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Abstract

This thesis introduces ContextLens, an interactive tool that allows users to visualize, cluster,
and explore high-dimensional contextualized word embeddings. With ContextLens, linguistic
investigations based on word embeddings no longer require explicit model training. Given ei-
ther a single desired word to explore its senses or multiple distinct words, users can explore
possible patterns in the meanings of different words based on the context they appear. The tool
lets users upload up to 200 sentences containing the target word(s) in either ".csv" or ".xlsx" for-
mat and introduces a novel approach to combining multiple clustering methods using majority
voting to produce more robust and accurate annotations automatically. This work utilizes two
different datasets for experimentation. The first is SemCor, a corpus that includes sense tags for
a word to explore in the senses of a single word. The second is Hotel Reviews, which was scraped
from Booking.com and is used to investigate differences in word embeddings when comparing
words. ContextLens was evaluated using qualitative and quantitative methods, demonstrating
its ability to provide valuable insights into the structure of word embeddings and identify dis-
tinct word senses. Through experimentation, combining dimensionality reduction and cluster-
ing methods led to a powerful way to understand the structure of word embeddings and identify
different word senses. The tool’s capabilities in visualizing embeddings, clustering, and provid-
ing user-friendly interfaces present significant opportunities for further research and applica-
tions in linguistics.
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Chapter 1

Introduction

With their semantic properties, words are the primary means of conveying meaning in language
[1]. Some words are ambiguous, i.e., have multiple meanings (senses), sometimes confusing.
For instance, the word "mouse" can refer to either a small rodent or a computer device. Another
example is the word "bank," which can refer to a financial institution or river’s edge. Such words
are also called polysemous [2].

On the other hand, there is synonymy. Different words can represent the same meaning. For
example, "big," "large," and "giant" all refer to the same concept of size. Synonyms can have
subtle differences in connotation or usage, but they often convey a similar meaning. Notably,
words are synonymous in only one sense: "long" and "extended" are interchangeable when
utilized in the context of extended time, but "long" cannot be used with "extended family."

Polysemy and synonymy are fundamental concepts relating to the structure and meaning
of language. They can help us better understand how language works and is used in communi-
cation. Linguists study polysemy to learn about the mechanisms of meaning in language and
how words convey complex concepts. Similarly, they examine synonymy to learn about word
meanings’ nature and how they evolve over time. Context influences the meaning of words,
particularly in cases of polysemy and synonymy, by resolving ambiguity in the case of polysemy
or determining the preferred word choice in the case of synonymy. In this study, we intend to
develop a tool to help linguists in such investigations.

In ambiguous human language use, where a word may have different meanings in various
contexts, a sense is a discrete representation of one of the word meanings [3]. The intended
word sense is interpretable from context or any other external knowledge sources1 [4]. Word
Sense Disambiguation (WSD) is the task of automatically determining which word sense is in-
tended on the basis of its use in a particular context [4]. As WSD is a long-lasting challenge in
Natural Language Processing (NLP), many approaches, generally categorized into knowledge-
based, supervised, unsupervised, and neural-based groups, have already been applied to tackle
it. Some of these approaches provide easily interpretable representations, which are needed if
linguists are to work with them. However, some other techniques, such as word embeddings,
lack interpretability for linguistic analysis, which can be a limitation for linguists who require
easily interpretable representations.

One of these representations is the word embedding, a neural modeling technique that rep-

1For example, either emotion, voice, and facial expression of the speaker or thesauri, glossaries, ontologies.
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resents words as dense vectors in a high-dimensional vector space. These embeddings are
learned from large amounts of text data and capture the relationships between words and their
meaning in a way that is both efficient and effective. Word embeddings are also used to repre-
sent words in an efficient and effective way [3]. Although the performance of the most recently
developed embedding models, which are even context-aware, is promising, they lack inter-
pretability for linguistic analysis. To address this limitation, we introduce ContextLens, a visu-
alization tool that aims to make high-dimensional context-based embeddings more accessible
and interpretable for linguists. Descriptive linguists have traditionally sought to investigate the
meaning of words in context through manual annotation. The advent of word embeddings has
the potential to facilitate or even replace this process.

This study explores the viability of linking embeddings to the relevant meanings (or similar
constructs) linguists understand, enabling linguistic labeling without requiring extensive man-
ual annotation. The study is conducted for two possible types of investigations, considering
either various senses of the same adjective or different but semantically related adjectives. Fig-
ure 1.1 clarifies the mentioned desire, that is, a visualization of high-dimensional embedding
vectors after a dimensionality reduction technique such as UMAP [5] to be seen in 2D and 3D
view.

Figure 1.1: An overview of a desired 2d & 3d visualization tool. The word great, which has
normally five distinct senses in its adjective role is illustrated in the view. By hovering on
each data point, related text appears.

We choose visualization to communicate between data scientists and linguists, as it is a
generic understandable language for both. We investigate if any comprehensible illustration
which makes sense for linguists can be provided to connect embeddings to the related mean-
ings. Consequently, this method offers a kind of linguistic annotation without the need for se-
rious time investment in annotating. In summary, we attempt to answer the following research
question in this thesis:

RQ. Can we provide tools for linguistic investigations on word use, based on word embed-
dings, where the inquiry is to be performed by scholars with linguistic rather than deep learning
training?

To address this question in a more practical way, we subdivide it into the subquestions listed
below:

• SQ1. Can we visualize embeddings in such a way that different "senses" are separated in
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the visualization, and similar senses are grouped?

• SQ2. Can we cluster embeddings in such a way that the clustering corresponds to tradi-
tional "sense" groupings?

• SQ3. Can the tools be given a user interface that lets the scholars use the tool without
further intervention from data scientists?

There has been work on diverse methods and attempts to improve contextualized embed-
ding by fine-tuning on related domain data [6], [7], [8], to interpret the embedding vectors [9]
and ways to evaluate them. However, to the best of our knowledge, there is a lack of study in
automated embedding visualization for further linguistic research. In this study, we propose a
visualization tool to depict different embedding algorithms color-grouped by diverse labeling
systems. Figure 1.2 shows the operation of our research.

Figure 1.2: A Big Picture of Our Investigation Methodology

In the clustering step, we aim to enable linguists to explore the semantic relationships by
clustering embeddings for multiple word forms specified by the linguist or, instead, senses of
a single word. The resulting clusters can reveal synonyms, hypernyms, antonyms, and other
semantic associations between the words, providing a deeper understanding of the meanings
of individual words and their relationships. To ensure the usefulness and practicality of Con-
textLens, we incorporate some linguists through our experiments to gain insight into what in-
terests them and use their feedback to improve the tool.

As there are far too many possible investigations that would be possible with such a tool, we
focus on one specific use case inspired by the current work of the first supervisor. This objective
concerns the use of adjectives in hotel reviews. However, it should be clear that the tool is usable
for a much broader range of studies in future research.

The remainder of this thesis is organized as follows: Chapter 2, which presents a review of
the related work for this thesis, sets the background for the research presented in this study. In
Chapter 3, we describe the data used in detail. Then, in Chapter 4, we formalize the problem
and provide implementation details for the proposed visualization tool, clustering setups, and
evaluation methods. Chapter 5 presents the results of our work, including details on the ex-
perimental setup and analysis of the outcome. Following this, in Chapter 6, we conclude our
findings and propose ideas for future work that can build upon the research presented in this
thesis.
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Chapter 2

Related Work

This chapter provides an overview of the background information relevant to our research.
Specifically, we will delve into the problem of WSD in greater depth, and continue by discussing
the concept of word embeddings and reviewing various embedding methods. Finally, we will
also briefly review clustering methods.

2.1 Word Sense Disambiguation

This section provides an overview of the WSD development timeline (see Figure 2.1) since the
primary attempt to make it an automated process. The endeavor started with the knowledge-
based methods that employ external resources, such as machine-readable dictionaries, the-
sauri, or ontologies [4].

Figure 2.1: A brief timeline of the evolution of Word Sense Disambiguation (WSD) tech-
niques, starting with the introduction of the Lesk algorithm in 1986 and progressing through
the incorporation of lexical knowledge resources, the Adapted Lesk algorithm, distribu-
tional semantics methods, deep learning techniques, and the recent use of pre-trained
models like BERT, ELMO, and GPT-3 for improved performance.

One of the very first endeavors to automate sense disambiguation was suggested by Lesk
[10]. The idea behind Lesk’s algorithm was that there is a tendency to share a common topic
between a word and its given neighborhood which is a part of the text, i.e., a local context of the
target word. The algorithm compares the dictionary definition of the ambiguous word with its
neighbor terms. The algorithm starts with counting the number of words in both its vicinity and
its senses in the dictionary. Then it selects the meaning with the most significant number of this
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count. The method has some drawbacks, such as its reliance on the availability and quality of
external resources, as well as its limited ability to account for context-specific senses of a word.
Additionally, the algorithm may not be able to distinguish between different word senses if they
share similar definitions or if the context is unclear. Since the algorithm considers the overlap
merely among the glosses of the senses and dictionary glosses tend to be pretty short, there is
insufficient vocabulary to relate fine-grained sense differences.

In the 1990s, researchers began integrating additional lexical resources into WSD methods.
Miller et al. [11] offered a knowledge-rich approach relying on their former-proposed lexical
resource, WordNet [12]. WordNet is positioned beyond typical Machine-readable dictionaries
(MRDs), such as the Longman Dictionary of Contemporary English (LDOCE), because WordNet
encodes a comprehensive semantic network of concepts [4]. WordNet groups English words
into sets of synonyms called synsets and provides definitions and relationships between them.
By incorporating WordNet into WSD methods, researchers aimed to improve the accuracy of
WSD by providing more information about the senses of a word, such as its definition, syn-
onyms, and antonyms. Other semantic resources, such as thesauri, ontologies, and machine-
readable dictionaries, were also used to provide more information about word senses. However,
these resources have limitations, including vulnerability to human errors and inconsistency, in-
completeness and not being up-to-date, and being language-specific. Additionally, many WSD
methods incorporating WordNet or other resources are based on manual sense annotation and
may not generalize well to unseen words or new domains.

There have been many studies suggesting modifications for the Lesk WSD method based on
the lexical knowledge gloss [13], [14], [15]. In 2002, Banerjee et al., [14] proposed the Adapted
Lesk algorithm, which builds on the original Lesk algorithm by incorporating the WordNet lex-
ical database into the method. The Adapted Lesk algorithm compares the definitions, syn-
onyms, and antonyms of the ambiguous word to its local context and senses in WordNet to
determine the most likely sense of the word. This approach aims to improve the accuracy of
WSD by providing more information about the meanings of a word and addressing some of the
limitations of the original Lesk algorithm. Although it is an improvement over the original Lesk
algorithm, it still relies on external resources for its functionality. It may struggle to differentiate
between similar word senses or in unclear contexts. Furthermore, its manual sense annotation
leads to poor performance when applied to new words or in different domains.

Distributional semantics methods in WSD were the most dominant methods applied in the
2000s. The methods focused on using the distributional properties of words in a large corpus of
text to determine their meaning. These methods rely on the idea that words that occur in similar
contexts tend to have similar meanings. The most likely sense of the word was determined
by analyzing the context in which a word appears. Distributional semantics methods, such as
Latent Semantic Analysis (LSA) [16] and Latent Dirichlet Allocation (LDA) [17], are effective in
WSD and have been used to improve the accuracy of other WSD methods, including the Lesk
algorithm and the Adapted Lesk algorithm. However, distributional semantics methods have
limitations, such as reliance on a large corpus and difficulty distinguishing similar word senses
or unclear contexts.

In recent years, deep learning methods have been applied to WSD tasks. These methods,
mostly RNN-based models such as LSTM [18], are effective in WSD by leveraging the large
amounts of data available in the form of text corpora. Additionally, these methods are capa-
ble of learning distributed representations of words, which capture the meaning of a word in a
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high-dimensional vector space. The ability allows them to handle polysemy and handle words
in context. Furthermore, these methods can also be pre-trained on large amounts of text, which
then are fine-tuned on smaller, domain-specific datasets. However, these methods require large
amounts of labeled data and computational resources to train, which can be a limitation. Be-
sides, these methods may struggle to generalize to out-of-vocabulary words or words not seen
during training. Despite these limitations, deep learning methods were state-of-the-art in WSD
tasks in the 2010s.

In recent years, pre-trained models have become a prominent tool in natural language pro-
cessing tasks such as WSD. These models, such as ELMo [1], GPT-2 [19], and BERT [20], are pre-
trained on a large corpus of text and fine-tuned on a smaller task-specific dataset. This practi-
cal idea enables the models to achieve promising performance on a wide range of NLP tasks by
leveraging the knowledge learned from the large corpus of text, making them highly effective in
handling complex language understanding tasks such as WSD. Additionally, these pre-trained
models often incorporate word embeddings, allowing the model to capture the meaning and
context of words in a more sophisticated manner, leading to improved performance in tasks
such as WSD.

2.2 Word Embeddings

To make a word suitable for mathematical computations, vector embedding methods are used.
In NLP, word embeddings represent words or phrases as numerical vectors in a high-dimensional
space. These vectors encode the meaning and context of the words, enabling them to be used
as input to machine learning algorithms. Word embeddings can be learned from large text
datasets and have proven useful for a variety of language-related tasks, such as text classifi-
cation, translation, and generation. Subsections 2.2.1, 2.2.2, and 2.2.3 provide an overview of
various embedding methods.

2.2.1 Statistical methods

Vector Space Models (VSMs)

Vectors were a popular mathematical representation for linguistic units even before the emer-
gence of machine learning and were first used to represent natural language by Salton and oth-
ers [21]. The original use of vectors represented documents as a set of vectors based on word
frequency. VSMs convert linguistic units into numerical representations or vectors that capture
their meaning and context. This process involves tokenizing the text into individual words, cre-
ating a vocabulary of unique words, representing each unit as a vector containing counts of the
words related to the unit. The Term-Document Matrix [22], and the Word-Context Matrix [23]
are two common vector space models used to represent text data.

A Document-Term Matrix (DTM) is a mathematical representation that describes the fre-
quency of terms in a collection of documents. It is a type of document-feature matrix where
"features" can refer to various document properties apart from terms. The matrix has rows
corresponding to the documents and columns representing the terms. The transpose of this
matrix is known as the Term-Document Matrix, where terms are the rows and documents are
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the columns. This matrix is widely used in natural language processing and computational text
analysis. The value of each cell in the matrix is usually the raw count of a given term, but there
are various weighting schemes, such as row normalization and tf-idf [24]. The terms in the ma-
trix are often unigrams, which are single words separated by whitespace or punctuation. This
representation is also known as a "bag of words" representation because it retains the count of
individual words but not their order in the document.

Word-Context Matrices are a type of matrix representation used to encode the meaning of
words in a document. Words in a document and their context are represented as rows and
columns in the matrix [23]. The value at each cell corresponds to the frequency with which a
context word appears in the context of the target word, i.e., this idea is similar to the statistical
semantics hypothesis, which asserts that documents have a matching distribution of vocabu-
lary usage. In this case, the assumption is that words have a similar distribution of vocabulary
usage in their proximity [25].

In word-context matrices, the context window determines the breadth of the context used to
define the meaning of the word and therefore affects the accuracy of the matrix representation
of the meaning. Models like latent semantic analysis (LSA) [16] and latent semantic indexing
(LSI) [26] are based on the idea that words that emerge in similar contexts have the same mean-
ings. These models use the word-context matrix representation and analyze the relationships
between the rows and columns to identify the underlying latent semantic structure of the doc-
ument collection.

2.2.2 NN-based methods

Word2Vec

Among the global embedding methods, word2vec [27] is one of the most widespread. It es-
timates the meaning of words based on their occurrences in the text. More specifically, Con-
tinuous Bag Of Words (CBOW) and Skip-grams are flavors of the Word2Vec algorithm. In this
approach, given a corpus, the model slides over all words of each sentence to either predict the
neighbors by using the current token (Skip-gram) or guess this word by the knowledge of the
context (CBOW). Although Word2Vec and other similar global embedding methods consider
the meaning of a word, these models are context-free. Thus, a context-dependent model is
needed to have different vectors for possibly multiple senses of a word.

GloVe

GloVe (Global Vectors) [28] is a Stanford University word embedding method used to denote
semantic relationships between words in a language, generating dense vector representations
of words. GloVe works by training an extensive neural network on a dataset of co-occurrence
counts derived from a corpus of text. The neural network is trained to predict the co-occurrence
counts of word pairs in the corpus, given the vectors of the individual words. This process
results in word vectors that capture the semantic relationships between words in the corpus.
GloVe combines two successful approaches: global matrix factorization and the prediction of
context words by neural network approaches. Consequently, it learns word vectors across the
entire corpus of text. The global perspective allows GloVe to capture the broader context and
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meaning of words, which makes it particularly useful for tasks such as document classifica-
tion and language translation. The Continuous Bag-Of-Words (CBOW) in the Word2Vec model
achieved an accuracy of 68.4% on various word analogy tasks, but GloVe improved upon that
score with 75.9% accuracy. The output of this model is two equivalent vector representation
spaces for words, but these spaces are not the same due to the random initialization of neural
networks. The researchers also found that summing these two vector spaces results in a vector
space that is less prone to overfitting and noise [28].

FastText

To address the issue of out-of-vocabulary words in word vectors, Bojanowski et al. present a
method that improves the representation of rare or unseen words in word vector models by
incorporating subword information. The FastText architecture allows accounting for subword
information by using character n-grams [29].

In FastText, each word is represented not only by itself but also by a set of n-grams (se-
quences of n consecutive characters) that make up the word, with special boundary symbols <
and > added to the beginning and end of each word. For instance, with n = 3, the word ’where’
would be represented by the sequence <where> as well as the following character n-grams: <wh,
whe, her, ere, re> In this process, skip-gram embedding is learned for each n-gram that makes
up the word. The final representation of the word is obtained by adding together the embed-
dings of all of its constituent n-grams. For example, the term ’where’ would be represented by
the sum of the embeddings of its constituent n-grams [3].

ELMo

Embeddings from Language Models (ELMo) is a deep learning method for NLP tasks that re-
searchers at the Allen Institute for Artificial Intelligence introduced in 2018 [1]. It is a type of
word representation learned from a large text dataset and then fine-tuned for specific NLP tasks.
Unlike traditional word embeddings, which are typically trained using a fixed vocabulary and
are not context-dependent, ELMo embeddings are learned from the context in which words ap-
pear. This feature allows ELMo to capture more nuanced and task-specific meanings for words,
which can improve the performance of NLP models on tasks such as language translation, text
classification, and question answering. ELMo uses a deep bidirectional language model (BLM)
to learn the embeddings, which enable it to capture contextual information from both the left
and right contexts of each word that is shown in Figure 2.2a. The BLM is trained on a large
dataset of text and can be fine-tuned for specific NLP tasks by adding task-specific layers on
top of the pre-trained model. The word representations are generated by foremost represent-
ing the word as a sequence of character n-grams and then passing this representation through
multiple layers of a deep neural network. The final representation of the word is generated by
concatenating the outputs of all the layers and adding task-specific weight matrices to produce
context-dependent word embeddings.

ELMo was a cutting-edge NLP model at the time of its development and has been widely
utilized in both industry and academia. It has also inspired the development of other context-
aware word representation methods [1]. The two-phase training process in ELMo and transformers-
based models are comparable, in that they are first trained on word prediction given a large cor-
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(a) The architecture of ELMo (image taken from [1]). (b) Working principle of GPT. (c) Working principle of BERT.

Figure 2.2: An overview of context-aware language models

pus of text and then fine-tuned on specific tasks. However, the way they represent words and
process language makes them distinct. ELMO and transformer-based models use different ap-
proaches to represent language. ELMO uses a combination of character n-grams and context-
dependent embeddings to capture the meaning of words in context. In contrast, transformer-
based models use self-attention mechanisms to model long-range dependencies and learn con-
textual representations directly from the input. This difference is because each word is repre-
sented as a linear combination of all the words in the input sequence, with weights that are
learned based on the relationships between the words in the self-attention mechanism. This
allows transformer-based models to capture long-range dependencies and relationships in the
input language, which can result in more powerful and nuanced word representations. In the
following subsection we give a detailed description of transformers.

2.2.3 Transformer-based methods

Transformers are a type of neural network architecture that have proven to be more effective
than LSTM or any other Language Models [30]. Two prevalent Transformer-based Pre-trained
Language Models, BERT and GPT, have achieved state-of-the-art results in various NLP tasks,
which are elaborated on in the following parts. Figure 2.3 illustrates the transformers’ archi-
tecture. The attention mechanism is a key component of transformer-based models that al-
lows the model to selectively focus on certain parts of the input sequence when making pre-
dictions, enabling the capture of long-range dependencies and contextual information in NLP
tasks. This objective is achieved by allowing the model to focus selectively on certain input parts
and weight them differently. By doing so, the attention mechanism enables the transformer to
dynamically adjust its processing to understand the input and context better. This practical idea
is why attention is often referred to as the key of transformers, as it allowed the model to achieve
promising performance when it was proposed on a wide range of NLP tasks. Transformers con-
sist of encoders and decoders, which work together to process input sequences and generate
output sequences. The encoder processes the input sequence and generates a set of hidden
states, which capture the contextual information from the input. The decoder then takes these
hidden states and generates the output sequence, which can be a translation, a summary, or
any other desired output in an autoregressive way. BERT and GPT are both transformer-based
language models, but BERT uses the encoder component of transformers, and GPT employs
the decoder segment.
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Figure 2.3: The transformers’ architecture. The encoder, including a multi-headed atten-
tion block, is the top component, and the decoder, an autoregressive part with two atten-
tion blocks, is on the bottom.

In the field of context-oriented embedding techniques, there are two widely adopted strate-
gies for leveraging pre-trained language models in downstream tasks: feature-based and fine-
tuning. In the feature-based approach, words are embedded context-specific by considering
additional features, such as part-of-speech (POS) tags, entity types, or attention scores, in addi-
tion to their word form. These features generate a separate representation for each word in each
context, allowing the model to capture the subtle variations in meaning that arise from different
contextual uses. On the other hand, fine-tuning is adapting a pre-trained language model to a
specific task, such as sentiment analysis or named entity recognition, by continuing training on
a smaller task-specific dataset. In fine-tuning, the model’s parameters are updated to improve
its performance on the specific task. Fine-tuning aims to leverage the knowledge learned from
a sizeable pre-trained model and transfer it to the new task, which can be accomplished with
relatively small amounts of training data.

Embeddings from Language Models (ELMo) [1] are categorized in feature-based approaches,
and GPT [31] and BERT [20] are fine-tuning-based techniques.

GPT

The Generative Pre-Training (GPT) model [31] is a transformer-based language model devel-
oped by OpenAI that is capable of manipulating the semantics of words in context. GPT has
been trained on an extensive collection of unstructured text data and is able to perform well
on various downstream tasks. One of the advantageous features of GPT is its use of the trans-
former decoder, which enables it to model language as an auto-regressive model that generates
the next word based on its previous context. Figure 2.2b illustrates the overall architecture of
GPT.

The three models, GPT [31], GPT-2 [19], and GPT-3 [32], depict the evolution of the model
and demonstrate how sophisticated these models have become. Figure 2.4 illustrates a chrono-
logical development of the model architecture. All three models use the Transformer archi-
tecture and share standard components in their structure, including multi-layer self-attention
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mechanisms, fully connected feedforward layers, and pre-training on massive amounts of text
data. These common elements allow the models to process sequential data effectively and gen-
erate human-like text. Each newer GPT model has introduced new capabilities and improve-
ments over the previous model, including larger model sizes, increased training data, and new
abilities for performing NLP tasks.

Figure 2.4: The Evolution of GPT: From GPT-1 to GPT-3. The performance of newer mod-
els in most NLP tasks, from chatbots and virtual assistants to more complex tasks such as
question answering and text summarization, outweigh prior ones.

GPT-3.51 is the latest and improved version of the GPT-3 language model developed by Ope-
nAI. It was launched in April 2022 and offers enhanced performance and efficiency thanks to
its more extensive and diverse training dataset, advanced architecture, and training process.
Meanwhile, Codex is a fine-tuned model of GPT-3 released in July 2021, which was trained on
both text and code to generate programming code from natural language inputs. However, it is
not part of the GPT-3.5 family of language models.

ChatGPT is a language model explicitly designed for generating responses to user queries in
a conversational setting. It was released in November 2022 and is based on the GPT-3.5 architec-
ture. Unlike GPT-3.5, ChatGPT has been fine-tuned on conversational data, which allows it to
excel at developing coherent and relevant responses to a wide range of user inputs. It includes
features such as context tracking and persona-based generation to enhance its performance
in this specific application. Figure 2.5 illustrates the development of ChatGPT and its origins
back to the initial GPT-3 model and examines the evolution of the GPT-3.5 family of language
models.

The word embedding process in GPT models includes learning continuous vector repre-
sentations of words during pre-training on a massive corpus of text data. The model learns to
predict the next word in a sequence based on the preceding words. The learned word embed-
dings are then retained constant during fine-tuning on a smaller task-specific dataset, while the
remaining model parameters are changed to execute a specific NLP job like sentiment analysis
or machine translation. Word embeddings are critical to the model’s capacity to comprehend
and create human-like text.

Biases limit the GPT models in the output due to the training data, a large amount of high-
quality training data requirements, difficulty interpreting their outcomes, high computational
requirements, and problems in fine-tuning for specific NLP tasks. Besides, the GPT models

1https://platform.openai.com/docs/model-index-for-researchers/
models-referred-to-as-gpt-3-5
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Figure 2.5: The diagram shows the GPT-3 series and the evolution of the GPT-3.5 series,
which includes several variants such as Davinci, Codex, and InstructGPT. These models
were trained on massive amounts of text and code data and were fine-tuned using super-
vised and reinforcement learning techniques. The ChatGPT model is the latest member of
this family and was designed explicitly for generating responses to user queries in a conver-
sational setting.

are left-to-right unidirectional, meaning they generate predictions based solely on the previous
tokens in a sequence and do not consider future tokens that might be generated.

BERT

BERT (Bidirectional Encoder Representations from Transformers) [20] is a transformer-based
model applicable to NLP tasks that researchers introduced at Google in 2018. It is designed to
pre-train deep bidirectional representations from large amounts of unlabeled text data, which
can then be fine-tuned for specific NLP tasks such as text classification, question answering,
and language translation. One of the marked innovations of BERT is its use of self-attention
mechanisms [30], which allow the model to consider the context of each input word concerning
all the other words in the input sequence. The method enables BERT to capture long-range
dependencies in the input text, which is essential for most NLP tasks. BERT also utilizes a multi-
headed attention mechanism, allowing it to attend to multiple input tokens simultaneously.
BERT has achieved state-of-the-art performance on a wide range of NLP benchmarks and has
been widely adopted in industry and academia. It has also inspired the development of many
other transformer-based models for NLP tasks.

There is a wide range of NLP applications that BERT performs state-of-the-art. BERT is
widely used in areas such as Information Retrieval, Information Extraction (e.g., name entity
recognition, event detection, and relation extraction), Text Classification, Text Generation (e.g.,
poetry, joke, and story), Text Summarization, Question Answering, and Machine Translation
[33].

BERT-base and BERT-large are two versions of the BERT. The former has 12 layers and 110
million parameters and is trained on a dataset of approximately 3.3 billion words. The lat-
ter, with 24 layers and 340 million parameters, is trained on a dataset of roughly 16 billion
tokens. Both models use a transformer-based architecture and utilize word embeddings and
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self-attention mechanisms. Still, BERT-large has additional layers and a more significant pa-
rameter size, allowing it to capture the complexities of language better and leading to improved
performance on many tasks.

During training, BERT represents each word as a vector in a high-dimensional space (768 in
BERT-base and 1024 in BERT-large). One prominent feature of BERT is that it is bidirectional,
meaning that it considers the context both to the left and right of each word in the input sen-
tence. This capability allows BERT to better understand the context of words in a sentence (see
Figure 2.2c). Rather than relying on the traditional left-to-right approach for predicting the next
word in a sequence, BERT uses a bidirectional algorithm called Masked Language Model (MLM)
that randomly masks tokens of a text. This merit allows the model to see a word itself implic-
itly and to predict its id based on the context, leading to a more accurate understanding of the
text. BERT’s input representation combines token, segmentation, and position embeddings to
form the final input embeddings. The token embeddings represent each word in the input text
as a vector and capture its meaning and context. The segmentation embeddings differentiate
between different segments or sentences in the input, and the position embeddings encode the
position of each word and help the model understand its context. These embeddings provide
BERT with a rich representation of the input text, allowing it to effectively process and under-
stand the input to make predictions or perform other natural language processing tasks.

Figure 2.6: BERT embedding provides a rich representation of words and their contexts. It
allows the model to effectively process and understand the sentence and use this informa-
tion to make predictions or perform other NLP tasks[20].

The training process comprises two phases: an unsupervised phase that is used for pre-
training and a supervised one that is used for fine-tuning [20]. Figure 2.7 shows the structure of
the pre-training and fine-tuning processes in BERT, which are similar but serve different pur-
poses. Pre-training involves training the model on a large dataset of unannotated text to predict
the next word in a sequence. In contrast, fine-tuning consists of adapting the model to a spe-
cific task or dataset by training on a smaller, labeled dataset. Pre-training helps the model learn
the structure and context of language, while fine-tuning further refines the model’s abilities to
perform specific tasks such as NER2 and answering questions on the SQuAD3, a popular bench-
mark dataset for testing and evaluating machine reading comprehension systems.

The relevant BERT variants

Pre-trained language models like BERT have shown promising performance across various NLP
tasks, including WSD. However, classic BERT models do not link each embedding to a specific

2Name Entity Recognition
3Stanford Question Answering Dataset
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Figure 2.7: The pre-training and fine-tuning procedures for BERT involve using the same
model structure, except for the output layers, and initializing the model with pre-trained
parameters for downstream tasks. All parameters are fine-tuned during fine-tuning. The
input to the model includes a special symbol, [CLS], at the beginning of each example, and
a separator token, [SEP], to separate segments in the input. These symbols help the model
process and understand the input text [20].

sense of the target word, which might limit their performance on sense-level tasks. In response,
several variants of BERT have been proposed for sense-level embedding extraction.

One of these variants is SenseBERT [6], which pre-trains using a sense-tagged corpus to
incorporate sense-level information, considerably improving its WSD performance. The pro-
posed model predicts masked words and their WordNet super-senses, demonstrating promis-
ing performance in lexical-semantic understanding. The output of SenseBERT consists of the
predicted word and its corresponding sense, which the model jointly predicts.

Similarly, GlossBERT [8] incorporates glosses from WordNet to enhance word representa-
tions in context. Specifically, GlossBERT pre-trains on a large unlabeled corpus and uses glosses
from WordNet to augment the input representation of each word. This additional information
allows GlossBERT to better capture the various senses of a word, improving its performance on
sense-level tasks such as WSD. In addition, GlossBERT also employs a novel task called gloss
prediction, which involves predicting the glosses of a masked word using the glosses of other
words in the same sentence. This task encourages the model to learn the relationships between
words and their corresponding glosses, further improving its ability to handle sense-level tasks.

Blevins et al. [7] propose a bi-encoder (context and gloss encoder) model that separately en-
codes the target word with its surrounding context and the dictionary definition of each sense
to address the uneven distribution of word senses in WSD. The encoders are jointly optimized,
allowing sense disambiguation by finding the nearest sense embedding for each target word
embedding. Their system outperforms previous models, achieving a 31.1% error reduction on
less frequent senses, demonstrating that rare senses can be more effectively disambiguated by
modeling their definitions. The authors accomplished these results by jointly fine-tuning mul-
tiple pre-trained encoders on WSD and using a bi-encoder model built on top of BERT to im-
prove performance on rare and zero-shot senses. Overall, their approach significantly reduces
the performance gap between frequent and rare senses in WSD.

BERT geometry

Reif et al. [9] investigated the geometry of BERT to gain insights into how the model internally
represents linguistic information. They found that BERT exhibits a fine-grained geometric rep-
resentation of word senses and that linguistic features appear separated in semantic and syn-
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tactic subspaces. Their work also presents empirical descriptions of syntactic representations
in attention matrices and individual word embeddings, providing a deeper understanding of
how BERT processes language. In addition, they proposed two types of interpretable visualiza-
tions for word embeddings, PCA-based and UMAP-based, that allow for a better understanding
of how BERT models represent language. Their findings provide meaningful insights into the
inner workings of BERT and can be leveraged to improve its performance on various NLP tasks,
including WSD.

Providing more context about the abovementioned work, the authors manually annotated
some words, such as fair meanings (see Figure 2.8), to illustrate the context-dependent nature
of word senses. While their annotation process resulted in distinct clusters for the different
senses, it was not automated. Additionally, they presented examples of clustering and visu-
alization without evaluating their performance since no labels were available for evaluation.
Therefore, future research could focus on developing automated methods for evaluating the
performance of these visualizations and their potential applications in improving the perfor-
mance of BERT on various NLP tasks.

Figure 2.8: The picture from Reif et al. [9] illustrates the context-dependent nature of word
senses by manually annotating the different meanings of the word fair. The authors found
that BERT exhibits a fine-grained geometric representation of word senses, and linguistic
features appear separated in semantic and syntactic subspaces.

While Reif et al.’s [9] work on BERT embeddings has provided valuable insights into the ge-
ometry of language representations, manual annotation processes can be time-consuming and
subjective. More work is needed on developing automated methods for visualizing and inter-
preting the structure of BERT embeddings. Automated visualization methods for large-scale
BERT models can reduce the reliance on deep learning expertise for linguistic scholars, bridg-
ing the gap between data science and linguistics. By enabling faster and more efficient iteration
and experimentation, these methods can facilitate the discovery of new insights into the nature
of language and the structure of BERT embeddings. To address this gap, our research concen-
trates on investigating how embeddings can be employed to differentiate between distinct word
senses and cluster them into related groups as an interpretable visualization for linguists.
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2.3 Word Embedding Visualization

Human visual perception is limited to a maximum of three dimensions, making it challeng-
ing to visualize higher-dimensional data or spaces. In this regard, dimensionality reduction
techniques can map high-dimensional embedding vectors in lower dimensions that are more
meaningful representations that we can interpret. Word embeddings can be effectively visual-
ized and provide insights into the underlying relationships and structure in this way. Dimen-
sionality reduction is the process of reducing the number of features (dimensions) in a dataset
while retaining as much information as possible. One of the main applications of dimensional-
ity reduction is the ability to visualize high-dimensional data in 2D or 3D space. By projecting
the data onto a lower-dimensional space, it becomes possible to create scatterplots and other
visualizations that can help to understand and analyze the data.

Figure 2.9 demonstrates the utilization of dimensionality reduction techniques to map three-
dimensional data onto a two-dimensional plane. As depicted in the example, the process suc-
cessfully represents the data points, assuming linear separability. However, in the case of a
complicated manifold of data, the method may not satisfactorily discriminate data in low di-
mensions because some information may be lost during the mapping process when applied to
high-dimensional vectors, such as the 768-dimensional word embeddings generated by BERT.
Despite this, a survey by Sorzano et al. [34] discussed numerous previous studies that demon-
strated the efficacy of dimensionality reduction techniques for visualizing complex data struc-
tures in 2D and 3D.

Figure 2.9: Dimensionality Reduction: Mapping 3D Data onto a 2D Plane.

This technique is especially practical when working with high-dimensional embedding such
as BERT-base. Although there are numerous dimensionality reduction methods available, PCA,
UMAP, and t-SNE are among the most widely used techniques in NLP research. This is because
they are computationally efficient, easy to interpret, and have been demonstrated to be effec-
tive for visualizing word embeddings. As a result, many researchers in the field choose these
methods to gain insight into the structure of large-scale language models such as BERT. Below
is a quick review of these three methods.

• Principal Component Analysis (PCA) [35]: A technique that projects the data onto a new
set of axes chosen to maximize the variance of the data on the first dimensions. To com-
pute the principal components, PCA first standardizes the data by subtracting the mean
and scaling the features to have unit variance. It then calculates the covariance matrix,
which represents the correlations between the different features. Finally, it computes the
eigenvectors of the covariance matrix, which are the principal components.
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• Uniform Manifold Approximation and Projection (UMAP) [5]: The main idea behind UMAP
is to preserve the pairwise distances between the points. To do this, UMAP first constructs
a weighted graph in which the nodes represent the data points, and the edges represent
the distances between the points. It then uses a technique called "stochastic gradient de-
scent" to find a low-dimensional embedding of the data that preserves the structure of
the graph as well as possible.

• t-distributed Stochastic Neighbor Embedding (t-SNE) [36]: A non-linear model that works
by mapping the data points to a lower-dimensional space in a way that preserves the local
structure of the data. t-SNE tries to keep nearer points in the original dimension closer to-
gether in the lower-dimensional space and creates a distance between far original points
in the mapped space. t-SNE uses a Gaussian distribution to create the distance between
data points in the lower-dimensional space. A conditional probability proportional to
a Gaussian kernel centered on the point of interest measures the distance between two
points. The variance of the Gaussian kernel is chosen so that nearby points in the high-
dimensional space are still relatively close in the low-dimensional space, while distant
points in the original space are farther apart in the projected space. This technique pre-
serves the local structure of the data in the lower-dimensional space while separating
distant points.

While PCA is widely used for dimensionality reduction, it assumes that the data is linearly
separable and may not effectively capture non-linear relationships between data points. UMAP
and t-SNE, on the other hand, are non-linear methods that are better suited for capturing com-
plex, non-linear relationships in the data. UMAP preserves the global structure, while t-SNE is
particularly good at maintaining local structure in the data. Both methods have been shown to
be effective for visualizing high-dimensional data, including word embeddings. Therefore, us-
ing all three methods can provide a more comprehensive understanding of the data structure,
as each method has its own strengths and limitations.

2.4 Clustering

Clustering is an unsupervised method that is supposed to group similar words together, making
it easier to see patterns and relationships between words. For example, in the case of visualiza-
tion of adjectives in hotel reviews, the dataset we explore in this work, we expect that clustering
can help you see that words like "good," "great," and "excellent" are all grouped in the same
cluster, whereas words like "bad," "terrible," and "awful" are grouped in a separate one. In the
task of word embedding visualization, several clustering algorithms can be used, including k-
means [37], and Agglomerative Hierarchical Clustering (AHC) [38]. While k-means is a simple
and widely used algorithm for visualization purposes, we expect to find the optimal number of
clusters by utilizing AHC, which employs a tree-like dendrogram to provide a visual represen-
tation of the clusters similar to how humans perceive them. DBSCAN [39] is useful when the
number of clusters cannot be set manually, as it finds the number of clusters automatically.

K-means [37] is an iterative algorithm that partitions a set of n data points into k clusters
in which k is specified as a hyperparameter in advance. Typically, the initial centroids are cho-
sen randomly from the data points. The algorithm then iteratively updates the centroids by
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computing the mean of all the data points assigned to each cluster and reassigning each to
the category whose centroid is closest to it. This process is repeated until the centroids of the
clusters stop moving, or a predetermined number of iterations is reached. K-means is popular
because it is simple to understand and implement and can be used to discover patterns in large
datasets quickly. It is also scalable, meaning it can handle enormous numbers of data points
and clusters. Additionally, the algorithm can be used with different distance metrics, making it
versatile for word embedding clustering.

Agglomerative Hierarchical Clustering (AHC) [38] is a bottom-up clustering algorithm that
starts with each data point as its own cluster and iteratively merges the closest groups to form
a hierarchy of clusters. The algorithm first calculates the distance between each data point pair
using a metric such as Euclidean or cosine distance. Then, the closest data points are combined
into a single cluster until all data points are in a single cluster or a predetermined number of
clusters is reached. To represent the hierarchical structure, a dendrogram is a tree-like diagram
that shows the order in which clusters were merged and the distances between linked clusters
at each level. The threshold of a dendrogram is a cut-off point used to determine the number
of clusters by selecting a level in the dendrogram that corresponds to a desired number of clus-
ters. Clusters merged below this level will be considered a single cluster, while those above will
be considered separate clusters. The threshold can be determined by methods like the elbow
method [40] or the silhouette score [41], which helps to identify the optimal number of clusters.

In the case of using clustering algorithms for visualization, a hierarchical representation
of the word relationships, with similar words grouped and displayed as branches or clusters,
can be a choice. Figure 2.10 illustrates an example of this method that can be employed to
(1) determine an appropriate measure of similarity for grouping the words; (2) deliver the best
way to represent the hierarchy of word relationships in the visualization; (3) ensure that the
algorithm accurately groups similar words rather than words that happen to be nearby in the
embedding space due to other factors.

Figure 2.10: A dendrogram illustration of word ’great’ for 25 senses of this word in SemCor dataset.

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [39] is a density-
based clustering algorithm that groups data points that are closely packed together and sep-
arate data points that are farther apart. It works by defining clusters as areas of high density
separated by areas of low density. The algorithm starts by selecting an arbitrary point, called a
seed point, and then finds all the data points in its neighborhood that are within a certain dis-
tance threshold, called Eps. These points are considered part of the same cluster. The algorithm
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then proceeds to find all the points that are within Eps distance of any point in the cluster and
adds them to the cluster as well. This process is repeated until no more points can be added
to the cluster. The density-based approach of DBSCAN allows it to find clusters of any shape, it
can identify noise points, and it is not sensitive to the initial conditions.
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Chapter 3

Data

This chapter provides an overview of the data sources used in this thesis. The first section de-
scribes WordNet, a lexical database that provides lists of senses for words and their relations
to each other. The second section introduces the Brown Corpus, a collection of texts used as
the basis for SemCor, a corpus annotated with WordNet senses. The third section discusses the
SemCor corpus itself, which is used for supervised sense disambiguation. The fourth section
presents our manually annotated data, which is used to assess the quality of the SemCor an-
notations. Finally, the chapter concludes with a brief description of the Hotel Reviews dataset,
utilized as a case study to evaluate our proposed approach.

3.1 WordNet

WordNet [12] is a computational lexical database1. It describes the semantic relations between
words in more than 200 languages with brief definitions and examples. WordNet can be consid-
ered a combination of dictionary and thesaurus, which is utilizable by either web browsers for
human users or in automatic text analysis and AI applications. It was created at Princeton Uni-
versity and focuses on linking words in terms of semantic associations, including synonyms,
meronyms, and hyponyms. In WordNet, each word is assigned one or more senses, and each
sense is represented as a "synset" (a set of synonyms). Each synset is a group of words that are
synonyms and that are all used to express a specific concept. Therefore, concepts are encoded
into synsets; for instance, each of six sense of the term great, in its adjective role, is catego-
rized into six distinct synsets in WordNet. As observed in Figure 3.1, the synset denoting "major
significance or importance" is composed of two constituents, great in its second meaning and
outstanding in its fourth meaning.

These synsets are arranged in a graph that displays connections such as hypernym/hyponym
(more or less specific), antonym, and numerous other relationships. Figure 3.1 is the definition
of great with all label systems in the WordNet thesaurus2. To elaborate, the word great can have
an adjective meaning large in size or number, important, remarkable, very good, uppercase, and
in an advanced stage of pregnancy. This webpage provides extra lexical and sense information
about the looked-up word via the dropdown menu "Display Options".

1An online thesaurus, i.e., a database that represents word senses.
2http://wordnetweb.princeton.edu/perl/webwn
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Figure 3.1: Online WordNet thesaurus pro-
vides glosses, frequency counts, example sen-
tences, database locations, sense keys, and
sense numbers of a query.

The English version currently available
through the Princeton website is WordNet
3.13 [42], holds approximately 155,000 words
collected in over 117,000 synsets. The En-
glish version of WordNet comprises four
databases: one for each nouns, verbs, adjec-
tives and adverbs, with few cross-POS point-
ers4. Closed class words are not included
in these databases, which do not change or
add new members to a language (such as
pronouns, conjunctions, and prepositions).
There are a total of 117,798 nouns, 11,529
verbs, 22,479 adjectives, and 4,481 adverb,
with nouns having an average of 1.23 senses,
verbs having an average of 2.16 senses, adjec-
tives 2.06 senses, and adverbs 1.59 senses.

3.2 Corpora

A corpus, or collection of text data, is an es-
sential tool in natural language processing
and computational linguistics. Corpora are
used to train and evaluate models, and are
used for various types of linguistic analysis
[43]. Corpora such as Brown and SemCor are rich data sources for natural language processing
tasks. They are essential for understanding the structure and meaning of the language. They
allow researchers to analyze the frequency and distribution of words and phrases and to gain
insights into the patterns and relationships that exist in language. Since this study is based on
these corpora, this subsection is dedicated to their basis.

3.2.1 Brown Corpus

The Brown Corpus has been a widely-used linguistic resource consisting of a carefully selected
sample of written texts representing a broad range of American English, including 15 genres.
Compiled in the 1960s, the corpus has been instrumental in advancing our understanding of the
structure and usage of the English language and is widely cited in linguistic research. The Brown
Corpus comprises 500 text samples, each around 2,000 words in length, taken from various
genres such as fiction, newspaper articles, hobbies, government, and academic writing. The
corpus has a total size of 1,161,192 words. The corpus includes a total of 57,340 sentences and
56,057 unique words, or ’word types’. The number of occurrences of a particular word (type)
in the corpus is known as its word (token) frequency [44]. Researchers have used the corpus to
study a range of linguistic phenomena, including vocabulary, syntax, and grammatical features,

3WordNet 3.1. Can be accessed either online or by downloading it on a local machine.
4https://wordnet.princeton.edu/
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and to develop computational models of language processing. Although with one million words
extremely small compared to modern corpora, the level of annotation still makes the Brown
corpus useful for specific types of research, such as ours.

3.2.2 SemCor Corpus

The sense-tagged SemCor corpus is a collection of sentences from the Brown corpus that have
been annotated with semantic information. Initially this annotation was done manually us-
ing the WordNet 1.6 sense labels (for SemCor version 1.65) and later automatically mapped to
WordNet 3.0 (for SemCor version 3.0). Overall, SemCor is a subset of Brown corpus built on the
WordNet semantic concordance [45].

The SemCor corpus contains a total of 37,176 sentences, 778,587 chunks, and 820,411 words
of which more than 200,000 have been annotated for their sense. Table 3.1 presents an exam-
ple of each mentioned SemCor component. An investigation of all adjectives in SemCor indi-
cates that SemCor includes 6,031 adjective types that together occur 63,237 times in the corpus.
28,813 are not annotated with any sense tag. Thus, there are 34,424 adjectives with sense labels
in the corpus.

Component Frequency Example

Sentences 37176
The Fulton County Grand Jury said Friday an investigation of Atlanta ‘s

recent primary election produced “ no evidence “ that any irregularities took place .

Chunks 778587
[’The’], [’Fulton’, ’County’, ’Grand’, ’Jury’], [’said’], [’Friday’], [’an’],

, [’investigation’], [’of’], [’Atlanta’], ["’s"], [’recent’], [’primary’, ’election’],
, [’produced’], [’"’], [’no’], [’evidence’], [’"’], [’that’], [’any’], [’irregularities’], [’took’, ’place’], [’.’]

Words 820411
’The’, ’Fulton’, ’County’, ’Grand’, ’Jury’, ’said’, ’Friday’, ’an’

, ’investigation’, ’of’, ’Atlanta’, "’s", ’recent’, ’primary’, ’election’,
’produced’, ’”’, ’no’, ’evidence’, ‘”’, ’that’, ’any’, ’irregularities’, ’took’, ’place’, ’.’

Table 3.1: SemCor components description.

The components are either tagged with their WordNet senses, which are a representation of
the synset, or may be unlabeled. Each sense label is a combination of a part-of-speech (POS)
tag and a WordNet sense identifier distributed under the Princeton Wordnet License and avail-
able in the nltk Python package.It should be noted that the current version of the NLTK Python
package is 3.7, and the WordNet version used in this thesis is 3.0. The POS tags are based on
the Penn Treebank tag set [46], developed at the University of Pennsylvania and consists of ap-
proximately 4.5 million words of text. For each sentence, certain words (open-class words and
multi-word expressions) and named entities (NE) are identified and labeled. Not all expressions
in the sentence are labeled. It is important to note that the labeled synset groups in the text may
not be consecutive (such as in the phrase "get up") and that some elements (usually multi-word
expressions like "on one’s feet") may not be labeled. Closed-class words like articles and prepo-
sitions are only labeled if they are part of a multi-word expression [47]. Table 3.2 provides some
examples of the tagging system employed by SemCor.

5Developed at Princeton University
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Tag System Example

Semantic

[[’The’], Tree(’group.n.01’, [Tree(’NE’, [’Fulton’, ’County’, ’Grand’, ’Jury’])]), Tree(’say.v.01’, [’said’]),
Tree(’friday.n.01’, [’Friday’]), [’an’], Tree(’investigation.n.01’, [’investigation’]), [’of’], Tree(’atlanta.n.01’, [’Atlanta’]), ["’s"],

Tree(’recent.s.02’, [’recent’]), Tree(’primarye l ect i on.n.01′, [′pr i mar y ′,′ el ect i on′]),Tr ee(′pr oduce.v.04′, [′pr oduced ′]), [′"′], [′no′],
Tree(’evidence.n.01’, [’evidence’]), [’"’], [’that’], [’any’], Tree(’irregularity.n.01’, [’irregularities’]), Tree(’takep l ace.v.01′, [′took ′,′ pl ace ′]), [′.′]]

POS

[Tree(’DT’, [’The’]), Tree(’NNP’, [’Fulton’, ’County’, ’Grand’, ’Jury’]), Tree(’VB’, [’said’]),
Tree(’NN’, [’Friday’]), Tree(’DT’, [’an’]), Tree(’NN’, [’investigation’]), Tree(’IN’, [’of’]), Tree(’NN’, [’Atlanta’]), Tree(’POS’, ["’s"]),

Tree(’JJ’, [’recent’]), Tree(’NN’, [’primary’, ’election’]), Tree(’VB’, [’produced’]), Tree(None, [’"’]), Tree(’DT’, [’no’]), Tree(’NN’, [’evidence’]),
Tree(None, [’"’]), Tree(’IN’, [’that’]), Tree(’DT’, [’any’]), Tree(’NN’, [’irregularities’]), Tree(’VB’, [’took’, ’place’]), Tree(None, [’.’])]

Both

[Tree(’DT’, [’The’]), Tree(’group.n.01’, [Tree(’NE’, [Tree(’NNP’, [’Fulton’, ’County’, ’Grand’, ’Jury’])])]), Tree(’say.v.01’, [Tree(’VB’, [’said’])]),
Tree(’friday.n.01’, [Tree(’NN’, [’Friday’])]), Tree(’DT’, [’an’]), Tree(’investigation.n.01’, [Tree(’NN’, [’investigation’])]), Tree(’IN’, [’of’]),

Tree(’atlanta.n.01’, [Tree(’NN’, [’Atlanta’])]), Tree(’POS’, ["’s"]), Tree(’recent.s.02’, [Tree(’JJ’, [’recent’])]),
Tree(’primarye lect i on.n.01′, [Tr ee(′N N ′, [′pr i mar y ′,′ el ect i on′])]),Tr ee(′pr oduce.v.04′, [Tr ee(′V B ′, [′pr oduced ′])]),

Tree(None, [’"’]), Tree(’DT’, [’no’]), Tree(’evidence.n.01’, [Tree(’NN’, [’evidence’])]), Tree(None, [’"’]), Tree(’IN’, [’that’]),
Tree(’DT’, [’any’]), Tree(’irregularity.n.01’, [Tree(’NN’, [’irregularities’])]),
Tree(’takep l ace.v.01′, [Tr ee(′V B ′, [′took ′,′ pl ace ′])]),Tr ee(None, [′.′])]

Table 3.2: There are two types of manual tagging, namely Semantic and POS based, in Sem-
Cor. nltk is a Python package that provides three possible types of labels. Semantic tags
consist of WordNet lemma IDs, with an additional ’NE’ node if the chunk is a named entity
without a specific entry in WordNet. Named entities of type ’other’ do not have a lemma,
while other chunks not in WordNet are not assigned a semantic tag. Punctuation tokens
have a part-of-speech label ’None.’

3.2.3 Manually Annotated Adjectives

Although humans have annotated the SemCor corpus, it is known that many annotations are
inaccurate, particularly for complex words with a higher entropy of sense distribution. As Ben-
tivogli et al. [48] noted: "For example, the word ’pocket’ in the sentence ’He put his hands on
his pockets’ can be misclassified as a pouch or enclosed space (according to the WordNet synset
pouch, sac, sack, pocket), rather than the intended meaning of a small pouch in a garment, due
to the lack of context information" (p.3). This example highlights the limitations of relying solely
on sense inventories like WordNet for NLP tasks. Furthermore, Bentivogli et al. report that their
study’s subset of 4101 labels had an error rate of 2.8%, with a total of 117 errors identified. This
further supports the notion that SemCor labeling may not always be accurate and reliable.

Fellbaum et al. [49], in "Performance and Confidence in a Semantic Annotation Task," dis-
cuss the challenges of sense annotation and the limitations of relying solely on sense inven-
tories like WordNet for NLP tasks. The authors note that even human annotators can provide
false sense annotations. Fellbaum et al.’s assessment included expert and non-expert anno-
tators to measure agreement levels. Results showed 74% agreement between experiment and
expert taggers and 78.6% between experiment-experiment taggers for sense annotation. Al-
though no explicit agreement measurement is mentioned in [49], Bentivogli et al. [48] reported
that Fellbaum et al. used the Dice metric. This fact suggests there is still room for improvement
in sense annotation even when humans are involved in the process. Additionally, they indicate
that the WordNet sense inventory may not always include the intended sense of a word in a
given context, leading to inaccurate sense annotations. These limitations highlight the need for
continued research and development of better methods and resources for sense annotation.

To explore the difficulty of the annotation task to observe inconsistencies, we decided to
annotate the word great in sentences where it appears as an adjective (according to our cri-
teria, i.e., excluding adverbial and nominalized cases) in SemCor. We chose great because it
presents different challenging meanings. One of the supervisors manually annotated the cho-
sen adjective in 174 sentences from SemCor, using a tagset inspired on but not strictly adhering
to WordNet and not inspecting the tag in SemCor. The task was influenced by the demand to
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use only five different tags, the same number found in SemCor. After annotation, we visualize
the embeddings to compare the new and original labels. Table 3.3 provides an overview of the
mentioned annotated labels.

Annotated Label Example frequency

Intense|Extensive
Since the difficulty of drawing

the net is great, we will merely discuss it.
69

Important|remarkable
Here in 1815 the great nations assembled to legislate

not merely for Europe, but for the world.
47

Large in size
The great spire shone as if

the lightning had polished it.
36

Large in count
With the return of our soldiers, it soon became apparent that

the belief was not shared by the great majority of citizens.
15

Very good These are a great aid for planning use back at the office. 7

Table 3.3: Our linguists manually annotated the adjective great in five categories of senses.
There are 174 sentences in the SemCor corpus, including great, which is in the role of an
adjective.

3.3 Hotel Reviews Dataset

The 515K Hotel Reviews Data in Europe is an extensive customer feedback collection on Euro-
pean hotels. This dataset contains more than 500,000 reviews written in English, providing a
wealth of information on 1493 luxurious European hotels. Each review in the dataset includes
details about the hotel, such as its location, amenities, and overall experience. The dataset has
been compiled from the website www.Booking.com by Jason Liu in 2017, which provides in-
formation about the reviewer and the review’s date. The dataset is usually used for sentiment
analysis, gathering customer feedback, or performing market research on the European hotel
industry. The dataset is publicly available from Kaggle6 and is provided in a CSV file containing
17 columns describing hotels and reviews details. These columns include the name, address,
geographical longitude, and latitude of hotels. Besides, the date, score, and nationality are facts
regarding each reviewer. Also, negative reviews, positive reviews, word count, and tags are de-
tails recorded with each review.

In this work, we concentrate on the meanings of adjectives in reviews. So, we only keep
the negative and positive reviews and disregard the rest of the columns in the dataset. Table
3.4 contains relevant figures and some examples of reviews. There is a diversity of perspectives
among the guests, as evidenced by the 479,792 positive and 387,848 negative reviews. Some
reviewers may leave both positive and negative comments, while others might just provide one
or none.

Table 3.5 shows instances in Hotel dataset with different parts of speech and senses of the
word fair.

6https://www.kaggle.com/datasets/jiashenliu/515k-hotel-reviews-data-in-europe
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Connotation Review Example Nr. Reviews Reviews Word Count

Negative
for the rate I paid it wouldn t be

fair to complain about something
387,848 9,561,499

Positive
Pleasant staff wonderful location

clean and simple and fair price
479,792 9,167,995

Table 3.4: Examples of text entered in the negative and positive comment fields.

Figure 3.2: Top twenty nationalities of reviewers.

Index Review Connotation POS Sense

78,935
... The complementary minibar fair use

was not restocked as promised ...
Negative adj legal

15,190
Loved the Sky bar the range of whiskys
were superb the French waiter new his

stuff fair play
Positive adj equitable

38,539
... The breakfast was adequate to my

needs and had a fair share of options ...
Positive adj amount

297,553
The only down side was the noise from

the fun fair even louder from our
balcony in our room

Negative noun gathering

Table 3.5: The sentences that contain the word fair with different parts of speech and senses
in Hotel Reviews dataset.

As our study focuses on adjectives, which require a delicate understanding of their usage,
it is crucial to consult reviews written by native speakers. This reason enhances confidence
in our experimental results. Thus, we examined the availability of such reviews in the hotel
dataset. In this regard, Figure 3.2 illustrates the nationalities of reviewers, indicating that the
United Kingdom has the most reviews, making us keep only them. This choice is particularly
significant in light of the findings of Fellbaum et al.’s study [49], which suggests that accurately
tagging adjectives and verbs are more challenging than tagging nouns and adverbs due to their
higher degree of semantic ambiguity and context-dependent variability.
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Chapter 4

Methodology

In this chapter, we dive into more details of the proposed method of automatization interpret-
ing different intended meanings of a word to answer our research question and sub-questions.
To receive feedback on the feasibility of achieving our goal and the effectiveness of our meth-
ods, we consult with linguists using plots. These plots, which are two- or three-dimensional,
allow us to visually highlight the aspects of adjective use that the linguists are interested in.
This initial step is crucial in determining the success of our efforts. Thus, the goal is to connect
a context-based word embedding to its corresponding sense using a tailored visualization tool
for linguistic studies.

In the following sections, we describe the individual steps in creating these plots. After word
selection and preprocessing, we created embeddings of words using contextual networks, like
ELMo, GPT, and BERT. On the basis of the embeddings we created both low-dimensional pro-
jections and clustering suggestions. These were then visualized for the linguists. All steps are
automated and are intended to be - eventually - integrated into a single interactive tool.

4.1 Word Selection

To conduct the experiment on two levels, senses of a word and word types, the first step in-
volves selecting a list of words that meet specific essential criteria. Regarding sense analysis,
we have chosen words from the SemCor corpus because of the availability of sense tags. We
consider these words’ features, frequency, number of senses, and sense distribution to select
them. Choosing words with a low frequency of both tokens and senses can result in biased
visualization outcomes and poor clustering model performance. Additionally, an imbalanced
distribution of senses may pose a challenge to achieving a well-performing model. Therefore,
our methodology for selecting words for sense-level analysis involves considering these met-
rics.

To measure the spread of senses we calculate the Shannon entropy [50] of their senses in the
SemCor corpus. By knowing the entropy of the sense distribution of a word, we get an indication
of how the different senses are represented. Given the same number of senses, a word with a
higher entropy would indicate a more uniform or evenly distributed set of senses, whereas a
word with a lower entropy would mean a more concentrated or uneven distribution of senses.
For example, assume a word has two senses. If one sense is hardly used at all, the entropy
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would be close to zero. If the two senses are equally likely, the entropy would be one. For our
experiments, equal distribution of senses would be better for visualization analysis training a
clustering, so we would prefer words with higher entropy values.

Since we also explore distinct meanings for similar words, choosing a list of candidate word
types exhibiting subtle nuances in meaning while remaining close in proximity is imperative.
We shall delve into the Hotel review dataset to accomplish this task and filter through the abun-
dance of words available. However, we shall not settle for just any word that crosses our path.
Instead, we shall only pick words surpassing the frequency threshold of fifty, ensuring they are
significant and relevant. In addition, to provide a level of ambiguity, we intentionally select sets
of words that encompass both positive and negative adjectives with similar meanings.

4.2 Preprocessing

4.2.1 SemCor Preprocessing

The downloaded SemCor corpus from package nltk needs to be preprocessed. First, we con-
verted the structure of sentences in the corpus from tagged separated tokens into standard
sentences. Meanwhile, we extracted adjectives and their indices and labels in each mentioned
sentence from Penn Treebank tag set.

4.2.2 Hotel Reviews preprocessing

Many reviewers are non-native English speakers (if we go by their nationality) in the Hotel
dataset. The present study assumes that the reviews left by reviewers from the United King-
dom are likely to utilize words more appropriately. Using only these reviews should give a bet-
ter impression of the system’s functionality. Moreover, the number of available British reviews
is sufficient1 and we can afford to remove the others. We merged all UK negative and positive
review comments, assuming - for now - that the senses of words are mostly independent of the
review’s tone.

The standard preprocessing methods, such as lowercasing, dropping stopwords and remov-
ing punctuation, may not be suitable for visualizing contextualized word embeddings since
stopwords, punctuation, and capitalization can provide useful contextual information. How-
ever, the provider has already omitted the punctuation and casing in the Hotel review dataset
used in this study. Despite this limitation, we have no choice but to continue with the same
version.

4.3 Embedding

In general, larger BERT models have often performed better than its base model [51], [52]. How-
ever, there are exceptions to this rule; For example, BERT-base outperformed BERT-large on the
subject-verb agreement [53], and sentence subject detection [54]. With this in mind, we utilized

1The British left approximately 250K out of 515K reviews in the Hotel dataset.
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BERT-base and GPT-2 pre-trained language models for generating embeddings in this study in-
stead of their larger and more advanced counterparts for two reasons.

Firstly, using larger models such as BERT-large or GPT-3 would require significantly higher
computational resources, which is a practical factor to consider. Secondly, the use of BERT-base
and GPT-2 aligns with the goals of our study, which is to develop a practical and accessible tool
that researchers with limited computational resources can quickly implement. By choosing
these models, we balance computational efficiency, practicality, and performance, ensuring
that a wider audience can effectively use our tool.

We assess the effectiveness of the visualizations of embeddings by collaborating with our
linguists and applying various metrics to measure the quality of the clustering results. In more
detail, the process involves checking the visual representations with the linguists to ensure that
they accurately reflect the intended information and using the metrics explained in one of the
following subsections to quantify the acceptability of the clustering.

Our embedding extractor functions can take as input either preprocessed reviews from the
Hotel dataset or sentences from the SemCor corpus that contain the target word. Before tok-
enization using the provided BERT tokenizer, the input is preprocessed and marked with the
[CLS] and [SEP] tags. The tokenized input is then passed through the BERT model, which gen-
erates a set of hidden states for each word in the input. To obtain the final word embedding, we
select the target word’s output of a specific hidden state layer, represented as a 768-dimensional
vector. ELMo and GPT-2 do not require any preprocessing steps for extracting embeddings, un-
like BERT.

4.3.1 Layer Number Analysis

BERT receives its input in the form of tokens, segments, and positional embeddings at its first
layer [51]. As a result, the lower layers contain the greatest amount of information about linear
word order. However, as the layers progress, linear word order knowledge decreases around
layer 4 in BERT-base, with increased hierarchical sentence structure simultaneously. This has
been confirmed by several studies that used different tasks, datasets, and methodologies [54],
[55], [56]). These findings indicate that syntactic information is most prominent in the middle
layers of BERT [54] [55]. In fact, the best subject-verb agreement was found to be around layers
8-9 [53], and syntactic probing tasks showed peak performance around the middle of the model
[56].

Liu et al. (2019) [51] observed that the middle layers of Transformers perform the best overall
and are the most transferable across tasks. There is conflicting evidence about syntactic chunks,
with Tenney et al. (2019) [57] suggesting that basic syntactic information appears earlier in the
network while high-level semantic features appear in higher layers. On the other hand, Jawahar
et al. (2019) [56] and Liu et al. (2019) [51] found that both POS tagging and chunking performed
best at the middle layers of BERT-base and BERT-large, respectively. The final layers of BERT are
concrete to the pre-training task, which explains why the middle layers are more transferable
[51]. The final layers change the most during fine-tuning [58], but restoring the weights of the
lower layers does not hurt model performance [59].

Tenney et al. (2019) [57] suggested that while syntactic information appears early in the
model and can be localized, semantics is spread throughout the entire model. However, they
found that the pattern of cumulative score gains between BERT-base and BERT-large is the
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same, only more spread out in the larger model. It is important to note that Tenney et al.’s
experiments focus on sentence-level semantic relations, while Cui et al. (2020) [60] found that
encoding of ConceptNet semantic relations improves as the layers progress towards the top.
Jawahar et al. (2019) [51] concluded that lower layers contain surface features, middle layers
contain syntactic features, and higher layers contain semantic features. However, their study’s
only semantic task peaked at the last layer.

We intend to investigate layers of the BERT model to understand if layers 8-9 in the BERT
base are the best choice for the WSD task. Our supervised evaluation metrics are explained in
the following subsections. Since our study focuses on WSD, we will conduct the layer experi-
ments on different senses of the same word in the SemCor corpus.

4.4 Visualization

As discussed in chapter 2, we cannot illustrate a high dimensional (more than three) vectors in
a figure. In this case, there are various tools to reduce the vectors’ dimensions into two or three.
The reduction approach is such that correlation (i.e. distance) between data in reduced space
and original space is preserved as much as possible.

One way to understand and interpret high-dimensional vectors is to create visualizations
that show multiple data views or allow for interactive exploration. This approach could be made
using scatter plots with hover-over text, parallel coordinate plots, or a combination of different
plot types. Using color or other visual encodings can also help convey additional information
about the vectors, such as their relationships or group membership.

We use several dimensionality reduction methods to project the high-dimensional word
embedding into two dimensions. Principle Component Analysis (PCA) [61], Uniform Mani-
fold Approximation and Projection (UMAP) [5], t-distributed stochastic neighbor embedding
(t-SNE) [36] will be applied for this purpose. To assess the effectiveness of the aforementioned
dimensionality reduction techniques, we visually represent selected words with diverse char-
acteristics from the SemCor dataset.

4.5 Clustering

The idea behind applying clustering methods is that the suggested clusters can demonstrate
how the embedding of various senses of the same adjective and distinct adjective types can be
differentiated into separate groups. We investigate if embedding vectors generated by context-
aware models can be separable into dense data groups in embedding space. Clustering can
provide valuable insights into the relationships between words and the structure of word em-
beddings. In this work, k-means, and agglomerative hierarchical method are applied as the
chosen clustering algorithms due to the promising performance and simplicity, and ability to
provide a dendrogram, respectively.

Since we are using clustering as a method to identify and annotate similar senses, the steps
we follow are outlined below:

• we first apply clustering on high-dimensional vectors before projection with dimension-
ality reduction techniques for visualization because all information is conserved in high-
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dimensional embedding space, .

• we also use dimensionality reduction prior to clustering, which can help to improve the
performance of the clustering algorithms and to understand the structure of the data bet-
ter [62].

• finally, we add a combination clustering method in which we employ the majority vot-
ing idea among multiple clustering setup labels, including k-means and agglomerative
clustering before and after projection.

The voting concept assigns each clustering method the role of an expert in annotating words
with sense labels. According to the wisdom of the crowd principle, such idea leads to a more
robust result [63]. Simple majority voting is used as an unsupervised ensemble method for fus-
ing labels in the absence of ground-truth, which is common in real-world datasets such as hotel
reviews. We adopt a straightforward majority voting approach to combine the labels from our
clustering system in all of our experiments. Additionally, when labels are available, we use a
weighted majority voting method. The mentioned weights are computed based on the align-
ment of the annotations with the ground-truth. The alignment process involves searching for
the best label map that maximizes the matching accuracy with the actual labels. We name this
function AlignLabels in this work.

Clustering is a valuable method for categorizing words into groups based on their resem-
blances. In our study, we investigate the resulting labels obtained through clustering to deter-
mine if they accurately represent different senses of the words. Particularly, in the case of the
SemCor corpus, where actual senses of the words are already annotated, evaluating the effec-
tiveness of the clustering results is possible. By comparing the subjective cluster labels to the
real senses, we can assess the accuracy and usefulness of the clustering process as a practical
metric. Subsection 4.4 describes the evaluation of applied metrics in detail.

4.6 Evaluation

Since our work focuses on Word Sense Disambiguation, which requires a sense-level under-
standing of words, and there are no downstream NLP tasks that give insight into this granular-
ity, commonly-used extrinsic evaluation methods are not applicable to our work. Therefore, we
need to apply intrinsic evaluation metrics. However, evaluating the quality of a word embed-
ding visualization can be challenging when no labels or annotations are available, as it relies on
subjective interpretation of the relationships between words in the visualization. We evaluate
ContextLens using both qualitative and quantitative methods to tackle the challenge.

We analyze the structure and patterns in the visualization generated by the tool for quali-
tative evaluation. We pay close attention to the density, separation, overlap, and orientation of
the projected words, as they are critical factors in assessing the quality of the embeddings. We
examine the proximity of words expected to have a close semantic relationship and the distance
between words with different meanings. We also inspect the distribution of words within the
embedding space, looking for any clustering or grouping corresponding to specific semantic
concepts. Additionally, we analyze the orientation of the visualization and the consistency of
the word placements across multiple projections to ensure that the embeddings are stable and
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reliable. Overall, the qualitative evaluation provides us with valuable insights into the quality
and usefulness of both the embeddings and their visualization generated by the ContextLens
tool.

Quantitative metrics will be used to evaluate the quality of clustering labels in our study. We
will employ two types of metrics: supervised and unsupervised. Supervised metrics are com-
monly used to assess the quality of embeddings and clustering algorithms by comparing the
predicted labels with the ground truth labels. However, in the case of SemCor senses visualiza-
tion, the ground truth is the sense tags from SemCor, limiting the applicability of supervised
metrics. Nevertheless, these metrics can be used to evaluate the quality of the embeddings
extracted from different layers in one of our experiments.

On the other hand, the first metric proposed is unsupervised, meaning it does not require
ground truth labels. This metric, silhouette score, measures the compactness and separation of
clusters, with higher values indicating better clustering quality. Additionally, we will use the su-
pervised metrics listed below to evaluate the quality of clustering labels. By combining quanti-
tative and qualitative evaluation approaches, we aim to assess ContextLens’ performance com-
prehensively.

• Silhouette Coefficient [41]: An unsupervised metric is often used when the number of
clusters is not known a priori and needs to be chosen, as it can give insight into the struc-
ture of the data and can be used to select the optimal number of clusters. Although we
preferred to set the number of clusters with the number of senses, we also attempted
to find the optimum categories using the Silhouette coefficient. The metric computes
the mean silhouette coefficient of all samples. This coefficient for a single point is (b −
a)/max(a,b), where a is the mean distance to the other samples in the same cluster and
b is the mean nearest-cluster distance. The silhouette coefficient can vary between -1 and
1: a high value indicates that the sample is well-matched to its own cluster and poorly
matched to neighboring groups. In contrast, a low value indicates that the point is mis-
matched to its own set. The silhouette coefficient is only defined for clusters with more
than one sample.

• Adjusted Rand Index (ARI) [64]: A popular supervised metric for evaluating the similar-
ity between two clusterings and is often used when the actual cluster assignments are
known. In the case of using the SemCor sense tags as the real labels, we applied this met-
ric. The Rand Index counts the number of pairs of data points assigned to the same or
different clusters in both solutions, but it does not account for chance agreements that
can occur due to random labeling. The ARI adjusts the labeling result by considering that
some consensuses could be due to random chance. The method score is between -1 and
1, where a score of 1 means a perfect agreement between the two solutions, and a score
of -1 indicates that they are completely different.

• Normalized Mutual Information (NMI) [65]: The NMI can be used as a supervised metric
to compare the results of a clustering algorithm with actual labels. The NMI measures the
similarity between two label sets by computing their entropy, joint entropy, and mutual
information. The entropy of each label set measures its uncertainty as a random variable.
The joint entropy measures the combined uncertainty of both label sets. The mutual
information is calculated as the difference between the entropy of each label set and the
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joint entropy. The mutual information is then normalized by dividing it by the square root
of the product of the entropies of the two label sets. The resulting NMI score ranges from
0 to 1, where a score of 1 indicates a perfect agreement between the two label sets, and 0
indicates complete disagreement between them.

• Fowlkes-Mallows index (FMI) [66]: A metric that measures the similarity between two
label sets (in our case, clustering and SemCor labels). It provides a geometric mean of
precision and recall between the two sets of labels, indicating their degree of matching. If
we name True Positive (TP) pairs items assigned to the same cluster in both sets of labels,
False Positive (FP) pairs items assigned to the same group in the predicted set but not in
the true set, and False Negative pairs items assigned to the same cluster in the actual set
but not in the expected set, Precision, Recall, and FMI are calculated shown in equations
(4.1) to (4.3).

Pr eci si on = T P

T P +F P
(4.1)

Recal l = T P

T P +F N
(4.2)

F M I =
p

Pr eci si on ×Recal l (4.3)

• Dice Coefficient [67]: also known as the Sørensen–Dice index is another similarity mea-
sure commonly used in evaluating the performance of parallel text alignment systems.
The Dice coefficient calculates the ratio of the intersection size of the two label sets to the
sum of their lengths. It is expressed in Equation (4.4), where S and T are two sets of labels,
and D(S,T ) = 1 if |S ∪T | = 0. The Dice coefficient ranges from 0 to 1, where a score of 1
indicates a perfect match between the two label sets, and a score of 0 means no overlap
between the two sets of labels. The Dice coefficient is sensitive to the size of the clusters.

J (S,T ) = 2×|S ∩T |
|S|+ |T | (4.4)

• Accuracy: A commonly used metric for classification that can be also used in comparing
two sets of labels which are matched in terms of class names. In our case we define a label
aligning function searches all permutations of clustering labels. For each permutation we
calculate the accuracy metric to evaluate every single label permutation. eventually, the
best permutation with highest accuracy is selected for re-indexing and aligning clustering
labels. Equation (4.5) is the formula for the accuracy score.

Accur ac y = T P +T N

T P +T N +F P +F N
(4.5)
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Chapter 5

Results and Discussion

This chapter extensively discusses the experimental findings and offers an in-depth analysis of
each result. The first section centers around the comprehensive report of the data exploration,
which led to identifying the fundamentals that influenced the research. Subsequently, the Con-
textLens view and a brief primer on its implementation are introduced. The third section eval-
uates ContextLens across varying levels, assessing its efficacy in handling complex data. Af-
terward, the chapter delves into the clustering task, which involves an analysis of the BERT’s
layers, experimenting with different techniques, and thoroughly evaluating the resulting clus-
tering quality. The chapter concludes with a discussion of the results of alternative methods
employed in the study, providing critical insights into their efficacy compared to the proposed
approach.

5.1 Examination of the data

Upon conducting preliminary preprocessing measures, the subsequent section presents the
outcomes of the study on the SemCor corpus and Hotel Reviews dataset, divided into two sub-
sections.

5.1.1 Examination of SemCor

In this study, we utilize the latest version (3.7) of the Natural Language Toolkit (nltk)1 library
and make use of the SemCor corpus, which can be downloaded by executing the command
nltk.download(’semcor’). The current version of SemCor available in the nltk library is
3.0. Because we believe that punctuation, capital letters, and stopwords can convey important
contextualized information, we decided to retain them in the SemCor corpus. As it is listed
in the chapter 3, SemCor contains 6,031 adjective types with 63,237 occurrences from which
34,424 are annotated with sense labels in the corpus.

After an initial examination, we excluded multi-word adjectives (adjectives made up of mul-
tiple words separated by blank space) and hyphenated adjectives from our analysis. These ad-
jectives can be challenging to handle at this stage of our study because they require special
attention during the embedding process. Moreover, the meaning of these adjectives can be

1https://www.nltk.org/news.html
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highly dependent on the specific combination of words, making it challenging to create gen-
eral embeddings that can capture their full range of meanings. By excluding multi-word ad-
jectives and focusing on (non-hyphenated) single-word adjectives that standard embedding
methods can more easily handle, we aimed to simplify our analysis for the main objective of
the research. Some examples of multi-word adjectives containing a blank space are "in use,"
"in order," "out of bounds," "long range," or "at work." Examples of hyphenated adjectives are
long-term, upper-level, well-known, well-defined, cell-free, and counter-balanced. There are
331 multi-word types with a blank space and 363 with a hyphen. They account for 1,027 in-
stances and 563 instances, respectively. There are also 79 numerals, including 16 types, e.g., "1"
and "1000", that are eliminated from the list.

Consequently, 4,952 adjective types with 6,801 distinct senses and 32,755 types remained
in the list of SemCor adjectives. Figure 5.1 shows an overview of these numbers. Furthermore,
there are a few sentences in SemCor including more than one desired word that we decided to
drop to facilitate the process.

Figure 5.1: The number of items in SemCor corpus in detail.

There are 26 different annotated senses in SemCor labeled in the system from "a.00" to
"a.12" and "s.00" to "s.14". The bar chart in Figure 5.2.b shows the distribution of the men-
tioned senses.

Figure 5.2: Top-twenty sense labels that are used to label
adjectives in the SemCor corpus.

Figure 5.3a displays a bar chart of the top
twenty adjectives in SemCor with the most
distinct senses, meaning that each of these
adjectives is associated with a high number
of different meanings or senses in the corpus.
For example, the word "open" has 15 separate
adjective senses in SemCor. Moreover, Figure
5.3b displays a bar chart of the most frequent
adjectives in SemCor, meaning that these ad-
jectives occur most often in the corpus. To
clarify, the bar chart indicates that for exam-
ple the adjective new occurs 307 times in the
corpus.

Detailed information about the adjectives
we selected from the SemCor corpus based on the criteria explained in Section 4.1 is shown in
Table 5.1. We chose adjectives with higher entropy, at least two senses, sufficiently frequent,
and sense interoperability. These adjectives were used as pilots in our experiments. We present
the results of some of these experiments in the following sections of this chapter.
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(a) Top twenty adjectives with the highest number of distinct
senses in SemCor. (b) Top twenty most frequent adjective types in SemCor.

Figure 5.3: An initial investigation of SemCor adjectives.

Adj type Frequency Entropy of senses Nr. adj senses SemCor sense label Frequency in corpus
domestic 30 0.87 3 a.01 19

a.02 8
a.03 3

cold 39 0.55 2 a.01 29
a.02 9
s.01 1

human 80 0.97 3 a.01 46
a.02 19
a.03 15

present 94 0.68 2 a.01 55
a.02 39

high 144 0.86 6 a.00 1
a.01 100
a.02 34
a.04 5
s.03 2
s.05 2

great 174 1.26 5 s.00 69
s.01 61
s.02 33
s.03 6
s.04 5

Table 5.1: A detailed information of pilot adjectives from SemCor corpus for the experimen-
tal analysis of visualization and clustering in this study (ascending sorted by frequency).

Accessing a sense-labeled dataset was a challenge in the investigation. SemCor was the
one of the limited options available, despite being deemed not completely reliable in its tags.
Although Fellbaum et al. [49] claim that the annotation of SemCor is highly reliable, they also
acknowledge that the reliability of the annotation may be influenced by the semantic properties
of the words being annotated. They suggest that a more fine-grained analysis of the confidence
ratings of the taggers is necessary to determine which types of words posed the most difficulties
for taggers and resulted in decreased certainty.

Sense tagging is a complex and labor-intensive task that requires experts. In our study, we
could only deliver alternative labels for the adjective great due to resource constraints. To com-
pare our labels with those provided by SemCor, we used the Dice metric, which was also uti-
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lized by Fellbaum et al. [49] in their work. The Dice metric reported an agreement level of
39.66% between the two sets of labels. This result indicates that consistently assigning sense
tags to intricate words remains a significant challenge that extends beyond the scope of our
study. However, it is essential to note that the low score must be attributed to different choices
in exactly which five sense groupings to use.

5.1.2 Examination of Hotel Reviews

To ensure an appropriate distribution of the data, we withdrew duplicate reviews from our
dataset, removing 16,450 rows out of 515,738, comprising 6,159 (25,485 words) for negative
reviews and 14,755 (55,462 words) for positive reviews. Most of the duplicated comment texts
consisted of neutral terms such as nothing, No negative, No positive, and everything, as well as
single words, such as bed, staff, pool, Wifi, and like which reflect hotels’ advantages or draw-
backs. Following withdrawing duplicates, our dataset contained 998,576 reviews, both positive
and negative. We then extracted sentences for each experimental adjective in our study. No-
tably, some sentences had more than one desired adjective, but we opted to exclude them from
our analysis, as addressing this issue fell outside the scope of our study.

Following the guidelines described in Section 4.1, one of the supervisors selected two sets
of adjective types. The first set consists of four adjectives that are closely related in meaning to
"cleanliness" - clean, unclean, dirty, and filthy. The second set contains five adjectives related
to the "cost" sense - cheap, inexpensive, expensive, costly, and pricey. To examine the usage
patterns of these adjectives, we collected 50 sentences for each adjective, aiming to keep the
entropy of their distribution high.

5.2 ContextLens Interface

The word embedding visualization tool, ContextLens, we have developed is a comprehensive
dashboard that offers users a variety of features for exploring and interpreting word embed-
dings. ContextLens tool is accessible with the pointer https://contextlens.cls.ru.
nl, and additional resources, such as the codes, as well as more documentation, can be found
on GitHub repository2. We tried to design ContextLens user-friendly mostly for linguists, inter-
active, and dynamic, with the ability to visualize embeddings in both 2D and 3D scatter plots.

One dashboard feature is its menu, which lets users select from different data frames and
dimensionality reduction methods. The user can also choose one out of five low-dimensional
embeddings for each axis and select a labeling system, which enables the user to label the data
points in the plot. Hovering over each data point shows further detail, including the exact sen-
tence the word is in, the index of the sentence in the data frame, and the label of the word.
This characteristic allows users to quickly and easily identify the context in which a particular
word appears and to gain a deeper understanding of the relationship between words and their
surrounding context.

The word embedding visualization tool’s dashboard, shown in Figure 5.4, allows users to
upload a ".csv," or ".xlsx" file, including up to 200 sentences3. Users can specify their desired

2https://github.com/rezashokrzad/ContextLens.git
3To reduce the waiting time for embedding generation, we have imposed a limit of 200 sentences for input.
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Figure 5.4: The Dashboard View of the Word Embedding Visualization Tool. The view is for
the word cold in the SemCor corpus in which PCA and majority-voting clustering are used
for the visualization method and labeling system.

word and the number of clusters in two text boxes below the upload box. After clicking the "Pro-
cess" button, BERT-base embeddings, two types of projections (PCA and UMAP), and combined
clustering labels (simple and weighted) are generated. The dashboard’s six drop-down menus
provide users with a wide range of options for exploring and analyzing word embeddings. Users
can select a default or the uploaded data frame, choose dimensionality reduction methods from
the second left menu, and select a labeling system. The labeling system allows users to choose
between their own annotations, extracted from the list of words they entered in case of a set
of words or voted labels in case of sense level. The dashboard’s three rightmost menus enable
users to select their preferred dimensions for either PCA or UMAP embeddings, both for the 2D
and 3D display, for each axis of the resulting visualization.

The user can obtain a file from the hyperlink below the data frame menu containing the
columns: sentences, dimensions after reduction procedures, and annotated labels. The above
features make the dashboard easy to navigate, allowing users to navigate their data and generate
insightful visualizations quickly.

In the next sections, we present the results of tools’ analysis based on both qualitative and
quantitative evaluation metrics, providing insights on the structure and patterns in the visual-
izations, as well as the quality of the clustering labels derived from both supervised and unsu-
pervised evaluation metrics.

5.3 Evaluation of the Visualization

Next, we will report the analysis outcomes of the two visualization aspects in the following two
subsections, based on the subjective qualitative evaluation of the tool’s visualizations. These

41



(a) Senses distribution of the adjective
present with senses: a.01 and a.02, with fre-
quencies 53 and 38, respectively.

(b) Senses distribution of the adjective cold
with senses:: a.01, a.02, and s.01, with fre-
quencies 28, 9, and 1, respectively.

(c) Senses distribution of great with senses:
s.00, s.01, s.02, s.03, and s.04, with frequen-
cies 69, 61, 33, 6, and 5, respectively.

Figure 5.5: The distribution of senses for the selected words from the SemCor corpus at the
sense level analysis.

Adjectives Meaning
Frequency
in SemCor

SemCor example

present
time 51

This is especially in evidence among the present genera-
tion of the suburban middle class.

state/existence 38 In his concept there could be no one else present.

Table 5.2: Two distinct meanings of the word present as an adjective. Detailed information
is from the SemCor corpus. This word with these two adjective senses has a 0.68 entropy
score, which is why we chose it for some experiments.

subsections are organized into two distinct perspectives: one for exploring the senses of a single
adjective and the other for investigating various adjective types.

5.3.1 Ambiguous Adjectives in SemCor

For the analysis at the sense level, we selected three words, namely present, cold, and great, that
exhibit varying numbers of senses and distributions. The distribution of senses for these three
words is depicted in Figure 5.5.

To evaluate the ability of the embedding model to distinguish between the different senses
of a word, we began our experiments with the word present, which, when classified as an ad-
jective, has two separate and distinct senses concerning "time" and "state/existence." For in-
stance, Table 5.2 describes present in its adjective POS with distribution entropy 0.68 in the
SemCor corpus.

Illustrating the word present with two distinct meanings in its adjective roles: related to time
and related to existence. Interestingly, the SemCor labels associated with this word are suffi-
ciently accurate, as our linguist assessed most of the sentences. After applying UMAP and PCA,
both meanings of the adjective present were still distinguished accurately, indicating that em-
bedding models are proficient in extracting embeddings based on context. Figure 5.6 demon-
strates that the embedding model successfully separates these senses.

However, it remains unclear whether the model captures the syntactic difference between
the two senses or the semantic difference, as the distinction between the two senses of present
is not only semantic but also syntactic. Therefore, it is difficult to determine the extent to which
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(a) Visualization of present projected by PCA

(b) Visualization of present projection by UMAP

Figure 5.6: The different senses of the word present in its adjective roles. The first sense relates
to time and is exemplified by phrases such as "present technology" and "present scientific view,"
while the second sense relates to existence and is exemplified by phrases such as "Neither of them
had been present" and "what is normally present in thyroid." The embedding model successfully
distinguishes between these two senses, even when using SemCor labels. The SemCor label of
the red dots are a.01 (time) and the blue ones are a.02 (state).

the model fully captures the different aspects of the word’s meaning.
To elaborate, the four samples marked in the diagrams are extracted from SemCor sentences

and listed in Table 5.3. In examples 1 and 2, with the time sense, present is used attributively,
while in example 3 and 4, with the state sense, it is used predicatively.

SemCor tag Sample Number Marked sample

a.01 1
There have been, indeed, many important and valuable gains

from the development of our present scientific view of the world
for which we may be rightly grateful.

2
Just as present technology had to await the explanations

of physics, so one might expect that social invention will follow
growing sociological understanding.

a.02 3
This iodoprotein does not appear to be the same as

what is normally present in the thyroid, and there is no evidence
so far that thyroglobulin can be iodinated in vitro by cell-free systems.

4
Neither of them, I understood, had been present

at the filming session earlier.

Table 5.3: Corresponding sentences of samples marked in the Figure 5.6 for the adjective present.

To gain more clarity regarding semantic differences, we moved on to the word cold, which
exhibits more semantic variation compared to the adjective present and is also less bound to
the syntactic construction. The results after PCA projection, shown in Figure 5.7, indicate that
the sense clusters of cold are adjusted with its sense tags in SemCor, providing evidence that
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Figure 5.7: The two- and three-dimensional representations of BERT embeddings for the
word cold obtained through PCA projection, revealing how the model separates different
senses of the word while minimizing overlaps.

BERT considers semantic as well as syntactic differences when generating embeddings based
on context.

The well-separated clusters in the Figure 5.7 indicates that ContextLens could distinguish
the semantic senses without being distracted by the syntactic differences. The highlighted ex-
amples on the diagram are provided in Table 5.4. Samples 1 and 2 have the "temperature" sense
and 3 and 4 have the "psychological" sense. The fact that 1 and 3 are "attributive" and 2 and 4
are "predicative" does not seem to be in the way. Example 7, however, is again both semanti-
cally and syntactically different, as the adjective is used adverbially. We do not have sufficient
examples to judge ContextLens’ behaviour in this case.

Among red dots with sense "temperature" a syntactic difference pattern can also be de-
tected. The dot points placed tend to the bottom and right are mostly at their "predicative"
meaning of cold. On the other side, top left dot points are representing cold in its "attributive"
role. Regarding samples 5 and 6, we can obviously observe that sample 5 with the meaning of
"temperature" is in a right-place after reducing dimension, but wrong SemCor annotation. Op-
positely, sample 6 is clearly in the meaning of "psychological" that is labeled right, but placed
wrong. Ignoring the first half of the sentence in sample 6 is likely to result in an ambiguous
interpretation, which could potentially tend to a opposite cluster.

SemCor tag Sample Number Marked sample
a.01 1 He came home overheated, ran straight to the ice-chest, and gulped shivery cold water.

2 The night was cold but the crowd kept one warm.

a.02 3
I looked unceasingly With my cold mind

and with my burning heart.
4 Brenner continued to smile, but his eyes were cold.

5
Underneath the big one, in the silent moonlight, lay a dead pigeon,

and on the smaller bell, the Clemence, two gray and white birds
slept huddled together in the cold winter air.

6 I told him who I was and he was quite cold.

s.01 7
Hearing his voice ring raucously up from the road, Kate would await

him anxiously and watch perplexed as he walked into the house, cold sober.

Table 5.4: Corresponding sentences of samples marked in the Figure 5.6 for the adjective cold.
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Figure 5.8: The two- and three-dimensional representations of BERT embeddings for the
word cold after UMAP projection.

We also utilized UMAP to visualize BERT embeddings for the adjective cold to gain deeper
insights into the relationship between context and word meaning. Figure 5.8 displays the UMAP
projection of the embeddings. While UMAP may not be as effective as PCA in capturing the first
two dimensions, switching the 3D view can significantly diminish this limitation as the black
cluster is oriented in higher values of the z-axis. Since UMAP outperformed PCA in most cases
in our experiments, we present the results of UMAP for subsequent discussions.

During our SemCor visualization experiments, we encountered difficulty with erroneous la-
beling. We noticed that adjectives with a higher number of senses, especially those with closely
related senses in terms of their meanings, suffered more from the wrong annotations, which di-
minished their quality. Fellbaum et al.[49] also examined the dependency of lower confidence
of annotation where the distribution of sense is skewed. After visualizing the annotated data
using UMAP, we found that our annotations agreed with the clustering more than those pro-
vided by SemCor did. Figure 5.9a displays a 2D and 3D view of the adjective great, colored by
SemCor labels, while Figure 5.9b is colored based on our ground truth. Apart from some over-
lap in the borders of clusters, the results suggest that our annotations were more informative in
interpreting what the clustering appeared to do.

In case of disagreements, we attempted to investigate most of the sentences to compare the
two existing annotations. Providing a part of our analysis, the sentences, including 14 samples
marked in the diagrams, are listed in Table 5.5, demonstrating a difference of opinion on the
tagging scheme. Admittedly, on top of the different opinions, both groups of annotators run
the risk of making errors. By making this comparison, we were able to evaluate the potential
of utilizing a combination of clusterings as an automated labeling process, provided that their
suggested labels are better aligned with our annotations. We discuss this later in section 5.4.3.

The usage of the word great in samples 3 to 6 and 9 to 10 is consistently labeled as "a.01" in
SemCor, while our annotator has identified distinct categories of meaning for these instances.
Contrarily, SemCor proposes distinct categories for samples 9 to 14, which our annotator put
under one label. These discrepancies between the two labeling systems are a major factor in
the low agreement ratio observed. Case 9 furthermore demonstrated the difficulty of the task,
as it has elements of both largeness and intensity.
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(a) colored by SemCor labels.

(b) colored by our own annotations.

Figure 5.9: Embedding visualizations of the adjective great projected by UMAP. Comparing
SemCor and our labeling indicates that SemCor annotations are less reliable, particularly
for adjectives with more total number and more sophisticated senses. This finding enables
us to assess the annotations from the subjective clustering better.

SemCor tag Our Annotation Sample Number Marked sample

s.00 Important|remarkable 1
Thus such great American documentaries

as The River and The Plow That Broke the Plains were composed
as visual stories rather than as illustrated lectures.

2
He could think of nothing else to tell them: no assurances,

no hopeful hints at great discoveries that day.

s.01 Large in size 3
He thought of the old man laughing under

the glitter of the great chandelier.

4
The clouds bulged downward and burst suddenly

into a great black funnel.

s.01 Large in count 5
There are a great number and variety of private commercial

schools, trade schools and technical schools.

6
With the return of our soldiers, it soon became apparent

that the belief was not shared by the great majority of citizens.

s.04 Very good 7
LaGuardia’s multi lingual rallies, when he is running for Congress,

are well staged, and wind up in a wild Jewish folk-dance that
is really great musical theater.

8
Friend is off to a great start with a 4-0 record
but isn’t likely to see action here this week.

s.01 Intense|extensive 9
But to go from here to the belief that those

more sensitive to metaphor and language will also be more sensitive
to personal differences is too great an inferential leap.

10
The downtown store continues to offer the great inducement of variety, both within its gates

and across the street, where other department stores are immediately convenient
for the shopper who wants to see what is available before making up her mind.

s.03 Intense|extensive 11
We have already witnessed great changes through mergers

and acquisitions in the food industry at both the manufacturing and retail ends.

12
A few of his examples are of very great interest,

and the whole discussion of some importance for theory.

s.02 Intense|extensive 13
In addition, the neocortical hypothalamic relations play

a great role in primates, as Mirsky’s interesting
experiment on the "communication of affect" demonstrates.

14
No one will deny that such broad developments and transitions

are of great intrinsic interest and the study of ideas
in literature would be woefully incomplete without frequent reference to them.

Table 5.5: Corresponding sentences of samples marked in the Figure 5.12 for the adjective great.

Furthermore, Figure 5.9b demonstrates that the embedding model is able to effectively sep-
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(a) 2D and 3D views of the words clean, unclean, dirty, and filthy extracted from the hotel reviews dataset.

(b) 2D and 3D views of the words cheap, expensive, inexpensive, costly, and pricey extracted from the hotel reviews dataset.

Figure 5.10: The visualizations resulting from an experiment on similar adjectives in Hotel
Reviews dataset using two lists of related words, as demonstrated by the clear visual sepa-
ration of related words in both 2D and 3D views.

arate the five distinct senses of the adjective great. However, some degree of overlap between
the classes can be observed. Yet, we noticed that the "very good" cluster appears to be located
in close proximity to the "important|remarkable" group, potentially due to the limited number
of samples available for that class. This finding would suggest that the embedding model may
not have had sufficient contextual information to distinguish between these two senses entirely
or that the distinction is not as straightforward as the annotator thought.

5.3.2 Similar Adjectives in Hotel Reviews

In Figure 5.10, we present the results of our experiment on visualizing the senses of various
words which are somehow related. This experiment was conducted on hotel reviews, using
two lists of related words extracted from the dataset. The first list included the tokens clean,
unclean, dirty, and filthy, while the second list included cheap, expensive, inexpensive, costly,
and pricey. The resulting visualizations are presented in Figures 5.10a and 5.10b, respectively.
The experiment showed that the embedding model effectively separated the different words,
while also showing sense difference within each word. The results indicate that the model could
differentiate between words with similar meanings, thus demonstrating its ability to capture
the nuances of language. This ability to differentiate between subtle differences in meaning
supports the finding that the embedding model is effective in capturing the complexities of
language and its use.

It is evident that not only are the word clusters dense and away from other clusters but simi-
lar words regarding meaning or connotation are also arranged near each other. For example, in
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Figure 5.10a, the cluster of clean is far from other words with a connotation of not being clean.
Interestingly, clean’s cluster is placed approximately at coordinates (1,0.5,0) in the 3D plot for
the first three dimensions, indicating that this cluster is located in a totally different region than
the other words.

Given their distinct meanings, we anticipated the other three words would be absolutely
differentiated in the clustering process, despite their shared negative connotation of unclean-
liness. To clarify the differences between them, we have provided their definitions from the
Cambridge Dictionary4 below. Please note that the samples used in Figure 5.10a visualization
correspond to their first meanings of the below list.

• Clean

1. free from any dirty marks, pollution, bacteria, etc.

2. honest or fair, or showing that you have not done anything illegal.

3. morally acceptable.

• Unclean

1. not clean and therefore likely to cause disease.

2. not clean or pure, or morally bad, as described by the rules of a religion.

• Dirty

1. marked with dirt, mud, etc., or containing something such as pollution or bacteria.

2. unfair, dishonest, or unkind.

• Filthy

1. extremely or unpleasantly dirty.

2. containing sexually offensive words or pictures.

3. In sport, a filthy move or action is one that is very difficult for an opponent to defend
against.

Additionally, the visualization reveals that British reviewers, who are native speakers, use
these words in the specific context, as filthy is entirely separate from dirty and both are far apart
from clean. Although their variations are oriented only in the first and most informative dimen-
sion, that is adequate to discern the distinction in their usage patterns. Particularly interesting,
the distinction between filthy, as an extreme adjective, and clean is accentuated when observ-
ing the first dimension. In fact, filthy is positioned farther away from clean than dirty is. Like
the word clean, the term unclean is distinct from the other three words in all three dimensions.
Apart from the semantic usage in the context that is obvious in their definitions, this separation
may be due to its morphological difference in structure as it includes the negative morpheme
the prefix "un-." The method by which BERT generates tokens for "un-" and "clean" separately
may potentially impact the difference in embedding results. The third potential reason for such
a difference may be related to the way the word unclean appears in a context, which will be
explained in the following paragraph.

After scrutinizing the negative words in the sentences of the given list, we have observed
distinct semantic and syntactic differences among them. The term unclean is primarily used

4https://dictionary.cambridge.org/
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to describe rooms and other spaces and is seldom paired with amplifiers or downtoners such
as "very" or "somewhat." Conversely, dirty is more widely applicable and commonly describes
objects such as cups, plates, carpets, as well as rooms and spaces. This term is often paired with
amplifiers and downtoners. Finally, the word filthy carries an element of disgust and is typically
used in contexts where human senses, such as smell and touch, are involved.

Figure 5.10b illustrates the projected and clustered embeddings of words in the second list,
which consists of adjectives related to "cost", with the exception of a few samples from differ-
ent clusters in the top right corner of the 2D plot, causing some overlap and ambiguity at first
glance. This disorder is alleviated by switching to the 3D view where the words cheap and inex-
pensive are positioned at a lower value of the z-axis, representing the third dimension of UMAP.
This observation highlights that the tool’s availability of 2D-3D view options enhances its flexi-
bility in facilitating linguistic interpretation. Even in the case of the two other words, expensive
and costly, the former is positioned at a higher level than the latter, with the same pattern of
their relationship observed in their main defined clusters.

When it comes to defining high prices, the terms expensive, costly, and pricey have contex-
tual differences that distinguish them into separate clusters. Likewise, the words cheap and
inexpensive have similar meanings and are placed near each other in the bottom right corner of
the diagram, but they remain distinct from each other. This outcome can be attributed to their
respective definitions from Cambridge Dictionary, provided below.

• Expensive

1. costing a lot of money.

• Costly

1. expensive, especially too expensive. (is a more formal term, often used in business or
economic contexts)

2. involving a lot of loss or damage.

• Pricey

1. expensive. (is a more informal and colloquial term that also describes something
high in price)

• Cheap

1. costing little money or less than is usual or expected.

2. used to describe goods that are both low in quality and low in price.

3. unwilling to spend money.

• Inexpensive

1. not costing a lot of money.

Among 50 sentences chosen from the Hotel reviews dataset for each word, four5 and seven6

sentences including inexpensive and cheap, respectively, are far away from their correspond-
ing clusters and approximate each other. We scrutinized these sentences and saw that they all
mention the disappointments despite the price being cheap. For example, one of the sentences

5The indices 121, 125, 136, 145 in list02 on the GitHub repository.
6The indices 13, 25, 31, 32, 36, 41, 44 in list02 on the GitHub repository.
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with inexpensive is "Although the hotel is inexpensive, it is not worth the price." Similarly, one of
the sentences with cheap is "The room was cheap, but it was also dirty and poorly maintained."
Therefore, it seems that these exceptions are related to negative experiences despite the low
price.

Similarly, the reverse situation is present for the outlying seven7 and eight8 cases of the
words expensive and costly, respectively. Here, the price is high, but the room is worth it. For
example, one of the sentences containing the word expensive is "The hotel room was expensive,
but it was worth it for the amazing view of the ocean." Here, the word expensive refers to the
high price of the hotel room, but the amazing view of the ocean justifies it. Similarly, one of the
sentences containing the word costly is "The product is costly upfront, but it will save you money
in the long run." In this case, the word costly refers to the high upfront cost of the product, but it
is justified by the long-term cost savings. This finding supports the importance of considering
the context and overall sentiment of the text in the interpretation of word embeddings.

Again, dimension 1 shows the main difference, high or low price. On dimension 2, pricey
stands out as it is arranged far apart from other words. This separation might be due to the
informal nature of the term pricey, which is less commonly used than other words in the list. It
is also possible that the method used to extract the embedding of pricey by separately extracting
the embedding of "price" and "#y" could have affected its position in the embedding space.
We can conclude that ContextLens succeeds to visualize and cluster similar words given their
distinct senses.

5.4 Clustering

5.4.1 Layer Analysis

BERT is a transformer-based NLP architecture that uses multiple self-attention layers to process
input text and generate a high-dimensional representation of the input. The dimensions of the
embeddings from the middle or initial layers of BERT are set to 768, which is the number of
hidden units in BERT’s architecture. Therefore, we could evaluate what is discussed in section
4.3.1 by experiments on SemCor adjectives great (see Figures 5.11a and 5.11b) and cold (see
Figure 5.11c) for embeddings extracted from all layers. To facilitate the process, we consider
k-means as the clustering method instead of using majority voting as we assume that the result
for voting and each expertise should be the same in relative terms based on our other findings.

We first extracted embedding vectors from all layers and labeled each word using a clus-
tering method. Next, we measured the similarity between the SemCor and clustering method
labels using five supervised evaluation metrics described in section 4.6. Based on the compre-
hensive analysis of the evaluation metrics and experimental results conducted in this study, we
can conclude that layer 9 of the BERT architecture outperforms all other layers in effectively
preserving the semantic meaning of the input text.

7The indices 53, 79, 86, 88, 93, 96, 98 in list02 on the GitHub repository.
8The indices 150, 153, 163, 168, 173, 175, 194, 199 in list02 on the GitHub repository.
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(a) use-case: the word "great"
(b) Detailed result
for "great" (c) use-case: the word "cold"

Figure 5.11: Comparison of sense labels in SemCor and k-means on embedding shows the
performance of each layer in the BERT base model. The mean of five metrics, explained in
section 4.6, indicates that layer nine outperforms the other layers.

(a) The color of the clusters corresponds to our annotation. This plot
is the same view as Figure 5.9b provided for easier comparison.

(b) cThe color of the clusters corresponds to our majority voting
method.

Figure 5.12: The majority voting method was used to generate annotations shown in this
diagram for the adjective great.

5.4.2 Qualitative evaluation of clustering

A comparison between the labeling systems depicted in Figures 5.12a and 5.12b suggests that
the majority voting labeling method may serve as a reliable alternative to actual annotation, as
it corresponds well with the - at least our - manual annotation. However, some inaccuracies in
the clustering of the blue cluster are noticed, indicating that the clustering model may not have
performed as efficiently in this area, likely due to the constraint of forcing to group the data into
exactly five clusters.

The challenge of forcing the model to cluster data into an inappropriate number of cate-
gories is also evident in the cold visualization shown in Figure 5.13. To clarify, the word cold
has three meanings, but one of them has a single example in SemCor, resulting in a bimodal
distribution. Despite two main categories and only one sample, the clustering models attempt
to generate three balanced. An interesting finding is that the clustering models separate the red
cluster in Figure 5.7 (with SemCor tag "a.01") into two parts, "predicative" (blue cluster) and
"attributive" (red cluster), explained in more detail in Section 5.3.1. Therefore, the clustering
is meaningful but partly at the syntactic and not the semantic level. If a linguist uses the tool,
ContextLens, can recognize this issue and combines the relevant clusters, then the resulting
clustering will be very similar to the one obtained using SemCor.
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Figure 5.13: A challenge in majority voting idea for cold with three senses, but bimodal distribution.

5.4.3 Quantitative evaluation of clustering with layer 9

From the visual inspection of manual and majority voting labels for great, we suggested that the
automatic annotation was viable. In this section, we investigate this suggestion quantitatively.
We evaluated this in two stages. First, we used the unsupervised Silhouette metric to assess the
separation of clusters. Second, we applied the five supervised metrics listed in section 4.6 to
evaluate the correspondence between the annotations provided by majority voting clustering
to the annotations in SemCor and our own. To evaluate the model’s performance for ambigu-
ous words, we chose adjectives great and present. Additionally, two lists of words, discussed in
subsection 5.3, were used to evaluate the model’s performance for different but related words.

The mean Silhouette scores obtained from ten runs of different stochastic methods, as shown
in Table 5.6, consistently exhibit low values, with only minor variations. In cases where the
clusters are imbalanced in size or the embedding features have high dimensionality, it is not
uncommon to observe low Silhouette scores even if the clusters appear well-separated visually.
Considering that the Silhouette scores do not offer conclusive evidence, we have decided to
withhold judgment until we obtain results from the supervised measurements. For the details
of the word lists used in the evaluation process, see the Appendix.

Clustering Model great present cold list1 list2
K-means 0.105±0.005 0.260±0.007 0.102±0.009 0.240±0.002 0.205±0.002

Agglomerative 0.109±0.008 0.260±0.009 0.098±0.003 0.240±0.001 0.189±0.003

Simple Voting 0.108±0.003 0.260±0.001 0.102±0.005 0.218±0.004 0.204±0.004

Weighted Voting 0.108±0.004 0.260±0.007 0.104±0.005 0.218±0.004 0.204±0.005

Table 5.6: This table presents the Silhouette clustering results to investigate the quality of
clustering methods (See the Appendix for a detailed list of the words used in the evaluation).

As the voting approach is proposed as a substitute for sense tags, we need data where manu-
ally placed labels are presently available. Accordingly, we selected the adjective great, which has
two existing label sets, SemCor tags, and our annotations, in addition to the adjectives present
and cold, for which we have labels in SemCor. The results of the experiments are presented in
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Table 5.7, where all evaluation metrics, introduced in subsection 4.6, are supervised due to the
presence of labels. The result of supervised metrics is after running ten times of all clustering
methods with a negligible variation.

Sense Labels Clustering Model ARI NMI FMI DIC ACC mean

present-SemCor-labeled

K-means 0.955 0.921 0.978 0.988 0.989 0.966
Agglomerative 1.000 1.000 1.000 1.000 1.000 1.000
Simple Voting 1.000 1.000 1.000 1.000 1.000 1.000

Weighted Voting 1.000 1.000 1.000 1.000 1.000 1.000

cold-SemCor-labeled

K-means 0.322 0.420 0.593 0.638 0.657 0.526
Agglomerative 0.334 0.366 0.599 0.670 0.697 0.533
Simple Voting 0.380 0.463 0.602 0.667 0.694 0.561

Weighted Voting 0.372 0.460 0.599 0.659 0.686 0.555

great-SemCor-labeled

K-means 0.231 0.294 0.451 0.305 0.574 0.371
Agglomerative 0.172 0.253 0.417 0.268 0.553 0.333
Simple Voting 0.249 0.339 0.464 0.569 0.596 0.443

Weighted Voting 0.249 0.339 0.464 0.569 0.596 0.443

great-own-labeled

K-means 0.493 0.502 0.625 0.730 0.742 0.618
Agglomerative 0.442 0.454 0.602 0.712 0.714 0.585
Simple Voting 0.519 0.506 0.633 0.678 0.739 0.615

Weighted Voting 0.538 0.526 0.639 0.718 0.748 0.634

Table 5.7: This table presents the results of four experiments evaluating the proposed voting
approach as a substitute for sense tags. All evaluation metrics used in the table are super-
vised due to the availability of labels.

Accordingly, it is unfortunate that the current evaluation methodology for SemCor, which
relies solely on an overall Dice score, proposed by Fellbaum [49], is limited in its ability to pro-
vide a detailed assessment of the performance of individual words or word classes. In particular,
the outcome for the adjective present is expected to receive a perfect score, just like human per-
ception. However, for the adjective cold, which has three distinct senses, its score is anticipated
to be somewhat lower than the overall score of 78.6%. While a score of 0.659 may initially ap-
pear too low, it is still promising. Furthermore, the adjective great, which possesses five partially
related senses, is expected to receive an even lower score. However, a score of 0.569, compared
with the Fellbaum scores, is nonetheless a promising outcome.

In light of Kilgariff’s demand [68] for raw accuracy in the range of 80−90%, it is evident that
current evaluation scores for SemCor fall well below this threshold. It remains unclear, however,
whether Kilgariff’s demand pertains to all words within a given text or solely to the ambiguous
ones. Our evaluation has focused explicitly on challenging cases, which may partially account
for the relatively low scores achieved.

We also evaluated the voting method’s performance by measuring how well the clustering
separated the different words from the Hotel Reviews. We used the same five supervised met-
rics for two lists of words itemized in the appendix. Because the labels for word lists are spe-
cific, contrary to SemCor’s, the evaluation can be more accurate. Table 5.8 provides details on
the results, in which the mean column indicates that using weighted majority voting is more
promising than using each method alone. However, the weighted voting method and its simple
version perform less efficiently than the actual labels, i.e., the words themselves, as we con-
sider the 78.6% agreement rate proposed by Felbeum et al. [49]. However, the low value can be
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explained by the fact that we are differentiating between senses rather than words.

Word Lists Clustering Model ARI NMI FMI DIC ACC mean

List1

K-means 0.606 0.707 0.712 0.679 0.740 0.689
Agglomerative 0.606 0.707 0.712 0.629 0.790 0.689
Simple Voting 0.693 0.789 0.778 0.794 0.795 0.770

Weighted Voting 0.693 0.789 0.778 0.794 0.795 0.770

List2

K-means 0.628 0.732 0.702 0.737 0.772 0.714
Agglomerative 0.450 0.579 0.561 0.557 0.624 0.555
Simple Voting 0.722 0.749 0.727 0.790 0.788 0.756

Weighted Voting 0.722 0.749 0.727 0.790 0.788 0.756

Table 5.8: Table showing the results of evaluating the voting method’s performance.

5.5 Evaluation of Alternative Techniques

This study also explored other methods of contextualized embedding, clustering, and dimen-
sionality reduction, as detailed in the Methodology section.

5.5.1 Alternative Embedding Techniques

The other two embedding methods, ELMo and GPT, did not yield satisfactory results compared
to BERT. From various experiments we conducted, Figure 5.14 shows two examples for each
model. The outcome indicates that these two methods generate embeddings that are not suit-
able for visualization, implying that they cannot differentiate words at the same level as BERT.
Their performance was not satisfactory even for a simple test word such as present.

GPT performance

Unexpectedly, we could not observe any comparable result for GPT output in the same use
cases as we saw in BERT. We estimate that unidirectionality can be seen as a limitation in WSD.
Since WSD is the process of determining the correct sense of a word in context, it often requires
considering the previous words in a sentence and the future words. Since GPT models are uni-
directional, they may be limited in their capacity to do efficient WSD as they do not have access
to the entire context of a phrase.

ELMo performance

In comparison to BERT, ELMo’s performance in similar use cases was not comparable. A poten-
tial reason can be that ELMo does not model word order explicitly, which can affect its ability
to capture semantic information. Word order can change the meaning of a sentence, even if
the words used are the same. ELMo may struggle to distinguish between sentences with sim-
ilar words in different orders. For example, consider the sentences "Elmo loves cookies" and
"Cookies love Elmo." These sentences have different meanings and implications, but ELMo
may assign similar embeddings to "Elmo" and "cookies" regardless of their position or role in
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(a) GPT’s embedding result for word great (b) GPT’s embedding result for word present

(c) ELMo’s embedding result for word great (d) ELMo’s embedding result for word present

Figure 5.14: Figure 5.14: Embedding results for the words great and present using different
methods. (a) and (b) show the embedding results for the GPT model, while (c) and (d) show
the results for the ELMo model. All results were obtained by implementing UMAP as the
dimensionality reduction technique, and the labels were derived from SemCor tags.

the sentence. Besides, Peters et al. [1] discuss the influence of syntax on ELMo’s comprehen-
sion of semantics. Their research showed that models incorporating syntax outperform those
without it when both use ELMo, especially on out-of-domain data.

The other possible reason is that, unlike BERT, ELMo does not account for WSD, meaning
it cannot distinguish between senses of the same word based on context. According to the
findings of Wiedemann et al., [69], BERT has a more robust capability to capture word sense
information than ELMo, as evidenced by its outperformance of ELMo in WSD across various
languages and domains. This limitation may lead to confusion when dealing with polysemous
words with multiple meanings in different contexts. For instance, ELMo may assign similar
embeddings to "bank" regardless of whether it refers to a financial institution or a river shore,
negatively impacting its performance on downstream tasks that require semantic understand-
ing [70].

Furthermore, we may find the reason for ELMo’s limitation by comparing it to BERT due to
its architecture. While ELMo concatenates the forward and backward models, BERT is purely
bidirectional. This difference means that BERT can take advantage of both contexts simulta-
neously, while ELMo has limited ability. By both contexts, we mean the words that come be-
fore and after a given the word in a sentence. These words can provide crucial information
about the meaning and nuance of the word, especially when it has multiple possible interpre-
tations. Additionally, BERT’s contextualized representations may be more effective in capturing
the meaning of a word in different contexts compared to ELMo’s multi-layer representations.
Second, BERT is pre-trained on a larger corpus of text, including Wikipedia and BooksCorpus,
which may provide it with a better understanding of word senses compared to ELMo, which
was trained on a smaller corpus. Finally, BERT’s transformer-based architecture is considered
to be more powerful for NLP tasks compared to ELMo’s bi-LSTM-based architecture.
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(a) SemCor annotation. (b) Our own annotation.

Figure 5.15: tSNE visualization of word embeddings showing poor performance on adjec-
tive great in case of applying both available annotations.

5.5.2 Alternative Dimensionality Reduction Techniques

tSNE

During our research, we experimented with tSNE, a method commonly used to reduce the di-
mensionality of high-dimensional data, such as the BERT embeddings, into lower dimensions.
However, we found that tSNE’s performance was often unsatisfactory in visualizing the data, as
shown by the poor visualization of the word great in Figure 5.15. One potential explanation for
this poor performance is the curse of dimensionality, which occurs when the high-dimensional
data is spread out across many dimensions, making it difficult for tSNE to accurately capture
the underlying structure of the data in lower dimensions. In such cases, tSNE may be unable
to identify significant patterns or relationships within the data due to the many dimensions
involved [36]. Besides, tSNE is known to be prone to get stuck in local optima, which could
lead to suboptimal embeddings. On the other hand, the issue of overcrowding could also be a
factor, as tSNE may struggle to differentiate between points that are too close together in the
lower-dimensional space [71].

5.5.3 Alternative Clustering Techniques

DBSCAN

If senses of ambiguous words are absent, DBSCAN may be a suitable clustering choice since it
does not require the user to specify the number of clusters. Despite our efforts to fine-tune the
hyperparameters, we could not train this model effectively in our study. Although the reason
behind that is still unrevealed, we decided to focus on the main research path rather than spend
more time debugging what only an alternative option was.
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Chapter 6

Conclusion and Future work

In this work, we proposed ContextLens, a tool for visualizing, clustering and exploring high-
dimensional contextualized word embeddings. ContextLens is an interactive tool that enables
the user to see the embedding visualization of the senses of a specific word or a number of
different words in a single view. Users can upload their ".csv" or ".xlsx" file, including up to 200
sentences, to visualize a single or multiple preferred word embedding(s). We also introduced a
novel approach combining multiple clustering methods using majority voting to automatically
produce more robust and accurate annotations.

We evaluated ContextLens using qualitative and quantitative methods, demonstrating its
usefulness in gaining insights into the structure of word embeddings and identifying the dis-
tinct senses of words. Our evaluation metrics included both supervised and unsupervised met-
rics, enabling us to assess the clustering results when labels were available and when not.

Our experiments showed that combining dimensionality reduction and clustering methods
provided a powerful way to understand word embeddings’ structure and identify the different
senses of words. The majority voting approach for combining clustering methods also proved
to be an effective way to improve the accuracy and robustness of the clustering results.

In summary, ContextLens provides a robust set of tools for exploring and visualizing high-
dimensional word embeddings, which can be used for various NLP tasks, such as word sense
disambiguation (WSD). We think that our work can contribute to developing better NLP models
and applications that can help us better understand the meaning of language.

6.1 Answer to Research Questions

The study’s central research question was whether it is possible to design tools that enable lin-
guists to investigate word use on the basis of word embedding without requiring deep learning
training. The answer to this question is affirmative. Our research efforts have yielded a tool that
allows linguists to interpret embeddings visually, preventing the need for specialized knowledge
in neural networks.

Regarding the first subquestion, "Can we visualize embeddings in such a way that differ-
ent "senses" are separated in the visualization and similar senses are grouped?", our tool has
achieved impressive results, visualizing embeddings in a manner that separates different senses
and groups similar senses together. Our approach has enabled the generation of comprehensi-

57



ble illustrations that connect embeddings to related meanings, offering a linguistic annotation
without requiring substantial time investment.

Addressing the second subquestion, "Can we cluster embeddings in such a way that the clus-
tering corresponds to traditional "sense" groupings?", We have been able to cluster embeddings
based on traditional "sense" groupings primarily. Furthermore, the corresponding clusterings
have enlightened us about this tool’s power in helping scholars in the annotation task. Addition-
ally, when examining clustering in dividing different word types, the results are more promising
than the result of discriminating between the senses of a single word.

Regarding the third subquestion, "Can the tools be given a user interface that lets the scholars
use the tool without further intervention from data scientists?", our tool’s user interface requires
no further intervention from data scientists, ensuring it is readily accessible to scholars without
deep learning or data science training. As a result, we have provided an initial tool capable of
visualizing different words and different senses of a word in separate clusters that linguists can
easily access and utilize.

Overall, our research has demonstrated that designing tools to facilitate linguistic investiga-
tions of word use based on word embedding is a promising avenue. Our tool’s capabilities in
visualizing embeddings, clustering, and providing user-friendly interfaces present significant
opportunities for further research and applications in the field of linguistics. Based on the re-
sults of our study, we have also identified several key findings that help to answer the research
questions we posed that we address below.

6.2 Challenges and Limitations

In this study, we faced several challenges related to training and evaluating a clustering sys-
tem due to labeling issues. Specifically, we found that the SemCor’s sense tags were not reliable
enough to assess the performance of the models accurately. The primary limitation, in this
case, was the need for alternative sense-level annotated corpora to compare the results. In re-
sponse to this limitation, one of the supervisors manually annotated a set of 174 sentences that
included the adjective great, which can be considered notorious for its intricate sense varia-
tions. This alternative approach significantly improved our clustering evaluations’ reliability
and helped ensure more precise results.

In addition to the labeling issues, we also encountered the skewed distribution of word
senses. As we forced the clustering model to categorize data into clusters based on the num-
ber of sense classes, the model sometimes struggled to find groups with few samples. However,
we found a valuable insight in this study: our clustering model was able to ignore rare clus-
ters and instead proposed meaningful sub-clusters by analyzing the case of the adjective cold.
This finding suggests that our clustering approach could effectively identify subtle variations in
word sense usage, even in cases where the sense distribution is highly skewed.

It is important to note that the scope of this study was limited, and we could only examine
a relatively small number of adjectives. While we tried to include a range of adjectives with
varying degrees of complexity, further investigation is necessary to ensure robust evaluation
across a broader range of use-cases. In particular, future research should extend the analysis
to larger sample size and explore additional factors that may influence the performance of the
clustering model.
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Another challenge we encountered was deciding between PCA and UMAP. While UMAP out-
performed PCA in most cases, there were a few instances where PCA performed better. We ob-
served no consistent pattern indicating one technique consistently beat the other. Therefore,
we included both options in the tool so that users can choose the most appropriate technique
for their data patterns.

Lastly, the challenge of determining the appropriate number of clusters for the clustering
labels still persists. Since contextualized embedding models such as BERT effectively separate
sense clusters, there is still room for improvement through the automation of this process. One
potential approach is to leverage models like DBSCAN, which can automatically determine the
number of clusters without the need for manual intervention. This vision would enable a more
efficient and streamlined annotation process, reducing the burden on human annotators and
facilitating broader applications of this approach in NLP research.

6.3 Future Work

In the following paragraphs, the areas of potential related research that could be pursued in the
future are proposed. We describe each topic and explain why it would be of valuable. These
research possibilities emerged during this thesis, either because we could not fully address a
particular question or because we had an idea that went beyond the scope of the current work.

6.3.1 ContextLens Possible Application

Several potential directions could be pursued in future work to apply our research. One possible
avenue for exploration in ContextLens would be to split the reviews in the Hotel Reviews dataset
into two distinct primary groups, such as negative/positive reviews or native/non-native au-
thors, and investigate the differences between these groups. This investigation could provide
insights into how these additional factors influence the occurrence of linguistic features in re-
view comments. Additionally, exploring these ideas could help to identify more specific pat-
terns and trends within data. This probe represents essential areas that could yield valuable
insights into the nature of review comments and their role in shaping online discourse.

6.3.2 Potential Extensions

Pre-trained language models like BERT have achieved impressive results in NLP tasks, includ-
ing WSD. However, standard BERT models do not provide sense-level embeddings. SenseBERT,
GlossBERT, and bi-encoder are variants of BERT that focus on sense-level information. In-
tegrating these sense-level models into the tool can potentially enhance its performance on
sense-level tasks. Future work includes exploring the integration of sense-level models and
supporting fine-tuning these models on custom datasets. Incorporating sense-level models
into the tool can benefit from the richer embeddings extracted by these models, improving its
performance on sense-level tasks.

Future work could also involve conducting interviews with further linguists, also with other
interests than adjectives, to evaluate the effectiveness of the ContextLens tool in assisting lin-
guistic scholars in deriving meaningful insights from the visualizations. Understanding how
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Figure 6.1: Screenshot of a chat session with ChatGPT for word sense labeling in ContextLens.

linguists use visualizations is crucial for enhancing the tool’s utility in this domain. Addition-
ally, exploring the inclusion of additional lists of words relevant to linguists’ interests can further
strengthen communication and the tool’s usefulness. Accordingly, gathering feedback from lin-
guists and incorporating their insights can lead to a more effective and tailored tool for the lin-
guistic community.

A language model like ChatGPT might provide a more efficient and consistent method for
annotating word sense labels. One approach could be to provide the model with a word’s def-
inition in WordNet and its corresponding sense tags and then asking the chatbot to label the
word based on its contextual usage. Figure 6.1 illustrates how ChatGPT could label word senses
based on contextual usage through a chat screenshot. This approach may leverage the power
of machine learning and has the potential to offer a more robust and reliable way of annotating
word senses.

We suggest further research to enhance the tool’s capabilities by leveraging up-to-date and
more extensive context-aware models, such as the recently released and upcoming variants of
GPT. Notably, we merely employed GPT-2 due to the different aims of this study. Hence, ex-
ploring more latest and gigantic models may improve the quality of the embeddings. Moreover,
automating the clustering process without requiring the user to specify the number of word
senses by training models like DBSCAN can be a profitable avenue for future research.
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Appendix

The Lists of words
The content of lists 1 and 2 used in the evaluation is presented in this appendix. List 1

consists of words related to cleanliness, such as "clean," "unclean," "dirty," and "filthy." List
2 contains terms related to price, such as "cheap," "expensive," "inexpensive," "costly," and
"pricey." These lists were used to evaluate the performance of the subjective clustering method,
and the results are presented in subsection 5.4.3.

It is worth noting that the list of adjectives we removed from SemCor based on our analysis,
mentioned in the first part of section 5, is provided below:

◦ cardinal numbers: ’one’, ’two’, ’three’, ’four’, ’five’, ’six’, ’seven’, ’eight’, ’nine’, ’ten’, ’eleven’,
’twelve’, ’thirteen’, ’fourteen’, ’fifteen’, ’sixteen’, ’seventeen’, ’eighteen’, ’nineteen’, ’twenty’

◦ ordinal words: ’first’, ’second’, ’third’, ’fourth’, ’fifth’, ’sixth’, ’seventh’, ’eighth’, ’ninth’, ’tenth’,
’eleventh’, ’twelfth’, ’thirteenth’, ’fourteenth’, ’fifteenth’, ’sixteenth’, ’seventeenth’, ’eighteenth’,
’nineteenth’, ’twentieth’

◦ quantifiers: ’many’, ’much’, ’more’, ’most’, ’several’, ’some’, ’any’, ’few’, ’little’, ’less’, ’least’,
’all’, ’enough’, ’whole’, ’no’, ’none’, ’every’, ’each’, ’either’, ’neither’, ’both’, ’half’, ’several’,
’various’, ’numerous’, ’plenty’, ’scarce’, ’abundant’, ’ample’, ’excessive’, ’adequate’, ’insuffi-
cient’, ’extra’, ’superfluous’, ’insubstantial’, ’inadequate’, ’deficient’, ’sparse’, ’limited’, ’un-
limited’, ’infinite’, ’countless’, ’incalculable’, ’myriad’, ’umpteen’, ’multitudinous’, ’umpteen’

◦ pronouns: ’such’, ’same’, ’other’, ’another’

,
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