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Abstract

In the last few years, end-to-end models have become state-of-
the-art for performing automatic speech recognition. In partic-
ular, Transformer-based models, such as Wav2vec 2.0, perform
significantly better than hybrid models. However, these models
still work as a black box and are difficult to interpret.

In this research project, we have investigated how the Wav2vec
2.0 model responds to literal changes in CVC words. We created
a dataset consisting of CVC words that were recorded by a male
and a female speaker. From this dataset, we extracted all mini-
mal pairs and fed those words pairwise to the Wav2vec 2.0 model.
Using the hidden vectors of the hidden Transformer layers, we
calculated the cosine similarity at each layer between the hidden
activations. We have found that changing a character mainly af-
fects layers in the front of the Wav2vec 2.0 network. Later in the
network, the layers turned out to be less susceptible to a changing
character. Another outcome of our research is that changing a
character at one of the outer positions causes a larger drop in co-
sine similarity than changing the inner character of a CVC word.
We also found that these effects occur with different speakers,
and also with and without using a carrier phrase to initialise the
model.
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Chapter 1

Introduction

In the last few years, artificial intelligence and machine learning have re-
ceived a great amount of interest from both the research community and
the industry and end users. Many applications can now be solved by mod-
ern models trained on massive amounts of data. One of the foundations of
the success of these models is the introduction of the Transformer model by
Vaswani et al. in [1]. This new architecture enabled machine learning engi-
neers to create models that take into account more long-term dependencies,
while at the same time improving training performance. This resulted in
new state-of-the-art models in many domains.

1.1 End-to-end ASR models

In the domain of automatic speech recognition (ASR), the field is moving
away from hybrid modelling models to end-to-end (E2E) models. As de-
scribed by Li et al. in [2], the E2E models offer some significant advantages
compared to traditional hybrid methods. First and foremost, E2E models
consist of only one single function responsible for the complete processing
from audio to a sequence of text. Originally, hybrid models had many differ-
ent separated parts, each doing a small function in the whole pipeline. This
paradigm change greatly simplified ASR models, while also making them
easier to develop, implement, and maintain. Furthermore, E2E models typ-
ically perform better than hybrid models, both in research and in real-world
applications.

The currently best performing E2E ASR models also are based on a
Transformer-style architecture. As noted by Li et al. in [2] and Mehrish
et al. in [3], Transformer-based models outperform RNN- and LSTM-based
models. However, both research papers point to the various challenges faced
with such E2E models. It turns out that speaker adaptation and domain
adaptation are challenges because models tend to perform worse on data
with different characteristics than the data on which they were trained.

3



Also, because Transformers were initially designed to handle textual
data, Transformers expect sequential text data with clearly separated to-
kens. With speech data, the data is continuous in the time dimension, and
inherently there is no clear separation between tokens as words and phones
naturally flow over in each other. Therefore, additional measures must be
taken in the design of an E2E network to overcome this problem.

Another aspect is the large variety that can exist in speech data. In
contrast to textual data, the same token can be expressed in many different
ways. For example, tokens can be pronounced differently by different speak-
ers or spoken at different speeds. These aspects require ASR models to be
invariant for different speakers and small variations in linguistic features.

1.2 Explainable AI

Although E2E models currently are state-of-the-art, many E2E models also
work as a black box. This black box problem has started to become a major
challenge, since E2E models based on artificial neural networks outperform
rule-based models from the past. As discussed in the literature (e.g. [4], [5],
[6], [7]), the explainability of AI models is an important topic that receives a
lot of attention from the research community. Many research papers describe
the definition of explainable AI and what it entails. Also, the importance of
explainable AI, and in some domains the legal requirements for explainable
AI, is a recurring theme throughout the literature.

Zhang et al. in [7] describe three dimensions in which the interpretability
of an AI model can be defined. First, they distinguish active methods from
passive methods. Second, they suggest four formats that can be used to
explain a model. Third, they define an ordinal scale to specify how broad
an explanation is. For example, does the explanation give insight into one
training example or does it describe a high-level characteristic that applies
to the model as a whole? We take this taxonomy as a basis to describe our
approach.

1.3 Wav2vec 2.0

Baevski et al. introduced the Wav2vec 2.0 model in 2020 [8]. This model
has a Transformer-based architecture, combined with a Convolutional fea-
ture encoder followed by the Transformer layers. The model has been pre-
trained with unlabelled data where parts of the input are masked at the level
of the feature encoder. After pre-training, the model is fine-tuned for speech
recognition with the Librispeech and TIMIT datasets. The authors show
that the Wav2vec 2.0 model achieves state-of-the-art performance while us-
ing 100 times less labelled data.
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In our research, we are interested in the hidden Transformer layers of the
Wav2vec 2.0 model. We have chosen to use the Wav2vec 2.0 model because
it showed good performance when we started with our research project, and
because the model is fully open source and freely available. We try to find
out how the model responds to small changes in the input that are clear to a
human listener but can be very subtle for an artificial model. To do this, we
will look at the Transformer layers and see what patterns we can find in the
internal activations of these layers at different depths. For example, if two
words are very similar to each other and only differ in one phone, somewhere
the model should find which phone is different and how it should be encoded
into text. Following the taxonomy defined by Zhang et al. in [7], we use a
passive method to interpret the hidden semantics of the Wav2vec 2.0 model
with global interpretability. In chapter 3, we will discuss our method in more
detail. In conclusion, the main research question for this research project is:

• To what extent differ activation patterns through the hidden layers of
Wav2vec 2.0 for words that are different in one character?

To answer the main research question, various sub questions need to be
answered:

• How to create a suitable dataset of words that differ only in one charac-
ter (minimal pairs) that can be used to trigger predictable activations
in the Wav2vec 2.0 model? For example, word pairs like (mum, mam).

• How to measure the similarity between internal activations of the
Transformer layers?

• How can we analyse how the internal activations are affected by min-
imal pairs, based on the similarity of those activations at a certain
layer?
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Chapter 2

Related Work

In the literature, many research papers can be found that investigated how
machine learning models generate their answers. In the last few years, sur-
veys have been done in [4], [5], [9], [10], [6], and [7]. A common theme
throughout these research papers is the discussion of the importance of ex-
plainable AI. For example, Arrieta et al. in [6] surveyed the literature on
methods to explain and interpret different kinds of machine learning mod-
els. They also describe six higher-level principles for explainable AI: fairness,
privacy, accountability, ethics, transparency, and security/safety.

In addition to a better interpretation of the model, knowledge about the
interpretation of a model can also be used in the development of new models.
For example, one use case is to adapt a model to other tasks than what it
was originally trained on. Knowledge of the internal layers of a network can
then be useful in determining whether the complete network is needed or if a
part of the network is sufficient. Sharif Razavian et al. in [11] and Yosinski
et al. in [12] discuss this transferability of layers in Convolutional Neural
Networks. Both research papers conclude that trained models for one task
can be useful for training a model in another task. They found that the first
layers in a network capture general features that are not necessarily specific
to one task. Even in tasks that are very different from the original task, the
authors found a benefit from transferring parts of a model. They describe
that using trained model weights from a different task yields better results
than starting with randomly initialised model weights.

2.1 Phonetics in E2E models

Before the rise of end-to-end ASR models, explicit training data about the
phonetics of a language was used to train ASR models. Because E2E mod-
els are trained in an unsupervised manner without explicit phonetic data,
many research projects have been carried out to investigate how E2E ASR
models learn to capture phonetic information. Studies like [13] and [14] have
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investigated (among others) how different hidden layers in a model help to
find phonetic features in an audio fragment.

Belinkov et al. in [13] used a supervised classifier to predict phone labels
from different hidden layers in the DeepSpeech2 E2E model. The authors
found significant changes in accuracy throughout the network, with spikes
after the first convolutional layer and in the final recurrent layers. Nagamine
et al. analysed how nodes of hidden layers in a deep neural network respond
to different phonetic features. They found that both individual nodes and
groups of nodes respond to different phonetic features. Another interesting
finding is that errors made by the deep neural network often occur with
phonemes that share the same phonetic features, similar to mistakes that a
human would make.

Li et al. in [15] also investigated the behaviour in different hidden layers
by erasing parts of the representation. The authors set parts of the input
word representations to 0, or in other experiments set parts of the hidden
representations to 0. If the authors then observe a decrease in performance,
they can conclude that their change was at an important point in the repre-
sentation. If the output gets better, then it is a sign that the change was at
a point where the model pays too much attention. By applying this method
at different places in the model, the authors can give an explanation for
many aspects that are important for ASR. The authors conclude that their
findings provide an efficient and generally applicable tool that can be used
to interpret and explain models based on neural networks.

2.2 Transformer-based models

In 2022, English et al. in [16] researched the hidden layers in the Wav2vec
2.0 model. They focused on the Transformers within the model and per-
formed probing experiments on each of the Transformer layers. To do these
experiments, they trained 12 multi-layer perceptron models as probing clas-
sifiers that were used to predict phoneme labels from the TIMIT dataset.
The goal of their research was to find out how the hidden layers of the net-
work respond to different phonetic categories. The authors found that the
Transformer layers can catch relevant phonetic details, and that layers at
different depths behave differently for similar-sounding phones.

Ma et al. in [17] investigated to which extent pre-trained models such as
wav2vec and DeCoAR are able to capture phonetic properties. They per-
formed probing experiments on the output layer of a model with five different
tasks: speech activity detection, sonorant detection, vowel detection, frica-
tive detection, and phone classification. The authors found that pre-trained
models are able to represent detailed phonetic information, outperforming
established methods that use MFCCs to represent the raw audio.

In contrast to the experiments in [17], Li et al. in [18] researched the
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hidden representations of E2E ASR models. They used two LSTM-based
ASR architectures, VGG-LSTM and pure-LSTM, to probe the hidden layers.
In their experiments, the output of each hidden layer was extracted from the
model. The extracted hidden representation was fed to an evaluation model
to reconstruct the detected speech at that specific layer. The result was
then compared with the original input. The authors found that layers near
the output layer of the network produce more abstract representations than
layers near the raw audio input. For example, background noise appears to
be removed early on in the models. The authors conclude that their results
are consistent with the existing literature, showing that their approach of
reconstructing the speech from hidden layers is sound.

In [19], Shah et al. studied the hidden representations of the transformer
layers in Wav2vec 2.0 and Mockingjay. The authors performed probing ex-
periments for three different categories of features: audio, fluency, and pro-
nunciation. The models were tested with three different kinds of speech
types that differ in quality and spontaneity. Their results show that both
Wav2vec 2.0 and Mockingjay have their own patterns across their hidden lay-
ers. It also differs per feature category, and even individual features behave
in interesting patterns throughout the network. In many of the experiments,
the results show that the last hidden layer does not perform better than all
of the previous layers. Often, the best performance is achieved by layers in
the second half of the network.
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Chapter 3

Method

In our research, we will investigate where the hidden activations in the
Wav2vec 2.0 model change when we change a character in a word. To do this,
we have designed an experiment in which we will compare the activations
of the hidden layers for pairs of input tokens.

To be able to relate a change in the input word tokens to a change in the
hidden layers, we need a pair of words to have some amount of overlap. If a
pair consists of two identical word tokens and the audio files are completely
identical,the network will show the same activations for both tokens. When
two completely different tokens are fed to the network, the activations will
also be very different from each other. Therefore, to be able to relate a
change in the input tokens to differences in the activations, we will only use
pairs of words that differ by exactly one character.

To ensure that the results of different pairs can be compared with each
other, we will only use input tokens that have a fixed number of charac-
ters and follow a pre-defined pattern. This ensures that any differences in
activations are caused by the character that has changed.

Figure 3.1 visually shows our experimental setup with the Wav2vec 2.0
model. In this chapter, we discuss the complete pipeline in more detail.
First, we discuss the dataset that we will use and how it has been generated.
Second, we discuss how we compare tokens with each other and hidden
activations of the Wav2vec 2.0 model. Third, we discuss how we quantify the
results and how we have prepared our experiments with a pilot experiment.

All experiments were performed with Python 3.10. The code and the
full list of words in the dataset can be found in our accompanying GitHub
repository 1.

1https://github.com/mtkweb/master-thesis
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Figure 3.1: Schematic overview of the Wav2vec 2.0 model and comparing
two words by calculating the cosine similarity at each layer. This figure
shows one time step of the Wav2vec 2.0 model. The cosine similarities are
calculated for all time steps in the alignment of the two words.
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3.1 Dataset

We have recorded a custom dataset for our research. By doing so, we
were able to exactly match the needs of our research and ensure the qual-
ity of the data. Our dataset consists of audio recordings of words follow-
ing the consonant-vowel-consonant pattern (CVC words) based on the set
C = {f, k,m, n, p, s, t} for the consonants and the set V = {a, e, i, o, u} for
the vowel. This results in a dataset of 245 unique three-letter word types
in total. These word types may or may not be existing words, for example,
some word types from the dataset are fat, nef, sum.

To obtain a correct recording for each word, we recorded each word
four times. The words were recorded in groups of four words plus one
extra redundant word. These list-final redundant words were omitted from
our analysis to avoid typical end-of-list intonation patterns playing a role
in the words’ make-up. From the first four recordings, we calculate the
average duration and use the recording closest to the average duration in
our experiments. This prevents slow or fast recordings from being used in
the experiments and ensures that the experiments are based on the most
accurate recordings available in the dataset. The whole recording process
has been done twice, both by a male speaker and by a female speaker.

The words were recorded using a Shure SM58 microphone and a Focusrite
Scarlett 2i2 audio interface with a sample rate of 16 kHz. The raw audio
files that were recorded were split using the Pydub library [20], based on
the silence between the word tokens. In total, our dataset consists of 1225
recorded audio fragments, each containing exactly one word token.

In addition, we also recorded a carrier phrase. We will use this carrier
phrase in some of our experiments preceding the word recording. This au-
dio concatenation results in a longer recording that helps to initialise the
Wav2vec 2.0 model. Both speakers recorded the same carrier phrase ’The
next word is’. During the experiment, we prepend the carrier phrase to the
recording and feed the resulting audio fragment to the model. With this, we
make sure that a recording always is preceded by the carrier phrase from the
same speaker. When analysing the hidden layers, we remove a fixed number
of time steps equal to the length of the carrier phrase from the model’s out-
put. This ensures that we only analyse the activations for the word itself.
Because the carrier phrase always has a fixed length, the number of time
steps removed will be the same throughout the experiment.

3.2 Comparing two words

As discussed earlier, we only compare pairs of words that differ by exactly
one character (minimal pairs). Formally stated, this entails all pairs of words
of which the Hamming distance in spelling is 1 [21]. Because all words in
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our dataset have a fixed length of three characters, we can distinguish three
cases. The words within a pair differ at the first, second, or third character,
respectively. In the Results chapter, we will distinguish these cases with
separate plot lines. With 245 unique word types in our dataset, we get 1960
minimal pairs.

3.2.1 Dynamic Time Warping

Although all words have a fixed length of 3, the lengths of the audio frag-
ments differ because the time required to pronounce a phone differs per
phone. For our research, we are interested in comparing the activations of
the hidden layers at time t1 in word A with the activations at time t2 in word
B, such that t1 and t2 are at the same relative moment within their word.
Therefore, we calculate the best alignment of two words before comparing
the activations of the hidden layers.

For example, the words sof and tof differ by the first character. In this
case, there is also a clear difference in the time required to pronounce the
’s’ character versus the ’t’ character. Figure 3.2 shows how the recordings
of these words can be aligned. The plot clearly shows a different alignment
at the beginning of the recordings compared to the rest of the recordings.

For each pair of word tokens, we calculate this alignment once, based on
the activations of the feature vector layer (layer 0). We will then use this
alignment to compare the activations of the other layers with each other.

To find the best alignment, we use Dynamic Time Warping (DTW), as
implemented in the dtw Python package [22]. DTW is a technique to align
two temporal sequences that have a different speed such that the start and
end of both words are aligned exactly and that the path in between is con-
tinuous and does not go back in time. Its application in speech recognition
was first researched in the 1970s by Sakoe et al. in [23].

As a cost function for the DTW algorithm, we use the similarity of the
feature vectors generated by the convolutional layers in the Wav2vec 2.0
model. As shown in figure 3.1, this is the first layer of the Wav2vec 2.0
model. In the next section, we will discuss the similarity calculation of
vectors in more detail.

3.2.2 Similarity of vectors

In our research, we use the base model of Wav2vec 2.0 . This model contains
12 transformer blocks, each having a model dimension of 768. Figure 3.1 also
shows a schematic overview of the Wav2vec 2.0 model and its Transformer
layers. Including the first feature encoding layer of the model, this gives
us 13 768-dimensional vectors at each time step. With the calculations of
the DTW algorithm, we can determine which time steps of two recordings
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Figure 3.2: Plot of the alignment between the words sof (Query index) and
tof (Reference index). The plot shows both waveforms of the recordings,
and the best alignment between them, based on the feature vector layer
of the Wav2vec 2.0 model. Both axes show the number of samples in the
recording.

should be compared with each other. This comparison consists of calculating
the similarity of the vectors at each of the transformer layers.

As a similarity measure, we use the cosine similarity. The cosine simi-
larity quantifies the similarity by the cosine of the angles between the two
vectors. The equation for the cosine similarity is shown in equation 3.1.
Because the cosine similarity is equal to 1 for vectors pointing in the same
direction, we can verify our process by making a comparison between the
activations of two model predictions of the same audio fragment. Because
the audio data is identical throughout the comparison, the activations will
be equal, and therefore the cosine similarity will always be equal to 1.

cosine similarity(A,B) =
A ·B

∥A∥ · ∥B∥
(3.1)

To further test the suitability of using the cosine similarity, we performed
a test comparison between two identical audio fragments but changed the
amplitude of one of them to half the original amplitude. This difference in
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amplitude does not change the phonetic content of the recording, and it turns
out that the cosine similarities still remained equal to 1 in all layers. From
this and based on the fact that the model normalises the raw waveform [8],
we conclude that the convolution layer in front of the Transformer layers
filters out this difference when using the cosine similarity as a similarity
measure. This ensures our idea to use the cosine similarity to determine to
what extent two vectors represent the same token.

In addition to using cosine similarity, there are other mathematical ways
to compare two vectors. For example, the dot product and the Euclidean
distance could be used. However, contrary to the cosine similarities, these
measures also take into account the length of the vectors. While on itself this
can give useful information about the model, it does make it more difficult to
compare the similarity across multiple layers. We assume that the length of
the activation vectors may vary between layers. Therefore, the dot product
or Euclidean distance also gets a different range. Using the cosine similarity
is therefore favourable, since it gives a fixed reference for similar vectors
(namely a similarity of 1).

3.3 Quantifying a comparison

Now that we can measure to which extent vectors are similar, we need a
method to measure how much a comparison has a valley, at which relative
position that valley occurs, and to which extent the cosine similarities vary.
To measure these aspects, we extract three metrics for each layer for each
comparison we make.

3.3.1 Valley position

We expect the position of the valley to depend on the position of the charac-
ter that is different within a comparison. For example, if we compare again
the words sof and tof, we expect to see a valley in the cosine similarity plot
near t = 0. Figure 3.3 shows this comparison. We quantify the position
of the valley by applying the argmin function to all cosine similarities at
each layer. For each comparison between two words, this gives us 13 values
(the feature vector layer plus 12 transformer layers) that represent where
the smallest cosine similarity occurs at a certain layer.

3.3.2 Depth of the valley

Besides the relative position of the valley, we are also interested in the depth
of the valley. A large depth implies a low cosine similarity at the deepest
point in the valley. This means that at that point in time, the Wav2vec
2.0 model generates very different activations at a layer. We measure this
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Figure 3.3: Plot of the cosine similarity at the feature vector layer between
the words sof and tof. The x-axis shows the time normalized from 0 to 1,
and the y-axis shows the cosine similarity.

aspect by simply applying the min function to all cosine similarities at each
layer. This also gives us 13 values.

3.3.3 Standard deviation of the cosine similarity

Thirdly, we investigate the spread of the cosine similarity values by cal-
culating the standard deviation. We expect the standard deviation to be
independent of where exactly the valley occurs. This would indicate that
the results are consistent across all word pairs for the regions of the valleys,
as well as for the regions outside the valleys.

3.4 Pilot experiment

To test the feasibility of our method, we performed a pilot experiment be-
fore starting with the complete dataset and the entire pipeline. We first cre-
ated a small dataset with 3-character words following the consonant-vowel-
consonant pattern using these characters: {n,m}{a,i}{n,m}. This resulted
in a dataset of 8 words. We recorded the pronunciation of these words and
fed the audio fragments to the base Wav2vec 2.0 model. Then, we extracted
the activations of the hidden layers of the model and compared the vector
sequences throughout the duration of the audio fragment with the vector
sequences of the same layers for another similar-sounding word.

To compare two vectors, we calculated the cosine similarity between the
two vectors. Each vector in a sequence is compared with each other vector
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in the other sequence. This results in a two-dimensional matrix of cosine
similarities. The high values in this matrix indicate where the sequences
match best and to which extent they match. From this, one can find the
best alignment between the two vectors. Table A in Appendix A shows the
similarities for two pairs of similar-sounding words at four different layers in
the network, plotted as heatmaps.

The heatmaps clearly show some interesting patterns. The heatmaps
from layer 4 and layer 7 do not have clear differences that indicate what the
phonetic difference is between the compared words. Later in the network,
layer 11 apparently clearly shows which phone is different. Interestingly,
this information is not visible anymore in the final layer, which seems to do
some form of encoding of the phones that were found.
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Chapter 4

Results

In this chapter, we present the results of our experiments. First, we will
present the empirical results of the cosine similarities throughout the du-
ration of a word comparison. In section 4.2, we will show more high-level
results, aggregated from the raw comparison data based on cosine similari-
ties. We will only show the most important plots in this chapter. All other
plots can be found in Appendix B.

4.1 Cosine similarities between words

4.1.1 Timestamp of minimum cosine similarity

With the cosine similarities between each minimal pair of words, we cal-
culate three metrics: the timestamp of the minimum cosine similarity, the
cosine similarity at that timestamp, and the standard deviation of all cosine
similarities in a comparison of two words.

Table 4.1 shows the results at each layer of the timestamp of the mini-
mum cosine similarity based on the recordings of the male speaker, without
carrier phrase. Because the audio fragments are different in length, we have
normalised the timestamps so that all the audio fragments start at time =
0, and end at time = 1. The results are grouped by the position at which
there is a character difference between two words, with 0, 1 and 2 meaning
that two words differ respectively at the first, second, or third character.
We calculated both the mean and the standard deviation. In Appendix B
we have included the data with carrier phrase, and the data based on the
recorings by the female speaker.

We also plotted the results on a line chart to make them more intuitive.
The plot on the left of figure 4.1 shows the similarity scores for all word pairs
at the feature vector layer as recorded by the male speaker. The normalised
time can be read from the x-axis and the y-axis shows the cosine similarity,
ranging from 0 to 1. The plot contains the cosine similarity values for all
word pairs as described in section 3.2. Each plot line has an error bar
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Timestamp of minimum

mean std

Different at 0 1 2 0 1 2

Layer

0 0.31 0.54 0.76 0.25 0.27 0.15

1 0.31 0.56 0.75 0.25 0.25 0.13

2 0.30 0.57 0.73 0.23 0.23 0.13

3 0.30 0.55 0.73 0.22 0.22 0.13

4 0.34 0.55 0.76 0.26 0.26 0.16

5 0.35 0.49 0.68 0.26 0.26 0.19

6 0.47 0.57 0.70 0.32 0.29 0.22

7 0.53 0.58 0.67 0.33 0.31 0.28

8 0.58 0.59 0.65 0.35 0.34 0.32

9 0.57 0.61 0.67 0.33 0.32 0.28

10 0.39 0.50 0.59 0.26 0.29 0.26

11 0.52 0.55 0.58 0.22 0.19 0.17

12 0.35 0.43 0.49 0.18 0.19 0.18

Table 4.1: Results of the timestamp of the minimum cosine similarity at each
layer. This data is from the recordings by the male speaker, and without
carrier phrase. For each layer, the table shows for each character position
(0, 1, or 2) the mean and the standard deviation of where the lowest point
of the valley occurs on the normalised time axis.

showing the range of values at each time step. The error bars are configured
so that 50 percent of the data points are within the error bar. This plot of
the first layer in the Wav2vec 2.0 model roughly follows the literal character
difference between two words. For example, the plot showing the data points
for comparisons between words that differ at the first positions has a valley
early on in time, before showing increasing similarity scores as a plateau
later on. The same pattern can be seen in the other two plot lines.

We have also included another plot from a Transformer layer near the
output of the model. The right plot in figure 4.1 shows the cosine similari-
ties at layer 11. While the plot of the feature vector layer follows the literal
differences between two words, the 11th Transformer layer has its own pat-
tern. The three plot lines now roughly follow the same path, with a small
valley around the centre.
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Figure 4.1: Cosine similarities at the feature vector layer and the 11th Trans-
former layer. The plots are based on the recordings by the male speaker,
and without carrier phrase. Both plots also contain error bars to show the
range in which 50 percent of the data points are.

4.1.2 Minimum and standard deviation of the cosine simi-
larities

In this section, we present the results that show how strong the effects of a
different character are. Table 4.2 shows the mean and standard deviation
of the minimum cosine similarity and the standard deviation of the cosine
similarities at each layer, for each character position based on the recordings
by the male speaker without carrier phrase. Appendix B shows the rest of
the data for these metrics.

4.2 Aggregated results

4.2.1 Position of the valley

As explained in section 3.3, we calculate three numeric values for each layer
in all comparisons. Figure 4.2 shows the correlation at each layer between
the timestamp of the minimum cosine similarity and the position at which
the two words had a different character. As described, the timestamp of the
minimum cosine similarity defines where the valley is located. Each line in
the plot represents a part of the dataset, where each part is from one of the
two speakers, with or without the carrier phrase.

The plot can be interpreted as follows: A high correlation coefficient
means that the further in time the position of the valley gets, the higher the
index of the character being different (with the index ranging from 0 to 2).
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Minimum similarity Standard deviation of similarity

mean std mean std

Different at 0 1 2 0 1 2 0 1 2 0 1 2

Layer

0 0.20 0.34 0.13 0.13 0.14 0.12 0.17 0.12 0.21 0.04 0.05 0.05

1 0.33 0.43 0.23 0.11 0.13 0.11 0.13 0.10 0.18 0.03 0.04 0.04

2 0.36 0.44 0.26 0.10 0.12 0.11 0.13 0.10 0.17 0.03 0.03 0.04

3 0.38 0.45 0.28 0.10 0.11 0.12 0.13 0.11 0.17 0.03 0.03 0.04

4 0.37 0.44 0.26 0.11 0.12 0.13 0.14 0.12 0.18 0.04 0.03 0.05

5 0.34 0.39 0.26 0.11 0.11 0.11 0.16 0.15 0.18 0.04 0.03 0.04

6 0.29 0.32 0.21 0.11 0.12 0.12 0.17 0.17 0.20 0.04 0.04 0.04

7 0.23 0.26 0.18 0.12 0.13 0.12 0.20 0.19 0.20 0.04 0.04 0.04

8 0.02 0.05 -0.01 0.11 0.15 0.12 0.26 0.24 0.26 0.05 0.05 0.05

9 0.14 0.16 0.09 0.10 0.13 0.10 0.21 0.20 0.23 0.05 0.05 0.05

10 0.26 0.30 0.21 0.10 0.12 0.11 0.17 0.15 0.19 0.04 0.04 0.05

11 0.59 0.59 0.50 0.18 0.18 0.18 0.11 0.11 0.14 0.06 0.06 0.07

12 0.22 0.27 0.21 0.15 0.17 0.15 0.18 0.17 0.19 0.05 0.05 0.05

Table 4.2: Results of the minimum cosine similarity and the standard devi-
ation of the cosine similarity at each layer. This data is from the recordings
by the male speaker, and without carrier phrase. For each layer, the tabel
shows for each character position (0, 1, or 2) the mean and the standard
deviation of the minimum cosine similarity of the valley, and of the standard
deviation in a comparison.

4.2.2 Standard deviation of the cosine similarity

The plots in section 4.1 seem to indicate that the valleys are much deeper
when one of the consonants differs versus when the vowel differs. The data
in figure 4.3 partially confirms this hypothesis, by plotting the correlation
coefficients per layer.

To calculate these correlation coefficients, we first pre-processed the data
such that all comparisons that are different in the vowel get a value of 1,
and the comparisons that differ in one of the consonants get a value of 2.
We then calculated the correlation coefficients between this value and the
standard deviation of the cosine similarities for each layer. In this case, a
high correlation coefficient means that the standard deviation will be higher
if the two words in a comparison are different in one of the consonants. In
turn, a high standard deviation implies a deeper valley compared to cosine
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Figure 4.2: Correlation at each layer between the minimum cosine similarity,
and the position at which the two words differ. This plot shows the data for
both speakers, with and without a carrier phrase.

similarities outside the valley.

Figure 4.3: Correlation at each layer between the consonants being different,
and the standard deviation of the cosine similarities. This plot shows the
data for both speakers, with and without a carrier phrase.
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Chapter 5

Discussion

We will discuss the results of our experiments in this chapter, followed by a
discussion about how the choices made in the generation of the dataset and
the design of the experiment affected the results.

5.1 Effects of a different character

The fundamental design of our research is to investigate how the model
behaves when two almost identical words are compared to each other. Our
results show that the position of the character being different can be seen
in the internal layers of the Wav2vec 2.0 network. This effect can be seen
in both the empirical plots of the cosine similarities and in the correlation
coefficients between the minimum cosine similarity and the index of the
different character.

Based on these correlation coefficients, our research shows two main
effects. First of all, we found that the effects of a different character can
be seen all the way from the feature vector layer to the fourth Transformer
layer. The correlation coefficients in this part of the network are around 0.5,
before it quickly drops significantly to lower values at higher layers. This
suggests that the layers in the last part of the network encode more specific
information for the speech recognition task compared to the layers near the
input side of the network. The higher correlation coefficients of the first few
layers indicate that these layers encode information that is more specific for
the input fragments, whereas the layers in the last part take into account
more context about the input fragment as a whole. This finding corresponds
to other works in the literature.

Secondly, the plot of the correlation coefficients shows a higher correla-
tion at the tenth and twelfth transformer layers, compared to neighbouring
layers. In particular, the eleventh transformer layer shows a significant drop
in the correlation coefficients. While it is not clear why this happens at the
tenth layer, for the twelfth transformer layer, this can be explained since
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that layer also provides the basis for the model’s output. It is then trivial to
see that there must be some correlation between a character being different
in the input and a character being different in the output.

5.1.1 Discussion

While a clear pattern can be seen with respect to where exactly the character
is different, the correlation coefficients do not exceed about 0.8 for this
relation. Also, some of the series (for example the recordings by the female
speaker without carrier phrase) show significantly lower values across all
layers than other series.

One cause of this pattern can be the way the recordings are aligned to
each other. While in general the alignment process to align two recordings
performs well, there might be inconsistencies in that process. For example, if
there is a speed difference in speaking between two recordings, the alignment
might end up slightly different. Later on, this also influences the values of
the cosine similarities and, in turn, the correlation coefficients.

Another factor that plays a role in this is how the valley is detected
in a comparison. In the plots as shown in the chapter 4, the valleys are
detected by applying the argmin function to all the cosine similarities in
a comparison. For most comparisons, this works well. However, there are
some comparisons that have some extreme values for the cosine similarity
near t = 0 or t = 1. The argmin function then returns one of those values
for t, instead of the time when the actual valley occurs.

5.2 Consonants versus vowel

An observation that can be made based on the plots of the cosine similarity
is that the word pairs that differ at the vowel character do not show a clear
valley. Based on where the valleys are for word pairs that differ in one of
the outer characters, we expected to also see a clear value around t = 0.5
for word pairs that differ in the inner character.

This observation is confirmed by the correlation coefficients between the
consonants being different and the standard deviation of the cosine similar-
ities. Again, the lower-level layers near the input of the model show higher
correlation coefficients than the higher-level layers near the output. Over-
all, we can conclude that until the fourth transformer layer the comparisons
that differ at the vowel have a much smaller valley than at later layers.

5.2.1 Discussion

The reason we see this effect might be related to the way the pronunciation
works phonetically. Vowels, in general, all have a similar sound. There-
fore, CVC-words that only differ at their vowel also have relatively small
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differences in how they sound. Also, the consonants and the vowel must
transition naturally to each other, causing the consonants to affect how the
vowel sounds. Such phonetic aspects can be the reason we do not observe
any valleys near the centre of the comparisons.

5.3 Speakers and carrier phrase

To make sure our findings are well-founded, we have recorded two speakers
for our dataset. Based on all the empirical and aggregated results, we found
that there are no significant differences between the speakers. Although
the results show some small differences, our main findings can be clearly
observed from both series of results.

Another measure we took to ensure the validity of our results is the use
of a carrier phrase. Because Transformer-based models such as Wav2vec 2.0
take context into account, it might make a difference to prepend a carrier
phrase in front of the word that will be fed to the network. In this case,
there is also no big difference compared to the series that did not use the
carrier phrase. However, the figures in section 4.2 do show slightly higher
correlation coefficients when a carrier phrase was used. Based on this, we
expect that the Wav2vec 2.0 model does benefit from extra context in front
of the audio for which a transcription is needed, but specially designed
experiments are needed to confirm this.

5.4 Dataset generation

Not related to any results in particular, there are some remarks about
the dataset that are worth discussing. When we recorded the dataset, we
recorded each word four times. This helps to reduce anomalies in the data
because one can choose the best recording that will be used in the experi-
ments. We selected a recording by comparing the duration of the recordings
and then choosing the recording with the duration closest to the average
duration. This approach worked well in our research, but there are other
methods worth exploring in further research. For example, several record-
ings could be combined into one audio fragment, or choosing the best record-
ing could be based on more advanced audio features.

During our research, we also found some inconsistencies in the splitting
of words that end with a ’k’ character. The sound of this character consists
of two parts with a very short break between them. It turned out that
our splitting algorithm sometimes inserted a split into this break, effectively
shortening the recording before the pronunciation of a word was finished.
We expect this to be caused by the fact that the splitting algorithm we have
used is based on the sound level and the amount of silence between words.
This accidental split then occurred when the speed in the recording was a
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bit slower or when the last part of the ’k’ character had a very low sound
level. More advanced approaches can help prevent this, but require more
research into the characteristics of the recordings.

5.5 Cosine similarity

All of our results are based on the cosine similarity between hidden activa-
tions. As explained in section 3.2.2, we have chosen this measure because
it provides a fixed value for fully similar vectors, making it easier to com-
pare the similarities between multiple layers. To validate the results of our
experiments, we have repeated the calculation with the dot product as a
similarity measure. Figure 5.1 shows the correlation at each layer between
the position of the valley and the position at which the two words differ,
now based on the dot product as a measure of similarity between the hidden
activation vectors.

The correlation coefficients follow the same pattern as the cosine simi-
larity, as shown in section 4.2. There are some notable differences though,
mainly visible in the layers near the output of the model. Firstly, the sud-
den increase in similarity at layer 10 with the cosine similarity is less present
with the dot product. Second, the drop in similarity at layer 11 is larger
with the dot product than with the cosine similarity as a measure.

Despite these differences, the main plateau at the layers near the model’s
input side is still very present and significant. Also, both similarity mea-
sures show similar scores for the last Transformer layer. Taking all this into
account, we found that both measures would have been suitable for this
research project.
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Figure 5.1: Correlation at each layer between the position of the valley, and
the position at which the two words differ. This data is based on the dot
product as similarity measure between the hidden activation vectors.
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Chapter 6

Conclusions and Future
Work

In this research, we have performed various experiments to empirically in-
vestigate how the Wav2vec 2.0 model responds to literal character changes
in words. Before we did the experiments, we have composed a dataset of
CVC words and recorded the dataset with two speakers. Our results show
that there is a clear correlation in the first four layers of the network be-
tween the position of the character that was changed and the drop in cosine
similarity. Layers higher up in the network have a much less clear response
to a change in one character. Another finding is that the middle character
causes a much more subtle effect compared to the outer characters.

We also found that these effects occur for both the male and the female
speaker. This confirms that these effects are not just a characteristic that
happens for one specific speaker, but that it generalises to other speakers
as well. Future research could create a dataset with more speakers to in-
vestigate to what extent these effects occur when speakers are even more
diverse. With regard to the carrier phrase, the effects are visible but minor.
Throughout our results, the series with carrier phase got slightly higher
correlation coefficients, but the series without a carrier phrase still follow
largely the same patterns. This indicates that using a carrier phrase in-
deed helps to initialise the model. Future research could use this finding
to research whether a carrier phrase can have a bigger impact when using
multiple carrier phrases of different lengths.

There are some other aspects that future research could look at. First,
future research could repeat the same research on other end-to-end ASR
models that are based on Transformers. Second, the dataset used in our
research could be extended with longer words to investigate whether the
model shows the same patterns. A possible extension of this direction would
be to also change more characters at once.
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6.1 Reflection and acknowledgements

In the last 8 months, we have made the full journey for this thesis project.
Starting with just a vague idea, to working on a concrete experimental setup
with this thesis document as a final end product. When we look back at
all the steps we took, we can conclude that it has been very instructive
in many different ways. To name a few things, reading all the literature
for this project, and working on the necessary Python code provided some
great experience for the future. With regard to the literature and related
works, our research setup turned out to be a unique way of investigating
the Wav2vec 2.0 model. While on itself it should not be a problem, it does
make it harder to compare our results to existing works. Many works in the
literature investigated related topics, but we could not find a paper with
a comparable research method. For future projects, we will consider this
factor more heavily in the process of developing an experimental setup. In
this project, we are satisfied with the results that we obtained during our
pilot experiment, which turned out to be a good foundation for the rest of
our experimental setup.

Now that I have completed this thesis project, I would like to thank the
people who helped me finish this project. First of all, I want to thank Louis
as my daily supervisor for all the help with this project. I really appreciate
all the good conversations that we had to choose a topic, to develop the
research method, and to write the thesis. I also want to thank Henrieke
as the female speaker for helping me with the recordings and making the
dataset more robust.
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Appendix A

Heatmaps pilot experiments

MAM-MIM NAN-NAM

After layer 4

After layer 7

After layer 11

After final layer (12)

Table A.1: Cosine similarities between vectors of 4 hidden layers for two
word pairs. In all heatmaps, both the x and y axes show the time steps
of the word recordings. The color at each data point indicates the value of
the cosine similarity between the activations, with a ligher color indicating
a higher cosine similarity.
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Appendix B

Results

Table B.4: Cosine similarities at all layers. The plots are
based on the recordings by both speakers, and without carrier
phrase. Both plots also contain error bars to show the range
in which 50 percent of the data points are.

Layer Male speaker Female speaker

0 (Feature vector)

1

Continues on next page
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Table B.4 – continued from previous page

Layer Male speaker Female speaker

2

3

4

Continues on next page
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Table B.4 – continued from previous page

Layer Male speaker Female speaker

5

6

7

Continues on next page
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Table B.4 – continued from previous page

Layer Male speaker Female speaker

8

9

10

Continues on next page

36



Table B.4 – continued from previous page

Layer Male speaker Female speaker

11

12
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Table B.1: Accompanying section 4.1, this table shows the timestamp of the
minimum cosine similarity, the minimum cosine similarity, and the standard
deviation of the cosine similarity at each layer. This data is from the record-
ings by the male speaker, and with carrier phrase. For each layer, the table
shows for each character position (0, 1, or 2) the mean and the standard
deviation.
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Table B.2: Accompanying section 4.1, this table shows the timestamp of the
minimum cosine similarity, the minimum cosine similarity, and the standard
deviation of the cosine similarity at each layer. This data is from the record-
ings by the female speaker, and without carrier phrase. For each layer, the
table shows for each character position (0, 1, or 2) the mean and the stan-
dard deviation.
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Table B.3: Accompanying section 4.1, this table shows the timestamp of the
minimum cosine similarity, the minimum cosine similarity, and the standard
deviation of the cosine similarity at each layer. This data is from the record-
ings by the female speaker, and with carrier phrase. For each layer, the table
shows for each character position (0, 1, or 2) the mean and the standard
deviation.
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