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Abstract

Many websites contain third-party trackers, both for advertising and analytics. Previous studies
have shown that these trackers often collect personal data of users, such as an email address
that was entered into a form. Trackers can also accidentally collect passwords, sometimes
because the password was copied to a DOM attribute in the document. Regularly, website
administrators do not have a full overview of all the data that is leaked on their website to
trackers. For this study, we developed leak-detect, a tool that website administrators can
use to determine if trackers on their site collect personal data filled into forms. Compared to
previous studies, this tool has the advantage that it is self-contained, with built-in leak and
tracker detection, and it has some extra features such as shadow DOM support and detection of
passwords leaking to attributes. We used this tool to conduct a crawl of the top 30K websites
with login forms, and found the most-leaking parties to be Facebook, Google, and AtData.
We discovered that the React framework caused most leaks of passwords to attributes. On
12 websites, we found unintentional password leaks to third parties. At least two of these
were fixed due to our disclosures. Finally, we make some recommendations on how to prevent
leakage of personal data.
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Chapter 1

Introduction

Websites may include third-party trackers for various purposes, such as advertising and analyt-
ics. With a lot of websites offering services free of charge, many of them rely on advertisers for
their income. To make it more appealing for companies to advertise on a given platform, the
platform tries to maximize the relevance of advertisements to users, by tracking the user’s in-
terests. This can be done by looking at what other websites they visit and what they do there.
For example, what products a user has bought online lately. To track someone over longer
periods of time and across devices, different sessions may be linked using personal identifiers,
such as some hash value derived from the user’s email address or phone number.

Besides that, websites use analytics services to get insight into what demographics visit, how
these users got to the website, and how they behave. As an example, take a website offering
paid services that wants to increase the number of people buying their product. To find out
if users can easily navigate the site and find what they are looking for, many such commercial
websites are now using session replay scripts. These scripts can record every interaction of a
user with the site, from mouse movements and clicks to what they enter into an input field.
This data is sent to and stored at the third party that delivers the session replay script, not
at the first party. Among these scripts are Hotjar, Yandex Metrika, Microsoft Clarity, and
FullStory [1–4]. The number of websites using these scripts has increased substantially in
the last couple of years [5]. Regularly, these scripts will also capture personally identifiable
information (PII), such as an email address, or they might even accidentally record credit
card numbers or passwords [6]. Note that because of the nature of session replay, this data
will be captured even before the user submits the form. Usually there is the option to mask
information that the user enters into input fields 1, but leaks may still occur in other ways. For
example, if text on the page contains sensitive data and page contents are not masked. The
default privacy settings differ per tool.

Regularly, website administrators are not well aware of all personal data that third parties on
their site collect [6–8]. Hence, one of our research questions was:

How can we develop a tool for website administrators to gain more insight into where
personal data entered into forms is sent?

To this end, we developed leak-detect, a tool that automatically interacts with a web page
and observes information sent to third parties. More specifically, it detects, fills, and submits
forms with a dummy email address and password, and searches for these values in outgoing

1 For example, for Hotjar: https:
//help.hotjar.com/hc/en-us/articles/360048489874-Site-Settings#data_suppression
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web requests. To enable searching for encoded information in web traffic, we also developed
value-searcher and integrated it with leak-detect. leak-detect is intended as a
tool that is easy to use for developers, with a readable output format, but also easy to use for
researchers in large studies. It improves on crawlers used in previous studies by being a self-
contained package including leak detection and tracker labeling, supporting shadow DOM,
detecting leaks to DOM attributes 2, capturing stack traces for leaks, supporting manual
interaction, and more. We used the tool to answer the following questions:

• What are the trackers that leak the most credentials from web forms, per leak timing
(e.g. before or after form submission)?

• How common are unintentional password leaks to third parties, and how often are these
caused by leaks to DOM attributes?

• How prominent are DOM attribute leaks, and what is the most common cause for these?

We expected the answer to the first question to be in line with recent similar studies [6, 9],
where AtData and Facebook ranked high for leaks before and after submission respectively.
Regarding the second and third question, we know that previous studies found multiple pass-
word leaks [6, 7], with the study from Senol et al. finding 49 leaks among 100K websites even
before submission. However, we did not know if in our crawl the number of unintentional
password leaks per website would be smaller because of fixes deployed by trackers, or larger
because of the growing amount of tracking scripts and because in our study we also submit
the form. Senol et al. mention that most of the leaks were caused by a session replay script
from Yandex, and almost all affected sites were built using the React JavaScript framework.
We expected that these password leaks might be due to DOM attribute leaks caused by React.

To answer these questions, we crawled a set of 30K web pages with login forms to check
for email addresses and passwords being sent to third parties, and will present the results of
the crawl in this thesis. We found 2 071 pages with values leaking to tracking parties, some
even before form submission, and including 15 unintentional password leaks to trackers and a
malicious domain.

2 If a password leaks to a DOM attribute, this means it is written to a portion of the page markup that may
be collected by a tracker script, causing an unintentional password leak, see Chapter 2
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Chapter 2

Preliminaries

First, we will introduce some relevant web concepts regarding page structure, data collection,
and domains.

2.1 Page structure

At the basis of a web page lies an HTML document. When parsed by the browser, this produces
a tree of elements, called the DOM (Document Object Model). Some example elements would
be an input field or a paragraph of text. Each element can have associated attributes, such
as a default value or a color. Dynamic content on websites is enabled by JavaScript. With
JavaScript, developers can use the DOM API to list, add, remove, modify, or observe elements
and their attributes and input values. A relatively new concept is shadow DOM [10]. It can
be used to create a ‘shadow root’ on an element, which can contain other elements, similar
to a regular element. However, these child elements will not show up in the list of children of
the element with shadow root. Also in other aspects the elements inside the shadow root are
more isolated from regular child elements. For example, style sheets applied to the rest of the
page will not automatically be applied to these elements.

2.2 Data collection

A page may use multiple JavaScript files, including files from third parties. Tracking scripts
included on a web page usually have full access to the page, exactly like first-party scripts. This
means they can access the full DOM tree and values inside input elements. To a certain extent,
this is required for these scripts to operate. However, it also means that they can (accidentally)
capture the value of a field containing personal or sensitive data such as a password, street
address, or credit card number.

These script can send web requests with data to tracking servers. They can do this in the
form of HTTP requests with the XMLHttpRequest (XHR) API or the more modern fetch

API, or by loading a hidden dummy image or script with the data to transmit in the URL of
the image. In general, the data to transmit can be put into the URL, the body (with XHR
or fetch), or a header. Headers usually transmit metadata such as the type of data inside
the body and cookies that have been set for the request domain. Tracking scripts can also
use the beacon API to transmit a small amount of data in the body of a request, using the
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navigator.sendBeacon function [11]. Contrary to requests with XMLHttpRequest and fetch,
the response of a beacon request is discarded and the request is guaranteed to be sent even
if the page is closed, which is useful for tracking. Scripts that want to send multiple packets
of data over the same connection can use the WebSockets API, which sets up a two-way
communication channel between the browser and the server. Lastly, a website may use the
ping attribute on a hyperlink element to easily track which links a user clicks. This attribute
can contain a list of URLs to notify when the user clicks the link. A number of these requests
may include a Referer[sic] header, which includes the URL or domain of the page from which
the request originated. Information in requests is often encoded, for example, inside a JSON
structure, a URL parameter, or using some compression algorithm.

2.3 Tracking identifiers

An easy way for trackers to link multiple events to the same user is to use cookies. Tracking
cookies are unique identifiers stored in the browser and transmitted with each request to the
tracking server in the Cookie header. Trackers can also use fingerprinting, where they try to
uniquely identify each user by features such as their screen size, browser version, operating
system, installed fonts, etc. This is sometimes called stateless tracking, as opposed to stateful
cookie-based tracking [12].

Some trackers use an email address that the user enters into a form to identify the user [9].
This allows them to link different sessions and track users across devices. Regularly, they
collect a hash of the email address, instead of the email address itself. A cryptographic hash
is a fixed-length byte string, generated from an input string of arbitrary length, such as an
email address. It must not be easily reversible, so it should be hard to determine the value
that was hashed from just seeing the hash. It should also be hard to find two strings with the
same hash. However, email addresses are usually fairly predictable and sometimes public, so
finding the email address corresponding to a given hash is not that hard [13]. Like plain email
addresses, hashes allow different tracking parties to exchange data about the same user.

2.4 Minified script bundles and source maps

Multiple JavaScript files including frameworks and libraries may be combined into one minified
script bundle, which usually means that all code of multiple scripts including libraries was put
on one line, where variable and function names are shortened to a couple of characters to
reduce file size. To find the original source file and location corresponding to a location in the
minified script, and thus still enable debugging, one can use source maps. Source maps are
files that link locations in a minified script to locations in the original file(s). These files are
mostly used by the developers of the website when debugging, but they may also be hosted
by the server along with the minified files.

2.5 URLs and domain names

Resources on the web such as web pages or endpoints of tracking servers are identified by
URLs. A URL can be split into components such as scheme, host, and path. The scheme,
also called protocol, is usually https or http, or for WebSockets wss or ws. The variants
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suffixed with ‘s’ are secure versions featuring encryption and authentication. The host can
be an IP address or domain, such as www.tyranidslair.blogspot.co.uk. The top-level
domain (TLD) of this domain is uk. However, one cannot just register names directly un-
der uk, only under co.uk. Hence, we call co.uk a public suffix. A list of public suffixes
is available online [14]. This list also contains blogspot.co.uk, which means that this is
the full public suffix of www.tyranidslair.blogspot.co.uk. While co.uk is part of the
ICANN (Internet Corporation for Assigned Names and Numbers) section of the public suffix
list, blogspot.co.uk is part of the private section. This is because each domain under the
public suffix is owned by a different person. The public suffix is used by browsers for some
security policies [15], and is sometimes also called the effective top-level domain. We call
tyranidslair.blogspot.co.uk the registrable domain, or the effective top-level domain
plus one, eTLD+1. Unless specified otherwise, in this study we will use the eTLD+1 of a
domain, as it should be the most general domain to identify an entity.
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Chapter 3

Related work

Multiple studies related to web tracking and the leakage of PII have been conducted before.
We mention these in chronological order, along with relevant information, such as, where
applicable, the list of websites crawled, the browser and method to control it, methods to
capture requests and web API calls, followed hyperlinks, filled fields, if the form was submitted,
how leaks were detected, and how third parties and trackers were labeled. We do not discuss
results here, as we will do that in Chapter 8.

In 2015, Starov et al. [16] investigated leakage of email addresses to third parties through
contact forms on the Alexa top 100K websites [17]. To find the contact forms, their crawler
searches for hyperlinks containing the word ‘contact’. It then detects and fills contact forms,
where it tries to deduce the type of each field to decide what kind of structure the data to
be filled should have. After filling, it submits the form and tries to determine if this was
successful by looking at the text of the page that the browser navigated to. To detect leaked
email addresses, they perform three crawls per form, where the first two use the same email
address and the third uses a different address. They then look at query parameters, headers,
and request body, and if a parameter that had the same value for the first two crawls gets a
different value in the third crawl, it is flagged as potentially leaking and inspected manually
later. Third parties are identified by looking at their eTLD+1, but they also check if the IP
address is in the same Autonomous System as the IP address of the visited website, to prevent
CNAME cloaking [18]. For the crawl they used PhantomJS [19], which is a headless WebKit
browser with JavaScript support. PhantomJS is controlled using GhostDriver [20], which is a
PhantomJS backend for a precursor of the WebDriver protocol. PhantomJS does not support
all web technologies normal browsers do, such as WebGL and HTML5 video, so it is a less
realistic testing environment, which may influence the behavior of trackers. Since 2018, it
not actively developed anymore. In the study, all traffic is routed through the BrowserMob
proxy [21] to detect leakage.

For their 2016 web tracking study, Englehardt and Narayanan crawled the Alexa top 1M
websites to investigate the prominence of trackers on these pages and the behavior of these
trackers, including their use of tracking cookies and fingerprinting. Some of the conducted
crawls investigate stateful tracking using cookies by not clearing the cookies between page
visits. To recognize trackers on a certain web page, they use the EasyList and EasyPrivacy
tracking protection lists [22]. The crawler does not interact with the page. To perform
the crawl, they created the OpenWPM framework [12], which uses Firefox controlled by the
Selenium WebDriver [23]. OpenWPM is still actively developed as of 2022. They opted for
a full-fledged browser instead of PhantomJS to provide a more realistic environment and to
be able to test with all web APIs that a tracker may use for fingerprinting. Additionally, this
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allows for evaluating browser extensions such as tracker blockers. Firefox is run in headful
mode, but the window is rendered into a virtual frame buffer. To protect against crashes
and hangs, they run multiple processes and a central controller handling retries in case of
crashes. mitmproxy [24] is used to capture web traffic. They built upon the now discontinued
FourthParty Firefox extension [25] to log access to certain JavaScript APIs.

In 2020, Chatzimpyrros et al. quantified leakage of PII from registration web forms [26]. They
crawl the Alexa top 200K websites and follow links to registration pages by searching for
keywords. They then search for a registration form on these pages and fill the form fields with
name, email address, ZIP code, and credit card info. The type of each field is determined by
looking at keywords in DOM attributes. Relevant keywords for each field type were based on
those collected in a small crawl of 500 websites and translated to multiple languages using
WordNet [27]. The form is abandoned when an unknown field or Captcha is found. In any
case, forms were not submitted in the crawl. They then searched for leaks of the PII that
they filled to third parties. More specifically, they only searched the request URL for values
and encodings or hashes of these, up to 3 layers deep. To confirm the leaks of encoded or
hashed values, they also decoded parts of the URL to search for the value. Third parties are
recognized by looking at the ‘domain’, but it is unclear if this means just the eTLD+1 or the
full domain name. They use a Firefox browser controlled by Selenium for the crawl, with the
BrowserMob proxy to intercept requests.

For their 2020 study, Acar et al. built upon OpenWPM to research multiple ways of data
leaks to third parties on websites [7]. One of these ways, which is relevant for our study, is
whole-DOM exfiltration, the practice of a third party sending the entire page contents over to
their own server. Usually, this is done by session recording services to be able to accurately
display the page when replaying the recording. If the page then contains personal information
like the name or email address of the user, or maybe a credit card number entered into a form
by the user, this information may be sent over to the third party. Note that normally fields
values cannot be seen directly in the DOM tree, but some websites copy field values to an
attribute on the element, which trackers can then collect [28]. This may also be done by web
frameworks, without the knowledge of the developer of the website. For the study, Acar et
al. inserted an extra element containing some made-up name into the DOM. They examined
the Alexa top 15K sites plus a sample of 15K sites from the top 15K–100K and 20K from
the top 100K–1M, totaling 50K sites. On each website the crawler also visits 5 other linked
pages. To detect leaks of the inserted name in encoded form, they use a method based upon
one developed by Englehardt et al. [29]. The method tries to recursively decode substrings
of the web request to find the value sought after, or an encoding of it (e.g. a hash), where
decoding and encoding are limited to a certain depth. However, some scripts split the page
over multiple requests. To still detect DOM exfiltration by these scripts, they first detect pages
with scripts generating requests with a size larger than the compressed size of the page. They
then insert a 200 KB chunk of data into these pages and measure the difference in request
size. If it increased by a similar size, the initiating script was flagged as leaking.

Dao and Fukuda looked at leakage of PII from sign-up forms in 2021 [9]. Using a Firefox
browser, they manually visited 404 shopping sites from the Tranco top 10K websites [30].
They then navigated to a sign-up page and filled fields like username, real name, phone, email
address, date of birth, gender, and postal address. After that, they submitted the form. This
manual approach gave them the advantage that they could evade bot detection. Additionally,
they could click account creation confirmation links that they received via email. They then
logged in to the websites via another browser and visited a product page. Finally, they searched
captured requests to third parties for leaked values and encodings or hashes of these, up to 3
levels deep, but it seems that they do not try to decode parts of the request, meaning that they
would miss Base64-encoded and/or compressed structures (e.g. JSON) containing a leaked

8



value. They distinguish third parties by looking at the eTLD+1, but they also look at CNAME
records and match the values with cloaking block lists from NextDNS [31], AdGuard [32], and
their previous study [33].

In 2022, Kats et al. [34] investigated leaks of search terms to third parties when using internal
website search functionality on the Tranco top 1M websites. To identify third-party domains,
they just look at if the eTLD+1 of two domains is different. Search fields are detected by
looking at if their attributes contain the term ‘search’, but also translations of the term into
languages identified by the HTML lang attribute of the page, using translations of Firefox’s
interface [35]. These are then filled and submitted by pressing the enter key. Their crawler also
looks at embedded search functionality specified via various site search description schemas.
They search URL, Referer header, and body for requests made for the entered search term.
For leaks via URL query parameters, they try to exclude legitimate search providers by looking
at the parameter name where the search term occurs (e.g. q or query is probably intended)
and requests containing just a substring of the search term, which may indicate auto-complete
suggestions by a search provider. To find leaks in requests, they did also decode Base64-
encoded requests. More complex requests they tried to decode using Ciphey [36]. For the
crawler, they use headless Chromium controlled by Puppeteer [37] via the Chrome DevTools
Protocol [38].

In the same year, Senol et al. published a similar study to ours, measuring email and password
leakage to third parties before form submission on the Tranco top 100K websites [6]. They
first try to find form fields on the landing page. If it has no fields, their crawler tries to find
hyperlinks to login or registration pages and clicks up to 10. As soon as it encounters a page
with a form, it stops. Because email fields do not always have their type attribute set to
‘email’, it uses a pre-trained Mozilla Fathom model [39] to also detect email fields with a type
of ‘text’. Fathom is a “supervised-learning system for recognizing parts of web pages” [40],
which is also used in the Firefox browser 1. It then fills detected email and password fields
and observes web requests made, without submitting the form. Fields inside shadow DOM
are not filled. To detect leaks, they used an improved version of the method used in the 2020
study from Acar et al. [7]. In some crawls they also simulated the “show password” feature
provided by some websites and browser extensions by changing the type of the password field
to ‘text’, to observe if this would cause additional leaks. In some crawls they also tried to
interact with Cookie Management Prompts using Consent-O-Matic [41], either accepting or
rejecting cookies. To determine which domains are third parties on a website, they use the
eTLD+1 and the DuckDuckGo Tracker Radar entity map [42], which groups multiple domains
owned by the same company. For labeling tracker domains they consider any domain flagged
by one of Disconnect, WhoTracks.me [43], DuckDuckGo [44], or by one of uBlock Origin’s [45]
default block lists, including EasyList, EasyPrivacy, and Peter Lowe’s ad and tracking server
list [46]. For leaking third parties not flagged as tracker they manually decided if these were
actually trackers. They did not take into account CNAME cloaking. Their crawler is based on
DuckDuckGo’s Tracker Radar Collector [47], which uses a headless Chromium browser under
the hood, controlled by Puppeteer.

1 For example, for detecting ‘new password’ fields: https://searchfox.org/mozilla-central/
source/toolkit/components/passwordmgr/NewPasswordModel.jsm
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Chapter 4

leak-detect

We developed leak-detect 1 to be a standalone tool that website administrators can use
to check if a page on their website leaks credentials of a user to a third party, and to see if
passwords are leaked to DOM attributes, which may indirectly cause leaks if third-party scripts
read these. Besides that, leak-detect can be used by researchers like us for large-scale
crawls to determine the most prominent leaking trackers, causes of attribute leaks, encodings
of leaked values, the prominence of password leaks, etc.

4.1 Requirements

To accomplish these goals, leak-detect had to satisfy a number of functionality require-
ments. It should be able to automatically find, fill, and submit forms with email address or
username and password fields. It should capture web requests and detect possibly-encoded
values that it filled in to the fields. It should also detect leaks of the password to DOM
attributes and should record script access to the input field values (‘value sniffs’).

While developing, we had two use cases in mind: that of the website administrator and that of
the researcher. For the website administrator, the tool should be easy to set up. We focus on
making it usable for someone who has some programming knowledge, but a more user-friendly
wrapper could be developed in the future. For the administrator, it would be practical to have
a standalone tool. That is, crawling and request leak detection should be combined into the
same program. Besides that, the output should be human-readable. Lastly, for debugging and
locating forms that are hard to find or fill for the crawler, there should be a manual mode where
the website administrator can interact with the browser. For the researcher, including for our
own 30K-website crawl, there needs to be a batch crawl option, such that a list of websites can
be crawled, preferably with some amount of parallelism. This crawl should produce detailed
output in machine-readable format. An error that occurs during crawling of a website should
not halt the full batch crawl. If a batch crawl is somehow still interrupted, it should be possible
to resume the crawl without losing all progress. For the researcher, it is also useful to be able
to save the configuration and versions of the tool and of other components involved to make
the crawl easily reproducible.

1 https://github.com/stevenwdv/leak-detect
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Figure 4.1: leak-detect structure

4.2 Crawler behavior and implementation

leak-detect is implemented as a JavaScript Node.js package. It uses a headless Chromium
browser controlled via Puppeteer. The package also uses DuckDuckGo Tracker Radar Col-
lector (TRC) on top of Puppeteer to provide request collection and the infrastructure for our
page interaction code. More precisely, it uses a fork of TRC that we created to add some
functionality, fix some issues, and update Puppeteer 2. We chose TRC because it had been
successfully used by Senol et al. in their study [6]. Besides that, we were told that Selenium,
an alternative to Puppeteer, crashed regularly, and it would require us to write an equivalent of
TRC for Selenium. Another alternative, OpenWPM, is more complicated, not cross-platform,
and uses Firefox instead of Chrome, while most users in the real world use Chrome. In some
cases, adjustments to Puppeteer itself or fixes for bugs in Puppeteer or Chromium were needed,
in which case we submitted an issue to the project 3.

In short, the crawler visits a URL, fills username and password fields on the page, submits the
corresponding form, and may follow login/registration links to other pages and fill forms there.
Meanwhile, it listens for web requests leaking the filled username and password, sniffs of input
field values, and leaks of the password to DOM attributes. After the crawl is complete, it
gives a report containing information on leaking parties. Figure 4.1 gives an overview of the
components of the crawler.

Finding and filling fields

Email and username fields are detected through existing Mozilla Fathom models [39, 48], which
are evaluated in the page context. The email field detector is currently used in the Firefox
Relay add-on, it is necessary because email fields cannot always be detected by their type

attribute, as email fields on some websites have a type of text instead of email. From now
on, we will use the terms ‘email’ and ‘username’ interchangeably. It can also find fields inside
frames or shadow DOM. Frames with a different eTLD+1 are skipped by default, because we
think that they have a high chance of not containing a login form for the top website. If the
URL that we tried to visit redirects to a different domain, we also skip crawling the website.
For detecting email and username fields within shadow DOM, we use our fork of Fathom,

2 https://github.com/stevenwdv/tracker-radar-collector
3 Puppeteer: https://github.com/puppeteer/puppeteer/issues?q=author:

stevenwdv -reason:"not planned",
Chromium: https://bugs.chromium.org/u/1134224695/hotlists/devtools?can=1
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fathom-shadow 4. We wanted to be able to look into shadow DOM, because it is an emerging
technology and previous research skipped shadow DOM when finding forms. If a page tries
to create a closed shadow root, the crawler changes the call to create an open shadow root
instead, such that we can still look into it. We try to exclude hidden fields by using a function
from Fathom, which checks if the element has a nonzero size, is not above or to the left of
the screen, and is not transparent, among other things. It also looks at the ancestor elements.
Depending on the configuration, the crawler may fill just one or multiple forms. We group
fields in the same form and fill all of them, or fill all fields that are not inside any form. In
the newest version of leak-detect, we give preference to forms containing password fields
when it is configured to fill just one form, to prevent filling a newsletter form when a login
form is available, for example.

Capturing web requests and value sniffs

Requests are continuously logged by the request collector from TRC. This collector was mod-
ified by Senol et al. [6] to add WebSocket, request header, and POST data (request body)
support, together with some other improvements. On top of that, we added support to capture
the full request initiator call stack, and fixed some small issues. Field value sniffs are logged by
our modified API call collector, which listens for access to the value property. We modified
this collector to add the ability to capture custom data when an API is accessed and to capture
the full call stack. We also added support to more easily customize the observed APIs and to
pause the debugger in Chromium’s developer tools when an API is accessed.

Detecting password-to-attribute leaks

In Chapter 3 we introduced leaks to DOM attributes, as mentioned by Englehardt et al. [28].
We wanted to detect leaks of passwords to attributes before these are actually collected by a
tracker, such that leaks to trackers cannot be introduced if a new tracking script that collects
attributes is later added to the site.

We listen for leaks of passwords to DOM attributes using two methods. First, we use a
MutationObserver to observe the changes to attributes and added elements for the DOM
tree of the frame containing the password field, including shadow DOM. This method enables
listening for changes to attributes in the whole tree at once. However, it does not allow for
capturing the stack trace of the code that changed the attribute. That is why we implemented
a second method that instructs the DOMDebugger of CDP to pause whenever an attribute is
changed. This allows us to capture the stack trace and resume afterwards, but it requires
us to specify the elements of which the attributes should be observed; it does not support
observing the whole tree at once. Hence, we observe the elements that are most likely to have
the passwords written to an attribute, based on our pilot crawl. First, we observe the password
input to be filled. Besides that, we observe changes to attributes of other input fields in within
the same form element, if any, because we saw that a number of sites leaked the password to
other input elements. However, the stack trace often gives locations inside a minified script
bundle, which usually means that the original source file and function names are gone. This
means that we would not be able to determine if a JavaScript library caused the leak. To still
try to recover the original script name and location, we go through each script in the leak
stack trace and check if it has an associated source map. If it has one, we use that to map
the position in the minified script back to the original script. When determining if an attribute

4 https://github.com/stevenwdv/fathom-shadow
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leaks, we check if it contains the password or a JSON-encoded version of the password. Newer
versions of leak-detect also detect URI-encoded passwords.

Submitting forms

After filling a form, the crawler tries to submit the form by pressing enter inside a form field
while still listening for leaks. Each form is only submitted once. By default, it also inserts and
clicks a dummy button before submission to see if some scripts just mistake any button for
a form submit button. Facebook was previously observed collecting hashed email addresses
from forms after any button was clicked [6].

If configured to fill multiple forms, the crawler returns to the landing page and fills and submits
the next form. Login and registration links (and buttons) to follow are selected in the same
way as in the study from Senol et al. Pages with a different eTLD+1 are skipped as they are
likely not login pages for the current website.

Detecting request leaks

After crawling a page, requests are searched for possibly-encoded leaked filled values using our
value-searcher (see Chapter 5). This package is inspired by the LeakDetector used in the
study from Senol et al. It is implemented in JavaScript, such that it was easy to integrate this
in the crawler. We search the request body, URL, Referer and Cookie headers, and headers
starting with X−. Other headers are excluded to reduce the searching time, and the Referer

and Cookie headers should be the ones that leak most often, as they can contain the URL
of the visited website and values of tracking cookies. Headers starting with X− are custom
headers, and we wanted to discover if there were trackers using these to transmit the filled
values.

Labeling third parties and trackers

The crawler also automatically labels third-party and tracker domains of scripts in request URLs
and input value sniff stacks. Third parties are labeled by first looking at the corresponding
entity from the entity map from DuckDuckGo’s Tracker Radar [42], or at the eTLD+1 if that
fails. Trackers are labeled using a number of block lists: EasyList, EasyPrivacy [22], URLHaus
Malicious URL blocklist [49], Peter Lowe’s Ad and tracking server list [46], and uBlock Origin
filters, badware risks, privacy, and unbreak lists [45]. These are the default lists used by uBlock
Origin 1.45 excluding the quick fixes and resource abuse lists. We did not use the lists to block
trackers, only to classify them. When determining tracker status, we pass the full request URL,
the resource type, and the URL of the page to uBlock Origin, so we look at more than just
the domain.

Crawl output

After the crawl, a file containing all results in machine-readable JSON format can be saved,
together with a log file and a human-readable summary. The summary contains the most
important information from the JSON file and presents it as a timeline of events, like filled
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fields and detected leaks, with more details below that. See Appendix A for some example
summaries.

Batch crawls

It is possible to perform a batch crawl of multiple URLs with a single command, by passing a
file containing a list of URLs. Results are saved to separate files for each website. A number
of websites may be crawled in parallel, where all crawls run in the same Node.js process, but
multiple browser processes are used. We do not use multiple Node.js processes like some other
studies, because the latest version of Puppeteer is stable enough that it does not cause fatal
errors. Each crawl uses a fresh separate browser context, such that crawls are stateless. An
error in one crawl should normally not influence other crawls, unless the crawler ran out of
memory. If the crawler is interrupted during a batch crawl, it will remember which URLs it
fully crawled and which it has not finished yet, so that it can continue where it left off. It
also makes sure that no two crawler processes can accidentally run at the same time using the
same results folder.

Cookie prompts and bot detection

DuckDuckGo Autoconsent [50], built into recent versions of TRC, is used to automatically
interact with cookie management prompts (CMPs). By default, it is configured to accept all
cookies. The crawler changes the user agent to be Chrome 93 instead of ‘HeadlessChrome’. The
newest version also sets the nonstandard window.chrome property, which is normally present
in headed Chrome, and unsets navigator.webdriver and overwrites some other properties
that TRC normally overwrites to evade simple bot detection. Due to an oversight, this was
excluded from the version used for the main crawl.

Crawl options and additional features

Various crawl options can be specified. For example, the crawler can also be configured to
change the type of a password field that it fills to ‘text’, to simulate a ‘show password’ feature
and check if third-party scripts handle this properly.

It is also possible to specify a number of actions to be performed before searching and filling
fields, which can be useful when crawling a website where one has to click multiple buttons to
reach the form. These interactions can be recorded with the Chrome DevTools Recorder and
are replayed using Puppeteer Replay [51]. There is also an option for manual headed mode,
where one has the ability to manually fill forms that the crawler cannot find itself.
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Chapter 5

value-searcher

To make the crawler into a standalone tool that could detect leaks of email addresses and
passwords itself, it was practical to have the part that searches for leaks implemented in the
same programming language as the crawler, i.e. JavaScript. The script used to check for leaks
in the crawl from Senol et al. [6] was written in Python [52], but they did translate part of it to
JavaScript for their LeakInspector browser add-on [53]. However, this version still lacked some
compression support, had only limited lz-string support, and seemed to have some potential
bugs 1, some resulting from the translation to JavaScript. Additionally, we thought it would
be faster to use built-in Node.js functions for Base64 and hashing. Hence, we wrote our own
value-searcher package 2, including a lot of unit tests and integration tests to make sure
that it works correctly and can find the values that it should find.

5.1 Operation

value-searcher still uses the idea of recursive decoding, but instead of splitting on some
delimiters, it uses regular expressions (RegEx) to find substrings to decode. For example, it
can find substrings that may be Base64-encoded or URI-encoded data. The idea behind this
was that it may be better in finding values in encoded substrings delimited with unrecognized
characters. We chose to use recursive decoding instead of a method like the one from Starov
et al. [16], because it does not require multiple crawls of the same website, and we think it is
better at detecting leaks, especially in encoded structures in which parts change every request.
It supports decoding the following encodings commonly used on the web: Base64, HEX, URI,
JSON string, HTML entities, application/x-www-form-urlencoded, multipart/form-
data, lz-string, GZIP, ZLIB, raw DEFLATE, and Brotli. For Base64, multiple dialects are
supported, including the URL-safe dialect which uses -_ instead of +/ as digit 62 and 63. It
also supports searching for hashed values. Adding custom encodings is also easily possible. For
encodings operating on strings, we assume the strings are encoded using UTF-8, the character
encoding commonly used on the web. The searcher can be instantiated with a list of encoders
and decoders and a maximum depth for decoding. Additionally, a maximum encoding depth
can be specified. Encoding is mostly meant for non-reversible encoders, most notably hashes,
such that it can also find these. In the LeakDetector from previous studies, the resulting
encodings are called the ‘precomputed pool’. The encoding depth can be set to be greater
than 1 such that hashed Base64-encoded values are also found, for example. The operation

1 For example, see https://github.com/leaky-forms/leak-inspector/commit/ddce65c3,
7453d419, https://github.com/leaky-forms/leak-inspector/pull/19

2 https://github.com/stevenwdv/value-searcher
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Needle encode encode encode

Haystack extract & decode extract & decode extract & decode

Precomputed pool
∗ ∗∗ ∗

search in

∗: only if hash, unless last layer is allowed to be reversible

Figure 5.1: value-searcher operation. Values are recursively encoded/decoded with mul-
tiple encoders/decoders, this is repeated for all combinations. The ‘Needle‘ is the value to
search for, the ‘Haystack‘ is the buffer we search in, e.g. a web request

can be seen in Figure 5.1. By default, the code makes sure that the outer encoding layer of
each value in the precomputed pool is non-reversible. In practice, this means values in the
precomputed pool are always hashes of some possibly-encoded value, because normally it can
just decode encoded substrings using reversible encodings, such as Base64, so these do not
need to be in the precomputed pool. In some cases, however, the RegEx method may not
be able to properly isolate a Base64-encoded string that is prefixed by more potentially-valid
Base64 characters, for example. In this case, it can be useful to allow the outer encoding to
be reversible, such that the precomputed pool will include a Base64-encoded version of the
value to search for, for example. This behavior is more similar to what LeakDetector does.

5.2 Comparison with LeakDetector

To evaluate the performance of value-searcher, we compared it with both LeakDetector
versions (Python and JavaScript) 3. First of all, we verified that value-searcher can find
all leaks that LeakDetector could, using the dataset from the paper from Senol et al. Due
to the problem of poorly-delimited Base64 substrings mentioned above, it failed to find 5
leaks out of 12 621, unless the outer encoding in the precomputed pool was allowed to be
reversible. In the latter case, it successfully found all leaks, at least after some small fixes.
value-searcher would be able to decode some cases that LeakDetector cannot decode,
such as HEX-encoded values, escaped values in JSON strings, HTML-escaped values 4, and
compressed data inside a multipart/form-data POST request.

Speed

value-searcher can sometimes take a while to find values, especially in large complex struc-
tures that do not contain the search value it can take a while to come to this conclusion, because
it tries to decode a lot of parts first, due to the RegEx method. We did a speed comparison
between value-searcher with reversible encoding enabled, value-searcher without,
the Python LeakDetector.py, and leak_detector.js from LeakInspector. We ran LeakDetec-
tor.py with Python 3.10.8. For leak_detector.js, we compare a version using Node.js APIs like
Buffer and crypto, and a version using pure JavaScript, both run under Node.js 19.0.0. We
also tested the pure-JavaScript version in the Firefox browser, version 108.0. The results can

3 See https://github.com/stevenwdv/evaluate-value-searcher
4 LeakDetector can encode these but not decode
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Time (ms) (logarithmic, lower is better)
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Base64 JSON escaped

Base64 Zlib
(Microsoft Clarity)

lz-string
(Wunderkind)

SHA-256
(Facebook)
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value-searcher no reversible encoding
leak_detector.js Node
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leak_detector.js Firefox
LeakDetector.py

Figure 5.2: Comparison running time of value-searcher with LeakDetector, lower is better.
∗ = value not found. For the bottom group, the value was intentionally not present in the
encoded string

be seen in Figure 5.2. The time required to build the precomputed pool is not included. It can
be seen that LeakDetector.py is often the fastest. Unfortunately, value-searcher is often
slower than the others. However, as mentioned, it can find some values that the rest cannot.
Interestingly, the pure-JavaScript leak_detector.js version is often faster than the version using
Node.js APIs, while usually native (C) code is faster than JavaScript. This may be because
the script tries to decode a lot of small substrings, calling Node.js APIs in the process, and
context switches between JavaScript and native code take time, so staying in JavaScript could
be faster. When run in Firefox, which uses the SpiderMonkey JavaScript engine [54], the code
is even faster than in Node.js, which uses V8 like Chromium [55]. This was also something we
did not expect. It varies which variant of value-searcher is faster, with or without ending
with a reversible encoding allowed. With the former, it may be able to find an encoded value
more quickly without the need for decoding, while with the latter it does not have to search
for as many encoded values.
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Chapter 6

Crawl setup

We crawled a list of 30K web pages with login forms from a list composed by Roefs [56] using
the the Tranco top 100K domains from a Common Crawl snapshot from November/December
2021. The Common Crawl dataset consists of a large number of static downloaded web
pages [57]. Roefs used Mozilla Fathom models for login forms [48] to detect the forms in
the static DOM of the page. By using this list, we did not have to find pages with login
forms ourselves. We chose not to crawl their list of pages with registration forms, because
registration forms often have more fields that our crawler may not be able to fill, decreasing
the chances of a successful form submit. All crawled pages belonged to different domains
(eTLD+1).

To speed up the crawl, we opted to not follow hyperlinks on the crawled pages, and because
we crawl pages that were found to include login forms, this should generally not be necessary.
Additionally, we instructed the crawler to just fill one form per page. As email address and user-
name, we filled in leak-detector@example.com. As password, we entered The--P@s5w0rd.
We think that these values are distinctive enough such that they will not randomly occur
within binary data. The password was chosen such that it satisfies most common password
restrictions, such as the requirement for special characters, numbers, and capital letters. We
did not change the type attribute of password fields.

We searched for values encoded as Base64 (also URL-safe and non-padded Base64), HEX, URI,
JSON string, HTML, form data (application/x-www-form-urlencoded and multipart/
form-data), lz-string, GZIP, ZLIB, raw DEFLATE, Brotli, MD5, SHA-1, SHA-256, SHA-512,
a salted SHA-256 version, and a custom string substitution. The last two were observed in
the paper from Senol et al. [6]. We decode up to 4 layers and encode up to 2 layers for
the precomputed pool. We switched on an option to also catch leaked values within poorly-
delimited Base64 substrings in requests, for example, as described in Chapter 5.

We ran this crawl from a server in New York, to avoid influence from the GDPR, such as
websites collecting less data or refusing to load when accessed from inside of the EU. We first
ran a pilot crawl on 1K URLs to make sure that the crawler worked correctly. Based on this,
we fixed some issues and made some improvements.

We ran the crawl between October 3 and October 11, 2022, using leak-detect versions
between 028ee8d3 and 5ed68b2c, fixing some issues and crashes that we came across along
the way. These versions all use Puppeteer 18.0.5, which uses Chromium 106.0.5249.0. The
block list versions we used to label trackers are listed in Table 6.1. We used DuckDuckGo’s
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List Version
EasyList Sep 22, 2022, 11:42
EasyPrivacy Sep 22, 2022, 11:42
Peter Lowe’s Sep 17, 2022, 14:54
uBlock badware Sep 22, 2022, 05:47
uBlock filters Sep 21, 2022, 20:22
uBlock privacy Sep 20, 2022, 14:30
uBlock unbreak Sep 21, 2022, 16:57
URLHaus Sep 22, 2022, 00:13

Table 6.1: Tracker list versions used for main crawl, in UTC

entity map version 03b5f725 1. We skipped crawling three URLs, because value-searcher
went out-of-memory checking for leaks on these websites.

We later added the feature to the crawler that captures the stack for DOM leaks using
DOMDebugger, as mentioned in Chapter 4, and we re-crawled websites where we found DOM
leaks in the large crawl with this new version (leak-detect 3d5bc0ce, Puppeteer 18.2.1,
Chromium 107.0.5296.0) on October 14 on the same server. We observed that most DOM
leaks happened through minified JavaScript bundles, so it was hard to see if it was a library
causing these or original code from the website. To mitigate this, we tried to reconstruct the
original script name using a source map for the script, if available. We executed a crawl with
the updated crawler that uses source maps (leak-detect 48876782) on November 21 using
a VPN connection with an exit server in New York.

Finally, we analyzed all the output JSON files with Python to extract relevant statistics, which
we will present in the next chapter.

1 https://github.com/duckduckgo/tracker-radar/blob/03b5f725/build-data/
generated/entity_map.json
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Chapter 7

Results

The crawler was able to load 96% of websites in the main crawl. For the rest, it encountered
an error while fetching the document, such as a domain name that could not be resolved or
an invalid certificate, or it timed out while crawling the page. A breakdown of fatal error
frequencies can be found in Figure 7.1. ‘Operation timed out’ means that the entire crawl
took longer than 20 minutes and was aborted, which happened once. HTTP error status codes
were not taken into account. We found fields on 74% of the websites that successfully loaded.
6.0% of otherwise successfully loaded websites timed out while loading the main page, and for
2.4% the URL was still about:blank, while the others at least partially loaded. In both cases,
we still went ahead with the crawl, after instructing the browser to stop loading the page.

0 100 200 300 400 500

net::ERR_NAME_NOT_RESOLVED
net::ERR_CERT_COMMON_NAME_INVALID

net::ERR_CERT_DATE_INVALID
net::ERR_CONNECTION_REFUSED

net::ERR_CERT_AUTHORITY_INVALID
net::ERR_CONNECTION_RESET

net::ERR_ADDRESS_UNREACHABLE
net::ERR_ABORTED

net::ERR_CONNECTION_CLOSED
net::ERR_SSL_PROTOCOL_ERROR

net::ERR_EMPTY_RESPONSE
net::ERR_SSL_VERSION_OR_CIPHER_MISMATCH

net::ERR_TOO_MANY_REDIRECTS
net::ERR_HTTP2_PROTOCOL_ERROR

net::ERR_INVALID_RESPONSE
net::ERR_SSL_UNRECOGNIZED_NAME_ALERT

net::ERR_UNEXPECTED_PROXY_AUTH
Operation timed out

net::ERR_BAD_SSL_CLIENT_AUTH_CERT
net::ERR_SOCKET_NOT_CONNECTED

Figure 7.1: Fatal crawl errors [58]. ‘Operation timed out’ means that the entire crawl took
longer than 20 minutes.

In total, we filled 21 485 email fields and 19 484 password fields. On 18 695 pages, we filled
both an email and a password field, while on 2 127 pages we filled just an email field, see
Figure 7.2. We found 26 sites that had fields within frames with the same eTLD+1, and 9
sites with fields inside a shadow tree. We were able to successfully submit 20 997 forms.
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Figure 7.2: Field typed filled by the crawler for each website

7.1 Request leaks

In this section, when we count requests satisfying some criteria, we do not count two requests
to the same eTLD+1 from the same website twice, unless they differ in the feature we are
looking at. When we talk about trackers here, we mean third-party trackers, as identified by
our crawler. Unless specified otherwise, we look at email and password leaks combined.

We found a leak to at least one third party on 63% of crawled URLs without fatal errors. Only
looking at tracking parties, we found leaks on 7.2%, or 2 071 pages. In Table 7.1 you can
find a breakdown of the two leak categories, email addresses (or usernames) and passwords,
and the tracker status of the third party that leaked the value. We can see that most third
parties receiving email addresses are trackers. Most of the time, they receive these addresses
in hashed form, such that they can use them to identify a user. Passwords are usually not
sent to trackers, but they are used by some third-party authentication services, and sometimes
passwords may accidentally end up at tracking parties, as we will discuss in Section 7.3.

email password
plain hashed plain hashed

tracker 946 2 177 32 0
non-tracker 442 69 108 2

Table 7.1: Number of websites with request leaks by category, encoding, and third-party tracker
status

Leaking domains

In Figure 7.3 you can see that the most frequently occurring tracker domain that values are
leaked to is facebook.com, which leaks an order of magnitude more often than the runner-
up, google-analytics.com, even if we add leaks of google-analytics.com, google.com,
and doubleclick.net. In Table 7.2 you can see the tracker domains and their corresponding
entities per leak timing, where ‘post fill’ means that the value was leaked just after filling
the field, before submission, and ‘post submit’ means after submission. We found 2 237 post
submission leaks to 218 domains on 1 602 websites, and 599 post fill leaks to 79 domains
on 328 websites. One can see that AtData causes most leaks directly after filling the form.
Facebook collects most email addresses after form submission, followed by Google, TikTok,
and AtData. We excluded the leaks which occurred just after clicking the added dummy button
from this table, because practically all of these (1 597) were due to Facebook, as can be seen
in Figure 7.4. We also found email address leaks on one website before we filled in the email
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Figure 7.3: Most-leaking tracker domains with the number of websites they leak on

field on the page, which was likely caused by a tracker fingerprinting our browser.

The high position of Google Analytics is interesting, because Google does not allow using
it to collect PII, such as email addresses [59]. Most of these addresses were leaked inside
the dl parameter in the URL, which contains the document URL [60]. This means that the
email was put in the URL after filling the form, and then collected by Google Analytics. To
a lesser extent, values are also leaked via el (Event Label), utmp (UTM page path) [61], and
some other parameters. We saw that many of these leaks only happen when entering incorrect
credentials, like we did, because websites may reload the login page with the email field already
filled, using a URL parameter to remember the value. Other causes include the crawler filling
a field with an email address while the field is not meant for that, such as with a search field,
and the crawler filling newsletter subscription forms instead of a login forms, which sometimes
redirect to a page with the email address in the URL.

0 500 1000 1500 2000
Number of websites

Post submit

Post button click

Post fill

Request domain
facebook.com
google-analytics.com
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google.com
doubleclick.net
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other

Figure 7.4: Top leaking domains by leak timing
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Timing Request domain Entity Website count
Post fill rlcdn.com AtData a 81

yandex.com Yandex 32
bouncex.net Wunderkind b 32
fullstory.com FullStory 31
addthis.com AddThis (part of Oracle) 23
agkn.com Neustar (part of TransUnion) 23
dotomi.com Epsilon c 23
rkdms.com Merkle d 22
lijit.com Sovrn e 22
yahoo.com Yahoo 22
clickagy.com Clickagy (part of ZoomInfo) 21
bluecava.com Adstra f 21
alcmpn.com Adstra g 21
traversedlp.com Traverse 21
listrakbi.com Listrak 20
pippio.com LiveRamp h 15
shop.pe SafeOpt i 12
salecycle.com SaleCycle 11
smarterhq.io Wunderkind j 11
recapture.io Recapture 9

Post submit facebook.com Facebook 1 283
google-analytics.com Google 130
tiktok.com TikTok 83
google.com Google 52
doubleclick.net Google k 48
snapchat.com Snapchat 29
bouncex.net Wunderkind 25
6sc.co 6sense 16
pinterest.com Pinterest 16
linkedin.com LinkedIn 14
fullstory.com FullStory 13
bizible.com Adobe Marketo l 13
permutive.com Permutive 13
klaviyo.com Klaviyo 13
addthis.com AddThis (part of Oracle) 12
criteo.com Criteo 11
yandex.com Yandex 10
adnxs.com Xandr m (part of Microsoft) 10
bing.com Microsoft 10
clarity.ms Microsoft 9
zenaps.com Awin n 9

Table 7.2: Top leaking domains by leak timing. Many of these parties were acquired by larger
companies in the past or were rebranded.

a formerly TowerData, RapLeaf
b formerly BounceX, Bounce Exchange
c formerly Dotomi
d formerly Rimm-Kaufman
e formerly Lijit
f formerly BlueCava
g formerly ALC, American List Counsel
h formerly Arbor, Pippio
i formerly Shop.pe
j formerly SmarterHQ
k formerly DoubleClick
l formerly Bizible

m formerly AppNexus
n formerly Affiliate Window, Zenaps
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Leaks to addthis.com, dotomi.com, lijit.com, bluecava.com, alcmpn.com, agkn.com,
rkdms.com, and traversedlp.com are often caused by Clickagy, which allows including mul-
tiple tracking parties at once. This can be seen in Figure 7.5, which shows initiating scripts
for each domain that is being leaked to. See Figure B.1 in Appendix B for a version providing
just the portion of requests per domain, without the quantity on a logarithmic axis.
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Figure 7.5: Top tracker domains to which data is leaked, including domains of scripts initiating
the leaking requests to that tracker (‘Initiator’ legend). ‘self’ indicates that the script domain
is the same as the tracker domain.

Most pages have just one leaking tracker, with less that one fourth of pages having two or
more trackers, although couple of pages have 24 leaking trackers. See Figure 7.6.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Number of trackers on the page

1

10

100

1000

Nu
m

be
r o

f w
eb

sit
es

 (l
og

ar
ith

m
ic)

Figure 7.6: Number of leaking trackers per page

Request types and parts

In Figure 7.7 one can see in what kind of requests we found the most leaks and by which parties.
We observed 1 211 leaks through the request URL and 1 211 leaks through the request body.
Of these, 1 772 were from the Beacon API, most of them to Facebook. However, Facebook can
use one of multiple communication methods and chooses which to use based on the browser,
and it turns out that our headless browser was not recognized as a regular Chrome browser
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by Facebook, because we did not set the nonstandard window.chrome property. With this
property correctly configured, it seems that Facebook prefers using images (tracking pixels)
instead, so the graph in Figure 7.7 would look substantially different. We also saw 47 leaks
via a request header, but remember that we only search Referer, Cookie, and X−… headers.
From these, we saw 27 leaks in the Referer header, 6 in the Cookie header, and one in a
header called x−mbsy−url, apparently used by Ambassador (getambassador.com).
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Figure 7.7: Leaking request domain for each request type.

Encodings

Figure 7.8 displays the most frequently used encodings for the leaked values. Most common
are SHA-256 hashes, which we found leaked on 1 823 websites. Of these, 1 625 were collected
by Facebook. MD5 hashes (336 websites), URI-encoded variants (664), and plain text (188)
are also popular. Note that the first (outer) Base64 layer in the figure may not actually be
present in the request, as CDP encodes binary request data with Base64. We observed just
one value which was encoded with more than 3 layers, namely using 4 URI encode layers. We
saw 6 websites leaking values encoded with the substitution cipher mentioned in Chapter 6.

In Figure 7.9 you can see which domains receive the data in hashed form and which do not. We
see that TikTok mostly collects hashed email addresses (after submission), and that Google
receives mostly unhashed addresses, which makes sense for the unintentional Google Analytics
leaks. For leaks directly after filling the field, we saw in Table 7.2 that AtData, Yandex,
Wunderkind, and FullStory are the biggest parties. While AtData sends email addresses in
hashed form, the other three send the unhashed address.

Protocol

It is interesting how some websites still transmit credentials including passwords over insecure
HTTP connections, as can be seen in Figure 7.10. The same is true to a lesser extent for non-
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Figure 7.8: Encodings of values leaked to trackers.
Layers are separated by ‘→’ with the outer layer first

0.0 0.2 0.4 0.6 0.8 1.0
Portion of requests from unique websites

other
6sc.co

pinterest.com
listrakbi.com
clickagy.com

traversedlp.com
rkdms.com
agkn.com

lijit.com
alcmpn.com

bluecava.com
yahoo.com

dotomi.com
snapchat.com

fullstory.com
bouncex.net
addthis.com
yandex.com

doubleclick.net
google.com
rlcdn.com

tiktok.com
google-analytics.com

facebook.com

Re
qu

es
t d

om
ain

non-hashed
hashed

Figure 7.9: Tracker request leak domain with leaked value encoding type

tracker third parties. Also interesting is that most trackers do use secure HTTPS connections,
which may be explained by the fact that browsers may block insecure HTTP traffic, which will
hinder trackers using it in their operation.

7.2 DOM leaks

We observed 288 pages with DOM password leaks, that is, pages with scripts that copy the
password field value to a DOM attribute. We re-crawled these with the newer leak-detect
version to obtain source-mapped stack traces, as mentioned in Chapter 6. In this crawl, there
were 269 pages where we still found DOM leaks. We got 6 fatal errors while performing the
crawl (e.g. connection failures like before, but we also count HTTP errors for this crawl). We
also observed 14 timeouts while loading main pages, including one where the URL was still
about:blank.

We found 218 pages with DOM leaks which occurred directly after filling the element, and
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Figure 7.10: Request leak value type and protocol for first-party requests, third-party tracker
requests, and third-party non-tracker requests

51 where these only happened after submitting the form. Aside from a couple of leaks, all
of these were to the value attribute. In Figure 7.11 you can see that most leaks were to
an input element that was filled by the crawler. A lower but still significant number of leaks
was to some other hidden input field. These leaks were likely intentional in the design of the
form. ‘unknown’ elements indicate elements for which we were not able to capture additional
information, because the element was quickly removed or because the page navigated, for
example.
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other DIV
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other unknown element
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Figure 7.11: Elements with password leaks to DOM attributes

Leaking scripts

We used the stack traces, with source maps, where available, to find which scripts most com-
monly leaked the password to a DOM attribute. In Figure 7.12 you can see the results. On
the top, you can see the script names of the script at the top of the stack, so the script that
directly wrote the value to DOM. On the bottom you can see the most commonly occur-
ring scripts anywhere in the leak stack. On the right, source maps were used, while on the
left the actual script names are listed. We tried to collapse HEX strings (e.g. framework-
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d2410d5f375f8476.js becomes framework-*.js), jQuery versions (e.g. jquery-2.1.1.
min.js becomes jquery*.js), and react-dom variants (e.g. react-dom.production.
min.js becomes react-dom.*.min.js). We can see that framework-*.js ranks very high
in the raw script names. Most of these are minified script bundles. Using source maps we
can see that most of this is actually from the react-dom [62] package, part of the React
framework. The scheduler.production.min.js script we see in the most common scripts
is also part of React 1. We observed that the function of react-dom that leaks the password
to DOM is called setDefaultValue 2. It turns out that this is intended behavior, although the
original reason for introducing the behavior is unclear, and it has caused multiple bugs. An is-
sue was filed in the React repository at the end of 2017 which proposes removing this ‘attribute
syncing’ behavior and provides some context [63]. Apparently, the maintainers also know of
the security risks of copying a password to an attribute, such as analytics scripts collecting
attributes and thus passwords, and CSS key logging. CSS key logging works by matching the
value attribute requesting different URLs from a malicious server depending on the value,
thus recovering the value by looking at the incoming requests. It is only possible if an attacker
can insert a custom CSS style sheet into the page with the form. A pull request that was
merged at the end of 2019 disables attribute syncing if the disableInputAttributeSyncing

feature flag is enabled [64], but as of version 18.2.0 this is not the case [65] and it is not clear
when this will happen. It seems that enabling React feature flags as a consumer is not possible
without forking and recompiling the React repository. We also tested other popular JavaScript
frameworks (Vue.js, Angular, Svelte, and Preact) and found none that also copy the value to
an attribute.

7.3 Password leaks

We found a number of cases where passwords seemed to leak to third parties, but only a small
part of these leaks were actually problematic password leaks, see Table 7.3. We manually went
through all pages with possible leaks and visited them to determine if the leaks were actual
password leaks or not. These leaks are labeled ‘True positive‘ in the table.

There are various reasons for why a request may be wrongly labeled as a password leak.
First, many domains that our crawler labeled as third parties are actually also owned by or
collaborate with the first party. Second, a number of websites include login forms managed
by other entities, such as an event planning service. Lastly, some websites use a third-party
service for authentication. These leaks are all put under ‘False positive’ in Table 7.3. We
observed false positives on 104 websites.

We also found 4 websites with leaks that were real, but caused by some obscure web form that
a normal user would not come across unless they were given the direct URL. On 5 websites,
we detected leaks, but later when we wanted to report them we could not reproduce them
anymore. On one website, we observed a leak to tracking software, but we decided not to
report the leak because the software was owned by the same company. For one website (labeled
‘Unknown’ in the table), we were not able to determine with certainty if the transmission of
the password was intentional or not.

1 It is part of the scheduler package, which is internal to React:
https://www.npmjs.com/package/scheduler

2 https://github.com/facebook/react/blob/edbfc639/packages/react-dom-bindings/
src/client/ReactDOMInput.js#L415-L431
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Figure 7.12: Names of scripts causing password leaks to DOM attributes, with hashes and ver-
sions stripped. Top: scripts directly writing password to attributes, bottom: scripts occurring
anywhere in the stack of the writing call. Left: raw script name from URL, right: script name
from source map (or raw name if no source map was available).

Actual leaks

We found 10 websites with actual password leaks using the crawler, and we manually found
5 extra websites with leaks caused by the same third party as one of the other 10 leaks. We
found these extra leaks we found by searching for websites with a tracker (WebFX) that we
found to be leaking, and by using a web source code search engine, which we will elaborate
on below. We reported these leaks to the website administrators and to the collecting party, if
they were to blame, but received just 2 messages back. However, it seems that some parties
who did not reply have addressed the issue: at the time of writing, we cannot reproduce the
password leaks anymore when running leak-detect on 4 of the 13 leaking websites which
did not reply to our disclosures. One of the parties that did reply to our disclosures, Xsolla,
awarded us a bug bounty. A list of password leaks with causes and more information can be
found in Section C.2.

While we encountered leaks of passwords to DOM attributes on 288 pages, we only saw one
instance where this caused a leak to a tracker, namely the leak from Xsolla to Inspectlet in
Section C.2. This leak occurred because the password was written to the custom data−value

attribute, which Inspectlet did not filter out. Interestingly, while the password was also written
to the value attribute, this was not what caused the leak, as Inspectlet does not collect this
attribute. Looking at the rest of the leaks, we can conclude that most tracking scripts do not
collect the value attribute anymore, as some used to do [28].
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Leak type Websites
True positive 10
Extra discovered 5
False positive 104
Could not reproduce anymore 5
Obscure form 4
Tracking of same company 1
Unknown 1

Table 7.3: Requests to third-party domains containing password. True positives are actual
password leaks discovered by our crawler, extra discovered leaks are related password leaks
discovered by us, false positives were intentional transmissions. ‘Could not reproduce anymore’
means that the leaks were found by our crawler, but when we wanted to report them to the
websites, we could not reproduce them anymore.

Leaks to WebFX

We found that a script from WebFX that collects fields values while users are typing, also
sent values of password fields to marketingcloudfx.com, because they forgot to filter out
passwords. The crawler found 2 websites where this script caused a leak. We found one more
manually by looking at the crawl results, where on one site we found the tracker, but it was not
leaking on the page that we crawled, only on another page. We then used a web source code
search engine [66] to find more websites using the tracker, which yielded another 3 websites
with password leaks caused by WebFX. WebFX has not reacted to our disclosure.

Leaks to malicious domain CrashInYou.net

We also observed a malicious inline script on the TechPowerUp forum, which reads the user’s
credentials on submit and transmits them to crashinyou.net. The leaking code can be seen
in Listing 1. Using the same web source code search engine as before, we also found another
site, pixelmon.ru, with the same malicious inline script, except it sends the credentials to a
different page of crashinyou.net.

function ssubmit()

{

var inputa = document.getElementsByName("login")[0].value;

var inputb = document.getElementsByName("password")[0].value;

var xhr2 = new XMLHttpRequest();

var body2 = "user=" + encodeURIComponent(inputa)

+ "&getterr=" + encodeURIComponent(inputb);

xhr2.open("POST", 'https://crashinyou.net/site_dti2343rewdf.php', true);

xhr2.setRequestHeader('Content−Type', 'application/x−www−form−urlencoded');

xhr2.send(body2);

}

Listing 1: Leaking code on TechPowerUp forum to crashinyou.net (extra wrapping added)

Fortunately, it seems that crashinyou.net is currently down, with an error from Cloudflare
that the server is offline. Looking at the Wayback Machine archive, we can see that the
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malicious code was put in somewhere between Jan 8, 2020 and Feb 23, 2020 3. We contacted
TechPowerUp and they told us that the malicious code was inserted into the login page template
on Feb 6, 2020, which aligns with the archived versions. They also told us that they did notice
a specific Russian IP address logging in to “tons of our accounts, like they knew the password”.
The crashinyou.net domain was registered way before that, in 2017, and at first hosted a
‘Minecraft checker’ form (in Russian), which could apparently be used to search for accounts
with compromised credentials for the game Minecraft. Later, the domain was replaced by
crashinyou.com and later crashinyou.me, now offering this service for more games, and
also allowing to recover IP addresses besides (possibly hashed) passwords. Apparently, users
can buy keys to use the service 4. The site seems to be run by Ukrainians, judging by the
language used in the latest version and comments like “Happy New Year everyone, may all
Russians die, Ukraine will win!” (translated from Ukrainian) in their Telegram channel 5.

Now, there are two options: either the crashinyou.net domain was bought by an unrelated
new party, or it is still owned by the same group. If it is the latter, they might obtain account
credentials from hacked forum websites like TechPowerUp to see if some users use the same
credentials as in some video games like Minecraft. As mentioned, we found an almost identical
malicious inline script on pixelmon.ru. This is a web forum related to Minecraft, so it makes
sense to collect credentials for Minecraft accounts from here. We expect that there were
more websites that contained the malicious script, also judging from URLs of similar endpoints
on crashinyou.net captured by the Wayback Machine 6. A timeline of events regarding
CrashInYou can be found in Section C.1.

3 https://web.archive.org/web/20200701000000*/https://www.techpowerup.com/
forums/login/

4 https://telegra.ph/Gajd-CrashInYou-06-26
5 https://t.me/s/crashinyou1
6 https://web.archive.org/web/*/http://crashinyou.net/*
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Chapter 8

Discussion

8.1 Comparison with other studies

Regarding leaks directly after filling, AtData (rlcdn.com) is the largest, which is in line with
the results from the US crawl of Senol et al. [6]. Other parties that ranked high in both studies
were Yandex, Wunderkind, FullStory, AddThis, Neustar, Yahoo, and Listrak (see Table 7.2).
Parties that leaked significantly less in our study were Taboola and AdRoll. Taboola leaked
on 3 sites, but only post submit, while AdRoll leaked on 2 sites pre-submit and on 4 sites post
submit. Looking at the full list of leaks of the study 1, we can see that we both found many
leaks to Clickagy-related trackers AddThis, Epsilon (dotomi.com), and Neustar (agkn.com)
(all exactly 133 in their study), but they found only a couple of leaks to other Clickagy-related
trackers Sovrn (lijit.com), Adstra (bluecava.com and alcmpn.com), Merkle (rkdms.com),
and Traverse (traversedlp.com), all of these on the same two websites. Note that while the
table in their paper is sorted by prominence, ours is sorted by the number of websites with that
tracker, not taking into account the rank of the website. Like them, we still observed Facebook
mistaking any button that was clicked for a submit button, causing the email address hash to
be transmitted. This also happens when accessing websites from the EU.

The study from Kats et al. lists the parties most frequently leaking search queries via request
payload [34]. While this is something different than an email address, we can see that in their
study Facebook also ranks high, like it does in our study after submitting the field. However,
session replay company Hotjar, their runner-up, ranks much lower in our study, with just 3
leaks in total. Xandr (adnxs.com), Criteo, Sovrn (lijit.com), and Google Analytics rank
relatively high in both studies.

The study of PII leakage from sign-up forms by Dao and Fukuda gives some relevant statistics
for shopping sites [9]. Again, for them Facebook also ranks high. In their study, Criteo,
Pinterest, and Snapchat rank much higher than in our study, although we did find some leaks
to these domains. Apparently, these trackers are more common on shopping sites. AtData
(rlcdn.com) ranks a lot lower than for us. They observed most leaks through the URL, while
we observed Facebook extensively leaking via the request body using the Beacon API, but we
will add a caveat in Section 8.2. Like them, we also observed that many of the leaks used
SHA-256 hashing.

Acar et al. list parties that transmit the whole DOM of the page [7]. We also observed some
scripts extracting at least parts of the DOM. For example, we observed a password leak where

1 https://homes.esat.kuleuven.be/~asenol/leaky-forms/#findings
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Yandex Metrika collects the whole DOM tree, including the value attribute of a hidden field.
Yandex and FullStory both rank high for post fill leaks in our study, but the remaining parties
did not rank high. It seems that these may not collect input values, or at least not anymore.
We only observed a couple of leaks from SessionCam and Hotjar, and could not find any leaks
to SmartLook. It may be that they do not collect the literal value anymore, but they may use
equal-length masking.

Chatzimpyrros et al. discuss PII leakage from registration pages before submission, and they
list the top 10 third-party domains that collect unencoded email addresses [26]. Although they
claim these are trackers, it seems to us that at least some of these are benign parties like
website or form builders. Of the leaking parties they found, we also found Google, AdRoll,
Cloud-iQ, and HubSpot (hsforms.com), but we did not mark hsforms.com as a tracker.
Looking into the leaks to hsforms.com, all leaks in our study were to an endpoint called
emailcheck, which seems to perform some verification of an email address entered into a
newsletter form, which is not blocked by uBlock Origin and may be necessary for the form to
work.

Englehardt and Narayanan did not fill forms in their study, but only tested for the presence of
trackers on a page. They found Google Analytics and other Google domains to be the ones
occurring most often, followed by Facebook, Twitter, and Xandr (adnxs.com) [12]. We found
all these parties leaking in our study, although Twitter caused leaks on just 8 pages. They
also showed how 82.9% of third-party services on the top 55K sites only supported insecure
HTTP, instead of HTTPS, although third parties on websites with a higher rank generally
did offer HTTPS. We observed that for our dataset almost all trackers used HTTPS and the
overwhelming majority of third-party non-trackers used HTTPS.

Starov et al. investigated leakage from contact forms by third parties [16]. They found a
number of unintentional leaks via the Referer header, mostly to Google and Facebook, while
we found such leaks on just 27 sites. This is caused by a change in the default policy for
sending the Referer header: since 2017, Chrome only sends the host name for requests to third
parties, instead of the full URL. However, we did observe many leaks through the document
URL parameter in Google Analytics requests, which is also caused by PII being present in the
page URL. We did not find many such leaks to Facebook; most data sent to Facebook was
sent in hashed form in the request body. Starov et al. also list third parties that were found
intentionally leaking PII before and after submission, but their ranking looks different from
ours. First, they do not list Facebook here, while for us this was the top leaking party of
email hashes. This may be caused either by a change in how Facebook operates or by the
difference in how they detect leaks. Some other top leaking parties in their study were Adobe
(marketo.com and bizible.com), Salesforce, HubSpot, MailChimp (list-manage.com),
and AWeber. We found barely any leaks from SalesForce, but found more leaks from the rest.
However, we marked most leaks from Salesforce, HubSpot, and MailChimp as not tracking-
related based on the full URLs. For pre-submit leaks, they list SessionCam as the top leaking
party, although they count just 5 leaks in a set of 100K websites. We observed just 2 websites
where SessionCam leaked, of which one leak was before submission. For the other pre-submit
domains listed we have none in common. It seems that either the number of pre-submission
leaks increased since 2016, or that their leak detection method using multiple requests was
less reliable.
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8.2 Limitations

There are of course a number of limitations to our study. In this section we will list these,
focusing on the crawl that we performed, but also mentioning general limitations of leak-
detect.

Pages crawled

First, we look at the pages that were included in the crawl. As mentioned, the set with URLs
that were crawled was composed the year before we conducted the crawl, and experienced
a number of pages where the browser could not successfully establish a connection with the
server, usually because the domain name could not be resolved or the certificate was invalid.
In one case, the crawl of a website timed out, which means that it took longer than 20 minutes
to crawl the site, because the crawler got stuck somewhere. Additionally, some pages with
forms may have moved between the labeling of the dataset and the crawl, and the version of
the crawler used for the main crawl did not check for HTTP error status codes like 404 Not
Found, 500 Internal Server Error, or 403 Forbidden; it would just fail to find any fields on such
pages.

There are also some limitations related to the creation of the dataset from Roefs. First, it uses
the Common Crawl dataset, which means only static forms are included [67], so forms that
would be dynamically generated with JavaScript are excluded. This unfortunately also means
most forms inside shadow DOM were excluded, as shadow roots could traditionally only be
created using JavaScript, and the declarative shadow DOM feature that allows creating them
using just HTML is still relatively new, supported in Blink-based browsers (Chrome, Edge,
Opera, …) since mid-2021 and not supported in Safari or Firefox [68]. Forms inside frames
were also skipped. This means that the number of sites with fields inside shadow DOM (and
also inside frames) may be a lot higher than we observed, which we did not realize at first.
The list of course also excludes forms that Fathom did not recognize. To detect the forms,
Fathom searches for keywords like ‘login’, ‘signin’, and ‘username’, but this set is not complete
and does not include non-English terms, which means that forms in a foreign language, where
also parts of the source code are not in English, will not be included. For more limitations,
see Roefs’s thesis [56]. The list also includes URLs of obscure pages with forms, which actual
users of the website will not normally come across. For our crawl, we used the login forms list,
not the registration form list, so registration forms are underrepresented in our results. The
login form list contained 30K websites, which is smaller than most web tracking studies used.

For some pages, we experienced a timeout while loading the main page, in which case we just
tried to continue with the crawl anyway. In some cases the page was partially loaded, in other
cases the URL was still about:blank, see Chapter 7. This means that our crawler will have
missed a number of forms which were not loaded yet.

If the page when loading redirected to another domain which the crawler would label as a third
party, we would not fill fields on that page. This may mean that we excluded some pages of
companies that changed their name or were merged into another company. As mentioned in
Chapter 6, we also skipped crawling 3 websites due to out-of-memory problems in value-

searcher.

It is likely that we failed to crawl a number of pages because our crawler was detected as a bot
and thus blocked from accessing the website. As mentioned in Chapter 4, due to an oversight,
some properties giving away that our browser is controlled by a crawler were not overwritten
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by us. This may have lead to some more scripts detecting our crawler as such, although more
advanced detection mechanisms will not be fooled by changing these properties anyway.

We only performed a crawl originating from New York, while results from the EU may look
substantially different, due to the GDPR, but also because some websites block access from
certain countries. This difference can be seen in the study from Senol et al. The crawl to
record source-mapped DOM leak stack traces was conducted at a later time, on a different
machine than the main crawl, and using a VPN to New York instead of a machine physically
located there, which may have influenced the results slightly. We did observe that we failed
to find 19 DOM leaks that we found before. This was at least partially caused by connection
failures, timeouts, and server errors. However, we think that the different environment should
not impact the stack trace of the DOM leaks and the attribute and element that is leaked to
in most cases.

In our crawl, we did not make the crawler click login or registration links, but in general there
are also some limitations with this feature. First, it will not find all such links, because some
links will only have hints to their purpose in a language that the tool does not recognize. This
means that the tool is likely to find less forms on these pages than on others when following
links is turned on. It may also follow links that are not actually links to login or registration
forms, but this should mostly influence just the crawl time and not leak statistics. Lastly, it
will not find links inside shadow DOM.

Finding fields

If the crawler successfully ends up on a page with a login or registration form, it may still not
find it. For example, maybe a button had to be clicked first to make it visible, or the form could
be visible but Fathom does not recognize the email or username field. When identifying email
and username fields, Fathom looks at some English keywords, which, as mentioned before,
will mean we miss some fields on pages in a foreign language. It may also be that in some
cases we enter an email address into a field which was not meant for that, which can cause
extra leaks. On the other hand, password fields should always be detected correctly using their
type attribute with value ‘password’. In some cases, we also saw that the crawler filled an
unexpected form. For example, it filled a field to subscribe to a newsletter, instead of the
login form in the center of the page. Because we instructed the crawler to fill just one form,
this means that the login form will be skipped. On 2 127 websites we filled just an email or
username field (see Figure 7.2), which could indicate we missed the main form, or that the
form was split in multiple stages, where the username has to be submitted first. We did not
fill fields inside frames with a different eTLD+1, even though in some cases a first party owns
multiple domains, and they could place a form inside a frame with a different domain.

Filling fields

Before we can fill a form, all popups that cover it need to be closed. We tried to close
cookie prompts, but have probably missed some that were not recognized by DuckDuckGo
Autoconsent. We have also likely failed to close some popups that were not cookie-related,
which means we could not fill forms on these pages.

The crawler cannot complete forms separated in multiple stages, where it would first need to
fill in the email address and submit it, and only then fill in the password. For these forms, the
crawler would not fill the password field. We also did not attempt to fill other field types than
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email address, username, or password, such as real name, street address, telephone number,
and credit card information, although it would also be interesting to know how many third
parties collect these.

We do not change the type of password inputs to ‘text’ to simulate using a ‘show password’
button, if the field has one, or using a browser add-on which shows passwords. It is likely that
some trackers will accidentally collect the password in these cases as they would not recognize
the field as a password field.

Submitting form

After filling, we try to submit the form by pressing enter inside the first recognized field. We
only filled forms using a nonexistent account with an email address ending in @example.com.
This means that we do not exactly know what would happen when we use an existing account
with a valid email address. It may be that on some websites a third party only collects data on
a successful login attempt, but we also saw pages that on an unsuccessful login put the email
address in a parameter in the URL to pre-fill the field for the next login attempt, causing a
leak that would not occur with valid credentials.

The submit action itself may also fail. For example, because not all fields were filled, fields
were filled with data with an incorrect format, or a checkbox was not checked. Other websites
may not accept submission by pressing enter, or they may require a user to solve a captcha,
which we did not attempt. However, even if the submission failed, some third parties may still
decide to collect the filled values.

Finding leaks

Meanwhile, we capture requests and search for the filled values inside these requests using
value-searcher, but some leaks may be missed. For example, values encoded with unsup-
ported encodings or using an unknown salt, encrypted values, values encoded using too many
layers, encoded structures that were poorly delimited such that we could not extract them,
or if the local part and domain of the email address were encoded separately. However, we
observed just one value encoded with more than 3 layers, namely 4 URI encode layers, which
is the maximum number of layers we decode. This value could also be found with 3 decode
layers and 1 encode layer (for the precomputed pool), so we think that using 3 decode layers
is likely enough in almost all cases. We only search for the first occurrence of a (hash of
the) value, so if it was encoded using multiple methods, we just record the first one that we
find. This could also mean that we think just a hash was collected while the request (possibly
unintentionally) also contained the unhashed value somewhere. Values that were leaked by
only sending separate keystrokes are also not detected.

Many tracking scripts batch events like mouse movements, clicks, and keystrokes into larger
packets, which has two consequences for our request leak detection. Firstly, it may be that the
packet happened to be sent after submitting the form, even though it would be sent before
submission if we would have waited longer or if we had unfocused the page, for example. This
means that some cases where we recorded a leak to be ‘post submit’, it could have been ‘post
fill’. Secondly, it might mean that some trackers did not send the batched information at all,
because they thought that they would be able to do that later-on, but then we closed the
browser. In a more recent leak-detect version, we simulated unfocusing and refocusing
the page after submission, because we observed that some trackers would always send the
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batched events after unfocusing the page. On at least one site we saw that clicking a field
with a filled value caused a request with the value to a third party, but we only click the first
field after filling, to then press ‘Enter’ in the field to submit the form, which means that we
would usually miss password leaks that are caused in this way.

Regarding field value sniffs by scripts, we only recorded access to the value property, while
there are other ways to obtain the value in a field, such as using key events or FormData.
Another way in which we could miss some events is if the website opens a new tab or popup
window. In this case, the crawler may fail to record the first couple of requests and sniffs. For
some DOM leaks, we failed to capture the stack or element for the leak, for example, this may
occur because the page navigated directly after the leak, because the element with the was
removed from the page, or because the element was not a neighboring field (in case of the
missing stack trace).

When counting leaking sites, we count distinct eTLD+1 values. However, it may be that the
same party includes the same leaking tracker on different subdomains which have a different
eTLD+1, which means we would count the tracker more times than we would want to.

Labeling third parties and trackers

We try to detect third parties based on the DuckDuckGo entity map and the eTLD+1, but
we observed domains that were labeled as third parties, while they were actually owned by
the same party as the website itself. In some cases, the domains were identical except for the
country suffix (e.g. .com versus .co.uk), in other cases they were harder to recognize. On the
other hand, we may also have mislabeled some third parties as first parties if CNAME cloaking
was used. In Chapter 7 we only looked at third-party trackers, so we would miss tracking
subdomains even if they were included in some block list.

As mentioned, trackers were detected using various block lists. While elaborate, these lists
are not exhaustive and will only help us to detect known trackers, so we will mislabel some
tracking parties as non-tracker, although these are likely mostly trackers that are not widely
used.

Other limitations

Lastly, we mention some more general issues with the crawler. Something one essentially has
to live with when building a crawler that interacts with the page is that the page can change in
unexpected ways while you are interacting with it, or that fields may have different identifiers
when reloading the page. We make heavy use of scripts executed in the page context, to
search for fields or gather field properties, for example. These scripts may run into issues if
scripts from the page overwrite certain methods or fields. For example, during our pilot crawl
we encountered multiple pages where a library overwrote the entries() method for arrays
with something that behaved differently. We fixed this instance, but it is far from the only
example. Things like this lead to errors while finding fields, which means we were not able to
fill all fields on such pages.

We mentioned that we did not change certain properties giving away that the browser visiting
the page was not a regular Chrome browser, and that this could mean that anti-bot protection
scripts could easily block our crawler. However, it also lead to Facebook using a different
method to transmit data, as mentioned in Chapter 7, likely because it thought we were using
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a different browser. This may also have been the case for other scripts.

The crawler collects stack traces for requests, value sniffs, and DOM attribute leaks, but source
maps are only used for the latter, not for request or sniff call stacks.

8.3 leak-detect evaluation

In this section we briefly look at how leak-detect satisfies the requirements from Sec-
tion 4.1.

We successfully developed a tool that can find, fill, and submit forms with email address,
username, and password fields. It can then search for leaks to third parties and trackers, leaks
to DOM attributes, and sniffs of field values. The tool can be used by a website administrator,
and to set it up one just has to install Node.js, clone the GitHub repository, run the ‘install’
command, and then run the tool with the URL of the website. While the interface of the
tool could be improved for website administrators that do not have experience with using the
command line, we think that it should be fairly easy to use for a developer. The summary
feature provides the user with the most important findings of the tool, such as leaks to third
parties and trackers. The statistics and timeline of events that it provides are easy to read for
anyone, but it also gives some details with stack traces for web developers to help pinpoint the
cause of the leak. There is also a manual headed mode using which a developer can easily see
the leak being reproduced, and they can even manually fill forms that leak-detect failed
to find or properly fill.

Researchers can use leak-detect for parallel web crawls, like we did, by providing a list
of URLs via the batch option. Detailed results including web requests, leaks, and fields that
were filled are saved in machine-readable JSON files, which can be analyzed using the favorite
programming language of the researcher. In our crawl, Puppeteer itself never crashed. Any
errors that did occur were handled without interrupting the batch crawl, except for 3 out-
of-memory errors caused by value-searcher. The crawler keeps track of crawled URLs
such that no significant progress is lost when the crawler is interrupted or encounters an out-
of-memory error. We did not find time to implement a feature to also save the full crawl
configuration for reproducibility.

8.4 Future work

leak-detect

There are a number of improvements that could be made to leak-detect. For example, it
cannot automatically find forms hidden behind two or more clicks, which can be necessary when
a login button opens a popup where the user first has to choose from multiple authentication
methods. It could also be interesting to check for sites that log passwords to the console.
Similar to with DOM leaks, some performance measurement scripts may accidentally collect
the password in this way. We saw this actually happening by third party Rollbar on the Oribi
website. Even though Rollbar tries to mask passwords, it fails in some instances. Related, it
would be useful to detect PII being sent in the URL of a first-party request, through a GET
form, for example, because this often triggers leaks to third parties. This information may
already be present in the JSON output file but is not reported in the summary, and it may be
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that a leak in the body of the request hides the fact that a leak also occurred via the URL.
To give a more complete picture of leakage, it would be very interesting to add support for
more field types that the crawler can fill, such as real name, street address, and credit card
information, and observe leaks for these fields. For a web developer using the tool, it would
also be useful to support source maps for the request and value sniff stacks.

Other useful improvements include the ability to specify all crawler options via one configu-
ration file, instead of just collector options via a file and the rest via the command line, like
it is now. This would also make it easier to record the configuration used for a crawl for
reproducibility. For this, it would also be useful to save the leak-detect version used and
block list versions used. The interface could also be improved, especially for people without
programming knowledge. One way to accomplish this would be to develop a website which
internally uses leak-detect on which someone could enter a URL to check for leaks. For
more possible leak-detect improvements, see the corresponding GitHub issue 2.

value-searcher

value-searcher could also be improved. For example, it caused some out-of-memory issues
in our crawl for specific websites, and it could be sped up. These two issues could likely be
solved at once by switching to WebAssembly. The code could be written in a compiled language
like Rust and used from JavaScript. This would also make it possible to use value-searcher
in the browser, outside of Node.js. Besides improvements in speed, some functionality could
be added, such as returning all matches if there are multiple (e.g. hashed and plain), and
returning intermediate encoded values and the index of the match. See the GitHub issue for
more 3.

Crawl

Regarding the crawl, it may be nice to repeat it after some additions have made to the crawler,
like those mentioned above or those that we added after our crawl was complete, and to then
see what the difference is with our results. For example, filling forms with password fields
in the presence of multiple forms, setting the window.chrome property, and unfocusing the
page after submission. It could also be configured to change the password field type to ‘text’,
to compare the amount of leaks in this case with the study from Senol et al. [6]. It would
also be interesting to execute a crawl on homepages of the Tranco top 100K websites, with
login/register link clicking enabled. This may lead to discovering more fields within shadow
DOM and frames. It could also be configured to fill multiple forms.

8.5 Recommendations

In this section we list some recommendations for website administrators and tracking parties
to prevent undesired leakage of PII.

2 https://github.com/stevenwdv/leak-detect/issues/11
3 https://github.com/stevenwdv/value-searcher/issues/3
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Recommendations for website administrators

A good practice is to not put tracking scripts on pages of the website with forms where the
user enters PII, such as login forms. Especially session replay scripts should be avoided as
they might capture field values. Note that this may be trickier to accomplish if the login
form is available as a popup on any page. In this case, the form could be put into a frame
with a different domain, such that scripts on the main page cannot access it. If some of the
functionality of these trackers is absolutely required, they should be configured to not capture
the values of input fields. However, note that this may not protect against leaks via DOM
attributes. If at all possible, this should be configured for all pages. Where this is not possible,
masking should be enabled for the sensitive fields. To prevent scripts from accidentally leaking
PII, input field values should not be copied to the DOM. This is often something done by
the React JavaScript framework, and we would recommend that they remove this behavior.
We also observed cases where the server of the website put the password in the HTML code.
This is also something to avoid, because some scripts will exfiltrate this data. Other things
to avoid are sending PII in the URL (via a GET form) and logging PII in the console, for
example by logging the web request. In all these cases, scripts can capture and collect the
PII. Website administrators should also regularly check for malicious scripts operating on login
and registration pages, such as the one we observed on the TechPowerUp forum. Lastly, we
would recommend running leak-detect on the pages with login or registration forms to
verify that PII is not leaked, and to be alert for disclosures of password leaks from researchers
like us.

Recommendations for tracking and analytics parties

We would advise tracking and analytics parties to not collect values of input fields, as they
may contain PII, or to at least mask the contents. Note that not collecting values of just fields
with type ‘password’ is not enough to avoid collecting passwords, as a ‘show password’ feature
might change the type to ‘text’. Values may also leak indirectly through DOM attributes, so
we would advise not collecting attributes on input fields, but as some attributes may affect how
the page is displayed, this may be not possible for a session replay script. Currently, at least
some scripts just skip the value attribute (see Section 7.3), but this does not catch passwords
leaked through other attributes such as data−value. Hence, we recommend composing a list
of attributes that can be safely captured, such as style. This list will not include attributes
such as value and data−value. Another, possibly complementary, method would be to filter
out attributes that contain the value of the input field that they are on. However, this could
fail to detect rare cases where the value is encoded in some way.

More robust defenses

In the end, the problem is that third-party scripts included directly on a page have the same
permissions as first-party scripts. They can access everything in the page and make web
requests from the origin of the first party. It might be possible to better isolate these scripts
by putting them inside invisible <iframe> elements with a different domain on the page, as
such frames cannot access data in their parent page, and passing only the required data to
these frames, by using window.postMessage. Another option in the future may be to use
ShadowRealms [69], which are like JavaScript sandboxes, and to only pass the required data.

However, both of these solutions are likely unpractical in many cases. For example, session
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replay scripts often need access to the whole DOM, and with these isolated approaches, the
DOM tree would need to be passed to these scripts anyway. It is also a question which script
would pass the required data to these tracking scripts. If another script of the tracking party
is used for this, it just moves the issue, and the only result is that now setting up the service
on a website has become more difficult.
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Chapter 9

Conclusion

We built leak-detect, a tool that can be used to detect leakage of email addresses, user-
names, and passwords to third parties. It can automatically examine one or more websites,
filling and submitting forms on these, and it searches for leaks of the filled values in web
requests using our value-searcher. Besides that, it detects leaks of the filled password to
attributes in the DOM and detects sniffs of field values by scripts. It can also classify URLs as
third parties or trackers. When compared to crawlers used in previous studies such as the one
from Senol et al. [6], our tool has a number of advantages. Firstly, it can detect leaks to DOM
attributes, supports filling fields inside shadow DOM, and can fill username fields besides just
email address fields. Furthermore, it can submit the form and detect leaks after submission,
and can also detect leaks after clicking a button unrelated to submission. Useful for website
administrators is that it is self-contained, with integrated leak detection and third party /
tracker classification, collection of stack traces for all leak types, even using source maps for
DOM leaks, and support for manual interaction in headed mode and playback of Chrome Dev-
Tools recordings. For researchers, it has an option to easily resume interrupted batch crawls.
Our leak detection module value-searcher intentionally is a separate package, such that
it can be used in other studies, possibly with some improvements.

We used leak-detect to examine 30K pages with forms for leaks to trackers. We found
2 071 pages with leaks to tracking parties. Of these, 1 560 pages leaked values after the form
was submitted. Most common were leaks of email address hashes to Facebook. In total,
we found 1 644 leaks to Facebook, of which 1 597 occurred after clicking a dummy button
unrelated to submission that we added. This shows that Facebook does not have a way to
distinguish a form submission button from any other button. The second-largest leaking party
was Google, which leaked on 152 websites with all its domains combined, 130 leaks of which
were to Google Analytics, which does not allow collection of personal data. We also observed
328 pages with pre-submission leaks, most of these (81) to AtData (rlcdn.com). The crawl
even lead to us discovering 15 websites with password leaks, which we reported. Of these
leaks, 6 have since been addressed, although we did not get a reply from 4 of these parties.
We found 288 pages with passwords leaking to DOM attributes, leaks to the value attribute
being the most common. The largest part of these leaks was caused the React framework, but
most tracking scripts seem to properly filter out the value attribute from data they collect,
because we found no password leaks caused in this way. However, we did find one password
leak caused by a website leaking to a different attribute.

We think that leak-detect could give website administrators more insight into which par-
ties collect what information on their website, and that in this way unintended leaks can be
addressed and unsuspecting users protected. Besides that, a batch crawl like we conducted in
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our study can expose the most common causes for leaks, including password leaks and DOM
attribute leaks, such that website administrators and web framework maintainers can address
these. We hope that in this way leak-detect can help to make the web a little more secure
for everyone.
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Appendix A

Example leak-detect result
summaries

A.1 Summary with password leak to tracker

Below is part of the summary output for the crawl of https://oribi.io/login, which leaks
the password to Rollbar. ‘[…]’ means that text was omitted.

Crawl of https://oribi.io/login

Took 44s

═══ �������� Timeline (see below for more details): ═══

�����8.0s ���� fill email field #email

�����13.3s ���� ����� email value of field read by script www.clarity.ms/…/clarity.js

�����13.3s ���� ����� email value of field read by script oribi.io/…/login-1dc6175bc9a93f3d.js

�����13.3s ���� ����� email value of field read by script oribi.io/…/login-1dc6175bc9a93f3d.js

�����13.3s ���� ����� email value of field read by script oribi.io/…/main-06c183262e3d9339.js

�����13.6s ���� ����� email value of field read by script www.clarity.ms/…/clarity.js

�����13.6s ���� ����� email value of field read by script oribi.io/…/_app-13f2c9c38fa150d4.js

�����13.7s ���� fill password field #password

�����13.9s ���� ����� email value of field read by script oribi.io/…/main-06c183262e3d9339.js

[…]

�����16.5s ���� � password value of field read by script www.clarity.ms/…/clarity.js

�����16.5s ���� � password value of field read by script oribi.io/…/login-1dc6175bc9a93f3d.js

�����16.5s ���� � password value of field read by script oribi.io/…/login-1dc6175bc9a93f3d.js

�����16.5s ���� ����� email value of field read by script oribi.io/…/main-06c183262e3d9339.js

�����16.5s ���� � password value of field read by script oribi.io/…/main-06c183262e3d9339.js

�����16.7s ���� � password value of field read by script www.clarity.ms/…/clarity.js

�����16.7s ���� � password value of field read by script oribi.io/…/_app-13f2c9c38fa150d4.js

�����21.7s click added button for Facebook tracking detection

�����21.7s ���� ����� email value of field read by script connect.facebook.net/…/382622115434455

�����21.7s ���� ����� email value of field read by script connect.facebook.net/…/382622115434455

�����21.7s ���� � password value of field read by script connect.facebook.net/…/382622115434455

�����21.7s ���� � password value of field read by script connect.facebook.net/…/382622115434455

�����21.7s �� ���� ����� email sent to www.facebook.com
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�����24.8s ⏎ submit email field #email

�����24.9s ���� ����� email value of field read by script connect.facebook.net/…/382622115434455

�����24.9s ���� ����� email value of field read by script connect.facebook.net/…/382622115434455

�����24.9s ���� ����� email value of field read by script www.clarity.ms/…/clarity.js

�����24.9s ���� ����� email value of field read by script connect.facebook.net/…/382622115434455

�����24.9s ���� ����� email value of field read by script connect.facebook.net/…/382622115434455

�����24.9s ���� � password value of field read by script connect.facebook.net/…/382622115434455

�����24.9s ���� � password value of field read by script connect.facebook.net/…/382622115434455

�����24.9s �� ���� ����� email sent to www.facebook.com

�����25.0s ���� ����� email value of field read by script oribi.io/…/main-06c183262e3d9339.js

�����25.0s ���� � password value of field read by script oribi.io/…/main-06c183262e3d9339.js

�����26.2s �� ���� ����� email sent to api.rollbar.com

�����26.2s ����� ���� � password sent to api.rollbar.com

�����26.2s ���� ����� email value of field read by script oribi.io/…/main-06c183262e3d9339.js

�����26.2s ���� � password value of field read by script oribi.io/…/main-06c183262e3d9339.js

═══ �� ���� Values were sent in web requests to third parties: ═══

�����21.7s ����� email hash (hex→sha256) sent in url of Image request to � third party ������ tracker

"https://www.facebook.com/tr/?[…] " by:

c (↓ :24:64983)

y (↓ :24:62575)

value (↓ :24:30575)

[…]

https://connect.facebook.net/en_US/fbevents.js :24:45083

clickFacebookButton (pptr://__puppeteer_evaluation_script__ :8:21)

[…]

�����26.2s ����� � password (plain text) sent in body of XHR request to � third party ������ tracker

"https://api.rollbar.com/api/1/item/" by:

[…]

value (https://oribi.io/_next/static/chunks/pages/_app-13f2c9c38fa150d4.js :1:10172)

https://oribi.io/_next/static/chunks/pages/login-1dc6175bc9a93f3d.js :1:6210

l (↓ :1:27400)

↓ :1:27188

https://oribi.io/_next/static/chunks/pages/_app-13f2c9c38fa150d4.js :1:27825

N (↓ :1:4618)

s (↓ :1:4857)

N (↓ :1:4689)

a (↓ :1:4821)

↓ :1:4880

https://oribi.io/_next/static/chunks/pages/login-1dc6175bc9a93f3d.js :1:4761

A (https://oribi.io/_next/static/chunks/main-06c183262e3d9339.js :1:101048)

═══ �� ���� Field value reads: ═══

[…]

�����21.7s access to ����� email value of email field "#email" by:

c (↓:20:9901)

g (↓:20:10807)
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e (↓:20:8431)

� third party ������ tracker https://connect.facebook.net/signals/config/[…]:20:67347

v (↓:24:75981)

each (� third party ������ tracker https://connect.facebook.net/en_US/fbevents.js:24:77527)

HTMLDocument.<anonymous> (� third party ������ tracker https://connect.facebook.net/sig-

nals/config/382622115434455?v=2.9.91&r=stable:20:67144)

HTMLDocument.<anonymous> (� third party ������ tracker https://connect.facebook.net/en_US/f-

bevents.js:24:45083)

clickFacebookButton (pptr://__puppeteer_evaluation_script__:8:21)

[…]

����� Automated crawl statistics:

����� 2 fields found

���� 2 fields filled

⏎ 1 fields submitted

����� Leak/sniff statistics:

������ 1 � password leaks to rollbar.com

��� 3 ����� email leaks to facebook.com, rollbar.com

��� 1 � password to console leaks

������ 9 � password value sniffs by third parties / trackers

������ 6 ����� email value sniffs by third parties / trackers

A.2 Summary with DOM attribute leak

Below is a summary from a crawl of https://www.hellofresh.com/login. We can see that the
password is leaked to DOM by framework-e4a10fa639c31078.js. In the source-mapped
stack trace below the timeline we can see that the original name of the responsible script was
react-dom.production.min.js.

Crawl of https://www.hellofresh.com/login

Took 56s

═══ �������� Timeline (see below for more details): ═══

�����11.7s ���� fill email field #hf-form-group-username-input

�����17.0s ���� ����� email value of field read by script www.hellofresh.com/…/framework-

e4a10fa639c31078.js

[…]

�����17.3s ���� fill password field #hf-form-group-password-input

[…]

�����19.9s ���� � password value of field read by script www.hellofresh.com/…/frame-

work-e4a10fa639c31078.js

�����20.0s �� � password written to DOM by script www.hellofresh.com/…/framework-

e4a10fa639c31078.js

[…]

�����25.1s click added button for Facebook tracking detection
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�����28.1s ⏎ submit email field #hf-form-group-username-input

�����28.3s ���� ����� email value of field read by script www.hellofresh.com/…/framework-

e4a10fa639c31078.js

�����28.3s ���� � password value of field read by script www.hellofresh.com/…/frame-

work-e4a10fa639c31078.js

[…]

�����28.4s �� ���� ����� email sent to tr.snapchat.com

[…]

═══ �� � Password was written to the DOM: ═══

�����20.0s to attribute "value" on element "#hf-form-group-password-input" by:

bs (↓ :38:106)

bb (↓ :36:258)

ab (↓ :234:113)

ij (webpack://_N_E/node_modules/react-dom/cjs/react-dom.production.min.js :257:224)

b (webpack://_N_E/node_modules/scheduler/cjs/scheduler.production.min.js :19:278)

Nf (↓ :123:322)

gg (↓ :253:268)

Uj (↓ :244:347)

c (webpack://_N_E/node_modules/react-dom/cjs/react-dom.production.min.js :124:104)

b (webpack://_N_E/node_modules/scheduler/cjs/scheduler.production.min.js :19:278)

Nf (↓ :123:322)

gg (↓ :124:39)

jg (↓ :123:422)

ig (↓ :245:113)

ay (↓ :245:113)

Ib (↓ :50:75)

Mb (↓ :51:72)

dO (↓ :51:72)

jd (↓ :76:247)

yc (webpack://_N_E/node_modules/react-dom/cjs/react-dom.production.min.js :75:122)

b (webpack://_N_E/node_modules/scheduler/cjs/scheduler.production.min.js :19:278)

Nf (↓ :123:322)

gg (↓ :293:9)

Hb (webpack://_N_E/node_modules/react-dom/cjs/react-dom.production.min.js :74:257)

b (https://www.hellofresh.com/assets/releases/web-infra/_next/static/chunks/pages/_app-

e069072fd3c7a024.js :13:2877)

If a script then extracts the DOM it might leak the password in a web request

═══ �� ���� Values were sent in web requests to third parties: ═══

�����28.4s ����� email hash (hex→sha256) sent in body of Ping request to � third party ������ tracker

"https://tr.snapchat.com/collector/prep_mapping" by:

Tt (↓ :1:5689)

Pt (↓ :1:6699)

↓ :1:22963

https://sc-static.net/scevent.min.js :1:22996

b (https://www.hellofresh.com/assets/releases/web-infra/_next/static/chunks/pages/_app-

e069072fd3c7a024.js :13:2877)
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═══ �� ���� Field value reads: ═══

[…]

����� Automated crawl statistics:

����� 2 fields found

���� 2 fields filled

⏎ 1 fields submitted

����� Leak/sniff statistics:

��� 1 ����� email leaks to snapchat.com

��� 1 � password to DOM attribute leaks
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Appendix B

Extra figures
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Figure B.1: Caption for non-log: Domains of scripts initiating requests for top leaking trackers.
‘self’ indicates that the script domain is the same as the tracker domain.
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Appendix C

Password leaks

C.1 Timeline regarding Crash In You leak

1. Aug 8, 2017: crashinyou.net is registered 1

2. Aug 13, 2017: Site is captured by the Wayback Machine, showing that it hosted some
software, including a Minecraft cheating tool 2

3. Oct 12, 2017: Site now contains some files, which include the tool from before and some
files with a website name and the word ‘Database’ in the name, possibly indicating a
user account leak. However, we could not find a malicious script in archived versions of
these websites

4. Jan 22, 2018: Site is first captured with ‘Site temporarily unavailable’ page from hosting
company

5. Mar 5 & 16, 2018: Site now contains a ‘Minecraft checker’ form requiring a nickname
and key, which searches various account databases, some of which include passwords

6. Mar 21, 2018 up to Sep 5, 2019: Site is captured being suspended again

7. Jun 25, 2018 up to Jul 2, 2018: Forum threads sharing Minecraft accounts and men-
tioning crashinyou.net were active 3

8. Oct 18, 2018: crashinyou.com is first captured, containing a layout copied from
crashinyou.net 4

9. Jun 5, 2019: crashinyou.me is registered

10. Jun 13, 2019: crashinyou.com is captured containing just the text ‘crashinyou.me’

11. Jul 14, 2019: crashinyou.com is suspended

12. Jul 28, 2019: Malicious script is added to pixelmon.ru

13. Sep 3, 2019: crashinyou.me is first captured, containing a checker form with a different
layout 5

1 We determined this using WHOIS
2 https://web.archive.org/web/*/http://crashinyou.net/
3 https://zelenka.guru/threads/518419/, https://zelenka.guru/threads/518552/
4 https://web.archive.org/web/*/http://crashinyou.com/
5 https://web.archive.org/web/*/http://crashinyou.me/
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14. Dec 23, 2019: crashinyou.net is first captured hosting an endpoint similar to the one
used on the TechPowerUp forum

15. Feb 6, 2020: Malicious script is inserted into template of TechPowerUp forum login
page, according to forum software

16. Feb 23, 2020: TechPowerUp forum is first captured containing malicious script 6

17. Dec 7, 2020: Endpoint on crashinyou.net used for TechPowerUp is first captured,
but with 404 code

18. Nov 30, 2021: Empty crashinyou.net homepage is captured

19. Mar 14, 2022: crashinyou.me redirects to premium.crashinyou.me

20. May 21, 2022 up to 5 Dec 2022: Endpoint used for TechPowerUp is captured again, as
empty page

Empty pages might also be caused by anti-bot defense mechanisms from Cloudflare.
6 https://web.archive.org/web/20200223214241/https://www.techpowerup.com/

forums/login/
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C.2 Found password leaks

Tranco
rank a

First party Third party First-party re-
sponse

Third-party
response

Only on lo-
gin error

2 308 Oribi Rollbar � None – Yes
5 389 TechPowerUp CrashInYou.net

(malicious)
� Fixed – No

9 943 Princeton Review WebFX (market-
ingcloudfx)

No (automatic) � None No

17 282 Xsolla Inspectlet � Fixed None No
23 004 BDO USA b WebFX None, but

tracker was
removed from
site

None No

34 803 NoRedInk b WebFX – � None No
78 539 Workspot ZoomInfo (in-

sent.ai)
None, but does
not happen
anymore

No (auto-
matic)

No

81 297 Wacoal Japan Facebook None, but
seems to be
fixed

– Possibly

92 361 Vacheron Constantin WebFX None, but
tracker was
removed from
site

None No

123 198 Minsk Branch of the
Belarusian Chamber of
Commerce and Industry

Yandex � None – Possibly

175 764 Pixel Joint Google Analytics � None – Possibly
242 031 Adbeat Autopilot (Ortto) � None – No

N/A Skin Type Solutions b WebFX – � None No
N/A River NYC b WebFX – � None No
N/A PixelMon.ru b CrashInYou.net � None – No

‘Only on login error’ means that the leak only occurs with invalid credentials

First party Third party Timing Cause
Oribi Rollbar post submit Request is logged on failed login, log is

recorded
TechPowerUp, Pixel-
Mon.ru

CrashInYou.net post submit Inline script collecting credentials

Princeton Review, … WebFX post fill Script collects any values for input events
Xsolla Inspectlet post fill Script collects data−value DOM attribute
Workspot ZoomInfo post submit Form submission collection
Wacoal Japan Facebook post submit Server puts POST parameters in <meta>

Minsk Branch of the
Belarusian Chamber of
Commerce and Industry

Yandex post submit Server puts password in hidden field on sub-
mission

Pixel Joint Google Analytics post submit GET form
Adbeat Autopilot post submit Form submission collection

The party clearly at fault is italicized
a Rank in Tranco Dec 3, 2022 – Jan 1, 2023 top 1M list [70]
b Found manually

57


	1 Introduction
	2 Preliminaries
	2.1 Page structure
	2.2 Data collection
	2.3 Tracking identifiers
	2.4 Minified script bundles and source maps
	2.5 URLs and domain names

	3 Related work
	4 leak-detect
	4.1 Requirements
	4.2 Crawler behavior and implementation

	5 value-searcher
	5.1 Operation
	5.2 Comparison with LeakDetector

	6 Crawl setup
	7 Results
	7.1 Request leaks
	7.2 DOM leaks
	7.3 Password leaks

	8 Discussion
	8.1 Comparison with other studies
	8.2 Limitations
	8.3 leak-detect evaluation
	8.4 Future work
	8.5 Recommendations

	9 Conclusion
	Bibliography
	Appendices
	A Example leak-detect result summaries
	A.1 Summary with password leak to tracker
	A.2 Summary with DOM attribute leak

	B Extra figures
	C Password leaks
	C.1 Timeline regarding Crash In You leak
	C.2 Found password leaks



