
Radboud University Nijmegen

Faculty of Science

Analysis of Clustering Trails in
Differentials over Iterative

Permutations

Thesis MSc Cyber Security

Author:
Carl Dworzack

Supervisor:
Joan Daemen

Second reader:
Bert Mennink

December 2022

Abstract
With cryptographic permutations being relevant in many areas of cryptography, they
have to be well-designed. An important aspect is the propagation of differences. We
were interested in the following: given an input difference that leads to an output
difference with relatively high probability following a certain path through an iterative,
round-based permutation, we try to find other paths through the permutation with
the same input and output differences. For the permutation Xoodoo this has already
been done in a 3-round case. We look at 4-round permutations and also try to give an
approach that is not specific to any permutation. To show the validity of our approach
we implemented it and applied it to a 4-round Xoodoo case. Our program managed to
find one additional path and also proves that there are no further paths. The run time
was around one hour and 40 minutes so it was fairly efficient for this specific path.

1

Acknowledgment
This endeavour would not have been possible without the support from my supervisor
Prof. Joan Daemen. He helped me to get a foothold in the subject matter, explained
and resolved questions I had along the way and gave me feedback on how to improve
all parts of this thesis.

I am also grateful to my friends Tara, Tsveti and Nour. They all looked over the
thesis - some even multiple times - and their detailed feedback helped me hone this
thesis in the final stages.

Lastly, I would like to mention my family and friends who aided me emotionally in the
form of support, encouragement and regular inquiries into my progress thus motivating
me further.

2

Contents
1 Introduction 5

1.1 Structure of this Thesis . 6

2 Xoodoo 7

3 Background and Basics 10
3.1 Linear Algebra Basics . 10
3.2 Differential Cryptanalysis . 12
3.3 Activity and Activity Patterns . 15
3.4 Specifics about Xoodoo . 16
3.5 Related and Previous Work . 18

4 Analysis 19
4.1 Setup and First Steps . 19
4.2 Thinning out U’ and V . 22
4.3 Special Case: Full Basis Reduction of Affine Space 26
4.4 Finding Compatible Vectors . 27
4.5 Reverse Option . 28

5 Results of the Analysis 29
5.1 Used Trail Core . 29
5.2 Results and Observations . 30

6 Conclusion 32

A Appendix 33

3

List of Figures
1 Toy version of the Xoodoo state, with lanes reduced to 8 bits, and

different parts of the state highlighted. 8
2 Effect of 𝜒 on one plane. 9
3 Effect of 𝜃 on a single-bit state. 9
4 Illustration of 𝜌east (left) and 𝜌west (right). 9
5 Shematic of intermediate differences over a 𝑘-round trail 12
6 Overview of 4 Round Xoodoo Trail 𝑎0, 𝑏0, 𝑎1, 𝑏1, 𝑎2, 𝑏2, 𝑎3, 𝑏3, 𝑎4:

𝜆 indicates the linear layer, 𝑋 the non-linear layer 𝜒. U, U’, V, V’, W
and W’ are explained further below (Table 4.1) 19

7 Overview of Step Two of Thinning Out
vec is the basis 𝒰′ of vector space 𝑈 ′, aff the basis 𝒱 of the affine space
𝑉 and off the corresponding offset 𝑣. The top row shows the reordering
of bit positions according to activity in 𝑈 ′. The bottom row shows the
triangulization of 𝒱. 22

8 Schematic Overview of Step Three of Thinning Out:
’vec’ is the basis 𝒰′ of vector space 𝑈 ′, ’aff’ the basis 𝒱 of the affine space
𝑉 and ’off’ the corresponding offset 𝑣. First, both bases are triangularized
then their activity is calculated. 24

9 Trail core that was used for search of clustering cores. It was found by
Daemen et al. [5]. This picture is a screenshot of the output of their
implementation. 29

10 On top the original trail core used as input to the implementation. On
the bottom the other trail that was found which clusters with the first one. 30

4

1 Introduction
A recent trend in the design of cryptographic schemes has been the use of permutation.
These bijective functions are used, for example, within cryptographic encryption meth-
ods or hashing. Permutations are commonly built by having a relatively simple round
function that is repeated multiple times. The round function itself consists of a few
smaller linear and non-linear steps. The concepts described below have been introduced
by Biham et al. [1].

An important observation to make about permutations is their difference distribu-
tions given a difference at the input. In other words, how often do certain differences at
the output occur given two inputs with a fixed, initial difference, which is called the in-
put difference. The output difference distribution is defined as how frequently an output
difference occurs if all input pairs with in input difference are tried. Taking the input
difference and output difference together results in a so-called differential. Determining
the probability of a differential is difficult for well-designed, cryptographic permutations.
For cryptographic purposes those with a high probability are of interest.

For a permutation a differential only states the differences at the beginning and the
end. In an iterative, round-based permutation, there are, however, also intermediate
differences after each of the iterative rounds. When the starting one, the intermediate
ones and the final differences are all taken together, this is called a differential trail.
To calculate the differential probability (DP) all pairs which have the same beginning,
intermediate and end differences are counted. This number is then divided by 2𝑏, aka
the number of all pairs. For a differential (which is only the first and last difference
compared to a trail) the DP is calculated as the sum of the DPs of all trails that have
the input and output difference of this differential. If multiple trails have the same first
and last differences, we say that these trails cluster. In research, commonly only the DP
of a trail is found; not, however, the DP of a differential which is more interesting. Higher
DPs can be used for attacks, see [1]. In order to find this, we investigate clustering.

This is done by taking a trail and its corresponding differential and then looking for
other trails that are different from the initial one, but still have the same beginning and
end differences. If those are found, these trails then cluster. First, a general approach
is taken before we look at the permutation Xoodoo designed by Daemen et al. [3] and
its 4-round version in particular. Research [5] has already discovered multiple 4-round
trails over Xoodoo and we will take a closer look at one of them. We develop a method
to find clustering trails for a given 4-round differential which applies to Xoodoo and
then use it on one trail. However, the techniques presented here can be used to search
for clustering in any 4-round differential as long as their round function can be split into
a linear and non-linear layer. Otherwise, this can serve as a starting point to analyse
clustering of trails over more than 4 rounds. The search for clusters is based on an
existing method for 3-round Xoodoo [2] where trails are found in a similar fashion.
This allows us to formulate our research question.

Research Question: Is it possible to detect the existence of clustering trails effi-
ciently for 4-round permutations given an initial trail?

5

1.1 Structure of this Thesis
Chapter 2 will first present an explanation of the permutation Xoodoo. Chapter 3 gives
useful definitions, background and notations, specifically of differential cryptanalysis
concepts. In Chapter 4 the search of the clustering trail cores will be explained. Chapter
5 then treats the trail core we used and the results we found. A conclusion is formed in
Chapter 6.

6

2 Xoodoo
The following explanation of the Xoodoo permutation was taken from [3] and kindly
provided by their authors:

Xoodoo is a family of permutations parameterized by its number of rounds 𝑛r and
denoted Xoodoo[𝑛r].

Xoodoo has a classical iterated structure: It iteratively applies a round function
to a state. The state consists of 3 equally sized horizontal planes, each one consisting
of 4 parallel 32-bit lanes. Similarly, the state can be seen as a set of 128 columns of 3
bits, arranged in a 4 × 32 array. The planes are indexed by 𝑦, with plane 𝑦 = 0 at the
bottom and plane 𝑦 = 2 at the top. Within a lane, we index bits with 𝑧. The lanes
within a plane are indexed by 𝑥, so the position of a lane in the state is determined by
the two coordinates (𝑥, 𝑦). The bits of the state are indexed by (𝑥, 𝑦, 𝑧) and the columns
by (𝑥, 𝑧). Sheets are the arrays of 3 lanes on top of each other and they are indexed by
𝑥. The Xoodoo state is illustrated in Figure 1.

The permutation consists of the iteration of a round function 𝑖 that has 5 steps: a
mixing layer 𝜃, a plane shifting 𝜌west, the addition of round constants 𝜄, a non-linear
layer 𝜒 and another plane shifting 𝜌east.

We specify Xoodoo in Algorithm 1, completely in terms of operations on planes
and use thereby the notational conventions we specify in Table 1. We illustrate the step
mappings in a series of figures: the 𝜒 operation in Figure 2, the 𝜃 operation in Figure 3,
the 𝜌east and 𝜌west operations in Figure 4.

The round constants C𝑖 are planes with a single non-zero lane at 𝑥 = 0, denoted as
c𝑖. We specify the value of this lane for indices −11 to 0 in Table 2 and refer to [3] for
the specification of the round constants for any index.

Finally, it is often useful to refer to only the bits - and their respective column. These
will be indexed as (𝑐, 𝑖) with 𝑐 indicating the column in range 0 to 127 and 𝑖 in range 0
to 2. The conversion from the three-dimensional indexing (𝑥, 𝑦, 𝑧) is 𝑖 = 𝑦, 𝑐 = 32𝑥 + 𝑧.

7

x

y

z

lane
x

y

z

plane
x

y

z

state
x

y

z

sheet
x

y

z

column

Figure 1: Toy version of the Xoodoo state, with lanes reduced to 8 bits, and different
parts of the state highlighted.

𝐴𝑦 Plane 𝑦 of state 𝐴
𝐴𝑦 ⋘ (𝑡, 𝑣) Cyclic shift of 𝐴𝑦 moving bit in (𝑥, 𝑧) to position (𝑥 + 𝑡, 𝑧 + 𝑣)
𝐴𝑦 Bitwise complement of plane 𝐴𝑦
𝐴𝑦 + 𝐴𝑦′ Bitwise sum (XOR) of planes 𝐴𝑦 and 𝐴𝑦′

𝐴𝑦 ⋅ 𝐴𝑦′ Bitwise product (AND) of planes 𝐴𝑦 and 𝐴𝑦′

Table 1: Notational conventions

Algorithm 1 Definition of Xoodoo [𝑛r] with 𝑛r the number of rounds
Parameters: Number of rounds 𝑛r Round index 𝑖 from 1 − 𝑛r to 0 𝐴 = 𝑖(𝐴)

Here 𝑖 is specified by the following sequence of steps:
𝜃 ∶

𝑃 ← 𝐴0 + 𝐴1 + 𝐴2
𝐸 ← 𝑃 ⋘ (1, 5) + 𝑃 ⋘ (1, 14)
𝐴𝑦 ← 𝐴𝑦 + 𝐸 for 𝑦 ∈ {0, 1, 2}

𝜌west ∶
𝐴1 ← 𝐴1 ⋘ (1, 0)
𝐴2 ← 𝐴2 ⋘ (0, 11)

𝜄 ∶
𝐴0 ← 𝐴0 + C𝑖

𝜒 ∶
𝐵0 ← 𝐴1 ⋅ 𝐴2
𝐵1 ← 𝐴2 ⋅ 𝐴0
𝐵2 ← 𝐴0 ⋅ 𝐴1
𝐴𝑦 ← 𝐴𝑦 + 𝐵𝑦 for 𝑦 ∈ {0, 1, 2}

𝜌east ∶
𝐴1 ← 𝐴1 ⋘ (0, 1)
𝐴2 ← 𝐴2 ⋘ (2, 8)

𝑖 c𝑖 𝑖 c𝑖 𝑖 c𝑖 𝑖 c𝑖
−11 0x00000058 −8 0x000000D0 −5 0x00000060 −2 0x000000F0
−10 0x00000038 −7 0x00000120 −4 0x0000002C −1 0x000001A0
−9 0x000003C0 −6 0x00000014 −3 0x00000380 0 0x00000012

Table 2: The round constants c𝑖 with −11 ≤ 𝑖 ≤ 0, in hexadecimal notation (the least
significant bit is at 𝑧 = 0).

8

0

1

2

complement

Figure 2: Effect of 𝜒 on one plane.

+ =

column parity θ-effect

fold

Figure 3: Effect of 𝜃 on a single-bit state.

0

1

2
shift (2,8)

shift (0,1)

0

1

2
shift (0,11)

shift (1,0)

Figure 4: Illustration of 𝜌east (left) and 𝜌west (right).

9

3 Background and Basics
The following section will give some background information, definitions and concepts.
First, some basics about linear algebra are introduced. Second, terminology for differ-
ential cryptanalysis is given. We introduce the concept of activity and then give some
specific remarks about Xoodoo . Lastly, we give a short overview of a related paper.

3.1 Linear Algebra Basics
This section will give a brief introduction into linear algebra with regards to vector
spaces and affine spaces. It is assumed that the reader is familiar with fields.

Definition 3.1. Let 𝔽 be a field. Then, (𝑉 , +, ⋅) with + ∶ 𝑉 ×𝑉 ⟶ 𝑉 and ⋅ ∶ 𝔽×𝑉 ⟶ 𝑉
is a vector space over the field 𝔽 if the following conditions are satisfied:

(𝑉 1) ∀𝑢, 𝑣, 𝑤 ∈ 𝑉 | 𝑢 + (𝑣 + 𝑤) = (𝑢 + 𝑣) + 𝑤,
(𝑉 2) ∀𝑢, 𝑣 ∈ 𝑉 | 𝑢 + 𝑣 = 𝑣 + 𝑢,
(𝑉 3) ∃𝑒 ∈ 𝑉 | ∀𝑣 ∈ 𝑉 | 𝑣 + 𝑒 = 𝑣,
(𝑉 4) ∀𝑣 ∈ 𝑉 | ∃ − 𝑣 ∈ 𝑉 | 𝑣 + (−𝑣) = 𝑒,
(𝑉 5) ∀𝑎, 𝑏 ∈ 𝔽, 𝑣 ∈ 𝑉 | 𝑎 ⋅ (𝑏 ⋅ 𝑣) = (𝑎 ⋅ 𝑏) ⋅ 𝑣,
(𝑉 6) ∃1 ∈ 𝔽 | ∀𝑣 ∈ 𝑉 | 1 ⋅ 𝑣 = 𝑣,
(𝑉 7) ∀𝑎 ∈ 𝔽, 𝑢, 𝑣 ∈ 𝑉 | 𝑎 ⋅ (𝑢 + 𝑣) = 𝑎 ⋅ 𝑢 + 𝑎 ⋅ 𝑣,
(𝑉 8) ∀𝑎, 𝑏 ∈ 𝔽, 𝑣 ∈ 𝑉 | (𝑎 + 𝑏) ⋅ 𝑣 = 𝑎 ⋅ 𝑣 + 𝑏 ⋅ 𝑣

Note: While 𝔽 can be any valid field, this thesis will exclusively deal with the case
𝔽 = 𝔽2 with the elements 0 and 1.

Elements 𝑣 ∈ 𝑉 are referred to as vectors. In most cases these are a tuple consisting
of multiple entries 𝑣 = (𝑣1, 𝑣2, ...). According to the definition above, these vectors can
be added to each other which is done per tuple entry using the field addition:

𝑢 + 𝑣 = (𝑢1, 𝑢2, ...) + (𝑣1, 𝑣2, ...) = (𝑢1 + 𝑣1, 𝑢2 + 𝑣2, ...) = (𝑤1, 𝑤2, ...) = 𝑤, ∀𝑢, 𝑣, 𝑤 ∈ 𝑉

Similarly, they can also be multiplied by scalars (elements from the field). This is
done by multiplying each tuple entry by the scalar using the field multiplication:

𝑎 ⋅ 𝑣 = 𝑎 ⋅ (𝑣1, 𝑣2, ...) = (𝑎 ⋅ 𝑣1, 𝑎 ⋅ 𝑣2, ...), ∀𝑎 ∈ 𝔽, 𝑣 ∈ 𝑉

Definition 3.2. The vector 𝑒𝑖 ∈ 𝑉 of the form

𝑒𝑖 = (0, 0, ..., 0, 0⏟⏟⏟⏟⏟
𝑖−1

, 1, 0, 0, ..., 0, 0)

where only the 𝑖-th position is equal to 1 is called the 𝑖-th unit vector.

Definition 3.3. A linear combination of a set of vectors 𝐹 = (𝑣1, 𝑣2, 𝑣3, ...) with
𝑣𝑖 ∈ 𝑉 is defined as

𝑣 = ∑
𝐹

𝑐𝑖 ⋅ 𝑣𝑖

with the 𝑐𝑖 ∈ 𝔽. Since 𝔽 = 𝔽2 the coefficients are either 1 or 0 meaning that a vector is
either used or not used for the construction of a new vector.

10

Definition 3.4. For a set of vectors 𝐹 = (𝑣1, 𝑣2, 𝑣3, ...) the span is defined as the set
of all possible linear combinations:

𝑠𝑝𝑎𝑛(𝐹) = {𝑣 = ∑
𝐹

𝑐𝑖 ⋅ 𝑣𝑖|𝑐𝑖 ∈ 𝔽}

Definition 3.5. A set of vectors 𝐹 = (𝑣1, 𝑣2, 𝑣3, ...) is called minimal if

|𝑠𝑝𝑎𝑛(𝐹)| > |𝑠𝑝𝑎𝑛(𝐹\{𝑣})| ∀𝑣 ∈ 𝐹 .

Definition 3.6. A set of vectors ℬ = (𝑏1, 𝑏2, 𝑏3, ...) is called basis of the vector space
𝑉 if it is minimal and 𝑠𝑝𝑎𝑛(ℬ) = 𝑉

Definition 3.7. The dimension of a vector space is defined as 𝑑𝑖𝑚(𝑉) = |ℬ|. This is
well-defined as all bases of a vector space have the same length.

From here on, only finite vector spaces will be looked at. Their bases can therefore
be written as ℬ = (𝑏1, ..., 𝑏𝑛) where 𝑛 = 𝑑𝑖𝑚(𝑉). A basis can be used to determine a
vector space. Note that different bases can determine the same vector space.

Definition 3.8. Let 𝔽 be a field. Then, (𝐴, +, ⋅) with + ∶ 𝐴×𝐴 ⟶ 𝐴 and ⋅ ∶ 𝔽×𝐴 ⟶ 𝐴
is an affine space over the field 𝔽 if the following conditions are satisfied:

(𝐴1) ∀𝑢, 𝑣, 𝑤 ∈ 𝐴 | 𝑢 + (𝑣 + 𝑤) = (𝑢 + 𝑣) + 𝑤,
(𝐴2) ∀𝑢, 𝑣 ∈ 𝐴 | 𝑢 + 𝑣 = 𝑣 + 𝑢,
(𝐴3) ∀𝑎, 𝑏 ∈ 𝔽, 𝑣 ∈ 𝐴 | 𝑎 ⋅ (𝑏 ⋅ 𝑣) = (𝑎 ⋅ 𝑏) ⋅ 𝑣,
(𝐴4) ∃1 ∈ 𝔽 | ∀𝑣 ∈ 𝐴 | 1 ⋅ 𝑣 = 𝑣,
(𝐴5) ∀𝑎 ∈ 𝔽, 𝑢, 𝑣 ∈ 𝐴 | 𝑎 ⋅ (𝑢 + 𝑣) = 𝑎 ⋅ 𝑢 + 𝑎 ⋅ 𝑣,
(𝐴6) ∀𝑎, 𝑏 ∈ 𝔽, 𝑣 ∈ 𝐴 | (𝑎 + 𝑏) ⋅ 𝑣 = 𝑎 ⋅ 𝑣 + 𝑏 ⋅ 𝑣

This is a similar definition to that of the vector space with the exclusion of (V3) and
(V4) meaning that every vector space is also an affine space. (V3) specifically means
that the neutral element 0 was included in 𝑉, which is not necessarily the case for an
affine space anymore. Therefore, an affine space cannot be described by only a basis
since 0 ∈ 𝑠𝑝𝑎𝑛(ℬ) for any ℬ ⊂ 𝑉.

Definition 3.9. An affine space 𝐴 can be described by a basis ℬ = (𝑏1, ...𝑏𝑛) and an
offset 𝑎 ∈ 𝐴 where

𝐴 = 𝑎 + 𝑠𝑝𝑎𝑛(ℬ) = {𝑎 ∈ 𝑉 ∶ 𝑎 = 𝑎 + ∑
ℬ

𝑐𝑖 ⋅ 𝑏𝑖|𝑐𝑖 ∈ 𝔽}

Lemma 3.10. Applying a linear function 𝜆 to all elements of a basis ℬ and an offset
𝑎 of an affine space results in a new basis and offset defining a new affine space.

Proof. All six properties (A1)-(A6) are trivially fulfilled. Further, 𝜆(ℬ) is still minimal.
Assume it is not, so one of the new basis vectors 𝜆(𝑏) would be a linear combination of
the others. Then, its preimage would also be a linear combination of the initial basis
ℬ\{𝑏} since 𝜆 is a linear function. This would be a contradiction to ℬ being a basis.
Therefore, we have a new affine space with offset 𝜆(𝑎) and basis 𝜆(ℬ).

Note that the same is true for vector spaces.

11

3.2 Differential Cryptanalysis
The following concepts were introduced in and taken from [1]. One of the aspects
investigated in differential cryptanalysis are cryptographic permutations 𝑓 ∶ 𝔽𝑏

2 ⟶ 𝔽𝑏
2

to quantify the propagation of differences. For this, the permutation is used on an input
pair with a fixed input difference. This results in an output difference. Together, the
input and output differences (Δin, Δout) ∈ (𝔽𝑏

2)2 are called a differential. The inputs
𝑥 ∈ 𝔽𝑏

2 to the permutation 𝑓 that follow this differential are defined as

𝑈𝑓(Δ𝑖𝑛, Δ𝑜𝑢𝑡) ∶= {𝑥 ∈ 𝔽𝑏
2|𝑓(𝑥) + 𝑓(𝑥 + Δ𝑖𝑛) = Δ𝑜𝑢𝑡}

which is called the solution set. Further, it is said that Δ𝑖𝑛 is compatible with Δ𝑜𝑢𝑡
through 𝑓 if 𝑃𝑟 [𝑓(𝑥) + 𝑓(𝑥 + Δ𝑖𝑛) = Δ𝑜𝑢𝑡] > 0. To determine the likelihood of a differ-
ential the notion of the differential probability (DP) is introduced as follows:

𝐷𝑃𝑓(Δ𝑖𝑛, Δ𝑜𝑢𝑡) ∶=
|𝑈𝑓(Δ𝑖𝑛, Δ𝑜𝑢𝑡)|

2𝑏 ,

aka the number of elements in the solution set divided by the number of all possible
𝑏-bit string inputs. However, the more rounds a permutation has and the wider it is, aka
the larger the parameter 𝑏, the less feasible it becomes to calculate the DP by finding
the solution set. The computational effort would be in 𝒪(𝑒𝑥𝑝(𝑏)).

Figure 5: Shematic of intermediate differences over a 𝑘-round trail

For iterative, round based permutations it can be useful to not only look at the input
and output difference but also the intermediate differences as shown in Figure 3.2. The
sequence 𝑄 = (𝑞0, 𝑞1, ..., 𝑞𝑘−1, 𝑞𝑘) ∈ (𝔽𝑏

2)𝑘+1 including all these differences is called a
k-round differential trail if 𝐷𝑃𝑖(𝑞𝑖, 𝑞𝑖+1) > 0 ∀𝑖 ∈ {0, ..., 𝑘 − 1}. In other words, all
these round differentials must have a non-zero chance of occurring. We say a trail 𝑄 is
in a differential (Δ𝑖𝑛, Δ𝑜𝑢𝑡) if 𝑞𝑜 = Δ𝑖𝑛 and 𝑞𝑘 = Δ𝑜𝑢𝑡.

We can define the DP of a trail similar to the DP of a differential: It is the fraction
of all input differences that follow the trail with each intermediate difference 𝑞𝑖 divided
by all possible 𝑏-bit inputs.

Definition 3.11. For a single trail 𝑄 = (𝑞0, ..., 𝑞𝑘) ∈ (𝔽𝑏
2)𝑘+1 its expected differential

probability (EDP) is defined as

𝐸𝐷𝑃𝑓(𝑄) =
𝑘−1
∏
𝑖=0

𝐷𝑃𝑖(𝑞𝑖, 𝑞𝑖+1).

12

The EDP is often a good approximation of the DP. The EDP is the same as the DP
if all the round differentials are independent:

𝐷𝑃𝑖(𝑞𝑖, 𝑞𝑖+1) = 𝑃𝑟[output difference = 𝑞𝑖+1 | input difference = 𝑞𝑖]

=
𝑃𝑟[input difference = 𝑞𝑖 ∧ output difference = 𝑞𝑖+1]

𝑃 𝑟[input difference = 𝑞𝑖]

=
𝑃𝑟[input difference = 𝑞𝑖] ⋅ 𝑃 𝑟[output difference = 𝑞𝑖+1]

𝑃 𝑟[input difference = 𝑞𝑖]
= 𝑃𝑟[output difference = 𝑞𝑖+1]

For certain cases, this approximation can become exact if all the individual round
differentials are independent. Xoodoo , the permutation looked at later, is one of those
cases. We will introduce the following instead of using the DP:

The set of all differential trails that are in one differential (Δ𝑖𝑛, Δ𝑜𝑢𝑡) is defined as

𝐷𝑇𝑓(Δ𝑖𝑛, Δ𝑜𝑢𝑡) ∶= {𝑄 ∈ (𝔽𝑏
2)𝑘+1|𝑞0 = Δ𝑖𝑛 ∧ 𝑞𝑘 = Δ𝑜𝑢𝑡}

Definition 3.12. The EDP of a differential (Δ𝑖𝑛, Δ𝑜𝑢𝑡) is then defined as

𝐸𝐷𝑃𝑓(Δ𝑖𝑛, Δ𝑜𝑢𝑡) = ∑
𝑄∈𝐷𝑇𝑓(Δin,Δout)

𝐸𝐷𝑃𝑓(𝑄),

which is ultimately what we are interested in. Note that the DP of the differential
can be computed by adding up the DPs of all trails in 𝐷𝑇𝑓(Δin, Δout). In the case
that |𝐷𝑇𝑓(Δ𝑖𝑛, Δ𝑜𝑢𝑡)| > 1 those trails are said to cluster. Omitting the first and last
differences 𝑞𝑜 = Δ𝑖𝑛 and 𝑞𝑘 = Δ𝑜𝑢𝑡 leaves the differential trail core (𝑞1, ..., 𝑞𝑘−1).
A trail core therefore corresponds to a set of trails with the same inner differences but
other input and output differences.

Definition 3.13. For a differential (Δin, Δout), its restriction weight w(Δin, Δout) is
defined as

w(Δin, Δout) ∶= −𝑙𝑜𝑔2(𝐷𝑃𝑓(Δin, Δout)).

Further, for a 𝑘-round differential trail 𝑄 = (𝑞0, ..., 𝑞𝑘) the restriction weight is defined
as

w(𝑄) =
𝑘−1
∑
𝑖=0

w(𝑞𝑖, 𝑞𝑖+1).

The weight profile w𝑝(𝑄) of a 𝑘-round trail 𝑄 is defined as the sequence

w𝑝(𝑄) ∶= (w(𝑏𝑖, 𝑎𝑖+1))
𝑖∈{0,...,𝑘−1}

.

In cryptography a Substitution-Box, or S-Box for short, is a bijective mapping
between bit strings of a certain length, the width 𝑚 of the S-Box. Normally, these S-
Boxes are non-linear and have no mapping that can be easily expressed mathematically.
They are used for example in encryption algorithms like Rijndael [4] or in permutations
like Xoodoo in this case.

One S-Box only maps 𝑚 bits onto 𝑚 new bits so it operates on the column level. By
applying an S-Box to all columns in a vector the non-linear S-Box layer is created. In
the following section this non-linear layer will be referred to a 𝜇.

For every S-Box, the bit string of just zeros is mapped to itself. This means that
inactive columns (ones with just zeros) stay inactive columns and active columns stay
active columns. The activity pattern of a vector is therefore invariant under the S-Box
layer!

13

Definition 3.14. Two columns 𝑐1, 𝑐2 are said to be compatible through the non-linear
layer, if 𝐷𝑃(𝑐1, 𝑐2) > 0.

14

3.3 Activity and Activity Patterns
This section now goes into more detail on how to look for clustering trails in a 𝑘-round,
iterative permutation. These permutations are commonly constructed of a linear and a
non-linear layer in each round which are applied one after another. The linear part will
be noted as 𝜆 and the non-linear part as 𝜇.

With the separation in linear and non-linear layer, a trail can be described in more
detail as (𝑎0, 𝑏0, 𝑎1, 𝑏1, ..., 𝑎𝑘−1, 𝑏𝑘−1, 𝑎𝑘) where 𝜆(𝑎𝑖) = 𝑏𝑖. The potential cluster trail
will be noted as (𝑎∗

0, 𝑏∗
0, 𝑎∗

1, 𝑏∗
1, ..., 𝑎∗

𝑘−1, 𝑏∗
𝑘−1, 𝑎∗

𝑘). Given is only a trail core meaning it
would be (𝑎1, 𝑏1, ..., 𝑎𝑘−1, 𝑏𝑘−1). We need the following definitions about activity and
compatibility to proceed:

Definition 3.15. A bit position (𝑐, 𝑖) in a vector 𝑣 is called active, if 𝑣(𝑐, 𝑖) = 1. It
will be written as 𝑎𝑐𝑡𝑣(𝑐, 𝑖) = 1 or 𝑎𝑐𝑡𝑣(𝑐, 𝑖) = 0. The latter indicates the bit position
being inactive.

Definition 3.16. A column position (𝑐) in a vector 𝑣 is called active, if one of the bit
positions in this column is active in 𝑣. It will be written as 𝑎𝑐𝑡𝑣(𝑐) = 1 or 𝑎𝑐𝑡𝑣(𝑐) = 0.
The latter indicates the column position being inactive.

Definition 3.17. The column activity pattern 𝑎 of a vector 𝑣 is another vector
indicating which of the column positions is active in the first one. It will be referred to
as activity pattern for the rest of this thesis.

Definition 3.18. The number of active columns in a vector 𝑣 is written as #𝑎𝑐𝑡(𝑣).

Building on these activity definitions for vectors we can now expand them to more
generally talk about activity in affine spaces.

Definition 3.19. A bit position (𝑐, 𝑖) in an affine space 𝑉 is called active, if there are
vectors in the affine space for which the bit at this position is active. It will be written
as 𝑎𝑐𝑡𝑉(𝑐, 𝑖) = 1 or 𝑎𝑐𝑡𝑉(𝑐, 𝑖) = 0. The latter indicates the bit position being inactive
in the affine space.

Definition 3.20. A column position 𝑐 in an affine space 𝑉 is called active, if there are
vectors in the affine space for which any of the bit positions in this column are active. It
will be written as 𝑎𝑐𝑡𝑉(𝑐) = 1 or 𝑎𝑐𝑡𝑉(𝑐) = 0. The latter indicates the column position
being inactive in the affine space.

Definition 3.21. Given a vector 𝑣, its activity matching set 𝒮𝑎𝑐𝑡(𝑣) is defined as all
vectors that have the same activity pattern as 𝑣.

This activity matching set can be expanded to be a vector space that includes the
activity matching set.

Definition 3.22. For a vector 𝑣 and its activity matching set 𝒮𝑎𝑐𝑡(𝑣), the expanded
activity matching space 𝒱𝑎𝑐𝑡𝑀(𝑣) is defined as the vector space of lowest dimension
that includes all elements of 𝒮𝑎𝑐𝑡(𝑣)

Since this vector space is a proper super set of 𝒮𝑎𝑐𝑡(𝑣) it also includes elements that
have a different activity pattern than 𝑣. How this vector space is constructed, what its
basis looks like, and of what dimension it is, will all be explained in Section 4.1.

15

3.4 Specifics about Xoodoo
This section will mention and explain a few things that are specific to the permutation
Xoodoo that we are looking at here. If the ideas of this paper are applied to other
permutations, the conclusions formed in this chapter cannot always be used.

The specific S-Box used in the Xoodoo permutation has a width 𝑚 = 3 meaning
it operated on the 3-bit wide columns. Definition 3.14 can be made more concrete in
the case of Xoodoo and leads to the following observation: Two columns 𝑐1, 𝑐2 are
compatible through the non-linear layer 𝜒 if they are both inactive or if their logical or
has an uneven number of active bits. All active, compatible pairs are shown in Table 3.

c1 (0, 0, 1) (0, 1, 0) (1, 0, 0) (0, 1, 1) (1, 0, 1) (1, 1, 0) (1, 1, 1)
c2 (0, 0, 1) (0, 1, 0) (1, 0, 0) (0, 0, 1) (0, 0, 1) (0, 1, 0) (0, 0, 1)

(1, 0, 1) (1, 1, 0) (1, 1, 0) (0, 1, 0) (1, 0, 0) (1, 0, 0) (0, 1, 0)
(0, 1, 1) (0, 1, 1) (1, 0, 1) (1, 0, 1) (0, 1, 1) (0, 1, 1) (1, 0, 0)
(1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 0) (1, 1, 0) (1, 0, 1) (1, 1, 1)

Table 3:
All compatible columns 𝑐2 given an active column 𝑐1 through the non-linear layer 𝜒

We can see that there are always four matching columns and we want to express
them in a more structured way than as a set of four elements. For every case, these four
elements can be described by an affine space of dimension two. In other words, by one
offset vector and a basis consisting of two basis vectors. This is shown individually for
each column value in Table 4.

Column Matching Affine Space
(0, 0, 1) (0, 0, 1) + 𝛼 (0, 1, 0) + 𝛽 (1, 0, 0)
(0, 1, 0) (0, 1, 0) + 𝛼 (0, 0, 1) + 𝛽 (1, 0, 0)
(1, 0, 0) (1, 0, 0) + 𝛼 (0, 0, 1) + 𝛽 (0, 1, 0)
(0, 1, 1) (0, 1, 0) + 𝛼 (1, 0, 0) + 𝛽 (0, 1, 1)
(1, 0, 1) (0, 0, 1) + 𝛼 (0, 1, 0) + 𝛽 (1, 0, 1)
(1, 1, 0) (1, 0, 0) + 𝛼 (0, 0, 1) + 𝛽 (1, 1, 0)
(1, 1, 1) (1, 0, 0) + 𝛼 (0, 1, 1) + 𝛽 (1, 0, 1)

Table 4: Columns and compatible affine spaces through 𝜒

The S-Box only operates on the column level, so this only described the potential
columns. However, the same thoughts apply when moving to the S-Box layer, aka 𝜒. If
we have a vector 𝑣, then we can use this to create an affine space including all potential
vectors that are compatible with 𝑣 through 𝜒.

Definition 3.23. Given a vector 𝑣, its activity matching affine space 𝒜𝑎𝑐𝑡(𝑣) is
defined as all vectors that are compatible with 𝑣 through the non-linear layer 𝜒.

Here we give an algorithm for the construction of 𝒜𝑎𝑐𝑡(𝑣). We start with an empty
basis and an offset that is completely set to zero. We iterate over every column 𝑐 in
𝑣. For each column value 𝑣(𝑐), we get the affine space that describes the compatible
columns through 𝜒 via the function affineColumn as shown in Table 4. This function is
described in detail in Appendix A. As this only gives the column values, we pad them
with zeros to complete vectors. The two basis vectors are added to the basis and the
offset is added to the offset. This process is shown in Algorithm 3.4.

16

Algorithm 2 Pseudo Code for Creating the Activity Matching Affine Space
Require: 𝑣

𝒱 is empty basis
𝑣 is offset and set to be 0
for active 𝑣(𝑐) ∈ 𝑣 do

𝑐𝑜, 𝑐1, 𝑐2 ←affineColumn(𝑣(𝑐)) ▷ gives values from Table 4. See Appendix A
𝑣 ←𝑣 + (0, 0, ..., 0, 0⏟⏟⏟⏟⏟

3𝑐 𝑡𝑖𝑚𝑒𝑠

, 𝑐𝑜, 0, ..., 0)

add to 𝑉: (0, 0, ..., 0, 0⏟⏟⏟⏟⏟
3𝑐 𝑡𝑖𝑚𝑒𝑠

, 𝑐1, 0, ..., 0)

add to 𝑉: (0, 0, ..., 0, 0⏟⏟⏟⏟⏟
3𝑐 𝑡𝑖𝑚𝑒𝑠

, 𝑐2, 0, ..., 0)

Since 2 basis vectors are added to the basis for every active column 𝑐 in 𝑣, the
dimension of the affine space 𝑉 will end up as 𝑑𝑖𝑚(𝑉) = 2 ⋅ #𝑎𝑐𝑡(𝑣).

These explanations were under the assumption, that we have a given 𝑣 that 𝜒 is
applied to. But since the S-Box is symmetric, the 𝜒 is also symmetric. Therefore, we
can just as well describe all possible vectors 𝑢 that are compatible with a given vector
𝑣 via the connection 𝜒(𝑢) = 𝑣.

One last thing to note, is that for the Xoodoo permutation, for a state 𝑣 its
restriction weight w(𝑣) is equal to twice the number of active columns. Therefore,
w(𝑣) = 2 ⋅ #𝑎𝑐𝑡(𝑣)

17

3.5 Related and Previous Work
In their paper Thinking Outside the Superbox [2] Bordes et al. formalize and analyse
the notion of alignment for different cryptographic primitives.

They also relate this concept to clustering of trail cores and specifically treat 3-
round trail cores for Xoodoo . Briefly summarized, their approach is as follows: For
a given trail core (𝑎1, 𝑏1, 𝑎2, 𝑏2), they create two vector spaces 𝑈 = 𝒱𝑎𝑐𝑡𝑀(𝑎1) and
𝑉 ′ = 𝒱𝑎𝑐𝑡𝑀(𝑏2). Applying the linear layer 𝜆 to the elements of 𝒰 and its inverse 𝜆−1 to
𝒱′ gives the vector spaces 𝑈 ′ and 𝑉.

To find a clustering trail core, they now need a pair (𝑢′, 𝑣) ∈ 𝑈 ′ × 𝑉 with 𝜒(𝑢′) = 𝑣.
Instead of checking all potential pairs, they instead eliminate some basis elements in
𝒰′ and 𝒱. Those basis vectors could never contribute to a vector that belongs to a
matching pair (𝑢′, 𝑣). Once the bases were reduced thusly, they checked the remaining
pairs one by one.

We reuse the process of thinning out the bases in our approach as well. However, we
adapted it to fit out situation and refined it to thin our the bases even further.

18

4 Analysis
This section describes the process of searching for clustering trails. We will use a given
trail core (𝑎1, 𝑏1, 𝑎2, 𝑏2, 𝑎3, 𝑏3). Important here are only the input difference 𝑎1 and the
output difference 𝑏3. We start by first describing the general idea and then going into
more detail on all the individual steps.

4.1 Setup and First Steps
An overview of the 4-round version of Xoodoo can be seen in Figure 6. Recall that
a round in Xoodoo consist of the steps 𝜃, 𝜌𝑤𝑒𝑠𝑡, 𝜄, 𝜒, 𝜌𝑒𝑎𝑠𝑡. For convenience, we will
rephrase Xoodoo to start with 𝜌𝑒𝑎𝑠𝑡 leading to the new order 𝜌𝑒𝑎𝑠𝑡, 𝜃, 𝜌𝑤𝑒𝑠𝑡, 𝜄, 𝜒. That
way we get a clear separation in the linear layer 𝜆 = 𝜄∘𝜌𝑤𝑒𝑠𝑡 ∘𝜃 ∘𝜌𝑒𝑎𝑠𝑡 and the non-linear
layer 𝜒.

Figure 6: Overview of 4 Round Xoodoo Trail 𝑎0, 𝑏0, 𝑎1, 𝑏1, 𝑎2, 𝑏2, 𝑎3, 𝑏3, 𝑎4:
𝜆 indicates the linear layer, 𝑋 the non-linear layer 𝜒. U, U’, V, V’, W and W’ are
explained further below (Table 4.1)

The overall approach to finding clustering trail cores (𝑎∗
1, 𝑏∗

1, 𝑎∗
2, 𝑏∗

2, 𝑎∗
3, 𝑏∗

3) to the given
trial core is as follows: We use 𝑈 ∶= 𝒱𝑎𝑐𝑡𝑀(𝑎1) to include at least all potential values
of 𝑎∗

1. Since 𝑈 is a vector space, we can apply the linear layer 𝜆 to its basis elements
𝑢 ∈ 𝒰 which results in a new basis 𝒰′ for the vector space 𝑈 ′.

Similarly, we can create 𝑊 ′ = 𝒮𝑎𝑐𝑡(𝑏3), which gives us exactly all potential values
for 𝑏∗

3. We iterate over all elements in 𝑤′ ∈ 𝑊 ′ like this: Obtain 𝑤 = 𝜆−1(𝑤′). This
now represents a potential 𝑎∗

3. We now create the activity matching affine space 𝑉 ′ ∶=
𝒜𝑎𝑐𝑡(𝑤), which includes all potential 𝑏∗

2. This gives a vector space 𝑈 ′ and can use linear
transformation of 𝒱′ to also get the affine space 𝑉.

We now want to find a pair (𝑢′, 𝑣) ∈ 𝑈 ′ ×𝑉 that is compatible through the non-linear
layer. For this, we eliminate elements from the bases 𝒰′ and 𝒱 that could never lead
to such pairs. All potential pairs that are left after this are then checked in the end. If
we find a compatible one where 𝑎𝑐𝑡(𝜆−1(𝑢′)) = 𝑎𝑐𝑡(𝑎1), we have a clustering trail core
(𝜆−1(𝑢′), 𝑢′, 𝑣, 𝜆(𝑣), 𝑤, 𝑤′).

The last check for activity is needed because we used 𝑈 = 𝒱𝑎𝑐𝑡𝑀(𝑎1) in the beginning.
This included some elements that actually do not have the right activity pattern. For
𝑊 ′ = 𝒮𝑎𝑐𝑡(𝑏3), this is not needed as we have only matching activity patterns. A pseudo
code description of this is given in Algorithm 3.

An overview of the sets 𝑈, 𝑈 ′, 𝑉 , 𝑉 ′, 𝑊, 𝑊 ′, their structures and how they are ob-
tained can be found in Table 5. Their naming scheme is alphabetically with those after
the linear layer having an added prime to their name.

For a potential trail to cluster with the given one, they must be part of the same
differential per definition. Therefore, 𝑎0 = 𝑎∗

0 = Δ𝑖𝑛 and 𝑎4 = 𝑎∗
4 = Δ𝑜𝑢𝑡. This also

19

Algorithm 3 Pseudo Code for 4-Round Analysis:
Constructing 𝒱𝑎𝑐𝑡𝑀(⋅) is explained in Algorithm 4.1, constructing 𝒜𝑎𝑐𝑡(⋅) is explained
in Algorithm 3.4, thinOut is explained in Section 4.2.
Require: 𝑎1, 𝑏3

𝑈 ←𝒱𝑎𝑐𝑡𝑀(𝑎1)
𝒰′ ←𝜆(𝒰)
𝑊 ′ ←𝒮𝑎𝑐𝑡(𝑏3)
for 𝑤′ ∈ 𝑊 ′ do

𝑤 ←𝜆−1(𝑤′)
𝑉 ′ ←𝒜𝑎𝑐𝑡(𝑤)
𝒱 ←𝜆(𝒱′)
(𝒰′, 𝒱) ←thinOut(𝒰′, 𝒱)
for 𝑢′ ∈ 𝑈 ′ and 𝑣 ∈ 𝑉 do

if 𝑣 and 𝑢′ are compatible then
𝑢 ←𝜆−1(𝑢′)
if 𝑎𝑐𝑡𝑢 = 𝑎𝑐𝑡𝑎1

then
output (𝑢, 𝑢′, 𝑣, 𝜆(𝑣), 𝑤, 𝑤′)

end if
end if

Name Obtaining Type Name Obtaining Type
Round 1 𝑈 𝒱𝑎𝑐𝑡𝑀(𝑎1) vector 𝑈 ′ 𝜆(𝒰) vector
Round 2 𝑉 𝜆−1(𝒱′) affine 𝑉 ′ 𝐴𝑆−𝐵𝑜𝑥(𝑤) affine
Round 3 𝑊 𝜆−1(𝑊 ′) set W 𝒮𝑎𝑐𝑡(𝑏3) set

Table 5: Overview of sets, vector spaces and affine spaces

extends to 𝑏0 = 𝜆(𝑎0) = 𝜆(𝑎∗
0) = 𝑏∗

0. So we are just looking for a trail core.
Any trail core that could potentially cluster with the given one has to have an

𝑎∗
1 that is compatible with 𝑏0 through the non-linear layer. And since the activity

pattern is invariant under the S-Box layer, we can say that all potential 𝑎∗
1 must have

the same activity pattern as 𝑏0 and consequently as 𝑎1. We can therefore express all
potential 𝑎∗

1 via the activity matching set 𝒮𝑎𝑐𝑡(𝑎1). However, since we later want a
vector space structure, we are going to choose 𝑈 = 𝒱𝑎𝑐𝑡𝑀(𝑎1) here to show all potential
𝑎∗

1. This includes more elements than 𝒮𝑎𝑐𝑡(𝑎1), meaning we now have some 𝑢 ∈ 𝑈 with
𝑎𝑐𝑡(𝑢) ≠ 𝑎𝑐𝑡(𝑎1).

Algorithm 4 Pseudo Code for Basis Creation of Expanded Activity Matching Space
Require: 𝑣

𝒱 is empty basis
𝑎 ←activityPattern(𝑣)
for 𝑎(𝑐) ∈ 𝑎 do

if 𝑎(𝑐) = 1 then
add 𝑒3⋅𝑐, 𝑒3⋅𝑐+1, 𝑒3⋅𝑐+2 to 𝒱

end if

The construction of 𝒱𝑎𝑐𝑡𝑀(𝑎1) is shown in Algorithm 4.1 and works as follows: The
activity pattern of 𝑣 is evaluated. For each column 𝑐 that is active, the vector space
has to include the seven active variations for the 3-bit column. This can be achieved by
using the three unit vectors 𝑒3𝑐, 𝑒3𝑐+1 and 𝑒3𝑐+2. Via linear combinations, all possible

20

column values can be created. The case (0, 0, 0) is now also included. These are the extra
elements alluded to before. Since three basis vectors are added for each active column,
it follows that 𝑑𝑖𝑚(𝒱𝑎𝑐𝑡𝑀(𝑎1) = 3 ⋅ #𝑎𝑐𝑡(𝑎1). Further, we can say that |𝒱𝑎𝑐𝑡𝑀(𝑣)| =
23⋅#𝑎𝑐𝑡(𝑎1) = 8#𝑎𝑐𝑡(𝑎1). More generally, for an S-Box that has width 𝑚, it is |𝒱𝑎𝑐𝑡𝑀(𝑣) =
2𝑚⋅#𝑎𝑐𝑡(𝑎1)|.

The extra elements in 𝒱𝑎𝑐𝑡𝑀(𝑎1) can be quantified by looking at |𝒮𝑎𝑐𝑡(𝑎1): Each
column that is active can have one of 7 different values; the inactive (0, 0, 0) case is ex-
cluded from the eight combinatorial possibilities. Since there are #𝑎𝑐𝑡(𝑣) active columns
in 𝑣, there have to be 7#𝑎𝑐𝑡(𝑣) elements in total. And more general, for an S-Box that
has width 𝑚, we have |𝒮𝑎𝑐𝑡(𝑣)| = (2𝑚 − 1)#𝑎𝑐𝑡(𝑣). The number of extra elements is
therefore 8#𝑎𝑐𝑡(𝑎1) − 7#𝑎𝑐𝑡(𝑎1)

We obtain the vector space 𝑈 ′ that represents at least all potential 𝑏∗
1 by using the

basis 𝒰 of 𝑈. Applying the linear layer to every basis element gives the new basis 𝒰′ of
the vector space 𝑈 ′.

Following the same logic as for 𝑎1, every 𝑏∗
3 must have the same activity pattern as

𝑎4. Which, in turn, is the same as that of 𝑏3. So we again represent all potential 𝑏∗
3

via the set 𝑊 ′ = 𝒮𝑎𝑐𝑡(𝑏3). Unlike for representing the differences for the first round
in 𝑈 and 𝑈 ′, we do not need a vector space structure for the differences of Round 3
represented via 𝑊 ′.

We now have all potential differences in Round 1 as well as Round 3. The differences
of Round 2 depend on what the differences are in Round 1 and 3. Since it would be too
much to try and do all of them at the same time, we iterate over the elements in 𝑊 ′

one by one. We then check whether there are any clustering trails given this 𝑤′ ∈ 𝑊 ′,
before checking the next one and so on.

Hence, a fixed 𝑤′ ∈ 𝑊 ′ is picked and converted via 𝑤 = 𝜆−1(𝑤′). Next, we are
interested in all the potential differences that would be compatible with this 𝑤 through
the non-linear layer. These potential differences form an affine space (see Section 3.4),
which we will use as 𝑉 ′ ∶= 𝒜𝑎𝑐𝑡(𝑤). Applying the inverse of the linear layer to its basis
𝒱′ gives us the basis 𝒱 of the affine space 𝑉. This affine space now includes exactly all
potential differences 𝑎∗

2 given that we picked 𝑏∗
3 = 𝑤′.

Together with 𝑉 we now have a vector space 𝑈 ′ showing at least all potential values
𝑏∗

1. To find a clustering trail core, we need a compatible pair (𝑢′, 𝑣) ∈ 𝑈 ′ × 𝑉. Instead
of checking all potential pairs individually, the following optimization was taken.

21

4.2 Thinning out U’ and V
The goal of this step is to reduce the spaces 𝑈 ′ and 𝑉 by manipulating their bases to
thereby reduce the number of potential pairs (𝑢′, 𝑣) that need to be checked for being
compatible or not. This is done by repeating three steps, each aimed at removing basis
vectors until no more can be taken away.

Step One - Direct Elimination: Every column 𝑐 is checked for the case that

𝑎𝑐𝑡𝑈′(𝑐) = 0 ∧ 𝑎𝑐𝑡𝑉(𝑐) = 0 ∧ 𝑎𝑐𝑡𝑣(𝑐) = 1

This means, every 𝑣 ∈ 𝑉 would be active in column 𝑐. However, every 𝑢′ ∈ 𝑈 ′ is inactive
in that column. Therefore, every 𝑣 ∈ 𝑉 has an activity pattern with an active column at
this position while every 𝑢′𝑖𝑛𝑈 ′ has an activity pattern that is inactive in that column.
So none of the pairs (𝑢′, 𝑣) ∈ 𝑈 ′ ×𝑉 can ever be compatible though 𝜒. Hence, the picked
𝑤′𝑖𝑛′ leads to no compatible pairs.

Figure 7: Overview of Step Two of Thinning Out
vec is the basis 𝒰′ of vector space 𝑈 ′, aff the basis 𝒱 of the affine space 𝑉 and off the
corresponding offset 𝑣. The top row shows the reordering of bit positions according to
activity in 𝑈 ′. The bottom row shows the triangulization of 𝒱.

Step Two - Isolated Bits: This step uses the same criteria for elimination as
the thinning out process by Bordes et al. [2], which we mentioned in Section 3.5. The
original version worked on two vector spaces, so we adapted it slightly to with a vector
space and an affine space instead.

22

Definition 4.1. A bit position (𝑐, 𝑖) of a vector 𝑏 in a basis ℬ is said to be an isolated
active bit if 𝑏(𝑐, 𝑖) = 1 and ̃𝑏(𝑐, 𝑖) = 0 for all 𝑏̃ ∈ ℬ\{𝑏}.

This definition is given for vector spaces. However, it can also be applied to affine
spaces. The definition stays the same with potentially a small manipulation of the offset
taking place. If the offset is active in that bit position, we create a new offset by adding
the basis vector 𝑏 to the old offset. This means we have an offset that is guaranteed to
be inactive in the relevant bit position (𝑐, 𝑖).

We can define a reduction condition that allows to remove a basis vector if it is
fulfilled:

Definition 4.2. We say that a basis vector 𝑣 ∈ 𝒱 of the affine space 𝑉 satisfies the
Reduction Condition 1 if and only if there is a column 𝑐 that has an isolated active
bit in 𝑣 while 𝑎𝑐𝑡𝑈′(𝑐) = 0 and 𝑎𝑐𝑡𝑣(𝑐) = 0.

This condition being fulfilled means that every vector in 𝑈 ′ will have the bit in
question inactive. If, however, the specific 𝑣 ∈ 𝒱 is used for the construction of an
element in 𝑉 this bit will always be active according to the following lemma:

Lemma 4.3. If 𝑏 ∈ ℬ has an isolated active bit in position (𝑐, 𝑖), then any vector in the
affine space with offset 𝑏 and basis ℬ\{𝑏} has the corresponding column 𝑐 activated.

Proof. If (𝑐, 𝑖) is an isolated active bit in 𝑏 ∈ ℬ then it is, by definition, inactive in all
other basis vectors. Therefore, any vector from the described affine space has the bit
activated due to 𝑏 being the offset. And since it is inactive in all the other basis vectors,
this bit will stay active no matter which other basis vectors are added. So, position (𝑐, 𝑖)
and also the column 𝑐 will be active.

Consequently, this specific 𝑣 ∈ 𝒱 cannot contribute to the construction of a vector
that would ever be compatible with any 𝑢′ ∈ 𝑈 ′ through 𝜒. Therefore, it can be
eliminated from the basis without negative effects.

This process can be efficiently done using triangulation: The bit positions in basis
𝒰′ of the vector space 𝑈 ′ are reordered so that the inactive bits from 𝑈 ′ are at low
indices; 𝒱, 𝑣 are permuted the same way (top row in Figure 7). Next, the basis 𝒱 is
triangularized to reduced row echelon form. We note the bit positions of the pivot
elements during the triangulization process as these are isolated active bits in 𝒱. At the
same time 𝑣 is triangularized as well, leading to a sparse 𝑣 at low indices (bottom row
in Figure 7). Lastly, for each pivot element the corresponding activity in 𝑈 ′ is checked
to see whether the Reduction Condition 1 is fulfilled.

Note that a case with 𝑎𝑐𝑡𝑈′(𝑐, 𝑖) = 0 ∧ 𝑎𝑐𝑡𝑉(𝑐, 𝑖) = 1 ∧ 𝑣(𝑐, 𝑖) = 1 will not occur
anymore thanks to the triangularization of 𝑣. This means, after triangularization, all
cases with

𝑎𝑐𝑡𝑈′(𝑐) = 0 ∧ 𝑎𝑐𝑡𝑉(𝑐, 𝑖) = 1

fulfil the Reduction Condition 1 and can therefore be removed from 𝒱. Finally, the
reordering of bit positions from the beginning is reversed, thus restoring the initial
order again.

Reduction Condition 1 was phrased to target potential eliminations in the basis 𝒱.
We can, however, rephrase it to allow for eliminations in 𝒰′:

Definition 4.4. We say that a basis vector of the vector space 𝑢′ ∈ 𝒰′ satisfies the
Reduction Condition 2 if and only if there is a column 𝑐 that has an isolated active
bit in 𝑢′ while 𝑎𝑐𝑡𝑉(𝑐) = 0 and 𝑎𝑐𝑡𝑣(𝑐) = 0.

23

Here, every 𝑣 ∈ 𝑉 is inactive in the column 𝑐, while every element of 𝑈 ′ that uses
the basis vector 𝑢′ would be active in it. This again follows from Lemma 4.3. So if
Reduction Condition 2 is fulfilled, the specific 𝑢′ ∈ 𝑈 ′ can be eliminated. The process
of doing this efficiently is the same as for Reduction Condition 1 with the roles of 𝑈 ′

and 𝑉 being reversed.
This Step Two was only based on the fact that activity patterns are invariant under

the S-Box layer. Since this is true for every permutation with an S-Box layer, this is a
reduction condition that can be used in those cases as well.

Step Three - Columns with a single active bit: This step more actively includes
the behaviour of the actual S-Box mapping used in Xoodoo , which achieves further
basis eliminations.

Definition 4.5. A column 𝑐 of a vector 𝑏 in a basis ℬ is called single bit column if
there is an 𝑖 such that (𝑐, 𝑖) is a single active bit in 𝑏 and 𝑎𝑐𝑡ℬ(𝑐, 𝑗) = 0 ∀ 𝑗 ∈ {0, 1, 2}\{𝑖}.

Lemma 4.6. If a state has a single bit column 𝑐 with isolated bit (𝑐, 𝑖), a compatible
state through the non-linear layer 𝜒 must have an active bit at (𝑐, 𝑖) as well.

Proof. Assume, wlog, that the first bit in the column is active. Since the other bits are
inactive, the column will follow the first row of Table 4. All of those have the first bit
active. The same is true for the second or third bit.

Definition 4.7. We say that a basis vector 𝑣 ∈ 𝒱 fulfils the Reduction Condition
3 if and only if 𝑣 has a single bit column 𝑐 with single active bit at position (𝑐, 𝑖) and
𝑎𝑐𝑡𝒰′(𝑐, 𝑖) = 0 and 𝑎𝑐𝑡𝑣(𝑐, 𝑖) = 0.

If this condition is fulfilled, every element in 𝑉 that has the specific 𝑣 as part of its
linear combination will be active in this isolated bit (𝑐, 𝑖) (Lemma 4.3). Further, Lemma
4.6 tells us that the bit position (𝑐, 𝑖) also has to be active in any vector that matches
through the non-linear layer. As a consequence, this specific basis vector 𝑣 ∈ 𝒱 can be
removed without negative effects.

Figure 8: Schematic Overview of Step Three of Thinning Out:
’vec’ is the basis 𝒰′ of vector space 𝑈 ′, ’aff’ the basis 𝒱 of the affine space 𝑉 and ’off’
the corresponding offset 𝑣. First, both bases are triangularized then their activity is
calculated.

To do this efficiently, both bases are first triangularized while also eliminating bits
from 𝑣. Both 𝑎𝑐𝑡𝒰′ and 𝑎𝑐𝑡𝒱 are calculated. Each column in 𝒰′ is checked to see
whether or not the Reduction Condition 3 is fulfilled. If that is the case, the basis
vector is removed. This process is depicted in Figure 8.

24

Reduction Condition 3 was phrased to target potential eliminations in the basis 𝒱.
We can, however, rephrase it to allow for eliminations in 𝒰′:

Definition 4.8. We say that a basis vector 𝑢′ ∈ 𝒰′ fulfils the Reduction Condition
4 if and only if 𝑢′ has a single bit column 𝑐 with single active bit at position (𝑐, 𝑖) and
𝑎𝑐𝑡𝒱(𝑐, 𝑖) = 0 and 𝑎𝑐𝑡𝑣(𝑐, 𝑖) = 0.

The reasoning for why this allows for a valid elimination is the same as for Reduction
Condition 3. The process of actually checking for this is also the same, but with the
roles of 𝒱 and 𝒰′ reversed.

Repeat: If, after these steps, at least one of the bases is shorter than before, it
means a reduction has taken place and all steps are executed again, until no further
basis elements can be eliminated. In this case, the last part of the analysis will take
place. If, at any time during the process, one of the bases reaches a length of zero, it is
automatically stopped. If |𝒰′| = 0, the next 𝑤′ ∈ 𝑊 ′ can be chosen, since this means
that 𝑈 ′ = {0}, which is not compatible with the activity pattern. However, |𝒱| = 0 still
leaves 𝑉 = {𝑣}, meaning we enter a special case that will be described now.

25

4.3 Special Case: Full Basis Reduction of Affine Space
While developing and running the code, we realized that it was very common to end up
in the following situation after the Thinning Out: The basis 𝒰′ was reduced only by a
few elements while the basis 𝒱 was reduced completely. Therefore, we get the special
case were we have to see whether any element in 𝑈 ′ is compatible with the offset 𝑣.

This is done with some similarities to Step Two and Step Three of the Thinning
Out. 𝒰′ is triangularized according to the inactive parts of 𝑣. First, if any of the basis
vectors in 𝒰′ have an isolated bit in a column 𝑐 with 𝑣(𝑐) = 0, they can be eliminated.
Using it would cause the bit and therefore the column to be active in the created 𝑢 ∈ 𝑈.
Since it is inactive in 𝑣 however, they could never be compatible (Step Two). Secondly,
if there are any single bit columns in one of the basis vectors, the offset is also checked.
Like explained in Step Three, the corresponding bit in 𝑣 has to be active as they cannot
be compatible otherwise. If the the offset is inactive the corresponding basis vector is
removed (Step Three).

Both of these steps reduce 𝒰′ quite significantly. So much so, that doing the check
from Step One makes sense again. Since there are less vectors in 𝒰′, there is also overall
less activity. Therefore, that in many cases, a column 𝑐 exists with 𝑎𝑐𝑡𝑈′(𝑐) = 0∧𝑣(𝑐) =
1. Therefore, no compatible pairs can exist in this case!

Overall, this extra step was very helpful in the specific case we looked at, as it
drastically reduced the cases that needed to be checked with the method explained in
the upcoming section.

26

4.4 Finding Compatible Vectors
After the completed basis elimination all pairs (𝑢′, 𝑣) ∈ 𝑈 ′ × 𝑉 now have to be checked
whether or not they are compatible through the non-linear layer 𝜒. The easiest and
least efficient way of doing this is to brute force every possible pairing.

An improvement is made like this: It is easier to look at both 𝑈 ′ and 𝑉 as affine
spaces - 𝑈 ′ has the offset zero for now. From each of the bases 𝒰′ and 𝒱 a basis vector
𝑏 is selected with a single bit column at the same index (𝑐, 𝑖) for both of them. For now,
the offsets are required to be inactive in this column. The corresponding spaces are then
split up into 𝑈 ′

0/𝑈 ′
1 and 𝑉0/𝑉1 with

𝒰′
0 = 𝒰′\{𝑏}, 𝑢′

0 = 𝑢′

𝒰′
1 = 𝒰′\{𝑏}, 𝑢′

1 = 𝑢′ + 𝑏
𝒱0 = 𝒱\{𝑏}, 𝑣0 = 𝑣
𝒱1 = 𝒱\{𝑏}, 𝑣1 = 𝑣 + 𝑏

This leads to every vector in 𝒰′
0 and 𝒱0 being inactive in the corresponding bit

of the Single Bit column and every vector in 𝒰′
1 and 𝒱1 being active. Therefore, no

compatible pairs exist between 𝒰′
0 and 𝒱1 or between 𝒰′

1 and 𝒱0 and these do not need
to be checked. This reduces the number of comparisons needed from 2𝑑𝑖𝑚(𝑈′)+𝑑𝑖𝑚(𝑉)

down to 2 ⋅ 2𝑑𝑖𝑚(𝑈′)−1+𝑑𝑖𝑚(𝑉)−1 = 2𝑑𝑖𝑚(𝑈′)+𝑑𝑖𝑚(𝑉)−1, aka by a factor of 2. This is done
recursively, multiple times to reduce all individual affine spaces as much as possible,
speeding up the process significantly. Since the splitting etc. adds computations it did
not make sense to reduce until the affine spaces had dimension 1. Testing showed that
a reduction down to one of them reaching dimension 3 was optimal. Therefore, instead
of doing further elimination, it was computationally faster to just do the checks and get
the result that way.

Above it is required that the offsets 𝑢′ and 𝑣 have to be inactive in the picked column
𝑐 as well. However, it is sometimes possible to use this splitting-up technique if there is
activity in the offsets. That is, if an offset is active in said column and by adding 𝑏 to
the basis vector the column would become inactive. For the new offsets 𝑏 is added to
𝑢′

0, 𝑣0 instead of to 𝑢′
1, 𝑣1. This way, the same result of one of the new affine spaces

being always active and the other being always inactive is achieved!
If any valid pair is found, it still needs to be checked that the corresponding 𝑢′ is

actually valid, as it was picked from the overestimating 𝑈 ′. This is done by comparing
the activity of 𝑢 = 𝜆−1(𝑢′) to that of the difference 𝑎1 of the input trail core.

27

4.5 Reverse Option
Instead of iterating over 𝑊 ′ = 𝒮𝑎𝑐𝑡(𝑏3), constructing 𝑉 /𝑉 ′ from it and comparing that
to 𝑈 ′ = 𝜆(𝒱𝑎𝑐𝑡𝑀(𝑎1)), we can also do it in reverse order:

Construct 𝑈 from the activity of 𝑎1 via 𝑈 = 𝒮𝑎𝑐𝑡(𝑎1). Use 𝑏3 to create 𝑊 ′ =
𝒱𝑎𝑐𝑡𝑀(𝑏3) and obtain via 𝒲 = 𝜆−1(𝒲′) the basis for 𝑊. Iterate over all elements from
𝑈: Compute 𝑢′ = 𝜆(𝑢), then create an affine space 𝑉 from 𝑢 and use the linear layer
to get a corresponding affine space 𝑉 ′. Thin out 𝑉 ′ and 𝑊 against each other. Then
check the last pairs (𝑣′, 𝑤) ∈ 𝑉 ′ × 𝑊 to find any potential compatible pairs. If any were
found, check activity again before outputting. This is also described in Algorithm 5.

This reversed version does the same as the classical one, with the only difference that
we iterate over 𝑈 instead of 𝑊 ′. For ease of reading, the main text only references the
classical version at all times. But note that everything still works the same, the creation
of an affine space, the thinning out and the search for compatible pairs of vectors. This
works, because the S-Box is symmetric and compatible pairs create an affine space in
both directions as mentioned in Section 3.4.

The reason for using this reverse option would be an improvement in run time. The
actions for each element of the activity matching set (creating an affine space, thinning
it out against the vector space, looking for compatible pairs) have either very low run
times or unpredictable ones: Constructing the affine space always runs in short, constant
time as it iterates over all columns 𝑐. The thinning out cannot be predicted properly and
the same goes for finding compatible pair as it depends on the results of the thinning
out.

Therefore, the run time is mainly correlated to the size of the activity matching set.
This is useful in the case of a trail where #𝑎𝑐𝑡(𝑎1) is lower than #𝑎𝑐𝑡(𝑏3), since the
size is directly correlated to |𝒮𝑎𝑐𝑡(𝑎1)|. If the reverse is true, it is faster to turn around
the entire algorithm as described above with a run time now correlated to the lower
|𝒮𝑎𝑐𝑡(𝑏3)|.

Algorithm 5 Pseudo Code for 4 Round Analysis - Reverse Version
Require: 𝑎1, 𝑏3

𝑊 ′ ←𝒱𝑎𝑐𝑡𝑀(𝑏3)
𝒲 ←𝜆−1(𝒲′)
𝑈 ←𝒮𝑎𝑐𝑡(𝑎1)
for 𝑢 ∈ 𝑈 do

𝑢′ ←𝜆(𝑢)
𝑉 ←affineSpace(𝑢′)
𝒱′ ←𝜆−1(𝒱′)
(𝒱′, 𝒲) ←thinOut(𝒱′, 𝒲)
for 𝑣′ ∈ 𝑉 ′ and 𝑤 ∈ 𝑊 do

if 𝑣′ and 𝑤 are compatible then
𝑤′ ←𝜆(𝑤)
if 𝑎𝑐𝑡𝑤′ = 𝑎𝑐𝑡𝑏3

then
output (𝑢, 𝜆−1(𝑣′), 𝑤)

end if
end if

28

5 Results of the Analysis
This section shows the trail core we used exemplary for our analysis in this thesis. It
also gives the result of said analysis.

5.1 Used Trail Core

Figure 9: Trail core that was used for search of clustering cores. It was found by Daemen
et al. [5]. This picture is a screenshot of the output of their implementation.

Figure 9 shows the trail core used exemplary throughout this thesis. Round 0 has
been omitted as we focus on the trail core only. Rounds 1, 2 and 3 are shown individually
in consecutive lines. ’pE’ and ’pW’ indicate 𝜌𝑒𝑎𝑠𝑡 and 𝜌𝑤𝑒𝑠𝑡 respectively. The non-linear
layer 𝜒 occurs at the end of each round, aka after the last state shown in a line and before
the first state in the next one. In this specific case, applying the function 𝜃 that is part
of the linear layer is not shown. It would occur between 𝜌𝑒𝑎𝑠𝑡 and 𝜌𝑤𝑒𝑠𝑡. However, it
does not alter the state, which means it would be written twice. To keep this narrower,
it was therefore left out. Instead of showing each bit individually, the numbers represent
column values in bird’s eye perspective. Therefore, a 1 means this bit position has a 1
in the plane with index 𝑦 = 0, while planes at 𝑦 = 1, 𝑦 = 2 have a bit value 0.

29

5.2 Results and Observations
We implemented the approach presented in this thesis. It was written in Python as the
3-round version was as well and this allowed us to take over a few parts. The regular
was implemented, the reverse version was not but mainly requires an inversion of order
in regards to the core components of the program. The implementation as well as doc-
umentation on it can be found here [https://github.com/CDworzack/4RoundAnalysis].

This code was executed using the trail core shown in Section 5.1. It was run on a
laptop equipped with an Intel® CoreTM i5-10210U CPU. The run time was around 1
hour and 40 minutes.

Figure 10: On top the original trail core used as input to the implementation. On the
bottom the other trail that was found which clusters with the first one.

In total, two trail cores were found by the code. One of them is the original one
described in Section 5.1. The other one was very similar to the original and they are
both displayed in Figure 10. The only difference is that within Round 1, the 2nd and 4th
line seem to be switched up with the 1st and 3rd. The Rounds 2 and 3 are completely
identical.

All other instances of 𝑤′ ∈ 𝑊 ′ ended up being reduced completely so that the code
never reached the steps described in Section 4.4. As can be seen from Figure 10, Round
3 is identical which means that they both resulted from the same 𝑤′ ∈ 𝑊 ′.

Out of the 74 = 2401 𝑤′ ∈ 𝑊 ′ that were checked, in around 100 cases, 𝒰′ was
completely eliminated thanks to Step One. All other cases ended up in the Special

30

Case described in Section 4.3. This special case then managed to again fully eliminate
the basis 𝒰′. Therefore, the divide-and-conquer technique was never actually used.
In the case that actually needed to be checked 𝒱 was reduced all the way, such that
𝑑𝑖𝑚(𝑉) = 0. Therefore, the remaining elements from 𝑈 were just checked one by one
against the offset 𝑣.

31

6 Conclusion
In this thesis we first explained a general approach on how to find clustering trail cores
to a given trail core (Section 4). We also wanted to find clustering trail cores to a specific
4-round trail core for Xoodoo . Thereby, we were going to answer the research question
given at the beginning. Yes, it is possible to efficiently detect the existence of clustering
trails and find them.

The idea was implemented and then tried which resulted in finding one clustering
trail as explained in Section 5.2. It also turned out that one of the concepts thought up
for this search was not used during the running of the algorithm, namely the last step
explained in Section 4.4. Further tests on other trails would reveal how common this
occurrence is. The reverse version has also not been used at this point.

As said in Section 4.5 the run time of the code mainly depends on w(𝑏3) or w(𝑎1)
depending on the direction. Many cases exist that have higher weights at those positions,
optimizations to the code or the overall concept would make the search for clustering
cores on those more feasible.

32

A Appendix
The function affineColumn is described by the following Algorithm:

Algorithm 6 affineColumns:
Returns the offset and both base vectors for the affine space that describe the compatible
columns given an input column.
Require: 𝑣(𝑐)

if 𝑣(𝑐) = (0, 0, 1) then
return (0, 0, 1), (0, 1, 0), (1, 0, 0)

end if
if 𝑣(𝑐) = (0, 1, 0) then

return (0, 1, 0), (0, 0, 1), (1, 0, 0)
end if
if 𝑣(𝑐) = (1, 0, 0) then

return (1, 0, 0), (0, 0, 1), (0, 1, 0)
end if
if 𝑣(𝑐) = (0, 1, 1) then

return (0, 1, 0), (1, 0, 0), (0, 1, 1)
end if
if 𝑣(𝑐) = (1, 0, 1) then

return (0, 0, 1), (0, 1, 0), (1, 0, 1)
end if
if 𝑣(𝑐) = (1, 1, 0) then

return (1, 0, 0), (0, 0, 1), (1, 1, 0)
end if
if 𝑣(𝑐) = (1, 1, 1) then

return (1, 0, 0), (0, 1, 1), (1, 0, 1)

33

References
[1] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosystems.

Journal of Cryptology, 1991. https://doi.org/10.1007/BF00630563.

[2] Nicolas Bordes, Joan Daemen, Daniël Kuijsters, and Gilles Van Assche. Thinking
outside the superbox. Cryptology ePrint Archive, Paper 2021/293, 2021.

[3] Joan Daemen, Seth Hoffert, Gilles Van Assche, and Ronny Van Keer. The design of
Xoodoo and Xoofff. IACR Transactions on Symmetric Cryptology, 2018.

[4] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Information Security and Cryptography. Springer, 2002.

[5] Gilles Van Assche Joan Daemen, Silvia Mella. Tighter trail bounds for xoodoo.
Cryptology ePrint Archive, Paper 2022/1088, 2022. https://eprint.iacr.org/2022/
1088.

34

https://doi.org/10.1007/BF00630563
https://eprint.iacr.org/2022/1088
https://eprint.iacr.org/2022/1088

	Introduction
	Structure of this Thesis

	Xoodoo
	Background and Basics
	Linear Algebra Basics
	Differential Cryptanalysis
	Activity and Activity Patterns
	Specifics about Xoodoo
	Related and Previous Work

	Analysis
	Setup and First Steps
	Thinning out U' and V
	Special Case: Full Basis Reduction of Affine Space
	Finding Compatible Vectors
	Reverse Option

	Results of the Analysis
	Used Trail Core
	Results and Observations

	Conclusion
	Appendix

