a): int = q.pointer
27 function last (q: chan ~’a): ’a = get q (cursor q - 1)
28

29 val make unit: chan ’a
30 ensures { result.pointer = 0 }
31

32 val send (x: ~’a) (q: chan ~’a) (p: process): unit
33 writes { q, p.state }
34 requires { p => q }
35 ensures { q = enqueued x (old q) }
36 ensures { handled (old q) }
37

38 let recv (q: chan ~’a) (p: process): ’a
39 writes { q, p.state }
40 requires { p => q }
41 ensures { q = enqueued result (old q) }
42 ensures { handled (old q) }
43 = let x = any ’a in send x q p; x
44

45 val ([<-]) (q: chan ~’a) (b a: process): unit
46 writes { q, a.state, b.state }
47 requires { a => q /\ b => q }
48 ensures { q.pointer = old q.pointer+1 }
49 ensures { handled (old q) }
50

51 val responsible (q: chan ’a): unit
52 ensures { (?obligation -> handled q) -> this => q }
53

54 val delegated (that: process) (q: chan ’a): unit
55 ensures { that => q -> handled q /\ this => q }
56

57 end

Figure 5.5.: WhyML model for Go channels for strong correctness 69



5.4.3. Sequential verification of liveness annotations
For the most part, the process of providing the sequential proof of goroutine’s, described in Sec-
tion 5.3.2, is used unaltered: liveness annotations are a predicate like any other, and can be dealt
with as any other proposition when asserting or assuming channel pre- and post-conditions.
The required extensions to this process are as follows:

• At the start of a function, the startup conditions needs to be asserted. Conversely, whenever
a go statement launching a child process occurs, the startup condition of the child goroutine
needs to be assumed.

• Since an input channel can now also have a post-condition, these must be asserted after ex-
ecuting a receive operation, and assumed after executing a send operation, as is the case for
post-conditions for output channels.

To ensure the guarantees given by a function, the technique from Section 3.3 is applied in the
following manner:

• If a function needs to assert a post-condition where this => ch is a consequence, i.e. it
guarantees to operate on ch, an obligation needs to entered into which states that the predicate
handled will become true for the channel ch. To be more precise, whenever an assertion of
the form cond → this => ch is made, a call has to be inserted of the form oblige (cond ->
handled ch).

• The obligation annotation is translated to a loop invariant which specifies the state of the
?obligation object.
In addition, all while loops in the generated WhyML code need to have a conditional variant
inserted ensuring that all obligations entered into will eventually be fulfilled. At the end of
a function, and at every point where it communicates with the requesting process — i.e. at
every point where control is transferred — a check also needs to be inserted to ensure that the
obligations are all met at that point.

In addition, some WhyML ‘logical glue’ is needed to allow this => ch to be provable if we have
that ?obligation -> handled ch. We would this to be a defining axiom or let lemma in our
system, but since both channels and process states are mutable values, this is not available to us.
The function responsible listed in Figure 5.5 takes care of this.
The end result is a translation process which is quite arduous to perform by hand, but is well

suited to mechanization. For example, translating the definition of the echo function as given in the
previous section is done as follows:

1 let echo (input: chan int) (output: chan int)
2 = init();
3 (* startup *)
4 oblige (handled input);
5 responsible input;
6 assert { this => input };
7 while true do
8 invariant { cursor input >= 0 /\ cursor output >= 0 }
9 (* obligation: this => input, variant: 0 *)

10 invariant { ?obligation <-> handled input }
11 (* [[ x <- input ]] *)
12 responsible input;
13 let x = ref(recv input this) in
14 check { ?obligation };
15 (* ensures[input]: this => output *)
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16 oblige (handled output);
17 responsible output;
18 assert { this => output };
19 (* [[ output <- x ]] *)
20 send !x output this;
21 check { ?obligation };
22 (* ensures[output]: this => input *)
23 oblige (handled input);
24 responsible input;
25 assert { this => input };
26 done;
27 check { ?obligation }

The translation of the main process is easier, since it does not need to make any guarantees, and
is mostly along the lines of Section 5.3.2:

1 let main()
2 = let i = make(): chan int in
3 let o = make(): chan int in
4 (* [[ go echo(i,o) ]] *)
5 let echo1 = any process in
6 assume { echo1 => i };
7 (* [[ i <- 5 ]] *)
8 send 5 i echo1;
9 assume { echo1 => o };

10 while true do
11 invariant { cursor i >= 0 /\ cursor o >= 0 }
12 invariant { echo1 => o }
13 [[ a := <- o ]]
14 let a = ref(recv o echo1) in
15 assume { echo1 => i };
16 [[ i <- a ]]
17 send !a i echo1;
18 assume { echo1 => o };
19 done

5.4.4. Satisfaction proofs in the strongly correct model
By applying the process of sequential verification, satisfaction obligations for directly connected
processes will already have been generated, as was the case for weak correctness.
This leaves the case of forwarding channels, which (for weak correctness) we dealt with in Sec-

tion 5.3.3 by inserting extra assertions, combined with a call to the forward function. In this case we
would simply assume that the synchronization between the involved processes would be successful.
In the case of strong correctness, we have to verify this as well.
To be more precise, if we are trying to write to (or read from) a channel u, and the success of

that operation may depend on other processes communicating with each other, it must be shown
that the communication between those two processes will eventually result in channel u becoming
available. For example, in the case of the of the prime number sieve of Figure 5.4, the output channel
of sieve will not become available if all numbers presented in its input channel are divisible by the
first number sent to it. In a simpler example:

1 //startup: this => input
2 //ensures[input]: if last input < x then this => input else this => output
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3 //ensures[output]: this => input
4 func filter(x int, input <-chan int, output chan<- int) {
5 for {
6 y := <-input
7 if y >= x { output <- y }
8 }
9 }

10

11 func main() {
12 x, y := make(chan int), make(chan int)
13 //process: gen
14 go generate(2, x)
15 //process: filter
16 go filter(7, x, y)
17 <-y
18 }

In this case, the channel y in the last line only becomes available as soon as the generate process
has sent the number 7 or higher to the filter process. Here, we take generate to be the same as
in Figure 5.4, i.e., it simply emits successive integers, starting at 2. The associated data flow graph
of this situation is as follows:

main()

filter(x,y)

generate(2,x)

x

y

In WhyML we ensure this by simply emulating the communication between gen and filter
element-by-element, in a generated while-loop, right before the statement <-y is to be executed. In
this case, the form of the loop would look as follows:

1 while not (filter => y) do
2 if (gen => x /\ filter => x) then begin
3 x[filter <- gen];
4 assume { postcondition of gen };
5 assert { precondition of filter };
6 assume { postcondition of filter };
7 end;
8 done

We will call this construction the forwarding loop. Clearly, as soon as the loop terminates, we will
have filter => y as a condition, indicated that it is safe to read from channel y, as desired. The
important thing to show about this loop is that it is terminating; which should be done by giving a
variant. In this case, 100 - cursor x would suffice.
Of course, the forwarding loop also requires loop invariants; in this case, at least gen => x ∧

filter => x would be a requirement, in addition to a loop invariant from which it can be deduced
that the gen process will eventually reach the number 7.
The major difference between this process and the one described in Section 5.3.3 is that whereas

earlier, we would insert a check for the forwarding channel once, and simply move the cursor of
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the forwarding channel by an unspecified amount, we now check the communication between the
involved processes one tiny step at a time.
More precisely, we replace the procedure listed on page 61 by the following. Before sending or

receiving a message from within process P over the channel u, which connects to a child process R,
proceed along the following steps:

1. Construct the static data flow graph for the channel operation, and find every forwarding
channel that is relevant to the current operation, exactly as described on page 61.

2. If no forwarding channels are found, stop. Otherwise:

3. Emit a forwarding loop (while not (R => u) do ...).

4. Emit the loop variant and necessary loop invariants. With the exception of the type invariant
for channels, these must be supplied by the user.

5. For every forwarding channel v found, of which process A is responsible for guaranteeing the
availability of the channel for reading, and B is responsible for guaranteeing the same for
writing, emit a conditional statement which:
a) Checks whether the condition A=>v and B=>v holds.
b) If that is the case, executes v[B<-A], followed by the appropriate assumptions and

assertions for the pre- and post-conditions of A and B.

Note that the processes A or B mentioned above may be equal to the current process P , if the
forwarding channel found connects to a requesting process. For example, in the data flow graph
seen on page 52, when generating the forwarding loop for the channel x, A would equal the process
identifier corresponding to echo(x,u), whereas B would be equal to this, since adder is responsible
for guaranteeing that the channel x will be read from.
One large problem of this approach is that the user is required to provide loop invariants and

variant for something which is not present in the original Go program; e.g. in the adder, e.g.:
1 //startup: this => y
2 //ensures[y]: this => x
3 //ensures[x]: this => result
4 //ensures[result]: this => x
5 func adder(x <-chan int, y <-chan int, result chan<- int) {
6 u, v := make(chan int), make(chan int)
7 go echo(x, u)
8 go echo(v, result)
9 //obligation: this => y

10 for {
11 b := <-y
12 //forward[u] variant: cursor u + 1 - cursor x
13 //forward[u] invariant: cursor x <= cursor u
14 //forward[u] obligation: if cursor x < cursor u then this => x else this => y
15 a := <-u
16 v <- a + b
17 }
18 }

In this case, it is not intuitive that anything would even need to be specified, or what to specify.
In many cases, it is probable that much of this can be deduced from the post-conditions of the
channels involved. It would be helpful for any program implementing this translation scheme to
offer some support to the user, or to find a more elegant way of expressing the invariants needed in
the forwarding loop at the Go level.
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5.4.5. Recursion and goroutines
In the prime number example of Figure 5.4, a goroutine launches instances of itself. We have ignored
this until now, but to prevent such a pattern from leading to a runaway creation of processes, an extra
kind of check will be necessary. Luckily, addressing this is very easy, as there are two possibilities:

1. The recursion can be proven to be finite; in this case the user can supply a variant.

2. The recursion may not be finite (as in the case of the prime number sieve). In this case, to
prevent the runaway effect it is sufficient to require that a function interacts with its requesting
process — i.e., sends or receives a message from a channel given to the function as an argument
— before it starts a copy of itself.

This second condition can be verified fully automatically, without requiring an annotation, since
we can simply check whether the cursor of a channel has been moved. This will prevent degenerate
code such as the following:

1 func chain(x chan<- int) {
2 //process: go_chain
3 go chain(x)
4 }

Since it will translate to WhyML as:

1 let chain (x: chan int)
2 = ’Start: init();
3 (* go chain(x) *)
4 let go_chain = any process in
5 ’Entry_go_chain:
6 check { cursor x > at (cursor x) ’Start }

And this final check will obviously fail.

5.4.6. Evaluation: Liveness in the prime number sieve
In Appendix B, we show how liveness annotations can be applied to the concurrent prime number
sieve given earlier. Translating this to WhyML results in around 200 lines of code, and takes about 4
minutes of CPU time to be automatically verified using a combination of CVC3, CVC4 and Alt-Ergo.
In the function main, the forwarding loop for the channel outp was the hardest part to verify.

Obviously we need the fact that there are an infinite number of primes to show that this loop is
terminating, since the sieve function will not produce any output if it no longer receives any unseen
prime numbers. But even then invariants were needed to state ‘obvious’ facts that turned out not
to be so obvious — such as that if an element has been sent by the generate process to the channel
inp, it is not already part of the known history of outp (expressed by the loop invariant on line 68).
Various other invariants have also turned out to be necessary to allow the verification of the

liveness annotations themselves, which were not necessary for verifying weak correctness — this is
similar to the situation where supporting invariants are needed to ensure that an index into an array
is not out of bounds, which may in turn require the proof of other correctness properties.
Such supporting proofs are not optional, as the preconditions of the send and recv functions

require channels to be non-blocking. This may at times hinder developing a proof of a program in an
incremental method. A solution can also be found by taking inspiration from Why3’s array.Array
module: we could introduce a defensive_send and defensive_recv method in the model for Go
channels of Figure 5.5, which do not check the pre-condition, but are stated to throw an exception
in case they may block:
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1 exception Blocked
2

3 val defensive_send (x: ~’a) (q: chan ~’a) (p: process): unit
4 writes { q, p.state }
5 ensures { q = enqueued x (old q) }
6 ensures { handled (old q) }
7 raises { Blocked -> not old (p => q) }

A proof of liveness then simply entails showing that this exception can never occur, for example
by adding a

raises { Blocked -> false }

annotation to a function — but we would now also have the option of simply ignoring the exception.
The code in Appendix C was created by adding the liveness annotations directly to the WhyML

version shown in Section 5.3.4. The amount of effort necessary to produce this verification was about
double that of proving the weak correctness of the prime number sieve; a major influencing factor
in this is that as proofs become more complex, automated provers become less efficient, and the
development cycle becomes slower.
In conclusion, this example on the one hands teaches us that verifying software is hard, and

verifying concurrent software is even harder. But it also shows that the amount of extra work
needed is not necessarily insurmountable: a verification of heapsort also takes a considerable amount
of time. Considering the amount of added non-determinism that can occur in a concurrent program,
the increased amount of annotations needed is actually modest (with the exception of the forward
annotations), and they manage to convey the meaning of the program remarkably well. For example,
the important function sieve has just four pre- and post-conditions; for its input channel, they are:

• If a number has been sent to sieve, then so must all of its divisors greater than or equal to 2:

forall x. mem x src -> 2 <= x /\ forall d. 2 <= d -> divides d x -> mem d src

• If a prime number has been sent to sieve that has not yet been read from its output channel,
then its output channel is safe to read from; otherwise it is ready to accept new inputs.

if exists x. mem x src /\ prime x /\ not mem_add x out (old out)
then this => out else this => src

For its output channel, they are even simpler:

• Numbers sent to the output channel are all prime, and originate from the input channel:

forall x. mem_add x out (old out) -> mem x src /\ prime x

• After reading a single output, writing to the input channel is allowed:

this => src

Which should be easily understandable at a high level, even if someone is not intricately familiar
with all the machinery for verifying these conditions.
Note that the second condition and third conditions in concert imply a stronger result than we

had for the weakly verified prime number sieve, as it is no longer possible for it to ‘skip’ prime
numbers that are sent to it; although this specification still permits for it to repeatedly output the
same prime number. Fixing this last gap would require verification of another post-condition for the
channel out; we leave the exact form that it should take as an exercise to the reader.

75



6. Conclusion
We have reviewed how the Why3 verification platform can be used for various software verification
tasks. In particular, in Chapter 3 we applied it in a manner which it is already well-suited for —
verifying algorithms in a classical, single-thread environment. We verified heapsort, and shown how
WhyML can also be easily used as an intermediate language for the verification of assembly language
programs.
In Chapter 5, we applied Why3 outside its normal application area, by using it to describe a

method for verifying concurrent programs written in Go that use synchronous message passing as
a sole means of communication between processes. If we ignore the possibility of synchronization
issues, such as deadlock or livelock, our method can best be seen as an application of Levin’s [48]
proof technique for CSP programs.
We have investigated how the principle of underspecification (which is natural in Hoare logic)

can also be used to reason about liveness in a concurrent Go program. This method should suffice
for simple programs (which are expected to follow simple concurrency patterns), but can become
laborious when applied to difficult scenarios. Another downside of our method is that the user
needs to be aware of the way the translation operates; particularly in the case where large chains
of communication are involved. As a proof of concept, we have verified a concurrent version of the
Sieve of Eratosthenes, written in Go, and shown which steps were necessary to achieve this result.

6.1. Reliability of automated provers
The Electric Monk was a labour-saving device, like a dishwasher or a video recorder.

Dishwashers washed tedious dishes for you, thus saving you the bother of washing them
yourself, video recorders watched tedious television for you, thus saving you the bother of
looking at it yourself; Electric Monks believed things for you, thus saving you what was
becoming an increasingly onerous task, that of believing all the things the world expected
you to believe. — Douglas Adams, Dirk Gently’s Holistic Detective Agency

An important question in verification of software is the one raised by Pollack [51]: how can we
actually believe that an algorithm verified by a computer is correct? This is more than a purely
philosophical question, especially when using automated provers. Finding assertions and lemmas to
allow something to be proven using Why3 can be done using a somewhat uninformed trial and error
method until one of the theorem provers says that it has found a proof — without stating what it
entails. Often automated provers make short work of theorems that are not at all trivial to perform
by hand, or have difficulty with seemingly obvious facts; perhaps finding complicated proofs.
Making matters even harder are the following observations, encountered during the main research

of this thesis:
Differences between prover versions Newer versions of the same automated theorem prover can

act differently than their predecessor. Why3 even allows us to use different versions in parallel.
This raises the question: what if an older version finds a proof of something, but a newer
version does not? Does that mean we are relying in a soundness bug in the older version?

Differences between runs of the same prover Theorem provers usually require a random seed, which
guides their search for a proof. This means that the time taken to find a proof may vary be-
tween runs, sometimes wildly. This can be a problem for the reproducibility of results obtained
earlier.
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Generation of prover input Why3 has to transform and generate input for the various theorem
provers. This demonstrably contains some bugs. For example, if we define a predicate with
the name equiv, and run the theorem prover Z3, we can see some error messages indicating a
name clash with a built-in symbol. Also, generated Coq files have on occasion contained name
clashes.

Bugs in the WhyML front-end The following program will be verified by Why3 v0.86.3, even though
it appears to reach an unreachable statement (“absurd”):

1 let oops ()
2 = if false then ’A: begin end;
3 absurd

The label ’A in front of the empty statement appears to add an axiom for false to the logical
system, suppressing the generation of verification conditions after the point it occurs. This
bug is unlikely to occur ‘in the wild’ as the use of a label in this case does not make sense; and
its effects are immediately obvious — but still, it is a soundness bug.

The possibility of inconsistencies in a Why3 theory It is easy to introduce new axioms at various
places, using the axiom, val or clone declarations; each of which may introduce an inconsis-
tency. First-order logic is hard, and typo’s are easily made [52]. Ironically, the one sure sign
that a theory we constructed is inconsistent is, of course, that all theorem provers have no
trouble finishing all proof obligations in record time.

Soundness bugs in provers We have encountered one soundness bug in the commonly used Z3 the-
orem prover, version 4.3.2. Undoubtedly, many more exist. While we have not needed Z3
much to verify the results in this thesis, it is likely that Alt-Ergo, CVC3 and CVC4 are equally
susceptible to problems.

The reader with an interest in software verification from solid foundations will at this point feel
somewhat uneasy, and not unjustly so. However, Why3 is a tool which is highly pragmatic in nature;
it can be highly useful in detecting and preventing bugs in software with a much larger accuracy
than software testing. Also, there are several precautions that we can take to bolster our believe in
the correctness proofs that it delivers.
Foremost among these is viewing Why3 as a system in which we can formally specify the condi-

tions for a correctness proof that should also appeal to human understanding. One of the major
appeals of a WhyML annotated programs, as opposed to, say, a Coq proof is that the conceptual
gap between annotated WhyML code and ‘real’ code is much smaller. Ideally, using Why3 can result
in better programs (and better programmers) without getting bogged down by many ‘boring’ indi-
vidual proofs. On the other hand, if one is only interested in the verdict of a system, it is beyond
a doubt that Coq’s “Proof completed” has more authority to it than the list of green check-marks
seen in the Why3 IDE.
Second, bugs in the generation of prover input (or in the provers themselves) can be avoided by

applying as many as possible to every verification condition. If two different automated provers
manage to prove a statement, the chances that this is due to a soundness bug are obviously much
lower than if we had just used one.
Finally, a Why3 user can avoid introducing inconsistent proofs by being diligent. For example,

we have often used Why3’s support for set theory to construct logical objects, instead of defining
them by introducing new axioms. In similar vein, by applying the following set of guidelines, we can
increase our trust in verification using Why3:

• If a theory contains an axiom, this theory should be cloned at least once, where all abstract
symbols get instantiated and all axioms are verified as goals — thus ensuring the satisfiability
and thereby the internal consistency of the theory. Similarly, every time an abstract symbol
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gets instantiated during cloning, all axioms mentioning it should be turned into lemmas in the
clone directive.

• No assume statements should be used, and no any-expressions with an ensures post-condition,
since these allow us to introduce axioms in a WhyML program.

• If an abstract function is defined using val, it should only be used to ‘forward’ an already
existing pure Why function to the WhyML world.

• If Coq is used to discharge proof obligations, the assumptions made in the proof should be
inspected. It is easy to prove false statements using Coq: the admit tactic is part of its feature
set, and Why3 generates many axioms in Coq input files (see page 18).

These checks can in principle be made automatically; we suggest the addition of a why3 lint
command that performs these. Also note that some WhyML constructions given in this thesis
violate some of these criteria; in particular the reachability hack of Section 3.3 would be challenging
to rewrite in a way to make it pass such a why3 lint check.

6.2. Future work
The method in Chapter 5 is necessarily incomplete, due to the limited scope of this research. We
can identify several areas in which further work would be needed to make the contribution of this
thesis practically useful:

• The transformation of Go programs to WhyML code is tedious to do by hand; especially when
also proving liveness of programs. However, the method was designed to be mechanizable. A
program should be developed which actually implements this mechanization. This program
should ideally also try to deduce the liveness annotations necessary.

• Go’s select statement, and programs where a channel can have more than one reader or writer,
are not yet supported. Adding these is unlikely to present insurmountable difficulties.

• Closing channels (using the close built-in) is important for the runtime of Go, as it allows
goroutines that can no longer be communicated with to be garbage collected. Support for
close should be added, in concert with an method to prove that channels that have not been
closed will not leak.

• Support for the non-concurrent fragment of Go is very limited; in particular, we cannot handle
any data type besides int and bool. Structured data types (arrays, slices, structs) and pointers
need to be added. When adding pointers, we should also add a notion of ownership that can
be transferred between processes when a pointer is passed over a channel, and start proving
non-interference properties explicitly using Why3.

• Channels are ordinary data types in Go, and can be passed around freely, which our method
cannot handle. To extend it in this direction could, perhaps, be achieved by ‘linking’ two
channels logically, verifying that the pre- and post-conditions are logically compatible, and
showing the absence of channel aliases.

• A dedicated assertion language for Go would need to be developed for a more seamless inte-
gration between Go and Why3; similar to the ACSL language used by Frama-C/Jessie [22].

It would also be interesting to look at a combination of theorem proving and model checking —
where an automated theorem prover is used to prove the Go program equivalent to some abstract
automaton, which is then proved to be free of deadlocks/livelocks using a model checker.
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6.3. Why verified software?
A common response to proposals for formal verification is a sympathetic, but sceptical one: the
generally held view is still that it is too hard and costs too much time. In the introduction, we
have responded to this by stating that in certain application areas, the certainty provided by formal
methods is still a worthwhile goal.
To see this, let us assume we have a specification for a piece of software. According to it, potential

actions by software can be classified into three categories:

• Actions that the program must not do, for example: “stepping on a brake pedal should not
accelerate a vehicle”.

• Actions a program must do: “stepping on a brake pedal should slow down a vehicle”.

• Actions that the specification does not mention, such as the car radio being tuned to a different
station when the brake pedal is used.

The first is an example of negative correctness. Formal verification is not required to ensure this
kind of behaviour — runtime checks can be used to prevent bad things from happening. For example,
Go checks automatically that array indexes are not out of bounds.
The second case is an example of positive correctness. In these scenarios, runtime checking does

not help. It is no good if the software component responding to the brake pedal keeps aborting
because of a failed run-time check.
The third case illustrates abstraction, and this is in some sense the most important one to consider.

Ultimately, the goal of a specification is to be a useful tool for deciding on the acceptability of a
piece of software; things must be left out for it to be understandable.
Using Why3 allows us to focus on deriving such a specification, instead of on performing all the

proofs in every detail. In the future, by moving towards increasingly higher degrees of automation,
we may end up with with a practical method for formally deducing, given a set of requirements for a
program as a whole, a minimal set of conditions that each component must satisfy — and verification
will be not so much about proving correctness, but more about deriving proper specifications; so
that we can eventually know what the critical software we are relying on is actually up to.
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A. Complexity of heapsort verified using
WhyML

In the following, the Counter module implements the ghost counter as described on page 32, and
the log function is as described in Section 2.3.4.

1 module HeapSort
2

3 use import int.Int
4 use import int.ComputerDivision
5 use import ref.Ref
6 use import array.Array
7 use import array.ArraySwap
8 use import array.ArrayPermut
9 use import Logarithm

10 clone Counter as C
11

12 function parent (pos: int): int = div (pos-1) 2
13

14 predicate heap (a: array int) (start: int) (limit: int) =
15 forall i: int. start <= parent i /\ i < limit -> a[i] <= a[parent i]
16

17 predicate broken_heap (a: array int) (start: int) (limit:int) (hole: int) =
18 (forall i: int. start <= parent i /\ i < limit /\ parent i <> hole -> a[i] <= a[parent i]) /\
19 (forall i: int. start <= parent hole < hole = parent i /\ i < limit -> a[i] <= a[parent hole])
20

21 lemma permut_sub_transitive:
22 forall a b c: array int, l u: int.
23 permut_sub a b l u -> permut_sub b c l u -> permut_sub a c l u
24

25 let push_down (a: array int) (pos: int) (limit: int)
26 requires { 0 <= pos < limit <= length a }
27 requires { broken_heap a pos limit pos }
28 ensures { heap a pos limit }
29 ensures { permut_sub (old a) a pos limit }
30 ensures { !C.count - old !C.count <= 2*log 2 limit }
31 = ’Start:
32 let cur = ref pos in
33 while !cur*2+1 < limit do
34 invariant { pos <= !cur <= limit }
35 invariant { broken_heap a pos limit !cur }
36 invariant { permut_sub (at a ’Start) a pos limit }
37 variant { limit - !cur }
38 invariant { !C.count - at !C.count ’Start <= 2*log 2 (if !cur < limit then !cur+1 else limit) }
39 let child = ref (!cur*2+1) in
40 if !child+1 < limit && C.event (a[!child] < a[!child+1]) then
41 child := !child+1;
42 if C.event (a[!cur] < a[!child]) then begin
43 swap a !cur !child;
44 assert { heap a pos (!cur+1) };
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45 cur := !child;
46 end else
47 cur := limit;
48 done
49

50 let make_heap (a: array int)
51 ensures { heap a 0 (length a) }
52 ensures { permut_all (old a) a }
53 ensures { let n = length a in !C.count - old !C.count <= n*2*log 2 n }
54 = ’Start:
55 for i = div (length a) 2-1 downto 0 do
56 invariant { heap a (i+1) (length a) }
57 invariant { permut_all (at a ’Start) a }
58 invariant { let n = length a in !C.count - at !C.count ’Start <= (n - i - 1) * 2*log 2 n }
59 push_down a i (length a);
60 done
61

62 inductive descendant int int =
63 | Refl: forall n: int. descendant n n
64 | Step: forall p q: int. p <= q /\ descendant p (parent q) -> descendant p q
65

66 lemma descendant_root_order:
67 forall a: array int, pos limit i: int.
68 0 <= pos <= i < limit <= length a -> heap a pos limit -> descendant pos i -> a[pos] >= a[i]
69

70 predicate descendant_of_0 (n: int) = descendant 0 n
71 clone int.Induction with predicate p = descendant_of_0, constant bound = zero
72

73 lemma heap_top:
74 forall a: array int, n m: int. 0 <= m < n <= length a /\ heap a 0 n -> a[0] >= a[m]
75

76 let sort (a: array int)
77 ensures { forall n m: int. 0 <= n <= m < length a -> a[n] <= a[m] }
78 ensures { permut_all (old a) a }
79 ensures { let n = length a in !C.count - old !C.count <= 4*n*log 2 n }
80 = ’Start:
81 make_heap a;
82 ’Loop:
83 for i = length a-1 downto 1 do
84 invariant { forall n m: int. i < n <= m < length a -> a[n] <= a[m] }
85 invariant { forall n m: int. 0 <= n <= i < m < length a -> a[n] <= a[m] }
86 invariant { heap a 0 (i+1) }
87 invariant { permut_all (at a ’Start) a }
88 invariant { let n = length a in !C.count - at !C.count ’Loop <= (n - i - 1) * 2*log 2 n }
89 swap a 0 i;
90 assert { forall n: int. 0 <= n < i -> a[n] <= a[i] };
91 push_down a 0 i;
92 assert { forall n: int. 0 <= n < i -> a[n] <= a[i] };
93 done
94

95 end
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B. Concurrent prime number sieve in Go,
with liveness annotations

1 package main
2

3 import "fmt"
4

5 //requires: cursor out = 0
6 //startup: this => out
7 //ensures[out]: forall x. init <= x < cursor out + init <-> mem x out
8 //ensures[out]: forall i. 0 <= i < cursor out -> out[i] = init+i
9 //ensures[out]: this => out

10 func generate(init int, out chan<- int) {
11 x := init
12 //invariant: forall x: int. init <= x < cursor out + init <-> mem x out
13 //invariant: forall i. 0 <= i < cursor out -> out[i] = init+i
14 //invariant: cursor out + init = !x
15 //obligation: this => out
16 for {
17 out <- x
18 x++
19 }
20 }
21

22 //requires: cursor src = 0
23 //startup: this => src
24 //requires[src]: forall x. mem x src -> 2 <= x /\ forall d. 2 <= d -> divides d x -> mem d src
25 //ensures[src]: if exists x. mem x src /\ prime x /\ not mem_add x out (old out)
26 // then this => out else this => src
27 //ensures[out]: forall x. mem_add x out (old out) -> mem x src /\ prime x
28 //ensures[out]: this => src
29 func sieve(src <-chan int, out chan<- int) {
30 p := <-src
31 out <- p
32 filt := make(chan int)
33 go sieve(filt, out) //process: go_sieve
34 //invariant: forall x. mem x src /\ not (divides !p x) <-> mem x filt
35 //invariant: mem_add !p out (old out)
36 //invariant: if exists x. mem x filt /\ prime x /\ not mem_add x out (at out ’go_sieve)
37 // then go_sieve => out else go_sieve => filt
38 //obligation: this => src
39 //obligation: (exists x. mem x src /\ prime x /\ not mem_add x out (old out)) -> this => out
40 for {
41 n := <-src
42 if n%p != 0 {
43 //assert: forall x. mem x src /\ not (divides !p x) /\ x <> !n -> mem x filt
44 //forward[filt] invariant: mem_add !p out (old out)
45 //forward[filt] invariant: go_sieve => filt \/ go_sieve => out
46 //forward[filt] invariant: go_sieve => filt \/ pre (cursor out)+1 >= cursor out
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47 //forward[filt] variant: pre (cursor out)+1 - cursor out
48 //forward[filt] obligation: this => src
49 //forward[filt] obligation: (exists x. mem x src /\ mem x prime /\
50 // not mem_add x out (old out)) -> this => out
51 filt <- n
52 }
53 }
54 }
55

56 func main() {
57 outp := make(chan int)
58 inp := make(chan int)
59 go sieve(inp, outp) //process: go_sieve
60 go generate(2, inp) //process: go_generate
61 //invariant: go_generate => inp /\ go_sieve => inp
62 //invariant: forall x. mem x outp -> mem x inp
63 for {
64 //forward[outp] invariant: go_generate => inp
65 //forward[outp] invariant: go_sieve => inp \/ go_sieve => outp
66 //forward[outp] invariant: forall x. mem x outp -> mem x inp
67 //forward[outp] invariant: cursor inp >= pre (cursor inp)
68 //forward[outp] invariant:
69 // (cursor inp > pre (cursor inp) -> not mem (last inp) outp) &&
70 // (go_sieve => outp \/ last inp < pre (some_larger_prime (last inp)))
71 //forward[filt] variant: pre (some_larger_prime (last inp)) - cursor inp
72 n := <-outp
73 //check: prime !n
74 fmt.Println(n)
75 }
76 }
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C. WhyML model of the concurrent prime
number sieve with liveness annotations

1 module PrimeNumberSieve
2

3 use import ref.Ref
4 use import int.Int
5 use import int.ComputerDivision
6 use import chan.Chan as P
7 use import chan.Mem
8

9 use import number.Divisibility
10 use import number.Prime
11

12 predicate generate_go_pre (ready: process) (init: int) (out: chan int)
13 = cursor out = 0
14 predicate generate_go_post (ready: process) (init: int) (out: chan int)
15 = ready => out
16 predicate generate_post (ready: process) (init: int) (out: chan int)
17 = (forall x: int. init <= x < cursor out+init <-> mem x out) /\
18 (forall i. 0 <= i < cursor out -> out[i] = init+i) /\
19 ready => out
20

21 let generate (init: int) (out: chan int): unit
22 requires { generate_go_pre this init out }
23 diverges
24 = P.init();
25 P.oblige (any bool ensures { result <-> handled out });
26 responsible out;
27 assert { "expl:goroutine postcondition" generate_go_post this init out };
28 let x = ref init in
29 while true do
30 invariant { "expl:type invariant preservation" 0 <= cursor out }
31 invariant { forall x: int. init <= x < cursor out+init <-> mem x out }
32 invariant { forall i. 0 <= i < cursor out -> out[i] = init+i }
33 invariant { cursor out+init = !x }
34 invariant { ?obligation <-> handled out }
35 ’Begin:
36 responsible out;
37 send !x out this;
38 check { "expl: obligations met" ?obligation };
39 P.oblige (any bool ensures { result <-> handled out });
40 responsible out;
41 assert { "expl:channel postcondition" generate_post this init out };
42 x := !x+1;
43 check { "expl:conditional variant decrease"
44 not (at ?obligation) ’Begin ->
45 0 <= at (0) ’Begin /\ (0) < at (0) ’Begin
46 };
47 done;
48 check { "expl: obligations met" ?obligation }
49

50 predicate sieve_go_pre (ready: process) (src: chan int) (out: chan int)
51 = cursor src = 0
52 predicate sieve_go_post (ready: process) (src: chan int) (out: chan int)
53 = ready => src
54 predicate sieve_pre_1 (ready: process) (src: chan int) (out: chan int) (old_out: chan int)
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55 = forall x: int. mem x src -> 2 <= x /\ forall d: int. 2 <= d -> divides d x -> mem d src
56 predicate sieve_post_1 (ready: process) (src: chan int) (out: chan int) (old_out: chan int)
57 = (if exists x: int. mem x src /\ prime x /\ not mem_add x out old_out then ready => out else ready => src)
58 predicate sieve_post_2 (ready: process) (src: chan int) (out: chan int) (old_out: chan int)
59 = (forall x: int. mem_add x out old_out -> mem x src /\ prime x) /\
60 ready => src
61

62 meta "rewrite_def" predicate sieve_pre_1
63 meta "rewrite_def" predicate sieve_post_2
64

65 let sieve (src: chan int) (out: chan int): unit
66 requires { sieve_go_pre this src out }
67 diverges
68 = ’Start:
69 P.init();
70 P.oblige (any bool ensures { result <-> handled src });
71 responsible src;
72 responsible out;
73 assert { "expl:goroutine postcondition" sieve_go_post this src out };
74

75 responsible src;
76 responsible out;
77 let p = ref (recv src this) in
78 check { "expl: obligations met" ?obligation };
79

80 P.oblige (any bool ensures { result <-> handled out });
81 responsible src;
82 responsible out;
83 assume { "expl:channel precondition" sieve_pre_1 this src out (at out ’Start) };
84 assert { "expl:channel postcondition" sieve_post_1 this src out (at out ’Start) };
85

86 responsible src;
87 responsible out;
88 send !p out this;
89 check { "expl: obligations met" ?obligation };
90 P.oblige (any bool ensures { result <-> handled src });
91 responsible src;
92 responsible out;
93 assert { "expl:channel postcondition" sieve_post_2 this src out (at out ’Start) };
94

95 let filt = make(): chan int in
96 let go_sieve = any process in
97 check { "expl:recursion safety" cursor src > at (cursor src) ’Start \/ cursor out > at (cursor out) ’Start };
98 assert { "expl:goroutine precondition" sieve_go_pre go_sieve filt out };
99 assume { "expl:goroutine postcondition" sieve_go_post go_sieve filt out };

100 ’Entry_sieve:
101 while true do
102 invariant { "expl:type invariant preservation" 0 <= cursor src /\ 0 <= cursor out /\ 0 <= cursor filt }
103 invariant { forall x: int. mem x src /\ not (divides !p x) <-> mem x filt }
104 invariant { mem_add !p out (at out ’Start) }
105 invariant { if exists x: int. mem x filt /\ prime x /\ not mem_add x out (at out ’Entry_sieve)
106 then go_sieve => out else go_sieve => filt }
107 invariant { ?obligation <-> handled src /\ ((exists x: int. mem x src /\ prime x /\
108 not mem_add x out (at out ’Start)) -> handled out) }
109 ’Begin:
110 delegated go_sieve out;
111 responsible src;
112 let n = ref (recv src this) in
113 check { "expl: obligations met" ?obligation };
114

115 P.oblige (any bool ensures { result <-> handled src });
116 P.oblige (any bool ensures { result <-> (exists x: int. mem x src /\ prime x /\
117 not mem_add x out (at out ’Start)) -> handled out });
118 delegated go_sieve out;
119 responsible src;
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120 assume { "expl:channel precondition" sieve_pre_1 this src out (at out ’Start) };
121 assert { "expl:channel postcondition" sieve_post_1 this src out (at out ’Start) };
122

123 if (mod !n !p <> 0) then begin
124 assert { forall x. mem x src /\ not (divides !p x) /\ x <> !n -> mem x filt };
125

126 ’Fwd:
127 while not any bool ensures { result <-> go_sieve => filt } do
128 invariant { "expl:type invariant preservation" 0 <= cursor out /\ 0 <= cursor src /\ 0 <= cursor filt }
129 invariant { mem_add !p out (at out ’Start) }
130 invariant { ?obligation <-> handled src /\ ((exists x: int. mem x src /\ prime x /\
131 not mem_add x out (at out ’Start))-> handled out) }
132 invariant { go_sieve => filt \/ go_sieve => out }
133 invariant { go_sieve => filt \/ at (cursor out) ’Fwd+1 >= cursor out }
134 variant { at (cursor out) ’Fwd+1 - cursor out }
135 delegated go_sieve out;
136 responsible src;
137 out[this <- go_sieve];
138

139 P.oblige (any bool ensures { result <-> (exists x: int. mem x src /\ prime x /\
140 not mem_add x out (at out ’Start)) -> handled out });
141 delegated go_sieve out;
142 responsible src;
143 assume { "expl:channel postcondition" sieve_post_2 go_sieve filt out (at out ’Entry_sieve) };
144 assert { "expl:channel postcondition" sieve_post_2 this src out (at out ’Start) };
145 done;
146

147 send !n filt go_sieve;
148 assert { "expl:channel precondition" sieve_pre_1 go_sieve filt out (at out ’Entry_sieve) };
149 assume { "expl:channel postcondition" sieve_post_1 go_sieve filt out (at out ’Entry_sieve) };
150 end;
151 check { "expl:conditional variant decrease"
152 not (at ?obligation) ’Begin ->
153 0 <= at (0) ’Begin /\ (0) < at (0) ’Begin
154 };
155 done;
156 check { "expl:obligations met" ?obligation }
157

158 use import infprime.InfinitePrimes
159

160 let main (): unit
161 diverges
162 = let outp = make(): chan int in
163 let inp = make(): chan int in
164 let go_sieve = any process in
165 assert { "expl:goroutine precondition" sieve_go_pre go_sieve inp outp };
166 assume { "expl:goroutine postcondition" sieve_go_post go_sieve inp outp };
167 ’Entry_sieve:
168 let go_generate = any process in
169 assert { "expl:goroutine precondition" generate_go_pre go_generate 2 inp };
170 assume { "expl:goroutine postcondition" generate_go_post go_generate 2 inp };
171 while true do
172 invariant { "expl:type invariant preservation" 0 <= cursor inp /\ 0 <= cursor outp }
173 invariant { go_generate => inp /\ go_sieve => inp }
174 invariant { forall x. mem x outp -> mem x inp }
175

176 ’Fwd:
177 while not any bool ensures { result <-> go_sieve => outp } do
178 invariant { "expl:type invariant preservation" 0 <= cursor inp /\ 0 <= cursor outp }
179 invariant { go_generate => inp /\ (go_sieve => inp \/ go_sieve => outp) }
180 invariant { forall x. mem x outp -> mem x inp }
181 invariant { cursor inp >= at (cursor inp) ’Fwd }
182 invariant { (cursor inp > at (cursor inp) ’Fwd -> not mem inp[cursor inp-1] outp) &&
183 (go_sieve => outp \/ inp[cursor inp-1] < at (some_larger_prime inp[cursor inp-1]) ’Fwd) }
184 variant { at (some_larger_prime inp[cursor inp-1]) ’Fwd - cursor inp }
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185 ’Begin:
186 inp[go_sieve <- go_generate];
187 assume { "expl:channel postcondition" generate_post go_generate 2 inp };
188 assert { "expl:channel precondition" sieve_pre_1 go_sieve inp outp (at outp ’Entry_sieve) };
189 assume { "expl:channel postcondition" sieve_post_1 go_sieve inp outp (at outp ’Entry_sieve) };
190 done;
191

192 let n = ref (recv outp go_sieve) in
193 assume { "expl:channel postcondition" sieve_post_2 go_sieve inp outp (at outp ’Entry_sieve) };
194 check { prime !n };
195 done
196

197 end
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