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Abstract

Every year, malaria affects 250 million people globally. In vitro models of liver-stage malaria provide
a controlled environment to study the disease and evaluate therapeutic strategies, though a stan-
dardized and automated method to analyse the vast quantities of produced images is missing. Here,
we developed a deep-learning-based pipeline for the automated analysis of fluorescence microscopy
images of in vitro models of liver-stage malaria. The pipeline segments two key components within
the images, namely parasites and liver-cell nuclei. Using expert knowledge, we define a set of features
that characterize the parasites and nuclei in terms of shape, structure, intensity, and density and train
variational autoencoders to capture underlying patterns in the features. Parasite- and nucleus segmen-
tation achieve a F1 score (IoU ≥ 0.5) of 0.967 and 0.841, respectively. Both individual features and
latent distributions correspond to known biological trends in line with prior studies regarding infection
ratio, parasite growth over time, and variations between strains. We show the latent distribution of
features may be used to assess similarity between drug treatments and other experimental conditions.
Quantitatively comparing the effects between experimental designs, both on the level of individual
features and on a higher ’general’ level, could advance drug screening and aid researchers in gaining
novel biological insights into malaria.
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Chapter 1

Introduction
Malaria is a significant, mosquito-transmitted, disease that remains endemic in 84 countries. The
World Health Organization (WHO) estimates 250 million cases of malaria and attributes 0.6 million
deaths (predominantly infants and young children) to malaria on an annual basis [1]. Malaria is
instigated through the bite of an infected Anopheles mosquito, which injects parasites of the genus
Plasmodium into the bloodstream of a human host. These parasites travel to the liver and begin a
week-long developmental process where they undergo impressive replication. During replication, a
single infected liver cell can generate up to 10.000 blood-infective daughter parasites. The subsequent
rupture of the infected liver cells releases the daughter parasites that infect red blood cells circulating
the bloodstream, wreaking havoc on the body and resulting in fever, anaemia and other symptoms
associated with malaria. Given the serious impact of malaria on society, extensive efforts to understand
the complex nature of the causative parasites’ life-cycle are made.

Liver-stage malaria represents a promising target for therapeutic intervention. The parasite load
in liver-stage malaria is small, centralized, and stationary compared to those in later stages, providing
a well-defined target for treatment. Furthermore, given that red blood cells are yet to be infected,
patients do not experience any symptoms during this stage and will not experience any symptoms
at all if treatment of liver-stage malaria is successful. The only WHO approved vaccine candidate
targets this stage of the malaria life-cycle [2]. Despite the theoretical advantages, there are various
practicalities impeding research of liver-stage malaria. Obtaining parasites from infected mosquitoes is
laborious and difficult, liver cells need to be harvested from patients, and afterwards, their physiology
needs to be maintained [3, 4]. For these reasons, other malaria stages gain more attention, limiting
the set of tools devoted to liver-stage malaria.

In vitro models that mimic liver-stage malaria provide a controlled environment for studying
parasite biology, host immune responses, and evaluating potential therapeutic strategies [5]. They
consist of a monolayer of hepatocytes (liver cells), for which the required cells are harvested from
liver biopsies. These models simulate a liver-like environment, including metabolic activities and
receptor expression, thereby recapitulating the physiological microenvironment for a malaria infection.
After isolation, the hepatocytes of the in vitro model are infected with parasites, starting the week-
long process during which the parasites generate their blood-infective offspring. By allowing the
analysis of cell behaviour under different conditions such as parasite strain, time after infection, and
drug treatment, in vitro models for liver-stage malaria provide an invaluable tool to study biological
mechanisms of parasites and perform drug screening. Prior research has used in vitro models to
perform malaria drug-sensitivity testing [6–8], study parasite behaviour under mixed strain infections
[9] and analyze selective preference of parasites for hepatocytes [10].

Fluorescence microscopy is a widely-used technique for studying these in vitro models, allowing
researchers to localize and quantify molecular markers of bost parasite and host origin. Owing to
the extensive focus on malaria research and the recent strides in high-content automated microscopy,
substantial quantities of fluorescence microscopy images are being produced. Nevertheless, manual
annotation of the obtained images —primarily limited to parasite counting— remains the prevailing
practice [10–12]. An open-source, automated approach for handling these vast datasets remains absent.

In this work, our objective is to develop a deep-learning-based pipeline for the automated segmen-
tation and analysis of fluorescence microscopy images of in vitro models for liver-stage malaria. In
chapter 5, we describe generating segmentations for fluorescence microscopy images of in vitro models.
More precisely, we segment two components that offer essential insights into the state of the in vitro
model: parasites and hepatocyte nuclei. Chapter 6 discusses using the segmentations to derive features
that characterize individual parasites and nuclei in terms of shape, structure, intensity, and density.
In chapter 7 we explore dimensionality-reduction techniques to assess similarity between experimental
conditions for the purposes of drug screening. All code is available on GitHub1. We anticipate the
introduction of an open-source tool for automated feature extraction of liver-stage microscopy images
will aid and speed up malaria drug screening and will provide new insights into the biology of malaria
parasites.

1https://github.com/aligterink/LiverStagePipeline

2



Chapter 2

Background

2.1 Parasite biology

Malaria results from an infection by the Plasmodium parasite, which is transmitted when a mosquito
of the Anopholes genus blood-feeds on a human. During this process, between 5 and 100 parasites
migrate from the mosquito’s salivary glands into the human bloodstream [13]. These parasites are in
the sporozoite stage: they are small worm-like organisms able to find their way to the liver where they
invade hepatocytes (liver cells). After invading a hepatocyte, the sporozoite uses hepatocyte resources
to mature into a schizont over a week-long developmental process. A fully-developed schizont may
contain up to 10.000 merozoites, which are its blood-infective daughter parasites. The developmental
process is abruptly completed by the rupture of the infected hepatocyte, releasing the merozoites into
the bloodstream. Figure 2.1 illustrates the developmental stages of the parasite during the liver stage.

Figure 2.1: developmental stages of the Plasmodium parasite during the liver stage from [14], imaged
using fluorescence microscopy. (1) a sporozoite, (2) the sporozoite has invaded a hepatocyte and
developed into a schizont (3) a mature schizont containing daughter merozoites. Scale bars are 2, 10,
and 10 µm, respectively. Blue is the DAPI stain visualizing DNA, green is PbGAPM1 (1) or PbPhIL1
(2 and 3) visualizing the parasite membrane.

2.2 Fluorescence microscopy

Fluorescence microscopy utilizes molecule-specific stainings for detection [15]. These stainings are
compounds with two key properties: they bind to a specific target molecule, and they absorb and emit
light. Treating an in vitro model with stains allows researchers to estimate quantities and locations of
molecules by observing the intensity of the corresponding stain. In the context of liver-stage malaria
models, these molecules often include parasite- and liver-cell-specific molecular markers. The resulting
images are used to study characteristics of the infection. Notably, preparing a model for certain types
of fluorescence microscopy imaging —such as immunofluorescence microscopy, used in this work—
involves killing the cells to effectively distribute fluorescent molecules, making analysis of individual in
vitro models at multiple timepoints impossible. Figure 2.2 provides an example of an in vitro model
imaged using fluorescence microscopy.
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Figure 2.2: an in vitro model visualized using fluorescence microscopy. From left to right, the images
contain (1) the DAPI stain visualizing the DNA within hepatocyte nuclei and parasites, (2) HSP,
visualizing the parasite cytoplasm, (3) the Phalloidin stain, visualizing the actin protein present within
the hepatocyte’s cytoskeleton, and (4) hGS. The images were scaled to enhance visibility.

The type of staining is pivotal to the characteristics we can measure of an in vitro model. For the
purposes of this work, we focus on the HSP- and DAPI stainings that allow us to identify malaria
parasites and hepatocyte nuclei. In the following section we elaborate upon these stainings.

Heat Shock Protein 70 (HSP) is a protein encoded and synthesized by both parasites and hepa-
tocytes. In humans, heat shock proteins are a group of proteins that are produced by cells in
response to various stressors. They play roles in protecting cells from stress and assist in protein
folding and transport. Within in vitro models, HSP is relatively specific to parasites and is
unlikely to be found in significant quantities in the host’s liver cells in the absence of an infec-
tion. This specificity makes HSP a suitable marker for parasite detection, allowing researchers
to differentiate between infected and uninfected hepatocytes.

4’,6-diamidino-2-phenylindole (DAPI) is a fluorescent stain used to image DNA. DAPI binds to
DNA by intercalating between base pairs. When viewed under the fluorescence microscope,
DAPI visualizes the DNA within the nuclei of hepatocytes and the DNA within schizonts.
Interestingly, the merozoites growing within a schizont give the schizont’s DNA a more clustered
appearance compared to the uniformly distributed DNA of hepatocyte nuclei, see figure 2.3.

HSP provides a clear outline of the parasites in an image, though it may contain false positives in the
form of background stains or stressed hepatocyte nuclei that have synthesized HSP as a response to
infection-related stress. The visualization of DNA through the DAPI staining provides a helpful tool
in distinguishing parasites from stressed hepatocyte nuclei and background stains. See figure 2.3.

Figure 2.3: representative images of a parasite, a hepatocyte nucleus, a stressed hepatocyte nucleus
and a background strain visualized with HSP- and DAPI stainings.
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2.3 Instance segmentation

Segmentation is a key task in computer vision relating to the pixel-wise partitioning of an image into
multiple regions to identify objects of interest. Instance segmentation is a subcategory of segmentation.
It encompasses segmentation tasks in which individual objects of the same class are distinguished.
Instance segmentation has proven valuable for the downstream processing of cell-containing fluorescent
images as it allows for the information contained in the images to be reduced to a collection of extracted
image-based morphological properties of cells based on their intensity, size, shape, and proximity to
other cells. These features can be mined for relevant patterns, such as those relating to drug effects
and cell biology.

2.3.1 Conventional instance segmentation

Conventional instance segmentation refers to the use of traditional methods for partitioning an image
into meaningful regions. These methods typically rely on well-established algorithms and techniques
that do not involve deep learning or neural networks, which have become more prevalent in recent
years. However, conventional segmentation remains valuable for straightforward segmentation tasks,
such as blob detection or in situations where sufficient annotated data is not available. A popular
blob-detection method is the combination of Otsu thresholding [16] and watershed segmentation [17].
In this approach, Otsu thresholding establishes an intensity threshold to separate foreground from
background by minimizing the intra-class variance, providing an initial segmentation. Subsequently,
watershed segmentation is applied to further refine the segmentation by separating individual blobs.
The watershed algorithm views the image’s intensity gradient as a landscape. It detects areas with
significant intensity changes and uses the information to delineate the boundaries of blobs.

2.3.2 Mask R-CNN

Mask R-CNN (Mask Region-based Convolutional Neural Network) is a deep-learning architecture
designed to address the task of instance segmentation [18]. It operates in two stages: first, it identifies
regions of interest (RoIs) within an image. Then, it refines these RoIs by simultaneously predicting
class labels, bounding-box coordinates and pixel-wise masks for each object. Mask R-CNN stems
from the family of region-based convolutional neural networks. Earlier models in this family were
solely tasked with object detection. These models include R-CNN [19], Fast R-CNN [20] and Faster
R-CNN [21]. Mask R-CNN builds upon Faster R-CNN by adding a mask branch responsible for
segmenting the objects within predicted RoIs.

Architecture

In Mask R-CNN, features are extracted in a two-step process. First, the input is ran through the
model’s backbone, producing high-level feature maps. Then, the feature maps are fed to a feature
pyramid network (FPN). FPNs generate a multiscale representation of the input image, allowing
for object detection at various levels of detail [22]. The FPN improves feature maps by combining
information from different layers of the backbone. Subsequently, the improved feature maps are fed
to the region proposal network (RPN). The RPN proposes RoIs by sliding anchor boxes of various
sizes and aspect ratios over the feature maps. Each anchor box is processed by the classification layer,
giving objectness- and background scores that indicate whether the anchor box contains an object
or background, respectively. In parallel, the anchor box is processed by the regression layer which
determines how the anchor box should be adjusted to better align with the object. Then to reduce
redundant proposals, the RPN applies non-maximum suppression (NMS) to filter out overlapping
anchor boxes. The RoIAlign layer then produces a feature map of a fixed size for each proposal.
The fixed-size features are input to a number of fully-connected layers, after which the classification
layer determines their class and the bbox-regression layer further corrects the object’s bounding box.
Additionally, the fixed-sized features from RoIAlign are fed to the mask branch, which uses a set
of convolutional- and deconvolutional layers followed by a sigmoid activation function to determine
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the likelihood of each pixel belonging to the object. In practice, a threshold is used to convert the
probabilities into a binary mask. Figure 2.4 illustrates the complete architecture of Mask R-CNN.

Figure 2.4: architecture of Mask R-CNN from [23].

Loss function

To train Mask R-CNN to solve a specific problem we optimize its loss function. The partitioned nature
of Mask R-CNN’s architecture becomes especially evident when assessing its loss function, designed
to evaluate performance on each subtask:

L = LRPN
cls + LRPN

box + Lcls + Lbox + Lmask. (2.1)

Here, LRPN
cls is the binary cross-entropy (BCE) loss between the objectness scores returned by the

RPN’s classification layer and the ground-truth objectness labels. LRPN
box is the smooth L1 loss [20]

between the bounding-box adjustments predicted by the RPN’s regression layer and the ground-truth
bounding box adjustments. Lcls is the BCE loss between the predicted object class probabilities and
the ground-truth object class labels. Lbox is the smooth L1 loss between the predicted bounding box
adjustments and the ground-truth bounding-box adjustments. Finally, Lmask refers to the BCE loss
between the predicted pixel-wise binary masks and the ground-truth binary masks.

2.3.3 Evaluating instance segmentation

In cases where annotation is available we can evaluate the performance of an instance segmentation
algorithm. This involves deciding for each predicted object whether it is correctly or incorrectly
predicted. For this purpose we use the intersection over union (IoU) metric for objects A and B,
defined as

IoU =
|A ∩B|
|A ∪B|

. (2.2)

IoU measures the portion of overlapping pixels out of the total pixels for any two objects. When
dealing with a set of ground-truth objects G and a set of predicted objects P , we first create a set of
pairs M between objects p ∈ P and g ∈ G where pairs with the highest IoU are matched first, and
each object can only occur in a single pair. Through the introduction of pairs, we can evaluate the
segmentations at the instance level. We judge the quality of a pair by defining an IoU threshold T .
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(p, g) ∈ M is a true positive when IoU(p, g) ≥ T . A prediction p ∈ P is a false positive if the IoU
with its corresponding ground-truth mask is insufficient IoU(p, g) < T or if it was not paired with
any ground-truth mask. Similarly, a ground-truth mask g ∈ G is a false negative if the IoU with its
corresponding predicted mask is insufficient IoU(p, g) < T or if it was not paired with any predicted
mask. With this information, we can define the precision and recall at some IoU threshold T as

precision@T =
true positives

true positives + false positives
(2.3)

recall@T =
true positives

true positives + false negatives
. (2.4)

Using the precision and recall, we compute the F1 score. The F1 score is the harmonic mean of the
precision and recall and is used as the primary evaluation metric in this work. It is defined as

F1@T = 2
precision@T ∗ recall@T

precision@T + recall@T
. (2.5)

Additionally, we can calculate the mean match IoU (mmIoU) over the set of all matched pairs M to
get a sense of the overlap between the predicted objects and the ground-truth objects irrespective of
the precision and recall:

mmIoU =
1

|M |
∑

(p,g)∈M

IoU(p, g) (2.6)

2.4 Variational Autoencoder

Fluorescence microscopy datasets may contain complex data distributions related to different phe-
notypes and experimental conditions. Variational Autoencoders (VAEs) are a class of generative
models that have gained prominence in recent years due to their ability to capture such complex data
distributions [24]. They combine elements of autoencoders [25] and variational inference to learn a
compact representation of data. A VAE consists of two main components: an encoder and a decoder.
The encoder is a neural network with parameters that maps the input data to a lower-dimensional
representation embedded in a probabilistic latent space. Unlike traditional autoencoders, VAEs do
not encode data points into a single fixed vector. Instead, they model this encoding as a probability
distribution. For a given datapoint x, the computed embedding will be a distribution q(z|x) consisting
of a mean µ and a diagonal covariance matrix σ2. The stochasticity encoded in q(z|x) is a key feature
of VAEs and allows them to capture uncertainty in data. The decoder is another neural network. It
generates a reconstruction x′ of the original datapoint x by sampling a fixed vector z from q(z|x) and
subsequently passing z through the network.

The training of a VAE involves optimizing the Evidence Lower Bound (ELBO). The ELBO com-
prises two components, namely the reconstruction loss and the regularization loss. The former mea-
sures how well the VAE can reconstruct the input data from its latent representation, encouraging
the model to learn meaningful features in the latent space. It is computed as the mean squared error
(MSE) between x and x′. The regularization term, known as the Kullback-Leibler (KL) divergence,
ensures that the distribution of the latent space q(z|x) remains close to a predefined prior distribution
p(z), often a Gaussian N (µ, σ2). This regularization balances the trade-off between reconstruction
accuracy and the capacity of the latent space, and ensures we can sample from the latent space. The
ELBO loss is minimized during training and is written as

LELBO(x) = Eq(z|x) [log p(x|z)]︸ ︷︷ ︸
reconstruction term

−KL [q(z|x)∥p(z)]︸ ︷︷ ︸
KL divergence

. (2.7)

Optimization of the ELBO loss involves computing the gradient of the VAE’s weights with respect
to the ELBO loss. Unfortunately, randomly sampling z from q(z|x) is an undifferentiable process
that blocks the computation of gradients. To overcome this challenge and enable gradient-based
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optimization, a technique called the reparameterization trick is used. The reparameterization trick
involves reformulating the sampling step to make it differentiable. Instead of obtaining z by sampling
from q(z|x) which is a Gaussian distribution N (µ, σ2), we express z as z = µ+σ⊙ϵ where ϵ ∈ N (0, 1).
This approach treats the sampling operation as a noise term represented by ϵ, allowing the gradient
to be computed for all the model’s parameters.

2.4.1 Latent space interpretation

VAEs are models able to compactly capture complex data distributions as distributions in the latent
space. However, interpretation of the produced latent space is a non-trivial task as it is challenging
to convey meaning onto its dimensions. To facilitate exploration of the data, datapoints in the latent
space may be divided into groups based on predefined experimental conditions. We can measure how
these groups are positioned relative to each other to learn about how different conditions influence
the distribution. A metric to facilitate the comparison between groups of datapoints is the Silhouette
coefficient, which measures how similar a datapoint is to its own group relative to other groups [26].
The Silhouette coefficient ranges from -1, indicating a datapoint is more similar to other groups, to 1,
indicating a datapoint matches its group well. For a single datapoint i it is calculated as

silhouette =
b− a

max(a, b)
(2.8)

where a is the mean distance between i and all other points in the same group, and b is the smallest
mean distance of i to all points in any other group. In order to assess the distance between two groups
A and B, we consider only the datapoints belonging to those groups, and then compute the average
over the Silhouette coefficient of all datapoints. See the following equation:

silhouette(A,B) =
1

|A| + |B|
∑

i∈A∪B

bi − ai
max(ai, bi)

(2.9)

A final Silhouette score that is close to 0 indicates overlapping groups, whereas a value close to 1
indicates well-separated groups.
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Chapter 3

Related Work

Computational analysis of microscopy data has made great strides in many fields concerned with cell
biology, though fluorescence microscopy images of in vitro models of liver-stage malaria are in many
cases still analyzed through manual inspection [10–12]. We found a single unpublished work regarding
the automated analysis of this data type where a U-Net model [27] was trained to segment parasites
from fluorescence microscopy images using three separate stainings (UIS4, H3K9ac/BIP, and DAPI)
[28], though the model was not made publicly available. A closely-related problem that has received
more attention is the automated analysis of malaria parasites in blood samples using fluorescence
microscopy. This task shares similarities with the analysis of in vitro liver-stage models as both involve
the need to differentiate the small proportion of parasite-containing (infected) cells from a a larger
population of uninfected cells and both employ similar methods to this end. Deep-learning methods
have demonstrated their effectiveness in the classification, detection, and segmentation of parasites
in this related task. In prior research, models were created achieving high-precision identification of
parasite-infected red blood cells in microscopy images of blood samples [29–33]. Additionally, R-CNN
architectures have shown their utility in this domain: Hung et al. have applied faster R-CNN to detect
bounding boxes of cells in blood samples, prior to classifying the type of cell using AlexNet [34,35], and
Loh et al. have demonstrated the specific effectiveness of Mask R-CNN at detecting and segmenting
red blood cells while distinguishing those infected by parasites [36].

Phenotypic features of individual cells based on morphology, intensity, and density can be used
to discover patterns related to drug effects and biological mechanisms. For instance, Das et al. used
morphological features of segmented parasites in blood smears to classify the infection stage and
Plasmodium species, leading to the identification of features relevant to this task [37]. Tools like
CellProfiler [38] are commonly used by researchers to generate such features. However, the information
contained in these features is limited to the characteristics researchers deem relevant. To mitigate
this problem, one can alternatively generate embeddings using deep-learning techniques. Tsebriy et
al. used YOLOv5 [39] to create crops of parasites within the malaria bloodstage. These crops are
subsequently processed by a convolutional neural network to generate embeddings, used to assess
similarity between groups of parasites [33]. This approach, however, discards the surroundings of the
cell, which, in the context of in vitro models of liver-stage malaria may hold relevant information. A
similar approach alleviates this limitation by generating embeddings for entire images. However, this
approach requires large quantities of training data in order to achieve meaningful results. It is also
worth noting that the usage of machine-generated features demands training a new model for every
dataset and limits the interpretability of the features. The latter is not necessarily problematic when
the aim is to determine which groups of cells are similar, though it will hinder analyzing causal relations
between features and experimental conditions, thereby impeding the discovery of novel biological
insights.

Dimensionality-reduction methods are commonly used to facilitate similarity assessment of pheno-
typic features. These approaches are grounded in the concept of cells with similar characteristics being
situated closely in the lower-dimensional space. Tsebriy et al. generated embeddings of individual
parasites during bloodstage using tSNE in order to compare the effects of different transmission-
blocking molecules [33]. Popular dimensionality-reduction methods include tSNE, PCA, and UMAP.
More recently, variational autoencoders (VAEs) have shown to excel at revealing underlying patterns
concealed in biomedical data types such as gene expression- [40], DNA methylation- [41] and pixel
data [42, 43] from cellular images. Chow et al. extend the applicability of VAEs from measuring
similarity between samples to predicting new samples. They successfully manipulated a VAE’s latent
space structure to predict the microscopic image of cells treated with a drug with two distinct modes
of action, relying on the microscopic image of cells treated with drugs corresponding to each individual
mode of action [44].

In this work, we utilize the mask R-CNN model —which is proven to be capable of high perfor-
mance on microscopy images— in combination with conventional segmentation techniques to generate
pixel-wise segmentations of parasites and hepatocyte nuclei in fluorescence microscopy images, en-
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abling precise- and informative quantification of parasite- and hepatocyte-nucleus presence. From
the segmentations we obtain a collection of features that characterize the infection. The features are
designed by experts to profile not only individual cells but also their surroundings to allow for compre-
hensive downstream processing. We then train VAEs to explore group similarity of features between
experimental conditions such as parasite strain and drug treatment. While analogous experiments
have been conducted for bloodstage malaria, to the best of our knowledge, our work is the first to
compare phenotypes among experimental conditions for fluorescence microscopy images of in vitro
models for liver-stage malaria. Furthermore, by providing a tool to characterize hepatocyte-nuclei
phenotypes during an infection, we pave the way for research into the under-explored field of parasite-
hepatocyte interactions. With the introduction of our pipeline, we offer an automated tool for the
analysis of fluorescence microscopy images in the relatively unexplored domain of in vitro models for
liver-stage malaria research. Our pipeline aims to improve the efficiency of characterising parasite-
and hepatocyte phenotypes and anti-malarial compound screening to better understand malaria.
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Chapter 4

Data

This chapter focuses on the generation of the fluorescence microscopy images. It discusses the setup
for the in vitro models, acquisition of the malaria sporozoites, the fluorescence microscopy techniques,
the datasets used throughout this work and the process of annotating images.

4.1 In vitro models

The hepatocytes that constitute the in vitro models were harvested from patients undergoing elective
partial hepatectomy —the partial removal of the liver— as described in [45]. The hepatocytes are
plated in microplates that contain 96 isolated wells, each of which houses approximately 62,500 cells.
The hepatocytes in a well self-assemble into a monolayer structure and the position of each cell is fixed.
Salivary glands of Anopholes stephensi mosquitoes were dissected by hand, yielding the sporozoites
required for infecting the in vitro models. The glands are stored in William B medium that allows for
counting the number of sporozoites. The mosquitoes were reared in the Radboud University Medical
Center insectary. The in vitro models are infected by administering the sporozoite-containing medium
to the monolayer of hepatocytes, starting the infection process and leading to the development of the
sporozoites into schizonts.

4.2 Fluorescent imaging

This work contains fluorescence microscopy images generated by two different microscopes. The Leica
DMI6000B microscope was used to generate low-resolution images of 1392x1040 pixels (1.4 mega
pixels). Each well is divided into 81 tiles, imaged using a 20× objective with 0.4 numerical aperture
(NA). Each pixel equals 0.21 µm2. The Zeiss axio-observer microscope was used for the generation
of high-resolution images of 4096x3008 pixels (12.3 mega pixels) of wells divided into 77 tiles. The
high-resolution images were imaged using a 20x objective with 0.8 NA, where 1 pixel equals 0.03 µm2.
For the purposes of this work we use images of two fluorescent stainings: HSP and DAPI. Refer to
Yang et al. [10] for a more detailed description of the procedures of the in vitro models and imaging
techniques.

4.3 Datasets

We distinguish our fluorescent images using four categories. First, the parasite used to infect the
hepatocytes. Strains are known to vary in infection- and growth rates and to differ in their ability
to resist drugs [46, 47]. Strains used to infect the in vitro models in this work are NF54, NF135 and
NF175. All three belong to the Plasmodium falciparum (Pf ) species, one of five species of the genus
Plasmodium known to cause malaria in humans [48]. NF54 has a lower growth- and infection rate
compared to NF135 and NF175 [10,46]. Our data contains images taken 3, 5, and 7 days post infection,
providing insight into the week-long development process of the parasites. Third, the microscope used
to take the image. Two different microscopes were used to produce the images in our datasets, resulting
in images of low- (1392x1040) and high (4096x3008) resolution. Lastly, drug treatment. A selection of
in vitro models has been treated with drugs for the purposes of analyzing their effect on the parasites
and hepatocytes. We use three distinct datasets throughout this work. Here follows a brief description
of each.
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hGS dataset - a dataset previously used to study the effect of glutamine synthetase (hGS) on parasite
selective preference of hepatocytes [10]. NF54, NF135, and NF175 are all represented in this
dataset. The images were all taken using the low-resolution Leica microscope at 3, 5, and 7 days
post infection. None of the in vitro models in this dataset were treated with drugs. Refer to
table 4.1 for the number of images per strain and per day.

Force of infection (FoI) dataset - a dataset characterized by the variety of parasite:hepatocyte
ratios. Whereas the other datasets were infected with a ratio of one parasite per hepatocyte, the
FoI dataset contains a diverse set of ratios. All images were taken 5 days after infection using
the low-resolution Leica microscope and all three strains occur in this dataset. Refer to table
4.2 for the number of images per FoI ratio and per strain.

6 compounds (6C) dataset - this dataset contains images collected from an experiment inspired
by Xiang et al. where in vitro models were treated with a selection of compounds geared
towards extending the lifespan of hepatocytes [49]. Originally, Xiang et al. experimented with
5 compounds, namely FSK (Forsk), SB43 (SB), DAPT, IWP2 and LDN193189 (LDN). We
have included CHIR in our experiments, in addition to two combined treatments: Forsk +
SB, and the combination of all six previously mentioned compounds except CHIR, denoted as
5C. A quantitative analysis of this dataset may help determine better culturing conditions for
hepatocytes, and may be used to investigate the effects of the compounds on parasite growth.
All images are of strain NF175, taken 5 days after infection using the high-resolution microscope.
Refer to table 4.3 for the number of images per compound.

Table 4.1: images per
parasite strain and day in
the hGS dataset.

D3 D5 D7

NF54 729 567 729

NF135 729 567 729

NF175 243 81 243

Table 4.2: images per para-
site:hepatocyte infection ratio
and parasite strain in the FoI
dataset.

NF54 NF135 NF175

8:1 243 162 324

4:1 243 324 324

2:1 243 324 324

1:1 243 324 324

1:2 243 324 324

1:4 243 324 324

1:8 252 324 324

1:16 324 162 162

1:32 81 81 -

Table 4.3: images per
compound in the 6C
dataset.

images

control 924

Forsk 924

SB 924

DAPT 924

IWP2 924

LDN 924

CHIR 924

Forsk + SB 924

5C 924

4.4 Annotation

We generated annotations of parasites for a subset of images in the form of pixelwise masks, in which
pixels are given a value that is either 0 to indicate a background pixel, or an integer > 0 corresponding
to the unique identifier of a parasite. Images were selected for annotation from the hGS dataset (low-
resolution images) and the control group of the 6 compounds dataset (high-resolution images). The
numbers of annotated images and cells can be found in table 4.4. We adopted a semi-automated
annotation approach, using conventional segmentation to generate initial annotations and having an
expert correct those manually using a Napari-based annotation tool we developed to this end [50].
The conventional segmentations were obtained as follows: we perform Otsu thresholding on the HSP
channel to separate the parasite-containing foreground from the background. Enclosed gaps within the
foreground are filled and objects smaller than 50 pixels are removed. Then, we apply the peak local max
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Table 4.4: numbers of annotated images and cells, separated by resolution, strain and number of days
after infection.

Low resolution High resolution

Strain D3 D5 D7 D3 D5 D7

images parasites images parasites images parasites images parasites images parasites images parasites

NF54 21 127 55 85 70 86 71 351 154 272 145 170

NF135 98 2653 96 1994 79 1557 47 718 92 899 62 241

NF175 98 2300 86 1964 70 1354 - - 103 1924 105 814

function from scikit-image [51] on the Euclidean distance transform of the foreground to detect peaks
that may be parasite centers. The transformed foreground and peaks are supplied to the watershed
algorithm to generate the final segmentation.
Due to the extensive effort expended in annotating hepatocyte nuclei, the primary focus of annotation
was on parasites. Nevertheless, we annotated hepatocytes for a small set of 13 images using an identical
approach on the DAPI channel. These images were selected from the annotated NF175 day 5 set, 3
images being from the low-resolution microscope and 10 from the high-resolution microscope. Figure
4.1 illustrates an example of an annotated image.

Figure 4.1: from left to right: the (1) DAPI and (2) HSP channels of a fluorescence microscopy image,
along with the corresponding (3) parasite- and (4) hepatocyte nucleus annotation.
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Chapter 5

Segmentation

This chapter focuses on generating segmentations of the fluorescence microscopy images. It describes
the acquisition of the images, their annotation, the employed segmentation methods and their evalu-
ation.

5.1 Parasite segmentation

5.1.1 Preprocessing

The fluorescent images in our datasets are produced using two microscopes and a multitude of micro-
scope settings, causing variation between images due to the methodological setup. To account for this
variation we compute the minimum and maximum intensity per channel per experiment and rescale
the intensities to a range of [0, 1] using min-max normalization. With the aim of developing a model
capable of segmenting both low- and high-resolution images, we opted to scale the high-resolution
images down to match the resolution of the low-resolution images using bilinear interpolation [52].
Note that subsequent to the segmentation, the resulting masks are scaled up to the size of the original
image using nearest neighbor interpolation [53] to allow for more informative downstream processing.

5.1.2 Model

For segmenting the parasites in the fluorescent images, we trained a Mask R-CNN model [18], to be
used on all three datasets. We used a ResNet-101-FPN backbone, and the first backbone layer was
modified to accept 2 channels instead of the traditional 3 channels. The model was implemented in
PyTorch [54]. Throughout all experiments, the model was trained for 100 epochs using the AMSGrad
optimizer [55] and a learning rate of 0.0005. To ensure robustness and unbiased evaluation, the
annotated images were partitioned into a training-, validation-, and a test set comprising 70%, 15%
and 15% of the images, respectively. The images were divided using a stratified approach ensuring
proportional representation across image resolution, strain, and number of days post infection.

5.1.3 Data augmentation

During training, we noticed our model was failing to fully utilize the DAPI channel to verify par-
asite presence. Instead it overly focused on the HSP channel, consequently segmenting background
stains and stressed hepatocyte nuclei as parasites. Additionally, the model displayed a tendency to
segment adjacent parasites as a single parasite. We experimented with a selection of data augmen-
tation methods for the purposes of increasing generalizability and reducing overfitting. Included are
two augmentations we developed specifically to combat the aforementioned segmentation issues. Both
are inspired by the Simple Copy-Paste augmentation [56]. They are elaborated upon in the follow-
ing sections. A list of all augmentations used to train our models can be found in table 5.1. The
augmentation probabilities were chosen based on empirical observations.

Random copy-paste - an augmentation method to combat segmentation of background stains in
the HSP channel (refer to table 2.3 for an example). This is achieved by using the annotated
parasite masks to extract crops of parasites from the HSP channel of images throughout the
train set. The crops are then randomly pasted throughout the HSP channel of the image. For
the purpose of making the transition between the pasted crop and the image appear smooth,
we pad the crop by 10 pixels and multiply it by a continuous mask that gradually diminishes
the intensity of pixels away from the cell boundary. The continuous mask is computed as g−dist

where g is 10 and dist is the Euclidian distance transform of the inverse mask of the cell. The
purpose of this augmentation is to make the model validate its segmentations using the DAPI
channel, as opposed to disregard the DAPI channel and focus solely on the HSP channel. Figure
5.1 illustrates the result of an image augmented using random copy-paste.
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Figure 5.1: section of an original image (top) and after transformation using the random copy-paste
augmentation (bottom).

Cluster copy-paste - an augmentation using techniques similar to random copy-paste, but intended
to prevent the model from segmenting multiple parasites as one. It selects a limited number of
parasites in an image and pastes parasites from the train set in both the HSP- and DAPI channel
within a specified proximity of those preexisting parasites. Contrary to random copy-paste, the
mask of the image is updated to include the newly-pasted parasites. The result is an image
containing clusters of parasites that will help the model learn to separate adjacent parasites.
Figure 5.2 illustrates the result of an image augmented using cluster copy-paste.

Figure 5.2: section of an original image (top) and after transformation using the cluster copy-paste
augmentation (bottom).
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Table 5.1: augmentations used for parasite segmentation. Probability indicates the likelihood of the
augmentation being applied on an image while training.

Augmentation method Probability Description

Random vertical flip 0.5 Flip the image vertically.

Random horizontal flip 0.5 Flip the image horizontally.

Color jitter 0.4 Randomly change the brightness, contrast, saturation and hue. Each by a factor sampled
from U [0.7, 1.3].

Random adjust sharpness 0.3 Apply a sharpness filter.

Gaussian blur 0.3 Apply a Gaussian filter. Kernel size ∼ U{5, 9} and sigma ∼ U [0.1, 6].

Random resize crop 0.3 Randomly crop the image.

Random copy-paste 0.3 Copy-paste parasite-like blobs in the HSP channel. Number of blobs ∼ U{60, 100}.

Cluster copy-paste 0.3 Copy-paste parasites adjacent to preexisting parasites. Maximum pasted parasites is 30.

5.1.4 Results

We trained Mask R-CNN at various levels of augmentation and compared the results to conventional
segmentation (baseline). Table 5.2 shows the results, and figure 5.3 displays the segmentation output
of our best performing model for a sample image. The primary metric we evaluate by is F1@0.5.
However, we evaluate our models at three IoU thresholds T : 0.25, 0.5 and 0.75, to gain insight into
how well the predicted masks match the ground truth. Conventional segmentation achieves a F1@0.5
of 0.776. Mask R-CNN achieves a F1@0.5 of 0.915, which increases slightly to 0.946 when trained using
conventional augmentations and to 0.967 when trained using conventional augmentations in addition to
our custom augmentations. Two patterns stand out when inspecting the metrics for the different levels
of augmentation. It is noticeable that the recall remains mostly stable while the precision undergoes
improvement under heavier levels of augmentation for T = 0.25 and T = 0.5. This suggests that our
augmentations predominantly help the model filter out false positives at these thresholds. This is not
true at T = 0.75 where the model’s recall lies at 0.89 without augmentation and increases by 6% when
adding augmentation. This suggests that the overlap between the predicted masks and ground-truth
masks improves from the augmentations, which is also indicated by the increasing mean match IoU
(mmIoU), a measure for the overlap between predicted and ground-truth objects irrespective of the
F1 score.

Table 5.2: performance of parasite segmentation models on the held-out test set. T is the IoU threshold
and * indicates all augmentations listed in table 5.1 excluding random copy-paste and cluster copy-
paste.

T = 0.25 T = 0.5 T = 0.75

model augmentations mmIoU F1 precision recall F1 precision recall F1 precision recall

baseline - 0.748 0.872 0.812 0.942 0.776 0.722 0.838 0.508 0.473 0.549

Mask R-CNN none 0.859 0.924 0.874 0.981 0.915 0.865 0.97 0.839 0.793 0.89

Mask R-CNN all non-custom
augmentations*

0.877 0.954 0.928 0.983 0.946 0.92 0.975 0.899 0.874 0.926

Mask R-CNN all augmentations 0.884 0.973 0.961 0.986 0.967 0.955 0.98 0.929 0.916 0.941

Table 5.3 provides metrics specifying the performance of our best-performing Mask R-CNN model
on each subcategory. Both precision and recall remain stable across both resolutions for NF135 and
NF175. At a low resolution, NF54 achieves a lower precision at day 3 and 5 and a significantly
worse precision at day 7. Interestingly, high precision values are attained across all days for the high
resolution images. Figure 5.4 displays an incorrect segmentation example of the NF54 day 7 set. The
perfect recall metrics of NF54 can likely be attributed to the relatively small number of images in the
test set and NF54’s lower infection rate.
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Table 5.3: performance of Mask R-CNN on the held-out test set. P and R represent the precision and
recall at an IoU threshold of 0.5, respectively.

Low resolution High resolution

Strain D3 D5 D7 D3 D5 D7

P R P R P R P R P R P R

NF54 0.7 1.0 0.778 1.0 0.481 1.0 0.95 1.0 0.978 1.0 0.909 1.0

NF135 0.977 0.987 0.966 0.991 0.966 0.984 0.99 0.953 0.906 0.969 0.904 0.959

NF175 0.963 0.972 0.993 0.993 0.961 0.973 - - 0.958 0.975 0.937 0.98

5.2 Hepatocyte nucleus segmentation

This section describes our approach to the segmentation of hepatocyte nuclei. Hepatocyte nuclei ap-
pear in the DAPI channel as round blobs. Their segmentation is made more difficult due to parasites
in the DAPI channel, which visually appear similar. Using the parasite segmentations generated by
Mask R-CNN, we can remove the parasites from the DAPI channel, effectively reducing the segmenta-
tion of hepatocyte nuclei to a blob detection task. Due to the simple nature of blob detection and the
lack of annotated data to train a machine learning model, we opted for a conventional segmentation
approach similar to the one employed for annotation.

5.2.1 Segmentation

Starting from the DAPI channel, pixels segmented as parasites by Mask R-CNN are set to the median
intensity of the image. Subsequently, we divide the image into 24 equally-sized regions and apply con-
trast limited adaptive histogram equalization to enhance the contrast between nuclei and background.
For the remaining segmentation steps we refer to our annotation approach as described in section 4.4.

5.2.2 Results

The set of 13 images with corresponding hepatocyte nucleus annotation was used to evaluate our
segmentation approach. Table 5.4 contains the resulting metrics and figure 5.3 displays an exem-
plary segmentation result. Performance for low-resolution images is slightly worse compared to high-
resolution images. Both precision and recall noticably worsen when the IoU threshold is increased.
This indicates the existence of a set of masks predicted by our method that only partly overlap with
the ground truth. Interestingly, the achieved mmIOU for both resolutions is higher compared to our
best parasite segmentation model.

Table 5.4: segmentation performance of hepatocyte nuclei. T indicates the IoU threshold. ’both’
metrics are averaged over nuclei.

T = 0.25 T = 0.5 T = 0.75

resolution images nuclei mmIoU F1 precision recall F1 precision recall F1 precision recall

1392 x 1040 3 2098 0.906 0.897 0.998 0.815 0.786 0.874 0.714 0.736 0.819 0.668

4096 x 3008 10 5546 0.942 0.935 0.996 0.881 0.862 0.918 0.812 0.834 0.889 0.786

both 13 7644 0.933 0.925 0.997 0.863 0.841 0.907 0.785 0.808 0.871 0.754
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Figure 5.3: exemplary segmentation results of an image from the 6C dataset’s control group. HSP
visualizes the parasites, while DAPI visualizes both parasites and hepatocyte nuclei. Mask R-CNN
was used to predict the parasite mask, and the hepatocyte nucleus mask was predicted using our
conventional segmentation method.

Figure 5.4: subsection of an image where parasites were incorrectly predicted. The HSP channel
contains stressed hepatocyte nuclei, incorrectly segmented as parasites. The image is from the hGS
datast (NF54 at day 7, low-resolution microscope).
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5.3 Discussion

In this chapter we segmented Plasmodium parasites in fluorescence microscopy images of in vitro
models of liver-stage malaria using Mask R-CNN. We opted to use this model as R-CNN architectures
have proven to attain high performance on similar bloodstage malaria tasks [35,36] and because Mask
R-CNN is relatively scalable compared to more recent computer vision models which is advantageous
for the sake of accessibility. Mask R-CNN performed well across both resolutions, all three timepoints,
and all three strains, the exception being low-resolution images of NF54. We see a significantly worse
precision for these images, implying a larger portion of false positives within the predicted masks. This
is especially true at 7 days post infection. NF54 parasites differ from NF135 and NF175 as they tend
to stress neighbouring hepatocytes, in some cases making their nuclei appear as parasites in terms
of HSP activity (see figures 2.3 and 5.4). Additionally, NF54 has a lower infection rate compared to
the other strains. Assuming that on average the number of false positives is the same for each image,
then decreasing the number of potential true positives results in a lower precision. However, these
factors do not seem to impact the ability of our model to segment high-resolution images of NF54.
We see two valid explanations. First, the high-resolution NF54 images may contain less stressed
hepatocytes, leading to a lower number of false positives. Second, it is possible that the state of the
DAPI —which is more clustered in parasites and more uniform in hepatocyte nuclei— is less apparent
in images produced by the low-resolution Leica microscope, leading to stressed hepatocyte nuclei being
segmented as parasites. It is also worth noting the low quantity of annotated low-resolution NF54
images may have impacted the ability of our model to accurately segment these images. Regardless,
all metrics improve when Mask R-CNN is trained using our custom augmentations, suggesting they
help our model generalize.

Besides the segmentation of parasites, we developed and evaluated a method to segment hepato-
cyte nuclei in fluorescence microscopy images of in vitro models of liver-stage malaria. We chose an
approach based on conventional segmentation due to the extensive effort required to annotate nuclei
in a sufficient number of images. Nevertheless, we realize a single model for the segmentation of both
parasites and nuclei would be more convenient and would simplify our pipeline. In our approach we
exploit the masks generated during the parasite-segmentation phase. By removing parasite activity
in the DAPI channel we effectively reduce the task of segmenting nuclei to blob detection, facilitating
better nucleus segmentation. Evaluation shows our approach is capable of segmenting nuclei with
moderately high accuracy, achieving a F1@0.5 score of 0.841. The approach performs slightly better
on high-resolution images. It is possible that parameters used in the approach are more optimized
towards high-resolution images. The discrepancy in performance may also be attributed to the small
number of images.

Our methods have proven to be versatile, capable of accurately segmenting parasites and hepato-
cyte nuclei across multiple resolutions, timepoints, and parasite strains. It is important to note that
though our model was trained and evaluated on images of common parasite strains, taken at common
timepoints and using common microscopes, the diversity of in vitro models may extend beyond the
diversity encapsulated in our datasets. Compounds used for drug screening and other variations in the
experimental setup may alter the phenotypes of parasites and hepatocytes to the point they become
unrecognizable to our methods. For instance, Goswami et al. visualize HSP in Plasmodium falciparum
cytoplasm through an antigen developed for Plasmodium vivax, completely altering the parasite’s im-
age [57]. A limitation to the datasets in this work is the focal depth of the microscopes. In order
to generate highly-detailed images of our in vitro models, the microscopes catch light from a specific
z -level and of a specific focal depth. The focal depth —which is determined by the microscope— is
smaller than the diameter of both parasites and hepatocyte nuclei. Hence, the image generated by
the microscope is a slice of the in vitro model centered around a single z -level. As most images con-
tain multiple parasites and nuclei with varying z -levels, biases may be introduced in the form of cells
appearing smaller or blurred when there is a substantial distance between their center z -level and the
z -level used to generate the image. Though it is important to take this bias that is inherent to our data
into account, we suspect it will not prohibit us from performing meaningful analyses. Another point
of discussion is our choice of stainings. We used DAPI to visualize parasite- and hepatocyte-nucleus
DNA and HSP for the visualization of parasite cytoplasm. While both stainings are traditionally
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used in liver-stage malaria research, HSP is expensive compared to many other stainings, limiting the
applicability of our pipeline. Stainings binding to the parasite’s cytoplasm in a way similar to HSP
may be able to replace HSP.

Despite the aforementioned limitations, our approach is capable of generating accurate segmen-
tations of parasites and hepatocyte nuclei for fluorescence microscopy images of in vitro models of
liver-stage malaria. These segmentations provide a solid foundation to learn about hepatocyte- and
parasite biology under different experimental conditions and to perform drug screening.

20



Chapter 6

Characterizing morphology

Experimental variables such as drug treatment and parasite strain may result in alterations to the
phenotypes of cells in in vitro models that become evident in fluorescence microscopy images. This
chapter discusses using the obtained parasite segmentations and hepatocyte-nucleus segmentations to
morphologically characterize in vitro models. We compute features of individual cells, describing them
in terms of shape, structure, intensity, and density. Quantitatively profiling cell phenotypes facilitates
analyses of biological mechanisms and drug screening.

6.1 Extraction

Prior to extracting the features, we normalized the intensities of the images through z-score nor-
malization over each individual experiment. We opted to aggregate features by parasites to simplify
downstream processing. For instance, the area of a nucleus might be expressed as the average area of
the nuclei closest to a parasite. Table 6.1 contains a complete list of all features. The list of features
was established in consultation with an expert.

Table 6.1: features extracted per parasite. † implies a feature for each channel.

Feature Description Unit

Area The area of the cell. µm2

Convex area The area of the smallest convex polygon that encloses the cell. µm2

Filled area The area of the cell after filling all internal holes. µm2

Axis major length The longest diameter of the cell. µm

Axis minor length The shortest diameter of the cell. µm

Eccentricity A measure of how elongated or stretched the cell is. Calculated as
√

1 − (axis minor length)2

(axis major length)2 .

Equivalent diameter area The diameter of a circle with the same area as the cell. Calculated as 2 ×
√

area
π . µm2

Extent The ratio of the cell’s area to the area of its bounding box. Calculated as area
area convex .

Maximum Feret diameter The longest distance between any two points on the cell’s boundary. µm

Perimeter The total length of the cell’s boundary. µm

Crofton’s perimeter A measure of the irregularity of a shape, describing how its outer boundary interacts with random
lines [58].

Solidity The ratio of the cell’s area to the area of its convex hull, calculated as area
convex area .

Average intensity† Average intensity of the pixels that belong to a cell for a particular channel. normalized intensity

Intensity standard deviation† Standard deviation of the intensity of the pixels that belong to a cell for a particular channel. normalized intensity

Minimum intensity† Minimum of the intensity of the pixels that belong to a cell for a particular channel. normalized intensity

Maximum intensity† Maximum of the intensity of the pixels that belong to a cell for a particular channel. normalized intensity

Intensity sum† Sum of the intensity of the pixels that belong to a cell for a particular channel. normalized intensity

N µm radius average intensity† Average intensity within a radius of N µm surrounding the parasite, excluding the parasite. N ∈
{10.5, 21, 63}.

normalized intensity

Cell intensity ratio Specific to the DAPI channel, the ratio of parasite intensity to the intensity of both the parasite and
the nearest hepatocyte nucleus, potentially providing insight into the proportion of resources stolen
by the parasite.

Average N nearest parasites distance Average distance to the N nearest parasites. N ∈ {1, 3, 5, 7}. µm

Parasites within N µm The number of parasites within a radius of N µm. N ∈ {21, 63, 126, 189, 252, 420}. count

Average N nearest hepatocytes dis-
tance

Average distance to the N nearest hepatocytes. N ∈ {1, 3, 5, 7, 10, 15, 20, 50, 100}. µm

Hepatocytes within N µm radius The number of hepatocytes within a radius of N µm. N ∈ {21, 63, 126, 189}. count

Hepatocytes within N µm radius aver-
age area

The average area of hepatocytes within a radius of N µm. N ∈ {21, 63, 126, 189}. µm2

Hepatocytes within N µm radius aver-
age eccentricity

The average eccentricity of hepatocytes within a radius of N µm. N ∈ {21, 63, 126, 189}.

Hepatocytes within N µm radius aver-
age intensity†

The average intensity of hepatocytes within a radius of N µm. N ∈ {21, 63, 126, 189}. normalized intensity

Hepatocytes within N µm radius aver-
age minimum intensity†

The average minimum intensity of hepatocytes within a radius of N µm. N ∈ {21, 63, 126, 189}. normalized intensity

Hepatocytes within N µm radius aver-
age maximum intensity†

The average maximum intensity of hepatocytes within a radius of N µm. N ∈ {21, 63, 126, 189}. normalized intensity
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6.2 Distribution of phenotypic features

We segmented all images in the hGS-, FoI- and 6C datasets. Subsequently, we used the segmentations
to extract the features listed in table 6.1. In order to validate the segmentation- and extraction parts
of the pipeline, we may analyze how individual features change between experimental conditions and
compare our observations to prior work. A complete overview of feature distributions can be found
in the supplementary material. Prior research shows NF54 has a lower infection rate compared to
NF135 [46], in addition to a lower growth rate that becomes especially evident at 5 and 7 days post
infection [10]. We sought to replicate these results through the extracted features. Figure 6.1 shows
the area and density of parasites throughout the hGS dataset, separated by day post infection and
strain. Both area and density are significantly smaller for NF54 in comparison to NF135 and NF175.
This trend persists throughout all days post infection.

Figure 6.1: distribution of parasite size in µm2 (area) and density in number of neighbouring parasites
within a 126 µm radius for each parasite (parasites within 126µm) for each strain and day post infection
in the hGS dataset.

By performing analyses on the same FoI dataset, Yang et al. have shown how high infection rates
have a destructive effect on the monolayer structure of in vitro models. Namely, exposure to a high
number of sporozoites may cause large numbers of hepatocytes to die. Though all three strains exhibit
this behaviour, NF135 sporozoites stand out as the most aggressive, causing a comparatively higher
number of hepatocytes to die than the other strains [10]. We replicated this analysis by comparing
hepatocyte nucleus density between infection ratios (figure 6.2). All three strains show a drastic
decrease in nuclei for a parasite:hepatocyte ratio of 8:1. NF54 and NF175 show little to no decrease in
nuclei for lower ratios. Consistent with Yang et al., NF135 sporozoites have a more destructive effect
at ratios 4:1 and 2:1 when compared to the same ratios of NF54 and NF175 sporozoites.

Figure 6.2: distribution of hepatocyte nucleus density per strain and per parasite:hepatocyte ratio in
the FoI dataset, measured as the number of nuclei in a 189 µm radius surrounding a parasite.

The different parasite-to-hepatocyte ratios in the FoI dataset evidently alter the density of parasites.
We confirmed this by comparing parasite density in relation to parasite-hepatocyte ratio, as shown
in figure 6.3. As expected, infection rates seem to be positively correlated with parasite density. The
single exception being the 8:1 ratio, likely as a consequence of the reduced number of available host
cells.
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Figure 6.3: distribution of parasite density for each strain and parasite:hepatocyte ratio in the FoI
dataset, measured as the number of neighbouring parasites within a 126 µm radius for each parasite.

Figure 6.4 shows the distribution of all features extracted from the 6C dataset, illustrating the extend
of the information contained in the features. 5C, the combined treatment of all drugs except for
CHIR, seems to result in the highest average hepatocyte nucleus density (95% CI: 599.7 ± 4.2 per
image), the lowest average parasite density (95% CI: 5.9 ± 0.2 per image), and the lowest average
parasite size (95% CI: 529.5±8.3 µm2). For comparison, the control group has an average hepatocyte
nucleus density of 269.5 ± 6.2, an average parasite density of 21.4 ± 0.5, and an average parasize size
of 1093.9 ± 12.4 µm2. The hepatocyte nucleus observation is sensible given that Xiang et al. selected
these compounds specifically to extend the lifespan of hepatocytes. The 5C parasite density is most
closely resembled by Forsk + SB, suggesting those two compounds play an important role in reducing
the number of parasites.

Figure 6.4: distribution per compound of each extracted feature for the 6C dataset.
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6.3 Discussion

In this chapter we used segmentations of parasites and hepatocyte nuclei to obtain features that profile
cells in terms of shape, structure, intensity, and density, allowing us to compare between experimental
conditions in a quantitative manner. Generally, features provide a manageable data format and often
require less data to identify meaningful trends compared to raw images. However, the transformation
of our images into features likely comes with a loss of information as it is unlikely we were able to
identify all informative features. Nevertheless, our features have shown to encapsulate information
relevant to the characterization of phenotypes. Furthermore, unlike computer-generated features, our
manually-defined features possess inherent meaning and may be used to analyze causal relationships
between experimental conditions and phenotypes in order to reach a better understanding of the
complexities of liver-stage malaria. We opted to aggregate our features on the level of parasites as
opposed to on the level of images for two reasons. First, it better captures phenotypic diversity in
in vitro models. Imagine for instance a drug that increases parasite size when in close proximity
to hepatocyte nuclei but decreases its size when the parasite is isolated. Image-level features of the
average area of all parasites and the average proximity to hepatocyte nuclei will not capture this detail.
Secondly, computing features on image level will drastically reduce the number of samples, potentially
limiting the ability of machine learning models trained on the features to generalize and detect trends.

We compared our obtained features to prior research and found that our pipeline is able to repro-
duce known trends. Parasite sizes, infection rates and hepatocyte mortality between strains showed
trends consistent with the findings of other studies. Parasite densities for different parasite:hepatocyte
ratios also matched our expectations. Furthermore, we found that the 5C treatment reduces parasite-
infectivity and growth. Originally, Xiang et al. showed that the 5C treatment increases the lifespan
and health of hepatocytes which allowed prolonged infection of the hepatitis virus. Its effects on pf
infection have not been previously studied until now. Since the 5C treatment improves hepatocyte
longevity, it is likely that its defense system has been augmented in the process, resulting in reduced
parasite proliferation.

It is important to note that the automated nature of our approach allows us to process significantly
larger quantities of images compared to manual approaches. The increased sample size enhances the
statistical power of our analyses and may lead to the discovery of unknown subpopulations that are
regarded as noise in small-scale experiments. Here, we formulated a set of features that characterize
fluorescence microscopy images of in vitro models of liver-stage malaria. These features detect trends
consistent with previous research and provide a solid foundation to study parasite biology and perform
drug screening.
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Chapter 7

Dimensionality reduction

Analyzing individual features in relation to experimental conditions may result in new biological
findings. However, such analyses fail to capture the complexity that arises when multiple features are
affected simultaneously. Dimensionality-reduction tools provide a way to assess general resemblance
between parasites that transcends individual features. Summarizing the resemblance into a single plot
or metric allows a straightforward way to compare experimental conditions, an application of which
is an automated pipeline for comparing drug treatments. In this chapter, we embed the features
extracted from our three datasets into a lower-dimensional space in an attempt to realize such a
pipeline. Again, we compare the observed trends to literature as a means of validation. For the
purpose of dimensionality reduction we use VAEs, known for their ability to capture and manipulate
complex distributions.

7.1 Variational autoencoder

Throughout this chapter, our VAEs consist of encoders and decoders of a single hidden layer of 250
nodes and a latent dimension of size 10. Intermediate layers are connected by the rectified linear
activation function (ReLU). We used the Adam optimizer [59] and a learning rate of 0.001. The
aforementioned hyperparameters were inspired by Chow et al. [44]. All models were implemented in
Pytorch and trained for 150 epochs. The data was split into a training set (80%) and a test set (20%)
to evaluate performance. All features were normalized to a mean of 0 and a standard deviation of 1.

7.1.1 Latent space interpretation

We use the Silhouette coefficient in order to summarize the resemblance between groups of parasites
in the 10-dimensional latent space. The distance between two groups is computed as the average Sil-
houette coefficient between the datapoints in the two groups, considering only the datapoints in those
groups for computing the Silhouette coefficient. Additionally, we generated 2-dimensional embed-
dings of the original VAE embeddings using UMAP (n components=2, n neighbours=30) to provide
a visualization complementary to the distance metrics.

7.2 Results

Firstly, we trained a VAE on the features extracted from the complete hGS dataset. Figures 7.1c
and 7.1d show scatter plots containing two-dimensional representations of the VAE’s latent space
grouped by day post infection and strain, respectively. For those same groupings, tables 7.1a and 7.1b
summarize the inter-group similarity by means of a distance matrix. The distribution in the latent
space shows structure with regards to the number of days post infection, positioning coeval parasites
adjacently. Table 7.1a signifies a larger separation between D3 and D7 parasites, while D5 parasites
are relatively similar to both. From observing figure 7.1c, it seems that especially D3 parasites are
divided into distinct subpopulations. In line with our previous observations with regards to parasite
size and density (figure 6.1), there is a large overlap between the NF135 and NF175 strains, while
NF54 is more isolated. Do note that our data contains significantly less NF54 parasites.
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(a) (b)

(c) (d)

Figure 7.1: results of training a VAE on the hGS dataset features. (a) and (b): silhouette-coefficient-
based distance matrix between individual days post infection and strains, respectively. (c) and (d):
UMAP-generated scatter plots representing the VAE’s latent space, separated by day post infection
and strain, respectively.

Subsequently, we trained three VAEs on the features extracted from the FoI dataset. Each VAE
was trained separately on the features corresponding to one of the three strains, leaving the infection
ratio as the only variable. Figure 7.2 shows the corresponding distance matrices and scatter plots.
Throughout the latent spaces of all three parasite strains, we observe that parasites of identical
infection ratios tend to be positioned similarly. Furthermore, we notice a pattern where parasites
belonging to an infection ratio are positioned more closely towards groups with similar infection
ratios. As expected, these observations show that the infection ratio influences the characteristics of
in vitro models, and that the VAEs are able to recognize this trend.

Finally, we train a VAE on the features extracted from the 6C dataset. Figure 7.3a contains a visual
representation of the latent space generated by UMAP. Figure 7.3b contains the distances calculated for
each pair of compounds. While there is no clear separation between compounds, certain compounds
seem clustered around specific areas, hinting at the existence of distinct patterns associated with
individual compounds. 5C is distant to the control group, which is sensible considering 5C cultures
were exposed to a large number of compounds. Figure 7.3a clearly shows a small cluster that is
separated from another larger cluster. Since the separation is seemingly not related to compound
treatment, we analyzed the features between both clusters (figure 7.3c). We found the smaller cluster
contains parasites located in close vicinity to other parasites, namely within a radius of 21 µm. In
addition, the parasites in the small cluster have, on average, a smaller area compared to large-cluster
parasites. We suspect this is a consequence of the parasites competing for resources.
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(a) (b) (c)

(d) (e) (f)

Figure 7.2: results of training VAEs on FoI dataset features. One VAE was trained per strain. (a),
(b) and (c): silhouette coefficient-based distance matrix between infection ratios for NF54, NF135
and NF175, respectively. (d), (e) and (f): UMAP-generated scatter plots visualizing the VAE’s latent
space, separated by infection ratio for NF54, NF135 and NF175, respectively.

(a) (b)

(c)

Figure 7.3: results of training a VAE on 6C dataset features. (a) two-dimensional representation of
the VAE’s latent space generated by UMAP and separated by compound. (b) silhouette coefficient-
based distance matrix between individual compounds, and (c) probability density distributions of
parasites within 21µm and area between the two clusters in (a).
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7.3 Discussion

VAEs excel at summarizing features into a condensed latent space where disparities between groups
become more apparent. Questions regarding the observed disparity may drive researchers to wonder
about the underlying factors, leading to novel biological insights. Through applying VAEs on the
hGS- and FoI datasets, we showed they are able to capture previously identified trends. These trends
include the development of in vitro models over time, similarity and differences between strains, and
the effects of different infection ratios. The ability of VAEs to capture these trends shows promise for
their ability to identify previously unknown mechanisms. In this chapter we generated 10-dimensional
latent embeddings of the features of our datasets which we visualized by embedding them into a
2-dimensional space using UMAP. It is conceivable that simpler dimensionality-reduction techniques
such as PCA and UMAP may be sufficient to detect all previously-described trends. Similarly, we could
have used an approach to embed our data into only 2 dimensions to abolish the second embedding
step. However, future datasets may hold more complex trends that will not be captured by simplistic
methods. For this reason we chose a more sophisticated method in order to better meet future
requirements.

The embeddings generated for the compounds in the 6C dataset provide a simplified overview of
similarity between the compounds. In a scenario where the effects of a drug are unknown, comparing
it to other drugs with established effects can be valuable in order to gain insight into the mechanisms
of the unknown drug. From the 6C dataset, we have learned which compounds alter phenotypes most
relative to the control group, which compounds result in only minor alterations, which compounds
result in similar phenotypes, and which compounds do not. The mechanisms behind these observations
are still not understood, and answering these questions may increase our knowledge of liver-stage
malaria.

A VAE’s latent space may also be used to identify clusters. Relying on the property of VAEs,
which embed similar samples in close proximity, the identification of clusters in the VAE-generated
embeddings may lead to the discovery of subpopulations of cells that exhibit unique characteristics
within or throughout groups of different experimental conditions. A key example is the small isolated
cluster in the 6C embeddings (figure 7.3), comprising parasites from all compound treatments. In this
cluster, each parasite has a neighbouring parasite in close proximity (21 µm), a property that is not
seen in parasites outside of the cluster. While in this example the subpopulation was visible from the
two-dimensional representation of the embeddings, it is likely that more unique subpopulations can
be identified by clustering the ten-dimensional embeddings as they were generated by the VAE, even
using simple simple approaches such as K-means clustering.
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Chapter 8

Conclusion

Computational analysis of fluorescence images of in vitro models of liver-stage malaria is a relatively
unexplored domain, but offers vast potential for advancing our knowledge of malaria and the develop-
ment of therapeutic drugs. In this work, we developed techniques to segment parasites and hepatocyte
nuclei in these images, and proved they perform well across most conditions. We established a set of
features that characterize the segmented parasites and hepatocyte nuclei in terms of shape, structure,
intensity, and density. We generated segmentations and the corresponding features for sets of images
encompassing multiple microscopes, resolutions, parasite strains, timepoints, and drug treatments.
By confirming the features are distributed in line with prior work, we reinforce the credibility of our
pipeline. We trained VAEs on the features, embedding them in a lower-dimensional latent space. We
find the latent space shows structure with respect to many experimental conditions and can be used to
determine the general similarity between groups, a technique that is useful to the end of drug screen-
ing. Furthermore, we hypothesize the latent embeddings facilitate the detection of subpopulations
with unique characteristics. We hope that our pipeline will aid researchers in drug screening and the
discovery of novel biological insights into malaria.
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Chapter 9

Future work

A direction remaining unexplored in this work is the proximity-based partitioning of the latent space.
Through applying simple cluster algorithms we may uncover subpopulations of parasites that exist
between or within the groups of experimental conditions. Combined with techniques to quantify how
individual features contribute to the separation of clusters, we may still learn more about malaria’s
biological mechanisms. With regards to segmentation, it would be interesting to determine why
performance is lacking on low-resolution images of NF54, whether there are other similar scenarios
that lead to comparably bad performance, and whether Mask R-CNN can be trained to mitigate this
bad performance. For the purposes of simplifying our pipeline, it may be advantageous to incorporate
the segmentation of hepatocyte nuclei into Mask R-CNN. However, parasites and hepatocyte nuclei
are not the only segmentable components within fluorescence microscopy images of in vitro models of
liver-stage malaria. The actin protein (see figure 2.2) may be used to visualize hepatocyte outlines,
allowing for the segmentation of the complete cell. Another example is the configuration of merozoites
that are growing within each parasite, visible through the DAPI channel (see figure 2.1). We believe
segmenting and subsequently analyzing the number, size, and morphology of the visible ’blobs’ may
provide further information relevant to the parasite’s development. Future research may define features
relating to these other components, thereby expanding upon the initial list of features and improving
our pipeline’s ability to quantify phenotypes of in vitro models. Lastly, future research may focus on
training segmentation models on more accessible stainings. As the HSP stain is relatively expensive,
cheaper stainings such as GAPDH [60] that bind to the parasite’s cytoplasm in a manner similar to
HSP may provide viable alternatives. Since parasite DNA has a distinct and more clustered appearance
compared to hepatocyte nuclei when visualized by DAPI (see figure 2.1), it may also be possible to
train a segmentation model on only DAPI stainings. Exploring these alternative approaches in future
research may yield opportunities to reduce costs and improve accessibility.
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Chapter 10

Appendix

Figure 10.1: distribution of features extracted from the hGS dataset at 3, 5, and 7 days post infection.
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Figure 10.2: distribution of features extracted from the hGS dataset per strain.
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Figure 10.3: distribution of features extracted from the FoI dataset per strain.
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Figure 10.4: distribution of features extracted from the FoI dataset per force of infection.
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