
Data Science Master Thesis

Towards Explainable Sign Spotting Systems:
an Exploration of Approximative Linguistic Features

and Evaluation Methods

Author:
Natalie Hollain
s1018472
natalie.hollain@ru.nl

First supervisor:
Prof. M.A. Larson
m.larson@cs.ru.nl

Radboud University

Second supervisor:
Dr. L.F.M. ten Bosch
louis.tenbosch@ru.nl
Radboud University

External supervisor:
Dr. F. Roelofsen

f.roelofsen@uva.nl
University of Amsterdam

September 22, 2023

Abstract/Executive Summary

This research project carried out an initial exploration into how sign spotting, the task
of detecting when a target sign occurs in a given video, can be performed in a more
explainable manner. Explainability demands that a system is correct, robust and inter-
pretable to humans [1], [2]. Inspired by domain knowledge being used to increase the
explainability and interpretability of systems in other domains [3], [4], we investigate the
possibility of using a knowledge-based approach for sign spotting.
One manner in which knowledge about sign language can be incorporated into sign lan-
guage systems is through linguistic insights. Current sign spotting systems typically
do not make use of such knowledge [5], thus limiting their interpretability. Similarly,
evaluation methods for sign spotting do not draw on linguistic knowledge, resulting in
a lack of explainability since they fail to robustly estimate model performance given an
incomplete ground truth. Updates to the known ground truth, in particular the addi-
tion of challenging sign annotations, can significantly alter the estimated performance.
Moreover, current evaluations do not reflect user expectations for sign spotting systems
because spottings are allowed to occur after a relevant segment has already started.
Users thus have to put in effort, such as rewinding the video, to watch the full relevant
segment, which was found to not reflect what users expect [6].
The goal of this thesis is to address these limitations using a knowledge-based approach.
We incorporate linguistic knowledge about sign language into a sign spotting system
and evaluation method. We aim to enhance explainability by enabling a sign spotting
analysis based on linguistic insights. Furthermore, we develop linguistic features to en-
sure our model uses knowledge-based inputs as the basis for its decision-making. In this
way, we hope to increase the explainability of current methods.
To address the need for explainable sign spotting systems, we implemented features for a
sign spotting model that approximate the basic phonological properties of signs, includ-
ing handshape, orientation, location and movement [7], [8]. Our features are extracted
from landmarks, which are keypoints in the body, such as the fingertips and shoulders,
that we detected using a landmark detection tool. As far as we are aware, we are the first
to implement a sign spotting model which extracts such features from landmarks. By
taking into account the basic four phonological properties, we aim to create explainable
sign representations for our model to encode. As a result, it is possible to perform a
failure analysis for our model that is facilitated by the linguistic features.
To address the need for explainable evaluation methods for sign spotting, we developed
an evaluation that is rooted in the concept of tolerance to irrelevance (TTI) [9]. TTI
builds on the assumption that users, given an entry point in a video or audio stream,
keep watching or listening until their tolerance to irrelevant content is reached. Through
this means, our evaluation method reflects the effort it takes for users to use a sign
spotting system.
However, TTI, like existing sign spotting evaluations, relies on a full ground truth to
reliably determine a model’s performance, which may not be available for a sign spot-
ting dataset. We address this limitation by using a novel approach that uses only the
most challenging known cases to assess our model performance. These hardest cases
are called distractors, which we define as those signs that are most similar to the target
sign based on a distance measure. In our work, we develop a novel linguistic distance
measure to determine the similarity between signs. Through the usage of these distrac-

tors, we estimate the performance for the full ground truth based solely on the hardest
cases from the known ground truth, and assume that this makes our performance es-
timation robust to the addition of new annotations. We validated this assumption by
investigating the effects of updates to the annotations on the performance estimates by
our distractor-based evaluation compared to a baseline evaluation that uses random, as
opposed to hard, cases. Our results show that the distractor-based evaluations provides
a more conservative estimate of the performance of a model and is comparably robust
to changes in the annotations compared to the baseline.
We validated our linguistic features using an empirical analysis, where we compared
the effectiveness of a non-linguistic baseline that used landmarks directly, to a model
using our more explainable, linguistically motivated features that are extracted from
landmarks. Moreover, we investigated whether a combination of linguistic and baseline
landmark features would result in better performance. The conditions were compared
through the use of our distractor-based evaluation. We determined that the combination
of the features provided the best performance at the cost of linguistic representativeness.

Contents

1 Introduction 1
1.1 Research Questions . 3
1.2 Code . 3

2 Related Work 4
2.1 Sign language linguistics . 4
2.2 Sign Language Processing . 5

2.2.1 Sign spotting . 5
2.3 Evaluation methods . 6

3 Approach 7
3.1 Feature engineering . 7

3.1.1 Feature set comparison . 9
3.2 Evaluation . 9

3.2.1 Linguistic distance . 11
3.2.2 Validation . 11
3.2.3 Evaluation of linguistic features . 12

4 Method 14
4.1 Comparison to Watch, Read and Lookup framework 14
4.2 Feature engineering . 15

4.2.1 Detecting landmarks . 15
4.2.2 Feature extraction . 16
4.2.3 Final features . 19

4.3 Datasets . 19
4.3.1 Corpus Nederlandse Gebarentaal 19
4.3.2 Signbank . 19

4.4 Data Preprocessing . 19
4.4.1 Corpus Nederlandse Gebarentaal 19

4.5 Preparing dataset . 21
4.5.1 Fixed-length inputs . 21
4.5.2 Data augmentation . 21
4.5.3 Creating batches and shuffling . 22

4.6 Sign spotting model . 22
4.6.1 Loss function . 23

4.7 Feature selection . 24
4.8 Test phase . 25
4.9 Evaluation . 26

4.9.1 Validation . 26
4.9.2 Tolerance window size . 26
4.9.3 Handling overlap and double predictions 27
4.9.4 Linguistic distance . 27
4.9.5 Balancing distractors and target sign annotations 31
4.9.6 Confusable signs . 32

5 Experimental setup 34
5.1 Validation of distractor-based evaluation 34
5.2 Feature set comparison . 34

6 Results 36
6.1 Validation of distractor-based evaluation 36
6.2 Feature set comparison . 39

6.2.1 Distractor-based evaluation . 39
6.2.2 Comparison using confusable signs 41

7 Discussion 44
7.1 Approximative phonological features . 44
7.2 Evaluation method . 45
7.3 Deaf inclusion . 46

A Appendix V
A.1 Pseudocode linguistic distance computation V
A.2 Proof: mirroring after normalisation . V
A.3 Spotting threshold tests . VI
A.4 Masking experiments . VII
A.5 Full results of the validation of the distractor-based evaluation IX

A.5.1 Dropout ratio = 0.1 . IX
A.5.2 Dropout ratio = 0.25 . X
A.5.3 Dropout ratio = 0.5 . XI
A.5.4 Dropout ratio = 0.75 . XII

Acknowledgements

Before getting into the nitty-gritty details of my work, I would like to first acknowledge
those people who assisted me throughout the writing of this thesis. After all, it was
through their help that this work came to be.
I would like to thank Martha Larson and Floris Roelofsen for giving me the opportunity
to work on this thesis and for guiding me through the entire process. The fact that we
managed to turn this thesis into not one, but two published papers, is something I would
have never dreamed of when starting this project. Without them, none of this would
have been possible.
I want to thank Onno Crasborn for providing me with the data of the Corpus Nederlandse
Gebarentaal and for enriching my knowledge about sign languages. The talks we had
were my introduction to this topic that I knew so little about up until that point. This
is what initially inspired me to use linguistics in this thesis.
For their valuable feedback during the process of writing this thesis, as well as allowing
me to rant whenever things became too much, I would like to thank Lyke Esselink and
Javier Mart́ınez Rodŕıguez.
Last, but certainly not least, I want to thank my partner Christian Bloks, who advised,
comforted and understood me even in the most difficult of times.

Chapter 1

Introduction

Sign spotting, the task of determining when a target sign occurs in a given video, is a task
within the field of sign language processing (SLP) [10]. A variety of applications have
been proposed for sign spotting systems, which includes search and automatic annotation
systems [11]. These applications have the potential to facilitate deaf and hard-of-hearing
individuals, as well as researchers who are annotating sign language datasets.
In this project, we carried out an initial exploration into how sign spotting can be
performed in a more explainable manner. Explainability is an important aspect to con-
sider when developing an AI system because it facilitates the comprehensibility and
transparency of a system’s decision-making process. In SLP, explainable systems have
already been used for sign language learning [12] and sign language recognition (SLR)
[13], [14]. On the other hand, current methods for sign spotting have been found to be
lacking in terms of their explainability [11].
To deem a system explainable, we require that it is correct, robust and interpretable to
humans [1], [2]. One way in which explainability has previously been facilitated outside
of the domain of SLP is through the incorporation of domain knowledge [3], [4]. Inspired
by this work, we investigate the possibility of using a knowledge-based approach for sign
spotting.
One manner in which knowledge about sign language can be incorporated into sign
language systems is through linguistic insights. Current work on SLP, including sign
spotting, typically does not leverage such knowledge [5], which limits the interpretabil-
ity of developed systems. Similarly, evaluation methods for sign spotting do not draw
on linguistic knowledge, resulting in a lack of explainability since they fail to robustly
estimate model performance given an incomplete ground truth. Updates to the known
ground truth, in particular the addition of challenging sign annotations, can signifi-
cantly alter the estimated performance. Moreover, current evaluations do not reflect
user expectations for sign spotting systems because spottings are allowed to occur after
a relevant segment has already started. Users thus have to put in effort, such as rewind-
ing the video, to watch the full relevant segment. This has been found to not reflect
what users expect [6]. As such, we want to push sign spotting evaluations to be more
robust against changes to the known ground truth, and simultaneously more reflective
of user expectations.
The goal of this thesis is to address the aforementioned limitations of sign spotting
models and evaluation methods, using a knowledge-based approach. We incorporate lin-
guistic insights about sign language into the design of a sign spotting system as well as
an evaluation method. Our aim is to enhance the explainability of sign spotting systems
by enabling an analysis based on linguistic domain knowledge. Moreover, we develop
linguistic features to ensure our model uses knowledge-based inputs as the basis for its
decision-making. Through these means, we hope to increase the explainability of current
methods.
To address the need for explainable sign spotting systems, we implemented features for
a sign spotting model that approximate the basic phonological properties of signs. Our
features are based on the work by Stokoe [7] and Battison [8] that specifies the manual

1

phonology of a sign in terms of the handshape, orientation, location and movement. By
taking into account the basic four phonological properties, we aim to create explainable
sign representations for our sign spotting model to encode. Therefore, it is possible to
perform a failure analysis for our model that is facilitated by the linguistic features.
We extracted the features from landmarks, which are keypoints in the body, such as the
fingertips and shoulders, using the landmark detection tool Mediapipe. As far as we
are aware, our sign spotting model is the first that uses linguistically motivated features
that were extracted from landmarks. We anticipate that linguistic features that are
extracted from landmarks are more robust than those which are directly extracted from
the visual input, because existing landmark detection tools have been trained on a large-
scale, in-the-wild dataset, as well as curated and synthetic data, with high variability in
background, lighting conditions, the skin colour of subjects, and other visual artifacts
[15]. Additionally, the modular nature of this approach makes it simple to incorporate
future improvements of landmark detection technologies or linguistic feature extraction
methods as they become available.
To address the need for explainable evaluation methods for sign spotting, we developed
an evaluation that is rooted in the concept of tolerance to irrelevance (TTI) [9]. TTI
bases itself on the assumption that users, when provided with an entry point in a stream
of video or audio, will keep watching or listening until their tolerance to irrelevant con-
tent is reached. By taking into account the tolerance of users, our evaluation method
reflects the amount of effort it takes to use a sign spotting system. Thus, we hope that
our evaluation enables a more user-reflective assessment of sign spotting systems.
Like existing sign spotting evaluations, TTI relies on a full ground truth to reliably
determine the performance of a model. Since sign spotting datasets have to be manu-
ally annotated by human annotators, datasets are typically not fully annotated [16] and
thus, the full ground truth is not known. We address this limitation by proposing a novel
approach that uses only the most challenging cases in the known ground truth to assess
the performance of a model. We term these hardest cases distractors and define them
as those signs which are most similar to the target sign that we want to spot based on a
chosen distance measure. In this research project, we develop a novel linguistic distance
measure to assess the similarity between signs. Through the distractors, we estimate the
performance for the unknown, full ground truth based solely on the hardest cases from
the ground truth. We assume that our evaluation method is therefore robust to the ad-
dition of new annotations, and validate this assumption by performing experiments with
altered versions of our dataset and testing the change in our evaluation method’s output
compared to a baseline evaluation that uses random, as opposed to hard, cases. Our
results show that the distractor-based evaluations provides a more conservative estimate
of the performance of a model and is comparably robust to changes in the annotations
compared to the baseline.
To validate our linguistic features, we performed an empirical analysis in which we com-
pared the effectiveness of a non-linguistic baseline which uses landmarks directly, to a
model using our more explainable, linguistically motivated features that we extracted
from the landmarks. Furthermore, we investigated whether a combination of both the
linguistic and baseline landmark features would result in better performance. The con-
ditions were compared through the usage of our distractor-based evaluation. We found
that the combination of features provided the best performance at the cost of linguistic
representativeness.

2

1.1 Research Questions

The goal of this research is twofold. First, we determine the impact of incorporating
linguistically motivated features into a sign spotting model. In particular, we extract
approximative phonological features from landmarks of the hands, and investigate when
these features deliver an improvement over using the landmarks directly. Second, we
investigate how a sign spotting evaluation can be developed that reflects user effort in
using a sign spotting model and is capable of handling an incomplete ground truth. We
propose the following main research questions with sub-questions:

RQ1 In which ways can manual phonological properties of sign language be incorporated
into a sign spotting model?

RQ1.1 What do representations based on phonetics reveal about the importance of
phonetics in sign spotting?

RQ1.2 What is the effect of incorporating phonological properties of sign language
on model performance?

RQ1.3 How does incorporating phonological knowledge affect the robustness and
applicability of a sign language model?

RQ2 How can we evaluate sign spotting systems in a way that is robust to updates to
the known ground truth and is reflective of users?

RQ2.1 How can an evaluation method be adapted to deal with an incomplete ground
truth?

1.2 Code

Our code has been made available through the following Github link:
https://github.com/nataliehh/towards-explainable-sign-spotting.

3

https://github.com/nataliehh/towards-explainable-sign-spotting

Chapter 2

Related Work

2.1 Sign language linguistics

In sign language linguistics, the phonology of a sign is described in terms of manual and
non-manual aspects. While the manual phonology only concerns itself with the hands,
non-manual information encapsulates a variety of aspects, such as the body posture and
the facial expressions of the signer [17]. In this thesis, we focus only on the manual
component of the phonology, leaving the study of the non-manual properties to future
work. The manual articulation of a sign is typically described using four attributes:
handshape, location, orientation, and movement [7], [8], [18], [19], of which we provide
a brief overview.
The handshape describes the way in which the fingers of the signing hand(s) are config-
ured. It can be analyzed in terms of which fingers are extended and which are folded
into the palm, whether they are curved or straight and how they are positioned in terms
of their distance to the other fingers and thumb. If both hands are used in the sign, they
can either have the same or a different handshape.
The location of the hand specifies where the utterance of the sign takes place. Signs can
be performed in neutral space, which is the space in front of the signer’s torso. They can
also be performed by the head, the neck or the arm. The location may also be specified
in a relative manner, for instance when one hand is located next to the other hand in a
two-handed sign.
The orientation of the hand is specified in an absolute or relative manner. Absolute
orientation defines the orientation of the hand without making reference to how it is po-
sitioned in relation to the body. By contrast, relative orientation takes the body as the
frame of reference when specifying the orientation. Absolute orientation is the dominant
perspective in most phonological models [18].
The movement of the hand(s) can be specified in terms of its shape, size, direction,
tensity and whether there is repetition. In symmetrical, two-handed signs, both hands
make the same movement in a synchronized manner. On the other hand, asymmetrical
two-handed signs are performed such that the two hands are either not performing the
same motion, or the motion is identical but for its synchrony.
While handedness is not specified as a phonological aspect in the literature we consulted,
it is also linguistically relevant whether a sign is performed with one or two hands [18].
We refer to handedness as a linguistic component of a sign from now on.
The phonological makeup of a sign only partially determines how it is articulated in
reality. The specific characteristics of the signer, such as their gender, age, emotional
state and loudness, are one set of factors which impact the way a sign is performed
in reality. Furthermore, which signs precede and follow the current sign influences the
articulation because there is a transition from one sign to the next. The effect of such
factors is studied in the field of sign language phonetics [20], [21]. Our longer-term goal
is to develop more accurate and explainable sign spotting systems through the incorpo-
ration of insights from sign language phonology and phonetics. In this thesis, we focus
on extracting the basic phonological parameters – namely the handshape, orientation,

4

location, and movement – for a sign spotting model, and leave the incorporation of
phonetic factors and non-manuals to future research.

2.2 Sign Language Processing

Researchers in the field of sign language processing (SLP) study how signs can be re-
trieved, recognized and spotted within video footage and images. Key approaches in SLP
differ with respect to whether they attempt to leverage linguistic information about sign
language and in which way they do it, as shown in Figure 2.1.

Figure 2.1: Four methods for sign language processing

Some recent work follows Approach A, where pixel information is used as the sole input,
and linguistic features that are relevant for sign language, such as the handshape or
orientation of the hand, are not explicitly considered [22], [23]. In contrast, earlier work
proposed methods to extract phonological properties of signs from pixel information [24]–
[27], which aligns with Approach B. Other approaches have applied landmark detection
tools, such as MMPose or Openpose, to obtain the location of body landmarks from the
pixel input and used them as input to a model [28], [29] (Approach C). Distance and
angle features which may approximate the phonological properties of a sign, in particular
the handshape, have also been extracted from landmarks [30]–[32] (Approach D).
Incorporating linguistic knowledge holds great promise for improving the explainability
of SLP systems. A potential drawback of incorporating linguistic features based directly
on pixel information, as is done in Approach B, is that it is sensitive to particular visual
properties of the training data, such as the lighting conditions, the shape and color of
the signer’s clothes, the skin colour of the signer, and the recording background. We
hypothesize that Approach D improves on this by implementing a modular pipeline
that is potentially more robust because linguistic features are extracted from landmarks
rather than pixel input.

2.2.1 Sign spotting

In the following section, we give a brief overview of the sign spotting work that is relevant
to our paper. We follow this up by explaining what distinguishes our work from what
has been done.
Viitaniemi, Jantunen, Savolainen, et al. [33] created a tool to assess the spotting perfor-
mance of a model on continuous signing. They implemented a baseline model that uses

5

Dynamic Time Warping (DTW) to demonstrate the effectiveness of it. In their paper,
they mention that the used dataset can be regarded as ‘artificial’ due to its small sample
of (five) signers, the studio conditions in which it was filmed, and the videos consisting
of example sentences that might not reflect real-life use of the signs. As a result, their
work lacks the realistic data that is desired for sign language technologies.
Two approaches that use conditional random fields (CRFs) on continuous signing are
implemented by Cho, Yang, and Lee [34] and Yang and Lee [35]. While both papers
report high model performance, the datasets which are used are lacking in terms of com-
plexity. More specifically, the footage was recorded in studio conditions, consists of a
single signer, and only individual sentences were filmed.
In the paper by Momeni, Varol, Albanie, et al. [22], a new framework called ‘Watch,
Read and Lookup’ (WLR) is proposed for continuous sign spotting. Sign spotting em-
beddings are learned from watching sparsely annotated videos, reading subtitles to find
candidate signs and looking up examples in a sign language video dictionary. Their
work builds on that done on low-shot action localization and multiple instance learning.
The paper uses the BSL-1k dataset that contains videos of BBC broadcasts that have
been interpreted in sign language. While BSL-1k matches most of the dataset criteria
mentioned in Bragg, Koller, Bellard, et al. [5], one aspect to note is that interpreted
signing is distinct from ‘natural signing’, the latter being faster, more spontaneous, and
less distinctly signed [5]. Consequently, the applicability of their framework to more
spontaneous sign language is unclear.
The discussed approaches do not explicitly incorporate the linguistic knowledge about
sign language that was discussed in Section 2.1. Furthermore, we highlighted that the
chosen datasets lacked in terms of the number of signers, the type of signing that is
presented and the recording conditions. In conclusion, there is a gap in the sign spotting
literature that has yet to be filled.

2.3 Evaluation methods

To the best of our knowledge, evaluation methods for sign spotting have so far only been
covered in one paper, namely that of Viitaniemi, Jantunen, Savolainen, et al. [33]. In
this paper, a tool was developed that could be used to assess the spotting performance
of a model in the context of continuous signing. This assessment determines a prediction
to be correct if its overlap with a ground truth annotation exceeds a threshold.
A field that is related to sign spotting is that of audio segmentation. For this task,
the F-measure appears to be one of the more popular metrics [36]–[38]. This metric is
also used for tasks like action segmentation [39]. For the task of audio segmentation, a
tolerance window is used for the F-measure which makes it so the boundaries, i.e. the
start and end point, of a prediction have to be close to the ground truth boundaries.
Two tolerance sizes are typically used, namely 0.5 and 3 seconds [36]–[38]. The 3 second
tolerance window is supported by the fact that users need about 3 seconds to adjust to
viewing a result item [9]. For the 0.5 second tolerance, it is most similar to the strict
tolerances applied to the task of precise event spotting [40].
Just like the discussed sign spotting metric, audio segmentation metrics and tolerances
are symmetric, since predictions are allowed to start some time before or after the
beginning of the annotation. Previous work has considered that this is not ideal for
retrieval metrics [41] and as such, it is unclear whether such symmetry reflects the real
use case of a sign spotting system. In [6], researchers discovered that users found it
annoying when spottings began after the start of the ground truth.

6

Chapter 3

Approach

In this chapter, we explain our process for developing the two contributions of our work.
First, we explain our approach to engineering our linguistically motivated features for a
sign spotting model. Second, we formulate an evaluation method for sign spotting which
reflects user effort and is capable of handling an incomplete ground truth.

3.1 Feature engineering

Inspired by existing approaches in SLR [30]–[32], we implement features that are ex-
tracted from hand landmarks. Previous work only extracted features that approximated
the phonological handshape, and thus, we implement new features to capture the move-
ment, location and orientation of the signing hand(s). Below, we give an overview of the
types of features that we extract for each of the four basic phonological parameters.

Handshape Similarly to Farhan and Madi [32], we extract angles and distances to
represent the handshape of each hand. The angles are computed to assess the curvature
of the fingers. We compute two angles for each finger: one which represents the angle
within the finger, and one which represents the finger’s angle with the wrist. We compute
the angle at the midpoint between two points, namely between the fingertip and the base
of the finger or the wrist. An example of these measurements is shown in Figure 3.1. For
the extraction of the distance features, we measure the distance between pairs of points
to represent the spread of the fingers and the relative position of the fingers compared
to the wrist. An example can be seen in Figure 3.2.

Figure 3.1: The angles measured for a given finger: one shows the angle within the finger
(left), the other shows the angle with the wrist (right)

Orientation To ensure that we get the orientation of the hands irrespective of the
camera angle, we compute the orientation relative to the body. We achieve this by
drawing two axes within the hands and the torso: one which represents a vertical y-axis
and one which represents the horizontal x-axis. A visualisation is shown in Figure 3.3.

7

Figure 3.2: The distance measured for a given finger pair (the thumb and pointer finger)

As a result, we can determine the orientation of the hands by computing the angles
between pairs of axes. The angles which are of particular interest to us are those which
compare an axis within the hand to one within the torso, because the resulting angle
is relevant to determining the orientation relative to the body. We therefore leave out
angles which compare the axes within the hand or within the torso.

Figure 3.3: The x-axis (red) and y-axis (blue) within the hand (left) and torso (right)

Location For the representation of the location parameter, we directly use the land-
marks of the hands. Specifically, we use the landmarks which locate the wrist and the
fingertips within the footage. The wrist is chosen as our primary indicator of the location
of the hand, because its position is not influenced by the orientation or handshape of the
hand. The landmarks of the fingertips are used to give a more fine-grained indication of
the location of the hands, for example in signs where one of the fingers makes contact
with the face or the arm.
Moreover, the location of a sign is partially characterised by the interaction between the
hands. We thus capture the location of the hands relative to each other by calculating
the distance between the wrists of both hands.

Movement We represent the movement parameter by measuring the velocity of the
hand over time. As before, the wrist is taken as the location of the hand at a given
time, such that we can compare its location between consecutive frames to determine
the velocity. By determining in which manner the location of the hand changes in terms

8

of both the vertical and horizontal direction, we can determine what type of movement
the hand is making.

3.1.1 Feature set comparison

We compare three sets of features in this thesis. Firstly, we develop a set of linguistic
features that follows the description provided in Section 3.1, which we hope provides a
more explainable and knowledge-based representation of signs. We input these features
into a sign spotting model, and call it the linguistic (feature) model. Secondly, we use the
landmarks, on which the linguistic features are based, directly as input for the training
of the model, calling it the landmark (feature) model. By comparing the two conditions,
we hope to determine when the linguistic, knowledge-based features that build on the
landmarks provide an improvement over using an approach that does not use knowledge
about sign language. Lastly, we investigate the possibility of combining both sets of
features to create a combined (feature) model that could benefit from the interaction
between the landmarks and linguistics.

3.2 Evaluation

For our evaluation method, our goal is to develop an explainable evaluation that reflects
user effort and can handle an incomplete ground truth. To achieve the first goal, we
adopt tolerance to irrelevance (TTI) [9] as the basis for our evaluation metric for sign
spotting. This metric only considers the starting times of annotations and predictions.
It determines a prediction to be correct if its starting time falls within some window of
tolerance, tol, before the ground truth. For instance, if we have target sign S with some
annotation si and its start point tsi , and a prediction pj with its start point tpj , the
prediction would be deemed to be correct if:

tpj ∈ [tsi − tol, tsi]

In other words, we only tolerate if the prediction starts a little before or at the same time
as the ground truth annotation. This sets our evaluation method apart from previous
evaluations developed for sign spotting, since they allowed for a prediction to start after
the beginning of the annotation. In other words, a prediction was deemed to be correct
if:

tpj ∈ [tsi − tol, tsi + tol]

Previous research has shown that this does not reflect what users expect [6], because
they may have to rewind the video to see the full annotated segment [41]. In conclusion,
we hope to better reflect the effort that is required from users using our sign spotting
model by basing our system on TTI.
One common problem with datasets that are used for SLP is that they are often not
fully annotated. Such an incomplete ground truth means that segments which are not
annotated do not necessarily imply that nothing is being signed in them. Instead, the
annotation for such a section may simply be missing. Current sign spotting methods, as
well as TTI, require that the full ground truth is known to assess the performance of a
model.
To deal with an incomplete ground truth, we choose a subset of the known ground truth
that we assume to be representative of the complete ground truth. We select elements
for this subset based on a distance measure: for each target sign, we find the most similar
other signs according to this measure. We define the annotations of these similar signs

9

as distractors and assume that, if our model is able to ignore these similar distractors
when spotting a target sign, more dissimilar signs will be ignored as well. In this way,
the performance on the subset of distractors that are hard to ignore should indicate a
lower bound of the model’s performance on the full ground truth.
The type of distance measure that should be chosen depends on the use case of the
distractor-based evaluation. In this paper, our chosen distance measure is linguistic
distance: we choose distractors based on their phonological properties as described in
Section 2.1. In the next section, we will elaborate on how distances are defined using
this measure.
Given a target sign S, we define the following notation for our evaluation:

P (S) = {p1, . . . , pn} predicted occurrences of S

TP (S) = {tp1 , . . . , tpn} starting times of p1, . . . , pn

A(S) = {s1, . . . , sm} annotated occurrences of S

TA(S) = {ts1 , . . . , tsm} starting times of s1, . . . , sm

D(S) = {d1 . . . dl} distractors for S

TD(S) = {td1 . . . tdl} starting times of d1 . . . dl

Based on this notation, we can then define true positives (TP) and false negatives (FN)
as follows, given the starting time of an annotation, tsj :

TP : ∃tpi ∈ TP (S) : tpi ∈ [tsj − tol, tsj]

FN : ∀tpi ∈ TP (S) : tpi /∈ [tsj − tol, tsj]

Furthermore, the false positives (FP) and true negatives (TN) given the starting time
of a distractor, tdi, are defined as:

FP : ∃tpi ∈ TP (S) : tpi ∈ [tdi − tol, tdi]

TN : ∀tpi ∈ TP (S) : tpi /∈ [tdi − tol, tdi]

We show an example of predicted spottings for a target sign and its distractors in Figure
3.4. Assume we are spotting S, with TA(S) = {ts1, ts2}. Then, the start times of the
distractors are defined as TD(S) = {td1, td2}. The white bars show the tolerance windows
of the targets, while the black bars indicate the tolerance windows of the distractors.
The start of the predictions are shown as tpi .

Figure 3.4: Example of predicted spottings for a target sign and its distractors

10

As tp1 falls within the tolerance window of ts1, it is counted as a TP spotting. Because
we already spotted ts1, tp2 is a redundant prediction of ts1. Moreover, tp2 does not only
fall within the tolerance window of a target - it also overlaps with the target window
td1. When implementing the evaluation method, both of these problems have to be
dealt with in some manner. For example, tp2 could be discarded if we assume it would
get aggregated with the first prediction. In Chapter 4, we discuss how we handle the
problem of overlap between tolerance windows and double predictions.
We register tp3 as a FP spotting, since it is within the tolerance window of td2. If tp3
did not exist, we would count a TN evaluation for td2. There are no predictions at all
in the tolerance window of td1, thus, this is counted as a TN.
Based on this definition of our evaluation method, we can define accuracy = TN+TP

TN+TP+FN+FP .
We may then specify the accuracy at a specific tolerance level by defining accuracy@tol,
or if we abbreviate it, acc@tol. Other metrics that are used in binary classification, such
as precision (TP

TP+FP) and recall (TP
TP+FN) can also be used. We refer to these metrics,

in the context of our tolerance-based evaluation, as precision@tol and recall@tol, or
prec@tol and rec@tol for short.

3.2.1 Linguistic distance

In this thesis, we propose a distance measure based on linguistic distance. The compu-
tation of this distance is done as follows. Assume we have two signs, A and B, for which
we know their phonological makeup:

phonology(A) = [a1, a2, a3, ..., an]
phonology(B) = [b1, b2, b3, ..., bn]

Where am and bm are the m-th phonological properties that specify A and B, respec-
tively. Together, the properties describe the phonology as discussed in Section 2.1.
We start by assuming that the signs are the same, i.e. distance(A,B) = 0. For each
property, we can then compare whether the two signs have the same specification, i.e.
whether am = bm. If the property is the same for both signs, we say that they are similar
in this sense and do not increase the distance:

if am = bm : distance(A,B)← distance(A,B)

Where X ← Y indicates that X is updated to have value Y . If the property is different
between the signs, we increase the distance by 1:

if am ̸= bm : distance(A,B)← distance(A,B) + 1

We repeat this for all of the properties to obtain the linguistic distance between the
signs A and B. The pseudocode of the linguistic distance computation can be found
in Appendix A.1. The linguistic distance between all signs is computed in this manner
to ensure that we can compare any two signs in terms of their linguistic similarity.
Distractors may then be selected based on which signs have the lowest linguistic distance
to each other.

3.2.2 Validation

We conducted a validation of our distractor-based evaluation method to determine
whether it performs as intended. In particular, we investigate whether our key assump-
tion holds, namely whether our evaluation is robust to the addition of new annotations.
We speculate that this assumption holds for several reasons. First, we hypothesize that

11

the selection of the hardest cases based on linguistic distance will give us a more conser-
vative estimate of the model performance than if we selected random cases. In this way,
we hope that we do not overestimate the performance on the full ground truth. Second,
when new annotations are added, we assume that the hardest cases will be affected less
than the selected random cases. In particular, we expect that the change in the estima-
tion of a model’s performance will be more consistent for the hardest cases.
To validate whether this reasoning is valid, one option is to add more annotations to our
dataset and compare the performance between the original and updated annotations.
However, a limitation of this approach is that we need to determine for which signs we
want to add new annotations. This has the potential to add bias to the new annotations,
since either the hardest or random cases may be disproportionately affected. Ideally, we
could compare the hardest and random cases in a fair manner, where both scenarios are
equally affected by the change in annotations.
Therefore, we opt to remove annotations rather than adding them. One benefit of this
approach is that we can control exactly which annotations are affected and focus on only
those cases where we know that the hardest or random cases change. We can ensure
that the number of annotations that are dropped for both scenarios is the same, which
we hope makes the comparison between them more fair. In summary, we can determine
whether our distractor-based evaluation is robust compared to a random baseline by
investigating how the performance estimation changes when we drop annotations from
our dataset. We determine how to implement this approach in Chapter 4.

3.2.3 Evaluation of linguistic features

We evaluate the performance of a model trained using our approximative linguistic
features compared to one trained using landmarks to gain insight into when linguistic
features contribute to sign spotting. To achieve this, we introduce the concept of con-
fusable signs: signs which only differ from a given target sign by a single phonological
property. Confusable signs can be described as a set of the strictest distractors, where
we only select those distractors which have a distance to our target sign that is equal to
1. An example of two confusable signs in American Sign Language is shown in Figure
3.5. The sign for ‘Dad’ (left) is signed identically to the sign for ‘Mom’ (right), except
for the location where it is performed, which is the forehead rather than the chin. As
such, ‘Dad’ is a confusable sign for ‘Mom’ and vice versa.

Figure 3.5: Two similar signs in American Sign Language: Dad (left) and Mom (right)

We call the phonological property that differs between the confusable sign and the target
sign the ∆ property. For the example in Figure 3.5, the location of the signs would be
the ∆ property which makes ‘Mom’ and ‘Dad’ confusable signs for each other. By
determining which confusable signs are mistaken in practice for a given target sign, we
are able to pinpoint which ∆ properties, and thus which phonological properties, are
difficult to distinguish for both of our models. In this manner, we aim to find which

12

features are more representative of the phonological properties of signs.
Our analysis of the linguistic features uses an adapted version of the distractor-based
evaluation. Instead of using the top-f hardest distractors for all signs, we focus only on
those signs for which confusable signs are available, that is, there are signs which have a
linguistic distance of 1 to the target. All of the annotations that are of a confusable sign
are selected, meaning that we do not limit the number of confusable signs. We opted
for this choice because we can be certain that all the selected annotations will have a
linguistic distance of 1 to the target signs. Contrarily for the distractors, the linguistic
distance varies and we therefore have to balance the number that we select to choose
the hardest cases. We expand on how the distractors can be balanced in Section 4.9.5.
We use the following notation for the confusable signs, given a target sign S:

C(S) = {c1 . . . cl} confusable signs for S

TC(S) = {tc1 . . . tcl} starting times of c1 . . . cl

True positives (TP), false positives (FP), true negatives (TN) and false negatives (FN)
are then defined as:

TP : ∃tpi ∈ TP (S) : tpi ∈ [tsj − tol, tsj]

FN : ∀tpi ∈ TP (S) : tpi /∈ [tsj − tol, tsj]

FP : ∃tpi ∈ TP (S) : tpi ∈ [tci − tol, tci]

TN : ∀tpi ∈ TP (S) : tpi /∈ [tci − tol, tci]

Where tci indicates the starting time of a confusable sign annotation. We note that
evaluation of the TP and FN instances is defined identically to that for the distractor-
based evaluation, such that only the evaluation of FP and TN instances differs. The
phonological properties which are difficult to distinguish for each model can then be
determined by inspecting the FP and TN instances in terms of their ∆ properties.

13

Chapter 4

Method

4.1 Comparison to Watch, Read and Lookup framework

Of the papers discussed in Chapter 2, one of the closest papers to our work is that
of Momeni, Varol, Albanie, et al. [22]. Previously, we explained that the paper uses a
dataset of interpreted rather than ‘natural’ signing, and does not incorporate any explicit
linguistic representations. In this section, we provide a more in-depth explanation of how
our work relates and differs from the Watch, Read and Lookup (WRL) framework.
Our work is similar to that of Momeni, Varol, Albanie, et al. [22] in the following manner.
In this previous work, the goal was to learn to spot signs by creating embeddings of two
types of footage: dictionary footage of isolated signs, and signs performed in continuous
footage from a dataset of sign-interpreted news broadcasts. The embeddings are learned
by applying a contrastive loss during training, which aims to make embeddings of the
same sign similar, while making embeddings of different signs distant. These embeddings
are used to spot signs in a video using a sliding window. Our approach adopts the
learning of embeddings using a contrastive loss, as well as the usage of a sliding window
for the test phase of the model.
Next, we highlight how our work differs from the WRL paper. First, the WRL framework
has to use positive bags instead of positive pairs for its contrastive learning due to the
fact that sign variants are not precisely annotated in the dataset that the framework
was trained on, BSL-1k. For any sign with different variants (e.g. SIGN-A, SIGN-B),
it is simply ‘bagged’ as one main sign (e.g. SIGN, which could be either SIGN-A or
SIGN-B). This has the downside that an embedding has to represent a group of signs,
even if these signs are not visually similar to each other. Having to represent multiple
signs at once has the potential to create lower-quality embeddings. To avoid the need to
bag signs, we select the Corpus Nederlandse Gebarentaal (CNGT) (see Section 4.3.1) for
our research. Unlike the annotations in BSL-1k, the annotations in our chosen corpus
identify exactly which sign variant is signed. As such, we can adapt their framework to
learn positive pairs as opposed to positive bags.
Second, the choice of the CNGT dataset is made because it is more precisely and more
densely annotated than BSL-1k. BSL-1k contains over 1000 hours of footage that is
annotated with approximately 280k annotations, whereas CNGT consists of 72 hours of
footage for which we found there to be about 121k annotations. While BSL-1k has more
than double as many annotations as the latter, it is also noteworthy that BSL-1k has
been automatically annotated, with a reported annotation accuracy of approximately
70% for a sample set [16]. On the other hand, CNGT is manually annotated by Deaf
assistants and was additionally supervised by linguists for annotation errors [42]. As
such, we assume that this process resulted in more precise annotations than those which
were acquired for the BSL-1k dataset.
Third, our approach extracts approximative linguistic features from landmarks that
were extracted using Mediapipe, while WRL uses pixel information directly as input to
its model. Although a feature extraction phase is present in their model architecture,
the extraction process is part of the model training and is not made transparent. In

14

our model, feature extraction is instead done as a preprocessing step after we detect
landmarks with Mediapipe. This allows us to extract features which are linguistically
motivated, which we hope makes our approach more explainable than WRL.

4.2 Feature engineering

4.2.1 Detecting landmarks

We extract features from our video data by using Mediapipe, a landmark detection
tool. For each video frame, this tool detects where specific keypoints of the body, such
as the shoulders and wrists, are located. Mediapipe consists of a variety of ‘models’,
with each model focusing on a different area of the body. In Figure 4.11, we show the
two models used in this thesis: the Hand and Pose models. We predominantly use
the Hand model in this thesis, due to the fact that it captures more landmarks within
the hands than the Pose model. This allows us to get a fine-grained representation of
the hands that is suitable for SLP applications. The Pose model is used whenever we
need landmarks other than the hand landmarks, such as the shoulders or hips. Unless
specified otherwise, the landmark indices that we use from now on refer to the landmarks
of the Hand model. Each landmark consists of x, y, z coordinates, of which we use only
the x and y coordinates. The z coordinate, which represents depth, is discarded because
Mediapipe infers a 3D perspective from a 2D input, making this coordinate less reliable
than the (2D) x, y coordinates [43]. From now on, when we refer to a specific landmark
index, both the x and y coordinate are included unless specifically stated otherwise. For
instance, the landmark at index 00 refers to the x, y coordinates of the wrist landmark.
We denote the x, y coordinates of a landmark ℓ as ℓx, ℓy respectively.
The landmark coordinates that are returned by our landmark detection tool are in the
range

[
0, 1

]
. This is because they are normalised automatically by Mediapipe using the

height and width of the video. However, this means that the coordinates of landmarks
in two videos of different resolutions are not comparable, since they are normalized
differently. We remedy this by converting the landmarks to their pixel coordinates: for
each landmark ℓ = (ℓx, ℓy), we perform the operation (ℓx · w, ℓy · h). The width w and
height h are retrieved from the video.
Now, we normalize the pixel coordinates to make the landmarks invariant to the distance
and orientation of the person to the camera. This normalisation is based on [44]. We
first normalise each landmark ℓ by the (absolute) distance between the left and right
shoulder (shL, shR respectively):

ℓscaled =
ℓ

|shL − shR|
(4.1)

We use the absolute distance between the two shoulders to scale the landmark, since
we do not care about the sign of the distance. Then, our scaled version of landmark
ℓ, which we denote as ℓscaled, is normalised by subtracting the shoulder midpoint shM .
Since Mediapipe does not provide a landmark for the shoulder midpoint, we compute
shM ourselves by taking the middle of the coordinates of the left and right shoulder.
Then, we scale shM to ensure that we center ℓscaled within the scaled space. In other

1Pose model image taken from https://github.com/google/mediapipe/blob/master/docs/solutions/
pose.md

15

https://github.com/google/mediapipe/blob/master/docs/solutions/pose.md
https://github.com/google/mediapipe/blob/master/docs/solutions/pose.md

words, we perform the following computations:

shM = (shM,x, shM,y) = (
shL,x + shRx

2
,
shL,y + shRy

2
) (4.2)

shM,scaled =
shM

|shL − shR|
(4.3)

ℓcentered = ℓscaled − shM,scaled (4.4)

Figure 4.1: Overview of two Mediapipe models: the Hand model (top) and Pose model
(bottom)

4.2.2 Feature extraction

To capture the manual phonology of sign language, we extract approximative linguis-
tic features from our landmarks to represent the handshape, orientation, location and
movement of the sign in the following manner:

16

1. Handshape: we select the fingertips, handpalm and wrist landmarks and com-
pute the distances and angles between them. The distances are computed for
landmark pairs ℓ1, ℓ2 using Euclidean distance:

dist(ℓ1, ℓ2) =
√

(ℓ1,x − ℓ2,x)2 + (ℓ1,y − ℓ2,y)2

For the calculation of the angle features, we use landmark triples (ℓs, ℓm, ℓe) which
represent the start, middle and end point for which to compute the angle. We
compute two types of angles: those within the fingers and those between the
fingertips and the wrist. For the first angle type, we take the landmarks of the
fingertip, the middle of the finger and the base of the finger at the handpalm.
This results in (fingertip, fingermid, fingerbase) as our triple for a given finger.
The second type is computed using the landmarks of the fingertip, the base of the
finger and the wrist. This triple can be described as (fingertip, fingerbase, wrist).
For both of these computations, the second listed landmark is the one where the
angle is measured. We compute the angle for a tuple (ℓs, ℓm, ℓe) with the following
formula:

angle(ℓs, ℓm, ℓe) = atan2(ℓe,y − ℓm,y, ℓe,x − ℓm,x)− atan2(ℓs,y − ℓm,y, ℓs,x − ℓm,x)

Where atan2 refers to the 2-argument arctangent. We indicate with the subscript
whether the x, y coordinate of the element is used. For instance, ℓ1,x indicates the
x coordinate of landmark ℓ1.

2. Orientation: the orientation of the hand is captured by specifying an x-axis and
y-axis in the hand. We define the x-axis as the line between the base of the index
finger and the base of the pinky finger, with Mediapipe landmark indices [5, 17].
The y-axis is defined as the line between the base of the middle finger and the wrist,
with Mediapipe indices [0, 9]. These axes within the hand are then compared to
two other lines: drawn in the middle of the torso and one between the shoulders.
This is done so we can compute the orientation relative to the way the signer is
sitting. We use the Mediapipe pose model to extract the location of the hips and
shoulders. The middle of the torso is taken as starting at the center of the hips
and ending at the center of the shoulders.
The orientation is computed as follows. For each of the lines that have been drawn
for the shoulders, torso and hands, we first compute the slope. Given a line ℓ that
consists of a start and end point (ℓs, ℓe), we compute the slope sℓ of the line as:

sℓ =
ℓe,y − ℓs,y
ℓe,x − ℓs,x

From the slope values, s1, s2, of two lines, we can compute the angle between said
two lines:

angle(s1, s2) = arctan(
s2 − s1

1 + (s2 · s1)
)

3. Location: for each frame, we locate the position of the wrist and take this to
be the position of the hand. The wrist’s location stays the same regardless of the
handshape or orientation of the hand. This results in a simple but effective way
to capture the location of the hand.
Additionally, the location of a sign is partially characterised by the interaction
between the hands. Thus, we capture the location of the hands relative to each

17

other by calculating the horizontal and vertical distance between the wrists of both
hands. We compute the difference between the x and y coordinates, resulting in
two features.

4. Movement: we obtain the velocity of the hand by calculating the distance of the
wrist between two consecutive frames. We do this in three different ways: first, we
compute the Euclidean distance between the location of the wrist at the current
frame and the last frame. The Euclidean distance is computed in the same manner
as for the handshape distance features. Second, we separately store the difference
between the x coordinate of the wrist between these two frames. We repeat this
for the y coordinate to obtain the third feature. This way, we capture both an
average velocity that combines the x, y coordinates, as well as the horizontal and
vertical velocity.

For the features which are coordinates, we flatten their x, y coordinates to make them
fit into a one-dimensional array.
In Table 4.1, we show the features and their respective indices. The Ind. Mediapipe
Landmarks column shows which indices from the Mediapipe are used, while the Type
column indicates what type of feature is computed.

Feature
Ind.

Type Ind. Mediapipe Landmarks

0 – 24 Handshape (Angles) [01,02,04], [00,01,04], [05,06,08], [00,05,08],
[09,10,12], [00,09,12], [13,14,16], [00,13,16],
[17,18,20], [00,17,20], [02,03,04], [05,06,07],
[06,07,08], [09,10,11], [10,11,12], [13,14,15],
[14,15,16], [17,18,19], [18,19,20], [04,00,08],
[08,00,20], [16,17,20], [08,05,12], [04,05,20],
[08,13,20], [00,00,00], [00,00,00], [00,00,00],
[00,00,00]

25 – 39 Handshape (Distances) [00,04], [00,08], [00,12], [00,16], [00,20],
[04,08], [04,12], [04,16], [04,20], [08,12],
[08,16], [08,20], [12,16], [12,20], [16,20],
[00,00], [00,00]

40 – 43 Hand orientation [00,09], [05,17] + Pose: [11, 12, 23, 24]

44 – 55 Wrist, fingertip loca-
tions

00, 04, 08, 12, 16, 20

56 – 58 Wrist velocity 00

59 – 117 Features other hand See features 0 – 58

118 – 119 Distance between wrists 00

Table 4.1: Feature indices

Note that for features describing the hand orientation, we also use the Mediapipe pose
model landmarks. In particular, we use pose indices 11 (left shoulder), 12 (right shoul-
der), 23 (left hip) and 24 (right hip).
We highlight any features which have been adapted from previous work. Underlined fea-
tures are taken from Farhan and Madi [32]. All distance features have been taken from
Shin, Matsuoka, Hasan, et al. [30]. The remaining features are all novel contributions
by this thesis.

18

4.2.3 Final features

In summary, we use 120 features per frame for the linguistic condition, for which the
extraction was described above. For the landmark features, we use all of the manual
landmarks extracted by Mediapipe. One hand is described by 21 landmarks, for each of
which we extract the x, y coordinates. Thus, we have 21 · 2 = 42 coordinates per hand,
which results in 84 features per frame since we use the landmarks of both hands in our
feature extraction.

4.3 Datasets

4.3.1 Corpus Nederlandse Gebarentaal

We use the Corpus Nederlandse Gebarentaal (CNGT) [42], [45] as our continuous video
dataset for the sign spotting task. It consists of 72 hours of video footage of 104 signers
of Dutch Sign Language (DSL), with about 15% having been annotated by linguists.
This is equivalent to 162k annotations of about 3.2k signs. CNGT matches most of the
requirements for datasets set out in [5] since it 1) uses native signers, 2) contains a variety
of signers who are from different regions and of different ages and genders, which allows
for an accurate depiction of DSL, and 3) provides footage of more ‘natural’, continuous
signing, where the signers are in conversation and are not trying to sign in a more proper
manner than usual [42].

4.3.2 Signbank

We have selected NGT Signbank [46] as our sign dictionary. This database was created
for the specific purpose of annotating Dutch sign language corpora such as CNGT [46],
which makes it a perfect companion for our chosen corpus. NGT Signbank contains
phonological information about more than 4000 Dutch signs, such as the handshape,
orientation, location and movement of the hand(s). The relevant phonological attributes
that we use for our analysis are shown in Table 4.2.

4.4 Data Preprocessing

4.4.1 Corpus Nederlandse Gebarentaal

Sign spotting is a supervised task, thus, we need labeled data. For the purpose of our
research, we are therefore only interested in the annotated data of the CNGT. When
selecting only the annotated data, we are left with approximately 20 hours of video
footage, with each video containing two signers. Next, we section the footage into two
parts to separate the signers into their own segments. As a result, we have 40 hours of
footage of individual signers.
The total number of annotations in CNGT is approximately 162k annotations of 3.2k
unique signs. The indicated number of annotations counts the left and right hand sep-
arately and does not take into account that some signs are performed with both hands.
If we fuse instances where the left and right hand sign the same sign at the same time
into one annotation of a two-handed sign, we end up with about 122k annotations.
For each annotation in CNGT, we are provided with information about when the anno-
tation starts and ends, as well as which sign is performed during this timespan. Some
videos have been annotated using the Dutch names of the signs while other times the
English names are used. To use a consistent naming convention for all signs, we ensure

19

Attribute name Phonological category

Handedness Handedness

Strong Hand Handshape, Handedness

Weak Hand Handshape, Handedness

Handshape Change Handshape

Relation between Articulators Location

Location Location

Relative Orientation: Movement Orientation

Relative Orientation: Location Orientation

Orientation Change Orientation, Movement

Contact Type Movement

Movement Shape Movement

Movement Direction Movement

Repeated Movement Movement

Alternating Movement Movement

Table 4.2: NGT Signbank attributes used for the computation of linguistic distance

that all annotations use the Dutch names as follows. Given an annotation in the Corpus,
we determine whether it matches with any of the English or Dutch names of the signs
in NGT Signbank. If the annotation matches exactly with the Dutch name of a sign,
we keep the annotation as-is. If it instead matches with the English name of a sign, we
replace the name value of the annotation with the Dutch equivalent. For example, if we
consider the sign that means ‘hello’ (‘HALLO’/‘HELLO’) and assume it is annotated in
a given video as ‘HELLO’ (i.e. in English), we convert the annotations of the sign to
the Dutch equivalent ‘HALLO‘.
The conversion to the Dutch naming convention is done in a strict manner, that is, we
only use signs which already match exactly with the Dutch name of a sign, or those for
which we know a Dutch equivalent. By extension, we remove any annotations for which
it is uncertain what sign was performed or the performed sign is obscured from view,
as such annotations use an additional marker (? and !, respectively). These annotations
will thus not match exactly with the name of any sign and are discarded. About 700
annotations use an uncertainty or obscure marker, which is less than 1% of the total
number of annotations.
Our next criterion for the annotation concerns the linguistics of the signs in the Corpus.
In particular, we only make use of the annotations of a given sign if NGT Signbank con-
tains linguistic information about the sign. This is done to ensure that we can compare
the linguistic makeup of the signs, which is relevant for the evaluation method that we
discuss in Section 3.2. After removing signs and annotations which do not have any
linguistic annotation in NGT Signbank, we are left with 2.7k unique signs that make
up 118k annotations. Our split is approximately 80/10/10, with 90k training, 10.5k
validation and 9.5k test instances.

20

4.5 Preparing dataset

In the previous section, we extracted linguistic and landmark features from CNGT with
Mediapipe. Next, we split the videos up by where the annotations occur, such that we
have the features for each annotation.

4.5.1 Fixed-length inputs

Our model requires fixed-length inputs, meaning the number of frames should be consis-
tent for each annotation. However, the annotations in our corpus are of variable lengths
because signers typically perform signs at varying speeds. We computed the average
number of frames the annotations last, which is about 10 frames. Thus, 10 frames is
used as our target input length to make sure we capture this average. Not all annotations
are already of the desired length and therefore, we do the following:

1. We crop to the annotation timestamp to make a video clip corresponding to the
annotation.

2. If the input length is now exactly the desired length (10 frames), we add the clip
to our dataset as-is.

3. If the input length is too short, we simply pad our input with zeros until we reach
the desired length.

4. If the input length is too long, we undersample the given frames. First, we de-
termine how many times the input length is larger than our target length. We
define this value as i, and sample every i-th frame from the input. If i is not a
round value, we first round it down to ensure that we retain as much of the input
as possible. If we do not obtain exactly 10 frames after this step, we randomly
remove values until the desired length is obtained.
To illustrate how the undersampling works for such input lengths, let us assume
that we have 37 frames of input, where we define its indices as:

[0, 1, ..., 35, 36]

Then, we find that i = 3, since 10 frames fit into 37 frames thrice (10 · 3 = 30)
without going over. This means we take every third frame:

[0, 3, 6, ..., 33, 36]

This leaves us with 13 frames, so we need to remove 3 more frames randomly to
get 10 frames. If we remove frame 0, 3, 33 randomly, the remaining frames are:

[6, 9, 12..., 27, 30, 36]

4.5.2 Data augmentation

We want to give our model varied examples of the signs within the corpus. Ideally, one-
handed signs are sometimes signed left-handed and other times right-handed. Similarly,
for asymmetrical two-handed signs which have a dominant hand, it would be ideal if in
the signed instances of the sign, the dominant hand is sometimes the right hand and
other times the left hand. For the more frequent signs in CNGT, we can expect variety
to occur naturally, but for some signs we have very few instances. As such, it is likely

21

that there is an imbalance in the handedness of these signs.
This is why we also add data augmentation to the train set while preparing the dataset.
We achieve a variety in handedness by mirroring the x-coordinates of the landmarks.
Given a landmark ℓ which we want to mirror horizontally, and the resolution of the video
for which we extracted the landmark, we can mirror ℓ using the video width w:

mirror(ℓx) = w − ℓx − 1

However, this requires us to mirror our data before the feature normalisation, which
has the disadvantage that it requires us to store the mirrored landmarks and apply
the feature extraction and normalisation separately for them. To avoid this additional
computational overhead, we opt to compute the mirroring after the normalisation. In
Appendix A.2, we show that the following holds:

mirror(ℓcentered,x) = −1 · ℓcentered,x

As such, we can horizontally mirror the normalised landmarks simply by multiplying
their x coordinates with −1. We found that the mirror augmentation makes our model
train in a more stable manner on the train and validation sets.

4.5.3 Creating batches and shuffling

Contrastive learning uses positive pairs and negative pairs to learn how to create embed-
dings. Positive pairs are groupings of the same sign, whereas negative pairs are groupings
of different signs within a batch. We create stratified training batches to make sure that
instances of the same sign, the ‘positive’ instances, occur together in a batch and are not
separated as they would be when randomly assigning them to batches. To create these
stratified batches, we use a batch generator. Such a generator does not permit shuffling
the batches after being created. To allow for shuffling, we thus recreate the generator
after each epoch and make sure that we shuffle the training data before using the new
generator.

4.6 Sign spotting model

In line with the approach taken by Momeni, Varol, Albanie, et al. [22], we develop
a model which learns to create embeddings from our input features. Embeddings are
learned in such a manner that instances of the same sign result in similar embeddings
while instances of different signs result in dissimilar embeddings. This approach is called
contrastive learning.
The model that we choose for our experiments is a LSTM network. LSTMs are capable
of extracting temporal information from data sequences and have been a popular tool
in the field of natural language processing [47]. While more sophisticated architectures
have become available in recent times, our goal is not to select the best model but rather
to engineer meaningful features. We tested multiple configurations of our LSTM network
and selected one which performs well for both the landmark and linguistic features.
In the end, our model uses the architecture shown in Figure 4.2. The first layer adds
Gaussian noise to our input, to prevent overfitting by introducing variability in the data
that is seen during training. This step is followed by a biLSTM layer with 2 · 256 = 512
nodes in total. We follow this layer up with two Dense layers, both of size 256, and use
batch normalization between the Dense layers for training stability. The model uses a
batch size of 128 and learning rate of 0.001 based on [22]. It is trained using the Adam

22

optimizer for 10 epochs, which is when the validation loss typically starts to converge.
Our GPU is the NVIDIA GeForce GTX 1050 Ti and our CPU is the Intel(R) Core(TM)
i7-7700HQ CPU @ 2.80GHz. Our model is implemented using Tensorflow and we use
a GPU compatible version of this software. Training for 10 epochs takes approximately
10 minutes using this setup.

Figure 4.2: Model architecture

4.6.1 Loss function

Many different loss functions have been proposed for contrastive learning, most of which
focus on self-supervised contrastive learning. Contrastive learning has as its goal that
positive pairs, which are data points with the same label, should be kept close together,
while negative pairs, or data points with a different label, should be kept far apart in
embedding space. Since we have labeled data, we are able to make use of the supervised
contrastive learning loss introduced in the paper by Khosla, Teterwak, Wang, et al. [48],
SupCon. This method improves on self-supervised approaches by allowing for multi-
ple positive examples based on labeled data instead of creating positive examples from
unlabeled data. These changes result in a state-of-the-art loss function for supervised
contrastive learning.
SupCon uses a hyperparameter, temperature, to determine whether it is more important
to bring the positive examples together or to keep the negatives far apart. We use a
temperature of 0.07 based on the work of [22], [49], [50].

23

4.7 Feature selection

Before we finalize our model, we first determine which of our linguistic features to use.
This is done to ensure that we only use those features which are beneficial for training
our model. The selection process is performed as follows. We first run our model using
all possible features to get a baseline of the validation performance using our distractor-
based evaluation. Next, we determine the importance of each feature by comparing to
this baseline. We tried multiple methods for feature selection, namely ANOVA, per-
mutation, perturbation and masking, and found that selecting features using masking
consistently returned the same features on the validation set. With the other methods,
the selected features were inconsistent over different model runs.
The masking of the features was done as follows. We mask one feature within the
validation set by replacing it with random noise drawn from a Gaussian distribution
(µ = 0, σ = 0.1). While masking one feature, all other features are used as-is. This
process is repeated for each feature. Then, we apply our evaluation and compare the
validation set accuracy of our model to the accuracy of the baseline model. If the results
improve or stay consistent, we conclude that the feature can be safely removed. We
repeated the masking experiments five times, retraining the model each time to account
for the fact that training is non-deterministic and feature importance may therefore vary.
We only removed features if they were never found to contribute to the accuracy in any
of these runs. All default model parameters are used except for the batch size, which
we increase to 1024 to speed up the model predictions which have to be made for each
masking experiment.
In Figure 4.3, we display one of the five runs of our masking experiment. The full results
of all five runs can be found in Appendix A.4. We observe that the masking of the fea-
ture indices 45, 47, 49, 51, 53 and 55 has the largest impact on the accuracy of the model.
Interestingly, these features represent the y coordinates of the wrist and fingertips. On
the other hand, the x coordinates of the same landmarks, with indices 46, 48, 50, 52, 54,
are found to not contribute to the performance of the model. One possible explanation
for this could be that the horizontal location where a sign gets articulated is typically
close to the horizontal bounds of the torso, whereas the vertical location differs more
significantly between signs that are performed near the face, the shoulders or the stom-
ach.
Only the vertical velocity of the wrist (index 58) is found to contribute to the model per-
formance, whereas the other velocities (indices 56, 57) do not. In a similar manner, only
the vertical distance between the wrists (index 119) is found to be helpful in increasing
the model accuracy, whereas the horizontal distance (index 118) does not have such an
impact. Again, the horizontal dimension seems to not be as important for identifying
a sign as the vertical dimension. Moreover, feature indices 8 and 25, which represent
a handshape angle and distance respectively, are never found to increase the accuracy
in any of our model runs. It is possible that these features are closely related to other
extracted features, which allows us to remove them during masking without a loss of
performance.
In conclusion, we remove the x coordinates of the wrist and fingertip landmarks, the hor-
izontal and Euclidean velocity of the wrist, the horizontal distance between the wrists
and two handshape features, because their masking does not decrease our model’s per-
formance. The removed features have the indices [8, 25, 46, 48, 50, 52, 54, 56, 57, 118].

24

Figure 4.3: Example run of the masking experiment.

4.8 Test phase

After training our sign spotting model, we evaluate our model on a test set of videos
which contain different signers from the train set. We use a sliding window with the
same size as the model input, which is 10 frames, to slide over the videos. Then, we input
each window into our model to obtain an embedding. This embedding of the test video’s
window can then be compared to the embedding of a sign that we saw during training
to determine which sign the window may contain. However, if we were to compare all
sign instances which were seen during training, that is, all 90k train set annotations,
this would create a large overhead during this phase. As such, we first create reference
embeddings from the train data as follows:

• Collect the non-mirrored train data points and create an embedding for each of
them.

• For all train-set embeddings of a specific sign, we compute their distance to all
other train-set embeddings of that sign. For instance, if we have the sign SIGN-A,
we gather all train embeddings of SIGN-A and compute the distances between all of
them. The embeddings which are on average most similar to all other embeddings,
are then chosen to be the most representative embeddings for the sign (e.g. SIGN-
A).

• We select the top 10% most representative embeddings of each sign. For each of
the embeddings that are chosen to be representative, we average them to create
one reference embedding for each sign.

Now, a reference sign can be compared to a given embedding that was created using
the sliding window over a test set video. If the cosine distance of a reference sign and
a sliding window chunk is below a certain threshold t, the sign is being spotted in that
moment by our model. We determined a fitting threshold based on empirical tests on the
validation set, which can be found in Appendix A.3, and found that t = 0.2 is suitable.

25

4.9 Evaluation

4.9.1 Validation

We developed an evaluation method to reflect user needs and to deal with an incomplete
ground truth. We assumed that the performance on the distractors will provide us with
a robust estimate of the performance on the unknown, full ground truth. Our reasoning
to support this assumption is that the hardest cases should give us a conservative esti-
mate of the performance and be less affected by changes in annotations when compared
to selecting random cases.
To validate our reasoning, we demonstrate our evaluation for two types of distractors:
‘standard’ distractors selected using our distance measure, and a set of random dis-
tractors. We select the random distractors by shuffling the ordering of the distractor
candidates, and pick the top-f distractors from this randomized order. The shuffling is
done in a seeded manner to ensure that we can reproduce our results.
For the standard group of distractors, we assume that the hardest known cases are
included, while for the random group, both easy and hard cases may be present. Fur-
thermore, we expect that the estimated performance on the random distractors will
be less predictable when the annotations are updated. We thus aim to demonstrate
that the randomly chosen distractors give a higher estimate of the performance than
the distractors which are selected using the distance measure, and that the estimate of
the performance of our model will fluctuate more with the random distractors than the
standard ones.
To demonstrate the validity of our reasoning, we make use of the model trained on the
landmark features. We want to avoid validating our evaluation using a set of features
that is also linguistically motivated and could therefore bias the results in our favor. By
selecting the landmark features to test the validity, we aim to ensure that the assessment
is performed in an unbiased manner.
After training our model, we apply our validation experiment as follows. First, we select
the distractors for both the standard and random condition, as described above. We
apply our evaluation with the chosen distractors, which gives us a baseline performance
estimate of our model for both of the conditions. Then, we investigate the effects of up-
dating the annotations by randomly removing a fixed fraction of distractors from both
sets. By doing this, we are effectively creating a hypothesized previous version of our
dataset in which some annotations were not available yet. In other words, we look at
a more incomplete version of our ground truth and specifically look at those versions
for which the two distractor sets are equally affected, to allow for a fair comparison
between them. After removing a fixed fraction of annotations from both sets, we rerun
the distractor selection process to replace the removed distractors, and apply our evalu-
ation method again to get the updated performance for both sets. This estimate of the
performance indicates how robust our distractor sets are to a more incomplete ground
truth than the one we have access to, and we assume that this extends to the scenario
where our known ground truth was updated with more annotations.

4.9.2 Tolerance window size

The size of the tolerance window, tol, can take on different values depending on the
exact domain we want to use a tolerance-based evaluation for. No specific tolerance
window sizes have been determined for sign language processing and as such, we consult
the related field of audio segmentation for the size of the tolerance window. As discussed
in Chapter 2, two sizes that are typically used in this field are 0.5 and 3 seconds [36],

26

[37]. We determined that the average sign duration in our dataset is 0.4 seconds, which
is close to the stricter audio tolerance window size. Moreover, choosing a small window
size decreases the chance that the tolerance windows of different signs overlap. During
trial runs with larger tolerance window sizes, we found that the number of distractors
that could be selected was noticeably lower. Therefore, we opt for a tolerance window
of 0.4 seconds. Considering that the footage in our corpus runs at 25 frames per second,
this is equivalent to 10 frames.

4.9.3 Handling overlap and double predictions

We note that the current definition of our evaluation does not restrict that a prediction
may overlap with the tolerance window of more than one target annotation and/or
distractor. Such a situation makes it difficult to determine which annotation was spotted,
particularly if a distractor and a target are spotted by the same prediction and it is
unclear whether we have a FP or a TP prediction. To remedy this problem, distractors
for a given sign are selected only if their tolerance windows do not overlap with each
other or with the tolerance windows of the target sign.
Another restriction that we place on our evaluation is that we only count the first FP or
TP spotting within a tolerance window. This is done to ensure we do not evaluate one
tolerance window multiple times. The assumption we make is that the other predicted
spottings can be ignored if the first one is evaluated, since they could be aggregated into
one prediction if they are close enough to each other to fall within the same tolerance
window. We leave the process of aggregating the predictions to future work.

4.9.4 Linguistic distance

Our chosen measure of distance for the selection of distractors is linguistic distance. To
compute this distance, we use NGT Signbank to get the phonological properties of each
sign. We previously described which attributes we selected from this dataset (see Section
4.3.2).
Given the phonology of the signs in NGT Signbank, we now define our linguistic distance
measure. Given a pair of two signs a, b, we initialize their distance to 0. Then, we can
compare the signs for each of the attributes. For instance, we can find whether the
handedness of sign a and sign b. If a, b have the same value for some attribute, they
are linguistically similar for this phonological aspect and we therefore do not increase
the linguistic distance between a, b. If they have a different value for some attribute, for
instance that a is one-handed whereas b is two-handed, we increase the distance by 1.

27

Phonological attribute Missing values

Handedness 9.95%

Strong Hand 10.03%

Weak Hand 59.44%

Handshape Change 87.26%

Relation between Articulators 90.74%

Location 15.22%

Relative Orientation: Movement 38.42%

Relative Orientation: Location 83.72%

Orientation Change 87.04%

Contact Type 64.78%

Movement Shape 89.11%

Movement Direction 44.58%

Repeated Movement 0.0%

Alternating Movement 0.0%

Table 4.3: Percentage of missing values for each phonological attribute in NGT Signbank

Handling unknown values

Unfortunately, the phonology of a gloss or sign in NGT Signbank is often not completely
annotated as can be seen in Table 4.3. Manually annotating this data is beyond the
scope of this thesis and we leave this contribution to future work. As such, we have to
decide how to deal with two scenarios for a given comparison between an attribute for
two signs:

1. The attribute is specified for one of the signs but is not specified for the other sign.

2. The attribute is not specified for either of the two signs.

First, we ascertain why attributes are sometimes not specified for a sign. Some values
are left out simply because no annotator has had the opportunity to annotate them,
yet other times a value is intentionally left out because it is not seen as relevant2. For
example, the handshape of the weak hand is not specified for one-handed signs, since
the singular signing hand is determined to be the strong hand.
Based on this observation, we determine that scenario 1, where we compare an unknown
value with a known one, can be dealt with by adding to the linguistic distance. In
other words, we determine that two signs are distant for a given property if one value is
unknown while the other is specified. We come to this decision because of two reasons.
First, if the attribute is intentionally left out because it is irrelevant, that makes it
inherently different from a value that is filled in because it is relevant. Second, if the
attribute for one sign is missing but is relevant, it is not statistically likely that it has
the same phonology for this property as the other sign.
We can apply similar reasoning to scenario 2. If both values are left out because they are
irrelevant, then they can be regarded as being the same for this attribute. Additionally,
if both values are unknown but relevant, it is statistically more likely that they match
because they are both unknown than if one of the values was known. In conclusion,

2According to personal correspondence with an author of the dataset.

28

we decide for scenario 2 that a comparison between two unknown values can be ignored
instead of counting it towards the linguistic distance between the signs. To demonstrate

Figure 4.4: Histogram of the distribution of linguistic distances where we either count
unknown values as distant (top) or ignore them (bottom)

that our reasoning is sound, we now show the impact of choosing to handle the unknown
values by ignoring them, as compared to counting them as distant. Figure 4.4 shows
the distribution of linguistic distances for the two conditions. In the histogram of the
distances where we ignore the unknowns, we see that the distribution is more or less
normally distributed. On the other hand, the histogram of the condition where we
count the unknowns as distant, we can see that the distribution is heavily skewed to
the right, indicating that signs are on average found to be more distant. Because the
normal distribution is often used to represent natural phenomena, we use this as a first
argument for why ignoring the unknowns is more sensible.

29

We also investigated the effects of ignoring the unknowns on two different categories of
sign similarity: homonyms and minimal pairs. Homonyms are signs that appear visually
similar to a given sign, though they may have different phonological properties. At the
same time, homonyms may also be visually and phonetically identical to a sign but
have a different meaning. Minimal pairs are signs which are phonologically similar to
each other, thus only a minimal number of linguistic attributes should be different. Our
assumption is that homonyms and minimal pairs will typically have a small linguistic
distance to the sign to which they are visually or phonetically similar. We make use of
NGT Signbank to obtain the known homonyms and the minimal pairs for all signs.
Our analysis uses the rankings of the homonyms and the minimal pairs. For each sign
S, we determine whether it has any known homonyms and/or minimal pairs. We then
rank the most similar signs to S in terms of their linguistic distance, as computed using
our linguistic distance measure that builds on NGT Signbank. Typically, the homonyms
and minimal pairs of S are expected to have a relatively low distance to the given sign.
For a ranking system where rank 0 is chosen as signifying the sign closest to a target,
we thus would expect the homonyms and minimal pairs to have a low rank.

Handlingbla
unknowns

Mean rank
homonyms

Median rank
homonyms

Mean rank
minimal
pairs

Median rank
minimal
pairs

Ignore 27.88± 239.8 0 2.75± 36.54 1

Count as distant 19.85± 203.18 1 4.82± 35.35 2

Table 4.4: Ranking statistics of minimal pairs and homonyms given unknown values

In Table 4.4, the ranking statistics of the minimal pairs and homonyms are displayed.
For the mean values, we provide the standard deviation in the form mean± std.
The median rankings for both types of similar signs are lower and thus more represen-
tative when we use the strategy of ignoring the unknowns. In particular for the minimal
pairs we can see that the mean is lower for the condition where we ignore the unknowns.
Note that the rank of the homonyms is higher for this condition, but that the homonyms
may be quite different phonetically from the signs for which they are homonyms.
We also investigated the absolute distance of the homonyms and minimal pairs for each
target sign. In Table 4.5, we see that the mean distance of both types of similar signs
is much lower when ignoring the unknown values. Once again, the choice for ignoring
unknowns is supported by this analysis.

Handlingbla
unknowns

Mean dist.
homonyms

Median dist.
homonyms

Mean dist.
minimal
pairs

Median dist.
minimal
pairs

Ignore 0.40± 1.16 0 1.02± 0.21 1

Count as distant 6.47± 1.51 1 8.21± 1.07 8

Table 4.5: Distance statistics of minimal pairs and homonyms given unknown values

Finally, we also determine how representative the distractors are when we make the
choice to ignore unknowns as compared to counting them. We select distractors in the
same manner as will be discussed in Section 4.9.5. The results are shown in Table 4.6.
We see that the linguistic distances have a lower mean and median distance for the
condition where we ignore the unknowns as opposed to the condition where we count

30

them as distant. Since the distractors should typically be selected to be similar to a
target sign, their linguistic distance to this target should be low. Again, this supports
our choice for ignoring the unknowns instead of counting them as distant.

Handlingbla bla
unknowns

Mean linguistic
distance

Median linguistic
distance

Ignore 3.2± 1.63 3

Count as distant 9.28± 1.25 9

Table 4.6: Linguistic distance statistics of distractors given unknown values

Summarizing, we found that ignoring the comparison of unknown values results in a
better representation of the linguistic distance between signs than when we let this
comparison contribute to the linguistic distance.

4.9.5 Balancing distractors and target sign annotations

Previously, we introduced distractors, signs which are similar in some manner to a target
sign. We implemented a novel linguistic distance measure to determine the similarity
of the candidate distractors to a target. In this section, we consider how to select the
actual distractors from the candidates.
While it may seem ideal to use all candidate distractors for a given target sign, we note
that the annotations of our corpus are not complete. We can thus, at most, use all
known candidates, however, both hard and easy cases will be included in this manner,
and it is possible that our estimation of a model’s performance will be less conservative
than we desire. To ensure our estimate of the performance is conservative, we decide to
only select those which are most similar to the target signs. Our assumption is that the
performance of a model on this subset reflects the performance on the unknown, com-
plete ground truth because the chosen set of distractors are chosen to be hard negative
cases for our model. Thus, the performance on these difficult examples should tell us
how well the model performs on easier counterexamples as well.
To select only the hardest distractors, we strike a balance between the number of distrac-
tors and target signs. For a target sign S in a given video, we determine its frequency
f . Then, we find all other signs that are performed in the video. The annotations of
these signs are then determined to be distractor candidates. As we explained before, we
filter out any candidates which overlap with the target sign or with each other. From
the remaining set, we select the top-f most similar distractors in terms of their linguistic
distance to S.
The ratio of distractors that is used for a given frequency f can naturally be tweaked
depending on the use case of the model. For instance, it may be sensible to increase the
number of distractors that are used if the model should be particularly sensitive. We
leave the analysis of the number of distractors that should be used to future work.
For our test set that consists of 9613 annotations, we were able to select 8418 distractors
which do not overlap with each other or with a corresponding target sign. Evidently, we
are not able to find the top-f distractors for each sign due to this restriction regarding
annotation overlap. This imbalance can be dealt with in two ways. First, we may use
all 9613 annotations and the selection of 8418 distractors as-is. Second, we can only
select target signs with frequency f in a given target video, if we are able to find f
distractors for them. In other words, we try to balance the number of annotations and
distractors by filtering out the annotations which do not have enough distractors. We

31

compare these options below.
To investigate how our evaluation method is affected by the balancing of the number
of distractors and annotations, we run our distractor-based evaluation on the valida-
tion set, both with and without balancing. For the balanced condition, we find that
there are 7507 annotations in the validation set for which we are able to find exactly
7507 distractors. For the imbalanced condition, we find 10571 annotations with 9406
distractors. The evaluation is applied to the model trained on the linguistic features.
All model parameters were kept to their default values, and we use the optimal spotting
threshold (t = 0.2). For the tolerance window size, we report at the strictest tolerance
level, namely 0.3 seconds.
In Table 4.7, the results of our balancing analysis are shown. Accuracy, precision and
recall are abbreviated as Acc, Prec and Rec, respectively. Our results show that the
balanced selection of distractors yields a higher performance for all of our metrics. This
is due to the balanced condition having fewer target annotations and corresponding dis-
tractors. As such, the performance of our model appears to be more optimistic when
selecting balanced distractors. Since we want our distractor-based evaluation to provide
us with difficult cases to reflect the performance on the full ground truth, we conclude
that it is more sensible to use the imbalanced condition for our purposes.

TP FN FP TN Acc Prec Rec

Balanced condition 3767.0 3740.0 949.0 6558.0 0.688 0.799 0.502

Imbalanced condition 4947.0 5624.0 1297.0 8109.0 0.654 0.792 0.468

Table 4.7: Comparison of the imbalanced and balanced distractor selection

4.9.6 Confusable signs

The ∆ properties for our dataset can be determined from the phonological data in NGT
Signbank. In Figure 4.8, we display the number of occurrences of the ∆ properties within
the test set. Apparently, certain ∆ properties are much more common that others. We
think this is due to two factors. The first factor is the number of confusable signs that
exist with a specific ∆ property. For example, there may be only a few sign pairs for
which only the handedness differs. The second factor is the frequency of the confusable
signs within our dataset. If confusable signs with a given ∆ property are not common
in our corpus, the ∆ property will naturally also have a low frequency.

32

∆ property Test set frequency

Alternating Movement 182

Contact Type 231

Handedness 4263

Handshape Change 299

Location 18078

Movement Direction 16566

Movement Shape 749

Orientation Change 568

Relation between Articulators 42

Relative Orientation: Location 1711

Relative Orientation: Movement 2839

Repeated Movement 1047

Strong Hand 35043

Weak Hand 85

Table 4.8: Frequency of ∆ properties in our test set

33

Chapter 5

Experimental setup

In this chapter, we elaborate on the experiments we performed to answer our research
questions. We show how the validation of the distractor-based evaluation is performed
based on a set of hardest and random distractors. Moreover, we explain how we compare
the feature sets in terms of their performance for the distractor-based evaluation and
the confusable signs.
Unless stated otherwise, our experiments are performed using the standard hyperparam-
eters for each model and use a spotting threshold of t = 0.2 that we selected based on
experiments on the validation set.

5.1 Validation of distractor-based evaluation

In our validation experiments for the distractor-based evaluation, we drop out random
annotations from the random and the standard distractors to determine how robust
both selection methods are to changes in the dataset. We select four different ratios of
drop out to test this: [0.1, 0.25, 0.5, 0.75], e.g. 0.1 represents that 10% of the selected
distractors is dropped randomly and replaced with other candidate distractors. For each
ratio, we repeat the experiment 10 times so we can assess whether our findings are
consistent across multiple random dropouts of distractors.
Because the distractors represent the negative counterparts to a target sign, the FP
and TN evaluations are affected by a change in the selection of the distractors. On the
other hand, the TP and FN evaluations, and by extension the recall, are not affected by
changing the distractors and stay consistent between the two conditions. As such, the
relevant results for our validation are the FP and TN evaluations, as well as the accuracy
and precision. We only report on said relevant metrics in Chapter 6, while the full tables
including the non-relevant metrics can be found in the Appendix (A.5). Furthermore,
we report on the mean linguistic distance of both sets of distractors for each dropout
experiment to demonstrate how the difficulty of the distractor sets changes according to
our linguistic distance measure.

5.2 Feature set comparison

The next set of experiments focuses on the differences between the sets of features. We
compare the performance of three sets of features: the linguistic features, the landmark
features and a combination of both. The three feature sets are compared using the
confusable signs as well as the distractor-based evaluation method. For the distractor-
based evaluation, we compare the three feature sets in pairs and apply the comparison
for each of our metrics (e.g. accuracy, TP). We perform five model runs for each of the
feature sets to get an average performance for each metric and to allow us to perform a t-
test that determines whether the difference in performance between two sets is significant.
The results of the experiments are shown in Section 6.2.1.
For the confusable sign experiments, we start by selecting the best trained model for

34

each set based on the validation set accuracy. We then apply the evaluation method
on the confusable signs to obtain the FP and TN evaluations. Because the confusable
signs differ in only one aspect from the target signs, we are able to assess how many
FPs each model has for a given ∆ property. We use McNemar’s test, which tests if
two conditions are significantly different from each other, to determine whether the
difference in the FPs output by the models is significant. In this manner, we assess how
well each phonological property is represented by our feature sets. The experiments for
the confusable sign analysis are performed in Section 6.2.2.

35

Chapter 6

Results

6.1 Validation of distractor-based evaluation

To validate the distractor-based evaluation, we compare the usage of the standard
distractor selection, which uses the linguistic distance measure, to selecting random
distractors. Recall that we build on the assumption that the former selection method
will choose harder cases while we expect the latter method to choose both easy and
hard cases. Therefore, we expect that the random distractors will result in a higher
performance estimation and will be less robust to changes in the annotations. Here, we
investigate whether this assumption holds.
We performed experiments to determine the impact of dropping a fixed ratio of the
random and standard distractors, on the output of the performance estimation. The
results are reported at the four dropout ratios, [0.1, 0.25, 0.5, 0.75], as mentioned. Ta-
ble 6.1 and 6.2 contain the results of the dropout experiments for a dropout ratio of
0.1. We also display the results for a dropout ratio of 0.75, as shown in Table 6.3 and
Table 6.4. The other dropout experiments, which are not displayed here because they
are consistent with the aforementioned results, can be found in Appendix A.5. We note
that Dropout x indicates the x-th dropout experiment that was performed, whereas No
dropout indicates the evaluation with the original, unaltered selection of distractors.
Based on these results, we make a few observations. Our first observation is that the
number of distractors, which we obtain from adding up the FP and TN evaluations, is
not consistently the same. We speculate that this is the case because some distractor
candidates have more overlap in their tolerance windows with other candidates and if
they are selected, this means the overlapping candidates can no longer be selected. We
also observe that the accuracy, precision and f1-score are consistently estimated to be
higher using the random distractors as opposed to the standard ones. This is a result
of the number of FP evaluations being about half as many for the random condition.
A possible explanation for this observation may be the difference in the mean linguistic
distance for the distractor sets, since the random distractors have, on average, a higher
linguistic distance to the target signs than the standard distractors. Since the random
distractors always give a higher estimate of the model performance, we may conclude
that the standard distractors give a more conservative estimate. This is in line with our
expectations.
Next, we investigate whether the standard distractors result in a more robust perfor-
mance estimate than the random distractors when the annotations are updated. When
comparing the results reported for dropout = 0.1 and dropout = 0.75, we find that the
random distractors give a more similar estimate to the condition with no dropout than
the standard distractors. We note that there is a jump in the performance estimate
when we use a dropout of 0.75 with the standard distractors, but that this change in
the estimation is consistent over multiple dropout experiments. That is, approximately
the same results are reported for all of the evaluations for a given dropout ratio. We hy-
pothesize that this is because dropped distractors have to be replaced with annotations
that have a higher linguistic distance to our target signs. Indeed, the mean linguistic

36

distance is reported to be higher when we perform the dropout experiments.
Furthermore, the standard distractors still consistently result in a performance estimate
that is more conservative than the estimate using random distractors. In fact, there are
some dropout experiments, such as ‘Dropout 8’ and ‘Dropout 9’ with dropout = 0.75,
where the random distractors give a more conservative estimate with dropout than with-
out. Similarly, the mean linguistic distance is typically lower when we drop distractors
from the random set. Thus, we confirm that the random distractors contain a mix of
both hard and easy cases.
In conclusion, our experiments support our hypothesis about the effectiveness of the
distractor-based evaluation. The evaluation using the standard distractors consistently
resulted in a more conservative estimate of the performance of our sign spotting model
compared to the random distractors. Additionally, the standard distractors gave more
consistent results in the performance estimation over consecutive dropout experiments.
These findings validate our assumptions and demonstrate the importance of using lin-
guistic insights in the development of an evaluation that is robust to an incomplete
ground truth.

FP TN Accuracy Precision F1-score Mean ling. dist.

No dropout 1777 7910 0.685 0.751 0.637 3.007

Dropout 1 1770 7903 0.685 0.752 0.637 3.066

Dropout 2 1748 7932 0.686 0.754 0.638 3.064

Dropout 3 1753 7923 0.686 0.754 0.638 3.064

Dropout 4 1737 7935 0.686 0.755 0.638 3.068

Dropout 5 1761 7922 0.685 0.753 0.638 3.071

Dropout 6 1725 7953 0.687 0.757 0.639 3.062

Dropout 7 1735 7940 0.687 0.756 0.639 3.069

Dropout 8 1734 7938 0.687 0.756 0.639 3.06

Dropout 9 1739 7941 0.687 0.755 0.638 3.069

Dropout 10 1756 7918 0.686 0.753 0.638 3.066

Table 6.1: Dropout = 0.1 for standard distractors

37

FP TN Accuracy Precision F1-score Mean ling. dist.

No dropout 962 8728 0.727 0.848 0.669 5.807

Dropout 1 966 8707 0.726 0.848 0.669 5.792

Dropout 2 965 8712 0.726 0.848 0.669 5.794

Dropout 3 964 8717 0.726 0.848 0.669 5.807

Dropout 4 976 8702 0.726 0.846 0.669 5.81

Dropout 5 944 8726 0.727 0.85 0.67 5.803

Dropout 6 948 8727 0.727 0.85 0.67 5.809

Dropout 7 975 8703 0.726 0.846 0.669 5.799

Dropout 8 992 8680 0.725 0.844 0.668 5.803

Dropout 9 977 8705 0.726 0.846 0.669 5.821

Dropout 10 943 8734 0.728 0.851 0.670 5.802

Table 6.2: Dropout = 0.1 for random distractors

FP TN Accuracy Precision F1-score Mean ling. dist.

No dropout 1777 7910 0.685 0.751 0.637 3.007

Dropout 1 1484 8096 0.698 0.783 0.648 3.522

Dropout 2 1474 8100 0.699 0.785 0.649 3.52

Dropout 3 1500 8064 0.697 0.782 0.648 3.52

Dropout 4 1447 8115 0.7 0.787 0.65 3.517

Dropout 5 1465 8105 0.699 0.786 0.649 3.513

Dropout 6 1469 8114 0.699 0.785 0.649 3.522

Dropout 7 1473 8097 0.698 0.784 0.649 3.517

Dropout 8 1486 8072 0.698 0.783 0.648 3.519

Dropout 9 1473 8110 0.699 0.785 0.649 3.527

Dropout 10 1486 8095 0.698 0.783 0.648 3.523

Table 6.3: Dropout = 0.75 for standard distractors

38

FP TN Accuracy Precision F1-score Mean ling. dist.

No dropout 962 8728 0.727 0.848 0.669 5.807

Dropout 1 908 8662 0.728 0.855 0.672 5.748

Dropout 2 915 8651 0.727 0.854 0.671 5.769

Dropout 3 878 8699 0.729 0.859 0.673 5.78

Dropout 4 916 8650 0.727 0.854 0.671 5.774

Dropout 5 907 8671 0.728 0.855 0.672 5.758

Dropout 6 926 8631 0.727 0.853 0.671 5.744

Dropout 7 891 8677 0.729 0.858 0.673 5.766

Dropout 8 944 8626 0.726 0.85 0.67 5.773

Dropout 9 941 8635 0.726 0.851 0.67 5.748

Dropout 10 914 8663 0.728 0.854 0.671 5.772

Table 6.4: Dropout = 0.75 for random distractors

6.2 Feature set comparison

6.2.1 Distractor-based evaluation

To determine when each set of features is beneficial to use, we first determine the perfor-
mance of the sets for the distractor-based evaluation. In Table 6.5, we show the results
of running the evaluation in terms of the binary evaluations (TP, FN, TP, TN) as well
as the accuracy, precision, recall and F1-score. We compare the feature sets in pairs,
where Set 1 and Set 2 specify which features are used. The bold values in the Set 1
avg. and Set 2 avg. columns indicate which model is better on average, whereas those
in the p-value column highlight significant (p < 0.05) differences between the two sets
based on an independent t-test.

39

Metric Set 1 Set 2 Set 1 avg. Set 2 avg. p-value

TP landmarks linguistic 5251.0 5256.8 0.841

TP landmarks combined 5251.0 5264.4 0.705

TP linguistic combined 5256.8 5264.4 0.855

FN landmarks linguistic 4457.0 4451.2 0.841

FN landmarks combined 4457.0 4443.6 0.705

FN linguistic combined 4451.2 4443.6 0.855

FP landmarks linguistic 1742.0 1758.6 0.462

FP landmarks combined 1742.0 1692.4 0.002

FP linguistic combined 1758.6 1692.4 0.017

TN landmarks linguistic 7945.0 7928.4 0.462

TN landmarks combined 7945.0 7994.6 0.002

TN linguistic combined 7928.4 7994.6 0.017

Accuracy landmarks linguistic 0.680 0.680 0.545

Accuracy landmarks combined 0.680 0.684 0.098

Accuracy linguistic combined 0.680 0.684 0.077

Precision landmarks linguistic 0.751 0.749 0.339

Precision landmarks combined 0.751 0.757 0.001

Precision linguistic combined 0.749 0.757 0.005

Recall landmarks linguistic 0.541 0.542 0.846

Recall landmarks combined 0.541 0.542 0.741

Recall linguistic combined 0.542 0.542 0.891

F1-score landmarks linguistic 0.629 0.629 0.921

F1-score landmarks combined 0.629 0.632 0.340

F1-score linguistic combined 0.629 0.632 0.378

Table 6.5: Feature set comparison results for the test set

Our observations are as follows. First, we note that the only significant differences are
found to be between the combined feature model and the other models. In particular,
the combined features result in a significantly better performance in terms of the FP
and TN evaluations, as well as precision. Since precision is calculated as TP

TP+FP and
TN = distractors − FP , we conclude that the difference in performance is directly
caused by the number of FPs that the models produce. Thus, we find that the combined
feature model is significantly better than the other models in terms of its ability to
distinguish distractors from a given target sign. The models trained on the linguistic
features and landmark features are never shown to be significantly different and as such,
we conclude that they are comparable to each other.
In summary, our comparison of the feature sets demonstrates that the model trained on
the combined features stand out as the most effective in terms of its ability to correctly
ignore distractors. It thus surpasses the other models in performance, indicating that a
combination of knowledge-based features and the original landmarks has the potential
to increase a model’s effectiveness. Simultaneously, we maintain the explainability of
the chosen features because the linguistic features are included in the combined model.

40

Still, all feature sets result in a considerable number of FN and FP evaluations, which
shows that there is room for improvement regardless of which features we choose.

6.2.2 Comparison using confusable signs

To compare our feature sets in terms of their ability to represent the phonological prop-
erties of signs, we conducted experiments with the confusable signs. The results are
presented in Figure 6.1. We indicate the results in percentages, which are computed by
counting how often the confusable signs with each ∆ property, as shown in Table 4.8, are
falsely spotted. For instance, a value of 50% in the Alternating Movement column would
indicate that 182 · 0.5 = 91 of the confusable signs that differ only in this ∆ property,
are falsely spotted.

Figure 6.1: Percentage of confusable signs, per ∆ property, that are falsely spotted per
feature set

Our observations reveal several key findings about the feature sets. Firstly, we find that
the linguistic features typically result in fewer or a similar amount of FP spottings of the
confusable signs compared to the landmark features. Only the Handshape change prop-
erty results in a clear difference between the percentage of FPs between the two models.
It thus appears that the linguistic features are overall more capable of representing the

41

phonological properties than the landmarks. Secondly, we observe that the combined
features often result in a comparable or higher number of FPs compared to the other
two models. For example, the number of Movement Shape FPs is approximately the
same between the landmarks and combined features. Two exceptions are the Repeated
Movement and Weak Hand properties, for which the combined features result in fewer
FPs than both of the other feature sets.
We performed McNemar’s test to analyze for which ∆ properties there was a significant
difference in performance between the models, and display the results in Table 6.6. Sig-
nificant p-values (p < 0.05), as well as the feature set with the lowest number of FPs, are
indicated in bold. Notably, the linguistic and landmark features are never found to be
significantly worse than the combined features in terms of the number of FP evaluations
for a given ∆ property. In fact, they are often found to have significantly fewer FP eval-
uations compared to the model that was trained on the combined features. For instance,
the combined features result in approximately 300 more FPs for the Movement Direction
property, which is found to be significant. The linguistic model is furthermore found to
produce significantly fewer FPs compared to the landmark model for some ∆ properties,
and is never found to be significantly worse except for the Strong Hand property, for
which the landmark model produces significantly fewer FPs than the linguistic features.
Overall, both the linguistic and landmark features produce better linguistic representa-
tions than the combined features. Furthermore, the linguistic features typically provide
the best representation of the phonological properties, but there is still room for im-
provement given the number of FP evaluations that occur. In contrast, the combined
feature model was found to outperform the other models for the distractor-based evalu-
ation. We conclude that the combined features are the better choice if we want to select
the model with the best performance, but that the other models are more beneficial to
choose when explainability and linguistic representativeness are desired.

42

Set 1 Set 2 ∆ property FP (Set 1) FP (Set 2) p-value

landmarks linguistic Alternating Movement 35 34 1.0

landmarks combined Alternating Movement 35 43 0.21592

linguistic combined Alternating Movement 34 43 0.18845

landmarks linguistic Contact Type 105 98 0.4701

landmarks combined Contact Type 105 118 0.12443

linguistic combined Contact Type 98 118 0.0126

landmarks linguistic Handedness 371 319 0.01019

landmarks combined Handedness 371 349 0.28637

linguistic combined Handedness 319 349 0.10607

linguistic combined Handshape Change 79 77 0.89176

landmarks linguistic Handshape Change 71 79 0.40278

landmarks combined Handshape Change 71 77 0.55569

linguistic combined Location 2034 2145 0.00938

landmarks linguistic Location 2085 2034 0.24947

landmarks combined Location 2085 2145 0.17061

linguistic combined Movement Direction 3032 3297 0.00000

landmarks combined Movement Direction 2992 3297 0.00000

landmarks linguistic Movement Direction 2992 3032 0.44136

linguistic combined Movement Shape 230 278 0.00014

landmarks combined Movement Shape 278 278 0.93116

landmarks linguistic Movement Shape 278 230 0.00012

landmarks combined Orientation Change 139 138 1.0

landmarks linguistic Orientation Change 139 133 0.62722

linguistic combined Orientation Change 133 138 0.66804

landmarks combined Relation between Articulators 25 23 0.72367

linguistic combined Relation between Articulators 19 23 0.28884

landmarks linguistic Relation between Articulators 25 19 0.11385

landmarks combined Relative Orientation: Location 192 251 0.00008

linguistic combined Relative Orientation: Location 181 251 0.00001

landmarks linguistic Relative Orientation: Location 192 181 0.50687

landmarks linguistic Relative Orientation: Movement 544 566 0.33272

landmarks combined Relative Orientation: Movement 544 569 0.26469

linguistic combined Relative Orientation: Movement 566 569 0.92064

landmarks combined Repeated Movement 460 434 0.10512

linguistic combined Repeated Movement 462 434 0.07249

landmarks linguistic Repeated Movement 460 462 0.94896

linguistic combined Strong Hand 3759 3969 0.00054

landmarks linguistic Strong Hand 3537 3759 0.00061

landmarks combined Strong Hand 3537 3969 0.00000

landmarks combined Weak Hand 41 37 0.38648

landmarks linguistic Weak Hand 41 39 0.78927

linguistic combined Weak Hand 39 37 0.77283

Table 6.6: McNemar’s test for the ∆ properties

43

Chapter 7

Discussion

In this thesis, we aimed to increase the explainability of sign spotting systems using
a knowledge-based approach. We demonstrated how sign language linguistics could be
incorporated into both a sign spotting model and an evaluation method. Below, we
discuss our proposed methodology and results in terms of their limitations and potential
avenues for future work. The discussion is split up into sections based on the two research
questions that we proposed in this work (see Section 1.1).

7.1 Approximative phonological features

The aim of the first research question, RQ1, was to develop approximative phonologi-
cal features extracted from landmarks and analyze in which situations they deliver an
improvement over using landmarks directly. Furthermore, we investigated whether a
combination of phonological features and landmarks is beneficial. We found that the
combination of the features results in a better overall performance, but that it is less
capable of representing the phonological properties of signs than the landmark or phono-
logical features by themselves.
Some limitations have to be noted regarding the approximative features introduced in
this work. Firstly, the features that we implemented do not cover all components of
the phonology of signs. In Section 6.2.1, we found that all feature sets that were used
resulted in a large number of false positive and false negative evaluations. By developing
features which better represent a variety of signs, the effectiveness of the features may
be improved. For example, the inclusion of the non-manuals, such as mouthings and
body posture, could be an interesting avenue for future research to investigate.
Secondly, the features that were developed in this thesis made use of 2D landmark co-
ordinates. Current landmark detection tools, such as Mediapipe, do not give reliable
estimates of the depth of the landmarks. If the z coordinate could be reliably estimated,
we could adopt 3D representations of the hands and bodies of signers and extract lin-
guistic features in a more robust way. For instance, the left and right image in Figure 7.1
depict the same handshape as it appears from two different angles. It would be possible
to derive the curvature of the index finger from a side view (left image) based on 2D
landmark coordinates, but not from a front-facing view (right image). From 3D land-
mark coordinates, the curvature could be derived precisely and reliably. In future work,
the implementation of 3D feature representations could be compared to the usage of 2D
features. Alternatively, a system that is capable of inferring the 3D configuration from
the hand based on a 2D image, such as the model proposed in [51], could be adopted to
mimic the ability of humans to infer pose from a singular perspective.
Another limitation of current landmark detection tools is that they are not explicitly
trained on sign language. Particular handshapes that are common in a given sign lan-
guage may be underrepresented in the data that tools such as Mediapipe are trained
on. It appears promising to fine-tune existing detection tools on sign language data to
prepare them for the specific task at hand.
While not the focus of this work, we note that the model that was used in this thesis

44

may not be optimal for the application of sign spotting. Since the apparent effectiveness
of our features is in part influenced by the ability of our model to utilize them, it appears
promising for future work to make use of more sophisticated model architectures. For
example, a model that is capable of handling variable input lengths could allow us to
more precisely spot signs in videos if they are of a length that deviates from the aver-
age annotation length. A pre-trained model architecture, such as a transformer, could
be fine-tuned to allow us to benefit from training on similar datasets outside of sign
language corpora. In addition to this, a more explainable model architecture could be
chosen to further the explainability of sign spotting systems.

Figure 7.1: Hooked finger from two viewpoints

7.2 Evaluation method

For RQ2, the second research question, our aim was to develop an evaluation method
for sign spotting that is reflective of users and that is capable of handling an incom-
plete ground truth. To achieve the first aim, we based our evaluation on tolerance to
irrelevance (TTI) as proposed by De Vries, Kazai, and Lalmas [9], which explicitly con-
siders the effort it takes for users to use a spotting system. To achieve the second aim,
our evaluation makes use of distractors, which are annotations of signs that are most
similar to a given target sign based on a chosen distance metric. We proposed a novel
linguistic distance measure to select these hardest, most similar cases. We demonstrated
that our distractor-based evaluation provides a more conservative estimate of the model
performance than a baseline evaluation that made use of randomly chosen annotations
as distractors, and that it was comparably robust against updates to the annotations.
This approach has several limitations, which we will cover below.
As previously discussed, our linguistic distance measure makes use of linguistic infor-
mation from NGT Signbank. We computed the linguistic distance by comparing the
phonological properties of signs, and adding to the distance if the phonological proper-
ties did not align. This approach to calculating the distance between signs has a number
of limitations. First, the phonological properties that are annotated in NGT Signbank
are incomplete. While we managed to work around this issue by ignoring any com-
parisons between unknown properties, this does not tackle the core issue of linguistic
parameters not being available. Future work should ideally make use of complete lin-
guistic information, which requires that the available phonological information is further
annotated.
Second, the manual phonology of a sign is not the only factor that plays a role in the
execution of a sign. Non-manuals, in particular the mouthings that accompany a sign,
may be the only factor that distinguishes two signs. Because our distance measure only
takes into account the manual components of signs, we would therefore conclude that the

45

signs are more similar to each other than they are in reality. Additionally, the realization
of a sign is influenced by phonetics, which includes factors such as the emotional state of
the signer. The incorporation of the phonetics of sign language could be an interesting
research direction for future work.
Third, the linguistic distance introduced in this work used a binary weighting for the
distance and did not take the nuanced difference between phonological properties into
account. In other words, our calculation either assigned a distance of 0 if two phono-
logical properties were the same, or a distance of 1 if they were different. In reality,
certain properties may be inherently more similar than others. A two-handed asym-
metrical sign, for instance, may be both phonologically and visually more similar to a
two-handed symmetrical sign than a one-handed sign. In a similar manner, a handshape
where only one finger is extended could be interpreted to be phonologically closer to
a handshape where two fingers are extended, than to a handshape using five extended
fingers. Moreover, it may be that certain phonological properties are more important in
the distance calculation than others. Future work could investigate how to weight the
distances to better capture the nuanced differences in phonology between signs.

7.3 Deaf inclusion

Lastly, we would like to stress the importance of including the Deaf community in sign
language research. This thesis was developed in an all-hearing team, and this impacted
the manner in which the topic of sign language was approached. Previous work has
demonstrated the importance of including Deaf researchers to develop systems that are
useful to Deaf users and to secure adoption of new technologies [5]. Additionally, Deaf
people should be included in focus groups to determine which needs have to be addressed
by SLP systems. We hope that future research will work towards more inclusion of the
community.

46

Bibliography

[1] N. Burkart and M. F. Huber, “A survey on the explainability of supervised machine
learning,” Journal of Artificial Intelligence Research, vol. 70, pp. 245–317, 2021.

[2] V. Belle and I. Papantonis, “Principles and practice of explainable machine learn-
ing,” Frontiers in big Data, p. 39, 2021.

[3] M. Gaur, K. Faldu, and A. Sheth, “Semantics of the black-box: Can knowledge
graphs help make deep learning systems more interpretable and explainable?”
IEEE Internet Computing, vol. 25, no. 1, pp. 51–59, 2021.

[4] A. Samih, A. Adadi, and M. Berrada, “Towards a knowledge based explainable
recommender systems,” in Proceedings of the 4th International Conference on Big
Data and Internet of Things, 2019, pp. 1–5.

[5] D. Bragg, O. Koller, M. Bellard, et al., “Sign language recognition, generation, and
translation: An interdisciplinary perspective,” in The 21st association for comput-
ing machinery international special interest group on accessible computing confer-
ence on computers and accessibility, 2019, pp. 16–31.

[6] L. He, E. Sanocki, A. Gupta, and J. Grudin, “Auto-summarization of audio-video
presentations,” in Proceedings of the seventh ACM international conference on
Multimedia (Part 1), 1999, pp. 489–498.

[7] W. Stokoe, “Sign language structure, an outline of the visual communications
systems of american deaf,” Studies in Linguistics Occasional Paper, vol. 8, 1960.

[8] R. Battison, Lexical borrowing in American sign language. Silver Spring, MD: Lin-
stok Press, 1978.

[9] A. P. De Vries, G. Kazai, and M. Lalmas, “Tolerance to irrelevance: A user-effort
oriented evaluation of retrieval systems without predefined retrieval unit,” in RIAO
Conference Proceedings, 2004, pp. 463–473.

[10] A. Moryossef and Y. Goldberg, Sign Language Processing, https://sign-language-
processing.github.io/, Accessed: Jan. 27, 2023, 2021.

[11] M. Vázquez Enŕıquez, J. L. A. Castro, L. D. Fernandez, J. C. Jacques Junior, and
S. Escalera, “Eccv 2022 sign spotting challenge: Dataset, design and results,” in
European Conference on Computer Vision, Springer, 2022, pp. 225–242.

[12] P. Paudyal, J. Lee, A. Kamzin, M. Soudki, A. Banerjee, and S. K. Gupta, “Learn2sign:
Explainable ai for sign language learning.,” in IUI Workshops, 2019.

[13] J. McCleary, L. P. Garćıa, C. Ilioudis, and C. Clemente, “Sign language recognition
using micro-doppler and explainable deep learning,” in IEEE Radar Conference,
IEEE, 2021, pp. 1–6.

[14] D. R. Kothadiya, C. M. Bhatt, A. Rehman, F. S. Alamri, and T. Saba, “Signex-
plainer: An explainable ai-enabled framework for sign language recognition with
ensemble learning,” IEEE Access, 2023.

[15] F. Zhang, V. Bazarevsky, A. Vakunov, et al., “Mediapipe hands: On-device real-
time hand tracking,” arXiv preprint arXiv:2006.10214, 2020.

[16] S. Albanie, G. Varol, L. Momeni, et al., “Bsl-1k: Scaling up co-articulated sign
language recognition using mouthing cues,” in European Conference on Computer
Vision, Springer, 2020, pp. 35–53.

[17] N.-K. Pendzich, Lexical nonmanuals in German Sign Language: Empirical studies
and theoretical implications. De Gruyter, 2020.

I

[18] E. Van der Kooij, Phonological categories in Sign Language of the Netherlands:
The role of phonetic implementation and iconicity. Netherlands Graduate School
of Linguistics, 2002.

[19] U. Klomp, A descriptive grammar of Sign Language of the Netherlands. LOT,
2021.

[20] O. Crasborn, “Phonetics,” in Sign language: An international handbook, De Gruyter,
2012.

[21] M. Tyrone, “Phonetics of sign language,” in Oxford Research Encyclopedia of Lin-
guistics, Oxford University Press, 2020. doi: 10.1093/acrefore/9780199384655.013
.744.

[22] L. Momeni, G. Varol, S. Albanie, T. Afouras, and A. Zisserman, “Watch, read and
lookup: Learning to spot signs from multiple supervisors,” in Asian conference on
computer vision, 2020.

[23] T. Jiang, N. C. Camgöz, and R. Bowden, “Looking for the signs: Identifying iso-
lated sign instances in continuous video footage,” in 16th IEEE International Con-
ference on Automatic Face and Gesture Recognition, IEEE, 2021, pp. 1–8.

[24] R. Bowden, D. Windridge, T. Kadir, A. Zisserman, and M. Brady, “A linguistic
feature vector for the visual interpretation of sign language,” in 8th European
Conference on Computer Vision, Springer, 2004, pp. 390–401.

[25] U. Von Agris, J. Zieren, U. Canzler, B. Bauer, and K.-F. Kraiss, “Recent devel-
opments in visual sign language recognition,” Universal Access in the Information
Society, vol. 6, pp. 323–362, 2008.

[26] J. Han, G. Awad, and A. Sutherland, “Modelling and segmenting subunits for sign
language recognition based on hand motion analysis,” Pattern Recognition Letters,
vol. 30, no. 6, pp. 623–633, 2009.

[27] M. M. Zaki and S. I. Shaheen, “Sign language recognition using a combination of
new vision based features,” Pattern Recognition Letters, vol. 32, no. 4, pp. 572–
577, 2011.

[28] S.-K. Ko, J. G. Son, and H. Jung, “Sign language recognition with recurrent neural
network using human keypoint detection,” in Proceedings of the 2018 Conference
on Research in Adaptive and Convergent Systems, 2018, pp. 326–328.

[29] S.-K. Ko, C. J. Kim, H. Jung, and C. Cho, “Neural sign language translation based
on human keypoint estimation,” Applied sciences, vol. 9, no. 13, p. 2683, 2019.

[30] J. Shin, A. Matsuoka, M. A. M. Hasan, and A. Y. Srizon, “American sign language
alphabet recognition by extracting feature from hand pose estimation,” Sensors,
vol. 21, no. 17, p. 5856, 2021.

[31] M. J. Hussain et al., “Intelligent sign language recognition system for e-learning
context,” Computers, Materials & Continua, vol. 72, no. 3, pp. 5327–5343, 2022.

[32] Y. Farhan and A. A. Madi, “Real-time dynamic sign recognition using mediapipe,”
in IEEE 3rd International Conference on Electronics, Control, Optimization and
Computer Science, IEEE, 2022, pp. 1–7.

[33] V. Viitaniemi, T. Jantunen, L. Savolainen, M. Karppa, and J. Laaksonen, “S-pot–
a benchmark in spotting signs within continuous signing,” in Proceedings of the
9th International Conference on Language Resources and Evaluation, European
Language Resources Association, 2014, pp. 1892–1897.

[34] S.-S. Cho, H.-D. Yang, and S.-W. Lee, “Sign language spotting based on semi-
markov conditional random field,” in 2009 Workshop on Applications of Computer
Vision, IEEE, 2009, pp. 1–6.

II

https://doi.org/10.1093/acrefore/9780199384655.013.744
https://doi.org/10.1093/acrefore/9780199384655.013.744

[35] H.-D. Yang and S.-W. Lee, “Simultaneous spotting of signs and fingerspellings
based on hierarchical conditional random fields and boostmap embeddings,” Pat-
tern Recognition, vol. 43, no. 8, pp. 2858–2870, 2010.

[36] A. Aljanaki, F. Wiering, and R. C. Veltkamp, “Emotion based segmentation of
musical audio,” in Proceedings of the 16th Conference of the International Society
for Music Information Retrieval, 2015, pp. 770–776.

[37] J. B. Smith and E. Chew, “A meta-analysis of the mirex structure segmentation
task,” in Proceedings of the 14th International Society for Music Information Re-
trieval Conference, vol. 16, 2013, pp. 45–47.

[38] J. B. L. Smith, J. A. Burgoyne, I. Fujinaga, D. De Roure, and J. S. Downie, “Design
and creation of a large-scale database of structural annotations.,” in Proceedings of
the 12th International Society for Music Information Retrieval Conference, 2011,
pp. 555–560.

[39] C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager, “Temporal convolu-
tional networks for action segmentation and detection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp. 156–165.

[40] J. Hong, H. Zhang, M. Gharbi, M. Fisher, and K. Fatahalian, “Spotting temporally
precise, fine-grained events in video,” in Proceedings of the European Conference
on Computer Vision 2022, Springer, 2022, pp. 33–51.

[41] M. Eskevich, W. Magdy, and G. J. Jones, “New metrics for meaningful evaluation
of informally structured speech retrieval,” in European Conference on Information
Retrieval, Springer, 2012, pp. 170–181.

[42] O. Crasborn and I. Zwitserlood, “The corpus ngt: An online corpus for profes-
sionals and laymen,” Construction and Exploitation of Sign Language Corpora.
3rd Workshop on the Representation and Processing of Sign Languages, pp. 44–49,
2008.

[43] Y. Lin, X. Jiao, and L. Zhao, “Detection of 3d human posture based on improved
mediapipe,” Journal of Computer and Communications, vol. 11, no. 2, pp. 102–
121, 2023.

[44] S. Celebi, A. S. Aydin, T. T. Temiz, and T. Arici, “Gesture recognition using
skeleton data with weighted dynamic time warping.,” in Proceedings of the Inter-
national Conference on Computer Vision Theory and Applications, 2013, pp. 620–
625.

[45] O. Crasborn, I. Zwitserlood, and J. Ros, “The corpus ngt. an open access digital
corpus of movies with annotations of sign language of the netherlands.,” Centre
for Language Studies, Radboud University Nijmegen, 2008.

[46] O. Crasborn, R. Bank, I. Zwitserlood, et al., “Ngt signbank,” Nijmegen: Radboud
University, Centre for Language Studies, 2016.

[47] J. Chai and A. Li, “Deep learning in natural language processing: A state-of-the-
art survey,” in International Conference on Machine Learning and Cybernetics,
IEEE, 2019, pp. 1–6.

[48] P. Khosla, P. Teterwak, C. Wang, et al., “Supervised contrastive learning,” Ad-
vances in Neural Information Processing Systems, vol. 33, pp. 18 661–18 673, 2020.

[49] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for unsuper-
vised visual representation learning,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020, pp. 9729–9738.

[50] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, “Unsupervised feature learning via non-
parametric instance discrimination,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 3733–3742.

III

[51] M. Ivashechkin, O. Mendez, and R. Bowden, “Improving 3d pose estimation for
sign language,” in IEEE International Conference on Acoustics, Speech, and Signal
Processing Workshops, IEEE, 2023, pp. 1–5.

IV

Appendix A

Appendix

A.1 Pseudocode linguistic distance computation

Algorithm 1 Linguistic distance computation

1: procedure linguistic distance(LA,LB) ▷
LA : List of phonological properties for sign A ▷
LB : List of phonological properties for sign B

2: dist← 0
3: for m in range(len(LA)) do
4: am ← LA[m]
5: bm ← LB[m]
6: if am == bm then
7: dist← dist
8: end if
9: if am ̸= bm then

10: dist← dist+ 1
11: end if
12: end for
13: return dist
14: end procedure

A.2 Proof: mirroring after normalisation

We first show that the x coordinate of each landmark that is used to normalise the x
coordinate of a landmark ℓ, has to be mirrored:

ℓcentered,x = ℓscaled,x − shM,scaled,x

ℓcentered,x =
ℓx

|shL,x − shR,x|
−

shM,x

|shL,x − shR,x|
=

ℓx − shM,x

|shL,x − shR,x|

mirror(ℓcentered,x) =
mirror(ℓx)−mirror(shM,x)

|mirror(shL,x)−mirror(shR,x)|

The normalisation is done as in Section 4.2.1. Given that a landmark ℓ in a video of
width w is mirrored as mirror(ℓ) = w−ℓ−1, we can mirror each landmark individually:

mirror(ℓx) = w − ℓx − 1

mirror(shL,x) = w − shL,x − 1

mirror(shR,x) = w − shR,x − 1

mirror(shM,x) = w − shM,x − 1

V

If we use these equations to compute mirror(ℓcentered,x), we obtain the following:

mirror(ℓcentered,x) =
(w − ℓx − 1)− (w − shM,x − 1)

|(w − shL,x − 1)− (w − shR,x − 1)|

=
w − ℓx − 1− w + shM,x + 1

|w − shL,x − 1− w + shR,x + 1|

=
−ℓx + shM,x

|shR,x − shL,x|

Since |a− b| =
√

(a− b)2 =
√
(b− a)2 = |b− a|, we thus find that:

mirror(ℓcentered,x) =
−ℓx + shM,x

|shR,x − shL,x|
=
−ℓx + shM,x

|shL,x − shR,x|
= −1 · ℓcentered,x

A.3 Spotting threshold tests

To determine which spotting threshold t is suitable for our experiments, we trained our
model using each set of features and then used our distractor-based evaluation using
a selection of spotting thresholds, namely 0.15, 0.2, 0.25 and 0.3. This set was selected
based on some initial runs, which revealed that the optimal spotting threshold was
always somewhere between 0.15 and 0.3. Values outside of this range never resulted in
a higher model performance. We then determined that the threshold for which we find
the highest accuracy, is the most suitable spotting threshold.
In the Tables below, we have plotted the performance in terms of accuracy, precision
and recall for each set of features. t = 0.20 consistently results in the highest accuracy
for each of the feature sets. Therefore, we selected this threshold for all of our models.

t = 0.15t = 0.15t = 0.15 t = 0.20t = 0.20t = 0.20 t = 0.25t = 0.25t = 0.25 t = 0.30t = 0.30t = 0.30

Accuracy 0.623 0.654 0.645 0.611

Precision 0.841 0.792 0.744 0.689

Recall 0.354 0.468 0.501 0.484

Table A.1: Threshold tests for linguistic features

t = 0.15t = 0.15t = 0.15 t = 0.20t = 0.20t = 0.20 t = 0.25t = 0.25t = 0.25 t = 0.30t = 0.30t = 0.30

Accuracy 0.624 0.658 0.643 0.605

Precision 0.844 0.798 0.740 0.684

Recall 0.356 0.473 0.502 0.469

Table A.2: Threshold tests for landmark features

VI

t = 0.15t = 0.15t = 0.15 t = 0.20t = 0.20t = 0.20 t = 0.25t = 0.25t = 0.25 t = 0.30t = 0.30t = 0.30

Accuracy 0.638 0.664 0.652 0.616

Precision 0.850 0.802 0.748 0.694

Recall 0.384 0.485 0.517 0.492

Table A.3: Threshold tests for combined (landmark + linguistic) features

A.4 Masking experiments

Figure A.1: Run 1 (used as example in Figure 4.3)

Figure A.2: Run 2

VII

Figure A.3: Run 3

Figure A.4: Run 4

Figure A.5: Run 5

VIII

A.5 Full results of the validation of the distractor-based
evaluation

A.5.1 Dropout ratio = 0.1

TP FN FP TN Acc. Prec. Rec. F1 Mean ling. dist.

No dropout 5369 4339 1777 7910 0.685 0.751 0.553 0.637 3.007

Dropout 1 5369 4339 1770 7903 0.685 0.752 0.553 0.637 3.066

Dropout 2 5369 4339 1748 7932 0.686 0.754 0.553 0.638 3.064

Dropout 3 5369 4339 1753 7923 0.686 0.754 0.553 0.638 3.064

Dropout 4 5367 4339 1737 7935 0.686 0.755 0.553 0.638 3.068

Dropout 5 5369 4339 1761 7922 0.685 0.753 0.553 0.638 3.071

Dropout 6 5369 4339 1725 7953 0.687 0.757 0.553 0.639 3.062

Dropout 7 5369 4339 1735 7940 0.687 0.756 0.553 0.639 3.069

Dropout 8 5369 4339 1734 7938 0.687 0.756 0.553 0.639 3.06

Dropout 9 5369 4339 1739 7941 0.687 0.755 0.553 0.638 3.069

Dropout 10 5367 4339 1756 7918 0.686 0.753 0.553 0.638 3.066

Table A.4: Standard distractors with dropout = 0.1

TP FN FP TN Acc. Prec. Rec. F1 Mean ling. dist.

No dropout 5369 4339 962 8728 0.727 0.848 0.553 0.669 5.807

Dropout 1 5369 4339 966 8707 0.726 0.848 0.553 0.669 5.792

Dropout 2 5368 4339 965 8712 0.726 0.848 0.553 0.669 5.794

Dropout 3 5368 4339 964 8717 0.726 0.848 0.553 0.669 5.807

Dropout 4 5369 4339 976 8702 0.726 0.846 0.553 0.669 5.81

Dropout 5 5368 4339 944 8726 0.727 0.85 0.553 0.67 5.803

Dropout 6 5369 4339 948 8727 0.727 0.85 0.553 0.67 5.809

Dropout 7 5369 4339 975 8703 0.726 0.846 0.553 0.669 5.799

Dropout 8 5369 4339 992 8680 0.725 0.844 0.553 0.668 5.803

Dropout 9 5369 4339 977 8705 0.726 0.846 0.553 0.669 5.821

Dropout 10 5369 4339 943 8734 0.728 0.851 0.553 0.67 5.802

Table A.5: Random distractors with dropout = 0.1

IX

A.5.2 Dropout ratio = 0.25

TP FN FP TN Acc. Prec. Rec. F1 Mean ling. dist.

No dropout 5369 4339 1777 7910 0.685 0.751 0.553 0.637 3.007

Dropout 1 5369 4339 1702 7958 0.688 0.759 0.553 0.64 3.162

Dropout 2 5369 4339 1646 8009 0.691 0.765 0.553 0.642 3.161

Dropout 3 5369 4339 1660 7993 0.69 0.764 0.553 0.642 3.161

Dropout 4 5367 4337 1682 7976 0.689 0.761 0.553 0.641 3.157

Dropout 5 5368 4339 1642 8005 0.691 0.766 0.553 0.642 3.151

Dropout 6 5369 4339 1672 7978 0.689 0.763 0.553 0.641 3.158

Dropout 7 5368 4339 1704 7953 0.688 0.759 0.553 0.64 3.162

Dropout 8 5368 4339 1688 7959 0.689 0.761 0.553 0.641 3.162

Dropout 9 5367 4339 1667 7990 0.69 0.763 0.553 0.641 3.162

Dropout 10 5367 4339 1679 7977 0.689 0.762 0.553 0.641 3.159

Table A.6: Standard distractors with dropout = 0.25

TP FN FP TN Acc. Prec. Rec. F1 Mean ling. dist.

No dropout 5369 4339 962 8728 0.727 0.848 0.553 0.669 5.807

Dropout 1 5369 4339 953 8695 0.727 0.849 0.553 0.67 5.791

Dropout 2 5369 4339 980 8679 0.725 0.846 0.553 0.669 5.787

Dropout 3 5368 4339 946 8705 0.727 0.85 0.553 0.67 5.807

Dropout 4 5368 4339 953 8700 0.727 0.849 0.553 0.67 5.793

Dropout 5 5367 4337 957 8685 0.726 0.849 0.553 0.67 5.793

Dropout 6 5369 4339 946 8704 0.727 0.85 0.553 0.67 5.796

Dropout 7 5369 4339 946 8709 0.727 0.85 0.553 0.67 5.788

Dropout 8 5369 4339 940 8714 0.727 0.851 0.553 0.67 5.793

Dropout 9 5368 4339 950 8706 0.727 0.85 0.553 0.67 5.792

Dropout 10 5368 4339 997 8667 0.725 0.843 0.553 0.668 5.792

Table A.7: Random distractors with dropout = 0.25

X

A.5.3 Dropout ratio = 0.5

TP FN FP TN Acc. Prec. Rec. F1 Mean ling. dist.

No dropout 5369 4339 1777 7910 0.685 0.751 0.553 0.637 3.007

Dropout 1 5367 4339 1609 8012 0.692 0.769 0.553 0.643 3.322

Dropout 2 5367 4337 1581 8025 0.694 0.772 0.553 0.644 3.323

Dropout 3 5367 4339 1593 8022 0.693 0.771 0.553 0.644 3.337

Dropout 4 5369 4339 1599 8021 0.693 0.771 0.553 0.644 3.334

Dropout 5 5368 4339 1606 8011 0.692 0.77 0.553 0.644 3.329

Dropout 6 5368 4339 1600 8018 0.693 0.77 0.553 0.644 3.333

Dropout 7 5367 4339 1557 8054 0.695 0.775 0.553 0.645 3.324

Dropout 8 5367 4339 1594 8020 0.693 0.771 0.553 0.644 3.332

Dropout 9 5368 4339 1574 8035 0.694 0.773 0.553 0.645 3.332

Dropout 10 5366 4339 1596 8025 0.693 0.771 0.553 0.644 3.334

Table A.8: Standard distractors with dropout = 0.5

TP FN FP TN Acc. Prec. Rec. F1 Mean ling. dist.

No dropout 5369 4339 962 8728 0.727 0.848 0.553 0.669 5.807

Dropout 1 5367 4339 975 8640 0.725 0.846 0.553 0.669 5.752

Dropout 2 5367 4339 921 8691 0.728 0.854 0.553 0.671 5.768

Dropout 3 5368 4339 958 8659 0.726 0.849 0.553 0.67 5.764

Dropout 4 5366 4337 930 8672 0.727 0.852 0.553 0.671 5.777

Dropout 5 5369 4339 947 8672 0.726 0.85 0.553 0.67 5.774

Dropout 6 5367 4339 938 8681 0.727 0.851 0.553 0.67 5.796

Dropout 7 5368 4339 960 8659 0.726 0.848 0.553 0.669 5.783

Dropout 8 5367 4337 932 8689 0.727 0.852 0.553 0.671 5.784

Dropout 9 5366 4339 919 8689 0.728 0.854 0.553 0.671 5.777

Dropout 10 5366 4339 937 8689 0.727 0.851 0.553 0.67 5.776

Table A.9: Random distractors with dropout = 0.5

XI

A.5.4 Dropout ratio = 0.75

TP FN FP TN Acc. Prec. Rec. F1 Mean ling. dist.

No dropout 5369 4339 1777 7910 0.685 0.751 0.553 0.637 3.007

Dropout 1 5367 4337 1484 8096 0.698 0.783 0.553 0.648 3.522

Dropout 2 5368 4339 1474 8100 0.699 0.785 0.553 0.649 3.52

Dropout 3 5366 4339 1500 8064 0.697 0.782 0.553 0.648 3.52

Dropout 4 5356 4335 1447 8115 0.7 0.787 0.553 0.65 3.517

Dropout 5 5366 4339 1465 8105 0.699 0.786 0.553 0.649 3.513

Dropout 6 5365 4337 1469 8114 0.699 0.785 0.553 0.649 3.522

Dropout 7 5357 4337 1473 8097 0.698 0.784 0.553 0.649 3.517

Dropout 8 5366 4339 1486 8072 0.698 0.783 0.553 0.648 3.519

Dropout 9 5365 4337 1473 8110 0.699 0.785 0.553 0.649 3.527

Dropout 10 5366 4337 1486 8095 0.698 0.783 0.553 0.648 3.523

Table A.10: Standard distractors with dropout = 0.75

TP FN FP TN Acc. Prec. Rec. F1 Mean ling. dist.

No dropout 5369 4339 962 8728 0.727 0.848 0.553 0.669 5.807

Dropout 1 5366 4337 908 8662 0.728 0.855 0.553 0.672 5.748

Dropout 2 5366 4339 915 8651 0.727 0.854 0.553 0.671 5.769

Dropout 3 5367 4339 878 8699 0.729 0.859 0.553 0.673 5.78

Dropout 4 5356 4335 916 8650 0.727 0.854 0.553 0.671 5.774

Dropout 5 5366 4339 907 8671 0.728 0.855 0.553 0.672 5.758

Dropout 6 5365 4337 926 8631 0.727 0.853 0.553 0.671 5.744

Dropout 7 5365 4337 891 8677 0.729 0.858 0.553 0.673 5.766

Dropout 8 5364 4334 944 8626 0.726 0.85 0.553 0.67 5.773

Dropout 9 5365 4337 941 8635 0.726 0.851 0.553 0.67 5.748

Dropout 10 5367 4339 914 8663 0.728 0.854 0.553 0.671 5.772

Table A.11: Random distractors with dropout = 0.75

XII

	Introduction
	Research Questions
	Code

	Related Work
	Sign language linguistics
	Sign Language Processing
	Sign spotting

	Evaluation methods

	Approach
	Feature engineering
	Feature set comparison

	Evaluation
	Linguistic distance
	Validation
	Evaluation of linguistic features

	Method
	Comparison to Watch, Read and Lookup framework
	Feature engineering
	Detecting landmarks
	Feature extraction
	Final features

	Datasets
	Corpus Nederlandse Gebarentaal
	Signbank

	Data Preprocessing
	Corpus Nederlandse Gebarentaal

	Preparing dataset
	Fixed-length inputs
	Data augmentation
	Creating batches and shuffling

	Sign spotting model
	Loss function

	Feature selection
	Test phase
	Evaluation
	Validation
	Tolerance window size
	Handling overlap and double predictions
	Linguistic distance
	Balancing distractors and target sign annotations
	Confusable signs

	Experimental setup
	Validation of distractor-based evaluation
	Feature set comparison

	Results
	Validation of distractor-based evaluation
	Feature set comparison
	Distractor-based evaluation
	Comparison using confusable signs

	Discussion
	Approximative phonological features
	Evaluation method
	Deaf inclusion

	Appendix
	Pseudocode linguistic distance computation
	Proof: mirroring after normalisation
	Spotting threshold tests
	Masking experiments
	Full results of the validation of the distractor-based evaluation
	Dropout ratio = 0.1
	Dropout ratio = 0.25
	Dropout ratio = 0.5
	Dropout ratio = 0.75

