
Master thesis
Computer Science

Radboud University

Designing the Teaching Pattern: a
structured approach to teach

design patterns
The design and evaluation of a structured
teaching activity to teach students design

patterns

Author:
Ruben Holubek
s1006591

First supervisor/assessor:
Sjaak Smetsers

sjaak.smetsers@ru.nl

Second assessor:
Erik Barendsen

erik.barendsen@ru.nl

December 20, 2022

Abstract

Design patterns are an essential topic in Object-oriented programming.
However, students find this a challenging topic, mainly due to the abstract
nature of design patterns and students do not see the benefits of applying
design patterns, simply because they do not have enough experience with
programming yet. Additionally, learning activities about design patterns of-
ten focus on implementing patterns, but the application of design patterns
in practice is often skipped. As a result, it is quite challenging to effectively
teach design patterns. In the literature, there are some guidelines provided
to teach design patterns, but no concrete structure is provided yet. There-
fore, we aim to design a lecture with a concrete structure for design patterns
which is an extension of these existing guidelines.

In our research, we designed and performed a learning activity to teach
design patterns and inspected the students’ understanding of design pat-
terns afterwards. For this design, we looked at the problems and solutions
for teaching (Object-oriented) programming presented in the literature as
well as these existing guidelines. The learning activity consisted of a tra-
ditional lecture and an assignment. The lecture was made with a specific
structure, which included formative assessment via an online quiz and live
coding sessions. Additionally, it focused on the implementation element of
design patterns, as well as the application element. Afterwards, we collected
data from the students, ranging from their experience in the lecture to their
handed-in exam.

Our results have shown that students were very positive about the lec-
ture: the lecture was interactive and they appreciated the online quiz. In
the assignment, students could apply design patterns with little problems
and had a high-level understanding of the UML of design patterns. How-
ever, the students had problems with the details of the implementation of
design patterns, namely the bodies of the functions in the pattern, the re-
lations between functions and the code needed to actually use these design
patterns.

Contents

1 Introduction 4
1.1 Design patterns . 4
1.2 Problems related to teaching Object-oriented programming . 5
1.3 Traditional lecture versus alternative teaching methods 6
1.4 Overview of this research . 7
1.5 Structure of this thesis . 7

2 Theoretical Framework 9
2.1 Teaching Programming . 9

2.1.1 Problems . 9
2.1.2 Solutions . 11

2.2 Teaching Object-oriented Programming 12
2.2.1 Problems . 13
2.2.2 Solutions . 14

2.3 Teaching Design Patterns . 15
2.4 Evaluating a learning activity 18

3 Goal 20

4 Setting 21
4.1 Lecture . 22

4.1.1 Original lecture . 22
4.1.2 Changes & Approach 22
4.1.3 New lecture . 26

4.2 Tutorial . 28
4.3 Assignment . 29
4.4 Exam . 30

5 Methodology 31
5.1 Online Quiz . 32
5.2 Questionnaire after lecture . 33
5.3 Interviews at the practical sessions 34
5.4 Screen recordings of the student groups 35
5.5 Questionnaire after the assignment 36

1

5.6 Exam results . 38
5.7 Triangulation . 38

6 Results 40
6.1 Online Quiz . 40
6.2 Questionnaire after lecture . 42
6.3 Interviews at the practical session 46
6.4 Screen recordings of student groups 49
6.5 Questionnaire after the assignment 51
6.6 Exam results . 62
6.7 Triangulation . 67

7 Conclusions 70
7.1 Research Subquestions . 70
7.2 Research question . 71

8 Discussion 73
8.1 Reflection on the conclusions 73
8.2 Additional results . 74
8.3 Reflection on the methods . 76
8.4 Looking back on the literature 77
8.5 Future work . 79

References 84

A Slides lecture 88

B Online quiz 113

C Live coding sessions 118
C.1 Strategy Pattern . 118
C.2 Decorator Pattern . 124
C.3 Visitor Pattern . 126

D Assignment PDF 131

E Assignment Part 1 139
E.1 Provided code . 139
E.2 Solution I . 141
E.3 Solution II . 144

F Assignment Part 2 146
F.1 Provided code . 146
F.2 Solution . 147

G Exam question & answer 153

2

H Questionnaire after lecture 158

I Questionnaire after assignment 162

J Codes for the interviews in the practical sessions 166

K Rubric Exam Results 168

L Online Quiz results 170

3

Chapter 1

Introduction

1.1 Design patterns

Object-oriented programming is one of the most used programming styles
and is present in most of the Computing Science curricula. One of the most
fundamental concepts of Object-oriented programming is structuring pro-
grams with the help of classes and other datastructures. Therefore, design
patterns are often closely related to Object-oriented programming and will
certainly be discussed at one point in a Computing Science study (Xinogalos,
2015).

Design patterns are typical solutions to commonly occurring problems
in software design, mainly beneficial for the maintenance of the program
and the extensibility (Shosse, 2022). They can be seen as blueprints that
programmers can customize to solve their specific problem. These different
design patterns can be roughly categorised into three classes: creational
patterns, structural patterns and behavioral patterns. Creational patterns
are mechanisms that easily and efficiently create objects, which increases
the flexibility and reusability of the code and isolates the code related to
the creations of objects of the programs. Examples are the Factory pattern
(Explanation) or the Singleton pattern (Explanation). Structural patterns
focus more on assembling objects and classes into larger structures, which
are easily maintained and extended, of which the Decorator pattern is widely
known (Explanation) or the usage of an Adapter (Explanation). Behavioral
patterns are the patterns closest to algorithms, because these focus on the
responsibilities between objects and classes and interactions resulting in a
system of objects which can easily be extended and maintained. Examples
are the Observer pattern (Explanation), Iterator pattern (Explanation) or
the Visitor pattern (Explanation).

Design patterns are sometimes compared to algorithms, but in essence
design patterns are quite different: algorithms are specific actions that can
be performed to solve a problem, while a design pattern provides a high-level

4

https://refactoring.guru/design-patterns/factory-method
https://refactoring.guru/design-patterns/singleton
https://refactoring.guru/design-patterns/decorator
https://refactoring.guru/design-patterns/adapter
https://refactoring.guru/design-patterns/observer
https://refactoring.guru/design-patterns/iterator
https://refactoring.guru/design-patterns/visitor

description of a solution, of which the details are not provided and should be
implemented by the programmers. This is also the reason why design pat-
terns differ from libraries, as they are not pre-written code (Shosse, 2022).
However, this is the key reason why students often struggle with the concepts
of design patterns, as the students are not (yet) used to think about these
high-level descriptions at that point of their study. Therefore, even though
design patterns are essential for Object-oriented programming, students are
initially struggling with these concepts which results in a educational chal-
lenge (Azimullah, An, & Denny, 2020).

1.2 Problems related to teaching Object-oriented
programming

There are multiple reasons why students find the topic of design patterns
difficult, as pointed out in literature. One of the reasons is that design pat-
terns are very abstract in nature, which is difficult to immediately grasp
for the students (Silva, Schots, & Duboc, 2019). Even though the design
patterns are abstract, they are still dynamic concepts; there are a lot of inter-
actions between the different Classes and Objects. However, these patterns
are often presented on slides, which is relatively static medium to use, so the
dynamic nature of the patterns is more challenging to present (Azimullah
et al., 2020). Furthermore, students do not understand the utility of the
design patterns yet (Mello Fonseca, Bezerra da Silva, & Silveira Mendonça,
2019), which also becomes clear from the fact that the students are unsure
when to apply patterns and often incorrectly use or overuse design patterns
(Lotlikar & Kussmaul, 2022). This latter point is also related to the lec-
tures about design patterns that are often focusing on the implementation of
design patterns instead of actually using them (Lotlikar & Kussmaul, 2022).

Some of these problems related to teaching design patterns are similar
to observations seen in teaching Object-oriented programming. For exam-
ple, Object-oriented programming is often seen as a challenging style of
programming, due to its abstract nature and the fact that it is often given
as a second programming course for the students (Medeiros, Ramalho, &
Falcão, 2019). As a result, students are still focused on the functionality
instead of the structure of a program, so it is difficult of the students to
make this change in mindset (Chibizova, 2018). Related to this, students
simply do not have enough experience in programming to actually see and
understand the presented problems and solutions (Gutierrez, Guerrero, &
López-Ospina, 2022).

The literature also proposed some solutions for these challenges. Unfor-
tunately, there is little research conducted for tackling the problems seen
in teaching design patterns; Lotlikar and Kussmaul (2022) provided some
guidelines for teaching design patterns, but there was no concrete teaching

5

method we could find. There was more research done on teaching Object-
oriented programming, which are discussed in more detail in chapter 2, in-
cluding the research done related to teaching design patterns. One solution
we often saw was the usage of alternative teaching methods instead of the
traditional lecture.

1.3 Traditional lecture versus alternative teaching
methods

There are three alternative teaching methods that are effectively used in
combination with (Object-oriented) programming: flipped classroom, blended
classroom and problem-based learning (PBL). The idea of flipped class-
room is that the students should learn the new material themselves before
the meeting with the teacher, which is in return only focused on applying
the learned knowledge and practicing (Sharma, Biros, Ayyalasomayajula,
& Dalal, 2020a). A blended classroom is in essence a less-restricted flipped
classroom, as the meeting with the teacher starts with a small lecture which
recaps the material that the students already looked at. Afterwards, the
meeting is resumed with the session where the students practice with the
material (Alammary, 2019). The idea of Problem-based learning (PBL) is
that the teacher does not give any lectures at all, but the students learn
independently by building programs for authentic and real-world problems.
When the students face a problem, they google the solution or ask the
teacher, so they essentially learn by doing, instead of being lectured (Chis,
Moldovan, Murphy, & Muntean, 2018).

One thing these alternative teaching methods have in common is that
they let the students practice with the material most of the time, instead of
using the meetings with the teacher as a traditional lecture. These researches
have shown that these alternative methods are more effective, because pro-
gramming is mostly a skill learned by doing. However, in practice, we still
see that the traditional lecture setting is often used instead of these ”bet-
ter” alternative teaching methods. One reason is that teachers often do not
have the time to completely change their structure of their courses, which
often leads to simply keeping the used slides for years and the lecture setting
(Alaagib, 2019). More interestingly, we see that these alternative teaching
methods are the most effective in smaller groups and in a physical setting.
However, we see that the groups in the courses only get bigger, thus such an
alternative teaching methods is quite challenging to effectively apply here
(Weiss, 2020). Additionally, we see a shift towards online education, espe-
cially after the changes related to Covid, and these alternative methods are
not created to be applied in an online setting (Hlescu, Birlescu, Hanganu,
Manoilescu, & Ioan, 2020). For this reason, the traditional lecture setting
is still widely used in practice.

6

1.4 Overview of this research

The main goal of this research is to identify the students’ understanding of
design patterns and how a learning activity can contribute to this. This
will be done by designing and performing a learning activity about design
patterns and afterwards, collecting data from students to see their under-
standing of design patterns. Due to the setting in which we conduct this
research, the learning activity has to be given as a traditional lecture. There-
fore, we cannot use any alternative teaching method, but it still makes this
research relevant for traditional lectures, which are widely used in practice
(Alaagib, 2019).

In the literature, problems related to teaching design patterns and teach-
ing (Object-oriented) programming are discussed as well as potential solu-
tions to these problems and several guidelines for effective lectures about
design patterns. However, there is no concrete structure for a lecture about
design patterns in the literature and therefore, we aim to design such a
structured lecture. The goal is to tackle these problems by combining these
guidelines and effective approaches for teaching (Object-oriented) program-
ming, like live coding and formative assessment via an online quiz. Addi-
tionally, we are interested whether this approach is viable for bigger groups
and an online environment.

Afterwards, we want to get some insight in the learning effects of the
lecture and the students’ perception and experience of the given lecture.
Furthermore, we want to see if the students understood the design patterns,
which concepts are still unclear and which problems they are facing. These
questions will be answered by looking at different data sources, for example
the students’ work and questionnaires filled in by the students. By com-
bining all these findings, we can characterise the students’ understanding of
design patterns and see how a learning activity can contribute to this, by
looking at our case study.

1.5 Structure of this thesis

This thesis is structured as follows: in chapter 2, other literature is dis-
cussed related to our research; problems and solutions for teaching (Object-
oriented) programming and design patterns and ideas for effectively evaluat-
ing a learning activity. In chapter 3 the research (sub)questions are stated.
In chapter 4, the setting is described in which this research is conducted,
as well as the changes we made to the lecture and assignment. In chapter
5, our methods are discussed for the collected data and the results of these
are discussed in chapter 6. Lastly, the conclusions, thus the answers to the
research questions, are presented in chapter 7 and other observations, re-
sults and a next iteration of our research are discussed in chapter 8. In the

7

appendices, different documents can be found, including the slides used in
the lecture and the programs used in the learning activity.

8

Chapter 2

Theoretical Framework

In this chapter, we discuss the current knowledge related to teaching pro-
gramming. Within the first three sections, we discuss the problems and so-
lutions in the literature related to teaching programming in general, Object-
oriented programming and design patterns. Note that these observations are
related to learning activities in a traditional lecture setting. In the fourth
section, we look at the different methods used in the literature to see the ef-
fects of a learning activity and to inspect the students when they are working
on a program.

2.1 Teaching Programming

A lot of research has been done related to the problems students experience
when learning to program. The lectures within these courses can have a big
impact on these experiences, but the literature also pointed out several issues
with the most-common teaching method: a traditional lecture (Sharma et
al., 2020a). Therefore, there has been a few suggestions in the literature
to make these traditional lectures more effective. This section discusses
problems related to teaching programming to students and suggestions how
to improve this in a traditional lecture setting.

2.1.1 Problems

Students get overwhelmed with examples

The main difficulty for students when they learn to code, is to get used to the
level of abstractness that comes with programming (Medeiros et al., 2019).
To tackle this, especially in programming courses for beginners, teachers
show a lot of concrete examples of different programs, which is indeed a good
solution. However, these examples are often too difficult or too complicated
for the students to fully, or even partially, understand. As a result, students
get overwhelmed and are struggling to follow the remainder of the lecture

9

(Sharma, Biros, Ayyalasomayajula, & Dalal, 2020b). Additionally, it does
not help that in most lectures a clear gradual buildup is missing in the
structure of the slides, such that students can easily follow along (Robins,
Rountree, & Rountree, 2003).

Code is presented on slides

As in the traditional setting, complete and correct code is often presented
on the slides in a relatively static manner, even though the dynamic na-
ture of programming. However, if not done correctly, students can easily be
overwhelmed by the amount of code that is presented at once and this gets
even worse if the remainder of the slide set build onto this code (Brown &
Wilson, 2018). Furthermore, using such a static method to explain a pro-
gramming concept (that is often dynamic) can lead to some shortcomings in
the course: students cannot tinker with the code themselves and the teacher
cannot show the students what happens if you change something (Majherová
& Kráĺık, 2017). Moreover, the complete coding process, including the rea-
soning, debugging and alternative solutions, are not covered, even though
these are essential to become a good programmer (Rubin, 2013).

Lecture is theoretical, but coding is practical

According to literature, students teach programming mostly by doing, as
it is a skill learned by practicing. Contradictory, in the traditional lecture
setting, theory about Computing Science is mostly presented and no practice
is present at these lectures for the students (Santos, Tedesco, Borba, & Brito,
2020). Often, a learning activity about coding is combined with several
lectures and an assignment on which students can work afterwards, but we
can identify several shortcomings in the skills of the students which are
related to the aforementioned problem. Even though students are familiar
with the presented theory, it is still challenging for students to translate that
into their assignment, as they have not seen the theory in practice, i.e. a
coding environment or their IDE (Rubin, 2013). Furthermore, students are
not familiar enough with using the debugger or other helpful tools in the
coding environment, as these are not discussed in the lecture (Medeiros et
al., 2019) (Gutierrez et al., 2022).

Little interaction

In all lessons, teachers are aiming for interaction in the classroom, such that
students ask questions and the teacher can ask questions to the students.
This is especially true in a programming course, where there are a lot of dif-
ficult and abstract concepts, there are often multiple solutions possible and
students often ask themselves ”what happens if...” etc (Santos et al., 2020).
In practice however, there is often little interaction in the (programming)

10

lecture or none at all. As a result, students have difficulty with focusing in
the lecture and are less motivated. Additionally, without interaction, the
students are only listening at the teacher and not actively thinking about
the material, which has a negative impact on the learning goals (Brown
& Wilson, 2018). Furthermore, a lack of interaction results in the teach-
ers’ misunderstanding of the actual misconceptions of students. So, there
is a possibility that the teacher is elaborating on concepts that are clear to
students, but worse, also glancing over topics that are not yet clear (Qian,
Hambrusch, Yadav, Gretter, & Li, 2019).

2.1.2 Solutions

Live coding

As previously mentioned, in the traditional lecture setting, code is often pre-
sented on slides, which results in students being overwhelmed and the ab-
sence of the thought processes and bug fixing which students encounter when
actually writing code themselves (Brown & Wilson, 2018). A solution for
this would be live coding sessions, in which the teacher writes the code from
scratch or a simple skeleton as starting point. Next to the thought process,
the students can see the error handling, but also shortcuts and workarounds
in the used IDE. Moreover, students that do not completely understand the
material can catch up with these lessons, such that everyone is still getting
along (Sharma et al., 2020b). The research of Rubin (2013) have shown that
students that watched live coding sessions got higher grades, these students
became better at recognising and solving common bugs and experienced the
live coding sessions as more educational than code presented on slides.

Formative assessment (via an online quiz)

For both teachers and students, it is beneficial to have small exercises in a
lecture with which students can practice, which function as formative as-
sessment (feedback for teachers and students about the discussed material)
(Santos et al., 2020). The teacher engages the students with these exercises
and with the students’ answers, the teacher can monitor whether the stu-
dents understood the topic and which concepts should be elaborated further.
For the students, it is helpful to immediately practice with the new material,
especially in a programming course where applying the material in practice
is one of the key elements of the course (Tillmann et al., 2012). It would be
ideal if the students could write a short program themselves in the lecture as
an exercise, but that is not always possible. As an alternative, the teacher
can create exercises about shorter fragments of code and ask the students
what the expected behavior is, or give a desired functionality and ask the
students to select the correct code fragment from different code fragments
that executes that behavior. Additionally, these exercises can point out

11

the common pitfalls that students often make, such that students are alert
for these (Brown & Wilson, 2018). An online quiz is an effective method
to carry out the exercises: the teacher gets response from all students, the
teacher can immediately monitor how well the students did and the students
are more engaged, because they can use their phones which offers variation
in the lecture (Tillmann et al., 2012).

Easy examples

As seen, students are easily overwhelmed by the examples shown in the lec-
ture, as these are often too large or too complex, especially if the students
do not understand the fundamentals of programming. To tackle this issue,
it is beneficial if the teacher actively thinks critically about the structure
of the lecture, especially the given examples, which could easily be over-
looked (Majherová & Kráĺık, 2017). It is helpful if the teacher starts with
easy examples and gradually builds up to more complicated examples, such
that the students do not get lost and are not overwhelmed. A strategy that
simplifies examples is labelling smaller parts of the program, such that the
teacher can easily reference these in later examples (Brown & Wilson, 2018).
Furthermore, these labels help the students to see patterns in different pro-
grams which helps them to understand the examples and use these patterns
in their own programs as well.

Authentic examples and exercises

To motivate students more in a programming course, it helps to have authen-
tic example programs in the lecture and authentic exercises for the students
(Sharma et al., 2020b). Authentic tasks are tasks with a clear purpose or
context, e.g. programming a small game as an exercise or having a program
relevant to a real-world problem. Students are more engaged with these
authentic tasks and as a result, students have a better understanding of the
covered material.

2.2 Teaching Object-oriented Programming

Even though a lot of research focused on the problems and solutions for
teaching and learning programming in a general, there is also research done
that focuses on teaching and learning Object-oriented Programming specif-
ically. The aforementioned problems are also occurring in this field, e.g.
that there is often no participation in the lectures, that the teacher only
speaks in lectures and that the students get little or no practice (Yu, Yang,
& Wu, 2021). However, as Object-oriented programming is described as
more difficult by students (especially if they have only programmed impera-
tively before), there are some other, more specific problems that are arising.

12

These problems and the solutions for learning and teaching Object-oriented
programming are discussed below:

2.2.1 Problems

Abstract nature of Object-oriented Programming

Students already struggle with the abstractness of imperative programming
(Medeiros et al., 2019), but they struggle even more with the abstract nature
of Object-oriented programming. A lot of students describe the concepts
of Object-oriented programming as ”vague” and non-intuitive (Xinogalos,
2015). This leads to even more challenges when teaching Object-oriented
programming, as it is already difficult to teach imperative programming.
However, the fact that students describe Object-oriented programming as
”vague” has also other reasons, which are discussed further below.

Students focus on functionality of program instead of structure

When students are starting to learn programming, they begin with impera-
tive programming, of which the focus is often the functionality of the pro-
gram itself. However, when students are taught Object-oriented program-
ming, the focus is not on the functionality anymore, but mostly on the
structure of the program. Unfortunately, students are still under the im-
pression that functionality is the most important part of the program and
are not focusing on (and also missing the importance of) a well thought-
out program structure (Stamouli & Huggard, 2006) (Gutierrez et al., 2022).
This can also be seen in the debug process of students in Object-oriented
programs: students often solve the bug by adding more code to a specific
class (which is not meant to got there) without thinking about the complete
structure of the program, which leads to bad coding habits and possibly
more bugs (Chibizova, 2018).

Students do not have enough programming experience

The basic Object-oriented programming concepts and structures are for an
experienced programmer very intuitive and understandable, but in experi-
ence, students that are relatively new to programming do not find these
concepts easy to understand at all (Chibizova, 2018). The main issue here
is that the students see these concepts early in their programming career,
but they simply do not have enough experience yet to understand the pur-
pose of Object-oriented programming. Students did not encounter enough
problems yet related to their design of a program and as a result, are not
familiar with design analysis and the usage of UML diagrams for example
(Gutierrez et al., 2022). On a positive note, research has shown that these
problems slowly fade away during a Object-oriented programming course,

13

as they students have seen enough examples and case studies at that point
(Sun, Wu, & Liu, 2020).

Fundamental concepts are often unclear for students

Another important problem that is often overseen is that the fundamen-
tal concepts of Object-oriented programming are often not clear for stu-
dents. Examples of these misunderstood concepts are the difference be-
tween Classes and Objects, but methods as well, as pointed out by both
Xinogalos (2015) and Gutierrez et al. (2022). A possible reason for this
could be that students are still having trouble with the idea of modularising
code and how to apply this idea effectively in their programs (Chibizova,
2018). Similar to these fundamental concepts, students are struggling with
the usage of polymorphism and overloading, which are also essential for un-
derstanding and applying Object-oriented programming (Sun et al., 2020).
Similarly to programming in general, teachers are often not aware of these
misunderstandings, so teachers often have misconceptions in this field as
well regarding the understanding of the students (Qian et al., 2019).

2.2.2 Solutions

Clear examples and structure

Similarly to programming in general, it is important that there is a good
structure in the slides: starting with simple examples and gradually build-
ing up to more complicated examples (Yu et al., 2021). Specifically for
Object-oriented programming, this holds for new concepts as well. For ex-
ample, when looking at design patterns, it is helpful to start with simple
patterns (Factory Pattern) and discuss more complex patterns (Visitor Pat-
tern) when students understand the basics of design patterns. Furthermore,
as Object-oriented programming focuses mainly on the structure of the pro-
gram instead of the functionality, it is helpful to actively include UMLs (Uni-
fied Modeling Language) with the corresponding programs (Agbo, Oyelere,
Suhonen, & Adewumi, 2019). Not only does this visualisation help the stu-
dents, but by actively seeing UMLs in the lectures, students will use UMLs
more often themselves (explicitly or implicitly). Moreover, as it is often not
clear for students why certain design choices are better, it can be helpful to
introduce new concepts by an example that does not use the new concept,
which illustrates its purpose immediately (Stuurman, Passier, & Barendsen,
2016).

Interactive lectures

As Object-oriented programming is a bit different than programming in
general, Yu et al. (2021) indicated that it is even more important that the

14

teacher tries to maintain an interactive learning environment. This can by
done by asking questions or handing out a preparation assignment for stu-
dents before the lecture, such that a two-way interaction is created between
the teacher and students, instead of the traditional one-way. Moreover, Yu
et al.’s observations indicated that it could be beneficial for the teacher to
look into problem-based teaching methods, where students learn by immedi-
ately solving bigger problems and figuring concepts out themselves instead
of having lectures.

Clear criteria in assignments

As discussed before, the students’ perception of program correctness of
mostly related to the functionality of the program instead of the struc-
ture. So, for students it is often not intuitive that the structure of their
program plays a large role in the practical usage of the program or their
grade (Stamouli & Huggard, 2006). Moreover, the perception of correct-
ness is heavily influenced by the criteria of the assignment they have to
make. Therefore, it is important that teachers give a clear criteria for the
assignment; not only the functionality they desire, but most importantly,
the desired structure that the students should practice with.

”Internet +” teaching

Yu et al. (2021) stated that Object-oriented programming could effectively
be combined with ”internet +” teaching, which is the integration of the in-
ternet in education. One suggestion is to combine blackboard teaching with
multimedia: explain topics related to practical subjects through multimedia
(e.g. a video or a live demonstration), but explain the more complex topics
(which are more difficult to explain through multimedia) on the blackboard
(Yu et al., 2021). This combination not only motivates the students by
the variety in the lecture, but it improves the teaching efficiency as well,
as simpler subjects can be explained relatively quickly through multimedia.
Furthermore, it is helpful to provide several online references beside the ma-
terial in the lectures (Yu et al., 2021). Not only do the students have more
support in studying the new material, but they also learn how to effectively
use the internet to find the information they need. Lastly, it is useful to have
an online platform for students where they can ask questions to encourage
peer learning as well.

2.3 Teaching Design Patterns

As discussed, Object-oriented programming is already a challenging topic
for students and is often investigated in research. Design patterns are really
relevant for Object-oriented programming and are very often present in an

15

Object-oriented programming course (Azimullah et al., 2020). Similar to
Object-oriented programming, students find the design patterns a difficult
topic to understand and there are several research papers that investigates
why this is the case. Note that even though design patterns are a challenging
topic, there is significantly less research done on design patterns compared to
Object-oriented programming. The observations in the literature regarding
design patterns are discussed below:

Abstract nature of design patterns

Similar to learning (Object-oriented) programming, the main challenge lies
in the abstract nature of design patterns for students (Azimullah et al.,
2020). This abstraction is related to the grouping of similar functions or at-
tributes to Objects, without knowing the explicit definition (Silva et al.,
2019). Especially combined with the findings that the fundamentals of
Object-oriented programming are often unclear for student (Gutierrez et
al., 2022), the abstractness of design patterns are even more challenging for
students to understand.

Unclear when to apply design patterns

Another big problem teachers experience in their classes about design pat-
terns is the fact that students are not able to recognise patterns in a program.
The reason for this is that teachers often focus on the implementation of a
design patterns, instead of the recognition of design patterns and the cases
where to use them, which is perhaps even more important than the former
(Lotlikar & Kussmaul, 2022). Moreover, design patterns are often cate-
gorised as ”a catalogue”; design patterns are explained with the use of one
specific design problem in a program and this results in students that find
it difficult to determine whether a pattern should be applied (Stuurman et
al., 2016). Therefore in practice, students want to apply as many patterns
as possible in a program which contradicts with the pursuit that programs
should be as simple as possible, but also results in students that apply incor-
rect patterns in programs, thus only making the program more complicated
or incorrect (Silva et al., 2019).

Purpose design patterns not clear

Related to problems with Object-oriented programming, students do not
have enough programming experience to understand the utility and benefits
of design patterns (Mello Fonseca et al., 2019). They simply have not seen
enough programs and software designs to see why indeed design patterns
are very useful to apply (Stuurman et al., 2016) and how a correctly applied
pattern helps in producing software in larger groups (Lotlikar & Kussmaul,
2022). As a result when writing Object-oriented programs, students jump

16

straight into the implementation of the described problem instead of think-
ing about the program structure beforehand, which is one of the key elements
of Object-oriented programming (Lotlikar & Kussmaul, 2022).

Static explanations for dynamic concepts

One of the most important elements of design patterns are their dynamic
nature; the manner in which the different functions and classes are related
to each other and how they are interacting. However, in the current lectures
or books, these design patterns are explained in a static manner; the UML
of the design pattern is shown, but the actual interactions between the
classes and functions are not clearly shown. So, explaining these design
patterns in a dynamic environment (e.g. an environment where students
can actually experience and see the interactions) would really benefit the
students’ understanding of design patterns (Azimullah et al., 2020).

Solutions

One tool to tackle the aforementioned problems is to use UMLs when ex-
plaining design patterns, which proves to be very helpful in practice. How-
ever, using UMLs also comes with some drawbacks, e.g. UMLs are still a
static representation used for the dynamic design patterns and UMLs can
quickly become very big and complex, especially working with larger design
patterns (Azimullah et al., 2020). Furthermore, studies found that not all
students are confident with reading and creating UMLs, which makes the
representation of design patterns in UMLs only more confusing (Azimullah
et al., 2020).

Lotlikar and Kussmaul (2022) gave some guidelines in their paper on
how to teach design patterns, for example:

• First focus on the context, problem and consequences, then on the
implementation

• Students should give a rationale for all the design patterns they use

• Let the students discover a well-known design pattern by themselves.

Unfortunately, we could not find any research that provided a concrete
plan for teaching design patterns to solve the discussed problems yet. There-
fore, in our research we combine the previously mentioned problems to de-
sign a structured learning activity to teach design patterns and evaluate
it afterwards. To effectively evaluate our activity, we inspected how other
literature tackled such an evaluation.

17

2.4 Evaluating a learning activity

A lot of research related to programming education are designing a learning
activity or a learning tool and have to evaluate it or inspect the students’
understanding of the new material. To see which methods are effective
for these types of research, we looked at the most occurring and effective
methods. Note that the first three methods are related to collecting data
and the latter two points are related to analysing the collected data.

Asking the students’ opinion

To gather data, most research asked the students’ opinion of the learning
activity one way or another. The most occurring method is the use of a
questionnaire or survey that is send to all the participating students (e.g.
Xinogalos (2015), Lotlikar and Kussmaul (2022) or Keung, Xiao, Mi, and Lee
(2018)). Another method of collecting data is the usage of semi-structured
interviews with the students (e.g. Stamouli and Huggard (2006) or Lytle et
al. (2019)); the advantage of these interviews is that the researcher can get
more information of the students, but the disadvantage is the time needed
to conduct and transcribe these interviews.

Inspecting students’ solutions

Another method that we saw a lot to collect data was the inspection and
analysis of the students’ work where they had to apply the material covered
in the learning activity. This data can be the solutions of the students of an
assignment or exercise (e.g. Hayashi, Fukamachi, and Komatsugawa (2015)
or Eppley and Dudley-Marling (2018)), but could also be the exam results
of students (e.g. Xinogalos (2015) or Anggrawan, Ibrahim, Suyitno, and
Satria (2018)).

Observe the students

A method that we saw less, but was still used by a few researchers, was
the observations of students without the opportunity to ask them questions
or interact with them. These were either done via screen recordings of
students while they were working on the exercises (Stuurman et al., 2016)
or by literally observing the students while they were working in a practical
session (Lytle et al., 2019).

Triangulation

One element that we saw in a lot of the research papers is the triangu-
lation of different data sources, to strengthen the presented results in the
research. In all the instances where the researchers applied triangulation in

18

the analysis, the researchers had access to solutions of students which were
analysed and used at one point questionnaires, interviews or recordings of
students to get their opinion. With these combinations, the researchers
had access to the final solutions of the students, but could still get their
opinions or their thought processes when making these assignments. Ex-
amples of research that applied triangulation are for example Hayashi et al.
(2015) (looked solutions to an exercise, exam and had send a questionnaire
to the students), Lytle et al. (2019) (looked at solutions to the exercise and
had semi-structured interviews with students) and Stuurman et al. (2016)
(looked at solutions to the exercise and at the recordings of the students
while working on the exercise).

Experimental and control group

A method that would come to mind to analyse the gathered data related
to the learning activity would be the usage of a experimental and control
group, with which the researchers can clearly compare results and see dif-
ferences. However, this method is not applied that often, probably be-
cause using a experimental and control group in an educational setting is
often conflicted with the ethical and practical aspects of the educational
setting. Nonetheless, examples of research papers that applied this method
are Khakim (2019/08) and Lotlikar and Kussmaul (2022).

19

Chapter 3

Goal

Research Question

How can a learning activity contribute to the students’ understanding of
design patterns?

Research Subquestions

• RSQ1: How can the students’ application and knowledge of design
patterns be characterised after the learning activity?

• RSQ2: How did the students perceive the designed lecture?

20

Chapter 4

Setting

This research was conducted at the Radboud University at Nijmegen. First
year Computing Science students and Artificial Intelligence students were
following a course Object-oriented programming here, which consisted of
fourteen weekly lectures, where the basic concepts of Object-oriented pro-
gramming were explained and applied by the students. The students did
a programming course ”Iterative Programming” beforehand, which covered
the basics of programming, for example loops, recursion and basic sorting
algorithms. In the year of this research, around 300 students enrolled for
this course, but it was unclear how many students were still actively partic-
ipating when the design patterns were discussed.

Every week, a physical lecture is given by the professor, which introduces
the new concept in a traditional lecture setting (students are mostly passive
listeners while the professor talks). In addition, this lecture was also a
livestream, such that students could directly view the lecture from home
and were able to ask questions via the chat. Afterwards, the used slide set
and the recording of the lecture were shared with the students via the online
learning platform.

This lecture is followed by a physical tutorial session, in which the newly
taught concepts are presented from a more practical perspective with sev-
eral examples of code. This tutorial session serves as a bridge between the
theoretical lecture and the practical sessions that follow. Similar to the lec-
ture, the tutorial session was a livestream and the presented slides and the
recording of the session were shared with the students afterwards.

After the lecture and the tutorial session, the students had the opportu-
nity to participate in the practical sessions. The physical practical sessions
were sessions of 4 hours in which the students could work on the program-
ming assignment of that week to apply and practice with the new material.
These assignments are often made in pairs and several teaching assistants
were present at the practical sessions to immediately help students if they
get stuck.

21

These are the three weekly moments of contact of the course Object-
oriented programming with which the teachers provide enough contact hours
to support the students in the course. Unfortunately in practice, there are
only a few students that are present at the lecture and there are even less
students present at the tutorial sessions. Luckily, there are a lot of students
present at the practical sessions.

To test the students’ knowledge of the topics covered in the course, there
is an exam at the end of the course. This is a digital exam, but students do
not have access to a compiler or IDE when making this exam.

There is one lecture dedicated to design patterns in this course (week
10), so that is the week in which we conducted our research. In the sections
below, the lecture, tutorial session, assignment and the exam are discussed
in more detail. For our research, we made changes to the lecture and the
assignment; the tutorial session was outside the scope of this research and
we used the students’ solutions for the exam as a data source.

4.1 Lecture

The lecture was the main moment of contact we wanted to investigate, as
this lecture was already given in a setting in which many students could
participate (students could be present live, watch the livestream and or the
recording afterwards). We could adapt the material that was taught in the
week dedicated to design patterns, but the exact changes had to be discussed
with the professors to see what was possible, as it had to be in line with the
curriculum.

4.1.1 Original lecture

The focus of the original lecture dedicated to design patterns was mostly dis-
cussing different design patterns and presenting one specific implementation
of each pattern. The discussed design patterns were:

• Singleton Pattern (Explanation)

• Strategy Pattern (Explanation)

• Decorator Pattern (Explanation)

• Optional Datatype (Explanation)

• Visitor Pattern (Explanation)

4.1.2 Changes & Approach

Firstly, we evaluated the learning goals of the week dedicated to design
patterns with the professors, as the original slides were mainly focused on

22

https://refactoring.guru/design-patterns/singleton
https://refactoring.guru/design-patterns/strategy
https://refactoring.guru/design-patterns/decorator
https://www.freecodecamp.org/news/optional-in-java-and-anti-patterns-using-it-7d87038362ba/
https://refactoring.guru/design-patterns/visitor

the implementation of design patterns instead of the application and usage.
However, we concluded that implementing a pattern is still a relevant learn-
ing goal, but actually applying and recognising patterns is another, perhaps
even more important, learning goal. So, our learning goals for the designed
lecture were:

1. Students can implement the discussed design patterns

2. Students can apply and recognise the discussed design patterns

To accomplish both learning goals, we decided that we reduce the number
of discussed design patterns, but instead we discuss the remaining patterns
in more detail as well as the application of these patterns.

These are the patterns which were presented in the lecture:

• Strategy Pattern
This is a relatively easy pattern and students had already used variants
of this pattern previously in the course (without the knowledge that it
is a design pattern). Therefore, this pattern served as a decent pattern
to start with.

• Decorator Pattern
This pattern is relatively easy to understand for students, because it
has some clear real-world applications. Additionally, this pattern is
a structural pattern (a pattern to construct effective datatypes and
objects) instead of a behavioral pattern (patterns that focus more on
algorithms and how objects interact with each other), so presenting
this different type of design pattern was useful.

• Visitor Pattern
This pattern is a more complex pattern, but a lot of interesting things
are used in this pattern regarding typing and interactions between
objects. Furthermore, this pattern was used in the original assignment,
so it was sensible to keep this pattern in the lecture, so we could keep
the original assignment as a starting point.

In the literature, we saw several common problems related to teaching
design patterns, using UMLs and teaching Object-oriented programming
(OOP) in general. In the changed lecture, we aimed to tackle some of these
problems as well (which are discussed in chapter 2):

• Students focus on the functionality of the program instead of its struc-
ture (OOP)
To tackle this, we aimed in this lecture for an explicit focus on the
structure of the program, instead of the functionality of the program.
The approach we aimed for was to state a problematic, but easy-to-
understand program, followed by a discussion of the possible structures

23

of the program and discussing why these are effective or problematic.
Furthermore, we started the lecture with some introductory exercises
related to structures of programs instead of its functionality, to show
the students that the structure will be the focus of the lecture.

• The teachers do not have the correct understanding of the students’
misconceptions (OOP)
Especially with students that are new to programming, teachers are
not always up-to-date with the students’ misunderstandings. To tackle
this issue, we wanted to use an online quiz with exercises, such that
we can get input of most students and see which concepts were not
completely clear.

• Students find design patterns too abstract (design patterns)
This problem can be tackled by introducing the design pattern using
a concrete use case, but the disadvantage of this is that the pattern
will ”overfit” this use case. Therefore, we still present the pattern
with the help of a UML and one concrete use case, which both will be
discussed in detail, but additionally, we provide enough other examples
of programs in which the pattern can be applied or definitely not.

• Students find it difficult to see when to use patterns (and when not)
(design patterns)
This problem is immensely related to our observation of the learning
goals; there should be more focus on the application of design patterns.
A solution would be to present many examples of cases where the
pattern could be applied and problems were the pattern is not usable.
Our idea was to provide these examples in the form of exercises in
the online quiz, to not only show these examples, but let the students
actively think about them as well. Moreover, if we have some examples
where, at first glance, the design pattern can be applied, but this is
actually not the case, we stimulate the critical analysis of the students
as well.

• Static explanations are used for the dynamic behavior of design pat-
terns (design patterns)
We hoped to tackle this problem by adding a live coding session in
which we presented the pattern implemented in a functioning code
project. The debugger can be used here to show the flow of a pro-
gram and the interactions within the design pattern, thus making the
dynamic functionality of the design pattern more visible.

• UMLs in lectures are complex and too big to properly understand
(UML)
The UMLs used to present the design patterns are often huge and
and complex, but it is impossible to make these UMLs smaller and

24

easier. Therefore, we break down every UML presented in the lecture
in smaller parts, such that the whole UML can be understood more
easily.

• Not all students are confident enough with reading UMLs
Again, by breaking the UML apart in smaller bits tackles this problem.
Furthermore, as introductory exercises, we ask students several ques-
tions related to smaller UMLs, such that the basics are understood by
all students and that they are all on the same page.

Moreover, there are some elements that a teacher can put in a program-
ming lecture (or a lecture in general), which makes the lecture easier to
follow and more interactive, according to the literature (See chapter 2 for
more details). This mainly has to do with the way to structure the lecture
(or parts of the lecture):

1. Introduction
Start with an introduction to get the interest of students. For example,
show why this new material is useful or some introductory exercises.

2. Explanation of new material
In this phase, the new material is explained, preferably in a clear step-
by-step manner.

3. Live coding session
Next to presenting code on slides, it is beneficial to show the concept in
a coding environment as well. This serves as a helpful bridge between
the theory and practice, as the students have to apply the new concepts
themselves in such a coding environment. Furthermore, a change of
”environment” in the lecture helps the students to concentrate, as it
serves as a change of pace.

4. Exercises in an online quiz
To let the students participate in the lecture and let them actively
think about the material as soon as possible, it is useful to have some
small exercises related to the previously discussed concepts. Using an
online quiz, students not only have to use their phones, which is an-
other change of pace, which contributes to the focus of students, but
more importantly, the teacher receives the answers of (almost) all stu-
dents, so the teacher gets an insight whether the students understood
the material.

5. Conclusion
Wrap everything up in a conclusion and move on to the next topic or
finish the lecture.

With these things in mind, we designed a lecture that gave at the course
Object-oriented programming in the week dedicated to design patterns.

25

4.1.3 New lecture

The slides for the designed lecture can be found in appendix A. Note that
every bullet point on the slides appear one by one, so that the students do
not get overwhelmed if they saw the complete slide. In the course of the
lecture, students could participate in an online quiz, of which the questions
and answers can be found in the slides, but also separately in appendix B.

The outline of the slides was as follows:

• Introduction (slides 1-13)
Here we introduced the topic of design patterns to students, mostly
via several exercises in the online quiz (questions 1-4). The first two
questions were simple exercises about the relation of programs and
UMLs, to make sure that all the students were on the same page
regarding understanding UMLs. The other two questions were about
comparing programs with each other and whether there was overlap
in their structure, to serve as a starting point for understanding the
concept of design patterns.

• Strategy Pattern (slides 14-34)
How the design patterns were exactly explained, will be discussed later.
For the Strategy Pattern, the questions 5-8 were used.

• Decorator Pattern (slides 35-57)
The questions 9-12 were used in this section.

• Visitor Pattern (58-80)
The questions 13-15 were used in this section.

• Recognising patterns (slides 81-91)
The purpose of this section was to explain to the students why we have
these design patterns; mainly that we do not expect that students know
these patterns by heart, but that they recognise similar patterns in
programs and reuse effective solutions. Moreover, we made comments
on how these slides and the assignment are related to each other,
to create a bridge between theory in the lecture and practice in the
assignment. We also added several question in the online quiz that
dealt with recognising a pattern out of multiple patterns instead of
stating whether a specific pattern could be applied (questions 16-18).

• References (92-94)
Here we added references to students with a clear instruction what
students can find on these websites, such that they can easily see which
are useful for them. Furthermore, we added a link to the questionnaire,
which will be discussed in chapter 5.

26

To explain the different patterns, we used the following structure, which
was based on the literature findings of the previous section:

1. Stating a problem which can be solved by that pattern
As an introduction, we present a students a simple, concrete program
which leads to some implementation problems if we implement it in
a naive manner. From these problems, we suggest a new, concrete
implementation which solves this problem (presented with a UML),
which is actually an application of the discussed pattern. This program
will be the main example provided for the discussed design pattern.

2. Generalising the previous solution into the design pattern
From this concrete application of the pattern in the previous program,
we generalise this approach into the abstract design pattern, presenting
the UML.

3. Discussing the UML of the abstract design pattern
To make sure that the students are not overwhelmed by the UML, we
discuss all its separate parts in detail. This ensures that the students
understand all the smaller parts and thus, the complete UML becomes
clear as well.

4. Discuss the UML of the concrete implementation of the previous pro-
gram
Now that the abstract design pattern is (hopefully) clear to the stu-
dents, we can discuss the UML of a concrete application, which is the
program for the introduction. Note that the students already have
seen this UML (without knowing that this pattern was applied), so
with the repetition of this UML and the new understanding of the
design pattern, students can more easily understand this application.

5. Live coding session
Students have seen the abstract UML of the design pattern, as well
as the UML of a concrete application, but students have not seen the
code of a concrete implementation. Therefore, we wrote out the code
for the presented program and showed it to the students in a live
coding session. Not only did the live coding session made the design
pattern more concrete, but these code projects were also provided to
the students afterwards, which could help students with making the
assignment.

6. Exercises in the online quiz
After all these explanations, students could immediately apply the
newly learned knowledge in a few exercises in the online quiz. Most
design patterns started with a question in which the students had to
indicate the correct UML for the design pattern, to see whether they

27

had a high-level understanding the design pattern. Afterwards, the
questions were about whether the discussed pattern could be applied
in a specific program. These questions served as more examples of the
application of the pattern, but as well as practice for students to apply
the patterns, which is often skipped in lectures of design patterns. All
the questions, answers and elaborations were provided in the slides.

7. Recap
At the end, we had a slide that recapped the discussed design pattern.

For the design patterns, we used the following example programs:

• Strategy Pattern
We presented a navigation app that finds a route from x to y. However,
there were different options to find such a route, e.g. a route for
cars, for bicycles or via specific buildings, similar to Google Maps for
example. These different options served as clear examples of strategies,
thus this was a practical example of an application of the Strategy
Pattern. The code for the live coding session can be found in appendix
C.1.

• Decorator Pattern
Here, we presented a program that could notify the user. However, the
problem was that there were multiple platforms on which users could
be be notified and the user could specify on which platforms he wanted
to be notified. We first presented a solution where every combination
was implemented as a separate object, but this was obviously not a
practical solution, so the proposed solution made use of the Decorator
Pattern. The code for the live coding session can be found in appendix
C.2.

• Visitor Pattern
Here we used the example of a shop that sold different items, but
multiple actions could be performed on (a list of) these items. We
start with a proposed implementation of the Strategy Pattern here, but
we ran into some problems here (using getClass() etc). We solved
this problem, but new problems arise. Therefore, we keep proposing
solutions until we had a solution which looked good, which was the
Visitor Pattern. We made a comment that this pattern looked very
complicated and elaborated why we still want to use it. The code for
the live coding session can be found in appendix C.3.

4.2 Tutorial

The tutorial session was not in the scope of this research. In the given
tutorial session, basic code for the assignment was provided to the students

28

and some hints on how to proceed. Note that there were only a few students
that actually went to the tutorial session.

4.3 Assignment

After the lecture and the tutorial session, students had to make an assign-
ment. The assignment about design patterns consisted of an implementation
of the Visitor Pattern, which was perceived as difficult in earlier experience.
For the new assignment, satisfying both learning goals of this week, we de-
cided to split the assignment in two parts: part 1 was related to recognising
a pattern and refactoring the program and part 2 was an implementation of
a specific design pattern. The PDF of the updated assignment can be found
in appendix D. Both parts are discussed below:

Part 1

The students received a small program that could encrypt strings with rela-
tively simple encryption methods: Caesar3 (explanation), ROT13 (explana-
tion) and MIRROR, which simply spells the string backwards. The students
were asked to refactor this program with one of the discussed patterns, which
was supposed to be the Strategy Pattern.

The provided code can be found in appendix E.1, which used a simple
enumeration for the different encryption methods. When applying the Strat-
egy Pattern, students will write a program similar to the solution shown in
appendix E.2. However, as Caesar3 and ROT13 could be generalised into
an encryption method that simply ”shifts” the letters inside the string with
a certain number of places, students could generalise this program even fur-
ther. Even though we do not expect that students see this solution, we still
provided this solution, because it is still a ”better” solution. The code of
this solution can be found in appendix E.3.

We deliberately kept this program and the first part of the assignment
relatively small, as the second part was expected to be a lot more difficult
and larger.

Part 2

Part 2 was mostly the original exercise, but we simplified it a bit, mainly by
providing more support for the generic Visitors (students had seen generics
before, but we expected that they still had difficulty with it). In essence,
the students had to implement the Visitor Pattern. In this exercise, the
students had to implement boolean formulas (True, False, variables and the
basic operators not, and, or and implies). Note that they were tasked to
implement a binary operator for and, or and implies using the Strategy

29

https://www.dcode.fr/caesar-cipher
https://nl.wikipedia.org/wiki/Rot13
https://nl.wikipedia.org/wiki/Rot13

Pattern , a Standard Library and an enumeration. The students had im-
plemented a similar formula structure earlier in an assignment. Afterwards,
the students had to make two Visitors: a visitor that evaluates the given
formula to its boolean value (EvaluateVisitor) and a visitor that shows the
presented formula with the minimal number of parentheses (ShowVisitor).
Before the implementation, the students had to create a UML of the pro-
gram and afterwards, the students had to make a sequence diagram of the
function calls in the Visitor pattern.

There was minimal code provided, which can be found in appendix F.1
and a solution in appendix F.2.

This assignment completes the week dedicated to design patterns, so the
designed learning activity.

4.4 Exam

At the end of the semester, the students had to make an exam, which con-
tained an exercise related to design patterns. This design of the exam was
also outside the scope of the research, but we used the students’ submis-
sions as a data source. The exam question and its answer can be found in
appendix G.

30

Chapter 5

Methodology

In this chapter we discuss our used methods to gather the data needed for
our research.

To answer RSQ1, ”How can the students’ application and knowledge
of design patterns be characterised after the learning activity?”, we need to
look at the students’ programs to see whether they understood the concepts,
but also the process of how the students got to the final program, such
that we can see which problems they encountered. Moreover, it is useful
to ask the students how the experienced they assignment, to see if we see
the same results or if we see other observations. For RSQ2, ”How did the
students perceive the designed lecture?”, we need to ask the students how
they experienced the lecture.

In total, we had six moments to collect all the necessary data from the
students to answer all the research subquestions:

1. Online Quiz
We analysed the students’ answers to the online quiz in the lecture to
see if there were any clear learning effects.

2. Questionnaire after lecture
The students were asked to fill in a questionnaire immediately after
the lecture with which we got insight in how the students experienced
the lecture.

3. Interviews in the practical sessions
We interviewed several groups while they were working on the as-
signment in the practical sessions. Here we collected data about the
problems students were facing in the assignment, but also feedback on
the lecture and the tutorial session.

4. Screen recordings of the student groups
We asked a small number of groups if they could record their screen

31

while they were working on the assignment. With these screen record-
ings, we could get detailed information of the students’ coding process
which was not visible from the other data sources.

5. Questionnaire after the assignment
All the groups had to fill in an obligatory questionnaire after finishing
the assignment, in which we asked for the problems students faced
and how they solved these problems. With this questionnaire, we got
high-level descriptions of the problems students were facing, but from
all the groups.

6. Exam results
At the end of the course, we analysed the students’ submissions of the
exam. With this data source, we got to analyse actual code from the
students to see which concepts the students did understand.

To combine all these different data sources, we triangulate this data at
the end to see which things we see in different data collections.

All the different data sources are discussed in more detail in the sections
below and how they contribute to the research questions.

5.1 Online Quiz

From the online quiz that we used in the given lecture, we took a look at the
given answers to see any learning effects to support the answer for RSQ1.
We exported these answers to an Excel sheet of (anonymous) students and
their given answers.

To analyse these results, we started by calculating the number of correct
answers and its percentages for all questions, and for all students, the num-
ber of correct answers and its percentages. For these percentages, we took
into account the number of answered questions.

We also categorised the questions in the subjects (Introduction, Strategy
pattern, Decorator pattern, Visitor pattern and Pattern general) and see
what the percentages of correctly given answers were for these categories
to compare the different patterns. Additionally, we looked at how many
students actually gave an answer to these categories, to see if the number
of answers in the course of the lecture.

Furthermore, we categorised the questions in the following categories:

• Introductory (I) (questions 1, 2, 3 & 4), for introductory exercises

• UML (questions 5 & 9), for exercises about UMLs

• Application Easy (AE) (questions 6, 7, 11, 13 & 15), for easier exercises
in which the students had to answer whether and how a certain pattern
could be applied

32

• Application Difficult (AD) (questions 8, 10, 12, 14), similar to AE but
for more difficult questions

• Pattern General (PG) (questions 16, 17 & 18), for questions were the
students had to state whether one of the presented patterns could be
applied.

For these categories, we calculated the correct answers per category and also
inspected the individual percentages to see if something interestingly could
be observed in the course of the lecture.

After calculating all these values, we inspect these to see if there were
any interesting observations related to the learning effects to answer RSQ1.

5.2 Questionnaire after lecture

To get some feedback on the lecture of the students, we asked the students
to fill in a (non-obligatory) questionnaire after attending or watching the
lecture. These results were then used to mainly get data for RSQ2, but
also for RSQ1. The questionnaire can be found in appendix H, but the
students had to fill it in online. Note that the questions with ovals in front
of the answers are multiple choice questions and exactly one question had
to be selected.

More specifically, we aimed to get feedback on the following points (with
the added questions to receive this feedback):

• Interesting statistics:

– What are you studying? (multiple choice)

– How did you follow this lecture? (multiple choice)

– Could you focus this lecture? (multiple choice)

• How the students perceived the lecture and specific lecture elements:

– How did you experience the explanations of design patterns?

– How did you experience the used UMLs in the slides?

– How did you experience the exercises in the lecture?

– How did you experience the programs presented in Netbeans in-
stead of code snippets?

• A comparison between this lecture and their other lectures:

– How did you experience this lecture compared to the other (Object-
oriented programming) lectures?

33

All the answers of the students were coded and analysed, where we coded
every question separately. As we had only a vague idea of the codes that
would occur, we would start by coding what we see, starting with specific
codes. Afterwards, when we had a better view of the overall codes, we
could combine codes and generalise observations. With the codes question-
naire results, we could see the general comments of the students and their
overall experience of the lecture. We could compare the answers of all the
different questions to each other, but most questions were quite distinctive.
Therefore, we looked at every individual question and what the most inter-
esting and consistent observations were. For each question, we discuss why
it was added to the questionnaire and which codes we expect to apply (while
analysing the answers, there will be codes added which we did not think of
beforehand).

5.3 Interviews at the practical sessions

Three days after the lecture, students had to work on the assignment. Many
students went to the two practical sessions to get support of several teaching
assistants (TAs) to work on this assignment. In these two practical sessions,
we were present to walk around and conducted short semi-structured inter-
views in which we asked how the assignment was going and which problems
students encountered. The process we describe below was used for both
practical sessions, where the first session mainly consisted of Computing
Science Students and the second session of Artificial Intelligence students.

A practical session consisted of 4 hours. So we decided to join the practi-
cal session after 1,5 hours, as then most students probably started and even
finished the first part of the assignment and perhaps started the second
part. We walked through the room and talked to all the groups that were
working on the assignment and we asked them several questions regarding
the following topics (dependent of the answers, we could ask other follow-up
questions):

• Part 1 of the assignment

– Did you finish the first part of the assignment?

– Which problems did you encounter?

– How did you solve these problems?

– How did you perceive the difficulty of this part?

– ...

• Part 2 of the assignment

– Did you start the second part of the assignment?

– Are there any problems you encountered already?

34

– How did you solve these problems?

– Is the Visitor pattern clear?

– ...

• Lecture

– How did you experience the lecture?

– Any feedback on the lecture?

– ...

• Tutorial session

– How did you experience the tutorial session?

– What would be useful additions to the tutorial session?

– ...

In addition to the groups of students that we observed, we also got some
feedback of several TAs; a few of which were TA for the first time, but some
were also TA for a few years, so these provided also interesting insights in
the assignment.

The questions about part 1 and part 2 of the assignment are included
to get some data for RSQ1. The feedback from the students on the lecture
is used to answer RSQ2. Even though the tutorial session is outside of
the scope of this research, it was still interesting to see how the students
experienced it. Additionally, their comments about useful additions were
used in the discussion for a potential next iteration of the learning activity.

While the students were answering the questions, we did not literally
type out their answers, but we simply typed down the keywords of their
answers. The reason for this was that we wanted to keep the flow of the
conversations and many of the answers could be easily categorised. So, after
the two practical sessions, we had two documents with the observations from
the practical analysis, which we could analyse afterwards.

The typed out answers were coded afterwards and categorised into the
categories Part 1, Part 2, Lecture, Tutorial session and General Remarks.
We made some codes beforehand, which can be found in appendix J. If other
codes were seen in the analysis, we added these codes, or made the already
existing codes more specific. Afterwards, we looked at the coded answers
and see whether there were any interesting observations. We looked at every
topic individually as they were quite distinctive.

5.4 Screen recordings of the student groups

At the practical session, we asked 5 groups if they could record their screens
while they were working on their assignment. With these recordings, we

35

hoped to get more detailed insight into the problems students were facing
and how they solved these problems, while the other data sources gave a
more high-level overview. This provided data to answer RSQ1 We asked
the students if they could record their voices as well as their screen, but if
they only handed in their screen recordings, we were also satisfied.

After we received the recordings, we watched them and saved the time
stamps when the students did something worth noting. These transcriptions
were coded to see whether there were any interesting observations. Again,
we divided the codes into part 1 and part 2 of the assignment and some
general remarks. These are some codes we expect to see:

• Part 1 of the assignment

– Unsure which pattern should be applied

– New classes were made for the pattern

– Slides were used to solve problems

– Code projects were used to solve problems

– ...

• Part 2 of the assignment

– Problems with constructing the UML

– Problems with implementing the Visitables

– Problems with implementing the Visitors

– Problems with using the Visitor Pattern

– Slides were used to solve problems

– Code projects were used to solve problems

– ...

• General remarks

– ...

If there were any observations which we did not expect beforehand, we
created extra codes if needed or specify existing codes. Afterwards, we
looked at the interesting observations for part 1, part 2 and other general
observations.

5.5 Questionnaire after the assignment

With the interviews in the practical sessions, we gathered data from many
different students while they were working on it and we saw the students
face-to-face. With the screen recordings, we gathered a lot of detailed data,

36

but of a few students. As an addition, we wanted to get some detailed input
from students on the problems they faced while making the assignment,
which was done via a mandatory questionnaire that students had to fill in
after the assignment. This questionnaire focused on the problems students
were facing in the assignment, how they tackled these problems and how
the slides of the lecture and the assignment were connected with each other.
With this questionnaire, we got some insight in the problems the students
faced while working on design patterns (RSQ1), but also how the students
experienced the complete learning activity (RSQ2). The questionnaire can
be found in appendix I, but the students had to fill it in online. Note that
the questions with ovals in front of the answers are multiple choice questions.

More specifically, we aimed to get input on the following points (with
the added questions to receive this feedback):

• Interesting statistics:

– What are you studying (multiple choice)

– How did you experience the difficulty of the assignment?

• Problems encountered in Part 1 of the assignment

– Which problems did you encounter in the first part of the assign-
ment?

• Problems encountered in Part 2 of the assignment

– Which problems did you encounter in the second part of the as-
signment while constructing the UML?

– Which problems did you encounter in the second part of the as-
signment while implementing the formulas (the visitables)?

– Which problems did you encounter in the second part of the as-
signment while implementing the visitors (pretty printer & eval-
uator)?

• The relation between the slides and assignment

– Were the slides useful for this assignment?

For all questions, we coded the data and analysed these codes to see in-
teresting observations. Similar to the questionnaire after the lecture, we had
a vague idea of the codes that would occur, so we would start with specific
codes. Once we got a better overview of the occurring codes, we could group
and generalise these codes. We made this questionnaire mandatory for the
students, so we expect a lot of submissions. Therefore, it was also possible
to look at the number of occurrences of codes. After the coding, we looked
if there were any interesting observations and we could discuss these results
for every individual question, as the questions were quite distinctive.

37

5.6 Exam results

With the data collected from the interviews, screen recordings and question-
naires, we got a decent insight which problems the students still faced when
working with design patterns to answer RSQ1. However, it would also be
useful to actually look at the programs that the students had written. Even
though we could not get insight into the thought process of the students
or their coding process, we could still get some information from their final
code files. Therefore, we decided to take a look at the students’ submission
of the Design Pattern exercise in the exam results. We decided to look at
the exams rather than the assignment, because at the exam, the students
could not use any references to slides, so we could actually see what they
picked up from the lecture. Furthermore, in contrast to the assignment, the
code written by students in the exam did not have to compile and there
was no compiler or IDE available to them, so we could see more clearly
which concepts the students did not yet understand. Moreover, we could
see the individual students’ understanding of design patterns (the assign-
ment was made in groups) and the exam was more practical to analyse than
the assignment.

We received the (anonymous) exam submissions of the students and
we analysed them by coding the solutions of the students. As the exam
exercise consisted of 5 smaller exercises, we analysed each of the sub-exercises
individually. As these sub-exercises were relatively small and there was often
only one correct answer, we could group each answer in different categories,
which we could identify for the most part beforehand. Note that we only
looked at mistakes and problems related to the Visitor Pattern they had to
implement and not other mistakes that were unrelated to the design pattern.
Afterwards, we looked at the interesting observations we could see to help
us answer RSQ1.

The codes we used for the exam results can be found in the rubric in
appendix K. Note that we specify the codes ”Visitor call incorrect”, ”Visit
function’s body is incorrect” and ”Function calls are incorrect” in more
detail, depending on the solutions we find in the submissions.

5.7 Triangulation

We collected a lot of data from different sources, so we could triangulate
observations which we have seen in different data sources. The idea was
that we looked at the results of the different sources and see if there were
any results that were seen multiple times. Below, we categorised the possible
results, which data sources could support these results and for which research
subquestions these results can be used:

38

Feedback on the lecture

These results were used to answer RSQ1 and RSQ2 and the following data
sources were used:

• Online Quiz

• Questionnaire after lecture

• Interviews in the practical sessions

• Questionnaire after the assignment

Feedback on the assignment

These results were used to answer RSQ2 and the following data sources
were used:

• Interviews in the practical sessions

• Screen recordings of the student groups

• Questionnaire after the assignment

Students’ understanding of design patterns

These results were used to answer RSQ1 and the following data sources
were used:

• Interviews at the practical sessions

• Screen recordings of the student groups

• Questionnaire after the assignment

• Exam results

39

Chapter 6

Results

In this section, we discuss the results found with the methods discussed in
chapter 5. At the end of every data source, there is a summary with the
most important observations.

6.1 Online Quiz

55 students participated within the online quiz in the lecture. Due to time
constraints, we could not do the last three exercises of the online quiz, so
these are excluded from this analysis. We decided to keep all the students in
the data set that answered at least one question, as many students missed
at least one question.

The average student answered 73% of the answers correctly and the
average question was answered correctly by 75% of the students. We can
see that the answers were of the correct difficulty, as they were not too
difficult, but also not too easy that none of the students gave the correct
answer. There are a few outliers:

• Question 6 (100% correct)
The students were asked whether the Strategy Pattern could be ap-
plied in an example program. This was a relatively easy example and
there were 2 correct answers (of the 3 options), so that explains why
everyone gave the correct answer.

• Question 8 (18% correct)
This is by far the lowest score of all questions. Again, the students
were asked whether the Strategy Pattern could be applied in a given
program, but this was a tricky question. At first glance, it looked
like it could be applied, but once you thought critically about the
program, the Strategy Pattern could not be applied at all. Therefore,
many students gave the incorrect answer, but this questions did serve

40

as a reminder for students to think critically about the application of
design patterns, which we can also see in the later questions.

• Question 11 (100% correct)
The students saw an example program and were asked if the Decorator
Pattern could be applied. The application was very clear, so that is
the reason why so many students got it correct.

It is also interesting to look at the individual subjects discussed in the
lecture. Introduction questions are the first four questions with which we
started the lecture. Statistics are represented in table 6.1

Subject Percentage correct answers Average number of answers

Introduction 81% 37,5

Strategy 66% 38,5

Decorator 78% 34,5

Visitor 75% 27,3

Table 6.1: Statistics per subject discussed in the lecture

As the introduction contained relatively easy questions, it was to be
expected that many students answered them correctly. More interesting
is that the Strategy Pattern has the lowest percentage of correct answers,
while it is the easiest pattern that was discussed. The reason for this is
that it included a question about the UML of the strategy pattern and the
previously discussed question 8, which were questions the students found
difficult (58% and 18% respectively). However, these questions functioned
as a learning moment for students to think critically and pay more attention,
as these questions were answered better later in the lecture in the other
subjects. Therefore, even though the Decorator Pattern and Visitor Pattern
are more difficult, the correctly answered questions are pretty much constant
after the Strategy Pattern.

Looking the the number of given answers, we can see that several stu-
dents joined later in the lecture, as more students participated in the Strat-
egy Pattern than the introduction. Interestingly, not so many students left
in the break, as only a few students did not participate in the Decorator
Pattern questions, which were after the break. We do see that at the end
of the lecture (the Visitor Pattern), a lot more students did not participate
anymore with the exercises.

We also separated the exercises into different categories: Introductory (I)
for the introductory exercises, UML for the questions about UMLs, Appli-
cation Easy (AE) and Application Difficult (AD) for the questions with an
example program and the question whether the pattern should be applied.
The latter category contained easier questions and more tricky questions,

41

so we separated these as well in two different categories. In table 6.1, the
percentages of the correct answers can be found and the progression of the
correctly answered questions in that category in the course of the lecture.

Category Percentage correct answers Progression of the percentages

Introductory (I) 81% 86%, 86%, 79%, 73%

UML (UML) 66% 58%, 74%

Application Easy (AE) 91% 100%, 88%, 100%, 86%, 81%

Application Difficult (AD) 54% 18%, 54%, 85%, 59%

Table 6.2: Statistics per question type discussed in the lecture

We can see that the students struggled with the questions about the
UMLs, but in the course of the lecture, the students were getting better in
recognising the UMLs, even though the UMLs were getting more compli-
cated. Furthermore, there is a clear difference between the easy and difficult
application questions. However, we can still the a similar trend in the dif-
ficult application questions as in the UMLs; in the course of the lecture,
students were getting better at these exercises, even with the more challeng-
ing patterns. These indicate that the students were indeed learning more
about these subjects, as the exercises were answered better in the course of
the lecture. The introductory questions and the easy application exercises
were answered consistently pretty well.

To conclude, the questions in the lecture were of the right difficulty and
the students understood how to apply the discussed patterns. Furthermore,
we see that in the course of the lecture the students became more familiar
with reading UMLs and started to think more critically about in which
situations certain patterns could be applied.

6.2 Questionnaire after lecture

The questionnaire after the lecture was filled in by 39 students. With the
first 2 questions we could differentiate between the Computing Science (CS),
Artificial Intelligence (AI) and Other students and between the students
that were attending live, were following the livestream or were watching the
recording afterwards. The distribution can be found in table 6.2.

In total, there were slightly more CS students than AI students and of all
students that filled in the questionnaire, around 60% were present live, 20%
were following live via a livestream and 20% watched the recording back.
These distributions also hold in the rest of the table.

The answers on the other questions will be discussed in the remainder
of this section.

42

Live present Watching livestream Watching recording Total

AI 10 3 3 16

CS 13 4 4 21

Other 1 0 1 2

Total 24 7 8 39

Table 6.3: Distribution of students in the lecture

How did you experience the explanations of the design pat-
terns?

Overall, the students were very positive about the explanations. They
thought it was clear, easy to follow and interesting. Specifically, the men-
tioned that the used examples were very useful for their understanding and
it helped that they were real life examples. However, 5 students indicated
that they experienced the material as complex, vague and abstract, but this
was mainly due the subject itself. Other remarks were that there was too
much information on one slide and therefore, the recording was hard too
read. Unfortunately, it was difficult to solve this issue, as there are already
big UMLs on the slides due to the nature of the presented material.

There were no differences between AI or CS students and no differ-
ences between the ways the students saw the lecture, which means that
the students experienced this explanation of design patters positively on all
platforms.

How did you experience the used UMLs in the slides?

Again, the students were very positive about the UMLs used in the slides;
they really helped with understanding the design patterns and most stu-
dents were not overwhelmed by them. Students did indicate that they did
not have a lot of experience with UMLs, but this was for most students no
problem. 4 students stated that the UMLs were complicated at the start
of the lecture, but once they were discussed in more detail, they could fol-
low along. However, 2 students said that the UMLs were too complicated,
mainly because they were overwhelmed by them and they were discussed
too fast. Notably, some students indicated that they became a lot more
familiar with reading and analysing UMLs as an additional learning effect.

We can see that the AI students struggled a bit more with UMLs than
CS students; AI students thought the UMLs were more complicated and
vague. Interestingly, the students that were watching the livestream live
stated that the UMLs were overwhelming and that they were discussed too
fast, while the students that were live present or watched the recordings did
not mention this. But generally, there were no significant differences.

43

Could you focus this lecture?

27 students (69%) could focus easily most of the lecture and 12 students
(31%) could focus around 50% of the lecture, which are positive numbers
for a lecture.

There is a minor difference between AI and CS students; 63% of the AI
students could focus easily most of the lecture compared to 76% of the CS
students. When looking at the ways the students watched the lecture, there
are interesting observations, as seen in table 6.2.

Live present Livestream Recording Total

Focus: Most of the lecture 15 6 6 27

Focus: Around 50% 9 1 2 12

Total 24 7 8 39

Table 6.4: Distribution of students’ focus in the lecture

Surprisingly, almost all students watching the livestream and the record-
ing could easily focus most of the lecture, while approximately a third of the
present students could focus around 50% of the lecture. We expected that
these distributions would be the other way around, but apparently students
find it easier to focus when watching this lecture digitally. So, the structure
of this lecture is an effective structure for students that are watching the
lecture digitally.

How did you experience the exercises in the lecture?

Students were very positive about the exercises in the lecture for two reasons.
Firstly, the exercises helped the students with understanding the material;
not only could they test their understanding of the material, but they also
started to think critically about it. Moreover, the students saw many exam-
ples of potential use cases which was beneficial, but also served as a helpful
bridge towards practice. Secondly, the exercises motivated the students to
pay attention in the lecture and created an active learning environment;
they delivered the necessary interaction, engaged the students, but created
some responsibility for the students as well. Furthermore, some students
found the exercises too easy and some too difficult, but these balanced out
pretty well.

There were no differences between the different studies and the ways the
students watched the lecture. This means that whether students watched
the lecture live (in the lecture room or via livestream) or the recording back,
they all experienced the exercises as helpful and motivating, which makes
these exercises a good feature to keep in digital teaching.

44

How did you experience the programs presented in Netbeans
instead of code snippets on the slides?

Around 30% of the students mentioned that the programs in Netbeans were
helpful and easy to follow, but not necessarily better than code snippets on
slides. However, 40% of the students stated that the programs in Netbeans
were better than the code snippets on the slides. The main reason given
was that the students had a better idea of the actual structure and the im-
plementation of the whole program, which is hard to grasp when providing
code snippets on slides. Moreover, seeing actual, written code helped to
translate the presented theory into code, which was a problem in the liter-
ature. The coding environment also helps to see the actual coding process,
the debugger used to present the program interactions was also beneficial
and the switch to another medium made the presentation more lively. On
the other hand, around 10% of the students stated that code snippets were
better than the programs in Netbeans, mainly because students experienced
it as a bit chaotic and it was quite overwhelming, as students see all the de-
tails in the code while code snippets highlight the most important parts.
Furthermore, it makes studying more difficult and it was not always good
visible. In sum, the students were divided, but most of the students found
it useful and we can use the given critics in the next iteration.

From the different studies we saw that AI students were more negative
about the coding sessions, while the CS students thought it was better.
There were no differences between the ways the students watched the lecture.

How did you experience this lecture compared to the other
(Object Oriented Programming) lectures? And why?

25% of the students stated that the lecture was good, but not necessarily
better than the other lectures. 50% of the students indicated that this lecture
was better and clearer than their other lectures, but was also refreshing,
which had several reasons. The main reason was that this lecture had more
interaction and students felt more involved, which made the lecture easier to
follow. This was mainly due to the exercises in the lecture, but another given
reasons were the different mediums used in the lecture, e.g. exercises in an
online quiz and programs presented in NetBeans. Moreover, the examples
used were interesting, real-life examples, but not too difficult, which also
helped with keeping attention. However, a single student mentioned that
he/she preferred the ”normal” lectures, but did not elaborate on this.

Looking at the different studies, AI students stated that this lecture was
not better than other lectures, while half of the CS students indicated that
this lecture was better and they felt more involved than other lectures. The
students that were present live at the lecture were generally positive about
the lecture and most students that stated that they were more involved fell

45

in this group. Furthermore, 75% of the students that watched the recording
back indicated that this lecture was better than their other lectures, which
makes this lecture structure effective for later reference as recordings.

Other comments/remarks/?

Other comments were:

• The pointer was not always good visible on recordings

• The slides were relatively cluttered with text (unfortunately, the slides
are already cluttered by the UMLs)

• It would be nice to show the given answers of the quiz

• Missing comparison of the patterns (was in the slides, but there was
not enough time to discuss this)

Summary

Overall, students were very positive about the given lecture. Reasons for
this were the clear structure of the slide set, the exercises in between the
material and the live coding sessions. These elements led to an interactive
lecture in which students could easily focus and therefore, everything was
easier to follow. Students were also not overwhelmed by the UMLs, as these
were discussed step-by-step, and the clear, but practical examples helped
to understand these patterns better. Furthermore, the exercises not only
tested the students on the actual structure of a discussed pattern, but also
focused on the application of it, which captures both the learning objec-
tives of this design pattern lecture. Moreover, all these different exercises
gave even more practical example programs in which the pattern could be
applied. Combining the UMLs for a clear overview of the patterns with a de-
tailed implementation in the coding sessions and many different application
examples in the exercises lead to a positive learning experience. Interest-
ingly, there were no big differences between the students that were present
live, were watching the livestream or watching the recording back, so the
specified structure for this lecture could be effectively applied in such an en-
vironment. The given critics by the students are revisited in the discussion
(chapter 8.5), in which we will discuss a potential next iteration.

6.3 Interviews at the practical session

Within the practical sessions, we talked to 20 groups of Computing Science
students, 7 groups of Artificial Intelligence students (a total of 27 groups)
and one Teaching Assistant. We categorised the results under comments

46

about part 1 of the assignment, part 2 of the assignment, the designed
lecture, the tutorial session and some general remarks.

Part 1 of the assignment

Around 35% of the groups did not encounter any problems in this part of the
exercise and around 25% encountered minor problems. Even though 20%
stated that the assignment was clear, there were a few groups that found
the assignment unclear or too difficult. The main problem they encountered
was that it was pretty clear which pattern they had to use, but actually
implementing this pattern was the point where they got stuck. The slides
and the Teaching Assistants helped the students to solve these problems.

Comparing the types of students, the AI students found this part a bit
more challenging compared to CS students, but this difference was rather
small.

Part 2 of the assignment

Many groups were still working on the second part of the assignment, so
we collected less data on this part. In the results, 1 group encountered no
problems, 2 groups found the exercise doable and 3 groups indicated that
the assignment was quite clear. However, 2 groups stated that the assign-
ment was unclear, 4 groups got overwhelmed by the assignment, 2 groups
stated that the exercise was too difficult and 2 groups indicated that the
second part was significantly harder than the first part. The main problems
encountered by groups (so far) were: not enough experience for implement-
ing the Binary Operator with an enumeration (5) and a Standard Library
(5), using the Strategy pattern inside the Binary Operator (4), the generics
that had to be used (3) and the Visitor Pattern itself (2). Other problems
that were encountered were the details inside the Precedence function for
the ShowVisitor and problems with the structure of the Formulas and the
Boolean Connectives used in these Formulas. Overall, students understood
the concept of the Visitor Pattern, but implementing the details was more
challenging. To tackle these problems, students asked help from TAs and
looked at the provided slides of both the tutorial session and lecture. Fur-
thermore, students indicated that it would help if the exercise contained
more information on the details of the implementation (the enumeration or
the Standard Library), if the assignment was split in smaller steps and if
there was a code template provided instead of having to create all the classes
themselves.

Comparing the types of students, the AI students had a considerably
harder time with this part, as many AI groups were still working on the
assignment, while CS students were finished. Moreover, it were mostly AI
students that indicated that the assignment was too difficult, that they got

47

overwhelmed by it and that it would be nice to have a code template, so the
start would be easier. The TA also agreed with the aforementioned points.

Lecture

From a few groups, we got some feedback about the lecture. Most of the
comments were about the usefulness of the quiz used in the lecture for the
interaction and the exercise. Other comments were related to the helpful
structure of the lecture, the useful coding sessions and the useful UMLs used,
which all made the lecture clearer. There were also several mixed opinions:
some groups preferred the provided code within projects that was complete,
while others prefer different code fragments in the slides. Furthermore, some
groups indicated that the slides were clearly connected to the assignment,
while some stated that the difficulty of the assignment was much harder
than the content in the slides.

Tutorial session

Even though it is not within the scope of this research, we got some feedback
on the tutorial session of this week. This feedback may be useful when
constructing an extra lecture or tutorial session for a next iteration of this
research. On one hand, students mentioned that the tutorial session was
useful and the shown examples were good, but on the other hand, groups
stated that the assignment was too complex compared to the content in the
tutorial session. The feedback of the students was the following:

• Provide code or concrete hints for the more difficult details in the
assignment (for this week, code for the enumeration and the Standard
Library for the implementation of the Binary Operator for example)
while still giving enough elaboration for the given code.

• Students would like more interaction in the tutorial session, which is
pretty hard to achieve in our experience. One suggestion from the
students was to let the students write code themselves in the tutorial
session.

• It would also be helpful to focus on the problem solving part and
understanding of the assignment instead of providing and discussing
code to the students. As can be seen from earlier observations, many
students struggled with actually understanding the assignment, so dis-
cussing the assignment in the tutorial session and breaking this up in
smaller parts, would be very beneficial for the students.

In the results of the questionnaire after the exercise, we got a lot of positive
feedback on the assignment. With the interviews, we could directly ask the
students for more feedback, so we could get a more detailed opinion of them.

48

General remarks

The Teaching Assistant stated that the assignment was too big, but also too
hard for the students. This problem could be tackled by removing the oblig-
atory enumeration and Standard Library part from the Binary Operator, or
at least providing proper support for this.

Many students could not finish the assignment in the scheduled practical
session, which is often the case, so this also supports the previous statement.
Interestingly, AI students found the assignment a lot harder (as indicated
by other results in this research) and this resulted in an atmosphere in the
room in which a lot of students were not focusing.

Lastly, one group noted that it would be more interesting to have an
exercise about an authentic, real world example.

Summary

Overall, the assignment was too long and too difficult, according to the
students and the Teaching Assistant. Furthermore, the Artificial Intelligence
students experienced the assignment a lot more difficult than the Computing
Science students, as in line with the other results of this research.

In more detail, part 1 of the assignment was relatively easy for the stu-
dents; finding the correct pattern to use was doable, but actually imple-
menting it caused some more problems. However, part 2 was significantly
harder than the first part. The pattern itself did not cause the most prob-
lems for students, but this time the other details in the program that were
mostly not directly related to the learning goals. These were for example
the used enumeration, Standard Library and the Strategy pattern for the
Binary Operator and the generics used in the ShowVisitor. A solution would
be to completely remove these aspects from the exercise, or at least provide
proper support and elaboration for them. Moreover, the assignment was also
unclear for several students. Solutions for this would be more elaboration
on the assignment or splitting up the assignment in smaller, clearer steps.
This was also a suggestion for the Tutorial session, to make this session more
effective.

Furthermore, students were positive about the lecture due to the added
elements in our design (e.g. online quiz, the structure and live coding ses-
sions).

6.4 Screen recordings of student groups

We received 3 screen recording of student groups while they were working on
the assignment. Unfortunately, not all recordings were correctly recorded
or complete, but there were still some interesting things to see in these
recordings.

49

Part 1 of the assignment

The first thing we noticed was that the students were unsure how to start on
the assignment, as it was the first refactoring exercise they made. Once they
understood what was expected of them, creating the classes they needed and
the interface was pretty doable. The only minor problems they faced were
the typing they needed for the different functions and which code should be
in which class. However, when the students had to implement the actual
call to this interface and its classes, the students really struggled with the
code they had to write, which was also the last segment of this part. After
looking at the slides and some trial and error, the student figured out how
to do it.

Part 2 of the assignment

At the start, students were clearly struggling with reading and understand-
ing the actual assignment. Students had to create a UML of the program as
the first exercise, which was the Visitor pattern. The pattern itself was quite
clear, except that one group switched around the Visitors and Visitables.
Moreover, the global UMLs looked decent, but many details were missing,
e.g. how the binary operator is actually implemented and which attributes
and function the classes/interfaces include.

When implementing the Visitor pattern, the groups did pretty well; im-
plementing the Visitors was doable and the recursive calls in these were also
correct. However, students struggled a lot with writing the correct code for
creating and calling the implemented Visitors and Visitables, similarly to
the Strategy pattern in part 1.

Moreover, the Strategy pattern inside the binary operator was challeng-
ing and difficult for the students to implement and use correctly; within their
finished program, the pattern was often not correct and students found an-
other, indirect solution to get the desired functionality.

Apart from these problems, other problems lay in the details of the
program. One main problem was the propositional logic in the formulas, for
which the students did not have the presumed knowledge, especially using
the precedence values to determine whether the brackets should be placed or
not. Students googled these definitions and to get all the related test cases
correct, they simply tried to fix the cases with trial and error. Furthermore,
students had problems with the used generics inside the assignment used
in the Visitors and they did not know how the generic Map functions in
Java, which was needed in the Evaluatorvisitor. Also, it was unclear what
the expected result was of the ShowVisitor (e.g. AND operator is written as
”/\” and not ”&&”), which is easily solved by adding this to the assignment.

Lastly, students were asked to draw a sequence diagram, but all students
we observed did not know what this was, so they had to google it and none

50

of these groups submitted an adequate and finished sequence diagram.

General remarks

One interesting observation was that whenever the students had an error
in their code, the students did not first look at the error, but were blindly
adding code to fix the bug (e.g. adding random brackets and type castings).
Furthermore, they immediately used the suggestions of the IDE to solve the
bug, which were often incorrect and even more code was added, which made
the problem only more difficult to solve.

To solve the problems the students encountered in the assignment, they
used the provided slides, but also the code projects presented in the slides, to
see concrete code as inspiration. Additionally, to see whether their program
is correct and what the potential bugs were, the students effectively used
the given test cases.

Summary

The first thing we saw was that students struggled with understanding the
assignment and what they had to do. Afterwards, the assignments were
doable and the main problems were not related to the discussed patterns, but
to the other details of the program. How the patterns work, was pretty clear
to the students (except the needed calls to actually use the patterns were
difficult for the students), but the most time was spend on, for example, the
functionality and usage of the precedence of propositional formulas, generics
(using a Map as environment) or making a sequence diagram, while they
had never done that. Specifically in part 2, students did not understand
the underlying Strategy Pattern for the binary operator and no group had
a solution that implemented or used this pattern correctly.

To solve the errors that occurred, most students did not think explic-
itly about the bug or error message, but made several blind and impulsive
changes to the program, which did not fix the bug and sometimes only made
the bug more complicated. This was only strengthened by the fact that stu-
dents used the automatic bug solver in the IDE, which did often not suggest
the correct code snippets. Additionally, the students used the presented
slides, test cases and the provided code projects of the lecture to solve the
problems they faced in the assignment.

6.5 Questionnaire after the assignment

The questionnaire was filled in by 117 students. With the first question, we
could differentiate between the different studies: 59 students studied Com-
puting Science (CS) (50%), 53 Artificial Intelligence (AI) (45%), 2 Physics,
1 Mathematics, 1 Pedagogical Sciences and 1 was a student from a high

51

school. It was interesting to see whether there were any significant differ-
ences between the CS and AI students. The results of the questionnaire are
discussed in the remainder of this section.

How did you experience the difficulty of the assignment?

The results can be found in table 6.5.

CS AI Other Total

Easy 0 2 0 2

Good 17 7 1 25

Challenging 32 34 3 69

Too difficult 10 10 1 21

Total 59 53 5 117

Table 6.5: Perceived difficulty of the assignment

The assignment was slightly too challenging looking at the results; 21%
stated that the difficulty was good, 59% stated that it was challenging and
18% stated that it was too difficult. The reasons for the experienced diffi-
culty are discussed in the next questions. Furthermore, AI students experi-
enced the assignment as a bit more difficult than the CS students, but this
difference is not significant.

Which problems did you encounter in the first part of the
assignment?

38 students (32%) did not encounter any problems in the first exercise, where
they had to refactor a given program with the Strategy Pattern. 17 students
(15%) did only encounter minor problems (e.g. syntax problems), which
were not worth mentioning and were solved pretty easily. Furthermore, the
following problems were mentioned by the students (including how often it
was stated):

• Requirements unclear of the assignment (22)
It was unclear for the students what as expected from them from the
exercise and therefore, it was hard to start the assignment. Reasons for
this were that the ”explanation was vague”, but students also struggled
with the idea of refactoring a program, as that was pretty new for
them. As a result, students that understood the requirements were
unsure which files they could remove or edit and whether they had to
add more files.

• Recognising the design pattern (11)
Several students struggled with recognising which design pattern was

52

the best to apply in the given program, but many succeeded in spotting
the pattern eventually.

• Implementing the design pattern (10)
After recognising the pattern, several students struggled with the de-
tails of the implementation. Examples of these are which are the
Interfaces and which are the Classes, and placing the provided code in
the correct Classes. Also, gluing all these different Classes together to
make the pattern work was a challenge.

• Not enough knowledge of the subject of the program (6)
Students were confused about the functionality of the shiftNplaces

method (a method that takes a character and an integer n, such that
the character ASCII value gets shifted n places). Moreover, students
were confused with the idea of an encryptor and the given encryption
methods, simply because they have not seen something like that at
this point in their study. So, we had a misunderstanding of the base
knowledge of the students in this field, so more instructions should be
provided in the assignment to provide more explanation.

• Test cases not working (6)
A few students had problems with the provided test cases. All these
students used IntelliJ, but the test cases were written in NetBeans, so
there was probably something wrong with the used version, but this
was easily fixed.

• Factory unclear (2)
A factory file was provided in the assignment for the test cases without
any explanation, because we assumed that students were familiar with
this. However, this was no the case for everyone, so once again, a bit
of explanation should be provided for a given factory.

These problems were mainly solved with the help of the Teaching As-
sistants (TAs) (22), by looking at the slides (7) (mainly for deciding which
pattern to use) and asking on the Discord server (2) or the internet (1).

A few other comments were given: a few students mentioned explicitly
that this was a good exercise for understanding the usage and usefulness of
a design pattern, but also engaged their critical thinking skills, which was
missing in the other weeks. One students mentioned that he felt forced into
the Strategy Pattern; we agree, but thought it was necessary, because the
assignment would be even bigger if this task was more complicated.

From the results was also clear that the AI students struggled a lot more
with this task compared to the CS students; 24 CS students encountered
no problems compared to the 13 AI students. Moreover, 13 AI students did
not understand the requirements compared to 4 CS students, so this is a
significant difference.

53

Which problems did you encounter in the second part of the
assignment while constructing the UML?

32 students (27%) did not encounter any problems in the second task where
the students had to make an UML of the given program. 11 students (9%)
only encountered minor problems, as the structure became more clear as the
UML was drawn. 10 students (9%) reused the assignment of last year, so
we did not get any data of these students.

Furthermore, the following problems were encountered:

• Applying and understanding the visitor pattern (20)
This is where most students were struggling; the program in the task
was clear, but applying the Visitor Pattern was more challenging.
More specifically, students did not know what was supposed to be
a Class or an Interface and which Objects should implement some-
thing (8). The individual components were clear to the students, but
the whole structure of the Visitor Pattern not. Furthermore, it was
not clear what the difference was between visitors and visitables (2)
and how exactly the visit and accept functions were related to each
other. Interesting to note here is that students struggled with the
UML, because they did not yet have a complete overview of the pro-
gram. So, it was not completely clear to the students that a complete
overview is not yet needed for drawing the UML, as the process of
drawing that helps to get the complete overview.

• Assignment hard to understand (9)
The program was quite large and there were a lot of components to
it, so students felt overwhelmed and the assignment was hard to un-
derstand. Moreover, the provided code to the students was minimal
(especially compared to earlier assignments), so students were also
missing a base to start from. We acknowledge these issues and for the
next iteration, it is wise to provide some support for the students to
understand the assignment, e.g. explaining the complete assignment
in a lecture.

• Details in the UML (7)
Some students understood the program and the application of the
Visitor Pattern, but still struggled with the contents of the Classes
and Interfaces, e.g. which functions should be where.

• UML problems (7)
Students struggled with the UML syntax as well. For example, stu-
dents did not know how to express generics in UML (3) (which is
indeed not explicitly documented) or they did not have seen enough
UMLs to draw one themselves, thus it took some time to get started
(4).

54

• UML in slides not directly applicable in the assignment (7)
The UML for the Visitor Pattern in the slides was a generalised version
that contained an abstract Object which was implemented by all the
visitables. However, this abstract Object can be ignored and was
not needed in the assignment, but many students used the presented
UML in the slides as a basis and were confused about this additional
interface. For the next iteration it is an idea to change the presented
UML in the slides or make a comment in the assignment about this.

• Technical problems in the programs for drawing UMLs (4)
Several students encountered technical problems when drawing UMLs
online, but these were easily solved.

These problems were mainly solved by looking at the slides (10) as these
contained the UML of the Visitor Pattern, by asking TAs (6) and searching
on the internet (4) or the provided program in the lecture (1). However, we
observed that many students struggled with drawing a UML and decided to
program the task first and make the UML afterwards (7). This is of course
not the idea of a UML, so it could be emphasised more in the next iteration
why making a UML is actually useful and helpful.

Comparing AI and CS students, there are a few interesting observations:
firstly, more AI students (5) experienced issues with understanding the as-
signments then CS students (2). Moreover, CS students had more struggles
with the UML than AI students which was seen in different areas; confusion
about the abstract Class above visitables (4 CS, 2 AI), problems with the
details in the UML (6 CS, 1 AI), program structure was unclear (8 CS, 3 AI).
What we expect, but this could to be validated by the students’ handed-
in work, is that the UMLs of the CS students are more detailed than the
AI students, as the CS students experienced more, but also more detailed
problems. We can check this by comparing the work of the AI students to
the CS students, but unfortunately, we did not had the time for this.

Which problems did you encounter in the second part of the
assignment while implementing the formulas (the visitables)?

24 students (21%) did not encounter any problems in the second task where
the students had to implement the Formula structure, which are the visita-
bles. 17 students (15%) only encountered minor problems, such as forgetting
keywords or using an incorrect string representation for the boolean connec-
tives. Again, 10 students reused the assignment of last year.

Furthermore, the following problems were encountered:

• Problems with implementing the Binary Operator (20)
In the assignment, the boolean connectives were represented by a sin-
gle class with BinaryOperator as field, thus being constructed as a

55

Strategy Pattern within the Visitor Pattern. However, not much infor-
mation was provided on how to apply this Strategy Pattern and thus,
students were experiencing problems with this application. Moreover,
the students were asked to use a Standard Library for this implemen-
tation. There was also not much information provided for this and
students did not do this before, so a few struggled with this as well.
For the next iteration, it is wise to provide some more guidelines for
these things or completely remove them from the assignment.

• Problems with implementing the enumeration for boolean connectives
(19)
The boolean connectives (∧,∨ and →) had to be implemented using an
enumeration type. However, students did not have much experience
with such an enumeration and very few guidelines were provided, so
students did not know where to start here. Furthermore, combining
this already challenging enumeration type with the Strategy Pattern
used to represent Binary Operators was very difficult for students and
took a lot of time and energy from them. This part of the assignment
should be explained in more detail or should completely be removed,
as at the moment, the students are putting too much time in this,
while it is not the most important part of the program.

• Assignment was unclear (12)
There was a lot of information in the assignment and students were
overwhelmed by it. It was unclear what was expected from the stu-
dents and what they had to exactly implement. The difficult part is
that all the information is necessary, but it is possible to reorganise
this information in a more structured manner.

• Starting with the assignment was hard (12)
Once the students understood what should happen, it was still hard
to actually start with the assignment; there had to be implemented so
much that there was no clear point where to start. Afterwards, the log-
ical order of implementing parts of the program was also unclear, so it
could be an idea to provide some more guidelines here for the students,
such that they are not stuck at the start of the implementation.

• Problems related to the Visitor pattern (9)
There were several problems related to the application of the Visitor
Pattern: the difference between visitors and visitables was not clear
to the students, the purpose of different functions was not clear (e.g.
accept, visit and getPrecedence) and where certain Interfaces and
Classes were needed. We expected these problems, as it was the first
time students implemented this pattern and these are the most chal-
lenging aspects.

56

• No clue what they were doing (7)
Some students stated that they had no idea what they were doing
and were not even able to specify which problems they faced in the
assignment.

• Specific problems

– Some students were not familiar with propositions and proposi-
tion logic (2)

– It was not clear what the precedence was of boolean connectives
and how this was supposed to work (1)

– One student struggled with the Lambda expression (which was
not necessary to use)

These problems were solved by asking TAs (16), looking at the slides
(13), looking at the internet (1), Discord (1) or the provided test cases (1).

Comparing AI and CS students, CS students struggled more with the
Strategy Pattern of the Binary Operator (13 CS, 5 AI) and the enumeration
(15 CS, 3 AI). However, this is probably due the fact that CS students
were able to specify these problems as many AI students couldn’t specify
their problems (2 CS, 5 AI) and 9 AI students reused their assignments.
Moreover, significantly more CS students used slides to solve their problems
compared to AI students (10 CS, 2 AI).

Which problems did you encounter in the second part of the
assignment while implementing the visitors?

17 students (15%) encountered no problems, 30 students (26%) only minor
problems, such as variables that were switched around and minor bugs. Once
more, 10 students reused the assignment of last year.

Furthermore, the following problems were encountered:

• Problems related with the ShowVisitor (25)
Many students struggled with the implementation of the ShowVisi-
tor, which had to print the given formula with the correct and needed
parenthesis. All these problems were related to printing the paren-
thesis, which could derived from the precedence value of the boolean
operators. We assumed that all the students were familiar with the
idea of the precedence values and how this helps to decide which paren-
thesis are indeed needed in the formula. So, the precedence was men-
tioned in the assignment, but the details were left unspecified, with
the expectation that the students had enough knowledge about this,
but this was not the case. Many students struggled with the usage of
the precedence and how this helps to print the parenthesis and as a
result, many students took a long time to implement this or were not

57

able to do it at all. As we had the expectation that students did not
encounter any difficulties here, we thought it would be a good addition
to the assignment, but in hindsight, we should provide more informa-
tion or remove the parenthesis completely from the assignment. The
focus of this assignment lies on the Visitor Pattern and not the details
of implementing a correct system of printing parenthesis.

• No clue what they were doing (10)
There were also students that had no idea what they were doing in
this part and they were not able to specify explicit problems they
encountered.

• Problems related to the Visitor pattern (8)
These were mainly problems related to the connection between the
accept and visit functions and how these should exactly be imple-
mented. Moreover, it was confusing at first how to execute a recursive
call with the accept function, as this is not immediately intuitive.

• Starting was hard (6)
Some students found it hard to start this section, mainly because it was
not immediately clear how all the Classes and functions were supposed
to work together. Luckily, after the students looked at the Visitor
Pattern again, it was quite clear how it was supposed to work.

• Problems in the Factory (2)
Students did not know how to exactly call a Visitor from the Factory
and other students forgot to implement the Factory, so their test cases
wouldn’t work, but these problems were easily fixed.

• Problems related with the Evaluator (2)
A few students struggled with the Evaluator instead of the ShowVisi-
tor. This was mainly due the formulation of the assignment, so it was
unclear what the Evaluator was exactly supposed to do.

• Problems with the generic typing (1)
These students struggled with the generic typing that was used in the
assignment.

These problems were solved by asking TAs (10), looking at the test cases
(4), asking the Discord server (2), or looking at the slides (2) or the internet
(1). There were no significant different between the CS and AI students in
these results.

Did you encounter any other problems?

Students mentioned a few other problems they encountered:

58

• Students never saw a sequence diagram before (8)
The students had to make a sequence diagram of the program, but
they had never seen such a thing before. Therefore, the students were
very confused what was asked of them.

• The assignment was too hard to understand on you own (5)
Students mentioned that the assignment was too hard and too long
and as a result, it was for them impossible to make it without help
from the TAs.

• The tree structure used for the Formulas (1)
These students struggled with the tree structure used to represent
formulas.

Comparing the CS and AI students with each other, the AI students had
more trouble with understanding the assignment (1 CS, 4 AI), which was to
be expected, as the AI students struggled more with the assignment looking
at the other results. Furthermore, the CS students complained about the
sequence diagram (7 CS, 1 AI), so we expect that the AI students saw a
sequence diagram earlier in their courses.

Were the slides useful for this assignment? Was there a clear
connection between the taught material and the assignment?

Regarding the connection between the slides and the assignment, students
were very positive. 8 students indicated that the slides were helpful and
63 students stated that the slides were useful for making the assignment.
22 students indicated that the slides and assignment were clearly connected
and thus, the material in the slides could almost directly be applied in the
context of the assignment. However, 12 students stated that the assignment
was significantly harder than the material covered in the slides and the
explained material did not help the students in this assignment. Also, 2
students mentioned that the details of the assignment were not covered in
the slides which took a long time to figure out themselves. For example, a
reference for the usage of enumerations or Standard Libraries would have
been very helpful.

Moreover, students also gave specific feedback on the slides themselves,
which are in line with our earlier observations. Reasons for this were the
clear, step-by-step structure used in the slides (3), the useful examples (2),
the exercises in between the covered material (6) and the coding session
with the provided programs (5). Also, 13 students stated that the UMLs
were very helpful; not only for their understanding, but also for making
the assignment. Additionally, 2 students specifically mentioned that the
given references at the end were very useful for understanding the discussed
patterns and were helpful for the assignment. However, there was also some

59

critique on the presented slides; e.g. 5 students mentioned that the useful
information in the slides was cluttered by exercises and that a better balance
should be found for information on slides and exercises. This is easily solved
by providing an additional slide set to the slides in which the exercises
are removed. Students also found the slides a bit confusing sometimes due
to the discussed material (3) and found it hard to actually translate the
given information into code (3). Lastly, students stated there were too
many examples given compared to the provided code (1) and students still
struggled with the UML syntax in and after the lecture (1).

Students also provided feedback on the tutorial slides provided in the
assignment. 14 students found the tutorial slides very helpful for this as-
signment and 2 students specifically mentioned the provided code snippets
on the slides. Still, 1 student stated that the tutorial slides were a bit chaotic
and thus not usable for the assignment.

Comparing CS students and AI students, there were no notable differ-
ences here.

Other comments/remarks?

There were a few positive remarks here: students mentioned that the as-
signment significantly helped with their understanding of the material (1),
the assignment was fun to work on (1) and the topic was interesting and
applicable in a broader sense (1).

There was also some criticism on the assignment:

• The assignment description was too vague (5) and too chaotic (1).
This can be solved by structuring the assignment a bit more.

• The assignment was too big and took too much time to make (5).

• The first part was too hard (2). This is interesting, as many students
faced problems in the second part of the assignment.

• The slides had not enough information in them to make the complete
assignment (6). This mainly entails the details in the code that were
not provided anywhere (the enumeration or the binary operator), so
students had to google it while the provided slides were of little use.

• The assignment mainly focused on code details instead of the actual
pattern (1). For example, a lot time was spend on fixing the paren-
thesis in the ShowVisitor.

• There were typos in the assignment (2).

Lastly, there were also a few suggestions which could fix these issues: it
would be fun to have a real world example to work on (1), it would help
if there was more code provided to the students (1) and it would be useful

60

if the whole assignment was discussed in the lecture/tutorial or a similar
example of the assignment (1).

Comparing the AI and CS students, the AI students struggled signifi-
cantly more with this assignment. This can be seen from the comments that
the assignment was too big (1 CS, 4 AI), too vague (0 CS, 6 AI) and that
the first part was too hard (0 CS, 2 AI)

Summary

The first part of the assignment was about recognising a pattern and refac-
toring the program. Around 50% of the students encountered no or mi-
nor problems. The other students experienced that the requirements were
unclear of the assignment and other problems were recognising and imple-
menting the design pattern. These latter two were expected, as these were
part of the learning goals and the former can be easily fixed by updating
the requirements and making them more explicit.

The second part was about applying the Visitor pattern. Around 30-
40% of the students encountered no problems or minor problems in this
part. Other students were still confused by the Visitor Pattern, mainly
the relation between visitors and visitables and how the accept and visit

functions connected these two. These problems still occurred later in the
assignment, but were mostly fixed after constructing the UML in the first
subquestion, as the students had to actively think about the pattern here.
Furthermore, the students did not necessarily struggle with applying the
pattern, but most of the time with the details of the program, as will be
discussed later.

Students also had some comments on the assignment in general. One
thing we saw was that, even though this was the first time students ac-
tively saw UMLs and had to construct them, students understood how they
worked and functioned, so that was another benefit of the lecture. However,
the difficulty of the assignment was a bit too difficult, which can be fixed by
giving a more structured explanation of the assignment and more instruc-
tions on the challenging details. For example, many students struggled with
the Binary Operator, which had to be implemented via an enumeration and
a Standard Library. Students did not have to do this before, so many spend
a lot of time on this, while it was not the key part of the assignment. Sim-
ilarly, students did not understand the precedence of the formulas, which
is also easily solved by giving more hints here, instead of no explanation,
which is the case right now. Moreover, students were asked to construct
a sequence diagram, while they had never seen this and never made one.
The main conclusion we can see here is that it is wise to think critically
about the learning goals and try to remove the parts which are difficult for
students and take a lot of time which are not really relevant for the learning
goals. At least, provide enough instructions, such that students do not have

61

to figure out everything themselves.
Comparing Computer Science students and Artificial Intelligence stu-

dents, we saw that the Artificial Intelligence students experienced the as-
signment as a bit more difficult than Computer Science students.

We also saw that the designed lecture positively contributed to the as-
signment. When stuck, students mostly assessed the lecture slides, apart
from asking help of the teaching assistant (Asking a TA 53x, Looking at
slides 30x, Looking at internet 9x, Looking at the test cases 5x, Asking
on Discord 3x). Additionally, around 75% stated that the slides were use-
ful/helpful and that the slides and assignment were clearly connected with
each other. Especially the UMLs were helpful in the slides and the other
elements we put in our slides (exercises, the structure and the provided pro-
grams in the coding session). However, there was also feedback that the
assignment was significantly harder than the slides and that important de-
tails of the assignment were missing (the aforementioned binary operator
and enumeration). We can keep this in mind as feedback for the slides, but
is even more useful in a potential tutorial session.

6.6 Exam results

We received 346 exam entries of the students, but 97 students did not fill in
the exam question, so we got a total of 249 useful entries.

Visitables (exercises 1 & 2)

The distribution of the entries for exercises 1 and 2 are found in table 6.6.
As the distribution is almost the same, we only made a pie chart of exercise
2, which is found in figure 6.1.

Exercise 1 Exercise 2

Correct 69 66

Visitor call incorrect 90 90

Accept function completely incorrect 43 43

Accept function missing 30 30

Completely incorrect 16 20

Table 6.6: Distribution of exercises 1 and 2 of the exam

As we can see, 27% of the students had the exercise correct, and thus
understood how to use visitables. 20% of the students probably had no
idea what the Visitor pattern was, as their entry was incorrect or did not
include an accept function. 17% of the students knew the outline of the
Visitor pattern; they knew there had to be an accept function, but they

62

Correct

27%Visitor call incorrect

36%

Accept function completely incorrect

17%

Accept function missing

12%

Completely incorrect
8%

Figure 6.1: Distribution of exercise 1 of the exam

did not know the details. The other 36% were pretty close to a correct
implementation, but made a minor mistake within the Visitor call, which
could be categorised as follows (based on exercise 2, as the results exercise
1 were equivalent):

• Return was missing (55)
visitor.visit(this) instead of return visitor.visit(this)

• Return this (8)
return this instead of return visitor.visit(this)

• Copy of current is Object is passed as argument (5)
E.g. return visitor.visit(new Sum(p1, p2)) instead of return

visitor.visit(this), where p1 and p2 are the left and right ”sub-
polynomial”

• 2 calls for both the attributes in sum (4)
E.g. return visitor.visit(p1) + visitor.visit(p2) instead of
return visitor.visit(this)

• Visitor Object is returned (3)
return visitor instead of return visitor.visit(this)

• And 15 other variations which did not fall into categories with 3 or
more occurrences, for example infinite recursion or a missing argument
in the visit call.

Most frequently, the students did not put a return in front of their visitor
call. However, it could be argued that this should be seen as a correct

63

answer, as it is a very minor detail, so then there would be 121 students
with a correct answer (49%). From the other categories, we can deduce that
many students knew there had to be a call with a visit function, but the
exact coding was not known, even though this is standard boilerplate code.

So, we see that many students understood the structure of the Visitor
Pattern (regarding the visitables), so they know there should be an accept

function. However, students did not know the boilerplate code of the visitor
call in this function.

Visitors (exercises 3 & 4)

The distribution of the entries for exercises 3 and 4 are found in table 6.7.
As the distribution is almost the same, only a pie chart for exercise 3 was
made, which is found in figure 6.2.

Exercise 3 Exercise 4

Correct 50 51

Visit functions’ body is incorrect 87 83

Visit functions are completely incorrect 40 35

Visit functions are missing 49 47

Completely incorrect 23 33

Table 6.7: Distribution of exercises 3 and 4 of the exam

Correct

20%

Visit functions’ body is incorrect

35%

Visit functions are completely incorrect

16%

Visit functions are missing

20%

Completely incorrect

9%

Figure 6.2: Distribution of exercise 3 of the exam

Compared to the previous exercises, less students made exercises 3 and 4
completely correct (20 %). 29% did not have the necessary knowledge of the

64

Visitor Pattern for the visitors, as 20% did not use visit functions and 9%
had a completely incorrect submission. 16% of the students created visit

functions, but the bodies were missing or the written code was not enough
in line with the solution. The other 35% that had written visit functions
that had minor mistakes, could be categorised as follows (based on exercise
3, exercise 4 was very similar):

• Recursive calls called visit instead of accept (68)
Within the visit function for the Sum, students wrote
return visit(s.getP1()) + visit(s.getP2())

instead of
return s.getP1().accept(this) + s.getP2().accept(this)

where s is the provided sum polynomial and getP1(), getP2() are
the getters for the left and right polynomial of s.

• Recursive calls are completely incorrect (9)
This implementation of the visit functions had the recursive calls (or
a variation of)
return s.getP1() + s.getP2()

instead of
return s.getP1().accept(this) + s.getP2().accept(this)

which simply would not work.

• visit function is only accept call (7)
return s.accept(this)

instead of
return s.getP1().accept(this) + s.getP2().accept(this)

where s is the provided sum polynomial.

As can be seen, a major fraction of these students thought they could use
the visit functions instead of the accept functions, so it is probably not
clear how the visit and accept functions are actually related.

So, we again see that many students understood the structure of the
visitors in the Visitor Pattern, as they knew there should be visit functions
and what their general functionality should be. Still, the exact calls that
should be executed are not clear to several students, mainly the difference
between the visit and accept functions and how they are related.

Using the Visitor Pattern (exercise 5)

The distribution of the entries for exercise 5 are found in table 6.8 and figure
6.3.

As can be seen, 32% of the entries had a correct solution and 29% had a
completely incorrect solution. The other 39% had some minor mistakes in
their function calls which were categorised as follows:

65

Exercise 5

Correct 79

Function calls are incorrect 97

Completely incorrect 73

Table 6.8: Distribution of exercise 5 of the exam

Correct

32%

Function calls are incorrect
39%

Completely incorrect

29%

Figure 6.3: Distribution of exercise 5 of the exam

• Visit function is used instead of accept (58)
For example, showVisitor.visit(poly) instead of
poly.accept(showVisitor) where showVisitor is a showVisitor ob-
ject and poly is the current polynomial.

• Polynomial is provided as an argument in the instantiation of the
Visitor (23)
ShowVisitor sv = new ShowVisitor(poly);

instead of
ShowVisitor sv = new ShowVisitor();.

• Visitor name as function call (12)
For example, poly.showVisitor(), even though showVisitor() is
not a valid function.

• Using non-existent functions within the Visitor (3)
E.g. showVisitor.show() while show() is not implemented.

• Accept function used on Visitor Object (1)
showVisitor.accept(poly) instead of poly.accept(showVisitor)

As can be seen from this exercise as well, students are not certain how

66

exactly the visit and accept functions work and how they are related.
Furthermore, we see that some students were not familiar with the exact
attributes of the Visitor and the details on how to use Visitors on Objects.

Summary

From the entries of the exam results, on average 25% of the entries were
fully correct, but 26% were completely incorrect. Of the other entries, we
saw that the structure of the Visitor pattern was pretty clear, for example,
students knew there had to be an accept function in the Visitors and a
visit function in the Visitors. Only the actual attributes of the Visitors
were not very clear to the students, as could be seen from exercise 5. Even
though the structure of the pattern was clear, the details of the code within
this pattern were more challenging. Examples of these are the boilerplate
code for the accept functions, using non-existing functions within function
calls and using visit functions in recursive calls instead of accept functions.
The underlying problem for these observations is that the students were not
familiar enough with the accept and visit functions; especially how the
are relate, how they differ and when to use which one.

6.7 Triangulation

As there was some overlap in the previous results of the different data collec-
tions, we could triangulate this data. The observations we saw in different
results are presented here, categorised under feedback on the lecture, feed-
back on the assignment and the students’ understanding of design patterns.

Feedback on the lecture

• Students were positive about the lecture due to the added elements
Students were positive about the lecture and found the slides useful.
This was due the addition of the exercises in the form of an online
quiz, the clear structure of presenting and discussing a pattern and
the code projects used in the live coding sessions. All these elements
were mentioned in the questionnaire after the lecture, the question-
naire after the assignment and were also seen in the interviews at the
practical sessions.

• Students had a good understanding of UMLs after the lecture
From the questionnaire after the assignment, we saw that the students
did not encounter any problems regarding UMLs and that these were
pretty clear to them. This could be a learning effect of our lecture, as
the students mentioned they were not overwhelmed by the UMLs in
the slides and we saw a learning process regarding UMLs in the results
of the online quiz.

67

• Slides and presented code projects were used as a reference
The students already mentioned that the slides were useful, but the
students stated that they used the slides and code projects to start on
the assignment and tackle problems. This was also seen in the screen
recordings of the students, where they accessed the slides and imported
and inspected the code projects while working on the assignment.

Feedback on the assignment

• Assignment was too hard
Within the questionnaire of the lecture, we already got the feedback
from students that the assignment was too hard. We also got this
feedback directly from the students while doing the interviews at the
practical session as well as that the assignment was unclear and it was
hard to start. These things were also seen in the screen recordings we
got from students, because students took a long time scrolling through
the assignment and were struggling when starting with the assignment.

• Main problems were in the details of the assignment instead of the
application of the pattern
In the questionnaire after the assignment, we saw that the main prob-
lems were not related to the pattern, but in the details of the program.
In this assignment, that were specifically the implementation of the Bi-
nary Operator which had to be done with a Strategy Pattern, an enu-
meration and the usage of a Standard Library. Other problems were
the precedence of operators, generics and creating a sequence diagram
for the first time. These problems were also seen immediately in the
interviews at the practical sessions, but also in the screen recordings
of the students.

Students’ understanding of design patterns

• Structure of design patterns are clear, but implementation details are
unclear
We saw from the results that the structure of the patterns was pretty
clear to the students, as they knew which Classes should be used and
which are the main functions to make the pattern work. However, the
implementation details are more challenging for the students. This
was best seen within the Visitor Pattern, where the students were not
certain about the attributes of the Visitors and its constructor. Fur-
thermore, the students were uncertain of the difference between the
visit and accept functions and how they are related. Not only did we
see these results in the questionnaire after the lecture, but also in the
observations at the practical session and the screen recordings. More-

68

over, these results were best seen in the exam entries of the students,
where we took a closer look at the students’ code.

69

Chapter 7

Conclusions

7.1 Research Subquestions

Research subquestion 1: How can the students’ application
and knowledge of design patterns be characterised after the
learning activity?

The students had a high-level understanding of the UMLs of the design
patterns; they knew which Classes and Objects were used and the necessary
functions and attributes. Furthermore, the students were able to recognise
in which programs design patterns could be applied and when patterns could
not be applied, at least for the design patterns discussed in the lecture. It
was also apparent that the students improved in these skills in the course
of the lecture. Additionally, we saw that the students were getting more
familiar with reading and creating UMLs during the learning activity. The
students were also able to refactor assignments with a design pattern they
had to recognise, but students struggled with the implementation details
of the design pattern. These problems were related to the usage of the
pattern once implemented and the details and interactions of functions used
in a pattern. For example, students were able to implement the Strategy
Pattern relatively easy, but the initialisation of the classes and the needed
function calls to use the implemented Strategy Pattern were challenging for
the students. Similarly for the Visitor Pattern, students had difficulties with
the boilerplate code in some functions and did not completely understand
the relation between and the usage of the accept and visit functions.
Additionally, we saw that the exact function calls to use the implemented
pattern were not clear to the students. So, we saw that students had a
high-level understanding of the design patterns and their structure, but the
difficulties lay in the implementation details of the patterns, especially the
function bodies and calls within the patterns and the function calls to use
the implemented pattern.

70

Research subquestion 2: How did the students perceive the
designed lecture?

In general, the students were positive about the given lecture and the slides
were often used as a reference in the assignment. The slides were also clearly
connected to the assignment students had to make. Furthermore, the stu-
dents indicated that the exercises within the lecture were beneficial for their
focus and it stimulated active learning. Additionally, the many different use
cases the students saw within these exercises helped the students to better
understand the use cases of the patterns. Next to the exercises, students
were more positive about the live coding sessions compared to code snippets
copied on the slides. Students also mentioned that the lecture was interac-
tive (mainly due to the exercises and live coding sessions), resulting in a
better focus and material that were easier to follow.

The students found the clearly structured explanations of the design
patterns helpful as well: the UMLs gave an overview of the pattern, the live
coding sessions the implementation details and the exercises the practical use
cases. This structure also ensured the explanation of the implementation
details of a pattern as well as the practical use cases, and the students
pointed that out as well. Note that the students were not overwhelmed by
the shown UMLs for the design patterns. Moreover, there was no difference
between the students that were present live at the lecture, watched the live
stream or the recording afterwards.

7.2 Research question

How can a learning activity contribute to the students’ un-
derstanding of design patterns?

Within the lecture of the learning activity, we explained a design pattern
in a structured manner: start with a concrete problem that can be solved
with the design pattern, discuss the abstract UML of the pattern, discuss
a concrete UML of an application and the actual implementation in a live
coding session and end with exercises with cases where the pattern should
be applied or not. This structure leads to an interactive lecture and a lec-
ture in which students can focus better, especially with the embedded active
learning. Additionally, the recurring problem of the abstractness of design
pattern is also successfully solved with the number of provided concrete ex-
amples. The two learning goals related to design patterns are both tackled:
recognising design patterns in a provided program and implementing a de-
sign pattern. The UML provided a global overview, the live coding session
provided a concrete implementation and the exercises afterwards served as
several concrete examples of the application of the design pattern. These
learning goals also come back in an assignment consisting of 2 parts: one

71

refactoring exercise and one exercise in which a specific design pattern should
be implemented. An additional learning effect was that the students became
more confident with reading and using UMLs after this learning activity.

In the course of the lecture, students were getting more familiar with
recognising patterns in given programs and also observing when a pattern
should not be applied, even in more difficult examples. The accomplishment
of the learning goal related to recognising design patterns was also recognised
in the assignment, as students found the refactoring exercise relatively easy.
The only problem they faced where the function calls needed to use the
implemented pattern.

For the learning goal related to implementing a pattern, students en-
countered some difficulties. We observed that the students had a high-level
understanding of the design patterns, i.e. they knew the underlying UML,
its classes and functions, but the students had a hard time with the concrete
function bodies and the relation between different functions. One example
of this are the relation between the accept and visit function in the Vis-
itor pattern. Additionally, similarly to the observation in the refactoring
exercise, students struggled with writing the exact function call which was
needed to use their implementation of the design pattern.

So, the learning activity contributed positively to the students’ ability to
recognise design patterns in program and applying them. Furthermore, the
students had a high-level understanding of design patterns, but there were
problems related to the function bodies of the patterns and the function
calls needed to use these patterns. Adjusting the learning activity to focus
more on these function calls could solve these problems.

72

Chapter 8

Discussion

In this chapter, we will discuss and reflect on various parts of this research.
We start with discussing the conclusions, then we discuss other observations
in the found results, followed by a reflection on the methodology. After-
wards, we compare our results with the findings in the literature and which
problems were tackled. Lastly, we discuss a possible next iteration with
several recommendations as potential future work.

8.1 Reflection on the conclusions

One important note on our conclusions is that we could state significantly
more about the students’ perceptions of the designed lecture compared to
the actual learning effects. The reason for this is that in our research, it was
difficult to verify what were the exact learning affects of our learning activity.
The main issue here is the fact whether it is unclear if the knowledge of the
students is indeed related to the designed lecture or the students in general,
independent of the lecture. This could be verified with the usage of an
experimental and control group, similar to Khakim (2019/08), or comparing
the results with earlier years, similar to Xinogalos (2015). However, we
decided that these methods were not viable for our research, but this is
discussed in more detail in section 8.3.

Even though we could not validate the learning effects in the detail we
wanted, we still expect that the students’ application and knowledge of
design patterns, discussed in the last research subquestion, are still mostly
related to the given lecture, even though there is no hard evidence for this.
The fact that the students had a good understanding of the applications
of design patterns and a high-level understanding of the implementation
of design patterns, but still struggled with the exact function bodies and
function calls for the design patterns, can be with reasonable certainly seen
as a direct consequence of the lecture. The reason is that the focus of the
lecture was on the application part of the design patterns and the UML of the

73

patterns, but the exact function bodies were not discussed in much detail.
The function calls needed to use the implemented pattern were mentioned in
the lecture, but overall little time was spent on this. These two points were
discussed in the live coding session, but should in hindsight be discussed in
more detail, to tackle these current observations.

Furthermore, as commonly seen in the literature, researches similar to
this often have second iteration were they incorporate the findings of their
first iteration and have another iteration which they can use for comparison.
Unfortunately, such a second iteration was not possible in this research, due
to the time constraints the the planning of the courses at the Radboud
University. However, recommendations for a second iteration are discussed
in section 8.5.

8.2 Additional results

Most of the results found in this research were used to answer the research
(sub)questions, but there were also other observations which were not di-
rectly applicable for the research (sub)questions. The observations were
related to the difference between Computing Science (CS) and Artificial In-
telligence (AI) students, the differences between being present live at the
lecture, watching the livestream and watching the recordings and lastly,
other observations we saw related to the coding skills of the students. These
results are discussed in the following sections.

Differences between Computing Science and Artificial Intelli-
gence students

Related to the lecture, there were a few differences between the AI and CS
students. Firstly, the AI students had a harder time focusing in the lecture
compared to CS students. Additionally, AI students indicated afterwards
that they did not found this lecture necessarily better than their average
lectures, while the CS students were quite clear that this lecture was better.
So, we expect that the AI students have ”better” lectures in general, or at
least different types of lectures than CS students, which would explain these
differences. Furthermore, the AI students had a harder time understanding
the UMLs of the design patterns and AI students were more negative about
the live coding sessions, compared to the CS students who really liked these
live coding sessions. An explanation here could be that CS have seen more
code and have programmed more in general, so they could adapt more easily
to the live coding session in a coding environment, while the AI students
got easily overwhelmed.

There were also observations related to the assignment the students had
to make, of which the main observations was that AI students had a con-
siderably harder time with making the assignment than the CS students,

74

which we could conclude from different results. From the questionnaire af-
ter the assignment, AI students indicated for both parts that they found it
too difficult, especially compared to the CS students. The first part was a
refactoring exercise, which could be easier for the CS students, as they have
written, and thus refactored, more code and an explanation for the second
part could be that CS students were more familiar with the subject of that
exercise, namely binary formulas. AI students also indicated that they were
overwhelmed by the assignment and that it would help if there was a code
template with which they could start. Furthermore, the CS students could
specify their problems a lot better than AI students, which was probably
due the fact that CS had an easier time with this assignment, while the AI
students were stuck at the start of the assignment. Another explanation
could be the observation that CS students used the slides of the lecture sig-
nificantly more than AI students, so perhaps they had a better guidance in
the assignment due to the usage of these slides. Moreover, we saw that there
were a lot of AI students that reused their submission from last year, which
could again be explained by the fact that AI students do have a harder time
with this course and this assignment. We also saw this immediately while
doing the observations in the practical sessions, as there was less focus in
the tutorial sessions of the AI students, as they were mostly confused with
the assignment, which lead to less focus on the actual assignment.

Differences between the media used to watch the lecture

The main observations made here is that the designed lecture was applicable
and effective for all the different media: being present live, watching the
livestream or watching the recording afterwards. All the different media
could easily focus in the lecture, even though we expected that the livestream
or the recordings would struggle with this. Interestingly, all the different
media were also doing the exercises in the online quiz in the lecture, so
this quiz was not only taken by the students that were live present. The
students that watched the recording also indicated that the recordings were
easy to follow and helpful as a reference without being present live, so that
means that these recordings could also be used in the following years. A
few differences were that the students that were present live were more
involved in the lecture (which is not surprising) and that the only group that
were overwhelmed by the shown UMLs were the students that watched the
livestream. The reason for this could be that the students that were present
live were already more involved and that the recordings could be played
back if the students got lost and the students that watched the livestream
did not had any of these benefits.

75

Other coding related issues

When looking at the results, we saw that the students did not have the
assumed knowledge about binary formulas, even though this topic is often
covered in different courses. Additionally, even though this was covered
a few weeks before the design patterns in the same course, students were
still not familiar enough with the usage of generics, which was (apparently
incorrectly) assumed that the students got these skills. On a more general
note, students are having a hard time understanding a complete assignment
and what they are exactly supposed to do and how to start, which they
mentioned was also occurring in the earlier weeks. Furthermore, and perhaps
even the most interesting, we saw the the error solving skills of the students
were not of the level we expected. Apparently (as far as we could see),
when students see an error in their code, they do not analyse it and think
about it, but use the automatically generated suggested solutions to solve
their errors, without thinking about the consequences and whether that is a
correct solution. As a result, the students add lines to their program which
were suggested automatically which are not always correct, and thus they
make the debugging even harder for themselves. Therefore, a lecture focused
on debugging could be wise, next to the live coding sessions which could also
contribute to this observations.

8.3 Reflection on the methods

We mostly based our methods on the methods used in the literature and we
experienced these data collections from different sources as extremely helpful
and the triangulation of it. An example of this were the questionnaire after
the assignment, the screen recordings of students and the observations: the
screen recordings provided a source of a few students, but in a lot of detail,
the questionnaire was a relatively high-level data source, but from almost all
students and the observations were in the middle of these two. In hindsight,
every data source contributed to the final conclusions of this research, so we
would not have omitted one.

One note on our methods is that the results in the questionnaires after
the lecture and the assignment could be biased, as the students could per-
haps give the answer that the teacher or the researcher ”wants” or ”desires”.
However, we do not think this is the case, as the results of the questionnaire
after the lecture is in line with our expectations, which are the findings in
the literature, and the results of the questionnaire after the assignment is in
line with the observations in the screen recordings and the observations in
the practical sessions.

There are some other methods which we considered to use in our re-
search, but which were not feasible or probably not useful in hindsight. For
example, we could have looked at the students’ solutions to the assignment

76

instead of the exam results. One reason why we chose not to, was that
this assignment was made in pairs and students got a lot of help, which
were both not the case for the exam submissions, so in that perspective, the
exam submissions were more useful. Additionally, the assignment solutions
would probably be working solutions, so firstly, it is possible that code is
copied from others and handed in such that they have a working solution,
and secondly, it would not be helpful to look at the handed-in solutions, as
the problems that the students faced and the misconceptions would not be
seen here. Therefore, the exam was, in our opinion, the better alternative
of these. Note that we could also looked at the resit exam submissions, but
this sample size would have been significantly smaller and we expected that
these results would not add a lot to our findings.

As mentioned earlier, one effective method to measure the learning effect
of the learning activity is the use of an experimental group and a control
group, such that the differences between these two groups can be objectively
shown. The reason why we could not use this method was the fact that we
could not split the group of students in two, simply for ethical reasons and
because the learning activity took place in an official education institute.
However, an idea was also to compare the results of this year to the results of
last year, in which the students followed the previous lecture. We considered
this, but decided that there were already too many differences between these
two groups, so the observations between these two groups would not be
representative. The main cause for this was that the previous year was still
dealing with the Covid measures, so the given lectures and the education
setting were significantly different compared to this year, that we could not
use the previous year as a control group.

One method that we would recommend to other researches would be to
look at more screen recordings of the students. In hindsight, these screen
recordings provided a lot of insight into the students’ coding process which
we did not see anywhere else in the data sources. Especially if the voices of
the students are also recorded, this could be a valuable data source. One
drawback is that analysing these screen recordings take a lot of time, but in
the end, we think that the useful observations of these recordings outweigh
this drawback.

8.4 Looking back on the literature

In this section, we reflect back on the findings in the literature discussed in
the Theoretical Framework and how our findings are related to these.

Teaching Design Patterns

In the literature, several problems were stated related to teaching design
patterns for which no concrete solutions were found yet. In our research, we

77

added several elements to our lecture which solved these problems, looking
at our results.

Firstly, the abstract nature of the design patterns is difficult for the
students. Even though the abstract UML of the design patterns has to
be presented at one point, it helps to start with a concrete application of
the pattern and afterwards, relate the abstract UML to a concrete UML.
Furthermore, presenting some examples of the application of the pattern in
an online quiz is also beneficial to tackle this abstractness.

Secondly, often static explanations are used for design patterns, while
these patterns are in itself a very dynamic concept. Our first explanation
is still of the static form, i.e. discussing the pattern in the slides, but after-
wards, we present an implementation of the design pattern in a live coding
session, which offered a dynamic explanation. For example, we used the de-
bugger to show the students the flow of the program and how the different
elements are related, which was beneficial for their understanding.

Thirdly, the utility of design patterns is often not clear to the students.
This problem was mainly solved by the introductory program that was im-
plemented without the design pattern. Afterwards, we saw that several
problems occurred, which by solved one by one, which eventually lead to
the discussed design pattern, which showed the benefits of using the pattern
to the students. Furthermore, the examples in the online quiz also served
as more examples where the usage of the pattern was beneficial.

Fourthly, it is unclear for the students when they should apply the pat-
tern and when definitely not. This was solved by the addition of a refactoring
exercise in the assignment and the examples in the online quiz as well, where
the students had to indicate if and how design patterns could be applied in
the example program.

Lastly, the literature already proposed that the usage of UMLs in de-
sign patterns is beneficial, but recurring problems here were that the UMLs
for design patterns were very big, so students got easily overwhelmed, and
students often had not enough experience and confidence with reading and
using UMLs. The former point was solved by discussing the UML in detail,
such that the students could follow along. The latter point was tackled by
the introductory exercises related to UMLs, which had the purpose that all
the students were on the same line at the start of the lecture. Moreover,
the different exercises in the online quiz related to UMLs later in the lecture
also served as exercises for students to get more familiar with UMLs.

Teaching Object-oriented Programming

Related to teaching Object-oriented Programming, our results were in line
with the findings in the literature. Student struggle with the abstract nature
of Object-oriented programming, but using a clear structure in the lecture
with the usage of concrete examples tackles this problem.

78

The fact that students focus on the functionality of the program instead
of the structure is solved by using an online quiz, where there are enough
examples shown where an incorrect structure leads to problems. Further-
more, the complete lecture was focused on the structure of a program instead
of the functionality, starting with the introductory exercises related to the
different structures of a program.

The problem that students do not have enough experience yet to fully
understand the benefits of design patterns is unfortunately very difficult
to solve. However, the vast number of programs presented in this lecture
could partially solve this problem, such that students have experienced more
programs and potential problems.

The suggestion in the literature that the assignments should have clear
criteria is a point on which we should improve. Currently, we expected
that the assignment was clear enough for the students, but we got a lot of
feedback that the assignment was unclear and value, which resulted in an
assignment that was too difficult in general. Especially in the refactoring
exercise was a lot of confusion, as students had never made such an exercise
before, so the goal was quite unclear and which code they were able to
change and what not.

Teaching Programming

Regarding teaching programming in general, the elements we put in our
lecture had the same results as in the literature. A clear structure with a
gradual build-up and easy examples helps the students to understand the
material and to not be overwhelmed. The live coding sessions are useful as
well, as the students find it easier to focus and it serves as a good bridge
from theory to practice. Combining this with an online quiz with exercises,
results in a interactive lecture in which students can easily focus, which were
in line with the observations in the literature.

8.5 Future work

In this section, we recommend changes for the designed learning activity,
which include the lecture, the assignment and a possible Tutorial session,
which could be an extra session in the week.

Lecture

The would propose the following changes in the lecture:

• Put emphasis on function bodies in design patterns
To put more emphasis on the function bodies in the design patterns, we
suggest to present this code next to the UML, such that the students

79

see that these function bodies are also ”part” of the whole structure.
Currently, the function bodies are only shown on a few slides, so we
think that the importance was not emphasised enough.

• Add a slide for the function calls to use the design patterns
One slide could be added where the calls to use the design patterns are
explicitly discussed. Currently, these calls are only mentioned a few
time in the slides and in the data, this was one of the most occurring
problems.

• Emphasize the difference and relation between the accept and visit

function
Specifically for the Visitor pattern, it would be wise to explicitly dis-
cuss the difference between the accept and visit functions. Not only
was this not clear to all students, but this is also a useful insight into
the typings of different functions.

• Change the example program of the Strategy Pattern
The current example used for the Strategy Pattern was a routing algo-
rithm. However, we experienced that the code used for this program
was relatively difficult, as students did not learned about routing al-
gorithms yet, thus the code was unnecessarily complicated.

• Put the code in the live coding session in the slides
One could try to put the code discussed in the live coding sessions in
the slides as well. These slides are not discussed, as the code is already
presented in the coding session, but the slides are still complete. This is
relatively little work for the teacher, as the code is already written in a
program, so it only has to be copied. Furthermore, the mixed opinions
on the live coding sessions are also satisfied with this addition.

• Cut some material in the slides
We experienced in our lecture that we did not have enough time to
discuss the complete slide set; the last slides about design patterns in
general was skipped. Therefore, the teacher could remove some slides
or topics in the lecture, but unfortunately, we could not think of any
obvious cuts. One could consider to add an extra lecture or move some
topics to the extra tutorial session.

• Make a slide set with exercises and without
Related to publishing the slides afterwards, it is wise to publish a
slide set which contains the exercises and one which does not. We got
feedback from students that the slides were cluttered with exercises,
so with these 2 versions, the students can decide which version they
want to use.

80

It is also interesting to see how the students experience these lectures
when the structure is used for several weeks. Currently, the usage of the
online quiz and the live codings sessions were a change of pace for students
and felt refreshing, which led to positive feedback. However, when this
structure is applied for several weeks, it is interesting to see if students still
experience these advantages or if they, for example, do not participate in
the online quiz anymore.

Assignment

For the two-parted assignment, we have recommendations for part 1 (refac-
toring exercise), part 2 (implementation exercise) and general comments:

Part 1

• State which files the students can change
State explicitly that the students can change all files, except for the
test cases. Currently, the students were confused which files they could
change and which ones were not supposed to be changed.

• Elaborate on the encryption methods
We received some feedback that the encryption methods were difficult
to understand, so these could be elaborated in more detail. However,
this feedback was only provided by a small number of students and we
think that the current explanation is long enough.

Part 2

• Remove the usage of the Standard Library and the enumeration for
the Binary Operator
The current task of the Binary Operator was too difficult for students,
mainly because it was a combination of an enumeration, importation
of a Standard Library and a Strategy pattern. We have two solutions
for this:

1. Completely remove the Binary Operator interface and replace
this by the concrete classes And, Or and Implies. This solves all
problems and it probably the most intuitive for students.

2. Remove the usage of the Standard Library and enumeration, but
keep the Strategy pattern. So the Binary Operator class is still
kept, but it uses an Operator interface, which are implemented
by And, Or and Implies and are added as an attribute to Binary
Operator. If the assignment provides some hints on how to do
this, students still use a Strategy Pattern, but without the diffi-
culties arising from the Standard Library and enumeration. This

81

implementation is hopefully a lot more intuitive, and will save
the problems a lot of time.

• Provide proper support for the printing of brackets in the ShowVisitor
Another problem was the placements of brackets in the ShowVisitor
where the precedence of the different operators are important. Stu-
dents had a lot of difficulties with this precedence function and how
this exactly worked. Therefore, an explanation about this precedence
and how this exactly works is necessary for the students to make this
assignment, instead of a comment that the students have to figure out
the details themselves.

• State what the printed result of the ShowVisitor should be
A small addition would be to add some examples of the expected
printing of the ShowVisitor, for example ”=>” is used for implies and
”\/” for or. Students can see this in the test cases, but it would not
hurt to state this in in the assignment.

• Remove the sequence diagram
We would suggest to remove the sequence diagram at the end of this
exercise. We understand its purpose, but in practice, students do not
understand how a sequence diagram works, so this exercise leads to
more problems than it contributes to the learning goals.

General remarks

• Split the assignment in more sections
We got feedback from the students that they got overwhelmed by the
current assignment and one solution could be to split the assignment
into more sections. For example, the current section ”Logical formu-
las” in part 2 could be split up further in ”Logical formulas”, ”Visitor
pattern” and an additional section for the Strategy pattern in Binary
Operator.

• Provide concrete tasks with which the students should start
Students also found it hard to start with the assignment, so it would
help to give some specific instructions on how to start. Note that the
list of instructions provided in the assignment for part 2 was already
very useful for students. But an addition could be to start with the
classes Not, Constant and Atom, afterwards, do And, Or, Implies with
the Binary Operator etc. With these instructions, students can start
with relative easy tasks and once they are programming, the other
tasks follow more easily.

82

Possible tutorial session

Even though the tutorial session was outside the scope of our research,
we got some feedback on what the students would like to see in an extra
session between the lecture and the practical sessions for the assignment.
The feedback here is discussed with some ideas for such a session:

• Discuss the assignment with students
Students mentioned that they struggle with understanding the assign-
ment, so they would find it useful if the assignment is discussed with
the students in this session. So, the lecture does not immediately start
with presenting code snippets used for the assignment, but first dis-
cussing the whole assignment with the students and tell them what is
expected from them.

• Provide hints for difficult details in the assignment
Currently, the tutorial sessions mostly presented and discussed code
for the assignment, which was experienced as quite useful by the stu-
dents. For example, in this week, that could be discussing the usage
of the Strategy pattern inside the Binary Operator or the usage of
precedence inside the ShowVisitor. Note that with discussing the as-
signment beforehand, students can actually place the presented code
snippets in context of the whole assignment.

• Let the students code at the tutorial
The students would like some more interaction in the tutorial session
and one solution could be to let the students code themselves in this
session. For example, the teacher could ask the students to implement
one specific part of the program and afterwards, write the necessary
code themselves live. Not only turns this session into an active learning
session, but students also have some starting code at the end of the
tutorial. Moreover, the students get the benefits of a live coding session
in the tutorial as well.

• Refactoring example
Specifically for design patterns, it would be wise to do an example
related to refactoring a program and how to tackle this as students.
Currently, this is the first time that students are asked to refactor a
program themselves, so many were did not know what was expected
from them and were they could start. Providing support for this would
be quite useful.

83

References

Agbo, F. J., Oyelere, S. S., Suhonen, J., & Adewumi, S. (2019). A
systematic review of computational thinking approach for program-
ming education in higher education institutions. In Proceedings of the
19th koli calling international conference on computing education re-
search. New York, NY, USA: Association for Computing Machinery.
Retrieved from https://doi.org/10.1145/3364510.3364521 doi:
10.1145/3364510.3364521

Alaagib, N. (2019). Comparison of the effectiveness of lectures based on
problems and traditional lectures in physiology teaching in sudan.. Re-
trieved from https://bmcmededuc.biomedcentral.com/articles/

10.1186/s12909-019-1799-0 doi: https://doi.org/10.1186/s12909
-019-1799-0

Alammary, A. (2019). Blended learning models for introductory program-
ming courses: A systematic review. In Plos one (Vol. 14-9). Retrieved
from https://doi.org/10.1371/journal.pone.0221765

Anggrawan, A., Ibrahim, N., Suyitno, P., & Satria, C. (2018, 10). Influence
of blended learning on learning result of algorithm and programming.
In (p. 1-6). doi: 10.1109/IAC.2018.8780420

Azimullah, Z., An, Y. S., & Denny, P. (2020). Evaluating an interactive tool
for teaching design patterns. In Proceedings of the twenty-second aus-
tralasian computing education conference (p. 167–176). New York, NY,
USA: Association for Computing Machinery. Retrieved from https://

doi.org/10.1145/3373165.3373184 doi: 10.1145/3373165.3373184
Brown, N. C. C., & Wilson, G. (2018, 04). Ten quick tips for teaching

programming. PLOS Computational Biology , 14 (4), 1-8. Retrieved
from https://doi.org/10.1371/journal.pcbi.1006023 doi: 10
.1371/journal.pcbi.1006023

Chibizova, N. (2018). The problems of programming teaching. In 2018
iv international conference on information technologies in engineering
education (inforino) (p. 1-4). doi: 10.1109/INFORINO.2018.8581834

Chis, A., Moldovan, A.-N., Murphy, L., & Muntean, C. (2018, 01). Investi-
gating flipped classroom and problem-based learning in a programming
module for computing conversion course. Educational Technology and
Society , 21 , 232-247.

84

https://doi.org/10.1145/3364510.3364521
https://bmcmededuc.biomedcentral.com/articles/10.1186/s12909-019-1799-0
https://bmcmededuc.biomedcentral.com/articles/10.1186/s12909-019-1799-0
https://doi.org/10.1371/journal.pone.0221765
https://doi.org/10.1145/3373165.3373184
https://doi.org/10.1145/3373165.3373184
https://doi.org/10.1371/journal.pcbi.1006023

Eppley, K., & Dudley-Marling, C. (2018, 06). Does direct instruction work?:
A critical assessment of direct instruction research and its theoretical
perspective. Journal of Curriculum and Pedagogy , 16 , 1-20. doi:
10.1080/15505170.2018.1438321

Gutierrez, L., Guerrero, C., & López-Ospina, H. (2022, 06). Ranking of
problems and solutions in the teaching and learning of object-oriented
programming. Education and Information Technologies, 27 , 1-35. doi:
10.1007/s10639-022-10929-5

Hayashi, Y., Fukamachi, K.-I., & Komatsugawa, H. (2015). Collaborative
learning in computer programming courses that adopted the flipped
classroom. In 2015 international conference on learning and teaching
in computing and engineering (p. 209-212). doi: 10.1109/LaTiCE.2015
.43

Hlescu, A. A., Birlescu, A. E., Hanganu, B., Manoilescu, I. S., & Ioan, B. G.
(2020, Sep.). Traditional teaching versus online teaching of forensic
autopsy case study – grigore t. popa university of medicine and phar-
macy in iasi. Revista Romaneasca pentru Educatie Multidimensionala,
12 (2Sup1), 41-54. Retrieved from https://www.lumenpublishing

.com/journals/index.php/rrem/article/view/2831 doi: 10

.18662/rrem/12.2Sup1/288
Keung, J., Xiao, Y., Mi, Q., & Lee, V. C. S. (2018). Bluej-uml: Learning

object-oriented programming paradigm using interactive programming
environment. In 2018 international symposium on educational technol-
ogy (iset) (p. 47-51). doi: 10.1109/ISET.2018.00020

Khakim, A. A. (2019/08). Problem-based learning in programming lesson.
In Proceedings of the 2nd international conference on intervention and
applied psychology (iciap 2018) (p. 529-536). Atlantis Press. Retrieved
from https://doi.org/10.2991/iciap-18.2019.44 doi: https://
doi.org/10.2991/iciap-18.2019.44

Lotlikar, P., & Kussmaul, C. (2022). Guiding students to learn about
design patterns with process oriented guided inquiry learning (pogil).
In Proceedings of the 27th conference on pattern languages of programs.
USA: The Hillside Group.

Lytle, N., Catete, V., Isvik, A., Boulden, D., Dong, Y., Wiebe, E., & Barnes,
T. (2019, 10). From ’use’ to ’choose’: Scaffolding ct curricula and
exploring student choices while programming (practical report). In
(p. 1-6). doi: 10.1145/3361721.3362110

Majherová, J., & Kráĺık, V. (2017, 09). Innovative methods in teaching
programming for future informatics teachers. European Journal of
Contemporary Education, 2017 , 390-400. doi: 10.13187/ejced.2017.3
.390

Medeiros, R. P., Ramalho, G. L., & Falcão, T. P. (2019). A systematic
literature review on teaching and learning introductory programming
in higher education. IEEE Transactions on Education, 62 (2), 77-90.

85

https://www.lumenpublishing.com/journals/index.php/rrem/article/view/2831
https://www.lumenpublishing.com/journals/index.php/rrem/article/view/2831
https://doi.org/10.2991/iciap-18.2019.44

doi: 10.1109/TE.2018.2864133
Mello Fonseca, F., Bezerra da Silva, E., & Silveira Mendonça, D. (2019).

Designing dojo: A collaborative method for teaching design pat-
terns. In 2019 ieee/acm 12th international workshop on cooperative
and human aspects of software engineering (chase) (p. 39-40). doi:
10.1109/CHASE.2019.00017

Qian, Y., Hambrusch, S., Yadav, A., Gretter, S., & Li, Y. (2019,
04). Teachers’ perceptions of student misconceptions in introduc-
tory programming. Journal of Educational Computing Research, 58 ,
073563311984541. doi: 10.1177/0735633119845413

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching
programming: A review and discussion. Computer Science Education,
13 (2), 137-172. Retrieved from https://doi.org/10.1076/csed.13

.2.137.14200 doi: 10.1076/csed.13.2.137.14200
Rubin, M. J. (2013). The effectiveness of live-coding to teach introductory

programming. In Proceeding of the 44th acm technical symposium
on computer science education (p. 651–656). New York, NY, USA:
Association for Computing Machinery. Retrieved from https://doi

.org/10.1145/2445196.2445388 doi: 10.1145/2445196.2445388
Santos, S. C., Tedesco, P. A., Borba, M., & Brito, M. (2020). Innovative

approaches in teaching programming: A systematic literature review.
In Proceedings of the 12th international conference on computer sup-
ported education (pp. 205–2014).

Sharma, M., Biros, D., Ayyalasomayajula, S., & Dalal, N. (2020a). Teaching
programming to the post-millennial generation: Pedagogica consider-
ations for an is course. In Journal of information systems education
(Vol. 31, p. 96-105). Retrieved from https://aisel.aisnet.org/

jise/vol31/iss2/2

Sharma, M., Biros, D., Ayyalasomayajula, S., & Dalal, N. (2020b, 06).
Teaching programming to the post-millennial generation: Pedagogic
considerations for an is course. Journal of Information Systems Edu-
cation, 31 , 96-105.

Shosse, K. (2022). What’s a design pattern? Retrieved from https://

refactoring.guru/design-patterns/what-is-pattern

Silva, D., Schots, M., & Duboc, L. (2019, 10). Fostering design patterns
education: An exemplar inspired in the angry birds game franchise.
In (p. 168-177). doi: 10.1145/3364641.3364660

Stamouli, I., & Huggard, M. (2006). Object oriented programming
and program correctness: The students’ perspective. In Proceed-
ings of the second international workshop on computing education re-
search (p. 109–118). New York, NY, USA: Association for Comput-
ing Machinery. Retrieved from https://doi.org/10.1145/1151588

.1151605 doi: 10.1145/1151588.1151605
Stuurman, S., Passier, H., & Barendsen, E. (2016, November 24). Analyz-

86

https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1145/2445196.2445388
https://doi.org/10.1145/2445196.2445388
https://aisel.aisnet.org/jise/vol31/iss2/2
https://aisel.aisnet.org/jise/vol31/iss2/2
https://refactoring.guru/design-patterns/what-is-pattern
https://refactoring.guru/design-patterns/what-is-pattern
https://doi.org/10.1145/1151588.1151605
https://doi.org/10.1145/1151588.1151605

ing student’s software redesign strategies. In J. Sheard & C. Suero
Montero (Eds.), Koli calling ’16: Proceedings of the 16th koli calling
international conference on computing education research (pp. 110–
119). United States: Association for Computing Machinery (ACM).
(16th Koli Calling International Conference on Computing Education
Research, Koli Calling ’16 ; Conference date: 24-11-2016 Through 27-
11-2016) doi: 10.1145/2999541.2999559

Sun, Q., Wu, J., & Liu, K. (2020). Toward understanding students’
learning performance in an object-oriented programming course: The
perspective of program quality. IEEE Access, 8 , 37505-37517. doi:
10.1109/ACCESS.2020.2973470

Tillmann, N., Moskal, M., de Halleux, J., Fahndrich, M., Bishop, J.,
Samuel, A., & Xie, T. (2012). The future of teaching program-
ming is on mobile devices. In Proceedings of the 17th acm annual
conference on innovation and technology in computer science educa-
tion (p. 156–161). New York, NY, USA: Association for Comput-
ing Machinery. Retrieved from https://doi-org.ru.idm.oclc.org/

10.1145/2325296.2325336 doi: 10.1145/2325296.2325336
Weiss, C. (2020, 2-4 March, 2020). Small group learning in larger lec-

ture classes. In Inted2020 proceedings (p. 7154-7161). IATED. Re-
trieved from https://dx.doi.org/10.21125/inted.2020.1892 doi:
10.21125/inted.2020.1892

Xinogalos, S. (2015, jul). Object-oriented design and programming: An
investigation of novices’ conceptions on objects and classes. ACM
Trans. Comput. Educ., 15 (3). Retrieved from https://doi.org/10

.1145/2700519 doi: 10.1145/2700519
Yu, X., Yang, Y., & Wu, X. (2021). Exploration and practice of object-

oriented programming in the mode of ”internet +” education. In
2021 2nd international conference on computers, information process-
ing and advanced education (p. 709–711). New York, NY, USA: Asso-
ciation for Computing Machinery. Retrieved from https://doi.org/

10.1145/3456887.3457047 doi: 10.1145/3456887.3457047

87

https://doi-org.ru.idm.oclc.org/10.1145/2325296.2325336
https://doi-org.ru.idm.oclc.org/10.1145/2325296.2325336
https://dx.doi.org/10.21125/inted.2020.1892
https://doi.org/10.1145/2700519
https://doi.org/10.1145/2700519
https://doi.org/10.1145/3456887.3457047
https://doi.org/10.1145/3456887.3457047

Appendix A

Slides lecture

88

Design Patterns
Object Oriented Programming week 10

Ruben Holubek

Who am I?

• Ruben Holubek

• 2nd year Master Student Software Science

• Research related to teaching programming

• Right now: how to effectively teach OO programming, especially
design patterns

Online Quiz

• Please join the online quiz for exercises:

• Please go to www.socrative.com

• Click on login (upper right corner)

• Click on Student login

• Insert room name HOLUBEK60

Question 1
Which code fragment is represented by this UML?

Example

- thingA : int

+ thingB(a : int)

...A. B.

C. D.

Question 1
A is correct; B switched around the names for the attribute and
function, the attribute thingA is missing in C and the type for thingB is
incorrect in D

A. B.

C. D.

Example

- thingA : int

+ thingB(a : int)

...

Question 2
Which UML represents this code fragment?

<<interface>>
ExampleInterface

+ f ()

Example

- objectA

ObjectA

…

+ f ()

extends

Has a

<<interface>>
ExampleInterface

+ f ()

Example

- objectA

ObjectA

…
+ f ()

implements
Has a

<<interface>>
ExampleInterface

+ f ()

Example

- objectA

ObjectA

…

+ f ()

extends

Has a

<<interface>>
ExampleInterface

+ f ()

Example

- objectA

ObjectA

…

+ f ()

implements

Has a

A.

B.

C.

D.

Question 2
C is correct, as Example implements ExampleInterface (it doesn’t extend
it) and Example uses ObjectA (ExampleInterface does not)

<<interface>>
ExampleInterface

+ f ()

Example

- objectA

ObjectA

…
+ f ()

implements
Has a

C.

Question 3

Which of the following programs have a similar structure? (e.g.
containing a loop, using similar interfaces etc)

1. Getting the last names of a list of students

2. Evaluating the value of a given boolean formula (e.g. T /\ F -> T)

3. For the numbers between 1 and 100, calculate the square root

A. 1 and 2 have a similar structure

B. 1 and 3 have a similar structure

C. 2 and 3 have a similar structure

D. None of these programs have a similar structure

Question 3

1. Getting all the last names of a list of students

2. Evaluating the value of a given boolean formula (e.g. T /\ F -> T)

3. For the numbers between 1 and 100, calculate the square root

A. 1 and 2 have a similar structure

B. 1 and 3 have a similar structure

C. 2 and 3 have a similar structure

D. None of these programs have a similar structure

Both of these formulas iterate over something (list of students or numbers)
and perform an action on each element (return the name or calculate square
root). Program 2 doesn’t perform such an iterating operation.

Question 4

Which of the following objects have a similar structure?

1. Many different bikes with an option to add a specific, special saddle

2. A pizza with many options for different toppings, e.g. tomato, cheese,
chicken etc

3. A server where users can have a combination of different rights, e.g.
reading, writing, editing, adding new users etc

1. 1 and 2 have a similar structure

A. 1 and 3 have a similar structure

B. 2 and 3 have a similar structure

C. None of these programs have a similar structure

Question 4

1. Many different bikes with an option to add a specific, special saddle
2. A pizza with many options for different toppings, e.g. tomato, cheese,
chicken etc
3. A server where users can have a combination of different rights, e.g.
reading, writing, editing, adding new users etc
A. 1 and 2 have a similar structure
B. 1 and 3 have a similar structure
C. 2 and 3 have a similar structure
D. None of these programs have a similar structure
Both these programs have one base object (pizza or user), which can have
multiple “extras” (toppings or rights). Program 1 has different base objects
(bikes), but with only one “extra” (special saddle), so this is a simple attribute

Design patterns

Design Patterns

• Design patterns are specific structures that reoccur in different
programs
• Iterating over a loop and performing a specific action
• Having a base object with many different possibilities of extras
• And many more…

• You probably used a lot of these without even thinking about it

• Now we simply give them a name

• This lecture: we discuss 3 different design patterns
• Strategy pattern
• Decorator pattern
• Visitor pattern

Strategy Pattern

Problem

• Navigation app that provides the fastest route for 2 given points

• First version: provides routes traveling by car

• Later versions: algorithms for other routes
• Biking, walking, busses, along highlights, shortest route etc.

• Maintaining this without a proper structure is impossible
• Code gets messy
• Altering the code for the whole navigation app,
while only changing the routing algorithms

• Idea: Split the routing algorithms from the whole app

• Solution: Strategy Pattern App
(not

changed)

Routing
algorithms
(extened

and edited)

Has a

Strategy Pattern

• Previously: Split the routing algorithms from the whole app
• Strategy Pattern: Split the strategies from the context
• Applied with “a class that does something specific in a lot of ways”
• The concrete strategies (1) are all “stored” in the interface Strategy (2)
• The context (3) has a Strategy attribute

(4)
• The context uses this reference

as a “generic interface”
• The actual strategies are completely

split from the context!

App
(not

changed)

Routing
algorithms
(extened

and edited)

Has a

(1)

(2)
(3) (4)

Concrete
Strategies

Concrete
Strategies

- strategy

doSomething()

Context <<interface>>
Strategy

Execute()

Concrete
Strategies

Execute()

Has a

Implements

(4)

doSomething() {
…
strategy.execute();
…
}

Concrete Strategies
Concrete Strategies

Strategy Pattern UML

- strategy

doSomething()

Context <<interface>>
Strategy

Execute()

Concrete Strategies

Execute()

Interface Strategy
• The interface for the

implemented strategies
• It has an abstract function

execute() which every
concrete strategy should
implement

Has a

ImplementsdoSomething() {
…
strategy.execute();
…
} Concrete Strategies

Concrete Strategies

Strategy Pattern UML

- strategy

doSomething()

Context <<interface>>
Strategy

Execute()

Concrete Strategies

Execute()

The concrete strategies
• These implement the Strategy

interface
• So every strategy has an

implemented Execute
function

ImplementsdoSomething() {
…
strategy.execute();
…
}

Has a

Concrete Strategies
Concrete Strategies

Strategy Pattern UML

- strategy

doSomething()

Context <<interface>>
Strategy

Execute()

Concrete Strategies

Execute()

Context
• The context has a reference

to the used strategy
• In the functionality of

Context, there is a function
doSomething() that uses the
stored strategy

• E.g. strategy.execute()
• Context is implemented with

an abstract strategy!

ImplementsdoSomething() {
…
strategy.execute();
…
}

Has a

Concrete Strategies
Concrete Strategies

Strategy Pattern UML

- strategy

doSomething()

Context <<interface>>
Strategy

Execute()

Concrete Strategies

Execute()

Adding a new strategy
• Implement the Execute

function for this strategy
• Done!
• Context is unchanged!
• Context works with an

abstract strategy, so as long as
a strategy has an execute
function, it can use it (which
it automatically has as it
implements the interface
strategy!)

New Strategy

Execute()

Implements

Has a

Application on previous problem

- Routing algorithm (strategy)

returnRoute()

App (Context) <<interface>>
RoutingAlgorithm (Strategy)

calcRoute()

RA Cars
(Concrete strategy)

calcRoute()

RA Normal
(Concrete strategy)

calcRoute()

RA Via specific point
(Concrete strategy)

calcRoute()

• All concrete routing
algorithms implement the
interface and have an
implementation of
calcRoute()

• returnRoute() uses
routingalgorithm.calcRoute()

• The stored RoutingAlgorithm
in the attribute decides which
algorithm is used with this
function call!

Implements

Has a

Live Coding Session

• Lets take a look at the program from the previous example

• This can be found in StrategyPatternExample.zip

• Take a look at it in your own time as well and experiment!

• Hint: You can also use the debugger to investigate the flow of the
program

Question 5
Which is a correct UML for the strategy pattern?

A.
D.

C.

B.
(4)

Concrete
Strategies

Concrete
Strategies

doSomething()

Context <<interface>>
Strategy

Execute()

Concrete
Strategies

Execute()

Has a

Implements

(4)

Concrete
Strategies

Concrete
Strategies

- strategy

doSomething()

Context<<interface>>
Strategy

Execute()

Concrete
Strategies

Execute()

Has a

Implements

(4)

Concrete
Strategies

Concrete
Strategies

doSomething()

Context <<interface>>
Strategy

Execute()

Concrete
Strategies

Execute()

Has a

Implements

(4)

Concrete
Strategies

Concrete
Strategies

- strategy

doSomething()

Context<<interface>>
Strategy

Execute()

Concrete
Strategies

Execute()

Has a

Implements

Question 5
A is correct. The Concrete Strategies should

Implement the interface Strategy (so A and D

remain). Furthermore, the Context should have

an attribute with the used strategy, so A is correct

A.
D.

C.

B.
(4)

Concrete
Strategies

Concrete
Strategies

doSomething()

Context <<interface>>
Strategy

Execute()

Concrete
Strategies

Execute()

Has a

Implements

(4)

Concrete
Strategies

Concrete
Strategies

- strategy

doSomething()

Context<<interface>>
Strategy

Execute()

Concrete
Strategies

Execute()

Has a

Implements

(4)

Concrete
Strategies

Concrete
Strategies

doSomething()

Context <<interface>>
Strategy

Execute()

Concrete
Strategies

Execute()

Has a

Implements

(4)

Concrete
Strategies

Concrete
Strategies

- strategy

doSomething()

Context<<interface>>
Strategy

Execute()

Concrete
Strategies

Execute()

Has a

Implements

Question 6
Suppose the following program:

We have a program that encrypts a given message with either RSA or
Triple DES (2 encryption methods). The program probably won’t be
extended with other encryption methods.

Should we use the strategy pattern and how?

A. Yes, the encryption methods are the strategies

B. Yes, the different messages are the strategies

C. No, it is not necessary to apply the pattern

Question 6
We have a program that encrypts a given message with either RSA or
Triple DES (2 encryption methods). The program probably won’t be
extended with other encryption methods.

A. Yes, the encryption methods are the strategies

B. Yes, the different messages are the strategies

C. No, it is not necessary to apply the pattern

These encryption methods can be applied as strategies. However, it is
debatable whether that is better, as there are only 2 methods used.
Therefore, both answers are correct, but the preference is to still apply
the strategy pattern for future adjustments

Question 6

- Encryption strategy

…

Context <<interface>>
EncryptionMethod

encrypt()

RSA

encrypt()

Implements

Triple DES

encrypt()

Has a

Question 7
Suppose the following program:

We have a simulation of robots which move in a field. These robots
have different behaviors, e.g. defensive, offensive or random. These
behaviors can also be combined with each other or can have different
variations.

Should we use the strategy pattern and how?

A. Yes, the robots are the strategies

B. Yes, the behaviors are the strategies

C. No, it is not necessary to apply the pattern

Question 7
We have a simulation of robots which move in a field. These robots
have different behaviors, e.g. defensive, offensive or random. These
behaviors can also be combined with each other or can have different
variations.

A. Yes, the robots are the strategies

B. Yes, the behaviors are the strategies

C. No, it is not necessary to apply the pattern

The behaviors are the strategies used by the robots; see the UML on the
next slide

Question 7

- Behavior

…

Robot <<interface>>
Behavior

behave()

OffensiveBehavior

behave()

Has a

Implements

RandomBehavior

behave()

DefensiveBehavior

behave()

Question 8
Suppose the following program:

We have a program that extracts plain text from different types of files,
e.g. pdf, xml or html. This is then returned as a string.

Should we use the strategy pattern and how?

A. Yes, the different types of files are the strategies

B. Yes, the different extraction algorithms are the strategies

C. No, it is not necessary to apply the pattern

Question 8
We have a program that extracts plain text from different types of files,
e.g. pdf, xml or html. This is then returned as a string.

A. Yes, the different types of files are the strategies

B. Yes, the different extraction algorithms are the strategies

C. No, it is not necessary to apply the pattern

Using the Strategy pattern here will result in non-modular code, as the
different methods for the specific text files can only be applied on the
corresponding text file instead of universally on all files. It is better to
have an abstract function extract() implemented for all the different
files. See the next slide for the UMLs.

Question 8

extract() {
if (file.getClass() == pdf.getClass()) {
// do something
} else {

???
}

}

<<interface>>
File

extract()

PDF

extract()

TXT

extract()

HTML

extract()

implements

Recap

• The Strategy pattern can be used with classes that do something
specific with different strategies
• E.g. calculating a route, different encryption methods, different behaviors…

• It splits the different strategies (by using an interface) from the
context

• The code in the context is unchanged if
• A strategy contains a bug and is fixed

• A new strategy is added

Decorator Pattern

Problem I

• Suppose we have an application which sends alert notifications

• First only email notifier
• Solution: make a separate Notifier class

• Afterwards, demand for additional notifiers, next to the standard
email notifier
• E.g. Whatsapp, Instagram, SMS notification

• Solution: Extend the Notifier class with these types
Notifier

Whatsapp notifier Instagram notifier SMS notifier

…

Notifier

+ send(message)

- notifier: Notifier

Application

+ setNotifier(notifier)
+ doSomething()

notifier.send(msg)

Has a

Problem II

• Now: persons want notifiers on different devices
• E.g. Whatsapp and SMS notifier

• “Solution”: Lets make subclasses for all these combinations:

• Unfortunately, this is not a great solution:
• Duplicate code

• A lot of unnecessary code

• Not extendable
• Imagine adding one extra Notifier

• Solution: Decorator Pattern

Notifier

Decorator Pattern

• Previous problem: add multiple notifiers to the basic email notifier

• Decorator Pattern: add multiple decorators to the concrete component
• E.g. multiple toppings on a pizza

• Instead of subclasses for all combinations

• Simply add the desired decorators to the concrete component

• Advantages:
• No duplicate code

• Easily extendable with new decorators

• A lot of flexibility

Concrete Decorator

…

Concrete Decorator

…

Decorator Pattern UML
<<Interface>>
Component

+ execute()

Concrete
Component

…

+ execute()

Base Decorator

- base: Component

+ BaseDecorator(c : Component)
+ execute()

Concrete Decorator

…

+ execute()

Concrete
Component

Concrete
Decorator 1

Concrete
Decorator 2

Interface Component
• This is the interface for both the Concrete Component

and the Decorators
• It contains a function which is implemented for all

Concrete Components and Decorators
• E.g. a cost() or toString() function for the pizzas

with toppings

Has a

Implements

Extends

Concrete Decorator

…

Concrete Decorator

…

Decorator Pattern UML
<<Interface>>
Component

+ execute()

Concrete
Component

…

+ execute()

Base Decorator

- base: Component

+ BaseDecorator(c : Component)
+ execute()

Concrete Decorator

…

+ execute()

Concrete
Component

Concrete
Decorator 1

Concrete
Decorator 2

Concrete Component
• This is the base on which the Decorators can be

“wrapped”
• E.g. the base of a pizza on which we can “wrap”

the toppings
• Note that we have the same function execute() here

as well
• Note that we don’t have a Component object in a

Concrete Component, as it is a base and it cannot be
wrapped around something in contrast to a Decorator

Has a

Implements

Extends

Concrete Decorator

…

Concrete Decorator

…

Decorator Pattern UML
<<Interface>>
Component

+ execute()

Concrete
Component

…

+ execute()

Base Decorator

- base: Component

+ BaseDecorator(c : Component)
+ execute()

Concrete Decorator

…

+ execute()

Concrete
Component

Concrete
Decorator 1

Concrete
Decorator 2

Base Decorator
• This serves as the standard Decorator for all the

Concrete decorators
• It contains a Component object, which is the object

on which the current Decorator is wrapped
• Note that this can either be a Concrete

Component or a Concrete Component with
several Decorators wrapped around it
represented as a Component

• It contains a Constructor which simply sets the base
• It contains an execute() function, which is standard

defined as base.execute() (simply calls the execute of
the stored base)

• Note that the arrow with a diamond states that the
Base Decorator uses a Component

Has a

Implements

Extends

Concrete Decorator

…

Concrete Decorator

…

Decorator Pattern UML
<<Interface>>
Component

+ execute()

Concrete
Component

…

+ execute()

Base Decorator

- base: Component

+ BaseDecorator(c : Component)
+ execute()

Concrete Decorator

…

+ execute()

Concrete
Component

Concrete
Decorator 1

Concrete
Decorator 2

Concrete Decorator
• These are the concrete Decorators that extend the

Base Decorator
• It overwrites the execute() function of the Base

Decorator with the extra functionality of the Concrete
Decorator

• The overwritten execute() function contains a call
super.execute(), which simply calls the execute()
function of the extended object, in this case the Base
Decorator, thus calling the execute() function of the
stored base Component.

• The remainder of the overwritten execute() function
is the addition of the Decorator
• E.g. adding a topping of 35 cents to the rest of

the pizza
• cost() {return super.cost() + 0.35}

Has a

Implements

Extends

Concrete Decorator

…

Concrete Decorator

…

Decorator Pattern UML
<<Interface>>
Component

+ execute()

Concrete
Component

…

+ execute()

Base Decorator

- base: Component

+ BaseDecorator(c : Component)
+ execute()

Concrete Decorator

…

+ execute()

Adding new Concrete Component
• Only the execute() function of this new Component

should be implemented
• E.g. the cost of a different base for a pizza

• It can immediately be used in the whole system while
not changed any code in any other class!

Adding new Concrete Decorator
• Similarly, only the execute() function of this new

Decorator should be implemented
• E.g the cost of a new topping for a pizza

• It can immediately be used in the whole system while
not changed any code in any other class!

New Concrete
Component

…

+ execute()

New Concrete Decorator

…

+ execute()

Has a

Implements

Extends

Application on the previous problem
<<Interface>>

Notifier

+ notify()

Email Notifier

+ notify()

Base NotifierDecorator

- base: Notifier

+ BaseNotifierDecorator(n : Notifier)
+ notify()

WhatsappNotifier

+ notify()

notify() {notifyMail()}

notify() {base.notify()}

InstagramNotifier

+ notify()

SMSNotifier

+ notify()

notify() {
super.notify();
notifyWhatsapp();

}

notify() {
super.notify();
notifyInstagram();

}

notify() {
super.notify();
notifySMS();

}

• The email notifier is the base, as everyone gets a
note via email

• The notifier can then be wrapped with other
notifiers to specify the desired notifiers
• E.g. Notifier n = new WhatsappNotifier(new

SMSNotifier(new EmailNotifier));
• Now with n.notify, the user receives a

Whatsapp note (notifyWhatsapp() is called), a
SMS note (notifySMS() is called) and an email
(notifyMail() is called)

Has a

Implements

Extends

Live coding session

• Lets take a look at the program from the previous example

• This can be found in DecoratorPatternExample.zip

• Take a look at it in your own time as well and experiment!

Question 9: Correct UML for Decorator
Pattern?

Concrete Decorator

…

Concrete Decorator

…

<<Interface>>
Component

+ execute()

Concrete
Component

…
+ execute()

Base Decorator

- base: Component

+ BaseDecorator(c :
Component)
+ execute()

Concrete Decorator

…
+ execute()

Concrete Decorator

…

Concrete Decorator

…

<<Interface>>
Component

+ execute()

Concrete Component

- base: Component

+ execute()

Base Decorator

- base: Component

+ BaseDecorator(c :
Component)
+ execute()

Concrete Decorator

…
+ execute()

Concrete Decorator

…

Concrete Decorator

…

<<Interface>>
Component

+ execute()

Concrete
Component

…
+ execute()

Base Decorator

- base: Component

+ BaseDecorator(c :
Component)
+ execute()

Concrete Decorator

…
+ execute()

A. B.
C.Has a Has a Has a

Implements Implements
Implements

Extends Extends Extends

Question 9: Correct UML for Decorator
Pattern?

Concrete Decorator

…

Concrete Decorator

…

<<Interface>>
Component

+ execute()

Concrete
Component

…
+ execute()

Base Decorator

- base: Component

+ BaseDecorator(c :
Component)
+ execute()

Concrete Decorator

…
+ execute()

Concrete Decorator

…

Concrete Decorator

…

<<Interface>>
Component

+ execute()

Concrete Component

- base: Component

+ execute()

Base Decorator

- base: Component

+ BaseDecorator(c :
Component)
+ execute()

Concrete Decorator

…
+ execute()

Concrete Decorator

…

Concrete Decorator

…

<<Interface>>
Component

+ execute()

Concrete
Component

…
+ execute()

Base Decorator

- base: Component

+ BaseDecorator(c :
Component)
+ execute()

Concrete Decorator

…
+ execute()

A. B.
C.

A is correct. The concrete component in B also has a base Component as attribute, but this is not allowed as it can only be a
Base. In C, the Concrete Decorators are extending the Concrete Component, but they should be extending the Base Decorators.

Has a Has a Has a

Implements Implements
Implements

Extends Extends Extends

Question 10

Suppose we have a data structure representing multiple vehicles (e.g. car, bus,
truck etc) with the customization option to have extra large tires. There are no
further customization options.

Should we use the Decorator Pattern here and how?

A. Yes, the vehicles are the Concrete Components and the extra large tires the
Decorators

B. Yes, the tires are the Concrete Components and the vehicles the Decorators

C. No, it is not necessary to apply the pattern

Question 10

Suppose we have a data structure representing multiple vehicles (e.g. car, bus,
truck etc) with the customization option to have extra large tires. There are no
further customization options.

Should we use the Decorator Pattern here and how?

A. Yes, the vehicles are the Concrete Components and the extra large tires the
Decorators

B. Yes, the tires are the Concrete Components and the vehicles the Decorators

C. No, it is not necessary to apply the pattern

We have many different Concrete Components (the vehicles) and only one
Decorator (extra large tires). It is better to simply add ExtraLargeTires as a Boolean
attribute to all the vehicles which is either true or false

Question 10
<<Interface>>

Vehicle

…

Base Decorator

- base: Vehicle

+ BaseDecorator(v : Vehicle)
…

Extra large tires

…

Has a

Implements

Extends

Car (Concrete Component)

…

Bus (Concrete Component)

…

Truck (Concrete Component)

…

Vehicle

- ExtraLargeTires : bool

Car

…

Truck

…

Bus

…

Extends

Question 11

Suppose we have a data structure representing a tech shop. It is possible to buy
either a desktop or laptop with multiple accessories, like a mouse, mouse pad,
keyboard etc. Moreover, multiple mouses or keyboards can be added to the order.

Should we use the Decorator Pattern here and how?

A. Yes, the laptop/desktop are the Concrete Components and the accessories are
the Decorators

B. Yes, the accessories are the Concrete Components and the laptop/desktop are
the Decorators

C. No, it is not necessary to apply the pattern

Question 11

Suppose we have a data structure representing a tech shop. It is possible to buy
either a desktop or laptop with multiple accessories, like a mouse, mouse pad,
keyboard etc. Moreover, multiple mouses or keyboards can be added to the order.

Should we use the Decorator Pattern here and how?

A. Yes, the laptop/desktop are the Concrete Components and the accessories are
the Decorators

B. Yes, the accessories are the Concrete Components and the laptop/desktop are
the Decorators

C. No, it is not necessary to apply the pattern

The Decorator pattern fits perfectly for this use case, see the next slide

Question 11

<<Interface>>
Order

…

Base Decorator

- base: Order

+ BaseDecorator(o : Order)
…

Mouse pad

…

Has a

Implements

Extends

Laptop (Concrete Component)

…

Desktop (Concrete Component)

…

Keyboard

…

Mouse

…

Question 12

Suppose we have a data structure representing a GUI window with the option to
have a border around it. This border can be exactly one of many colors. There are
no other customizable options.

Should we use the Decorator Pattern here and how?

A. Yes, the window is the Concrete Component and the border option and colors
are the Decorators

B. Yes, the border option and the colors are the Concrete Components and the
window is the Decorator

C. No, it is not necessary to apply the pattern

Question 12

Suppose we have a data structure representing a GUI window with the option to
have a border around it. This border can be exactly one of many colors. There are
no other customizable options.

Should we use the Decorator Pattern here and how?

A. Yes, the window is the Concrete Component and the border option and colors
are the Decorators

B. Yes, the border option and the colors are the Concrete Components and the
window is the Decorator

C. No, it is not necessary to apply the pattern

The different colors can work as Decorators and the GUI window as a Concrete
Component, but it is a bit too much as there is exactly one color used. The different
colors can better be represented as an enum and the color of the border as an
attribute inside the GUI window object.

Question 12
<<Interface>>

Window

…

Base Decorator

- base: Window

+ BaseDecorator(w : Window)
…

Red Border

…

Has a

Implements

Extends

GUI window (Concrete
Component)

…

GUI window

- borderColor : Color

Green Border

…

Yellow Border

…

…

<<enumeration>>
Color

Red
Green
Yellow

…

Has a

Recap

• The Decorator Pattern can be used if there are multiple properties
(Decorators) that can be “wrapped” around a base object (Concrete
Component)
• E.g. options for a GUI window, accessories for products etc.

• It splits the Concrete Component and Decorators

• Multiple Decorators can be “wrapped” around a Concrete Component
to create a new Component

• With this Pattern, one can easily
• Add new Decorators

• Add new Concrete Components

Visitor Pattern

Problem I

• Suppose we have a shop with different items:
• DVD’s (name and price)

• Books (name, price and unique weight)

• Giftbox (name, price and list of items)

• There are different operations that can be performed on items
• Count all the books and DVDs

• Get the total weight of the item

• These can be seen as different “strategies”

<<Abstract>>
Item

- name
- price

Book

- weight

DVD Giftbox

- items

Extends

<<Interface>>
Strategy

- inspect(item)

Implements

CountStrategy

- books : int
- dvds : int

WeightStrategy

- Weight: double

- inspect(item) - inspect(item)

Problem II

• At first glance this look OK

• However, what does inspect(item) for CountStrategy

looks like?

• Using getClass() or instanceof is not something

we want in OO…

• Solution: make an inspect function for every item!

<<Interface>>
Strategy

- inspect(item)

Implements

CountStrategy

- books : int
- dvds : int

WeightStrategy

- Weight: int

- inspect(item) - inspect(item)

<<Abstract>>
Item

- name
- price

Book

- weigth

DVD Giftbox

- items

Extends

Uses

Void inspect(item) {
if (item.getClass() == Book.class) {

books += 1;
} else if (item.getClass() == DVD.class) {

dvds += 1;
} else if (item.getClass() == Giftbox.class) {

for (Item subItem: item.getItems()) {
inspect(subItem);

}
}

}

Problem III

• New implementation:

• No instanceof or getClass() needed!

• Problem: using a Strategy on an Item is not

abstract anymore…

• Solution: Make a new function for all items which
• Takes a strategy as argument

• Chooses the correct inspect function for the current Item

void inspectBook(Book b) {
books += 1;

}

void inspectDVD(DVD d) {
dvds += 1;

}

Void inspectGiftbox(Giftbox gb) {
for (Item subItem: item.getItems()) {

inspect(subItem);
}

}

<<Interface>>
Strategy

- inspectBook(Book)
- inspectDVD(DVD)

- inspectGiftbox(Giftbox)

Implements

CountStrategy

- books : int
- dvds : int

WeightStrategy

- Weight: int

- inspectBook(Book)
- inspectDVD(DVD)

- inspectGiftbox(Giftbox)

- inspectBook(Book)
- …

<<Abstract>>
Item

- name
- price

Book

- weigth

DVD Giftbox

- items

Extends

Uses

Problem IV

• Implementation:

• The question probably arises: why would we want this complex pattern?
• For every item and strategy, we can use item.accept(strategy) and it will work
• No usage of instanceof or getClass()!
• The Inspectable interface doesn’t have to be touched anymore, but many

strategies can be added!

<<Interface>>
Strategy

- inspectBook(Book)
- inspectDVD(DVD)

- inspectGiftbox(Giftbox)

Implements

CountStrategy

- books : int
- dvds : int

WeightStrategy

- Weight: int

- inspectBook(Book)
- inspectDVD(DVD)

- inspectGiftbox(Giftbox)

- inspectBook(Book)
- …

<<Abstract>>
Item

- name
- price

Book

- Weigth
- accept(Strategy)

DVD

- accept(Strategy)

Giftbox

- Items
- accept(Strategy)

Extends

<<Interface>>
Inspectable

- accept(Strategy)

accept(Strategy s) {
s.inspectBook(this);

}

accept(Strategy s) {
s.inspectDVD(this);

}

accept(Strategy s) {
s.inspectGiftbox(this);

}

Uses

Uses

Visitor Pattern

• Visitor Pattern is very similar to the Strategy Pattern

• But also works with multiple objects!
• While keeping the code clean

• Objects are Visitable and contain the accept(strategy) function

• Strategies are Visitors and contain a visitObject(object) function for
every Object
• These are linked with each other

• Really useful when the Visitable Objects do not change often

• Many Visitors can be added and the code for the Visitables is
unchanged!

Visitor Pattern UML

<<Interface>>
Visitor

- visitElement1(element1)
- visitElement2(element2)
- visitElement3(element3)

…

Implements

Visitor1

…

- visitElement1(element1)
- visitElement2(element2)
- visitElement3(element3)

- …

<<Abstract>>
Element

…

Element1

- accept(visitor)

Extends

Uses<<Interface>>
Visitable

- accept(visitor)

accept(Strategy s) {
s.visitElement1(this);

}

…

Element2

- accept(visitor)

accept(Strategy s) {
s.visitElement2(this);

}

…

Element3

- accept(visitor)

accept(Strategy s) {
s.visitElement3(this);

}

…

Visitor2

…

- visitElement1(element1)
- visitElement2(element2)
- visitElement3(element3)

- …

<<Interface>> Visitor
• The interface for the Visitors, which

contain a visit function for every
element

• All the concrete Visitors implement
this Interface

Uses

Visitor Pattern UML
Concrete Visitors
• These are the concrete Visitors with

their own implementation of the
visit function for all different
elements

• Adding a new Visitor only requires
an implementation of these visit
functions and it can immediately be
used

<<Interface>>
Visitor

- visitElement1(element1)
- visitElement2(element2)
- visitElement3(element3)

…

Implements

<<Abstract>>
Element

…

Element1

- accept(visitor)

Extends

Uses<<Interface>>
Visitable

- accept(visitor)

accept(Strategy s) {
s.visitElement1(this);

}

…

Element2

- accept(visitor)

accept(Strategy s) {
s.visitElement2(this);

}

…

Element3

- accept(visitor)

accept(Strategy s) {
s.visitElement3(this);

}

…

Uses

Visitor1

…

- visitElement1(element1)
- visitElement2(element2)
- visitElement3(element3)

- …

Visitor2

…

- visitElement1(element1)
- visitElement2(element2)
- visitElement3(element3)

- …

Visitor Pattern UML
<<Interface>> Visitable
• The interface for all the Visitable

Elements.
• All implementations have an accept

function that takes a Visitor
• This accept function executes the

desired behavior from the passed
Visitor on the Visitable Element

<<Interface>>
Visitor

- visitElement1(element1)
- visitElement2(element2)
- visitElement3(element3)

…

Implements

<<Abstract>>
Element

…

Element1

- accept(visitor)

Extends

Uses<<Interface>>
Visitable

- accept(visitor)

accept(Strategy s) {
s.visitElement1(this);

}

…

Element2

- accept(visitor)

accept(Strategy s) {
s.visitElement2(this);

}

…

Element3

- accept(visitor)

accept(Strategy s) {
s.visitElement3(this);

}

…

Uses

Visitor1

…

- visitElement1(element1)
- visitElement2(element2)
- visitElement3(element3)

- …

Visitor2

…

- visitElement1(element1)
- visitElement2(element2)
- visitElement3(element3)

- …

Visitor Pattern UML
Concrete Elements
• The concrete elements used in the

program which extend the Abstract
Element

• These all implement an accept
function which is directly linked to
their corresponding visit function in
the Visitor

• E.g. el3.accept(visitor v) calls
v.visitElement3(el3)

• Adding a new Element is a bit more
work, as all Visitors should be
upgraded with a new visit function

<<Interface>>
Visitor

- visitElement1(element1)
- visitElement2(element2)
- visitElement3(element3)

…

Implements

<<Abstract>>
Element

…

Element1

- accept(visitor)

Extends

Uses<<Interface>>
Visitable

- accept(visitor)

accept(Strategy s) {
s.visitElement1(this);

}

…

Element2

- accept(visitor)

accept(Strategy s) {
s.visitElement2(this);

}

…

Element3

- accept(visitor)

accept(Strategy s) {
s.visitElement3(this);

}

…

Uses

Visitor1

…

- visitElement1(element1)
- visitElement2(element2)
- visitElement3(element3)

- …

Visitor2

…

- visitElement1(element1)
- visitElement2(element2)
- visitElement3(element3)

- …

Visitor Pattern UML
Overloading
• Before, we used

visitElement1(element1),
visitElement2(element2) etc

• However, these functions can be
overloaded, as the type of the
arguments are different

• Therefore, it is common practice to
simply use visit as the name of the
different functions

• The accept(strategy) is the same
function everywhere!

<<Interface>>
Visitor

- visit (element1)
- visit (element2)
- visit (element3)

…

Implements

Visitor1

…

- visit (element1)
- visit (element2)
- visit (element3)

- …

<<Abstract>>
Element

…

Element1

- accept(visitor)

Extends

Uses<<Interface>>
Visitable

- accept(visitor)

accept(Strategy s) {
s.visit(this);

}

…

Element2

- accept(visitor)

accept(Strategy s) {
s.visit(this);

}

…

Element3

- accept(visitor)

accept(Strategy s) {
s.visit(this);

}

…

Visitor2

…

- visit (element1)
- visit (element2)
- visit (element3)

- …

Uses

Application on previous problem
<<Interface>>

Visitors

- visitBook(Book)
- visitDVD(DVD)

- visitGiftbox(Giftbox)

Implements

CountVisitor

- books : int
- dvds : int

WeightVisitor

- Weight: int

- visitBook(Book)
- visitDVD(DVD)

- visitGiftbox(Giftbox)

- visitBook(Book)
- visitDVD(DVD)

- visitGiftbox(Giftbox)

<<Abstract>>
Item

- name
- price

Book

- Weight
- accept(visitor)

DVD

- accept(visitor)

Giftbox

- Items
- accept(visitor)

Extends

Has a<<Interface>>
Visitable

- accept(visitor)

accept(Visitor v) {
v.visitBook(this);

}

accept(Visitor v) {
v.visitDVD(this);

}

accept(Visitor v) {
v.visitGiftbox(this);

}

• As can be seen, for every item
and every Visitor v,
item.accept(v) can immediately
be applied

• Not instanceof or getClass() is
needed anymore in the Visitors!

Uses

Live coding session

• Lets take a look at the program from the previous example

• This can be found in VisitorPatternExample.zip

• Take a look at it in your own time as well and experiment!

Question 13

Suppose we have a program for an electrical business that sells keyboards, mouses,
desktops etc and a complete set of these attributes. Different operations can be
performed on these objects, e.g. getting the price, the operation system
requirements etc.

Should we use the Visitor pattern and how?

A. Yes, the products are the Visitables and the operations the Visitors

B. Yes, the operations are the Visitables and the products the Visitables

C. No, it is not necessary to apply the pattern

Question 13

Suppose we have a program for an electrical business that sells keyboards, mouses,
desktops etc and a complete set of these attributes. Different operations can be
performed on these objects, e.g. getting the price, the operation system
requirements etc.

Should we use the Visitor pattern and how?

A. Yes, the products are the Visitables and the operations the Visitors

B. Yes, the operations are the Visitables and the products the Visitables

C. No, it is not necessary to apply the pattern

The Visitor pattern fits perfectly in this use case, see the next slide

Question 13

<<Interface>>
Visitor

- visitKeyboard(keyboard)
- visitMouse(mouse)

- visitDesktop(desktop)
…

Implements

PriceVisitor

…

- visitKeyboard(keyboard)
- visitMouse(mouse)

- visitDesktop(desktop)
- …

<<Abstract>>
Product

…

Keyboard

- accept(visitor)

Extends

Uses<<Interface>>
Visitable

- accept(visitor)

…

Mouse

- accept(visitor)

…

Desktop

- accept(visitor)

…

SystemReqVisitor

…

- visitKeyboard(keyboard)
- visitMouse(mouse)

- visitDesktop(desktop)
- …

Uses

Question 14

Suppose we have a shop that sells bikes. All these bikes are in essence the same,
but they differ in their attributes, e.g. different height, different tires, different
colors. Several operations should be applied on these bikes, e.g. calculating the
production cost or the total weight of the bike.

Should we use the Visitor pattern and how?

A. Yes, the bikes are the Visitables and the operations the Visitors

B. Yes, the operations are the Visitables and the bikes the Visitables

C. No, it is not necessary to apply the pattern

Question 14

Suppose we have a shop that sells bikes. All these bikes are in essence the same,
but they differ in their attributes, e.g. different height, different tires, different
colors. Several operations should be applied on these bikes, e.g. calculating the
production cost or the total weight of the bike.

Should we use the Visitor pattern and how?

A. Yes, the bikes are the Visitables and the operations the Visitors

B. Yes, the operations are the Visitables and the bikes the Visitables

C. No, it is not necessary to apply the pattern

There is only one Visitable object, namely the bike which has multiple attributes.
The Visitor pattern is not useful here, as the operations that should be performed
on the bike should be implemented in that class. See the next slide

Question 14

Bike

- height : int
- tireType: Tire

- colorType: Color
…

- calculateCost ()
- calculateWeight ()

…

Question 15

Suppose we have a map with streets, roundabouts, bridges etc. Multiple calculations can be
performed on these roads, e.g. calculating the length of a route or the fuel consumption. Other
calculations could be added to the program, and different maps can be made and will extend the
different road objects with roads specifically for bikes or trains for example.

Should we use the Visitor pattern and how?

A. Yes, the road objects are the Visitables and the calculations the Visitors

B. Yes, the calculations are the Visitables and the road objects the Visitors

C. No, it is not necessary to apply the pattern

Question 15

Suppose we have a map with streets, roundabouts, bridges etc. Multiple calculations can be
performed on these roads, e.g. calculating the length of a route or the fuel consumption. Other
calculations could be added to the program, and different maps can be made and will extend the
different road objects with roads specifically for bikes or trains for example.

Should we use the Visitor pattern and how?

A. Yes, the road objects are the Visitables and the calculations the Visitors

B. Yes, the calculations are the Visitables and the road objects the Visitors

C. No, it is not necessary to apply the pattern

The Visitor pattern can be applied here. Note that it is a bit more work to add new road objects,
but the pattern is still viable. See the next slide

Question 15

<<Interface>>
Visitor

- visitStreet(street)
- visitRoundabout(roundabout)

- visitBridge(bridge)
…

Implements

LengthRouteVisitor

…

- visitStreet(street)
- visitRoundabout(roundabout)

- visitBridge(bridge)
…

<<Abstract>>
RoadObject

…

Street

- accept(visitor)

Extends

Uses<<Interface>>
Visitable

- accept(visitor)

…

Roundabout

- accept(visitor)

…

Bridge

- accept(visitor)

…

FuelConsumptionVisitor

…

- visitStreet(street)
- visitRoundabout(roundabout)

- visitBridge(bridge)
…

Uses

Recap

• The Visitor pattern can be used to split up several algorithms from a
lot of different Elements with different properties
• A lot of different problems fall into this category!

• It puts the Elements in a Visitable Interface and the algorithms in a
Visitor interface
• The visitors (algorithms) can visit the Visitables (Element)

• With this pattern, one can easily
• Add new Visitors

• Note that it a bit more work to add new Elements
• This pattern is used best when the Elements do not change a lot

Recognising Patterns

Recognising Patterns

• You have seen different patterns
• But there are many more!

• You probably used a lot of these subconsciously

• Learning these patterns by heart is not the goal

• Recognising reappearing structures in a program is the goal!
• And we named these “reappearing structures”

• Using the design patterns benefits your code
• Better readability

• Better maintainability

• However, do not overuse (or misuse) these patterns if not necessary!

Question 16

In Brightspace, there are different roles: teachers, students, TA’s etc. Each TA can have different
rights in Brightspace; some can grade stuff, some can add material, some can only view all
material. These different rights can be combined with each other. The teacher can assign rights
to each individual TA.

Which design pattern can be recognised and applied here?

A. Strategy Pattern

B. Decorator Pattern

C. Visitor Pattern

D. No pattern or undiscussed pattern

Question 16

In Brightspace, there are different roles: teachers, students, TA’s etc. Each TA can have different
rights in Brightspace; some can grade stuff, some can add material, some can only view all
material. These different rights can be combined with each other. The teacher can assign rights
to each individual TA.

Which design pattern can be recognised and applied here?

A. Strategy Pattern

B. Decorator Pattern

C. Visitor Pattern

D. No pattern or undiscussed pattern

The standard rights for TA’s is the Concrete Component and the other different rights which are
not standard are the Decorators. It is also possible to implement the different rights as Boolean
attributes. See the next slide

Question 16

<<Interface>>
TARights

…

Base Decorator

- base: TARights

+ BaseDecorator(tar : TARights)
…

AddMaterialRight

…

Has a

Implements

Extends

StandardRights
(Concrete Component)

…

ViewMaterialRight

…

GradeRight

…

Question 17

In Brightspace, we have different views for a course page, e.g. students can only see material
that is published and TA’s can see all material, but cannot see the menu for adding or removing
material. Teachers can see everything, including this menu. We are looking at the part of the
program that shows these different views/interfaces on the screen.

Which design pattern can be recognised and applied here?

A. Strategy Pattern

B. Decorator Pattern

C. Visitor Pattern

D. No pattern or undiscussed pattern

Question 17

In Brightspace, we have different views for a course page, e.g. students can only see material
that is published and TA’s can see all material, but cannot see the menu for adding or removing
material. Teachers can see everything, including this menu. We are looking at the part of the
program that shows these different views/interfaces on the screen.

Which design pattern can be recognised and applied here?

A. Strategy Pattern

B. Decorator Pattern

C. Visitor Pattern

D. No pattern or undiscussed pattern

These different views can be seen as different strategies, which results in an application of the
strategy pattern. See the next slide.

Question 17

- Interface

…

View <<interface>>
Interface

showInterface()

TAInterface

Has a

Implements

TeacherInterfaceStudentInterface

showInterface() showInterface()showInterface()

Question 18

In Brightspace, students should be notified when grades are published or the teacher places an
announcement for all students. The other way around, the teacher should receive a message on
Brightspace whenever a students asks something in a discussion thread or hands in an assignment.

Which design pattern can be recognised and applied here?

A. Strategy Pattern

B. Decorator Pattern

C. Visitor Pattern

D. No pattern or undiscussed pattern

Question 18

In Brightspace, students should be notified when grades are published or the teacher places an
announcement for all students. The other way around, the teacher should receive a message on
Brightspace whenever a students asks something in a discussion thread or hands in an assignment.

Which design pattern can be recognised and applied here?

A. Strategy Pattern

B. Decorator Pattern

C. Visitor Pattern

D. No pattern or undiscussed pattern

No pattern that we discussed in this lecture can be applied here, but this is a typical example of the
Observer Pattern, which you probably already used in different programs. This Pattern waits till something
specific happens (grades are published) and then executes a certain action (notify the students).

Recap

• We discussed 3 concrete design patterns
• Strategy pattern

• Decorator pattern

• Visitor pattern

• For each pattern, we saw
• How it works

• An implementation in Java

• The use cases

• In your assignment, you have to
• Recognise a pattern in given code and refactor this code

• Implement the visitor pattern

Questionnaire

• Please fill in this questionnaire for my research (takes at most 2
minutes, but it really helps me to research/improve education)

• Also if you are watching the recording or reading the slides!

References for the specific patterns

Strategy Pattern:

https://refactoring.guru/design-patterns/strategy

Decorator Pattern:

https://refactoring.guru/design-patterns/decorator

Visitor Pattern:

https://refactoring.guru/design-patterns/visitor

I used these sites as my main reference for the examples. They are very clear and easy to
follow.

References for design patterns

Clear and simple explanations of patterns:

https://refactoring.guru/design-patterns/catalog

Short explanations of the patterns with one simple, elaborated example:

https://www.tutorialspoint.com/design_pattern/design_pattern_overview.htm

A bit longer and in-depth explanations of patterns:

https://www.oodesign.com/

Several design patterns discussed with a real-life example:

https://ronnieschaniel.medium.com/object-oriented-design-patterns-explained-
using-practical-examples-84807445b092

Appendix B

Online quiz

113

Appendix C

Live coding sessions

C.1 Strategy Pattern

public class StrategyPatternExample {

public static void main(String[] args) {

Context context = new Context();

// The normal routing algorithm is used

context.setRa(new NormalRoute());

System.out.println(context.returnRoute("A","D"));

// Only car routes can be used

context.setRa(new CarRoute());

System.out.println(context.returnRoute("A","D"));

System.out.println(context.returnRoute("D","B"));

// All routes can be used, but the route should go via D

context.setRa(new RouteViaD());

System.out.println(context.returnRoute("A","C"));

System.out.println(context.returnRoute("A","A"));

}

}

import java.util.Arrays;

import java.util.LinkedList;

public class Context {

// The used Strategy

private RoutingAlgorithm ra;

// The used map for the strategy

public final Map roadmap = new Map(new

LinkedList<>(Arrays.asList(

new Edge(4, new String[] {"Car","Walk"}, "A", "B"),

new Edge(8, new String[] {"Car","Walk"}, "B", "C"),

new Edge(7, new String[] {"Car","Walk"}, "C", "D"),

118

new Edge(10, new String[] {"Car","Walk"}, "D", "A"),

new Edge(3, new String[] {"Walk"}, "A", "C"),

new Edge(2, new String[] {"Walk"}, "B", "D"))));

// Returns the shortest route on the attribute roadmap with the

given start and end point

public Route returnRoute(String startpoint, String endpoint) {

return ra.calcRoute(roadmap, startpoint, endpoint);

}

public void setRa(RoutingAlgorithm ra) {

this.ra = ra;

}

}

// The strategies for the routing algorithms

// Each contains a function to calculate a route with a given map,

starting point and end point

public interface RoutingAlgorithm {

public Route calcRoute(Map map, String start, String end);

}

// This strategy takes all roads into account

class NormalRoute implements RoutingAlgorithm {

@Override

public Route calcRoute(Map map, String start, String end) {

return map.calcShortestFromTo(start, end);

}

}

// This strategy only takes car roads into account

class CarRoute implements RoutingAlgorithm {

@Override

public Route calcRoute(Map map, String start, String end) {

Map newMap = map.onlyRoadsWith("Car");

return newMap.calcShortestFromTo(start, end);

}

}

class RouteViaD implements RoutingAlgorithm {

@Override

public Route calcRoute(Map map, String start, String end) {

Route route1 = map.calcShortestFromTo(start, "D");

Route route2 = map.calcShortestFromTo("D", end);

route1.addRoute(route2);

119

return route1;

}

}

import java.util.Arrays;

import java.util.LinkedList;

// The Class that represents a map with some routing algorithms

// Not relevant for the students

public class Map {

private LinkedList<Edge> roads;

public Map(LinkedList<Edge> roads) {

this.roads = roads;

}

private Route calcShortestFromToRec(String start, String end,

int iteration) {

if (iteration >= 4)

return null;

if (start.equals(end)) {

LinkedList<String> list = new LinkedList<>();

list.add(start);

return (new Route(list, 0));

}

iteration+=1;

LinkedList<Route> routes = new LinkedList<>();

if (findEdgeFromTo(start, "A") != null &&

!"A".equals(start)) {

Route imroute = calcShortestFromToRec("A", end,

iteration);

if (imroute != null) {

imroute.updateWithNodeAndLength(start,

findEdgeFromTo(start, "A").getLength());

routes.add(imroute);

}

}

if (findEdgeFromTo(start, "B") != null &&

!"B".equals(start)) {

Route imroute = calcShortestFromToRec("B", end,

iteration);

if (imroute != null) {

imroute.updateWithNodeAndLength(start,

findEdgeFromTo(start, "B").getLength());

routes.add(imroute);

}

}

if (findEdgeFromTo(start, "C") != null &&

120

!"C".equals(start)) {

Route imroute = calcShortestFromToRec("C", end,

iteration);

if (imroute != null) {

imroute.updateWithNodeAndLength(start,

findEdgeFromTo(start, "C").getLength());

routes.add(imroute);

}

}

if (findEdgeFromTo(start, "D") != null &&

!"D".equals(start)) {

Route imroute = calcShortestFromToRec("D", end,

iteration);

if (imroute != null) {

imroute.updateWithNodeAndLength(start,

findEdgeFromTo(start, "D").getLength());

routes.add(imroute);

}

}

return getBestRoute(routes);

}

private Route getBestRoute(LinkedList<Route> routes) {

if (routes.isEmpty())

return null;

Route bestRoute = routes.get(0);

for (int i = 1; i < routes.size(); i++) {

if(routes.get(i).getLength() < bestRoute.getLength())

bestRoute = routes.get(i);

}

return bestRoute;

}

public Route calcShortestFromTo(String start, String end) {

return calcShortestFromToRec(start, end, 0);

}

private Edge findEdgeFromTo(String start, String end) {

for(Edge e: roads) {

String points = e.getPoints();

if (points.equals(start + " " + end) ||

points.equals(end + " " + start))

return e;

}

return null;

}

public Map onlyRoadsWith(String vehicle) {

LinkedList<Edge> result = new LinkedList<>();

121

for(Edge e : roads) {

if(Arrays.asList(e.getVehicles()).contains(vehicle))

result.add(e);

}

return new Map(result);

}

@Override

public String toString() {

return "Map{" + "roads=" + roads + ’}’;

}

}

import java.util.Arrays;

// The Class that represents the Edges on the Map

// Not relevant for the students

public class Edge {

private int length;

private String[] vehicles;

private String point1;

private String point2;

public Edge(int length, String[] vehicles, String point1,

String point2) {

this.length = length;

this.vehicles = vehicles;

this.point1 = point1;

this.point2 = point2;

}

public String getPoints(){

return (point1 + " " + point2);

}

public int getLength() {

return length;

}

public String[] getVehicles() {

return vehicles;

}

@Override

public String toString() {

return "Edge{" + "length=" + length + ", vehicles=" +

122

Arrays.toString(vehicles) + ", point1=" + point1 + ",

point2=" + point2 + ’}’;

}

}

import java.util.LinkedList;

// The Class that represents routes

// Not relevant for the students

public class Route {

private LinkedList<String> nodes;

private int length;

public Route (LinkedList <String> nodes, int length) {

this.nodes = nodes;

this.length = length;

}

public void updateWithNodeAndLength(String node, int length) {

nodes.offerFirst(node);

this.length += length;

}

public void addRoute(Route route){

LinkedList<String> additroutes = route.getNodes();

additroutes.remove();

this.nodes.addAll(additroutes);

this.length += route.getLength();

}

public int getLength() {

return length;

}

public LinkedList<String> getNodes() {

return nodes;

}

@Override

public String toString() {

return "Route{" + "nodes=" + nodes + ", length=" + length +

’}’;

}

123

}

C.2 Decorator Pattern

public class DecoratorPatternExample {

public static void main(String[] args) {

System.out.println("Notifier 1:");

// Only the basic Notifier

Notifier n1 = new EmailNotifier();

n1.notifyUser();

System.out.println("Notifier 2:");

// A basic Notifier with Whatsapp and Instagram as well

Notifier n2 = new WhatsappNotifier(new InstagramNotifier(new

EmailNotifier()));

n2.notifyUser();

}

}

// The Notifier interface

public interface Notifier {

public void notifyUser();

}

// The Concrete Email Notifier

// Note that is does not contain another Notifier inside it, is

this is the wrappee and not a wrapper

public class EmailNotifier implements Notifier {

// This notifyUser gives an email notifier

@Override

public void notifyUser() {

System.out.println("Notifying via mail");

// Notify via mail

}

}

// The Base Decorator for the program

public class BaseNotifierDecorator implements Notifier {

private Notifier base;

// Constructor simply sets the attribute base Notifier

public BaseNotifierDecorator(Notifier n) {

this.base = n;

}

124

// NotifyUser simply calls the notifyUser function on the

stored base

@Override

public void notifyUser() {

base.notifyUser();

}

}

// The Decorator for the Whatsapp Notifier

public class WhatsappNotifier extends BaseNotifierDecorator {

// Super simply calls the Constructor of the parent class

// In this case BaseNotifierDecorator, so it simply sets the

base

public WhatsappNotifier (Notifier n) {

super(n);

}

// This notifyUser notifies a user via Whatsapp

@Override

public void notifyUser() {

super.notifyUser();

System.out.println("Notifying via Whatsapp");

// Notify via Whatsapp

}

}

// The Decorator for the SMS Notifier

public class SMSNotifier extends BaseNotifierDecorator {

// Super simply calls the Constructor of the parent class

// In this case BaseNotifierDecorator, so it simply sets the

base

public SMSNotifier (Notifier n) {

super(n);

}

// This notifyUser notifies a user via SMS

@Override

public void notifyUser() {

super.notifyUser();

System.out.println("Notifying via SMS");

// Notify via SMS

}

}

// The Decorator for the Instagram Notifier

public class InstagramNotifier extends BaseNotifierDecorator {

125

// Super simply calls the Constructor of the parent class

// In this case BaseNotifierDecorator, so it simply sets the

base

public InstagramNotifier (Notifier n) {

super(n);

}

// This notifyUser notifies a user via Instagram

@Override

public void notifyUser() {

super.notifyUser();

System.out.println("Notifying via Instagram");

// Notify via Instagram

}

}

C.3 Visitor Pattern

import java.util.Arrays;

import java.util.List;

public class VisitorPatternExample {

public static void main(String[] args) {

// Creating the objects

Book book1 = new Book("Alice in Wonderland", 15, 3);

Book book2 = new Book("Bob in Wonderland", 10, 2);

Book book3 = new Book("Eve in Wonderland", 18, 5);

DVD dvd1 = new DVD("The Beatles", 5);

DVD dvd2 = new DVD("ABBA", 7);

List<Item> items = Arrays.asList(book1, book2, book3, dvd1,

dvd2);

Giftbox giftbox1 = new Giftbox("giftbox", items);

// A simple example to illustrate the inner working of the

accept function

Visitor v1 = new CountVisitor();

book1.accept(v1);

System.out.println(v1);

// As there are 3 books and 2 DVDs in the giftbox, that will

be the result

Visitor v2 = new CountVisitor();

giftbox1.accept(v2);

System.out.println(v2);

// As the books have a total weight of 10,

126

// the DVDs both have a standard weight of 1.

// and the box has an additional weight of 2,

// the total weight will be 14

Visitor v3 = new WeightVisitor();

giftbox1.accept(v3);

System.out.println(v3);

}

}

public interface Visitable {

// Only contians the accept function

public void accept(Visitor v);

}

public abstract class Item implements Visitable {

// All items have a name and a price

private String name;

private int price;

public Item(String name, int price) {

this.name = name;

this.price = price;

}

public int getPrice() {

return price;

}

}

public class Book extends Item {

// Books do have an additional weight as an attribute

private int weight;

public Book(String name, int price, int weight) {

super(name, price);

this.weight = weight;

}

// The accept function simply refers to the corresponding visit

function in the Visitor

@Override

public void accept(Visitor v){

v.visitBook(this);

}

127

public int getWeight() {

return weight;

}

}

public class DVD extends Item {

public DVD (String name, int price) {

super(name,price);

}

// The accept function simply refers to the corresponding visit

function in the Visitor

@Override

public void accept(Visitor v) {

v.visitDVD(this);

}

}

import java.util.List;

public class Giftbox extends Item {

// Giftboxes contain a list of items

private List<Item> items;

public Giftbox (String name, List<Item> items) {

// super calls the Object above the current object, Item in

this case

// So the Item constructor is called with the given name and

the calculated price

super(name, getTotalPrice(items));

this.items = items;

}

// Function to calculate the total weight of a list of items

private static int getTotalPrice(List<Item> items) {

int result = 0;

for(Item i : items) {

result += i.getPrice();

}

return result;

}

// The accept function simply refers to the corresponding visit

function in the Visitor

@Override

128

public void accept(Visitor v) {

v.visitGiftbox(this);

}

public List<Item> getItems() {

return items;

}

}

public interface Visitor {

// Contain a specific visit function for each object

public void visitBook(Book b);

public void visitDVD(DVD d);

public void visitGiftbox(Giftbox g);

}

public class CountVisitor implements Visitor {

// This Visitor counts the number of books and dvds

private int books = 0;

private int dvds = 0;

// When a book is inspected, the number of books should increase

@Override

public void visitBook(Book b) {

books += 1;

}

// When a DVD is inspected, the number of DVDs should increase

@Override

public void visitDVD(DVD d) {

dvds += 1;

}

// When a giftbox is inspected, this visitor is called on all

items with the accept functions

@Override

public void visitGiftbox(Giftbox g) {

for(Item i : g.getItems()) {

i.accept(this);

}

}

@Override

public String toString() {

return "CountVisitor{" + "books=" + books + ", dvds=" + dvds

+ ’}’;

129

}

}

public class WeightVisitor implements Visitor {

// This Visitor calculates the total weight of items

int weight = 0;

// When a book inspected, its weight attribute is added

@Override

public void visitBook(Book b) {

weight += b.getWeight();

}

// When a DVD is inspected, its standard weight of 1 is added

@Override

public void visitDVD(DVD d) {

weight += 1;

}

// When a giftbox is inspected, an additional weight of 2 is

added to the weights of all items

// These are inspected with the accept function.

@Override

public void visitGiftbox(Giftbox g) {

weight += 2; // Weight of the box

for(Item i : g.getItems()) {

i.accept(this);

}

}

@Override

public String toString() {

return "WeightVisitor{" + "weight=" + weight + ’}’;

}

}

130

Appendix D

Assignment PDF

131

Assignment Logical Formulas

Object Orientation

May 2022

This assignment consists of 3 parts: in the first part you are tasked to refactor
a small program by applying a discussed design pattern. In the second part,
you are asked to implement the discussed Visitor Pattern yourself. In the last
part, you have to fill in a mandatory questionnaire after you finished the other
2 parts. It is fine if only one of your teammates fills this in.

Refactoring a program

You can find a small program in RefactorExercise.zip. This program has
an encrypt function within Encryptor which takes a string to be encrypted
with the given (simple) encryption method. The different encryption methods
are represented by an enum and its functionality is implemented inside the
Encryptor class. The different encryption methods are:

• Caesar3: this shifts all letters 3 places in the alphabet, e.g. ”Abcz!”
becomes ”Defc!”

• ROT13: this rotates all letters 13 places in the alphabet, e.g. ”Abcz!”
becomes ”Nopm!”. Note that applying ROT13 twice, you receive the
original string.

• Mirror: this mirrors the whole string, e.g. ”Abcz!” becomes ”!zcbA”.

This may look like a good implementation at first glance, but it is not easily
maintainable if many more encryption methods are added to the system. Imag-
ine that several developers are working on different encryption methods, all in
the same class. This will lead to several problems and bug fixing is even more
challenging.

Therefore, we ask you to refactor this program with the help of a discussed
design pattern to satisfy the following properties:

• The used encryption method is not passed on anymore via the encrypt

function, but is an attribute in the Encryptor class

• Developers can work independently on different encryption methods, e.g.
the different encryption methods should be in different files

1

• The main Encryptor class is left unchanged when new encryption methods
are added

Your refactored program should pass all test cases, as you are not changing
the behavior of the program. Please submit your refactored program with the
help of the project export.

The Visitor Pattern

1 Learning Goals

In the second part of the assignment, we ask you to design and implement a rep-
resentation for logical formulas in Java. After having completed this assignment,
you should be able to:

• Implement classes to represent logical formulas where

– A suitable interface or abstract class is defined that serves as a base
for all nodes in your syntax tree.

– Each logical connective is implemented as an extension of this base
class.

• Introduce new operations using the visitor pattern.

• Utilize UML class and sequence diagrams to design an object oriented
program.

2 Logical Formulas

This assignment is about representing and manipulating formulas of proposi-
tional logic.

A logical formula consists of the constants true and false, atomic propo-
sitions, logical operators ∧ (and), ∨ (or), ⇒ (implies) and ¬ (not). Atomic
propositions are like variables in programming languages. Atomic propositions
can be any string, but we usually use single capital letters like A, B, P, Q. The
abstract syntax of logical formulas is given by the following grammar.

⟨F ⟩ ::= true | false | Atomic | F1 ∧ F2 | F1 ∨ F2 | F1 ⇒ F2 | ¬F

Examples for logical formulas are A ⇒ B, ¬A∨B, A ⇒ (A∨B)∧(C ⇒ ¬D).
In these examples A,B,C,D atomic propositions.

Formulas are represented in Java by trees, where the nodes correspond to
the syntactic elements. Such trees are called abstract syntax trees. The leaves in
such a tree correspond to constants or atomic propositions and internal nodes
represent the operators. This means that some internal nodes have 2 children
and others 1 child. The representation of formulas using syntax trees is similar

2

to the numerical expressions in assignment 5. There is one interface for all the
different nodes, and concrete classes that implement this interface for each type
of node. There are two major differences compared to assignment 5.

1. In the numerical expression, operations were added to the base interface as
abstract methods, and implemented in each subclass. In this assignment,
the base interface is left unchanged. All operations are implemented as
visitors.

2. A single concrete class is used to represent all binary operators. It uses
the strategy pattern to realize their different behaviors

The visitor pattern has two ingredients. First the visitor interface, in this
assignment called FormulaVisitor, and second an abstract method accept in
the formula base class.

A simple base interface for logical formulas would look something like this:

public interface Formula {

void accept(FormulaVisitor visitor) ;

}

However, in this implementation, the Visitors will return something, but
the type of this returned object differs per Visitor. To solve this, we will make
the FormulaVisitor generic with a generic Result type and thus, the accept

function also becomes a generic function with a Result type. Moreover, all
the Formulas have a precedence in this assignment, so the interface also has
a getPrecendence function (more on this in the next section). The actual
interface in this assignment looks like this:

public interface Formula {

public int getPrecedence();

public <Result> Result accept(FormulaVisitor<Result> visitor) ;

}

The FormulaVisitor interface has one visitmethod for each concrete node.
The Result type is generic in the Formulavisitor, so all the visit functions will
have this Result type. Note: The visit methods are overloaded, that’s why
they can all have the same name. It is possible to give them different names,
like visitNot, visitBinOp, and so on.

public interface FormulaVisitor <Result> {

Result visit(Not form);

Result visit(BinaryOperator form);

// and so on

}

All of the concrete nodes in the syntax tree are classes that implement
Formula. Here is an example for a class of the not operator.

3

public interface Not implements Formula {

private Formula operand;

public Not(Formula oper) {

this.operand = oper;

}

public Formula getOperand() {

return operand;

}

public int getPrecedence() {

return 3;

}

public <Result> Result accept(FormulaVisitor<Result> v) {

return v.visit(this);

}

}

Most of this definition should be self explanatory. The actual precedence sys-
tem can be implemented the way you prefer. The accept method is boilerplate
code that always looks like this.

All binary operators should be represented by a single class BinaryOperator
which has an operator BinOp as an attribute. This is an example of the strategy
pattern. BinOp should be an enum that implements BinaryOperator<Boolean>
from the Java standard library. Every BinOp should have a string representa-
tion, a precedence, and an evaluation function.

3 Operations on Logical Formulas

You should implement two visitors for logical formulas: a pretty-printer and an
evaluator.

The pretty-printer (ShowVisitor) should print a given formula to standard
output, which is immediately returned as a String (thus, the generic Result

type is String for this Visitor). A requirement is that this Visitor omits paren-
theses when it is safe. For this, every operator should have a precedence. The
precedence of the operators are, from high to low: ¬, ∧, ∨, ⇒. This means that
¬ binds stronger than ∧, and so on. To determine if parentheses are needed,
you have to compare the precedence of an operator with that of its child to see
if the parentheses are needed. The details are left for you to figure out. Hint:
You can access both the precedence of the current operator and its children
to compare both numbers. In theory, the non-operator formulas do not have
a precedence, but for the assignment it is best to make sure it binds stronger
than ¬, such that parentheses are always omitted. For operators with the same
precedence, you should always print parenthesis to be safe.

4

The evaluator (EvaluateVisitor) evaluates the formula and returns the re-
sulting boolean (thus the Result type is Boolean). It needs an environment
for atomic propositions, just as the evaluator for numerical expression needs for
variables. Where variables were assigned integers, atomic propositions are as-
signed Booleans. This means that the evaluator needs a Map<String,Boolean>
to evaluate formulas. For example, in the environment [P 7→ false], the formula
¬P should evaluate to true. As the return type of the visit functions are void,
the result can be stored as an attribute in this EvaluateVisitor.

Here are some lines of code to give you inspiration. You should figure out
the rest for yourself.

public interface FormulaVisitor<Result> {

Result visit(Not form);

Result visit(Atom form);

// And so on...

/*

Alternatively, you could use the following names:

Result visitNot(Not form);

Result visitAtom(Atom form);

And so on...

*/

}

public interface Formula {

public int getPrecedence();

public <Result> Result accept(FormulaVisitor<Result> v);

}

public class ShowVisitor implements FormulaVisitor<String> {

public String visit(Atom form) {

// ...

}

// And so on...

}

public class EvaluateVisitor implements FormulaVisitor<Boolean> {

public Boolean visit(Atom form) {

// ...

}

// And so on...

}

5

4 Your Tasks

In this assignment you have to draw two UML diagrams in steps 1 and 7. You
have to hand in these diagrams. Either draw them on paper and submit a
photo as jpeg, or use a UML tool and export as pdf. No other format will
be accepted!

If you already have a UML drawing program you like, feel free to use it.
Just make sure it can export to pdf. If you do not know which tool to use,
we suggest Visual Paradigm. You can use it for free if you sign up with your
email address. https://online.visual-paradigm.com/subscribe.jsp

1. Before you begin with your implementation, draw one UML class diagram
of all the classes you need.

2. Implement the nodes for the syntax tree as described above. You need
an interface and for concrete classes for the different nodes in the syntax
tree. The classes should be called Atom, Constant, BinaryOperator,
and Not. Hint: there can only be exactly two instances of Constant.

3. For every concrete node, add a corresponding visitmethod to FormulaVisitor.

4. Create a class PrintVisitor that implements FormulaVisitor and trans-
forms a formula to a String.

5. Create a class EvaluateVisitor that implements FormulaVisitor and
evaluates formulas in a given environment.

6. Implement FormulaFactory such that formulas can be easily generated.

7. The project template comes with test cases. Make sure that all test cases
pass.

8. Draw a sequence diagram for printing the formula ¬P , given in the fol-
lowing code. Only include calls to accept and visit. Use the diagram in
fig. 1 as a starting point.

Atom f2 = new Atom("P");

Not f1 = new Not(f2);

PrintVisitor v = new PrintVisitor();

f1.accept(v);

5 Mandatory Questionnaire

Please fill in this questionnaire after you are finished with the assignment: link
to questionnaire

6

6 Submit Your Project

To submit your project, follow these steps. You have to submit three files: The
java project, the class diagram, and the sequence diagram.

1. Submit the diagrams either as jpeg or pdf. No other format is accepted.

2. Use the project export feature of NetBeans to create a zip file of your
entire project: File → Export Project → To ZIP.

3. Submit this zip file on Brightspace. Do not submit individual Java
files. Do not submit any other archive format. Only one person in your
group has to submit it. Submit your project before the deadline, which
can be found on Brightspace.

Figure 1: Template for the sequence diagram you have to draw.

7

Appendix E

Assignment Part 1

E.1 Provided code

public class EncryptionRefactor {

public static void main(String[] args) {

}

}

public class Encryptor {

/**

* A function that shifts a letter n places to the right

(wrapping around and keeping its case)

* @param c the given character

* @param n the character should be shifted n places

* @return the resulting character

*/

private char shiftNplaces(char c, int n) {

int result = (int) c;

n = n % 26;

int ascii = (int) c;

if ((65 <= ascii && ascii <= (90 - n)) || (97 <= ascii &&

ascii <= (122 - n))) {

result = ascii + n;

} else if (ascii > 90 - n && ascii <= 90) {

int diff = 90 - ascii;

result = 64 + n - diff;

} else if (ascii > 122 - n && ascii <= 122) {

int diff = 122 - ascii;

result = 96 + n - diff;

}

139

return (char) result;

}

/**

* Encrypts a string with the given encryption method

* @param s the given string

* @param em the given encryption method

* @return the encrypted string

*/

public String encrypt(String s, EncryptionMethod em) {

StringBuilder result = new StringBuilder();

switch (em) {

case CAESAR3:

for(int i = 0; i < s.length(); i++) {

result.append(shiftNplaces(s.charAt(i), 3));

}

break;

case ROT13:

for(int i = 0; i < s.length(); i++) {

result.append(shiftNplaces(s.charAt(i), 13));

}

break;

case MIRROR:

for(int i = s.length() - 1; i >= 0; i--) {

result.append(s.charAt(i));

}

break;

}

return result.toString();

}

}

public enum EncryptionMethod {

CAESAR3,

ROT13,

MIRROR

}

/**

* The Factory to easily execute function for the test cases

* You should edit these such that these function work with your

refactored code

*/

public class EncryptionFactory {

public static String encryptCaesar3 (String s) {

Encryptor e = new Encryptor();

return e.encrypt(s, EncryptionMethod.CAESAR3);

140

}

public static String encryptROT13 (String s) {

Encryptor e = new Encryptor();

return e.encrypt(s, EncryptionMethod.ROT13);

}

public static String encryptMirror(String s) {

Encryptor e = new Encryptor();

return e.encrypt(s, EncryptionMethod.MIRROR);

}

}

E.2 Solution I

public class EncryptionRefactor {

public static void main(String[] args) {

}

}

public class Encryptor {

private EncryptionMethod em;

public Encryptor(EncryptionMethod em) {

this.em = em;

}

/**

* Encrypts a string with the encryption method stored in em

* @param s the given string

* @return the encrypted string

*/

public String encrypt(String s) {

return em.encrypt(s);

}

}

public interface EncryptionMethod {

public String encrypt(String s);

}

141

public class Caesar3 implements EncryptionMethod {

/**

* A function that shifts a letter n places to the right

(wrapping around and keeping its case)

* @param c the given character

* @param n the character should be shifted n places

* @return the resulting character

*/

private char shiftNplaces(char c, int n) {

int result = (int) c;

n = n % 26;

int ascii = (int) c;

if ((65 <= ascii && ascii <= (90 - n)) || (97 <= ascii &&

ascii <= (122 - n))) {

result = ascii + n;

} else if (ascii > 90 - n && ascii <= 90) {

int diff = 90 - ascii;

result = 64 + n - diff;

} else if (ascii > 122 - n && ascii <= 122) {

int diff = 122 - ascii;

result = 96 + n - diff;

}

return (char) result;

}

@Override

public String encrypt(String s) {

StringBuilder result = new StringBuilder();

for(int i = 0; i < s.length(); i++) {

result.append(shiftNplaces(s.charAt(i), 3));

}

return result.toString();

}

}

public class ROT13 implements EncryptionMethod {

/**

* A function that shifts a letter n places to the right

(wrapping around and keeping its case)

* @param c the given character

* @param n the character should be shifted n places

* @return the resulting character

*/

private char shiftNplaces(char c, int n) {

int result = (int) c;

n = n % 26;

int ascii = (int) c;

142

if ((65 <= ascii && ascii <= (90 - n)) || (97 <= ascii &&

ascii <= (122 - n))) {

result = ascii + n;

} else if (ascii > 90 - n && ascii <= 90) {

int diff = 90 - ascii;

result = 64 + n - diff;

} else if (ascii > 122 - n && ascii <= 122) {

int diff = 122 - ascii;

result = 96 + n - diff;

}

return (char) result;

}

@Override

public String encrypt(String s) {

StringBuilder result = new StringBuilder();

for(int i = 0; i < s.length(); i++) {

result.append(shiftNplaces(s.charAt(i), 13));

}

return result.toString();

}

}

public class Mirror implements EncryptionMethod {

@Override

public String encrypt(String s) {

StringBuilder result = new StringBuilder();

for(int i = s.length() - 1; i >= 0; i--) {

result.append(s.charAt(i));

}

return result.toString();

}

}

/**

* The Factory to easily execute function for the test cases

* You should edit these such that these function work with your

refactored code

*/

public class EncryptionFactory {

public static String encryptCaesar3 (String s) {

Encryptor e = new Encryptor(new Caesar3());

return e.encrypt(s);

}

public static String encryptROT13 (String s) {

Encryptor e = new Encryptor(new ROT13());

return e.encrypt(s);

143

}

public static String encryptMirror(String s) {

Encryptor e = new Encryptor(new Mirror());

return e.encrypt(s);

}

}

E.3 Solution II

All the files are the same as Solution I, except that ROT13.java and Caesar3.java
are combined in a new, more general class Shifter.java. As a result,
EncryptionFactory.java is also changed a little bit.

public class Shifter implements EncryptionMethod {

private int shiftNumber;

public Shifter(int shiftNumber) {

this.shiftNumber = shiftNumber;

}

/**

* A function that shifts a letter n places to the right

(wrapping around and keeping its case)

* @param c the given character

* @param n the character should be shifted n places

* @return the resulting character

*/

private char shiftNplaces(char c, int n) {

int result = (int) c;

n = n % 26;

int ascii = (int) c;

if ((65 <= ascii && ascii <= (90 - n)) || (97 <= ascii &&

ascii <= (122 - n))) {

result = ascii + n;

} else if (ascii > 90 - n && ascii <= 90) {

int diff = 90 - ascii;

result = 64 + n - diff;

} else if (ascii > 122 - n && ascii <= 122) {

int diff = 122 - ascii;

result = 96 + n - diff;

}

return (char) result;

}

@Override

public String encrypt(String s) {

144

StringBuilder result = new StringBuilder();

for(int i = 0; i < s.length(); i++) {

result.append(shiftNplaces(s.charAt(i),

shiftNumber));

}

return result.toString();

}

}

/**

* The Factory to easily execute function for the test cases

* You should edit these such that these function work with your

refactored code

*/

public class EncryptionFactory {

public static String encryptCaesar3 (String s) {

Encryptor e = new Encryptor(new Shifter(3));

return e.encrypt(s);

}

public static String encryptROT13 (String s) {

Encryptor e = new Encryptor(new Shifter(13));

return e.encrypt(s);

}

public static String encryptMirror(String s) {

Encryptor e = new Encryptor(new Mirror());

return e.encrypt(s);

}

}

145

Appendix F

Assignment Part 2

F.1 Provided code

public interface Formula {

}

import java.util.Map;

public class FormulaFactory {

public static Formula atom(String atomId) {

return null;

}

public static Formula and(Formula leftOp, Formula rightOp) {

return null;

}

public static Formula or(Formula leftOp, Formula rightOp) {

return null;

}

public static Formula implies(Formula leftOp, Formula rightOp) {

return null;

}

public static Formula not(Formula notOp) {

return null;

}

public static final Formula TRUE = null;

public static final Formula FALSE = null;

146

public static String prettyPrint(Formula f) {

return "";

}

public static Boolean evaluate(Formula f, Map<String,Boolean>

env) {

return null;

}

}

F.2 Solution

public interface Formula {

public int getPrecedence();

public <Result> Result accept(FormulaVisitor<Result> visitor);

}

public class Constant implements Formula {

private boolean value;

public Constant(boolean value) {

this.value = value;

}

public boolean getValue() {

return value;

}

@Override

public <Result> Result accept(FormulaVisitor<Result> v) {

return v.visit(this);

}

@Override

public int getPrecedence() {

return 4;

}

}

public class Atom implements Formula {

private String name;

public Atom(String name) {

this.name = name;

}

147

public String getName() {

return name;

}

@Override

public <Result> Result accept(FormulaVisitor<Result> v) {

return v.visit(this);

}

@Override

public int getPrecedence() {

return 4;

}

}

public class Not implements Formula {

private Formula operand;

public Not(Formula oper) {

this.operand = oper;

}

public Formula getOperand() {

return operand;

}

@Override

public int getPrecedence() {

return 3;

}

@Override

public <Result> Result accept(FormulaVisitor<Result> v) {

return v.visit(this);

}

}

public class BinaryOperator implements Formula {

private Formula left;

private Formula right;

private BinOp operator;

public BinaryOperator(Formula left, Formula right, BinOp

operator) {

this.left = left;

this.right = right;

this.operator = operator;

148

}

public Formula getLeft() {

return left;

}

public Formula getRight() {

return right;

}

public BinOp getOperator() {

return operator;

}

@Override

public int getPrecedence() {

return operator.getPrecedence();

}

@Override

public <Result> Result accept(FormulaVisitor<Result> v) {

return v.visit(this);

}

}

public enum BinOp implements BinaryOperator<Boolean> {

AND {

@Override

public Boolean apply(Boolean l, Boolean r) { return l && r; }

@Override

public String getRepresentation() {return "/\\";}

@Override

public int getPrecedence() {return 2;}

},

OR {

@Override

public Boolean apply(Boolean l, Boolean r) { return l || r; }

@Override

public String getRepresentation() {return "\\/";}

@Override

public int getPrecedence() {return 1;}

},

IMPLIES {

@Override

public Boolean apply(Boolean l, Boolean r) { return !l || r;

}

@Override

public String getRepresentation() {return "=>";}

149

@Override

public int getPrecedence() {return 0;}

};

public abstract String getRepresentation();

public abstract int getPrecedence();

}

public interface FormulaVisitor <Result> {

Result visit(Atom form);

Result visit(Not form);

Result visit(Constant form);

Result visit(BinaryOperator form);

}

import java.util.Map;

public class EvaluateVisitor implements FormulaVisitor<Boolean> {

private Map<String,Boolean> env;

public EvaluateVisitor(Map<String,Boolean> env) {

this.env = env;

}

@Override

public Boolean visit(Atom form) {

return env.get(form.getName());

}

@Override

public Boolean visit(Not form) {

return !form.getOperand().accept(this);

}

@Override

public Boolean visit(Constant form) {

return form.getValue();

}

@Override

public Boolean visit(BinaryOperator form) {

boolean resLeft = form.getLeft().accept(this);

boolean resRight = form.getRight().accept(this);

return form.getOperator().apply(resLeft, resRight);

}

}

150

public class ShowVisitor implements FormulaVisitor<String> {

@Override

public String visit(Atom form) {

return form.getName();

}

@Override

public String visit(Not form) {

String result = "!";

if (form.getPrecedence() >=

form.getOperand().getPrecedence()) {

result += "(";

}

result += form.getOperand().accept(this);

if (form.getPrecedence() >=

form.getOperand().getPrecedence()) {

result += ")";

}

return result;

}

@Override

public String visit(Constant form) {

if (form.getValue()) {

return "True";

} else {

return "False";

}

}

@Override

public String visit(BinaryOperator form) {

String result = "";

if (form.getPrecedence() >= form.getLeft().getPrecedence()) {

result += "(";

}

result += form.getLeft().accept(this);

if (form.getPrecedence() >= form.getLeft().getPrecedence()) {

result += ")";

}

result += form.getOperator().getRepresentation();

if (form.getPrecedence() >= form.getRight().getPrecedence())

{

result += "(";

}

result += form.getRight().accept(this);

151

if (form.getPrecedence() >= form.getRight().getPrecedence())

{

result += ")";

}

return result;

}

}

import java.util.Map;

public class FormulaFactory {

public static Formula atom(String atomId) {

return new Atom(atomId);

}

public static Formula and(Formula leftOp, Formula rightOp) {

return new BinaryOperator(leftOp, rightOp, BinOp.AND);

}

public static Formula or(Formula leftOp, Formula rightOp) {

return new BinaryOperator(leftOp, rightOp, BinOp.OR);

}

public static Formula implies(Formula leftOp, Formula rightOp) {

return new BinaryOperator(leftOp, rightOp, BinOp.IMPLIES);

}

public static Formula not(Formula notOp) {

return new Not(notOp);

}

public static final Formula TRUE = new Constant(true);

public static final Formula FALSE = new Constant(false);

public static String prettyPrint(Formula f) {

ShowVisitor v = new ShowVisitor();

return f.accept(v);

}

public static Boolean evaluate(Formula f, Map<String,Boolean>

env) {

EvaluateVisitor v = new EvaluateVisitor(env);

return f.accept(v);

}

}

152

Appendix G

Exam question & answer

153

Appendix H

Questionnaire after lecture

158

11/9/22, 1:58 PM Questionnaire after lecture Design Patterns

https://docs.google.com/forms/d/1QWk3mWIFBoYwi8gxGlA0eFUb4V40nrl3u1lhEsOz0YY/edit#settings 1/3

1.

Markeer slechts één ovaal.

Anders:

Computing Science

AI

2.

Markeer slechts één ovaal.

Anders:

Being live present at the lecture

Watching the livestream live

Watching the recording back on Brightspace

Only looking at the slides of this week

3.

Questionnaire after lecture Design
Patterns
Thank you very much for �lling in this questionnaire after watching the lecture or reading
the slides! Your answers are anonymous and are used for my research. Please �ll this
questionnaire in honestly, so we can use your feedback for better and more effective
lectures! Thank you!

What are you studying?

How did you follow this lecture?

How did you experience the explanations of the design patterns? (use of UMLs,
introduction with example, fully implemented example, too abstract, too complex
etc)

11/9/22, 1:58 PM Questionnaire after lecture Design Patterns

https://docs.google.com/forms/d/1QWk3mWIFBoYwi8gxGlA0eFUb4V40nrl3u1lhEsOz0YY/edit#settings 2/3

4.

5.

Markeer slechts één ovaal.

Anders:

I could easily focus the whole lecture

I could easily focus most of the lecture

I could focus around 50% of the lecture

I could focus a small part of the lecture

I was very di�cult to keep the focus in the lecture

6.

7.

How did you experience the used UMLs in the slides? (clear, too abstract, too
complicated, not enough experience with UMLs etc)

Could you focus this lecture?

How did you experience the exercises in the lecture?

How did you experience the programs presented in Netbeans instead of code
snippets on the slides?

11/9/22, 1:58 PM Questionnaire after lecture Design Patterns

https://docs.google.com/forms/d/1QWk3mWIFBoYwi8gxGlA0eFUb4V40nrl3u1lhEsOz0YY/edit#settings 3/3

8.

9.

Deze content is niet gemaakt of goedgekeurd door Google.

How did you experience this lecture compared to the other (Object Oriented
Programming) lectures? And why?

Other comments/remarks/?

 Formulieren

Appendix I

Questionnaire after
assignment

162

11/9/22, 1:59 PM Questionnaire after assignment

https://docs.google.com/forms/d/1G904geDmJEA18E4BqexSUfJQlmMMPv1SjM5LynJhvcI/edit 1/3

1.

Markeer slechts één ovaal.

Anders:

Computing Science

AI

2.

Markeer slechts één ovaal.

Anders:

Too di�cult

Challenging

Good

A bit easy

Too easy

3.

Questionnaire after assignment
Thank you very much for �lling in this questionnaire after making the assignment about
design patterns! Your answers are anonymous and are used for my research. Please �ll
this questionnaire in honestly, so we can use your feedback for better and more effective
lectures! Thank you!

What are you studying?

How did you experience the difficulty of the assignment?

Which problems did you encounter in the first part of the assignment (the refactor
exercise). How did you solve these problems?

11/9/22, 1:59 PM Questionnaire after assignment

https://docs.google.com/forms/d/1G904geDmJEA18E4BqexSUfJQlmMMPv1SjM5LynJhvcI/edit 2/3

4.

5.

6.

7.

Which problems did you encounter in the second part of the assignment while
constructing the UML? How did you solve these problems?

Which problems did you encounter in the second part of the assignment while
implementing the formulas (the visitables)? How did you solve these problems?

Which problems did you encounter in the second part of the assignment while
implementing the visitors (pretty printer & evaluator)? How did you solve these
problems?

Did you encounter any other problems?

11/9/22, 1:59 PM Questionnaire after assignment

https://docs.google.com/forms/d/1G904geDmJEA18E4BqexSUfJQlmMMPv1SjM5LynJhvcI/edit 3/3

8.

9.

Deze content is niet gemaakt of goedgekeurd door Google.

Were the slides useful for this assignment? Was there a clear connection
between the taught material and the assignment?

Other comments/remarks/?

 Formulieren

Appendix J

Codes for the interviews in
the practical sessions

• Part 1 of the assignment

– Not finished

– No problems

– Only minor problems

– Difficult to recognise the design pattern

– Difficult to implement the design pattern

– Solved by asking TAs

– Solved by looking at the slides

– Solved by looking at the internet

– ...

• Part 2 of the assignment

– Not finished

– No problems

– Only minor problems

– Problems with constructing the UML

– Problems with the Visitors

– Problems with the Visitables

– Solved by asking TAs

– Solved by looking at the slides

– Solved by looking at the internet

– ...

166

• Lecture

– Clearer

– Exercises were helpful

– Live codings sessions were helpful

– ...

• Tutorial session

– Tutorial slides were useful

– ...

• General Remarks

– ...

When students encountered problems in the assignment which were so
small or minor, we label it as a general label ”Only minor problems”. If there
are more specific mistakes that students made in the exercise, we created a
new, more specific code for it, as long as there were multiple students that
made that specific mistake.

167

Appendix K

Rubric Exam Results

168

1.
a)

D
efi

n
e
C
la
ss

T
er
m

an
d

1.
b
)
D
efi

n
e

C
la
ss

S
u
m

(V
is
it
a
b
le
s)

1.
c)

Im
p
le
m
en
t

C
la
ss

S
h
ow

V
is
it
or

an
d

1.
d
)
Im

p
le
m
en
t
C
la
ss

E
va
lV

is
it
o
r
(V

is
i-

to
r)

1
.e
)
Im

p
le
m
en
t
C
la
ss

P
ol
y
M
a
in

(U
si
n
g

th
e
V
is
it
o
r
P
a
tt
er
n
)

C
or
re
ct
;
T
h
e
a
p
p
li
ca
ti
on

of
th
e
V
is
it
or

p
a
tt
er
n
w
a
s
co
rr
ec
t,
th
u
s
u
si
n
g
a
n
ac
ce
p
t

fu
n
ct
io
n

w
it
h

a
co
rr
ec
t
ca
ll

to
th
e
v
is
it

fu
n
ct
io
n

C
or
re
ct
;
T
h
e
ap

p
li
ca
ti
on

of
th
e
V
is
it
or

p
at
te
rn

w
as

co
rr
ec
t
in

th
e
V
is
it
o
rs

C
o
rr
ec
t;

T
h
e

fu
n
ct
io
n

ca
ll
s
to

u
se

th
e

V
is
it
o
rs

ar
e
co
rr
ec
t,
e.
g
.
p
o
ly
.a
cc
ep

t(
n
ew

P
ri
n
tV

is
it
or
()
)

V
is
it
o
r
ca
ll
in
co
rr
ec
t;

T
h
er
e
w
as

a
m
in
or

m
is
ta
ke

in
th
e
a
cc
ep

t
fu
n
ct
io
n
.
T
h
is

ca
t-

eg
o
ry

is
d
is
ti
n
g
u
is
h
ed

fu
rt
h
er

d
ep

en
d
in
g

on
th
e
re
su
lt
s

V
is
it

fu
n
ct
io
n
’s

b
o
d
y
is

in
co
rr
ec
t;

T
h
er
e

w
as

a
m
in
or

m
is
ta
k
e
in

th
e
v
is
it
fu
n
ct
io
n
s.

T
h
is
ca
te
go

ry
is
d
is
ti
n
gu

is
h
ed

fu
rt
h
er

d
e-

p
en

d
in
g
on

th
e
re
su
lt
s

F
u
n
ct
io
n
ca
ll
s
a
re

in
co
rr
ec
t;

T
h
er
e
w
a
s
a

m
in
or

m
is
ta
k
e
in

th
e
fu
n
ct
io
n
ca
ll
s.

T
h
is

ca
te
go

ry
is

d
is
ti
n
g
u
is
ed

fu
rt
h
er

d
ep

en
d
-

in
g
on

th
e
re
su
lt
s

A
cc
ep

t
fu
n
ct
io
n
co
m
p
le
te
ly

in
co
rr
ec
t;
A
n

ac
ce
p
t
fu
n
ct
io
n
w
a
s
d
efi

n
ed

,
b
u
t
th
e
b
o
d
y

w
as

em
p
ty

o
r
n
o
el
em

en
ts

o
f
th
e
V
is
it
or

p
a
tt
er
n
co
u
ld

b
e
re
co
g
n
is
ed

V
is
it

fu
n
ct
io
n
s
ar
e
co
m
p
le
te
ly

in
co
rr
ec
t;

A
v
is
it
fu
n
ct
io
n
w
as

d
efi

n
ed

,
b
u
t
th
e
b
o
d
y

w
as

em
p
ty

or
n
o
el
em

en
ts

of
th
e
V
is
it
o
r

p
at
te
rn

co
u
ld

b
e
re
co
gn

is
ed

F
u
n
ct
io
n

ca
ll
s
ar
e
co
m
p
le
te
ly

in
co
rr
ec
t;

T
h
er
e
w
er
e
fu
n
ct
io
n
ca
ll
s
in

th
e
co
d
e,

b
u
t

th
ey

w
er
e
to
o
d
iff
er
en
t
th
a
n
th
e
so
lu
ti
o
n

to
b
e
u
se
d

A
cc
ep

t
fu
n
ct
io
n

m
is
si
n
g
;
T
h
e
cl
as
s
w
as

sp
ec
ifi
ed

,
b
u
t
n
o
a
cc
ep

t
fu
n
ct
io
n
w
as

in
-

cl
u
d
ed

V
is
it
fu
n
ct
io
n
s
ar
e
m
is
si
n
g;

T
h
e
C
la
ss

w
a
s

sp
ec
ifi
ed

,
b
u
t
n
o
v
is
it

fu
n
ct
io
n
s
w
er
e
in
-

cl
u
d
ed

C
om

p
le
te
ly

in
co
rr
ec
t;

T
h
e

en
tr
y

w
as

b
la
n
c
or

th
e
co
d
e
w
a
s
n
o
t
u
se
fu
l

C
om

p
le
te
ly

in
co
rr
ec
t;

T
h
e

en
tr
y

w
as

b
la
n
c
or

th
e
co
d
e
w
as

n
ot

u
se
fu
l

C
o
m
p
le
te
ly

in
co
rr
ec
t;

T
h
e

en
tr
y

w
a
s

b
la
n
c
o
r
th
e
co
d
e
w
a
s
n
o
t
u
se
fu
l

169

Appendix L

Online Quiz results

170

I I I I UML AE AE AD UML AD AE AD AE AD AE

Introduction Strategy Decorator Visitor

After break

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 %

Student 1 C D B A A A B B A A A C C C C 0,53

Student 2 A C B C D A B B B B A A A C A 0,67

Student 3 - - - - - C B B A A A C A C A 0,8

Student 4 A C B C A A B A C A A C A A A 0,73

Student 5 A C B C B A - B A C - B A A - 0,67

Student 6 - - - - - - - - A A A C - - - 0,75

Student 7 A C B C D C B A B - - - - - - 0,67

Student 8 A C B C A C B B A C A C A C C 0,87

Student 9 - - - - D - - - - - - - - - - 0

Student 10 - - - - - A B B A A A A A C A 0,7

Student 11 A C B A - A B - - A A C - - - 0,78

Student 12 - - - C D A B C - - - - - - - 0,8

Student 13 A C B C A A B C A C - - - - - 1

Student 14 A C B C A C B A A A A C A C A 0,87

Student 15 A C B - - - B A - - - - - - - 0,8

Student 16 A C A D A - C A A A A C A C A 0,64

Student 17 A C B A A A B B A C A C A A - 0,79

Student 18 A C B C A A B B A B A C B A A 0,73

Student 19 - - - - A A B B - C A C - - - 0,86

Student 20 A C B C A A B B A A A C A C C 0,8

Student 21 A C B B A A B A A C A C A A A 0,8

Student 22 A C B A D A B B - - - - - - - 0,63

Student 23 A C C C D C B A A C A C A C A 0,8

Student 24 - - - C - - - - - - - - - - - 1

Student 25 - - - C - - B B - - - - - - - 0,67

Student 26 - - B C - - - - - - - - - - - 1

Student 27 A C B C C A B A B A - A - - - 0,55

Student 28 A C B C A A B B A C A C A A A 0,87

Student 29 A D B C - - - - - - - - - - - 0,75

Student 30 B - C C - - - - - - - - - - - 0,33

Student 31 - - - - - - - - A C A C - - - 1

Student 32 - - - - - - - - - - - - A A B 0,33

Student 33 B C B C - - - - - - - - - - - 0,75

Student 34 A C B C D A B C - A A - A - A 0,83

Student 35 A C C A A C B B A A A C A A A 0,67

Student 36 A C D C A C C B - C A - - - - 0,7

Student 37 A D B C D A B C B C A - - - - 0,73

Student 38 - C B C C A B B B B A C A C B 0,64

Student 39 A D B C A A C B A A A C A C A 0,73

Student 40 A C B C - - - - - - - - - - - 1

Student 41 A D B A C A B B C C A C A C A 0,67

Student 42 - - - - - - B A A B A C B - A 0,63

Student 43 - - - - - - - - A C A C A - - 1

Student 44 A C B C A C - - - - - - - - - 1

Student 45 A C B C - - - - - - - - - - - 1

Student 46 A C B D A A C B A C A C A A A 0,73

Student 47 C C D A A C B C - - - - - - - 0,63

Student 48 - - - - B A B B D A A A A C A 0,55

Student 49 - - - - - - - - - - - - - - - 0

Student 50 - - - - A A B C - - - - - C A 1

Student 51 A C A A A C B B A C A C - - - 0,75

Student 52 D C D C D A C A A C A C A A A 0,6

Student 53 - - - - A A B B A C A C A C A 0,91

Student 54 A C B C B C B A B A A C B C - 0,64

Student 55 - - - - - A B C A A A C A A A 0,8

Percentage correct 0,9 0,9 0,8 0,7 0,6 1 0,9 0,2 0,7 0,5 1 0,8 0,9 0,6 0,8

Total answers 36 36 38 40 36 38 40 40 34 37 34 33 29 27 26

Correct answers 31 31 30 29 21 38 35 7 25 20 34 28 25 16 21

	Introduction
	Design patterns
	Problems related to teaching Object-oriented programming
	Traditional lecture versus alternative teaching methods
	Overview of this research
	Structure of this thesis

	Theoretical Framework
	Teaching Programming
	Problems
	Solutions

	Teaching Object-oriented Programming
	Problems
	Solutions

	Teaching Design Patterns
	Evaluating a learning activity

	Goal
	Setting
	Lecture
	Original lecture
	Changes & Approach
	New lecture

	Tutorial
	Assignment
	Exam

	Methodology
	Online Quiz
	Questionnaire after lecture
	Interviews at the practical sessions
	Screen recordings of the student groups
	Questionnaire after the assignment
	Exam results
	Triangulation

	Results
	Online Quiz
	Questionnaire after lecture
	Interviews at the practical session
	Screen recordings of student groups
	Questionnaire after the assignment
	Exam results
	Triangulation

	Conclusions
	Research Subquestions
	Research question

	Discussion
	Reflection on the conclusions
	Additional results
	Reflection on the methods
	Looking back on the literature
	Future work

	References
	Slides lecture
	Online quiz
	Live coding sessions
	Strategy Pattern
	Decorator Pattern
	Visitor Pattern

	Assignment PDF
	Assignment Part 1
	Provided code
	Solution I
	Solution II

	Assignment Part 2
	Provided code
	Solution

	Exam question & answer
	Questionnaire after lecture
	Questionnaire after assignment
	Codes for the interviews in the practical sessions
	Rubric Exam Results
	Online Quiz results

