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Abstract

The detection and segmentation of irregularities in images is an anomaly
detection problem in computer vision. An approach that is used com-
monly uses autoencoders trained on good images to fully reconstruct anoma-
lous images. These reconstructions can then be used to perform detection
and segmentation by mathematically comparing the original input and the
reconstruction. Other solutions introduce patch inpainting as a solution
for anomaly detection. One approach uses an attention-based transformer
model that achieves promising results. Transformers are generally slower
models and thus faster versions have been proposed. We therefore combine
the inpainting solution with two types of transformers and see that a linear
attention approach performs slightly better than full attention when doing
detection and segmentation on the MVTec AD dataset.
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Chapter 1

Introduction

The detection of deviations in data is an important topic in multiple fields.
Examples of these include medical imaging [19], surveillance [30] and man-
ufacturing [31]. These types of anomaly detection aim to find irregularities
in different types of images. Using this type of processing we can improve
outputs and diagnoses of systems either by automating the process or giving
support in manual tasks.

Notably self-supervised anomaly detection is an approach that has been
explored recently [1, 22]. This type of machine learning means that we use
unlabeled data to train our models. We can use examples of normal sit-
uations to be able to reconstruct full images where the anomaly has been
removed. This allows us to compare a source image to a reconstruction
and find any anomalies. This method using image inpainting has been
implemented using various methods like generative adversarial networks
(GANs) [40] and visual transformers [27].

Transformers [33] are a type of model that is based on self-attention.
This attention processes a lot of context, which makes the training of these
types of models slow. Therefore alternatives have been explored, like linear
transformers [21], fastformers [36] and linformers [34].

Since the linear transformers seem to have some performance improve-
ment over the vanilla transformers we see an opportunity to use this newer
type of transformer in the context of image inpainting for anomaly detection.
We propose to use a similar method to the one used by Pirnay et al. [27]
where we replace the used visual transformer by a visual linear transformer
similar to the one introduced by Katharopoulos et al. [21]. Thus we ask:

What is the effect on the performance and efficiency of using linear trans-
formers in an inpainting context for anomaly detection when compared to
regular transformers?

To be able to compare the different models we ask subquestions about
efficiency and performance:

• What is the difference between softmax and linear attention in detec-
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tion of anomalies across images with different textures and objects?

• What is the difference between softmax and linear attention in segmen-
tation of anomalies across images with difference textures and objects?

• How does the number of epochs required to get the best result compare
between the softmax and linear attention models across images with
different textures and objects?

• How does the training time compare between the softmax and linear
attention models across images with different textures and objects?

• How do our results compare to previous work?

We will answer these questions by doing an in-depth analysis of using
linear transformers compared to regular transformers.

This thesis is structured as follows: first we will discuss machine learning
in general (2.1). We will look at transformers and the different types that
we need to answer our research questions (2.2). Next we will introduce the
concepts of image inpainting and anomaly detection (2.3, 2.4) followed by
measures for image similarity (2.5). Consecutively we will discuss related
work in the fields of image inpainting and anomaly detection (3.1, 3.2) before
explaining how we setup our experiment (4). Then we will show the results
from the experimental setup looking at detection, segmentation (5.1) and
efficiency (5.2). A discussion of the experimental setup and the results
follows (6) and lastly we will draw our conclusions (7).
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Chapter 2

Preliminaries

2.1 Types of machine learning

There are different approaches to machine learning. In this section we will
introduce a few of these approaches to give context for our research.

2.1.1 Supervised learning

Supervised learning [24] is a type of machine learning approach that always
uses a labeled dataset to train a model. This means that for each point in the
dataset we already know what class or rank it belongs to. It is the common
type of learning used with problems that require classification, regression
or ranking. The known samples are used to train a model and to make
predictions for data points that the model has not seen yet.

An example would be making predictions about images of animals. Each
image would be labeled with the type of animal that is in the picture. Use
that data we would be learning our models to be able to predict the type of
animal in pictures that the model has never seen before.

2.1.2 Unsupervised learning

This subset of machine learning focuses on training models with unlabeled
data. Examples of problems that use this type of learning are clustering and
dimensionality reduction. For unsupervised methods it is hard to measure
the performance quantitatively because there are no labels to compare the
results to.

An example of this type would be clustering people by known information
like age, education or income. The goal here is to split the dataset based on
information that is similar between the points. So only the points from the
dataset are used to create a result, there is no previous knowledge about the
data that can be used.
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2.1.3 Self-supervised learning

The type of machine learning that we use in this thesis is a form of self-
supervised learning [15]. This means that we generate our own labels from
a dataset without any manual work required. This is possible by removing
or modifying part of the input data and then learn a model to recover the
original data. We can measure the performance based on the difference
between the original data and the result. This type of learning can be seen
as a combination of unsupervised and supervised learning.

An example is a model that tries to predict words in a certain context.
We have a sentence: ’The most popular food from France is the croissant’.
We can then leave out the word ’croissant’ and train a model to predict the
word based on the words surrounding it.

2.2 Transformers

The type of model used in our research is a transformer. In this section we
will introduce the attention mechanism, explain how this is used in trans-
formers and how this is affecting the kind of transformer we are using.

2.2.1 Vanilla transformers

In 2017 Vaswani et al. [33] introduced the transformer model. A type of
sequence to sequence model that uses an attention mechanism as the main
building block. This allowed them to increase parallelisation and reach a
new state of the art in the context of language translations.

Architecture

The transformer model uses the same encoder-decoder structure used in the
models it was compared to in the original paper [3,11]. This means that the
model consists of two parts: an encoder and a decoder.

The encoder takes an input representation (x1, ...xn) and transforms this
to an intermediary representation (z1, ...zn). This intermediary representa-
tion is then used as input for the decoder to create an output (y1, ..., yn).

Attention The attention mechanism, which takes query, keys and values
vector as input, outputs a vector containing a weighted sum of the values.
Each of the output values uses a weight that is calculated using a compati-
bility function of the query and the key in each position.

The attention mechanism [33] is called ’Scaled Dot-Product Attention’
or softmax attention and calculates attention using matrices that consist of
multiple vectors packed together. These matrices are Q (queries), K (keys)
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Figure 2.1: The original transformer architecture from [33]

and V (values) of dimension S × dk, dk × S and S × dv where S is the
sequence length of vectors:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.1)

To be able to apply the attention to more than one representation space
we use multi-headed attention. This uses h parallel layers that all attend to
a smaller part of the full dimension. In the case of the original papers h = 8
and the dimension of each attention head becomes dk = dv = D/h = 64
when D = 512. This makes the multi-headed attention similar to single-
head attention with the full dimension when we look at the computational
cost.

To combine the results of the attention heads we learn linear projec-
tions (WQ

i , WK
i , W V

i ) that we project all queries, keys and values to. All
the separate outputs of the different attention heads are concatenated and
projected into the correct dimension , which gives us the final output.

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O (2.2)

where headi = Attention(QWQ
i ,KWK

i , V W V
i ) (2.3)
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Encoder The encoder part in the architecture is a stack of N layers. All
the layers are the same and consist of two sublayers: the multi-head self-
attention and a fully-connected feed-forward network (FFN). After both
sublayers we apply layer normalisation [2] and add residual connections [20]
around the sublayers. This means that the output of a layer in the encoder
is calculated as follows:

selfAtt = LayerNorm(input+MultiHead(inputq, inputk, inputv)) (2.4)

enc = LayerNorm(selfAtt+ FFN(selfAtt)) (2.5)

where inputq = inputk = inputv are the input of the encoder layer.
These arguments are the same, since we are applying self-attention here.

Decoder Similar to the encoder the decoder is a stack of N layers. Com-
pared to the encoder it adds a third sublayer that applies multi-head cross
attention to the output from the encoder layers and the first sublayer of the
decoder. In the first self-attention sublayer we mask out earlier positions in
the output sequence to stop predictions for a certain position i to depend on
the outputs at the positions before position i. The residual connections and
layer normalisation on each sublayer is identical to the architecture of the
encoder. This results in the following calculations for each decoder layer:

selfAtt = LayerNorm(input+MaskedSelfAtt(inputq, inputk, inputv))
(2.6)

crossAtt = LayerNorm(selfAtt+ CrossAtt(selfAttq, enck, encv)) (2.7)

dec = LayerNorm(crossAtt+ FFN(crossAtt)) (2.8)

where MaskedSelfAtt is the function that applies the masking before
MultiHead, inputq = inputk = inputv are the input of the decoder layer
and enck and encv the keys and values of the encoder layers. selfAttq are
the queries from the first attention function.

The final layers consist of a linear fully connected neural network and a
softmax layer. This allows us to have a higher number of possible outputs
than the size of the input and output embeddings since it projects the output
of the decoder part into a probability vector.

2.2.2 Vision transformers

As mentioned in the previous section transformers were originally meant for
text problems. The success of the transformer in that context is what made
Dosovitskiy et al. [17] start exploring the usage of the attention-based model
for computer vision tasks as well.

Their approach tries to use the original transformer implementation as
much as possible. This means that they had to introduce an intermediate
step to be able to use the images as input for the model.
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The original model is designed to receive a 1 dimensional input of token
embeddings. The input images for the vision transformers are 2 dimensional
and each image has the shape x ∈ RH×W×C where H and W are the height
and width of the image respectively and C is the number of channels. To be
able to use the images as input they split the image in square patches with
the resolution (P, P ). This results in N = HW/P 2 patches xp ∈ RN×(P 2 · C).

To obtain the patch embeddings they first flatten the patches and then
train a linear projection mapping them to a single dimension. To this se-
quence of patch embeddings they prepend a learnable embedding. Then to
allow for the preservation the positions of the patches, they add positional
embeddings to the patch embeddings.

2.2.3 Linear transformers

Since transformers use attention to process so many parts of the images
the model has a high memory and time complexity. One of the proposed
solutions to reduce the complexity of the models is made by Katharopoulos
et al. [21]. They introduce the linear transformer that according to their
results can reach similar performance when compared to vanilla transformers
with the benefit of being faster.

To see the advantage of their attention function we first need to under-
stand what the bottleneck is in regular transformers. For this we look at
equation 2.1 again:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.1 revisited)

Here we apply the softmax function row-wise to QKT
√
dk

. This means that

the complexity of the multiplication of the three matrices Q, KT and V
becomes O(S2dk).

The approach by Katharopoulus et al. starts by rewriting the attention
calculation in equation 2.1 into a generalised equation for any similarity
function sim(Q,K).

Attention(Q,K, V ) = V ′ (2.9)

Given that Vi returns the i-th row of V ′ as a vector:

V ′
i =

∑N
j−1 sim(Qi,Kj)Vj∑N
j−1 sim(Qi,Kj)

(2.10)

This equation is equivalent to equation 2.1 when we say sim(q, k) =

exp( q
T k√
D
).
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We need to set a constraint on sim(q, k) for this equation to be able to
define an attention function. And that is that it has to be non-negative.

Now given some kernel with a feature representation ϕ(x) we can rewrite
equation 2.10 as follows:

V ′
i =

∑N
j=1 ϕ(Qi)

Tϕ(Kj)Vj∑N
j=1 ϕ(Qi)Tϕ(Kj)

(2.11)

This is possible by using the kernel trick1. We can avoid learning a non-
linear function using this trick. It allows us to rewrite our similarity function
as follows:

sim(q, k) = ϕ(q)Tϕ(k) (2.12)

We can then simplify equation 2.11 using the associative property of
matrix multiplication to:

V ′
i =

ϕ(Qi)
T
∑N

j=1 ϕ(Kj)V
T
j

ϕ(Qi)T
∑N

j=1 ϕ(Kj)
(2.13)

In [21] they note that the feature function ϕ(x) that corresponds to the
exponential kernel exp is infinite dimensional. This makes it infeasible to
linearise softmax attention itself. Therefore they choose the following feature
map:

ϕ(x) = elu(x) + 1 (2.14)

with elu(x) being the exponential linear unit activation function [12]:

elu(x) =

x if x > 0

α(ex − 1) if x < 0
(2.15)

where α = 1.0. This results in a complexity of O(Sdk) which is no longer
quadratic when compared to softmax attention.

1https://en.wikipedia.org/wiki/KernelmethodMathematics :t hekerneltrick
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2.3 Image inpainting

To be able to detect anomalies without labelling a large dataset we are using
a semi-supervised method using image inpainting.

Inpainting is the process of filling in missing, damaged or censored parts
in paintings or images. It can also be used for object removal or image
manipulation. Applying the technique on digital images can be done using
different approaches.

Figure 2.2: An example of image restoration using inpainting from Bertalmio
et al. [7]

In figure 2.2 we see a photo that is restored by using a context based
inpainting method.

Our transformer-based approach, which is modeled after the Inpaint-
ing Transformer (InTra) from Pirnay et al. [27] learns to paint regions that
are removed from the original images. This allows the models to fully re-
construct an image based on the surrounding patches. This approach is
discussed more extensively in section 4.2.

2.4 Anomaly detection

Anomaly detection is the detection of outliers, points that have extreme val-
ues compared to the rest, in a dataset. This kind of detection can be useful
in different environments. Examples are intrusion detection in security and
fault detection in industrial systems.
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Figure 2.3: An example of outliers in a scatter plot

In our case we are looking at anomalies in manufacturing. We want to
find defects in images of objects and textures.

2.5 Image similarity

To allow us to compare inpainted images to original samples from a dataset
we want to use objective measures that try to approach a human visual sys-
tem. For our research we use two measures specifically: Gradient Magnitude
Similarity [39,45] and Structured Similarity Index [35].

2.5.1 Structured Similarity Index

This metric uses three features from an image to be able to make a compar-
ison: luminance, contrast and structure. These features are taken from two
images r and d.

The luminance is an estimation of the mean intensity:

µx =
1

N

N∑
i=1

xi (2.16)

Using µr and µd we can now make a comparison function l(r, d).

l(r, d) =
2µxµy + C1

µ2
x + µ2

y + C1
(2.17)

12



C1 is a constant that avoids instability when µ2
x + µ2

y is almost zero.
In [35] they choose C1 = (K1L)

2 with L being the range of the pixel values
and K1 as a small constant.

Next we make an estimation of the contrast for both images:

σr =

(
1

N − 1

N∑
i=1

(xi − µr)
2

)
(2.18)

Using σr and σd we can now make a comparison function c(r, d).

c(r, d) =
2σrσd + C2

σ2
r + σ2

d + C2
(2.19)

In [35] they choose C2 = (K2L)
2 with K2 as a small constant.

The structure is measured as the covariance divided by the sum of the
standard deviation of the images:

σrd =
1

N − 1

N∑
i=1

(ri − µr)(di − µd) (2.20)

s(r, d) =
σrd + C3

σr + σd + C3
(2.21)

When we combine these similarity measures of the images the eventual
SSIM function looks like this:

SSIM(x, y) =
(2µrµd + C1)(2σrd+ C2)

(µ2
r + µ2

d + C1)(σ2
r + σ2

d + C2)
(2.22)

2.5.2 Gradient Magnitude Similarity

The gradient magnitude similarity (GMS) score uses gradient magnitude
maps of a ground truth image and a reconstruction. These local quality
maps (LQM) are used to calculate a final score by pooling the map using
the standard deviation.

The local quality map is computed using the pixel-wise similarity of
gradient magnitude maps. These gradient magnitude maps of the original
image r and reconstructed image d are obtained by convolving both images
with Prewitt filters in the horizontal (x) and vertical (y) direction. These
filters are defined as follows:
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hx =

 1/3 0 −1/3

1/3 0 −1/3

1/3 0 −1/3

 hy =

 1/3 1/3 1/3

0 0 0

−1/3 −1/3 −1/3

 (2.23)

The magnitudes at location i for r and d is denoted as mr(i) and md(i):

mr(i) =
√

(r ∗ hx)2(i) + (r ∗ hy)2(i) (2.24)

md(i) =
√

(d ∗ hx)2(i) + (d ∗ hy)2(i) (2.25)

With these gradient magnitude maps we can now compute the GMS:

GMS(i) =
2mr(i)md(i) + C

m2
r(i)m

2
d(i) + C

(2.26)

where C is a positive constant for stability, like the values used for the
SSIM.

14



Chapter 3

Related Work

This chapter introduces previous research into the two main problems we
are dealing with: image inpainting and anomaly detection.

3.1 Image inpainting

Inpainting in images is a subject that was already explored by Bertalmio
et a. [7] in 2000. They modeled their algorithm after manual inpainting
concepts used by conservators. However, their algorithm still needs user
input in the form of a mask of the image sections that have to be inpainted.
They also encountered problems filling in larger textured regions.

This is why they followed up their initial paper in 2003 [8] that combined
texture synthesis with their previously introduced structure inpainting al-
gorithm by decomposing the input image. This method thus depends on
three different types of methods: inpainting, texture synthesis and image
decomposition.

In 2004 Criminisi et al. [13] proposed a single algorithm that could fill
both structures and textures. They use an algorithm that prioritises patches
to fill along a user selected area, these patches are then filled by using
the pixels from a similar looking source location. However, this does not
handle curved structures very well. They also remark that quantifying the
performance of their algorithm is a non-trivial task.

Their work is further extended upon by Bugeau and Bertalmio, by in-
troducing a new algorithm for diffusion and texture synthesis [9]. In later
work Bugeau et al. [10] identify three main similarity components: texture
synthesis, diffusion and coherence. They try to minimise these components
in a new algorithm for inpainting inspired by the PatchMatch algorithm [4].
They note that it may be possible that there are no similar patches in the
image when the area that needs to be painted is large. Which means that
their approach gives poor results for these kinds of situations.

All previously mentioned work still require the section to be inpainted
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to be marked prior to applying an algorithm. This non-blind inpainting
is addressed by Xie et al. [37] who introduce a deep neural network based
approach that continues previous work on denoising [23] and blind inpainting
[16]. For this they use stacked denoising autoencoders. However, their
method relies on supervised learning and is mostly focused on removing
small noise from input images.

An approach that focuses on semantic inpainting of larger regions was
introduced by Yeh et al. [40]. Their approach uses a generative adversarial
network based model that is trained to give realistic image results. The
predictions here are also limited by the network and the training procedure.
This means that it shows promising results but may not be applicable to
more complex structures. This is also true for an approach using a patch-
based GAN [14] which focuses on higher resolution images, which is not the
case for the context based approach from [26].

Another GAN-based approach [41] introduces a contextual attention
layer into a model that uses both local and global loss for the GAN. The con-
textual attention layer learns where to borrow or copy information to create
reconstructions. This especially improves the inpainting of larger regions.

Building upon this contextual attention approach both Yu [43] and Pir-
nay [27] use transformers for inpainting. Both use positional embeddings.
The first approach focuses on realistic reconstructions of landscapes and
faces using texture generation. The approach by Pirnay is mainly focused
on usage for anomaly detection and only focuses on reconstructing one single
type of image, which would most likely make it unsuitable for the images
used by Yu.

3.2 Anomaly detection

The subject of anomaly detection is very large, since anomalies can be found
in all kinds of data. In our case we are focusing on anomaly detection in
image data. Most notably related work using the MVTec AD dataset [5].

The MVTec AD dataset contains images that were specifically selected
for unsupervised anomaly detection. Having a standardised dataset allows
for easier evaluation of novel approaches and makes it possible to compare
models by quantifying the performance. This is illustrated by applying
existing methods on the new dataset.

One of these methods by Bergmann [6] uses convolutional autoencoders
to segment anomalous sections in images after training a model only on good
samples. They use both a per-pixel L2 loss and the structural similarity
index (SSIM) to create two models. They show that using SSIM as metric
improves their results. For MVTec AD this seems the best performing model
but both types of autoencoders fail to reconstruct small details.

A different approach that has more problems getting good results uses
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GANs. In this case a model by Schlegl et al. [29]. Here the results on
MVTec AD have trouble with the images including a lot of variations. The
categories that perform better are the bottle and pill images that do not
contain any rotations or different shapes.

The last approach that is applicable to all the types of images uses a
convolutional neural network for feature discovery. This method by Napole-
tano et al. [25] was designed for binary classification of images to determine
if there is an anomaly or not. To be able to create a course anomaly map
the model was applied to smaller patches in the image. This achieves satis-
factory results but since the model is applied to the different colour layers
separately the anomalies in colour are not detected.

More recently Zavrtanik et al. [44] used the MVTec AD dataset for an
inpainting approach using a U-net based encoder-decoder network (RIAD).
Just like the convolutional autoencoders mentioned previously the loss func-
tion uses the SSIM. They combine this with the multi-scale gradient mag-
nitude similarity [39] to focus on more image properties.

The RIAD approach generally outperforms all the previously mentioned
models. And since it uses an inpainting approach it is also the most similar
model compared to the inpainting transformer by Pirnay et al. [27] that our
work is based upon.

The most recent work with the best results for segmentation and detec-
tion we could find using the MVTec AD dataset is [42]. Their approach
uses a feature extraction approach that they argue is less complex than [28]
and [18] which all have a 98% AUROC for detection and segmentation on the
dataset. These approaches are what we consider the current state-of-the-art
for the dataset.
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Chapter 4

Experimental setup

In this chapter we will describe the dataset used in our experiments, the
structure of the model, our metrics and evaluation approach to be able to
compare different inpainting transformer based models.

4.1 Data

We use the MVTec AD dataset that we previously mentioned in section
3.2. This dataset is also used by other researchers [6, 27, 44] to compare
the performance of methods for anomaly detection. The dataset focuses
on industrial anomalies and includes information to evaluate both detection
and segmentation of anomalies. The dataset contains 15 types of different
images, categorised into textures and objects. Some of the images are pho-
tos taken in a single place and orientation, while others contain different
rotations or positioning. This variation makes it suitable to evaluate the
variety of images a model can be used for. The images with defects in the
dataset are labelled by anomaly type and segmentation maps are provided
for segmentation of the anomalies in those images.

Figure 4.1: An example of a screw, toothbrush and transistor that are de-
fective.
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Figure 4.2: An example of a piece of leather, tile and grid that are defective.

In figure 4.1 we see three different object-type images with anamalies.
Compared to figure 4.2 where we have examples of textures. These different
types of images allow us to test our model to do both detailed texture
synthesis and structure inpainting. In the case of anomaly detection the
defects on the textured images are smaller and require finer reconstruction of
the texture details when compared to the larger objects where the anomalies
usually consist of larger deformations or missing elements.

4.2 Model

Our inpainting transformer model is directly based on the inpainting trans-
former by Pirnay et al. [27]. For completeness we will describe the patch
embeddings used for the inpainting problem and give an overview of the
model architecture.

4.2.1 Patch embeddings

The model uses a patch based approach to create full reconstructions of
images. Each image is split into patches of which one is made blank. The
model then learns to inpaint that blank patch based on the surrounding
patches. The creation of the patches is similar to the approach discussed in
section 2.2.2. An overview of these steps can be found in figure 4.3a.

We start by defining our images as x ∈ RH×W×C where H is the height,
W the width and C the number of channels. We create square patches of the
size (P, P ). This means that we can split each image into a grid of M ×N
patches where M = W

P and N = H
P :

xp ∈ R(M×N)×(P 2 · C) (4.1)

x(i,j)p ∈ RP 2 · C (4.2)

with (i, j) denoting the location of the patch within in the image.
We then want a square window of patches of length L that is smaller

than the image. From this window we can the pick any patch that should
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be inpainted based on the other patches in the same window. In [27] they
formulate this inpainting problem as follows:

Let (x
(i,j)
p )(i,j) ∈ S be a square subgrid of patches defined by some

index set S = r, ..., r + L− 1×s, ..., s+ L− 1. Here L is the side
length of the window, and (r, s) is the grid position of the upper
left patch in the window. If (t, u) ∈ S is the position of some
patch, the formal task to inpaint (t, u) is to approximate the

patch x
(t,u)
p using only the content and the positions of all other

patches (x
(i,j)
p )(i,j) ∈ S \ (t,u) in the window.

This means that for the transformers to able to determine the position of

the patches we need to include information of the position of a patch x
(i,j)
p .

For this we calculate a one dimensional value:

f(i, j) = (i− 1) · N + j (4.3)

As a last step we need to reshape this patch window into an input se-
quence for our transformer-based model. We do this by creating a mapping
in some latent space of dimension D. Which means that for every patch

(x
(i,j)
p )(i,j) ∈ S \ (t,u) we create and embedding y(i, j) and for the patch we

want to inpaint we add one single embedding xinpaint ∈ RD to the position
embedding.

y(i,j) = x(i,j)p E + posemb(f(i, j)) ∈ RD (4.4)

z = xinpaint + posemb(f(t, u)) ∈ RD (4.5)

where E ∈ R(K2 · C)×D and posemb is a standard learnable one-dimensional
position embedding.

The final input sequence for the model is then formed by z and y(i,j) for
each (i, j) ∈ S \ (t, u).

4.2.2 Architecture

The architecture for our inpainting model uses n blocks of the transformer
encoder that are stacked. These encoders consist of an attention function
and a fully-connected feed-forward network. This follows the approach of
the Vision Transformer discussed in section 2.2.2. The structure of this
model is visualised in figure 4.4.

We create two different versions of our model.

• A version using the original multi-head self-attention (MSA) from [33]
that we discussed in section 2.2.1.

• A version using the multi-head linearised self-attention (MLSA) from
[21] that we discussed in section 2.2.3.
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Figure 4.3: An overview of the inpainting transformer steps by Pirnay et
al. [27]

Attention
Function 

Add & Norm 

Feed Forward

Add & Norm 

Input
Embeddings

Transformer
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Transformer
Block 

...

Output
Embeddings

Figure 4.4: The structure of our inpainting model

This differs from the original inpainting transformer (InTra) model in
two places: we do not add residual connections between layers and we do
not use multi-head feature self-attention (MFSA). Using residual connection
would mean adding extra addition computations to the model, which can
influence the output of the model and skew the results in the direction of
one of the attention functions. With MFSA we would introducing an extra
multilayer perceptron in one of the attention functions which would strongly
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increase the size of the model in only one case, since the MLSA model would
not use this multilayer perceptron. Using MSA makes it simpler to compare
the results with MLSA.

4.3 Loss function

To be able to quantify the performance of our models during training we
require metrics that are suitable for the inpainting task that we are perform-
ing. This means that we need a loss function that takes into account that
our dataset contains both textures and objects. For this we use a combina-
tion of structural similarity, gradient magnitude similarity and a pixel-wise
L2 loss.

Since we try to recreate part of the model from [27] we also use a similar
loss function. Which is equal to the one used in [44].

Our loss function L consists of three parts. The first part is a pixel-
wise L2 loss. This does not take into account perceptual differences, since
it assumes that all pixels in the images are independent. Therefore we
use the structured similarity index (SSIM) [35] and the multi-scale gradient
magnitude similarity (MSGMS) [39,45] that we discussed in section 2.5.

The SSIM is a metric that looks at dependencies between regions of an
images by including luminance, contrast and structural information. This
means that it assumes that our model is able to find those structures. MS-
GMS is similar in that it looks at local image quality but does not focus on
those structures.
Before we determine the full loss function we first formulate these three base
parts given our original patch P and the reconstruction P̂ for that patch.

LSSIM (P, P ) =
1

Np

W∑
x=1

H∑
y=1

1− SSIM(x,y)(Pl, P̂l) (4.6)

where Np is the number of pixels of the patch P . The SSIM(x,y) is the
SSIM result for the two pixel in the patch and the reconstruction with (x, y)
being the center.

LMSGMS(P, P ) =
1

3

3∑
l=1

1

l

Wl∑
x=1

Hl∑
y=1

1−GMS(x,y)(Pl, P̂l) (4.7)

where Pl and P̂l are the scaled versions of the patches andGMS(x,y)(Pl, P̂l)
gives the GMS map of those scaled patches at the pixel location (x, y).

We can then define our complete loss function as

L(P, P̂ ) = L2(P, P̂ ) + α LMSGMS(P, P̂ ) + β LSSIM (P, P̂ ) (4.8)
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with α and β being loss weights for the MSGMS and SSIM losses.

4.4 Anomaly detection

To be able to use our model for anomaly detection we need to generate
a complete reconstruction of some original input image. This reconstruc-
tion can then be used to create a anomaly map where we can locate any
anomalies.

4.4.1 Reconstruction

The reconstruction x̂ of the image x ∈ RH×W×C requires us to split the
image into the same number of M × N patches as the images we used to
train our models. We can then create a reconstruction by selecting a window

with size L×L per patch x
(t,u)
p to create a reconstruction of that section of

the image.
The ideal window for each patch is the window location where the (t, u)

is in the center. Since we want to create a reconstruction of the full image
this is not possible for the patches closer to the sides of the image itself.
Therefore we want to calculate an appropriate patch window with patch

x
(r,s)
p in the upper-left corner.

pad(x) = max(1, x− ⌊L
2
⌋) (4.9)

r = pad(t)−max(0, pad(t) + L−N − 1) (4.10)

s = pad(u)−max(0, pad(u) + L−M − 1) (4.11)

Reconstructing the image can now be done by using the calculated win-
dows for each patch. This gives us the fully reconstructed image x̂.

4.4.2 Anomaly map

With both our original image x and the reconstruction x̂ we can create an
anomaly map that we can use to detect and locate anomalies in x. For this
we use similar multi-scale gradient magnitude similarity calculations that
we also used for our loss function in section 4.3.

Instead of a single value we want a complete per-pixel map thus we
adapt the calculation slighty to create a per-pixel average of the GMS maps
at different scales. Similar to the approach in [27,44].

MSGMS(I, Î) =
1

3

3∑
l=1

GMS(Il, Îl) (4.12)
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Since anomalies are usually located in larger connected regions of an
image we can aggregate the error of the reconstruction over a larger space
by post-processing the MSGMS map using a mean-filter convolution. The
filter reduces the intensity variety between pixels and reduces noise. This
smoothing prevents a faulty detection when high values are present in small
regions of the MSGMS map. These values are more likely to be failed
reconstructions or background noise than actual anomalies. This gives us a
difference map diff(I, Î) ∈ RH×W .

diff(I, Î) = 1H×W − (MSGMS(I, Î) ∗mean) (4.13)

where mean is a mean filter of (21×21) and ∗ the convolution operation.
The final anomaly map for the image I is calculated by using the square
deviation of the difference map of the image versus the difference map of all
the images in the training data T .

anomap(I) =

(
diff(I, inp(I))− 1

|T |
∑
t∈T

diff(t, inp(t))
)2

(4.14)

where inp denotes the reconstruction operation done by our transformer
model.

4.5 Training

Using the building blocks given in the previous sections we train one MSA
and one MLSA model per image in the MVTec AD dataset. This way we
can compare the result of the different MSA and MLSA attention functions.

The parameters we used during training are mostly the same as those
in [27]. A summary is given in table 4.1.

For training we use the images without anomalies from MVTec AD. Each
set of training data contains a different number of images and no predefined
validation set. This is why we randomly take 10% or 20 images from the
training data to be able to check the patches that our models generate.

The rest of the training data is used to extract 600 random patch win-
dows per epoch per images. This increases the amount of training data and
shuffles the input.

Other parameters define the size and number of patches: patch size P ,
window size L and the size of the images W and H. Since all images in
MVTec AD are square this means that W = H. These parameters are set
to P = 16 and L = 7. The image sizes differ per image: 256×256, 320×320,
512× 512. These were chosen by Pirnay et al. as small as possible without
removing details from the patches.

We use a latent dimension ofD = 512. Both the MSA and MLSA models
consist of 13 transformer blocks that have 8 attention heads. This gives us
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Table 4.1: Summary of all variables

Parameter Description Value

P Patch size 16

L Window size 7

W Image width Value per image type

H Image height Equal to W

α Weight of the MSGMS loss 0.01

β Weight of the SSIM loss 0.01

D Model dimension 512

Batch size 256

Number of layers Number of transformer blocks 13

Number of heads (h) Number of heads in the multi-head attention 8

Learning rate Parameter of the Adam optimiser 0.001

Early stopping 150 epochs

Max epochs 20000

41, 374, 976 trainable parameters. The individual loss weights are set to
α = β = 0.01 and all models are trained with the same Adam optimizer
with the learning rate set to 0.001. The batch size is set to 256 and we do
not use dropout, since this was not used in the original paper.

To be able to compare differences in the training time and to make sure
our models fully converge we train our models for a maximum number of
20000 epochs, which is virtually unlimited since we combine this with early
stopping of 150 epochs. This means that we will stop training when do not
observe a lower value for the validation loss in 150 consecutive epochs. The
best model is then chosen based on the lowest validation loss.

Each model is trained by submitting a job on a SLURM cluster. The
jobs are assigned 4 CPU cores, 1 GPU and maximum 16 GB of memory.
The nodes in the cluster are outfitted with 2x Intel Xeon Silver 4214, 8x
NVIDIA GeForce RTX 2080 Ti and 128GB of memory.

4.6 Evaluation

To be able to compare two different transformer models we will use the test
images from the MVTec AD dataset.

The score used is the AUROC, which is standard for visual anomaly
tasks [5, 22,27,29,32,38,44].

For this we will use the anomaly map anomap(I) we obtained from the
images in section 4.4 and compare the value in the anomaly map with the
values in the image masks that are in the dataset.

The AUROC is calculated by calculating the receiver operating charac-
teristic (ROC). This is a curve that plots the true positive rate against the
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true negative rate. The area under the receiving receiver operating charac-
teristic (AUROC) is the area under the plotted curve.

We want to evaluate both the anomaly detection on the image-level
and the anomaly segmentation on the pixel-level. For the last task we can
directly use the anomaly map. For the image-level detection we take the
maximum pixel value from the anomaly map as a single anomaly score for
the whole image.
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Chapter 5

Results

In this chapter we will try to answer our subquestions using the results we
obtained1 after training and testing our models.

5.1 Detection & Segmentation

What is the difference between softmax and linear attention in detection of
anomalies across images with different textures and objects?

The AUROC % scores of our MSA and MLSA models are given by table
5.1. The best models for each image have been indicated by bold text.

This shows that for detection the MLSA-based models outperform the
MSA-based models the majority of the textured images. The wood and
leather categories are the exceptions. The difference between the MSA and
MLSA models is particularly high in the carpet, grid and leather categories.

The results for detection on the object images are split equally over
MSA and MLSA. The values for the cable and pill categories are very low,
especially when compared to the other images.

What is the difference between softmax and linear attention in segmen-
tation of anomalies across images with difference textures and objects?

The results for segmentation across the textured images is very similar
when compared to the numbers for detection. MSA seems to perform worse
for three out of the five textured images. The same is true for the object
images. The differences for the capsule, hazelnut and metal nut between
MSA and MLSA are especially high. MLSA has a higher score for all these
cases with at least a difference of 7%. Interestingly MSA seems to perform
better on average when the image size is larger.

Let us analyse results for some specific cases with low and high model
performance. Looking at the figure 5.1 we see that the mask and the seg-

1https://tensorboard.dev/experiment/1YZvra2iQseNTMWDeBFREw/
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mentations of the anomaly for the leather category do not match, only the
center of the anomaly is correctly localised. This explains the low AUROC
value. Looking at the reconstructions in figure 5.2 we see that both the
models using MSA and MLSA are missing details, which means that the
average training error used to calculate the anomaly map affects the results.
For the better performing grid category we see in figure 5.3 that the anoma-
lies are correctly localised, with the MSA model having more noise in the
anomaly map around the sides.

Figure 5.1: Example of an anomalous image from the leather category com-
paring MSA, the dataset mask and MLSA

Figure 5.2: Example of reconstructions from the leather category comparing
MSA, the original and MLSA

It is interesting to see that the models do not perform the best for the
majority of the images for both detection and segmentation, but only for
one of these tasks. Since the score for detection depends on the anomaly
map that is used to calculate the score for segmentation we would expect the
segmentation score to directly relate to the detection score. However, the
detection score is only a maximum pixel value which means it only represents
one pixel of the anomaly map not taking into account the other values of
the anomaly map. The segmentation score does look at all pixels.

Overall our results show that MLSA has better performance than MSA,
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Figure 5.3: Example of an anomalous image from the grid category compar-
ing MSA, the dataset mask and MLSA

both for segmentation and detection on textured and object images. And
for detection on texture images.

5.2 Efficiency

How does the number of epochs required to get the best result compare
across images with different textures and objects?

The number of epochs required depends on the type of image. Image that
have more complex structures require more epochs. We see this especially in
the texture category and for the cable, screw and transistor images. Another
factor affecting the number of epochs is the amount of colours used. This is
shown by the pill and zipper images that both require a very low number
of epochs and primarily consist of black, white and grey colours. We give
some samples of the image categories in figure 5.4.

Figure 5.4: Examples of the zipper, cable and transistor image types

How does the training time compare between the softmax and linear
attention models across images with different textures and objects?

We see that the time per epoch is lower for MSA in all categories except
for the pill and transistor images. With this information we would expect
the MSA models to also finish training faster. The opposite is true however.
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Category MSA MLSA Image size

Segmentation Detection Segmentation Detection

Carpet 90.44 77.09 91.52 86.40 512

Grid 89.82 76.61 93.39 89.97 256

Leather 49.99 86.85 56.23 75.44 512

Tile 79.31 71.32 73.33 73.92 512

Wood 70.22 77.54 62.84 72.72 512

Texture average 75.96 77.88 75.46 79.69

Bottle 65.82 91.51 68.65 89.92 256

Cable 88.04 38.17 90.07 43.65 256

Capsule 81.66 72.32 88.43 66.33 320

Hazelnut 67.94 55.89 81.59 53.82 256

Metal nut 54.99 60.95 67.51 78.49 256

Pill 88.60 44.82 88.45 51.28 320

Screw 97.31 55.69 97.23 65.32 320

Toothbrush 80.42 86.67 81.78 87.22 256

Transistor 77.72 59.25 79.95 56.71 256

Zipper 81.22 79.07 79.66 78.07 512

Object average 78.37 64.43 82.33 67.08

All average 80.02 66.46 81.32 70.00

Table 5.1: Results in AUROC % for segmentation and detection
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Category MSA MLSA

Best epoch Time/Epoch Training time Best epoch Time/Epoch Training time

Carpet 77 0:58:05 220:42:00 138 1:07:17 265:47:00

Grid 140 0:26:48 130:00:00 53 0:33:34 114:06:00

Leather 142 0:43:50 214:03:00 142 0:43:33 213:24:00

Tile 353 0:36:40 308:01:00 555 0:39:38 466:23:00

Wood 149 0:53:56 270:33:00 124 0:56:16 258:49:00

Bottle 37 0:24:11 75:47:00 11 0:24:33 66:16:00

Cable 250 0:39:59 267:55:00 211 0:48:07 267:05:00

Capsule 27 0:41:38 123:30:00 14 0:41:45 114:50:00

Hazelnut 83 1:22:12 321:56:00 19 1:25:10 242:43:00

Metal nut 148 0:25:31 127:10:00 43 0:28:22 91:42:00

Pill 5 0:48:57 128:06:00 4 0:46:54 121:57:00

Screw 245 0:40:27 267:01:00 211 0:40:37 245:04:00

Toothbrush 58 0:12:19 42:55:00 58 0:12:10 42:24:00

Transistor 271 0:46:40 328:13:00 196 0:44:59 260:57:00

Zipper 5 0:25:59 67:34:00 5 0:34:52 90:39:00

Table 5.2: Best epochs and time taken to finish training

The number of epochs required for the best result is lower in eleven of
the fifteen cases, which also means that the total training time is lower for
MLSA.

5.3 Comparison with previous work

How do our results compare to previous work?
When we compare our results those from the original InTra model by

Pirnay et al. [27] in table 5.3 we see that the performance of our models
is worse than the original model. The only result that is better is the
segmentation for the carpet image type. This was to be expected, since
we have omitted some parts of the original InTra model that improved their
results. We will discuss those choices in chapter 6.
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Category InTra

Segmentation Detection

Carpet 88.2 98

Grid 98.8 100

Leather 99.5 100

Tile 94.4 98

Wood 88.7 97

Texture average 96.1 98

Bottle 97.1 100

Cable 91.0 70

Capsule 97.7 86

Hazelnut 98.3 95

Metal nut 93.3 96

Pill 98.3 90

Screw 99.5 95

Toothbrush 98.9 100

Transistor 96.1 95

Zipper 99.2 99

Object average 96.9 93

All average 96.6 95

Table 5.3: Results from [27]
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Chapter 6

Discussion

In our results presented in chapter 5 we see that our model can localise and
detect anomalies. However, our models do not perform like those from [27]
and some images have particularly low scores. This chapter reflects on those
results. We also discuss some of the choices made for the experimental setup
introduced in chapter 4.

6.1 Training data

6.1.1 Ground truth masks

In section 4.1 we introduced the MVTec AD dataset for usage in our exper-
iment.

Figure 6.1: Example of an anomalous ’flipped’ image from the metal nut
category comparing MSA, the dataset mask and MLSA

In figure 6.1 we see an example of the mask compared to the parts of the
images indicated as anomalous by our models. Since our models create an
anomaly map that is focused on comparing the original anomalous image
with a reconstruction we can only mark parts of the image that are different.
The centre of these images is not different when compared to non-anomalous
images. This means that our models are unable to mark the complete image
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as the anomaly. This could explain why the segmentation is relatively low,
since the anomaly map is compared to the ground truth that does mark the
complete image.

In the case of the transistor category we see a similar result. However,
since the category contains multiple situations (rotations, completely miss-
ing transistors, non-centred transistors) the effect is less noticeable in the
results. In figure 6.2 we can see that the anomaly map only matches the
parts that are not present in both the original image and the reconstruction,
similar to the anomaly map of the metal nut category.

Figure 6.2: Example of an anomalous ’misplaced’ image from the transistor
category showing the original image, a reconstruction and the anomaly map
on top of on the ground truth mask

With this knowledge we would argue that our models would never be able
to reach perfect segmentation and these categories should thus be considered
as hard cases. The segmentation of these anomalies would require knowledge
about the object in the image.

6.1.2 Data augmentations

In [27] the authors mentioned using random rotation and flipping to augment
the dataset during training. We have tried to implement both random rota-
tions, vertical and horizontal flipping for our models. However, this would
severely impact the results of the models, in most cases blocking them from
learning to reconstruct any image. Based on the results from Pirnay et al.
we think that the right augmentations could improve training the model.
This would require tuning these parameters to find the correct degree of
rotations.

6.2 Anomaly map

The evaluation of our models uses the anomaly map introduced in section
4.4.2. Examples of the results produced by equation 4.14 have been shown
already in figures 5.1, 5.3, 6.1 and 6.1.
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We have seen that some results only show very small parts of our images
as anomaly. Since we use equation 4.14 to remove the average reconstruction
error we might be losing information. Therefore we compare our anomaly
map directly to the MSGMS-map (equation 4.13) in figures 6.3, 6.5 and 6.4.

These images show us that the anomaly map differs from the MSGMS-
map. However, the difference is not the same for all the image categories.
In the case of the bottle category the anomaly map is missing information.
For the carpet category both the MSGMS-map and the anomaly map are
similar. Lastly the metal nut shows us a MSGMS-map that is the complete
image.

Figure 6.3: Example of an anomalous image from the bottle category show-
ing the original image, the MSGMS-map and the anomaly map

Figure 6.4: Example of an anomalous image from the carpet category show-
ing the original image, the MSGMS-map and the anomaly map

The anomaly map is created by using the average MSGMS-map over the
training data. The difference we see could be the result of a high error rate
over the good images. Therefore we look at some images in the test data
that have no anomalies.

In figure 6.6 and 6.7 we see that for the good images we also have version
of a MSGMS-map that could indicate an anomaly that is not present. This
means that directly using the MSGMS-map could improve the scores for
segmentation. However, since we are using the max pixel value for the
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Figure 6.5: Example of an anomalous image from the metal nut category
showing the original image, the MSGMS-map and the anomaly map

Figure 6.6: Comparison of a good image from the bottle category with the
reconstruction and the MSGMS-map

Figure 6.7: Comparison of a good image from the toothbrush category with
the reconstruction and the MSGMS-map

detection of anomalies in images this would mean that all images would
contain an anomaly. That would severely hurt the performance.

We thus need to use the average error during training to post-process our
MSGMS-map that is created by comparing the original images to the recon-
structions. The reconstructions that our models make are not sufficiently
detailed enough for our MSGMS-map to not spot any differences.

An alternative to using the average training error would be to determine
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a threshold. This would allow us to remove values below the threshold.
This does require that extra step and would require a different value for
each image. In contrast, the current solution can be a compromise for the
large range of image types in the dataset.

6.3 Model efficiency

In section 5.2 we answered our research questions regarding the efficiency of
the MSA and MLSA models. We saw that the time taken per epoch is lower
for MSA when compared to MLSA. However, the paper by Katharopoulos
et al. [21] that introduced MLSA reports a significant difference in the time
taken for each epoch in favour of MLSA.

Even though the MLSA models require less epochs for training on av-
erage, we would still expect the MLSA based models to take less time for
each epoch.

The first reason for this difference could be an implementation error of
the linear attention function. Our transformers are based on a library1 by
Katharopoulos et al. that contains multiple attention implementations. It
allows the user to select a type of transformer, or a part of the transformer
structure, and build a model around it. Since we use this library we think
it is unlikely that the implementation of the attention function causes the
time difference of our model. Moreover, the time difference between running
the two attention types is verifiable by running the basic example from the
repository. We have done this on the cluster machines, giving us 87.59ms
versus 54.43ms for the normal and linear attention functions respectively.

A second cause for the differences could be the code surrounding the
attention function. Primarily loading the images from disk and splitting
them into patches can be resource intensive. Similarly the loss function can
take a longer time to calculate. To be able to figure out the resource usage
of each part in our model we would need to run our models with a profiler.
This is something that could be a good starting point for future work since
a job with a profiler uses a lot more resources, based on the (failed) test
runs that we have done.

To make sure that the difference in time per epoch is not something
that we only observe for long jobs we have executed a training run with one
epoch for the carpet image. This gave us a training time of 1:36:41 for MSA
and 1:54:22 for MLSA. Which is a higher difference than the one we see in
table 5.2, but still favours MSA as well.

1https://github.com/idiap/fast-transformers
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Chapter 7

Conclusions

In this thesis we have shown that we can use visual transformers with a linear
attention function to tackle an anomaly detection problem using inpainting.
Our primary goal was to answer the main research question we asked in the
introduction: What is the effect on the performance and efficiency of using
linear transformers in an inpainting context for anomaly detection when
compared to regular transformers?

To answer this question we have successfully implemented two types of
models for inpainting: one using regular transformers and one using linear
transformers. To evaluate our models they have been trained on the MVTec
AD dataset and the results of the inpainting task were used to perform
anomaly detection. This required us to calculate anomaly maps using the
MSGMS metric that we were able to compare with the masks provided by
the dataset.

The results show that linear transformers are able to outperform the reg-
ular transformers in the tasks of segmentation and detection. They require
less epochs to be able to converge, however in contrast to what we would
have expected the time per epoch is longer for these models.

This should answer our primary research question. However, we think
that our results should be viewed with caution. It is possible that parts of
our implementation affect the resource usage negatively and therefore the
time required to train our models.

For future work our models could be revisited to find the resource usage
of the different parts like the data loader and metrics functions. An in-depth
analysis of the resource usage of these parts could give a better insight to
understand our results.

Another change could be adding augmentations to the data loader to see
if this would improve the results. As well as hyperparameter optimisation.
It might be possible that the different visual transformers can reach better
results with other parameters than those that we re-used from other papers.
As well as changing the evaluation and the loss function to find better options
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that would be better suited for the reconstruction task.
Different approaches using linear transformers could also be explored.

For example by using linear transformers for feature extraction in a similar
approach like the one introduced in [42].

Apart from using the linear transformers in another context it is also an
option to use fastformers [36] or linformers [34] in this context of anomaly
detection. This would allow us to evaluate the performance of multiple
transformer based approaches to see the effects when compared to regular
transformers.
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[10] Bugeau, A., Bertalḿıo, M., Caselles, V., and Sapiro, G. A
Comprehensive Framework for Image Inpainting. IEEE Transactions
on Image Processing 19, 10 (Oct. 2010), 2634–2645. Conference Name:
IEEE Transactions on Image Processing.

[11] Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio, Y. Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine
Translation. arXiv:1406.1078 [cs, stat] (Sept. 2014). arXiv: 1406.1078.

[12] Clevert, D.-A., Unterthiner, T., and Hochreiter, S. Fast and
Accurate Deep Network Learning by Exponential Linear Units (ELUs),
Nov. 2015. arXiv:1511.07289 [cs] version: 1.

[13] Criminisi, A., Perez, P., and Toyama, K. Region filling and object
removal by exemplar-based image inpainting. IEEE Transactions on
Image Processing 13, 9 (Sept. 2004), 1200–1212. Conference Name:
IEEE Transactions on Image Processing.

[14] Demir, U., and Unal, G. Patch-Based Image Inpainting with Gener-
ative Adversarial Networks. arXiv:1803.07422 [cs] (Mar. 2018). arXiv:
1803.07422.

[15] Doersch, C., and Zisserman, A. Multi-task Self-Supervised Visual
Learning. arXiv:1708.07860 [cs] (Aug. 2017). arXiv: 1708.07860.

[16] Dong, B., Ji, H., Li, J., Shen, Z., and Xu, Y. Wavelet frame based
blind image inpainting. Applied and Computational Harmonic Analysis
32, 2 (Mar. 2012), 268–279.

[17] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. An
Image is Worth 16x16 Words: Transformers for Image Recognition at
Scale. arXiv:2010.11929 [cs] (June 2021). arXiv: 2010.11929.

[18] Gudovskiy, D., Ishizaka, S., and Kozuka, K. CFLOW-AD: Real-
Time Unsupervised Anomaly Detection with Localization via Condi-
tional Normalizing Flows, July 2021. arXiv:2107.12571 [cs].

[19] Han, C., Rundo, L., Murao, K., Noguchi, T., Shimahara, Y.,
Milacski, Z. , Koshino, S., Sala, E., Nakayama, H., and Satoh,

41



S. MADGAN: unsupervised medical anomaly detection GAN using
multiple adjacent brain MRI slice reconstruction. BMC Bioinformatics
22, 2 (Apr. 2021), 31.

[20] He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual Learn-
ing for Image Recognition. arXiv:1512.03385 [cs] (Dec. 2015). arXiv:
1512.03385.

[21] Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F.
Transformers are RNNs: Fast Autoregressive Transformers with Linear
Attention. arXiv:2006.16236 [cs, stat] (Aug. 2020). arXiv: 2006.16236.

[22] Li, C.-L., Sohn, K., Yoon, J., and Pfister, T. CutPaste:
Self-Supervised Learning for Anomaly Detection and Localization.
pp. 9664–9674.

[23] Mairal, J., Elad, M., and Sapiro, G. Sparse Representation for
Color Image Restoration. IEEE Transactions on Image Processing 17,
1 (Jan. 2008), 53–69. Conference Name: IEEE Transactions on Image
Processing.

[24] Mohri, M., Rostamizadeh, A., and Talwalkar, A. Foundations
of Machine Learning. Adaptive Computation and Machine Learning
series. MIT Press, Cambridge, MA, USA, Aug. 2012.

[25] Napoletano, P., Piccoli, F., and Schettini, R. Anomaly Detec-
tion in Nanofibrous Materials by CNN-Based Self-Similarity. Sensors
18, 1 (Jan. 2018), 209. Number: 1 Publisher: Multidisciplinary Digital
Publishing Institute.

[26] Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., and
Efros, A. A. Context Encoders: Feature Learning by Inpainting.
Tech. Rep. arXiv:1604.07379, arXiv, Nov. 2016. arXiv:1604.07379 [cs]
type: article.

[27] Pirnay, J., and Chai, K. Inpainting Transformer for Anomaly De-
tection. arXiv:2104.13897 [cs] (Sept. 2021). arXiv: 2104.13897.

[28] Roth, K., Pemula, L., Zepeda, J., Schölkopf, B., Brox, T.,
and Gehler, P. Towards Total Recall in Industrial Anomaly Detec-
tion, June 2021. arXiv:2106.08265 [cs] version: 1.
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