
MASTER’S THESIS DATA SCIENCE

RADBOUD UNIVERSITY NIJMEGEN

The temporal WTA circuit: a novel neuromorphic
approach for learning to distinguish time-varying stimuli

Author:
Otto VAN DER HIMST
S4493591

Supervisor:
David VAN LEEUWEN

Second reader:
Louis TEN BOSCH

December 2023



1

Abstract—With the limit of Moore’s law drawing near, alterna-
tive methods of computation become increasingly relevant. One
such alternative is that provided by neuromorphic architectures,
which perform computations in a brain-inspired fashion. Neu-
romorphic properties such as sparsity and locality allow neuro-
morphic computers to function with orders of magnitude smaller
energy and latency costs than their von Neumann counterparts.
However, in order to utilize the potential of neuromorphic
hardware, algorithms must be developed that themselves operate
according to neuromorphic principles. One such algorithm is the
Winner-Take-All (WTA) circuit, a neuromorphic SNN algorithm
that via plasticity mechanisms learns — unsupervised, online,
and in real time — to distinguish between spike-encoded stimuli.
A limitation of this algorithm is that it can only distinguish
between static (rate-coded) spike patterns, but not time-varying
ones. In this work we present the temporal WTA circuit. Unlike
the traditional (static) WTA circuit, the temporal WTA circuit
is able to distinguish between time-varying spike patterns. The
experiments show, first of all, that the temporal WTA circuit
is indeed capable of learning to distinguish between time-
varying spiking patterns, where the static WTA circuit is not.
Secondly, the experiments show how temporal WTA circuit can
be combined into a network, where separate layers operate at
different timescales, thereby allowing the network to process
temporally larger stimuli. Thirdly, using the TIDIGITS dataset,
the experiments show how a two-layer temporal WTA network
can learn to perfectly remember utterances of a single speaker.
Finally, the experiments show how the two-layer temporal WTA
network is capable of learning to distinguish between the spoken
digits.

Index Terms—neuromorphic computing, Spiking Neural Net-
work (SNN), temporal Winner-Take-All (WTA) circuit, time-
varying pattern recognition, speech recognition, real-time online
learning, unsupervised learning

I. INTRODUCTION

COMPUTERS are ubiquitous in modern life, fulfilling
countless roles both large and small. The vast majority

of computers follow the von Neumann architecture, which –
as predicted by Moore’s Law [1] – have seen an exponential
growth in computational power over the past decades. How-
ever, as we approach the limit of Moore’s Law, qualitative
innovations become necessary to improve the capabilities of
computers, including the development of alternative comput-
ing architectures.

One prominent alternative to the von Neumann architecture,
are neuromorphic architectures. Neuromorphic architectures
draw inspiration from the biological brain, and attempt to
process information in a similar manner. There is as of yet
no consensus about what it means for an architecture to be
neuromorphic, with such architectures varying greatly in the
degree to which they adhere to neurobiological principles.
Even so, there is enough consensus about the general princi-
ples involved for it to have become a distinct field of research,
having been projected to make up 20% of all Artificial
Intelligence (AI) computing and sensing by 2035 [2]. In order
to understand the benefits that neuromorphic computing can
offer over von Neumann computing, comparisons follow with
respect to three domains: hardware, algorithm, and application.

A. Hardware
1) The von Neumann architecture: The primary distinction

within the von Neumann architecture is that between the

centralized control that resides in the Central Processing Unit
(CPU), and a separate storage area which functions as the
primary memory. Within the primary memory, instructions and
data are stored [3]. This information is fetched and executed
sequentially by the CPU, which in turn writes new information
back to the primary memory. The constant flow of information
between the CPU and the primary memory can be a significant
source of delay and comes with high energy costs, this is
referred to as the von Neumann bottleneck [4].

2) The neuromorphic architecture: The neuromorphic ar-
chitecture is less clearly defined. General consensus is that
neuromorphic designs draw inspiration from the biological
brain, though exactly which aspects it is inspired by, and to
what extent it mimics them, varies greatly. But what is it about
the biological brain that inspires?

The human brain consists of many billions of neurons
and many trillions of connections [5], arranged into many
interconnected biological Spiking Neural Networks (SNNs).
Spikes of information are emitted by neurons and travel via
axons, synapses, and dendrites to excite or inhibit a selection
of thereby connected neurons. The true complexity of the
brain is much more intricate, and is far from understood in
its entirety. This elementary description, however, is sufficient
to touch on several properties of the biological brain that serve
as inspiration for neuromorphic computing.

The internal state of ‘brain constituents’ (neurons, synapses,
. . . ) changes smoothly over (continuous) time, in an analogue
fashion. For example, the change in the membrane potential
of a neuron at a given time, is dependent on its membrane
potential and on other properties of the neuron at that time
(temporal locality): typically a neuron will drift tend towards
some resting potential. Additionally, the neuron’s membrane
potential may be perturbed in an event-based manner by
signals arriving via spatially local connections. These inherent
properties of the biological brain allow a number of additional
properties to emerge.

First of all, from the property of (spatial and temporal)
locality follows the co-location of memory and computation:
inherent to the state and properties of brain constituents is
the information required to perform specific computations.
Secondly, by depending solely on local and event-based com-
putation each constituent is able to function in parallel to the
others. Thirdly, if a component is at its natural resting state (at
equilibrium), then it can remain dormant until it is perturbed
by an incoming signal. At any given time, the large majority
of neurons in the biological brain are in this sense dormant,
yielding a pattern of extremely sparse computation.

We can observe two more properties of the biological brain
that are often taken as inspiration for neuromorphic architec-
tures. Over the course of evolution many different types of
biological brains have emerged. Biological brains emerging
in later stages of evolution often contain many brain regions
that are clearly identifiable in earlier stages of evolution, but
have new brain regions working in concert with these. This
indicates that the biological brain is an inherently scalable
system [6]. Finally, there is the observation that the nature of
molecular and cellular processes that underlie the dynamics of
the brain are inherently stochastic, and that thereby so too is



2

the behaviour of the biological brain [7].
3) Von Neumann vs Neuromorphic: Several benefits are

associated with neuromorphic architectures when compared to
the Von Neumann architecture, as well as several drawbacks.
First of all, on certain applications, neuromorphic computers
can achieve energy-efficiency several orders of magnitude
beyond what von Neumann computers are capable of [8]–[10].
One significant source of this contrast is the elimination of
the von Neumann bottleneck, the co-location of memory and
computation removing the need for the constant and expensive
transfer of information between CPU and memory. Another
is the ability of a neuromorphic computer to perform truly
sparse computations, allowing it to expend energy only when
and where it needs to.

Secondly, the elimination of the von Neumann bottleneck,
and the parallel and event-based nature of the neuromorphic
architecture, yields the potential for extremely low-latency
computation [10], [11]. While in the von Neumann architec-
ture response to a stimuli is limited to occur at the next clock
cycle, event-based systems begin processing a stimulus as soon
as it arrives.

While the aforementioned benefits have thus far received
most attention in neuromorphic research, several additional
benefits have been proposed, and more may be found in
time [9]. For one, it has been suggested that the stochastic
nature of a neuromorphic architecture can be used to exploit
intrinsic high-level randomness in existing or emerging de-
vice technology to efficiently perform computations [12]. For
another, analogue neuromorphic architectures allow for types
of computation not possible under the digital von Neumann
architecture, such as the possibility to represent continuous
values and operate in the domain of continuous time [13].

Despite the wide range of benefits that neuromorphic ar-
chitectures offer, there are fronts on which the von Neumann
architecture is more suitable. For one, the deterministic com-
putation offered by the von Neumann architecture will remain
desirable, or even necessary, for many applications. Likewise,
the ability to access specific information at specific times in a
global memory bank is, and will remain, desirable for many
tasks.

Furthermore, at least for some years to come, the von Neu-
mann architecture has a significant head start on neuromorphic
architectures. Nearly all computers used in everyday life stem
from the von Neumann architecture [14], and peripherals
and protocols have been designed and optimized over many
years to work with such systems. Consider for example the
creation of a neuromorphic processor that matches state-of-
the-art von Neumann processors at some task, but operates
with several orders of magnitude greater energy-efficiency.
While the neuromorphic processor may seem vastly supe-
rior, there are several obstacles that diminish its advantage.
First, it might not be straightforward to smoothly interface
the neuromorphic processor with the appropriate peripherals.
Second, the energy-efficiency benefits of the neuromorphic
processor may be diminished by the fact that the peripherals
also consume a significant amount of energy: if the peripherals
consume 10% of the total system’s energy, then improving
the energy-efficiency of the processor can only ever yield

improvements up to a factor of ten. The development of all-
round neuromorphic systems is therefore of vital importance
if neuromorphic computers are to thrive; a process that will
take significant time and effort.

B. Algorithm

1) Algorithmic differences: In order to utilize the strength
of each computing architecture, algorithms must be employed
that match their strengths. A von Neumann computer will
not benefit from an algorithm requiring access only to lo-
cal information, whereas a neuromorphic computer typically
will. The same neuromorphic computer, however, may not
be able to run an algorithm that requires access to global
information. As an example, graph algorithms are considered a
promising family of algorithms for neuromorphic architectures
[15]. Graph nodes can readily be modelled by neurons, and
weighted edges by synapses. Alternatively a neuromorphic
design may abstract away from SNNs entirely and directly
emulate graph structures. Most prominently however, neuro-
morphic architectures show promise with respect to AI and
machine learning algorithms.

2) Artificial Intelligence: The field of AI has grown sub-
stantially in recent years. Two decades ago the achievements
of AI were trivial when compared to human intelligence, while
today AI can tackle – and even sometimes outperform humans
on – a wide range of complex tasks [16], [17]. The rapid rise of
AI in recent years was driven by the exponentially increasing
computational power of hardware, the development of spe-
cialized hardware such as GPUs and TPUs, the growing AI
community both on a an amateur and a professional level, and
– on an algorithmic level – the success of backpropagation and
stochastic gradient descent in the field of deep learning [17],
[18]. Deep learning algorithms now thrive on von Neumann
computers, but – due to their non-local and sequential nature –
are not straightforwardly suitable for neuromorphic computers.

Instead of the Artificial Neural Networks (ANNs) that
underlie deep learning methods, Spiking Neural Networks
(SNNs) are more naturally suited for neuromorphic architec-
tures. In fact, neuromorphic hardware often directly emulates
the structure of SNNs. While – like neuromorphic computers
themselves – SNNs can be implemented in many ways,
they typically consist of neurons connected into a network
(e.g., via axons, synapses, and dendrites), where (typically
binary) spike signals are sent between connected neurons.
Information is represented by patterns of spiking neurons.
This yields a distinguishing characteristic of SNNs, namely
that the manner in which information is encoded includes a
notion of time: information can be encoded in the relative
timing of spiking neurons, and learned information can be
encoded in connection delays. SNNs are uniquely suitable
for exploiting the neuromorphic characteristics mentioned in
section I-A – unsurprisingly, since these characteristics are
inspired by biological SNNs.

3) Learning: One of the major challenges for neuromorphic
AI is learning. While in methods such as backpropagation and
gradient descent have seen great success within the field of
deep learning, these are not straightforward to apply in SNNs.



3

One obstacle in this regard is the fact that SNNs (typically)
communicate via binary spikes, which are not differentiable.
Another is the fact that these methods require information that
is non-local in space and time. Still, approaches exist to train
SNNs using these methods.

One such approach is to first train an ANN using Back-
Propagation Through Time (BPTT), mapping it to a SNN
afterwards. This approach has yielded near state-of-the-art per-
formance, with the potential for considerably reduced energy
costs [9], [19]–[21]. However, reduced accuracy is not out of
the question. Furthermore, the training phase utilizes none of
the benefits that neuromorphic approaches have to offer, and
additional costs are incurred by the mapping from ANN to
SNN.

An alternative approach is to approximate well-developed
machine learning methods, such that learning can occur di-
rectly – on-chip – in the SNN [22]–[25]. One prominent
example of such a method is e-prop [25], which approxi-
mates BPTT. E-prop draws inspiration from two pieces of
neuroscientific knowledge. First of all, from the knowledge
that the biological brain maintains (locally) temporary records
of events in the form of so-called eligibility traces. Secondly,
from the knowledge that the biological brain sends top-down
learning signals in order to inform specific populations of
neurons of behavioural results. Using such mechanisms, e-
prop is capable of approximating BPTT and – though it learns
slower than BPTT – e-prop facilitates online and on-chip
learning in Recurrent SSNs (RSNNs).

The aforementioned learning methods have the benefit of
using and recycling knowledge from the well-developed and
successful field of deep learning. However, as noted by [9],
limiting ourselves to algorithms designed for ANNs may also
limit what will be achieved by SNNs. While adhering solely to
such strategies, neuromorphic approaches may yield improved
performance in terms of energy and latency, but not in terms of
measures such as accuracy. In addition to repurposing existing
methods, new learning methods should be (and are being)
developed to exploit properties that are inherent SNNs.

Again, we can look towards the biological brain for inspi-
ration. In the brain it can be observed that learning occurs via
local plasticity mechanisms that adapt properties of neurons,
synapses, and other brain components. Rules used to guide
this adaptation, both in neuroscience and in neuromorphic
hardware, generally follow the shape of Three Factor (3F)
rules. According to such a rule, synaptic change is determined
by (1) pre-synaptic and (2) post-synaptic states, and (3) by
a post-synaptic modulation term which can represent signals
such as error (supervised), reward (reinforcement), and sur-
prise (unsupervised) [10]. The local and event-based nature of
3F-based methods makes them uniquely suitable for energy-
efficient, continual, on-chip learning.

C. Applications

There is a wide variety of applications that can benefit
from neuromorphic technology. In the short term, the most
obvious applications are those that require low-latency or low-
energy computation. Examples of such applications include

robotics, autonomous vehicles and drones, and all kinds of
edge applications [9], [10]. Within all these domains is the
desire to have the device in question function on battery for
extended periods of time, for it to be able to respond quickly
to a variety of sensory stimuli, and for it to continuously
learn and adapt to its environment. Neuromorphic technology
is uniquely suited to fulfil these desires.

One commonality between the aforementioned applications,
is that much of their functioning will depend on processing and
interpreting sensory stimuli. In particular, many environments
will require the processing of time-varying signals. A drone
for example is faced with rapidly changing visual scenes,
and a voice assistant has to understand and react to speech
smoothly in real time. The event-based nature of neuromorphic
approaches, and their ability to extract information from
temporal variations in signals, makes them uniquely suited to
process such time-varying stimuli.

This work focuses on the development of a neuromorphic
algorithm suitable for the aforementioned applications. Specif-
ically, this work introduces a novel SNN algorithm that utilizes
plasticity rules in order to learn — unsupervised, online, and
in real time — to distinguish between time-varying (spike)
signals. We will argue that, in principle, the nature of the
algorithm allows it to exploit the neuromorphic principles of
locality, sparsity, parallelism, stochasticity, and scalability, and
allows for event-based, continuous, and analogue computation.
The remainder of this work is structured as follows. Section
II provides insight into related work. Section III provides a
formal description of the algorithm. Section IV evaluates the
behaviour and performance of the algorithm in a variety of
experiments. Section V provides a general discussion of the
algorithm, the experimental results, and directions for future
work. Finally, section VI ends this work with a concluding
statement.

II. RELATED WORK

A. Tempotron

Gütig et al. [26] proposed a biologically plausible super-
vised classifier called the tempotron. The tempotron is a SNN
that is able to extract information from the spatiotemporal
structure of spike trains. In particular, this includes the ability
to classify time-varying (in addition to rate-coded) spiking
patterns. The tempotron consists of a layer of Leaky Integrate-
and-Fire (LIF) neurons, which is fully connected to an input
layer that encodes stimuli as spiking patterns. Each LIF neuron
is associated with a single label, a spike from the neuron –
elicited when its membrane potential exceeds its firing thresh-
old – indicating classification of the neuron’s corresponding
label. The output spike of the tempotron is not fixed in time,
rather allowing event-based classification.

When a neuron makes a mistake, which can take the form
of a false positive or a false negative, learning occurs via
local plasticity rules, steered by a binary error signal. If the
neuron responds to the wrong label (false positive), then the
error signal elicits a decrease in certain synaptic weights, if it
does not respond to the right label (false negative), then the
error signal elicits an increase in certain synaptic weights. The



4

degree of change of each synaptic weight is dependent on its
specific contribution to the error.

Though for the most part the tempotron offers a biologically
plausible supervised classification method, the authors note
two limitations. First of all, it is not clear how the supervision
signal arrives at the site of plasticity. Secondly, it is not clear
how the signal is translated into appropriate synaptic changes.
The supervisory signal only needs to contain information
about the polarity of the synaptic change: decrease for false
positive and increase for false negative. Ideally then, the
synapses themselves locally maintain the information neces-
sary to determine the strength of the synaptic changes. The
authors do not provide concrete solutions for these problems,
though they briefly propose that neuromodulatory pathways
can be recruited to activate either Long-Term Potentiation
(LTP) or Long-Term Depression (LTD) after an error, and that
eligibility traces might be maintained in order to determine the
appropriate amount of synaptic change when a supervision
signal arrives.

Finally, the authors note that the method is restricted to
stimuli that fit the relatively short integration window of
the tempotron, and that additional memory mechanisms are
required to solve more demanding tasks. In following sections
II-B and II-C we will see the tempotron being used in such a
fashion.

B. Liquid State Machine

The Liquid State Machine (LSM) is one of the more
prominent neuromorphic paradigms for real-time processing
of time-varying signals [27], [28]. The LSM can be separated
into two major components. On the one hand, a ‘liquid’ that
can be perturbed by external stimuli. On the other hand, a
memoryless readout unit that interprets the present state of
the liquid.

The form of the liquid can vary greatly, from a literal liquid
(e.g., water) where ripples on the surface temporarily maintain
information about past perturbations, to a SNN where input
spikes temporarily resonate through a network of recurrently
connected neurons. In general though, it is desirable that the
liquid remembers successive inputs via some dynamic, non-
linear, and high-dimensional representation. The liquid is the
more complex part of the LSM. The readout unit is typically
kept relatively uncomplicated, and often takes the form of a
simple linear regression classifier.

A key characteristic of the LSM is that it can function with-
out any learning being done by the relatively complex liquid.
Instead, the liquid is often initialized at random according to
simple heuristics, and remains unchanged after [29]. Under
the right circumstances, it is then able to non-linearly separate
the input and maintain information about recent perturbations.
A linear classifier is often sufficient to learn (in a supervised
manner) how to interpret different liquid states. It has been
noted, however, that tuning of the liquid through some type
of meta-learning can dramatically improve performance [29].

Various properties of the LSM make it well suited for
neuromorphic implementation. For one, the entirety of a LSM
(input, liquid, classifier) can take the form of a (sparsely firing,

recurrent) SNN. Sensory inputs can be encoded via spike
trains using event-based sensors [30]–[32], the liquid can be
a sparsely and recurrently connected SNN, and the classifier
can be a tempotron. In this form it is able — in real time —
to (learn to) extract information from temporal variations in
input signals. Furthermore, multiple classifiers can be taught
to extract different information from the same liquid, allowing
for parallel classification. As such, it has been noted to be an
attractive SNN model for low-power edge computing [33].

Despite all this, it should be noted that the performance
of LSM methods has not yet caught up to the state-of-the-
art performances of BPTT-trained SNNs [33]. Also, it has
been noted that by [29] that due to challenges connected to
catastrophic forgetting, LSM methods are difficult to apply in
online learning settings. Finally, the LSM in general does not
actually provide a solution for neuromorphic learning, which
is a task relegated to other methods such as linear regression
classifiers; instead the LSM just provides a type of short-term
memory.

C. Self-Organizing Map

The Self-Organizing Map (SOM) [34] is an ANN capable of
tuning itself to observed patterns via a process of unsupervised
learning. It exhibits an interesting property that is also found
in biological brains, namely that the sensitivity of groups of
neurons becomes spatially organized to match some dimension
of the data to which they are exposed. In other words, neigh-
bouring neurons learn to become sensitive to similar input
patterns. This is seen all over the human brain, particularly
on a sensory level [34]. In the visual areas we find colour
maps [35], in the auditory cortex we find tonotopic maps
organized according to pitches of tones [36], and somatotopic
maps follow a spatial representation of our body [37].

The SOM consists of a layer of artificial neurons with
differing sensitivities to specific input stimuli. Through mech-
anisms of competition and collaboration, each neuron learns to
become distinctly sensitive to a particular input pattern. When
a stimulus is presented to the SOM, the neuron that is most
sensitive to the stimulus responds, this neuron is referred to
as the Best Matching Unit (BMU). Sensitivity is computed as
the distance between a neuron’s synaptic weight vector and
the input vector representing the stimulus. After determining
the BMU, the synaptic weight vector of the BMU is updated
to become closer to the input vector, and thus to become more
sensitive to the stimulus at hand. Neurons adjacent to the BMU
adapt in the same manner, but to a lesser degree, the degree
to which a neuron does so being inversely proportional to
its distance to the BMU. This unsupervised learning process
eventually causes each neuron to become distinctly sensitive
to specific patterns, with neighbouring neurons becoming
sensitive to similar patterns, according to the distribution of
the data.

Aiming to introduce a new neuromorphic approach for
speech recognition, Wu et al. [38] proposed the SOM-SNN
framework. The method utilizes the SOM in order to extract
acoustic features from speech, learning to do so in an unsuper-
vised manner. The method consists of three main components



5

organized in a pipeline. First, the speech signal – in the form of
Mel-scaled filters – is encoded into spikes via latency coding,
where the earlier arrival of spikes indicates a higher amplitude
of the corresponding signal. Secondly, a single SOM layer is
used to extract acoustic features from real-valued vectors that
correspond to the spike times of the encoded speech signal.
Thirdly, in sequential order according to their respective time
frame, each BMU generates a spike, thereby generating a
sparse spiking pattern to be interpreted by a tempotron layer.
The tempotron layer is trained in a supervised manner to
classify these spiking patterns.

The authors report state-of-the-art accuracy of 97.60% on
the TIDIGITS dataset. If the SOM layer is omitted from
the pipeline, and the tempotron thus has to directly classify
the encoded speech signal, the authors report an accuracy of
9.11% (chance). As the authors note, this contrast matches
with similar work in the field of deep learning, where the
extraction of discriminative features play an important role in
ASR [39].

The work of [38] shows that the SOM is a suitable method
extracting meaningful acoustic features in an unsupervised
manner. From a neuromorphic point of view, however, the
method has several weaknesses. First of all, the time-variation
of the spike encoding is not used to encode the time-variation
of the speech signal, instead it is used solely to encode the
amplitude of the signal. Such an encoding is not suitable for
real-time processing of speech. Secondly, the SOM is not a
SNN, but an ANN. Input to the SOM is given as a real-valued
vector corresponding to spike times, and the BMUs do not
generate a spike pattern in an event-based manner. Finally, in
order to find the BMU, non-local comparisons need to be made
to find the shortest distance between synaptic weight vectors
and the input vector.

D. WTA circuits and networks
Another neuromorphic approach is driven by two pieces of

neuroscientific evidence. First, the observation that the human
brain appears to process information in a Bayesian manner.
And second, the ubiquity of so-called Winner-Take-All circuits
in the human brain. Nessler et al. [40] propose that WTA
circuits are capable of performing object classification via
Bayesian computations.

A WTA circuit is a simple SNN consisting of a single layer
of neurons that receive spike input via synaptic connections
with other neurons (such as sensory neurons). Each neuron
in the WTA layer is excited by spikes coming in from pre-
synaptic neurons, weighed by corresponding synaptic weights.
The spiking probability of a WTA neuron increases expo-
nentially as a function of its membrane potential. When a
WTA neurons spikes, a strong inhibitory spike signal is sent
to all WTA neurons, reducing the chance that other neurons
respond to the same signal. Additionally, following a spike the
synaptic weights of the spiking WTA neuron are updated via
plasticity dynamics: synaptic weights which recently saw pre-
synaptic spiking activity are strengthened, those that did not
are weakened. Over time, these dynamics cause each WTA
neuron to become sensitive to a distinct pre-synaptic spiking
pattern.

Nessler et al. [40] formally compare this process to the
Expectation Maximization (EM) algorithm. The authors show
that the spiking of a WTA neuron can be viewed as the
expectation-step. In this view, the spike can be interpreted as a
sample from a posterior over hidden causes, which is encoded
in the synaptic weights of the WTA neurons. Following a
spike, the corresponding STDP weight update can be seen as
the maximization step, moving the synaptic weights closer to
the observed distribution.

Nessler et al. [41] illustrate this process using the MNIST
dataset of handwritten digits. In their experiments they present
rate-encoded MNIST digits to a WTA circuit consisting of
100 neurons. Their results show that merely by unsupervised
exposure to these spike patterns, the WTA neurons become
distinctly sensitive to varying handwritten digits, achieving a
classification accuracy of 80.14%. Guo et al. [42] extend this
method by combining a multitude of WTA circuits into a two-
layer hierarchical WTA network. The first layer consists of
sixteen 15-neuron WTA circuits which each observe a separate
7×7 pixel segment of rate-encoded MNIST images. The sec-
ond layer consists of a single 100-neuron WTA circuit which
receives input from all 16×15 WTA neurons in the first layer.
Their method achieves an accuracy of 84.89% on the same
benchmark. Van der Himst et al. [43] replicate the method
of [42] and show that multiple hierarchical WTA networks
can be combined to process multiple stimuli. They further
show that feedback mechanisms can facilitate communication
between otherwise independent parts of a network, and that
such mechanisms can improve learning.

While WTA networks have yet to be applied to more com-
plex problems than the MNIST, they are extremely well suited
for neuromorphic implementation. Though simulations on von
Neumann computers may require the model to be implemented
in discrete time, the original WTA circuit model of [40] was
conceived to operate within a continuous time domain, and
is suitable for analogue implementation (as evidenced by the
presence of WTA circuits in the human brain). Furthermore,
all operations can be realized in a local, event-based, and
parallel manner, eliminating the problem of the von Neumann
bottleneck. The lateral inhibition mechanisms fundamental to
WTA circuits guarantee sparse spiking activity. The stochastic
nature of a WTA neuron’s firing matches the stochastic nature
of biological brains. And the work of [42] and [43] show that
the method is naturally scalable, and can benefit from this
scalability. Finally, a fundamental feature of WTA circuits is
their capacity for online, real-time, and unsupervised learning.

Despite all these desirable neuromorphic properties, the
method has a significant limitation. Thus far it has only
been applied to static (rate-coded) spike patterns. If it is to
be applied in real-world settings then this will not suffice.
In the real world visual scenes are rarely stationary, and
many types of signals — such as speech — are characterized
by temporal variation. In this work, a novel algorithm is
proposed that enables WTA circuits to learn to distinguish
between time-varying spike patterns, whilst keeping intact the
aforementioned neuromorphic characteristics of WTA circuits.
We call this algorithm the temporal WTA circuit, and contrast
it against the traditional (static) WTA circuit.



6

III. METHOD

In the following we provide a formal WTA circuit defini-
tion, including a description of its dynamics. First, a generic
definition will be given that fits with all the aforementioned
works on WTA circuits [40]–[43]. Second, specific properties
and dynamics of WTA circuits, as implemented in this work,
will be defined. Finally, we introduce novel properties and
dynamics that allow a WTA circuit to (learn to) distinguish
between time-varying (rather than only static) spike patterns.
Table I provides an overview of the notation used in this work.
Figures 1 and 2 visualize the dynamics of both static and
temporal WTA circuits.

A. Static WTA circuit definition
In essence, a WTA circuit consists of four sets of compo-

nents. First of all, it consists of a collection of K WTA neurons
zzz = {z1, ..., zK}. Secondly, it consists a collection of N input
neurons yyy = {y1, ..., yN}. Thirdly, consists of a collection of
K ·N connections ccc =

{
ckn|k ∈ {1, ...,K}, n ∈ {1, ..., N}

}
that allow spikes to travel from neurons yyy to neurons zzz. Finally,
a collection of (here undefined) connections that, following a
spike from a neuron zk, transport an inhibitory signal I(t) to
all neurons zzz. Each set of components has several properties
that determine the overall behaviour of the WTA circuit.

Within the general WTA circuit definition, the properties
of input neurons yyy are largely undefined. It is required that
neurons yyy produce some spike pattern, but the dynamics
behind this change between applications. Neurons yyy may
represent retinal neurons encoding visual stimuli, or may
represent neurons zzz′ of a different WTA circuit [42], [43],
or may represent something else entirely. In previous works
stimuli were encoded via Poisson spike trains [40]–[43]. In
these works, the spiking probability of each input neuron is
dependent on some static stimulus, and remains stable for the
duration that a stimulus is presented. We refer to these types of
encoding and to the corresponding WTA circuits, respectively
as static encodings and static WTA circuits.

Connections ccc allow spikes to travel from neurons yyy to
neurons zzz. The connections are weighed by scalar weights
www(t) =

{
wkn(t)|k ∈ {1, ...,K}, n ∈ {1, ..., N}

}
, such

that a spike emerging from neuron yn excites neuron zk by
an amount equal to wkn. Weights www(t) evolve over time
according to plasticity dynamics. This learning is triggered
when a neuron zk spikes, causing connection weights wk to
be updated. Generally, this entails that a connection weight
wkn is increased when yn produced a spike within some time
window before the spike from zk, and is decreased otherwise.

Each neuron zk has a scalar membrane potential µk(t) that
changes over time. Specifically, when a neuron yn spikes,
connection ckn weighs and transports the spike such that
membrane potential µk(t) of neuron zk is perturbed by an
amount equal to connection weight wkn. Whether or not a
neuron zk spikes at time t is dependent on its membrane
potential at that time. We use ϕn(t) and ζk(t) to denote
whether a neuron yn and a neuron zk spiked at time t:

ϕn(t) =

{
1 if neuron yn spiked at time t

0, otherwise
(1)

ζk(t) =

{
1 if neuron zk spiked at time t

0, otherwise
(2)

ζ(t) =

{
1 if any neuron in zzz spiked at time t

0, otherwise
(3)

We further use ϕ̄n(t), ζ̄k(t), and ζ̄(t) respectively to denote
the inverse of these functions.

This definition of a WTA circuit is a generic one that fits
with the definitions used in earlier works [40]–[43]. When im-
plementing a WTA circuit however, a more specific definition
is needed, and choices have to be made. For example, the
above definition does not specify whether the model operates
in continuous or in discrete time, nor does not specify how
quickly a spike travels from a neuron yn to a neuron zk, nor
does it specify exactly how plasticity mechanisms cause the
evolution of weights www. In addition to these ambiguities, the
model can be increased in complexity by adding additional
properties and dynamics. The following provides a complete
WTA circuit definition with details that are specific to this
work.

B. Static WTA circuit implementation

The previous section provides a generic definition of static
WTA circuits. This section describes the exact static WTA
circuit properties and dynamics used in this work. Note that
a number of the selected properties and dynamics violate
neuromorphic properties. These choices were made because
of practical considerations and limitations. On the one hand,
because there is the desire to focus on essential parts of the
method, and thus to not introduce additional variables where
it can be avoided. On the other hand, because there is the
fact that our WTA circuit implementation concerns simulation
on a von Neumann computer, and thus can but approximate
certain neuromorphic properties. The neuromorphic limitations
imposed by these choices do not, however, extend to the
method in general. Section V addresses this in detail.

This work adopts a discrete time model, where time t starts
at 0 and is incremented in discrete steps of 1. Within a
timestep a number of operations occur in sequential order.
First, according to the input and the encoding scheme, it
is decided which neurons in yyy spike. Second, these spikes
are weighed and transported over connections ccc to neurons
zzz, where membrane potentials µµµ are updated accordingly.
Third, according to membrane potentials µµµ, it is determined
which neurons in zzz spike. Fourth, if one or more neurons zk
spike (i.e., ζ(t) = 1), then an inhibitory signal I(t) instantly
inhibits all membrane potentials µµµ. Finally, for each neuron
zk that spikes, connection weights wwwk are updated according
to plasticity mechanisms. At the onset of a new stimulus,
variables that operate at a short timescale (e.g., membrane
potentials, but not connection weights), are reset to their
resting state, and time t is reset to 0.

Each stimulus is encoded by spike trains produced by
input neurons yyy. The manner in which these spike trains are
produced varies between experiments and is addressed in detail
in their respective sections. In general though, each stimulus



7

Fig. 1. A rough visualization of the dynamics of both a static WTA circuit and a temporal WTA circuit. Note that a WTA circuit has lateral connections
that allow inhibitory signal I(t) to be sent to all neurons zzz following a spike from any neuron zk; this is not visualized here (nor modelled in detail in this
work).



8

Fig. 2. A detailed visualization of the evolution of certain key variables in both a static WTA circuit and a temporal WTA circuit. The temporal WTA circuit
is sensitive for a timespan of τ = 5. Note that a WTA circuit has lateral connections that allow inhibitory signal I(t) to be sent to all neurons zzz following
a spike from any neuron zk; this is not visualized here (nor modelled in detail in this work). Also note that a weight update depends on the current weight,
the timing of spikes, the learning rate, and certain constants; the weight updates displayed here are just vague approximation to give a feel of the dynamics.



9

is encoded as a spatiotemporal spike pattern by N neurons yyy
for the duration of T timesteps, serving as input for neurons
zzz. Whether or not a neuron yn spikes at a given time t (i.e.,
whether ϕn(t) = 1) depends on the stimulus and the encoding
scheme.

In the experiments two types of neurons are used to im-
plement neurons zzz, one we refer to as stochastic neurons and
the other as softmax neurons. The membrane potential of a
stochastic neuron zk is restricted to the range [0, µmax ]. The
firing probability of such a neuron increases exponentially as
its membrane potential increases, according to:

p
(
ζk(t) = 1

)
= exp

(
α
µk(t)− µmax

µmax

)
(4)

Where α is a scalar constant that determines how close to
µmax the firing probability rapidly starts to increase1. Note
that when µk is equal to µmax , the firing probability of neuron
zk is equal to e0 = 1. The firing probability curve is visualized
for various values of µmax and α in figure 3a.

The membrane potential of softmax neurons is restricted to
the range [0, ∞] and — contrary to stochastic neurons — a
layer of softmax neurons spikes at pre-determined intervals.
Specifically, if at a time t softmax layer zzz is determined to
spike, a single neuron zk is selected to produce a spike with
probability:

p
(
ζk(t) = 1

)
=

eµk(t)∑K
k′=1 e

µk′ (t)
(5)

Softmax neurons provide a more predictable and controlled
alternative to stochastic neurons, but unlike stochastic neurons
cannot function in a local or event-based manner. This is
discussed in detail in section V-D.

The membrane potentials µµµ of stochastic and softmax neu-
rons change only in response to excitatory and inhibitory spike
signals. Specifically, each membrane potential µk(t) evolves
over time according to:

µk(t) = µk(t− 1) +

N∑
n=1

ϕn(t)wkn(t)− I(t) (6)

Where variable I(t) is the lateral inhibition signal elicited
by spikes from neurons zzz. In this work, the lateral inhibition
signal is strong enough to ensure that the membrane potential
of all neurons zzz is reset to zero at the next timestep, hence:

I(t) =

{
∞ if ζ(t− 1) = 1

0, otherwise
(7)

Connection weights www evolve over time according to a
Spike-Timing-Dependent Plasticity (STDP) rule. The weights
are restricted to the range [0, 1]. Whenever a neuron zk spikes,
each of its N connection weights wkn is updated according
to:

∆wkn(t) = f(t∆kn) exp
(
−(wkn(t)− 1)

)
− 1 (8)

1As noted in table I, α and β are locally defined constants that have different
meanings in different equations. Likewise f(...) is a locally defined function.

Where t∆kn is the time difference between the spike times of
neurons zk and yn

2, and where f(t∆kn) is defined as:

f(t∆kn) =
1

α− β

(
exp

(
− t∆kn

α

)
− exp

(
− t∆kn

β

))
(9)

Here α and β are constants that determine the shape of f(t∆kn),
see figure 3b for the resulting STDP curve. Finally, each
weight update is weighted by an adaptive learning rate ηk(t)
(initialized at 1.0) that diminishes each time neuron zk spikes
according to:

ηk(t) =


ηk(t− 1)

ηk(t− 1)η̂−1 − 1
if ζk(t− 1) = 1

ηk(t− 1), otherwise

(10)

Where η̂ is a constant that determines how quickly learning
rates diminish (set to a default value of 0.60 this work). Note
that each subsequent spike of neuron zk diminishes ηk(t)
less than the one before. Finally, the resulting weight update
follows:

wkn(t) = wkn(t− 1)+ ζk(t− 1)ηk(t− 1)∆wkn(t− 1) (11)

C. Temporal WTA circuit

In this work we propose novel WTA circuit properties
which allow WTA circuits to (learn to) distinguish not just
between static input patterns, but also time-varying ones. In
order to accomplish sensitivity to time-varying patterns we
add what we refer to as ‘gates’ to the neuron connections.
Each gate has a conductance that, in addition to the neuron
connection weight, weighs the strength of spikes travelling
through said connection. All gates of connections leading
to the same neuron are interconnected, and spikes travelling
through one gate influence the conductivity of other connected
gates. In this fashion, the conductivity of a gate is primed
by specific input spike patterns. Each gate learns to become
sensitive to a separate spiking pattern via plasticity dynamics
that include the maintenance of two eligibility traces. The
following provides a detailed and formal description of these
novel properties and dynamics.

First of all, a gate γkn is attached to each neuron connection
ckn. Each gate has a scalar property which we refer to as
conductance θkn(t). In addition to connection weight wkn(t),
conductance θkn(t) weighs spikes being transmitted by con-
nection ckn such that at time t a spike from neuron yn perturbs
the membrane potential of neuron zk by an amount equal to
wkn(t) · θkn(t):

µk(t) = µk(t− 1) +

N∑
n=1

ϕn(t)wkn(t)θkn(t)− I(t) (12)

Each gate γkn is connected to all gates γγγk that lead to the
same neuron zk. Hence, for each neuron zk with N input

2In the case that the spike from neuron zk was not preceded by a spike
from neuron yn, t∆kn is defined to equal 0 (note that f(0) = 0). Further,
∆wkn(t) is only computed at times t when a neuron zk spikes. Thus, at
times that ∆wkn(t) is computed, a spike from neuron yn is never more
recent than a spike from neuron zk .



10

(a) Firing probability p(ζk(t) = 1) of stochastic neurons as a function of
their membrane potential, according to 4.

(b) Shape of STDP curve resulting from equation 9, where α = 2 and
β = 8.

Fig. 3

neurons yyy, there are N neuron connections with each a gate
γkn attached to it, all of which are fully connected to one
another via N2 gate connections κκκk. This means that in a
WTA circuit of K neurons zzz and N neurons yyy, there are K ·
N2 gate connections κκκ. The gate connections allow gates to
influence the conductance of other gates. To this end, each
gate connection has three variable properties.

First of all, similar to neuron connections, each gate con-
nection κknn′ has a weight ωknn′(t), which is initialized at
random and restricted to the range [0, 1]. When at time t a
spike travels through connection ckn — and thus also through
gate γkn — the conductance θ(t)kn′ of each of the N gates in
γγγk is perturbed by an amount equal to ωknn′(t). Specifically,
conductance θ(t)kn evolves over time according to:

θkn(t) = θkn(t− 1) +

N∑
n′=1

ϕn′(t− 1)ωknn′(t− 1) (13)

In our experiments, the conductance of each gate is initialized
at 0 at the onset of each stimulus, and is restricted to the range
[0, ∞].

Like in a static WTA circuit, the intention is for each
neuron zk to grow sensitive to a specific pattern of sensory
spikes. Unlike a static WTA circuit, a temporal WTA circuit is
intended to extract such information from the temporal order in
which sensory spikes arrive. The evolution of the conductances
is meant to facilitate this. For example, if neuron zk responds
often to a pattern where a spike from neuron yn′ precedes
a spike from neuron yn, then weight ωknn′(t) should grow
to be large, such that a spike from yn′ strongly increases
conductance θkn(t), and thereby the excitation delivered to
zk by a subsequent spike from yn.

In order to realize such an evolution of weights ωωω(t), each
gate connection maintains two eligibility traces that serve
as a short-term memory of local events. First, each gate
connection κknn′ maintains a scalar ‘recency trace’ ρknn′(t).
Each recency trace is initialized at τ at the onset of a new
stimulus and restricted to the range [0, τ ], where constant

scalar τ represents the timescale at which the gates operate.
Specifically, if a circuit produces a spike every 50 timesteps,
then τ is set to 50, and the circuit is able to grow sensitive to
patterns spanning up to 50 timesteps. Recency trace ρknn′(t)
serves as memory of how many timesteps ago (up to τ
timesteps) neuron yn′ produced a spike.

Second, each gate connection κknn′ maintains a scalar
‘prime trace’ πknn′(t). Each prime trace is initialized at 0
at the onset of each new stimulus and is restricted to the
range [0, ∞]. When a neuron yn spikes at time t, each prime
trace in πππkn(t) is increased proportionally to the recency of
spikes from each neuron in yyy, as remembered by recency
traces ρρρkn(t). Each prime trace is a measure of how closely
and how consistently a spike from neuron yn was preceded
by a spike from neuron yn′ . Whenever a neuron zk spikes
this information is used to determine the strength of gate
connection weight updates.

The exact dynamics according to which gate connection
properties ωknn′(t), ρknn′(t), and πknn′(t) evolve are as
follows. At each point in time, these properties are updated
sequentially in the order that they are here mentioned. First,
each recency trace ρknn′ is incremented by one:

ρknn′(t) = ρknn′(t− 1) + 1 (14)

This represents the fact that, with the passage of time, spikes
have become less recent.

Second, prime trace πknn′ evolves according to:

πknn′(t) = πknn′(t− 1) + ϕn(t)
τ − ρknn′(t)

τ
(15)

Which entails that, given a spike from neuron yn at time t,
prime trace πknn′(t) is increased by an amount proportional
to recency trace ρknn′(t). Note that this increase progresses
linearly from 1 to 0 as ρknn′(t) progresses from 0 to τ .

Third, following the spike from neuron yn, the recency
traces used to update ρρρkn(t) are reset to τ (except where



11

n′ = n):

∀n′ ̸= n : ρknn′(t) =

{
τ if ϕn(t) = 1

ρknn′(t), otherwise
(16)

While the recency traces indicating the recency of a spike from
neuron yn are set to zero (indicating maximum recency):

ρkn′n(t) =

{
0 if ϕn(t) = 1

ρkn′n(t), otherwise
(17)

Fourth, a spike from a neuron zk elicits learning in gate
connection weights ωωωk according to:

∆ωknn′(t) = πknn′(t) exp
(
−(ωknn′(t)− 1)

)
− 1 (18)

ωknn′(t) = ωknn′(t− 1) + ζk(t− 1)ηk(t− 1)∆ωknn′(t− 1)
(19)

Note the similarity between equations 18 and 19, and equa-
tions 8 and 11: ωknn′(t) takes the place of wkn(t) and πknn′(t)
takes the place of f(t∆kn). A weight update increases as the
corresponding prime trace increases, and decreases as the to-
be-updated weight grows larger. Like the updates of neuron
connections weights, the update of gate connection weights
are restrained by adaptive learning rate ηk(t).

Finally, following the spike from neuron zk, all recency
traces ρρρ and all prime traces πππ are reset to their initial states:

ρknn′(t) = ρknn′(t) + ζ(t)τ (20)

πknn′(t) = ζ(t)πknn′(t) (21)

Thus, unless the input pattern repeats, whatever has been
learned by neuron zk will not again be learned following
subsequent spikes from neurons zzz.

The expectation is that the above dynamics cause each
neuron zk in a temporal WTA circuit to become distinctly
sensitive to a unique temporal order of input spikes from
neurons yn. In order for this to be, it is expected that at
least one condition must hold: the circuit must operate at a
timescale that matches the duration of the input patterns. If
patterns repeat before the circuit produces a spike, then learned
information about the temporal order of input spikes will be
muddled. Furthermore, given that weights ωωω only grow when
the corresponding input neurons spiked within some time of
one another, the expectation is that sparse input spikes will
cause weights ωωω to evolve to become sparse themselves. These
expectations are addressed and tested in the experiments.

IV. EXPERIMENTS

Several experiments have been performed in order to gauge
the behaviour and performance of temporal WTA networks3.
The experiments vary in the data used, the manner in which
the data is encoded, and in the network architectures that
are employed. Each architecture consists of a single layer of
sensory neurons yyy which encode the data over time in the
form of spike trains. Following this input layer are one or
more layers that each consist of one or more WTA circuits
which receive input from the preceding layer. The final layer is

3The code used to perform the experiments can be found on https://github.
com/Grottoh/Temporal-WTA-Network.

always a single WTA circuit that consists of softmax neurons.
The final layer produces a single spike the end of each
stimulus, which is considered to be the network’s classification
of the preceding stimulus.

Each experiment consists of multiple runs using different
random number generator seeds, the performance being aver-
aged over all these runs. Each run consists of a training phase,
a mapping phase, and a testing phase. Each phase entails
one or more cycles over the selected data. First, during the
training phase, stimuli are presented to the network in the
form of spike trains emitted by sensory neurons yyy. This elicits
the propagation of spiking activity throughout the rest of the
WTA network, and plasticity dynamics cause network weights
to evolve and become sensitive to distinct spiking patterns.
Weights are only allowed to evolve during the training phase,
and are frozen during the subsequent mapping and testing
phases.

Second, in the mapping phase, it is determined which
neuron is associated with which class. Given that the WTA
network learns in an entirely unsupervised fashion, it has itself
no notion of stimulus classes. Thus, in order to associate
neurons with a specific class, a mapping from each neuron
to a specific class must be decided externally. This is done
by observing the response of each neuron to stimuli during
the mapping phase. At the end of this phase, the class to
which a neuron responded the most is considered to be that
neuron’s class, and a spike from that neuron is considered to
be a classification of that class.

Third and finally, in the testing phase, the accuracy of the
network output is determined using the established neuron-to-
class mapping, indicating how well each output neuron has
become sensitive to a specific class. When data used in the
mapping and testing phase is the same, it is possible that
the accuracy is increased due to the selection of an optimal
mapping based on test data. However, as the experiments show,
this effect is negated by using sufficient amounts of data and by
keeping the mapping and testing phases separate. In addition
to accuracy, the experiments determine the sparsity of gate
connection weights following training.

A. Data

Three datasets are used throughout the experiments. In the
following these datasets are described, as well as the manner
in which these are encoded as spike trains.

1) Toy data: The first dataset is a self-constructed toy
dataset consisting of four black-and-white images of 10× 10
pixels. The four images are displayed in figure 4. Throughout
the experiments these images are encoded as spike trains in
two fashions.

First of all, the dataset is converted to spike trains via what
we refer to as a static encoding. This encoding is similar to
the encoding method used to encode the MNIST dataset in the
works of [41]–[43]4. Using the static encoding, each pixel is

4The encoding is similar, but not the same. In previous works each
black-and-white pixel is encoded by two neurons, one being active if the
corresponding pixel value is black, the other being active if the corresponding
pixel value is white. In this work a single neuron is used to encode each pixel,
and is only active when its value is white.

https://github.com/Grottoh/Temporal-WTA-Network
https://github.com/Grottoh/Temporal-WTA-Network


12

Fig. 4. The toy data: four 10× 10 black-and-white images.

(a) Static encoding of the first image of the toy data. (b) Temporal encoding of the first image of the toy data.

Fig. 5. Toy data.

encoded by a single input neuron. If the pixel is white, then the
corresponding input neuron is considered to be active. Active
input neurons produce Poisson spike trains over some pre-
determined duration T (here set to 10), where at each timestep
they have a constant probability to spike. Thus, each image
is encoded by 10 × 10 sensory neurons over a period of 10
timesteps. The fact that for a given stimulus the same neurons
are active at all times, and the fact that the spiking probability
of active neurons is constant, is why we refer to this as a static
encoding scheme. Figure 5a shows an example of spike trains
resulting from a static encoding of toy data.

Secondly, the toy data is encoded via what we refer to as a
temporal encoding, where one dimension of the data is folded
out over time. Specifically, at timestep t, neuron yn produces
a spike if and only if the pixel in row n and column t of
the image is white. Thus, the encoding requires 10 neurons
(one for each row) and 10 timesteps (one for each column)
to encode an image. Note that, unlike in the static encoding,
the spiking probability of each neuron in yyy changes over time,
as such the temporal order in which neurons yyy spike becomes
relevant. Figure 5b shows an example of spike trains resulting
from a temporal encoding of toy data.

2) Concatenated toy data: The second dataset is a concate-
nation of the the toy data. Specifically, four new images are
created by forming four pairs of the original toy images, as
visualized in figure 6. Encoding this concatenated toy data
via the temporal encoding scheme requires 20 rather than 10

timesteps, but otherwise proceeds in the same fashion.
3) TIDIGITS: The third dataset is the TIDIGITS dataset

[44]. The TIDIGITS dataset consists of speech samples from
326 speakers each speaking 22 single-digit utterances5, yield-
ing a total of 7, 172 separate single-digit utterances. Half of
the data (3, 586 utterances) is assigned to be training data,
the other half to be test data, with no overlap in speakers
between these two partitions. Several classes are assigned to
each utterance:

• Digit (11 equally distributed classes): zero, oh, one, two,
three, four, five, six, seven, eight, nine

• Speaker ID (326 classes): each of the 326 speakers has a
unique ID (e.g., ‘aa’ or ‘tc’)

• Demographic (4 classes): boy, girl, man, woman
Before the TIDIGITS dataset is encoded as spikes, the raw

audio files of which it consists are converted to Mel-Frequency
Cepstral Coefficients (MFCCs). Specifically, each utterance is
represented by 13 MFCCs and 13 MFCC deltas (the latter
of which represent the change between MFCC time-frames).
Thus a single utterance x is represented by 26·Tx scalar values,
where Tx is the duration of utterance x in terms of MFCC
time-frames. The MFCC representation of spoken digit ‘one’
is displayed in figure 7a.

In order to encode the MFCCs (and MFCC deltas) as spikes,
each coefficient is divided into B bins. The range of values

5The dataset also contains digit-sequence utterances, but these are not used
in this work.



13

Fig. 6. Concatenated toy data: four 10× 20 (rows × columns) black-and-white images.

(a) Visualization of MFCCs and their deltas of digit ‘one’ being spoken. (b) Spike encoding of the coefficients displayed in figure 7a (B = 8).

Fig. 7. TIDIGITS data.

covered by each bin is determined by the distribution of its
corresponding coefficient over the entire dataset, such that a
bin covering a range of frequently appearing values will be
smaller than a bin covering a range of rare values. Specifically,
each bin covers 1

B% of the coefficient values over the entire
dataset. A neuron is assigned to each bin, yielding 26 · B
neurons yyy. Each MFCC time-frame is encoded in a single
timestep, such that each utterance is encoded in Tx timesteps.
At each timestep, a neuron yn spikes if the bin it encodes
covers the value of the coefficient at the corresponding time-
frame, yielding exactly 26 spikes at every point in time. Figure
7b shows how the spoken digit ‘one’ is encoded as spikes.
Additional discussion on this encoding of the TIDIGITS data
follows in section V-C.

B. Network architectures

The experiments test the performance of three different
network architectures. The first two network architectures are
the static WTA circuit described in section III-B and the
temporal WTA circuit described in III-C. At the end of section
III-C the assertion was made that temporal WTA circuits must
operate at a timescale that matches the duration of input
patterns. For both the concatenated toy data and the TIDIGITS
data, it is expected that the corresponding spike patterns cannot
be distinguished as a whole by temporal WTA circuits. Instead,
it is expected that these spike patterns must be processed
on multiple timescales: a smaller timescale where smaller
temporal patterns are extracted, and a larger timescale where
the larger temporal pattern is derived from the smaller ones.
Our solution to this problem is to employ a two-layer temporal



14

WTA network.
Our two-layer temporal WTA network architecture consists

first of all of a WTA layer L1 that itself consists of N1

temporal WTA circuits. Each of the circuits in L1 consists of
K1 neurons that receive input from all sensory neurons yyy via
gated neuron connections. Secondly, it consists of a WTA layer
L2 that is a single temporal WTA circuit. The single circuit of
L2 consists of K2 softmax neurons which receive input from
all neurons in L1 via gated neuron connections. The idea is
that layer L1 is able to distinguish between relatively short
spike patterns produced by sensory neurons yyy, and that L2,
operating at a larger timescale, in turn distinguishes between
the spike patterns produced by L1 (akin to how one might
divide speech into syllables, and then words). An overview and
description of this architecture’s hyperparameters is provided
per experiment where it is employed.

C. Experiment 1

1) Setup: In experiment 1 the capabilities of a static WTA
circuit is compared to that of a temporal WTA circuit. The
performance of these two types of networks is assessed both
on the static and the temporal encoding of the toy data
(described in section IV-A1). The purpose of this experiment is
to provide experimental evidence for our assertion that static
WTA circuits are incapable of extracting temporal relations
from stimuli, whereas our proposed temporal WTA circuit is.

Experiment 1 is divided into two experiments, which are
each divided into more sub-experiments. Experiment 1.1 as-
sesses the ability of a static WTA circuit with K = 4 softmax
neurons to learn to distinguish between the four unique toy
stimuli. Experiment 1.2 assesses the ability of a temporal WTA
circuit with K = 4 softmax neurons to learn to distinguish
between the four unique toy stimuli.

Each sub-experiment is run 10 times with different random
number generator seeds. By default each run consists of 1 train
cycle, 10 map cycles, and 10 test cycles. Note that the same
data is used for training, mapping, and testing. The results
of experiment 1 are displayed in table III. Examples of spike
patterns and learned weights are shown in figures 8 and 9.

2) Interpretation: Experiment 1.1 shows that the static
WTA circuit is capable of perfectly distinguishing between
the toy stimuli when these are encoded via the static encoding
scheme. It further shows that when these same stimuli are
encoded via the temporal encoding scheme, the performance
of the circuit essentially reduces to that of random guessing
(25%). This is in line with our assertion that static WTA
circuits are unsuitable for distinguishing between time-varying
stimuli.

Experiment 1.2 shows that the temporal WTA circuit is
capable of perfectly distinguishing between the toy stim-
uli, both when using the static encoding scheme and when
using the temporal encoding scheme. This is evidence for
our assertion that the temporal WTA circuit is capable of
distinguishing between time-varying (as well as static) stimuli.
Experiment 1.1c further shows that, at least for this simple
task, neuron connection weights www can be omitted without
hurting performance, and thus that gate connection weights ωωω

are sufficient for distinguishing between simple time-varying
spiking patterns.

D. Experiment 2
1) Setup: At the end of section III-C the assertion was made

that temporal WTA circuits cannot handle repeating patterns.
When a larger pattern consists of smaller patterns that each
involve spikes from the same neurons in yyy, then these smaller
patterns must be distinguished in order for a temporal WTA
circuit to recognize the larger pattern. The expectation is that
this can be achieved by combining multiple circuits into a
network, as is done in the two-layer WTA network introduced
in section IV-B.

The concatenated toy data is used to test the above as-
sertions. Note that, when representing this data using the
temporal encoding, each sensory neuron will fire exactly twice.
Note especially that at least one spike from each sensory
neuron precedes a spike from each other sensory neuron.
A temporal WTA circuit meant to distinguish between these
stimuli is expected to fail, because for each stimulus it will
learn (correctly) that each neuron produces a spike before
every other neuron. In the two-layer network, however, layer
L1 (operating at timescale τ = 10) can distinguish between
the original non-repeating toy patterns of 10 timesteps, whilst
layer L2 (operating at timescale τ = 20) uses input from L1

to determine the concatenated pattern of 20 timesteps.
Experiment 2 is divided into three experiments, some of

which are divided into more sub-experiments. Experiment 2.1
assesses the performance of a temporal WTA circuit. Exper-
iment 2.2 assesses the performance of a two-layer temporal
WTA network with softmax neurons in layer L1. Experiment
2.3 assesses the performance of a two-layer temporal WTA
network with stochastic neurons in layer L1. The final layer
of each network is set to consists of 4 softmax neurons, and
neuron connection weights are fixed to 1.0.

Each sub-experiment is run 10 times with different random
number generator seeds. By default each run consists of 10
train cycles, 10 map cycles, and 10 test cycles. Note that
the same data is used for training, mapping, and testing. The
results of experiment 2 are displayed in table IV. Examples
of spike patterns and learned weights are shown in figures 10,
11, 12 and 13.

2) Interpretation: The chance accuracy achieved in exper-
iment 2.1 provides evidence for our assertion that temporal
WTA circuits are unsuitable for distinguishing between re-
peating patterns. Figure 10 shows that each neuron zk learns
that a spike from each neuron yn, to some extent, precedes a
spike from each other neuron yn′ . While this is in fact true,
it prohibits the circuit from distinguishing between the larger
patterns.

Experiment 2.2 shows how this problem is solved by
employing the two-layer network. Layer L1, operating at a
timescale of τ = 10, recognizes the original toy patterns.
Layer L2, operating at a timescale of τ = 20, is then able
to distinguish between the concatenated patterns based on the
spiking activity of L1.

While experiment 2.2 uses softmax neurons in layer L1,
experiment 2.3 uses stochastic neurons. As discussed in more



15

(a) Spikes resulting from a static encoding of the first image of the toy data. (b) The WTA circuit produces one spike at the end of the stimulus.

(c) Visualization of the neuron connection weights following the train phase of experiment 1.1a. Each neuron zk has a weighted connection to each input
pixel (represented by a sensory neuron yn). Note how the neuron connection weights come to exactly resemble to toy data (see 4)

(d) Visualization of the gate connection weights following the train phase of experiment 1.2a. It shows — for the stimulus that a neuron has grown sensitive
to — that a spike from each active neuron is considered to predict a spike from each other active neuron

Fig. 8. Visualizations corresponding to experiments 1.1a and 1.2a.

detail in section V-D, softmax neurons violate various neuro-
morphic principles. Stochastic neurons provide a biologically
realistic alternative, but operate in a less controlled and less
predictable manner. Figure 12 shows how in experiment 2.3a
the stochastic neurons of L1 produce spikes at intervals that
do not match the duration of the original toy data. As a result,
each neuron in L1 learns to distinguish between sub-optimal
patterns (given our performance measure). L1 thus provides
flawed information to layer L2, which achieves a sub-optimal
accuracy of 72.50%.

Because the stochastic neurons do not perfectly capture the
duration of the largest non-repeating patterns (10 timesteps),
more neurons are required in L1 to encode a larger number
of sub-optimal patterns. Experiment 2.3b shows how this
improves the accuracy to 90.25%. Furthermore, experiment
2.3c shows how additionally increasing the number of circuits

in layer L1 allows the network to achieve perfect accuracy on
all runs. This shows how the randomness inherent to stochastic
neurons can be averaged out by the increasing the number of
neurons and circuits.

E. Experiment 3

1) Setup: In experiment 3 the behaviour and performance of
the two-layer temporal WTA network architecture is assessed
on the TIDIGITS dataset. Specifically, each run uses data
from a single speaker. Each speaker speaks two utterances
for each of the 11 single-digit classes, yielding a total 22
unique utterances per speaker. By default, layer L2 consists
of K2 = 22 softmax neurons. The purpose of this experiment
is to determine whether the two-layer network is capable of
remembering not just the simple toy spiking patterns, but also



16

(a) Spikes resulting from a temporal encoding of the first image of the toy data. (b) The WTA circuit produces one spike at the end of the stimulus.

(c) Visualization of the neuron connection weights following the train phase of experiment 1.1c.

(d) Visualization of the gate connection weights following the train phase of experiment 1.2b. Neuron z2 has grown sensitive to stimulus 1, having learned
that a spike from neuron y0 is preceded by nothing, that a spike from neuron y1 is preceded by a spike from neuron y0 (hence why pixel (1, 0) is white),
and so forth.

Fig. 9. Visualizations corresponding to experiments 1.1c and 1.2b.

more complex spiking patterns extracted from speech. This
is the case if, after training, each of the 22 output neurons
responds only to a single unique utterance.

Experiment 3 is divided into three experiments, which
are each divided into more sub-experiments. Experiment 3.1
assesses the impact of the number of train cycles. Experiment
3.2 assesses the impact of the number of circuits N1 in layer
L1. Finally, experiment 3.3 assesses the impact of the number
of neurons K1 and K2 in layers L1 and L2.

Each sub-experiment is run 5 times with different seeds
and is repeated for 8 different speakers (2 boys, 2 girls, 2
men, 2 women). By default, each run consists of 10 train
cycles, 10 map cycles, and 10 test cycles. Note that the same
data is used for training, mapping, and testing. Additional
default hyperparameters are displayed in table II. The results
of experiment 3 are displayed in table V. Examples of spike

patterns and learned weights are shown in figure 14.

2) Interpretation: Experiment 3.1 shows that the temporal
WTA network can learn to remember not just simple toy
spiking patterns, but also more complex spiking patterns that
encode speech. The results show that, on nearly all runs, the
network establishes a one-to-one mapping from neuron to
utterance within 5 train cycles. Experiment 3.2 shows that this
result is achieved more consistently when including a higher
number of circuits in layer L1 of the network. Experiment
3.3a shows that the performance drops when having too few
neurons in the circuits of L1. Finally, experiments 3.3c and
3.3d show that increasing the number of neurons in layer L2

does not hurt performance, though it requires more map cycles
to establish an optimal mapping.



17

(a) Spikes resulting from temporal encoding of first image of repeated toy data. (b) The WTA circuit produces one spike at the end of the stimulus.

(c) Visualization of the gate connection weights following the train phase of experiment 2.1. Each neuron has learned that a spike from each neuron predicts
a spike from each other neuron (which taken over the course of the entire stimulus, is true for all stimuli).

Fig. 10. Visualizations corresponding to experiment 2.1.

F. Experiment 4

1) Setup: The setup of experiment 4 is largely identical
to that of experiment 3. Like experiment 3, each run in
experiment 4 concerns 22 utterances from a single TIDIGITS
speaker. Further, like in experiment 3, the network under
consideration is the two-layer temporal WTA network. The
main difference is that the number of neurons in layer L2 is
here set to K2 = 11, making a one-to-one or one-to-many
mapping from utterance to neuron impossible. Thus, instead
of remembering each unique utterance, experiment 4 assesses
whether each neuron becomes distinctly sensitive to a specific
digit (recall that the 22 utterances concern 2x11 single-digit
utterances).

Experiment 4 is divided into three experiments, which
are each divided into more sub-experiments. Experiment 4.1
assesses the impact of the number of train cycles. Experiment
4.2 assesses the impact of the number of circuits N1 in layer
L1. Finally, experiment 4.3 assesses the impact of the number
of neurons K1 in layer L1.

Each sub-experiment is run 5 times with different seeds
and is repeated for 8 different speakers (2 boys, 2 girls, 2
men, 2 women). By default, each run consists of 30 train
cycles, 10 map cycles, and 10 test cycles. Note that the same
data is used for training, mapping, and testing. Additional
default hyperparameters are displayed in table II. The results
of experiment 4 are displayed in table VI. Examples of spike
patterns and learned weights are shown in figure 14.

2) Interpretation: If the two-layer network simply ‘remem-
bers’ utterances, like experiment 3 shows it can, then with
K2 = 11 output neurons it can remember half of the 22
utterances. If the learned information has no bearing at all
on the other 11 utterances, then one would expect chance
accuracy of 1

11 ≈ 9.09% on these utterances, resulting in
an expected accuracy of 54.45% over all 22 utterances. The
experiments achieve up to 88.86% accuracy (see experiment
e4.1d). This shows that, beyond remembering, the two-layer
network is capable of extrapolating to digit classes.

Unlike experiment 3.2, experiment 4.2 shows no clear
difference in performance when including a higher number of
circuits in layer L1. However, like experiment 3.3a, experiment
4.3 shows that the performance drops when having too few
neurons in the circuits of L1.

G. Experiment 5

1) Setup: In experiment 5 the behaviour and performance of
the two-layer temporal WTA network architecture is assessed
on the entire (single-digit) TIDIGITS dataset. By default, layer
L2 consists of K2 = 100 softmax neurons. The purpose of this
experiment is to assess how well each neuron in output layer
L2 becomes distinctly sensitive to a specific digit class. Using
the entire TIDIGITS dataset introduces a lot more variation in
the data, making the task more difficult than it is in experiment
4. Furthermore, due to the separation of train and test data,
remembering specific utterances during testing is not possible.



18

(a) Spikes produced by the first (and only) circuit of layer L1. (b) Output spike produced by the single circuit of layer L2.

(c) Visualization of the gate connection weights of the first (and only) circuit of layer L1 following the train phase of experiment 2.2. It shows how circuits
in layer L1 learn the patterns of the original (unrepeated) toy data.

Fig. 11. Visualizations corresponding to experiment 2.2. The figure shows how a layer operating at a smaller timescale can extract (and spike-encode)
features, which can be used by a subsequent layer operating at a larger timescale to perform classification. Spikes of the sensory layer are displayed in figure
10a.

In order to give an impression of how the two-layer network
behaves under different circumstances and settings, experiment
5 assesses performance under many different hyperparameter
settings.

Experiment 5 is divided into seven experiments, which
are each divided into more sub-experiments. Experiment 5.1
assesses the impact of the number of train cycles. Experiment
5.2 assesses the impact of the number of circuits N1 in layer
L1. Experiment 5.3 assesses the impact of the number of
neurons K1 and K2 in layers L1 and L2. Experiment 5.4
assesses the impact of the value of learning rate decay η̂.
Experiment 5.5 assesses impact of the maximum allowed
number of simultaneous spikes of circuits in L1. Experiment
5.6 assesses the impact of certain variations in the data
encoding. Experiment 5.7 assesses the impact of miscellaneous
variations: (a) uses shuffled data, (b) allows learning with
respect to neuron connection weights, (c) combines several
optimal parameters from earlier experiments, and (d) assesses
performance with respect to demographic classes.

Each sub-experiment is run 3 times with different seeds for
the entire (single-digit) TIDIGITS dataset, which consists of
3, 586 train utterances and 3, 586 test utterances. By default,
each run consists of 5 train cycles, 1 map cycle, and 1
test cycle. Training and mapping is done on the train data,
whereas testing is done on the test data. Additional default
hyperparameters are displayed in table II. The results of

experiment 5 are displayed in table VII. Examples of spike
patterns and learned weights are shown in figure 14.

2) Interpretation: Experiment 5.1a, which is included as a
sanity check, shows how without training the network achieves
an accuracy of 9.79%, which (as it should) practically matches
chance performance (9.09%). Experiments 5.1b-c show how
increasing the number of train cycles beyond 3 does not greatly
improve network performance. Experiment 5.2 shows how
having too few circuits in layer L1 decreases performance
significantly. And experiment 5.3 shows that having too few
neurons in each circuit hurts performance. Finally, experiment
5.7c shows that the combination of the optimal parameters of
experiments 5.1-5.3 yields a — within this work — optimal
performance of 72.69%.

It makes sense that increasing the the complexity of the
network, with respect to the above hyperparameters, improves
performance. Experiments 5.4-5.7, however, show that net-
work performance is impacted in less predictable ways by
a different selection of hyperparameters. For example, it is
less easy to predict that setting learning rate decay η̂ to 1.00
decreases performance by over 15% relative to when it is set
to the default of 0.60. Furthermore, it is not straightforward to
decide why omitting the MFCCs hurts performance by roughly
10%, while omitting their deltas hurts it by nearly 30%. All
that can be said at this point, is that these hyperparameters
impact performance significantly, though the exact manner in



19

(a) Spikes produced by the first (and only) circuit of layer L1. (b) Output spike produced by the single circuit of layer L2.

(c) Visualization of the gate connection weights of the first (and only) circuit of layer L1 following the train phase of experiment 2.1c. It shows how stochastic
neurons might not produce a spike at the exact time that the sub-patterns end, and thus how they may learn to recognize sub-optimal patterns.

Fig. 12. Visualizations corresponding to experiment 2.3a. Spikes of the sensory layer (for stimulus 40 == stimulus 4) are displayed in figure 10a.

which they do so is not entirely clear.
In experiment 5.7b the neuron connection weights www are

again allowed to evolve according to STDP dynamics. As
the results show, this hurts performance by roughly 6%. It
should be noted that, with better fine-tuning, learning in the
neuron connection weights might prove beneficial. However,
gate connection weights ωωω, rather than neuron connection
weights www, are the focus of this work. Thus, in order to
avoid the extra hyperparameters and fine-tuning, the neuron
connection weights were fixed to 1.0 throughout most of this
work. More attention can be paid to this subject in future work.

It should be noted that the above observations are limited by
the fact that the impact of the variation of one hyperparameter
may depend on the settings of other hyperparameters. For
example, it makes sense that increasing the number of circuits
and neurons will require more train cycles to reach optimal
performance. Likewise, learning rate decay η̂ may influence
the optimal number of train cycles, or vice versa. These
kinds of interactions make it difficult to ascertain the optimal
network settings. Deeper understanding of the algorithm, its
dynamics, and its behaviour inform such choices, and further-
ing such understanding should be a focus of future work.

V. DISCUSSION

The experiments have provided a number of insights into the
capabilities of WTA circuits. Principal among these insights
are as follows. First of all, experiment 1 shows that static WTA

circuits are not capable of distinguishing between time-varying
spiking patterns, while temporal WTA circuits are. Secondly,
experiment 2 shows that temporal WTA circuits struggle when
patterns start to repeat within the timescale at which they
operate. It further shows that this problem can be solved by
forming multiple circuits into a network, where different layers
operate at different timescales. Thirdly, experiment 3 shows
how a two-layer temporal WTA network can learn to perfectly
remember utterances of a single speaker. Finally, experiments
4 and 5 show that the two-layer temporal WTA network is
capable of learning to distinguish between spoken digits.

A. Sparsity

While the temporal WTA circuit is more versatile than the
static WTA circuit, it comes at the cost of a large increase in
number of learnable parameters. Specifically, where the static
WTA circuit has K · N learnable parameters www (which, as
shown in the experiments, can be omitted in the temporal
WTA circuit), the temporal WTA circuit has K ·N2 learnable
parameters ωωω. The experiments show however, that the large
majority of weights ωωω equal zero after learning, at which point
they can be omitted entirely.

Several observations can be made about the sparsity of
temporal WTA circuits following training. First of all, the
contrast between experiment 1.2a and 1.2b shows that an
increased number of neurons N does not necessarily increase
the amount of non-zero weights by a large amount. Experiment



20

(a) Spikes produced by the first circuit of layer L1, in experiment 2.1d there
are 4 more circuits in L1 that generate similar spike patterns. Together, this
averages away the randomness inherent to stochastic neurons.

(b) Output spike produced by the single circuit of layer L2.

(c) Visualization of the gate connection weights of the first (and only) circuit of layer L1 following the train phase of experiment 2.1d. It shows how by
increasing the number of stochastic neurons, the desired pattern can be pieced together.

Fig. 13. Visualizations corresponding to experiment 2.3b. Spikes of the sensory layer (for stimulus 40 == stimulus 4) are displayed in figure 10a.

1.2a has N = 100 input neurons while experiment 1.2b has
N = 10. In both experiments however, only 10 neurons
spike for a given stimulus. Thus, while experiment 1.2a has
100 times as many learnable parameters as experiment 1.2b,
following learning it has less than thrice as many non-zero
weights. Contrary to this, experiment 5.1c has roughly four
times as many learnable parameters as experiment 5.6a, as
well as roughly four times as many non-zero weights after
learning. In this case, the sparsity of the input is the same,
and thus the sparsity of the weights is roughly the same.

Thus, while the number of non-zero weights grows as the
number of input neurons increases, this growth is for a large
part mitigated if the input neurons fire sparsely. Given that
WTA circuits produce sparse spiking patterns by design, this
is all but guaranteed in subsequent layers of a WTA network.
This is shown in experiment 5, where in most experiments
less than 1% of the weights of layer L2 are non-zero after
training. On the appropriate neuromorphic device, the sparsity
of temporal WTA circuits will eliminate much of the com-
plexity of the algorithm. Future work can delve more into this
topic, exploring for example how sparsity might be increased
further, or exploring whether sparsity can be introduced even
before training.

B. Network development

On the one hand, the temporal WTA network can be further
developed by increasing its complexity. It can be developed by
increasing the complexity of components, such as by adopting
more complex neuron models. It can be developed by increas-
ing the complexity of network structure, such as by adopting
hierarchical structures as are employed by [42]. Furthermore,
it is possible to add altogether new types of components to
the network, such as explicitly modelled axons, synapses, and
dendrites. This offers a broad range of possibilities for future
work to improve the algorithm.

On the other hand, the temporal WTA network can be
further developed by decreasing its complexity. The two-
layer architecture already has many hyperparameters, and as
touched on in experiment 5, it is not straightforward to find
an optimal setting for these parameters. Introducing more
hyperparameters will make this task more difficult. Instead,
future work can focus on refining existing dynamics. The
refining of existing dynamics may ensure that the impact of
each hyperparameter is better understood, or may cause certain
hyperparameters to be eliminated entirely. Where this fails,
methods such as evolutionary algorithms can be employed to
optimize hyperparameters.



21

(a) Spikes produced by the first circuit of layer L1 of a network trained on the
entire TIDIGITS dataset.

(b) Output spike produced by the single circuit of layer L2.

(c) A selection of 10 visualizations of gate connection weights of the first circuit of layer L1 following the training on the TIDIGITS dataset.

Fig. 14. Visualization of spikes and weights of a default two-layer network with K2 = 100 softmax neurons in layer L2, trained on the TIDIGITS data.
Spikes of the sensory layer are displayed in figure 7b.

A different way of developing the algorithm, that does not
necessarily increase or decrease its complexity, is implement-
ing it in a more neuromorphic fashion. By implementing the
algorithm via simulation on a von Neumann machine, it is
limited in several ways. First of all, it is limited to discrete
time, thereby sacrificing temporal resolution. Secondly, it is
not event based. Instead, each timestep processes each opera-
tion in a pre-determined sequential order. The expectation is
that, given the appropriate neuromorphic device, the network
dynamics can be adapted to unfold in continuous time6, fully
event-based, and fully parallel. This is another avenue for
future work to explore.

6Note that in [40], [41] the WTA circuit dynamics were conceived as part
of a continuous time model.

C. Input encoding

The encoding of the TIDIGITS utterances used in this work
is heavily based on techniques that have been shown to thrive
in the field of deep learning, specifically, the use of MFCCs.
Encoding MFCCs by associating neurons with binned MFCC
values is not a brain-inspired approach, but it has several
properties that are desirable for this work. First of all, it is
a very straightforward translation of MFCCs to spikes. Some
information is lost by binning the MFCCs, but overall the
spike patterns very closely resemble the MFCCs. This ensures
that the spiking patterns contain the information necessary to
distinguish between digits. Secondly, while a stimulus lasts,
each timestep yields an identical amount of input spikes (one
for each coefficient).

The stability of this encoding makes balancing network
excitation easier. For example, this avoids the problem of ex-



22

ploding membrane potentials, which might occur if stochastic
neurons receive excitation in large bursts. As experiment 5.6
shows, variations in the input can have a large impact on
network performance. In future work it will be interesting to
explore the impact of different encodings.

D. Softmax and stochastic neurons

Throughout this work both stochastic and softmax neurons
are used. As touched on before, softmax neurons violate
various neuromorphic principles. The steady pre-determined
interval at which a layer of softmax neurons produces spikes
requires global moderation. Furthermore, the computation of
the softmax function over membrane potentials requires that
each softmax neuron has knowledge of the membrane poten-
tials of all others in the same circuit.

Stochastic neurons provide a neuromorphic alternative to
softmax neurons. As shown in [41], when combined with
the competition mechanisms of a WTA circuit, it holds that,
at each moment in time that a stochastic neuron spikes,
the combined spiking probabilities of the neurons follow a
softmax distribution over their membrane potentials. This
holds only in continuous time, where the probability of exactly
simultaneous spikes is zero7.

In a discrete time implementation it is possible for multiple
stochastic neurons to spike at the exact same time. Particularly
during the initial stages of learning this can cause problems. At
this stage, neurons have not yet grown distinctly sensitive to
specific stimuli, risking the simultaneous spiking of many neu-
rons, which consequently grow sensitive to the same patterns.
A more elegant solution might be to not initialize all neurons
and connections weights at the same time with high weights.
Instead, the initial phases of learning might involve the gradual
genesis of neurons and connections. Such a solution might
also ensure sparsity even from the very start. This, and other
solutions, are left for future work to explore.

E. Separation of stimuli

In this work, the start and end of each stimulus is ac-
companied by non-neuromorphic operations. At the onset of
each stimulus, variables such as membrane potentials are reset
to their resting state. At the end of each stimulus, a single
spike is produced an output layer of softmax neurons. In
a realistic setting stimuli are ever-present and overlapping.
In such settings, information about the start and end of a
stimulus is not straightforwardly available, nor is it directly
accessible for each individual component. Instead, a more
realistic approach would be to have separate SNNs dedicated
for processes such as attention and segmentation, and to have
these communicate this information via neuron connections.

While parts of our method are un-neuromorphic in this area,
others are not. Specifically, it should be noted that layer L1

of stochastic neurons has no knowledge of what it is trying to
distinguish between, and has no outside help in determining
the onset or end of specific patterns (save at the onset of

7Note that, while the probability of exactly simultaneous spikes is zero in
continuous time, multiple spikes may still follow on another in very quick
succession (at speeds too quick for lateral inhibition signals to interfere).

the larger stimulus). Experiment 2 shows how this can cause
stochastic neurons to learn sub-optimal patterns, but that by
increasing the amount of neurons and circuits this noise can
be averaged out. In this fashion, stochastic neurons are able
to distinguish between patterns well enough to provide useful
information for softmax layer L2. In a more realistic setting,
there will be no layers of softmax neurons, but only layers
of stochastic neurons, which interact with other networks
responsible for things such as action and attention. This leaves
a wide range of possibilities for future work to explore.

F. Relation to other works

In line with previous research on WTA circuits [41]–[43],
this work employs accuracy as its performance measure. In
previous work, the accuracy was measured with respect to
the statically encoded MNIST dataset, which concerns 10
handwritten digit classes. In this research, it was measured
with respect to the temporally encoded TIDIGITS dataset,
which concerns 11 spoken digit classes. Given that WTA
circuits learn entirely via unsupervised processes, a mapping
is decided following learning in order to be able to compute
the accuracy. In future work it would instead be interesting
to include a supervised component. For example, layer L2 of
the two-layer network could be replaced with a tempotron,
which can use supervised learning to interpret the spikes of
layer L1. It would also be interesting to explore the inclusion
of reinforcement or supervised learning signals, and the direct
integration of these with the existing weight updates rules.

This work has not made any direct comparisons to other
works with respect to performance. The primary reason for
this is that the goal of this work is not to introduce a new state-
of-the-art speech recognition algorithm, but to provide the
foundation for a truly neuromorphic algorithm. In this light,
the temporal WTA circuit distinguishes itself from related
work in various ways. The algorithm distinguishes itself from
the tempotron by being a fully unsupervised algorithm that
can process at various timescales by combining multiple
circuits into a network. It distinguishes itself from the LSM
by distinguishing between spike patterns, rather than merely
echoing them. And it distinguishes itself from the SOM by
processing input locally and in real time.

In essence, we present the temporal WTA circuit as having
the potential to be a truly neuromorphic approach, capable
of satisfying all of the neuromorphic principles discussed
in section I. As discussed in detail in earlier sections, this
claim does not hold for the current implementation of the
temporal WTA circuit. Even so, as has been addressed in each
respective section, we argue that the limitations of the current
implementation are not fundamental limitations of the method
itself.

VI. CONCLUSION

This work introduces a novel neuromorphic approach for
processing time-varying stimuli: the temporal WTA circuit.
The temporal WTA circuit differentiates itself from the tra-
ditional (static) WTA circuit by being able to distinguish
between time-varying (rather than just static) spike patterns.



23

The temporal WTA circuit is able to learn such distinctions
between patterns in an online, real-time, and unsupervised
manner. This work has shown that temporal WTA circuits
can be combined into networks to process more complex
stimuli, using multiple layers that process input at different
timescales. Furthermore, this work has shown that this allows
the network to learn to distinguish between the spoken digits
of the TIDIGITS dataset. While several details of the network
implementation in this work violate neuromorphic principles,
these are addressed throughout this work, and it is argued that
these do not extend to the method in general.

REFERENCES

[1] G. E. Moore, “Cramming more components onto integrated circuits,
reprinted from electronics, volume 38, number 8, april 19, 1965, pp.114
ff,” IEEE Solid-State Circuits Society Newsletter, vol. 11, no. 3, pp.
33–35, April 2006. [Online]. Available: 10.1109/N-SSC.2006.4785860

[2] A. Sanchez, S. Bertolazzi, and P. Cambou, “Neuromorphic computing
and sensing 2021,” Yole Développement, May 2021.

[3] C. Shipley and S. M. Jodis, “Programming languages classification,”
Encyclopedia of Information Systems, pp. 545–552, 2002.

[4] J. Backus, “Can programming be liberated from the von neumann
style? a functional style and its algebra of programs,” Communications
of the ACM, vol. 21, no. 8, pp. 613–641, August 1978. [Online].
Available: 10.1145/359576.359579

[5] S. Herculano-Houzel, “The remarkable, yet not extraordinary, human
brain as a scaled-up primate brain and its associated cost,” Proceedings
of the National Academy of Sciences of the United States of
America, June 2012. [Online]. Available: https://doi.org/10.1073/pnas.
1201895109

[6] G. Buzsáki, N. Logothetis, and W. Singer, “Scaling brain size,
keeping timing: Evolutionary preservation of brain rhythms,” Neuron,
vol. 80, no. 3, pp. 751–764, October 2013. [Online]. Available:
10.1016/j.neuron.2013.10.002

[7] T. Branco and K. Staras, “The probability of neurotransmitter release:
variability and feedback control at single synapses,” National Library of
Medicine, vol. 10, no. 5, pp. 373–383, May 2009. [Online]. Available:
10.1038/nrn2634

[8] S. Furber, “Large-scale neuromorphic computing systems,” Journal of
Neural Engineering, vol. 13, no. 5, p. 051001, August 2016. [Online].
Available: 10.1088/1741-2560/13/5/051001

[9] C. Schuman, S. Kulkarni, M. Parse, J. Mitchell, P. Date, and
B. Kay, “Opportunities for neuromorphic computing algorithms and
applications,” Nature Computational Science, vol. 2, no. 1, pp. 10–19,
January 2022. [Online]. Available: 10.1088/2634-4386/ac889c

[10] D. Christensen, R. Dittman, B. Linares-Barranco, A. Sebastian,
M. Le Gallo, A. Redaelli, S. Slesazeck, T. Mikolajick, S. Spiga,
S. Menzel, I. Valov, G. Milano, C. Ricciardi, S.-J. Liang, F. Miao,
M. Lanza, T. Quill, S. Keene, A. Salleo, J. Grollier, D. Markovi,
A. Mizrahi, P. Yao, J. Yang, G. Indiveri, J. Strachan, S. Datta,
E. Vianello, A. Valentian, J. Feldmann, X. Li, W. Pernice, H. Bhaskaran,
S. Furber, E. Neftci, F. Scherr, W. Maass, S. Ramaswamy, J. Tapson,
P. Priyadarshini, Y. Kim, G. Tanaka, S. Thorpe, C. Bartolozzi,
T. Cleland, C. Posch, S. Liu, G. Panuccio, M. Mahmud, A. Mazumder,
M. Hosseini, T. Mohsenin, E. Donati, S. Tolu, R. Galeazzi,
M. Christensen, S. Holm, D. Ielmini, and N. Pryds, “2022 roadmap on
neuromorphic computing and engineering,” Neuromorphic Computing
and Engineering, vol. 2, no. 2, p. 022501, May 2022. [Online].
Available: 10.1088/2634-4386/ac4a83

[11] S.-C. Liu and T. Delbruck, “Neuromorphic sensory systems,” Current
Opinion in Neurobiology, vol. 20, no. 3, pp. 288–295, June 2010.
[Online]. Available: 10.1016/j.conb.2010.03.007

[12] M. Alawad and M. Lin, “Survey of stochastic-based computation
paradigms,” vol. 7, no. 1, pp. 98–114, 2019. [Online]. Available:
10.1109/TETC.2016.2598726

[13] J. C. Gallagher, “The once and future analog alternative: evolvable
hardware and analog computation,” NASA/DoD Conference on
Evolvable Hardware, 2003. Proceedings, pp. 43–49, 2003. [Online].
Available: 10.1109/EH.2003.1217641

[14] F. Ogban, I. Arikpo, and I. Eteng, “Von neumann architecture
and modern computers,” Global Journal of Mathematical Sciences,
vol. 6, no. 2, pp. 97–104, September 2007. [Online]. Available:
10.4314/gjmas.v6i2.21415

[15] J. Aimone, P. Date, G. Fonseca-Guerra, K. Hamilton, K. Henke,
B. Kay, G. Kenyon, S. Kulkarni, S. Mniszewski, M. Parsa, S. Risbud,
C. Schuman, W. Severa, and J. D. Smith, “A review of non-cognitive
applications for neuromorphic computing,” Neuromorphic Computing
and Engineering, vol. 2, no. 3, p. 032003, 09 2022. [Online]. Available:
10.1088/2634-4386/ac889c

[16] L. Deng, “Artificial intelligence in the rising wave of deep learning:
The historical path and future outlook [perspectives],” IEEE Signal
Processing Magazine, vol. 35, no. 1, pp. 180–177, January 2018.
[Online]. Available: 10.1109/MSP.2017.2762725

[17] Z. Shao, R. Zhao, S. Yuan, M. Ding, and Y. Wang, “Tracing the
evolution of ai in the past decade and forecasting the emerging
trends,” Expert Systems with Applications, vol. 209, no. 15, p. 118221,
December 2022. [Online]. Available: 10.1016/j.eswa.2022.118221

[18] R. Wason, “Deep learning: Evolution and expansion,” Cognitive Systems
Research, vol. 52, pp. 701–708, December 2018. [Online]. Available:
10.1016/j.cogsys.2018.08.023

[19] P. U. Diehl, G. Zarella, A. Cassidy, B. U. Pedroni, and E. Neftci,
“Conversion of artificial recurrent neural networks to spiking
neural networks for low-power neuromorphic hardware,” 2016 IEEE
International Conference on Rebooting Computing (ICRC), pp. 1–8,
October 2016. [Online]. Available: https://doi.ieeecomputersociety.org/
10.1109/ICRC.2016.7738691

[20] E. Hunsberger and C. Eliasmith, “Training spiking deep networks
for neuromorphic hardware,” November 2016. [Online]. Available:
10.13140/RG.2.2.10967.06566

[21] W. Severa, C. M. Vineyard, R. Dellana, S. J. Verzi, and J. B. Aimone,
“Training deep neural networks for binary communication with the
whetstone method,” Nature Machine Intelligence, vol. 1, no. 2, pp.
86–94, February 2019. [Online]. Available: 10.1038/s42256-018-0015-y

[22] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking neural
networks using backpropagation,” Frontiers in Neuroscience, vol. 10,
November 2016. [Online]. Available: 10.3389/fnins.2016.00508

[23] A. Shrestha, H. Fang, Q. Wu, and Q. Qiu, “Approximating back-
propagation for a biologically plausible local learning rule in spiking
neural networks,” Proceedings of the International Conference on
Neuromorphic Systems, vol. 10, pp. 1–8, July 2019. [Online]. Available:
10.1145/3354265.3354275

[24] D. Kwon, S. Lim, J.-H. Bae, S.-T. Lee, H. Kim, Y.-T. Seo, S. Oh,
J. Kim, K. Yeom, B.-G. Park, and J.-H. Lee, “On-chip training
spiking neural networks using approximated backpropagation with
analog synaptic devices,” Frontiers in Neuroscience, vol. 14, July 2020.
[Online]. Available: 10.3389/fnins.2020.00423

[25] G. Bellec, F. Scherr, A. Subramoney, E. Hajek, D. Salaj, R. Legenstein,
and W. Maass, “A solution to the learning dilemma for recurrent
networks of spiking neurons,” Nature Communications, vol. 11, no. 1,
p. 3625, July 2020. [Online]. Available: 10.1038/s41467-020-17236-y

[26] R. Gütig and H. Sompolinsky, “The tempotron: a neuron that learns
spike timing–based decisions,” Nature Neuroscience, vol. 9, no. 3, pp.
420–428, March 2006. [Online]. Available: 10.1038/nn1643

[27] W. Maass, T. Natschläger, and H. Markram, “Real-time computing
without stable states: A new framework for neural computation based
on perturbations,” Neural Computation, vol. 14, no. 11, pp. 2531–2560,
November 2002. [Online]. Available: 10.1162/089976602760407955

[28] H. Jaeger, “The “echo state” approach to analysing and training recurrent
neural networks – with an erratum note,” January 2001. [Online].
Available: https://www.ai.rug.nl/minds/uploads/EchoStatesTechRep.pdf

[29] M. Cucchi, S. Abreu, G. Ciccone, D. Brunner, and H. Kleemann,
“Hands-on reservoir computing: a tutorial for practical implementation,”
Neuromorphic Computing and Engineering, vol. 2, no. 3, August 2022.
[Online]. Available: 10.1088/2634-4386/ac7db7

[30] D. Neil and S.-C. Liu, “Effective sensor fusion with event-based
sensors and deep network architectures,” 2016 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 2282–2285, 2016.
[Online]. Available: 10.1109/ISCAS.2016.7539039

[31] M.-H. Tayarani-Najaran and M. Schmuker, “Event-based sensing and
signal processing in the visual, auditory, and olfactory domain: A
review,” Frontiers in Neural Circuits, vol. 15, May 2021. [Online].
Available: 10.3389/fncir.2021.610446

[32] G. Gallego, T. Delbrück, G. Orchard, C. Bartolozzi, B. Taba,
A. Censi, S. Leutenegger, A. J. Davison, J. Conradt, K. Daniilidis, and
D. Scaramuzza, “Event-based vision: A survey,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 44, no. 1, pp. 154–180,
July 2022. [Online]. Available: 10.1109/TPAMI.2020.3008413

[33] L. Deckers, I. J. Tsang, W. Van Leekwijck, and S. Latré, “Extended
liquid state machines for speech recognition,” Frontiers in Neuroscience,
vol. 16, October 2022. [Online]. Available: 10.3389/fnins.2022.1023470

10.1109/N-SSC.2006.4785860
10.1145/359576.359579
https://doi.org/10.1073/pnas.1201895109
https://doi.org/10.1073/pnas.1201895109
10.1016/j.neuron.2013.10.002
10.1038/nrn2634
10.1088/1741-2560/13/5/051001
10.1088/2634-4386/ac889c
10.1088/2634-4386/ac4a83
10.1016/j.conb.2010.03.007
10.1109/TETC.2016.2598726
10.1109/EH.2003.1217641
10.4314/gjmas.v6i2.21415
10.1088/2634-4386/ac889c
10.1109/MSP.2017.2762725
10.1016/j.eswa.2022.118221
10.1016/j.cogsys.2018.08.023
https://doi.ieeecomputersociety.org/10.1109/ICRC.2016.7738691
https://doi.ieeecomputersociety.org/10.1109/ICRC.2016.7738691
10.13140/RG.2.2.10967.06566
10.1038/s42256-018-0015-y
10.3389/fnins.2016.00508
10.1145/3354265.3354275
10.3389/fnins.2020.00423
10.1038/s41467-020-17236-y
10.1038/nn1643
10.1162/089976602760407955
https://www.ai.rug.nl/minds/uploads/EchoStatesTechRep.pdf
10.1088/2634-4386/ac7db7
10.1109/ISCAS.2016.7539039
10.3389/fncir.2021.610446
10.1109/TPAMI.2020.3008413
10.3389/fnins.2022.1023470


24

[34] T. Kohonen, “The self-organizing map,” Proceedings of the IEEE,
vol. 78, no. 9, pp. 1464–1480, 1990. [Online]. Available: 10.1109/5.
58325

[35] S. Zeki, “The representation of colours in the cerebral cortex,” Nature,
vol. 284, pp. 412–418, 1980. [Online]. Available: 10.1038/284412a0

[36] M. Saenz and D. R. M. Langers, “Tonotopic mapping of human
auditory cortex,” Hearing Research, vol. 307, pp. 42–52, January 2014.
[Online]. Available: 10.1016/j.heares.2013.07.016

[37] H. P. Killackey, R. W. Rhoades, and C. A. Bennett-Clarke, “The
formation of a cortical somatotopic map,” Trends in Neuroscience,
vol. 18, no. 9, pp. 402–407, September 1995. [Online]. Available:
10.1016/0166-2236(95)93937-S

[38] J. Wu, Y. Chua, and H. Li, “A biologically plausible speech recognition
framework based on spiking neural networks,” 2018 International Joint
Conference on Neural Networks (IJCNN), pp. 1–8, 2018. [Online].
Available: 10.1109/IJCNN.2018.8489535

[39] D. Yu, M. L. Seltzer, J. Li, J. T. Huang, and F. Seide, “Feature learning
in deep neural networks - studies on speech recognition tasks,” 2013.
[Online]. Available: 10.48550/arXiv.1301.3605

[40] B. Nessler, M. Pfeiffer, and W. Maass, “Stdp enables spiking neurons to
detect hidden causes of their inputs,” Advances in Neural Information
Processing Systems (NIPS), vol. 22, pp. 1357–1365, January 2009.

[41] B. Nessler, M. Pfeiffer, L. Buesing, and W. Maass, “Bayesian
computation emerges in generic cortical microcircuits through spike-
timing-dependent plasticity,” PLOS Computational Biology, vol. 9, no. 4,
pp. 1–30, May 2013. [Online]. Available: 10.1371/journal.pcbi.1003037

[42] S. Guo, Z. Yu, F. Deng, X. Hu, and F. Chen, “Hierarchical bayesian
inference and learning in spiking neural networks,” IEEE Transactions
on Cybernetics, vol. 49, no. 1, pp. 133–145, January 2019. [Online].
Available: 10.1109/TCYB.2017.2768554

[43] O. van der Himst, L. Bagheriye, and J. Kwisthout, “Bayesian integration
of information using top-down modulated winner-take-all networks,”
August 2023. [Online]. Available: 10.48550/arXiv.2308.15390

[44] R. G. Leonard and G. Doddington, “Tidigits speech corpus,” Linguistic
Data Consortium, Philadelphia, 1993.

10.1109/5.58325
10.1109/5.58325
10.1038/284412a0
10.1016/j.heares.2013.07.016
10.1016/0166-2236(95)93937-S
10.1109/IJCNN.2018.8489535
10.48550/arXiv.1301.3605
10.1371/journal.pcbi.1003037
10.1109/TCYB.2017.2768554
10.48550/arXiv.2308.15390


25

VII. APPENDIX A – NOTATION

TABLE I. Notation

Miscellaneous:
α Locally defined constant
β Locally defined constant
f(...) Locally defined function
B number of bins used to encode each MFCC
Static WTA circuit:
zzz WTA circuit neurons {z1, ..., zK}
yyy input neurons {y1, ..., yN} that encode input as a spatiotemporal spike pattern
ccc neuron connections

{
ckn|k ∈ {1, ...,K}, n ∈ {1, ..., N}

}
that allow spikes to travel from neurons yyy to neurons zzz

t discrete variable indicating a specific point in time
T duration of each stimulus in terms of timesteps (assumes duration is the same for all stimuli)
Tx duration of stimulus x in terms of timesteps
I(t) lateral inhibition signal that inhibits membrane potentials µµµ of neurons zzz after a spike from a neuron zk

www(t) neuron connection weights
{
wkn(t)|k ∈ {1, ...,K}, n ∈ {1, ..., N}

}
that weigh spikes travelling through connections ccc, initialized at

random and restricted to the range [0, 1]

µµµ(t) membrane potentials {µ1(t), ..., µk(t)} of neurons zzz, initialized at µmin and restricted to the range [0, µmax ]

ϕn(t) equals 1 if neuron yn spiked at time t, and 0 otherwise
ϕ̄n(t) equals 0 if neuron yn spiked at time t, and 1 otherwise
ζk(t) equals 1 if neuron zk spiked at time t, and 0 otherwise
ζ̄k(t) equals 0 if neuron zk spiked at time t, and 1 otherwise
ζ(t) equals 1 if any neuron in zzz spiked at time t, and 0 otherwise
ζ̄(t) equals 0 if any neuron in zzz spiked at time t, and 1 otherwise
t∆kn scalar variable indicating the temporal distance between the most recent spikes of neurons zk and yn at time t

ηk(t) adaptive learning rate that diminishes each time neuron zk spikes according to equation 10
η̂ Influences the speed at which each learning rate ηk(t) decays according to 10.
Temporal WTA circuit:

γγγ neuron connection gates
{
γkn|k ∈ {1, ...,K}, n ∈ {1, ..., N}

}
attached to each neuron connection

θθθ(t) gate conductances
{
θkn(t)|k ∈ {1, ...,K}, n ∈ {1, ..., N}

}
that, in addition to weights www, weigh spikes travelling through connections

ccc, initialized at 0 and restricted to the range [0, ∞]

τ discrete constant that indicates the timespan at which gates γγγ(t) operate
κκκ gate connections

{
κknn′ |k ∈ {1, ...,K}, n ∈ {1, ..., N}, n′ ∈ {1, ..., N}

}
that allow gates to influence the conductance of other

gates
ωωω(t) gate connection weights

{
ωknn′ (t)|k ∈ {1, ...,K}, n ∈ {1, ..., N}, n′ ∈ {1, ..., N}

}
that weigh the degree to which each gate

perturbs the conductance of other gates, initialized at random and restricted to the range [0, 1]

ρρρ(t) recency traces
{
ρknn′ (t)|k ∈ {1, ...,K}, n ∈ {1, ..., N}, n′ ∈ {1, ..., N}

}
that represent the temporal distance between the most

recent spikes of neurons yn and y′n, initialized at 0 and restricted to the range [0, τ ]

πππ(t) prime traces
{
πknn′ (t)|k ∈ {1, ...,K}, n ∈ {1, ..., N}, n′ ∈ {1, ..., N}

}
that are a measure of how closely and how consistently a

spike from neuron yn′ was preceded by a spike from neuron yn, initialized at 0 and restricted to the range [0, ∞]

Two-layer temporal WTA network:

L1 WTA layer one, consists of N1 temporal WTA circuits that each receive input from all sensory neurons yyy; by default L1 consists of
stochastic neurons

L2 WTA layer two, consists of a single temporal WTA circuit that receives input from all neurons in layer L1, the single output spike of
L2 at the end of a stimulus is used to determine the network’s classification



26

VIII. APPENDIX B – HYPERPARAMETERS

TABLE II. Default hyperparameters of experiments 3, 4, and 5

Variable Code name Default Description

- data_form MFCCs & deltas As described in section IV-A3, when encoding the TIDIGITS data one can use the MFCCs,
their deltas, or both. By default both are used.

B n_bins 8 As described in section IV-A3, when encoding the TIDIGITS data the values of each coefficient
are divided into a number of bins, each bin being assigned a sensory neuron.

N1 l1_n_circuits 5 As described in section IV-B, WTA layer L1 consists of N1 temporal WTA circuits. The
impact of this parameter is assessed in experiment 5.2.

K1 l1_K 100 The number of stochastic neurons in each circuit of WTA layer L1. The impact of this
parameter is assessed in experiments 3.3, 4.3, and 5.3.

- l1_hz 150 Determines the timescale at which WTA layer L1 operates: if equal to 150 then for layer L1

it holds that τ = 1000
150

.

- l1_n_max
_simultaneous
_spikes

3 The maximum allowed number of simultaneous spikes produced within circuits of WTA layer
L1. The impact of this parameter is assessed in experiment 5.5 and discussed in section V .

α (eq. 4) l1_cst_p_spike 30 Influences how quickly the spiking probability of stochastic neurons rises as a function of
their membrane potential. A higher value means that the spike probability of a neuron starts
to rise rapidly more nearer to its maximum membrane potential µmax . A very low value
introduces too much randomness, while a high value will eliminate it. See figure 3a.

µmax l1_mps_max 1500 The maximum membrane potential of stochastic neurons. When a stochastic neuron’s
membrane potential equals µmax its spiking probability equals 1. The default value of 1500
is chosen to fit roughly with l1_hz, which requires that a stochastic WTA circuit produces
a spike roughly every 1000

150
timesteps.

K2 l2_K Varies The number of neurons in the temporal WTA circuit that is layer L2. After training each
neuron is associated with a class, thus there should be at least as many neurons as there are
classes. Adding more neurons than classes is necessary to account for within-class variation.
The impact of this parameter is assessed in experiments 3.3 and 5.3.

- l2_idle_until Varies The number of stimuli for which WTA layer L2 is idle, allowing WTA layer L1 to first learn
and stabilize somewhat. By default L2 is idle for the first 0.60 train cycles, rounded down.

- l2_hz 20 Determines the timescale at which WTA layer L1 operates: if equal to 20 then for layer L2 it
holds that τ = 1000

20
. The default setting thus assumes to operate roughly a time windows of

50 timesteps, which reflects (very roughly) the duration of the single-digit utterances (which
vary from 24 to 70 timesteps).

- [s_w_init_min,
s_w_init_max]

[0.60, 0.80] The initial range of values at which gate connection weights are initialized. Chosen to be
relatively high such that each neuron is likely to respond and grow sensitive to a spiking
pattern at least once.

η̂ eta_decay 0.60 As described in section III-B, η̂ influences the speed at which learning rate ηk(t) decays. The
impact of this parameter is assessed in experiment 5.4.

- eta_star 25 For the temporal WTA circuits, when learning is triggered, the weight update is repeated
eta_star times (each weight update being recomputed according to the new weights, and
η decaying each time). This is a bit of a hack to increase the rate of learning without violating
certain dynamics (for example, initializing η at 10 instead of 1 causes weight updates to act
strangely). A more elegant solution is likely possible.

- axon_en_learn False If False, then all neuron connection weights are fixed at 1.0, and they do not change at all
during training.



27

IX. APPENDIX C – EXPERIMENT RESULTS

TABLE III. Results experiment 1

ID Custom parameters Avg. acc Stdv. acc Sparsity L1 Sparsity L2

1.1a – Static WTA circuit
– Static encoding scheme

100% 0% - -

1.1b – Static WTA circuit
– Temporal encoding scheme

23.00% 5.34% - -

1.1c – Static WTA circuit
– Temporal encoding scheme
– 10 train cycles

28.25% 4.62% - -

1.2a – Temporal WTA circuit
– Static encoding scheme

100% 0% 393/40, 000 (0.98%) -

1.2b – Temporal WTA circuit
– Temporal encoding scheme

100% 0% 163/400 (40.75%) -

1.2c – Temporal WTA circuit
– Temporal encoding scheme
– Neuron connection weights www fixed to 1.0

100% 0% 163/400 (40.75%) -

TABLE IV. Results experiment 2

ID Custom parameters Avg. acc Stdv. acc Sparsity L1 Sparsity L2

2.1 Temporal WTA circuit 26.25% 6.05% 400/400 (99.95%) -

2.2 – Two-layer temporal WTA network
– L1 uses softmax neurons
– K1 = 4

100% 0% 156/400 (39.00%) 4/64 (6.25%)

2.3a – Two-layer temporal WTA network
– L1 uses stochastic neurons
– K1 = 4

54.25% 13.60% 121/400 (30.20%) 2/64 (3.75%)

2.3b – Two-layer temporal WTA network
– L1 uses stochastic neurons
– K1 = 16

90.25% 7.45% 208/1, 600 (13.03%) 13/1, 024 (1.25%)

2.3c – Two-layer temporal WTA network
– L1 uses stochastic neurons
– K1 = 16
– N1 = 5

100% 0% 209/1, 600 (13.05%) 319/25, 600 (1.25%)



28

TABLE V. Results experiment 3

ID Custom parameters Avg. acc Stdv. acc Sparsity L1 Sparsity L2

3.1a 1 train cycle 83.39% 5.97% 310, 013/4, 326, 400 (7.17%) 76, 389/5, 500, 000 (1.39%)

3.1b 5 train cycles 99.98% 0.14% 392, 205/4, 326, 400 (9.07%) 45, 359/5, 500, 000 (0.82%)

3.1c 10 train cycles (default) 99.99% 0.07% 358, 309/4, 326, 400 (8.28%) 35, 271/5, 500, 000 (0.64%)

3.2a N1 = 1 98.70% 2.09% 355, 806/4, 326, 400 (8.22%) 1, 298/220, 000 (0.59%)

3.2b N1 = 10 100% 0% 358, 903/4, 326, 400 (8.30%) 143, 250/22, 000, 000 (0.65%)

3.3a K1 = 10 81.70% 10.54% 79, 791/432, 640 (18.44%) 12, 813/55, 000 (23.30%)

3.3b K1 = 50 99.64% 1.01% 244, 921/2, 163, 200 (11.32%) 26, 597/1, 375, 000 (1.93%)

3.3c K2 = 50 99.72% 0.25% 358, 309/4, 326, 400 (8.28%) 80, 288/12, 500, 000 (0.64%)

TABLE VI. Results experiment 4

ID Custom parameters Avg. acc Stdv. acc Sparsity L1 Sparsity L2

4.1a 1 train cycle 72.52% 7.50% 310, 013/4, 326, 400 (7.17%) 29, 465/2, 750, 000 (1.07%)

4.1b 5 train cycles 88.40% 5.07% 392, 205/4, 326, 400 (9.07%) 23, 677/2, 750, 000 (0.86%)

4.1c 10 train cycles 88.18% 6.33% 358, 309/4, 326, 400 (8.28%) 19, 478/2, 750, 000 (0.71%)

4.1d 30 train cycles (default) 88.64% 4.98% 330, 983/4, 326, 400 (8.28%) 17, 687/2, 750, 000 (0.64%)

4.2a N1 = 1 87.92% 6.96% 330, 858/4, 326, 400 (7.65%) 661/110, 000 (0.60%)

4.2b N1 = 10 87.83% 5.23% 330, 888/4, 326, 400 (7.65%) 70, 308/11, 000, 000 (0.64%)

4.3a K1 = 10 70.45% 6.04% 80, 050/432, 640 (18.50%) 6, 148/27, 500 (22.36%)

4.3b K1 = 50 87.82% 5.61% 229, 072/2, 163, 200 (10.59%) 12, 648/687, 500 (1.84%)

4.3c K1 = 150 86.92% 5.31% 401, 287/6, 489, 600 (6.18%) 24, 102/6, 187, 500 (0.39%)



29

TABLE VII. Results experiment 5

ID Custom parameters Avg. acc Stdv. acc Sparsity L1 Sparsity L2

5.1a 0 train cycles (i.e., no training) 9.79% 0.27% 4, 326, 400/4, 326, 400 (100%) 25, 000, 000/25, 000, 000 (100%)

5.1b 3 train cycles 60.43% 3.16% 938, 109/4, 326, 400 (21.68%) 180, 113/25, 000, 000 (0.72%)

5.1c 5 train cycles (default) 60.88% 1.00% 954, 555/4, 326, 400 (22.06%) 171, 334/25, 000, 000 (0.69%)

5.1d 7 train cycles 62.26% 1.74% 963, 172/4, 326, 400 (22.26%) 166, 864/25, 000, 000 (0.67%)

5.2a N1 = 1 39.82% 0.32% 954, 095/4, 326, 400 (22.05%) 6, 860/1, 000, 000 (0.69%)

5.2b N1 = 10 63.72% 1.18% 954, 254/4, 326, 400 (22.06%) 683, 832/100, 000, 000 (0.68%)

5.3a – K1 = 50
– K2 = 50

43.44% 1.16% 517, 117/2, 163, 200 (23.91%) 64, 461/3, 125, 000 (2.06%)

5.3b – K1 = 150
– K2 = 150

66.87% 0.63% 1, 367, 403/6, 489, 600 (21.07%) 299, 158/84, 375, 000 (0.35%)

5.4a η̂ = 0.80 55.50% 1.59% 1, 026, 725/4, 326, 400 (23.73%) 165, 304/25, 000, 000 (0.66%)

5.4b η̂ = 1.00 44.13% 0.55% 1, 092, 333/4, 326, 400 (25.25%) 158, 765/25, 000, 000 (0.64%)

5.5a Maximum of 1 simultaneous spike in layer L1 56.63% 1.11% 906, 402/4, 326, 400 (20.95%) 47, 800/25, 000, 000 (0.19%)

5.5b Maximum of 5 simultaneous spike in layer L1 55.54% 0.86% 972, 760/4, 326, 400 (22.48%) 255, 668/25, 000, 000 (1.02%)

5.6a – MFCC deltas are omitted from input
– µmax = 500 (to account for less input)

32.63% 2.46% 259, 266/1, 081, 600 (23.97%) 155, 762/25, 000, 000 (0.62%)

5.6b – MFCCs are omitted from input
– µmax = 500 (to account for less input)

50.23% 2.76% 230, 994/1, 081, 600 (21.36%) 150, 015/25, 000, 000 (0.60%)

5.6c B = 6 59.17% 1.26% 670, 506/2, 433, 600 (21.36%) 353, 027/25, 000, 000 (1.41%)

5.6c B = 10 55.56% 0.61% 1, 238, 378/6, 760, 000 (18.32%) 96, 961/25, 000, 000 (0.39%)

5.7a The data is shuffled 58.05% 1.60% 1, 005, 863/4, 326, 400 (23.25%) 162, 452/25, 000, 000 (0.65%)

5.7b Neuron connections weights www are unfixed 54.19% 0.66% 957, 253/4, 326, 400 (23.25%) 185, 568/25, 000, 000 (0.74%)

5.7c – 7 train cycles
– N1 = 10
– K1 = 150
– K2 = 150

72.67% 1.99% 1, 386, 243/6, 489, 600 (21.26%) 1, 176, 268/337, 500, 00 (0.35%)


	Introduction
	Hardware
	The von Neumann architecture
	The neuromorphic architecture
	Von Neumann vs Neuromorphic

	Algorithm
	Algorithmic differences
	Artificial Intelligence
	Learning

	Applications

	Related Work
	Tempotron
	Liquid State Machine
	Self-Organizing Map
	WTA circuits and networks

	Method
	Static WTA circuit definition
	Static WTA circuit implementation
	Temporal WTA circuit

	Experiments
	Data
	Toy data
	Concatenated toy data
	TIDIGITS

	Network architectures
	Experiment 1
	Setup
	Interpretation

	Experiment 2
	Setup
	Interpretation

	Experiment 3
	Setup
	Interpretation

	Experiment 4
	Setup
	Interpretation

	Experiment 5
	Setup
	Interpretation


	Discussion
	Sparsity
	Network development
	Input encoding
	Softmax and stochastic neurons
	Separation of stimuli
	Relation to other works

	Conclusion
	References
	Appendix A – Notation
	Appendix B – Hyperparameters
	Appendix C – Experiment Results

