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Abstract

Model-Based Testing (MBT) is a black-box software testing technique where a System Under
Test (SUT) is tested against an abstract model which describes the required behaviour. This
testing technique uses the model to automatically generate test cases which can be used to
thoroughly check the correctness of the behaviour of the SUT. Therefore, MBT is a viable
testing option for increasingly complex systems where the traditional testing work grows ex-
ponentially.

Systems Modelling Language (SysML) is a semi-formal system architecture modelling lan-
guage for system engineering based on the Unified Modelling Language (UML 2). SysML is
used to make complex systems understandable for technical and non-technical people while
being more precise than natural language.

In this thesis we research the feasibility of formalizing SysML Activity Diagrams for MBT.
We provide a translation algorithm from activity diagrams to behavioural models that can
be used for MBT. We also state the limitations of this approach. We apply this algorithm
on Vanderlandes automatic storage system ADAPTO which is our SUT. Using our findings,
we compose a recommendation for Vanderlande regarding the use of MBT. Finally, we pro-
vide a step-by-step guide for the implementation of the formalization algorithm for ADAPTO
specifically.
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Chapter 1

Introduction

1.1 Problem Description

Testing is the most important part of the software development lifecycle to discover and fix
bugs[17]. Guaranteeing that a safety-critical piece of software functions as intended becomes
exponentially more challenging as the complexity of the system increases. This is because
only certain combinations of inputs to a system might cause trouble. Increasing complexity
also implies that the cost of ensuring that a complex software product works as intended
increases exponentially[24]. When the time and costs of testing exceeds the amount that is
budgeted for, a trade-off needs to be made between the quality of the product and the testing
costs.

Model-Based Testing (MBT) tries to solve this problem. MBT is a software testing tech-
nique that tests the behaviour of its System Under Test (SUT) using a model. This model is
used to automatically generate test cases. These test cases are executed on the SUT and are
compared against the expected output. When using MBT, test cases are automatically gen-
erated. This implies that MBT can reach all states while testing without having to manually
write exhaustive test cases, even when the complexity of the SUT increases[27]. To use the
mathematical concept of MBT for a real world application, an MBT tool needs to be used. As
part of the background of this thesis, we will describe in detail the underlying mathematical
structures of MBT as well as tools that implement MBT.

Since MBT requires a model that describes the behaviour of the SUT, it is important that
this model describes the desired behaviour of the SUT. Ensuring that the behavioural model
of the SUT correctly describes the behaviour of the SUT might require a large up-front effort
for larger software systems.

Systems Modelling Language (SysML) is a semi-formal system architecture modelling lan-
guage for system engineering based on the Unified Modelling Language (UML 2). SysML is
semi-formal since the syntax is well-defined in [12], but the semantics are not formally defined.
SysML is used to make complex systems understandable for technical and non-technical peo-
ple while being more precise than natural language. Part of a SysML model describes the
behaviour of the software system[9]. In this research, we will explore the feasibility of us-
ing this part for the generation of a model for MBT. Achieving this makes using MBT for

3



1.2 RESEARCH QUESTION INTRODUCTION

complex systems accessible and cost-effective while taking advantage of the characteristics of
MBT compared to traditional testing.

This research is conducted at Vanderlande1. Vanderlande develops multiple logistics pro-
cess automation systems including baggage handling systems at airports and automatic ware-
house storage facilities. The latter product is called ADAPTO and this thesis is written within
the ADAPTO team. Also for ADAPTO, it holds that testing is a large and important part
of development costs. ADAPTO is a system developed by Vanderlande which retrieves and
stores items in a warehouse using robots. To manage a complex system like ADAPTO, SysML
models are created. These models are used to visually represent the functionality of the sys-
tem in a way that is understandable for everyone in the team. More detailed information
about ADAPTO can be found in section 2.4.

This thesis will yield

• A formalization of SysML activity diagrams in the TorXakis modelling language in-
cluding the requirements for the input activity diagram and the shortcomings of the
formalization algorithm.

• A case study of applying the aforementioned formalization on a SUT. This SUT will be
a part of the ADAPTO system.

• A recommendation on using MBT at Vanderlande based on the case study mentioned
in the previous point.

• A step-by-step guide on implementing the translation tool from SysML models to the
TorXakis modelling language. The implementation described by the guide can in its
basic form be used for SysML models that follow a restriction which will be mentioned
and explained in chapter 5. The implementation of the translation algorithm can be
augmented to also support SysML models that do not follow this restriction. In this
thesis, the implementation is augmented to support the SysML models of ADAPTO.

1.2 Research Question

We are interested in the possibilities of using a SysML model as a basis for MBT. This will
yield the benefits of MBT without having to develop the models in case a SysML model
already exists for the system in question. Therefore, we will answer the following research
question in this thesis:

To what extent can SysML models be used for Model-Based Testing?

1.2.1 Subquestions

We will subdivide our main research question in the subquestions listed below. The answers
to these questions will contribute to answering the main research question. The questions are
labelled to make referencing them in this thesis clearer.

1See: https://www.vanderlande.com
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1.4 OUTLINE INTRODUCTION

1. SQ1 Which formalization language is most suitable for SysML models in the case of
MBT?

2. SQ2 How much domain knowledge is required to effectively translate SysML models of
real world system to a modelling language for MBT?

3. SQ3 Which steps are required to implement the formalization algorithm to be used on
a real world system?

1.3 Research Method

To answer our research question, we define a translation algorithm which translates parts of
a SysML model to a modelling language which can be used for MBT. We will also discuss the
limitations of this translation algorithm. Then, to research the applicability of the translation
algorithm, we perform a case study. We will apply the translation algorithm on a subset of
the SysML models of ADAPTO.

1.4 Outline

In chapter 2, we lay out the background work for this thesis. Chapter 3 contains the formal-
ization of SysML models in the TorXakis modelling language. In our case study of chapter
4, we formalize the SysML models of the SUT ADAPTO in the TorXakis modelling lan-
guage using the formalization from chapter 3. We show a step-by-step guide on implementing
the formalization of SysML models in the TorXakis modelling language from chapter 3 in
chapter 5. This guide can in its basis be applied on any SysML model, albeit with a restric-
tion. We augment the implementation guide to make it applicable on the SysML models of
ADAPTO. We conclude and discuss our findings in chapter 6. Finally, we propose future
work ideas in chapter 7.
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Chapter 2

Background

In this chapter, the relevant background of our research will be laid out. To understand how
Model-Based Testing (MBT) works, we start by defining the basic underlying datastructure.
Then, we show how MBT uses this datastructure to determine whether a System Under Test
(SUT) complies to a model. Thereafter, we show how MBT is used in the tool TorXakis.
In the remainder of this chapter we first show what exactly SysML models are after which we
show what Gherkin tests are. Then we explore related work on formalizing SysML models
and we take a look at the formal language mCRL2. Finally, we discuss how ADAPTO works,
the SUT of our case study.

2.1 Model-Based Testing

2.1.1 Labelled Transition System

A labelled transition system is the underlying data structure for MBT. In its basic form it is
mathematically defined as a four tuple ⟨Q,L, T, q0⟩[27] where:

• Q is a countable, non-empty set of states;

• L is a countable set of labels;

• T ⊆ S × (L ∪ {τ})× S with τ ̸∈ L is the transition relation;

• q0 ∈ Q is the initial state.

The notation q
µ−→ q′ indicates that a step can be taken (the transition with label µ) from

state q to state q′. This transition is also represented by (q, µ, q′) ∈ T . These transitions can
be composed. If we assume that transition µ′ can be performed from state q′ to q′′, we can

write q
µ−→ q′

µ′
−→ q′′ or more compact as q

µ·µ′
−−→ q′′.

In the definition of an LTS, τ is an internal step that can not be observed from outside
the black box. Contrary, all actions corresponding to a label l ∈ L can be observed. If in an
LTS in the state q the sequence of actions a · τ · b · τ · c can be performed, with a, b, c ∈ L, after
which state q′ is reached, then the τ -abstracted sequence of observable actions is written as

q
a·b·c
===⇒ q′. In this example q can perform the trace a · b · c ∈ L∗.

6



2.1 MODEL-BASED TESTING BACKGROUND

The function traces(q) returns all possible traces from state q. More precisely, traces(q) =def

{σ ∈ L∗|q σ
=⇒}.

In figure 2.1, a visual representation of an LTS is displayed. The states are displayed as
circles, the transitions as an arrow from the source to the target state with its label and the
initial state can be recognized by an incoming arrow without a source. This LTS represents a
vending machine that dispenses a water bottle when the button is pressed or a chocolate bar
after first a coin is inserted and then the button is pressed. In mathematical notation, this
LTS looks as follows:

• Q = {s0, s1, s2, s3, s4, s5};

• L = {coin, button,water bottle, chocolate bar};

• T = {(s0, coin, s1), (s0, button, s4), (s1, button, s2),
(s2, chocolate bar, s3), (s4, water bottle, s5)};

• q0 = s0.

coin

button

s0

buttons1 chocolate bar

water bottle

s2 s3

s5s4

Figure 2.1: LTS that represents a simple vending machine. A water bottle is dispensed after
the button is pressed and a chocolate bar is dispensed when first a coin is inserted and then
the button is pressed.

For MBT, this definition is not sufficient, because we want to be able to distinguish be-
tween inputs and outputs. We need to make this distinction because for MBT we need to
provide the SUT with an input and check whether an output is yielded. Therefore, we define
an updated LTS.

An LTS with separate input and output labels is a five tuple ⟨Q, I,O, T, q0⟩[27] where:

• Q is a countable, non-empty set of states;

• I is a countable set of input labels, O is a countable set of output labels where I∩O = ∅;

• T ⊆ S × (L ∪ {τ})× S with τ ̸∈ L is the transition relation;

• q0 ∈ S is the initial state.

Furthermore, a state without a τ transition is called stable. A state is quiescent when
no internal τ action or output action can be performed from that state. A quiescent state is
denoted with a transition to itself with the label δ. This label must not occur in I ∪ O. We
define Lδ = L∪ {δ} = I ∪O ∪ {δ}. Moreover, we define the class of LTSs with input labels I
and output labels O as LT S(I,O).

7



2.1 MODEL-BASED TESTING BACKGROUND

We update the LTS from figure 2.1 with input and output labels. For an input label, we
add a question mark to the label and for an output label we add an exclamation mark. The
states s0, s1, s3 and s5 are quiescent. The result can be seen in 2.2. In mathematical notation,
this LTS looks as follows:

• Q = {s0, s1, s2, s3, s4, s5}

• I = {coin, button}

• O = {chocolate bar, water bottle}

• T = {(s0, coin, s1), (s0, button, s4), (s1, button, s2),
(s2, chocolate bar, s3), (s4, water bottle, s5)}

• q0 = s0

?coin

?button

s0

?buttons1 !chocolate bar

!water bottle

s2 s3

s5s4

δ

δ δ

δ

Figure 2.2: Updated LTS from figure 2.1 with the addition of input and output labels and
the indication of quiescent states.

The earlier defined function traces does not contain sequences that include quiescence in
its output. A trace that includes a δ transition is called a suspension trace. We introduce the
function Straces(q) =def {σ ∈ L∗

δ |q
σ
=⇒} that returns all suspension traces for given state q.

We will define a function that determines which states can be reached in an LTS after a given
trace. For LTS S ∈ LT S(I,O) with initial state s0, we define the function after as S after
σ = {s′|s0

σ
=⇒ s′} which returns the set of states S can be in after evaluating trace σ.

As an example, in the LTS S from figure 2.2, S after ?coin = {s1}, S after ?coin·?button ·
chocolate bar = {s3} and S after ϵ = {s0}, where ϵ is defined to be the empty trace.

In addition to this function, we will define the function out that determines the set of ob-
servable outputs for a given state in an LTS. Given state s in LTS S ∈ LT S(I,O) where O

is the set of output labels, we define out(s) = {o ∈ O|s o−→}∪ {δ|s δ−→}. This function can also
be applied to a set of states by taking the union of the out function of each individual states:
out(S) =

⋃
{out(s)|s ∈ S}. When the function out is applied on LTS S ∈ LT S(I,O) where

s0 is the initial state of S, we have out(S) = out(s0).
As an example, in the LTS S from figure 2.2, out(S) = out(s0) = {!water bottle, !chocolate bar},
out(s2) = {!chocolate bar} and out(S after ?coin·?coin) = ∅.

8



2.1 MODEL-BASED TESTING BACKGROUND

An LTS is input enabled if and only if each state has an outgoing transition for each in-
put. With other words, the result of each input needs to be defined in each state of the
LTS. For the set of input labels I and set of output labels O, the class of input enabled
LTSs is defined as IOT S(I,O). Since each input enabled LTS is an LTS itself, we have
∀I,O IOT S(I,O) ⊆ LT S(I,O)

2.1.2 Trace Equivalence

For MBT, we are interested whether the behaviour of an implementation is equivalent to
what the specification specifies, as we will later see in section 2.1.6. One way to determine
the equivalence between two LTSs is trace equivalence. Two LTSs are trace equivalent or ≈te,
when their trace sets are equivalent. Formally for LTSs l1 and l2, l1 ≈te l2 ⇐⇒ traces(l1) =
traces(l2) where the traces are defined as traces(l) = {σ ∈ L∗|s σ

=⇒}. Conceptually, if two

transition systems are trace equivalent, it means that without looking at the structure of
either transition system, the same order of actions (traces) can be observed.
Figure 2.3 shows that l1 ≈te l2, because their traces are equivalent. traces(l1) = traces(l2) =
{ϵ, a, a · b, a · c}.

a

b c

(a) l1

a

b c

a

(b) l2

Figure 2.3: LTS l1 and LTS l2 are trace equivalent.

2.1.3 ioco

Using the definitions defined in section 2.1.1, we can define the input output conformance
relation ioco. ioco is an implementation relation for an input enabled LTS[27] and is an
adaptation to trace equivalence (section 2.1.2) for determining if two LTSs are equivalent.

Given a set of input labels LI and a set of output labels LO, the relation ioco ⊆ IOT S(LI ,LO)×
LT S(LI ,LO) is defined as follows:

i ioco s ⇔def ∀σ ∈ Straces(s) : out(i after σ) ⊆ out(s after σ)

Conceptually, this means that implementation i can never produce an output after suspension
trace σ that cannot be produced according to specification s after σ when i ioco s.
Let us take a look at an example.

9



2.1 MODEL-BASED TESTING BACKGROUND

?button

!water bottle !chocolate bar

(a) s

?button

!water bottle

?button

?button

(b) i1

?button

τ !chocolate bar

?button

?button

?button

(c) i2

Figure 2.4: Specification s and implementations i1 and i2

i1 ioco s, because for all suspension traces of s, the set of possible outputs after performing
that trace on i1 is a subset of performing that trace to s. This is proven in table 2.1.

σ out(i1 after σ) out(s after σ) out(i1 after σ) ⊆ out(s after σ)

ϵ {δ} {δ} ✓

δ {δ} {δ} ✓

?button {water bottle} {water bottle,
chocolate bar} ✓

δ·?button {water bottle} {water bottle,
chocolate bar} ✓

?button·!water bottle {δ} {δ} ✓

δ·?button·!water bottle {δ} {δ} ✓

?button·!chocolate bar ∅ {δ} ✓

δ·?button·!chocolate bar ∅ {δ} ✓

Table 2.1: Proof for showing that i1 ioco s

i2 ���ioco s, because for choosing suspension trace σ =?button, out(i2 after σ) =
{δ, !chocolate bar} ̸⊆ out(s after σ) = {!water bottle, !chocolate bar}.

2.1.4 uioco

Universal input-output conformance or uioco is a slightly weaker conformance relation than
ioco from section 2.1.3. uioco is invented to circumvent a problem with ioco where it may be
that for a given specification s, an input enabled implementation i for which i ioco s does
not exist. The definition is as follows:
Given a set of input labels LI and a set of output labels LO, the relation uioco ⊆ IOT S(LI ,LO)×
LT S(LI ,LO) is defined as follows:

i uioco s ⇔def ∀σ∈Utraces(s) out(i after σ) ⊆ out(s after σ)

The only difference is between ioco and uioco is that we consider so called Utraces with uioco
instead of Straces with ioco.

10



2.1 MODEL-BASED TESTING BACKGROUND

Universal traces are suspension traces without the possibly underspecified traces[27]. Trace
is σ of s is underspecified if prefix σ1 of σ (σ = σ1 · a · σ2) leads to a state of s where the
remainder a · σ2 is underspecified (where a is refused). Utraces is a function that, given LTS
S, returns the set of universal traces of S. Formally, for specification s, Utraces(s) = {σ ∈
Straces(s)|∀σ1?iσ2=σs after σ1 must ?i}. The additional condition of a Utrace is that after
performing each part of the trace, the state in which s is at that moment must have defined
a transition for the next action of the trace[4]. This is best explained with an example.

?coin

?coin
?coin !water bottle

δδ

δ
δ

(a) s

?coin

δ

?coin !chocolate bar

δ δ

(b) i

Figure 2.5: Specification s and implementation i

In figure 2.5a we see that after we input ?coin, another ?coin input is not defined on
all possible paths. Therefore ?coin·?coin ̸∈ Utraces(s), but ?coin·?coin ∈ Straces(s). Since
uioco is a weaker relation than ioco it holds that if implementation i is ioco to specification
s, this implies i uioco s, so ioco ⊆ uioco.

We will show with an example that uioco is strictly weaker than ioco. In figure 2.5, i ���ioco s,
because after the trace ?coin·?coin is preformed on i, the only possible output is chocolate bar,
which is not a subset of the possible output after performing the trace ?coin·?coin on s, namely
water bottle. However, i uioco s, because the trace ?coin·?coin is not a Utrace, which is ex-
plained above and is therefore not considered in the uioco relation. For all the traces that are
in the set Utraces(s), the uioco relation does hold.

2.1.5 Symbolic Transition System

A Symbolic Transition System (STS ) is an enhancement to an LTS. LTSs are inefficient at
modelling data-intensive systems in the sense that it yields a large state space. STSs solve
this problem by storing data outside of a state. An STS is mathematically defined as a six
tuple ⟨L, l0,V, I,∆,→⟩ where:

• L is a set of locations;

• l0 ∈ L is the initial location;

• V is a set of location variables;

• I with V ∩ I = ∅ is a set of interaction variables;

11
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• ∆ is the set of gates;

• The relation →⊆ L ×∆τ × F(V ar) × T(V ar)V × L is the switch relation with τ ̸∈ ∆
denotes an unobservable gate, ∆τ = ∆ ∪ {τ}, V ar =def V ∪ I, F(V ar) is the set of all
first order formulas ϕ satisfying free(ϕ) ⊆ V ar where free(ϕ) denotes the set of free
variables of a first order formula ϕ, T(V ar) are the terms over V ar, with T(V ar)V is a
term mapping over V ar to V[8].

Figure 2.6 shows an example of an STS with:

• L = {l0, l1, l2};

• l0 = l0;

• V = {coin};

• I = {money};

• ∆ = {?coin, !chocolate bar};

• → is given by the directed edges linking the locations in figure 2.6.

?coin
money += coin

?button

!chocolate bar 
money >= 10
money -= 10

Figure 2.6: Symbolic transition system of a vending machine.

sioco is a conformance relation on STSs that coincides with ioco for LTSs. Conceptually,
sioco can be interpreted as lifting ioco from LTSs to STSs by introducing operations on
transition system with (possibly infinite) data sets. sioco does not add any meaning to ioco,
it just allows for the reasoning of the conformance relation on STSs. [8] introduces in section
5 the necessary concepts to define sioco and that section defines the sioco implementation
relation. For our research, the exact definition of sioco is not relevant, hence it is left out.

2.1.6 Model-Based Testing

In section 2.1.3 we have defined the input output conformance relation (ioco). This relation
is used in MBT to determine if a SUT meets its behaviour model.

MBT is a black-box testing technique[27]. This means that, as opposed to white-box testing,
the internal mechanisms of the SUT cannot be observed. It is important here that the model
MBT uses complies to the implementation requirements. To test the conformance of a SUT
to its model, we need to specify a conformance relation. Most often the aforementioned input

12
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output conformance relation (ioco) or a variation on ioco is used. However, variations on ioco
(tioco for example which adds time constraints to ioco) and other relations can be used as well.

To test a SUT using MBT, we use an MBT tool. These tools will be discussed in section
2.1.7. A tool uses the specified behaviour model to generate test cases. The test cases consist
of inputs and expected outputs. The MBT tool stimulates the SUT by providing inputs and
checks if the outputs of the SUT match the expectations. Then, the tool decides whether the
test has passed or failed.

Since the messages generated from an MBT tool are usually not directly understandable
by the SUT, we need to use an adapter. An adapter receives the messages from the tool and
performs the corresponding action on the SUT. When the SUT emits an output, the adapter
receives it and sends a message to the MBT tool in the format it expects. An overview of the
test architecture can be found in figure 2.7.

Model MBT 
Tool Adapter SUT

Figure 2.7: MBT Test architecture

2.1.7 Model-Based Testing Tools

In this section, we briefly introduce which MBT tools are considered during this thesis. These
tools use the MBT testing technique described in section 2.1.6.

TorX

TorX is the first MBT tool based on the ioco theory. It is a prototype test tool that uses a
formal specification of the SUT and tests the conformance of it to the implementation[25].
TorX was developed at the Formal Methods and Tools research group at the University of
Twente (UT) in the Netherlands, in close collaboration with Eindhoven University of Tech-
nology (TUE), Philips Research Laboratories and Lucent Technologies[22]. TorX was devel-
oped in the research and development project Côte de Resyste with the goal of automatically
generating tests for a SUT from its specification model.

JTorX

JTorX is the successor to TorX. In addition to the ioco conformance relation, JTorX also
uses uioco, which is explained in section 2.1.4. JTorX can also check for (u)ioco relations
between models and check underspecified traces in a model. In addition to this, JTorX is
easier to deploy, because it has an improved installation, configuration and usage process.
These improvements allow for usage of JTorX outside educational purposes[2, 3].

13



2.2 SYSML BACKGROUND

TorXakis

TorXakis is the successor to JTorX. Instead of implementing ioco for LTSs, TorXakis
implements ioco for Symbolic Transition Systems (STS). The ioco theory focuses on, and
is therefore limited to, dynamic aspects of system behaviour. The dynamic aspect of a
system is the control flow of the system using states. Static aspects of a SUT, like data
structures and their operations and constraints, are not covered by the ioco theory. STSs
add (infinite) data and data-dependent control flow, such as guarded transitions to LTSs[26].
More precisely, TorXakis uses symbolic ioco (sioco) which lifts ioco to the symbolic level.
No expressiveness is added by STSs and sioco compared to LTSs and ioco, but STSs and sioco
allow for symbolically representing and manipulating large or infinite transition systems.
Since STS allow for constraints on transitions, TorXakis also supports this. To solve these
constraints, the SMT solver Z3 is used[21]. TorXakis is an experimental tool for on-the-fly
MBT, but can be used freely under a BSD3 license. TorXakis is open source and can be
found on (https://torxakis.org)[8].

Axini

Axini is an MBT tool and company located in Amsterdam, The Netherlands1. The MBT
tool is developed for commercial purposes. Axini introduces the Axini Modelling Language
(AML). This language resembles an imperative syntax as opposed to theTorXakismodelling
language, which has a functional syntax. Functionally, Axini improves on TorXakis by
allowing to model time constraints. Furthermore, Axini provides better support and maintains
the tool, but naturally this comes at a cost for the customer[6].

2.2 SysML

The Systems Modeling Language, or SysML, is a general-purpose system architecture mod-
eling language for systems engineering applications. Systems engineering is the process of
designing the parts, communication between parts and their behaviour of a system. Such a
system can be a hardware component, a software component, or a component which consists
of hardware and software. SysML reuses a subset of the second generation of the Unified
Modelling Language (UML 2[7]) while extending the language to make it suitable for system
engineering. The goal of SysML is to make it quick to model the behaviour and structure of
a system while making it easy to understand for all stakeholders that are involved with the
designing, developing, testing and maintaining of a system. A SysML model is easy to under-
stand, because the diagrams are graphically visualized and because no engineering knowledge
is required. To model a system, a SysML model can be modelled in a supported applica-
tion (Enterprise Architect2 for example). Usually, such an application allows the modeller to
graphically design the model by dragging, dropping and connecting components. A model
can also be represented in a computer readable format, which is specified in the OMG SysML
specification[14, 15, 12]. In section 2.2.1 the structure of a SysML model is explained.

1See: https://www.axini.com/
2See: https://sparxsystems.com
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2.2.1 Diagrams

A SysML model consists of zero or more instances of each of the 9 different diagram types.
All diagrams are described and specified in the SysML OMG specification[12]. Like UML,
SysML is not formal. This means that the syntax of a UML model and a SysML model are
well defined, but the semantics of them are not formally defined[5].
Each diagram can be categorized into three categories: Structural Diagrams, Behaviour Dia-
grams and the Requirement Diagram, which is a single diagram. The category of each SysML
diagram can be found in figure 2.8.

SysML Diagrams

Requirement Diagram Behavioural DiagramsStructural Diagrams

Package Diagram

Block Definition Diagram

Internal Block Diagram

Parametric Diagram

Use Case Diagram

State Machine Diagram

Activity Diagram

Sequence Diagram

Figure 2.8: SysML diagrams grouped by their type[14]. The blue coloured and dotted blocks
indicate a group (or an interface in UML).

Each diagram has its own function for modelling a system. The function of each diagram is:

• The Requirement diagram specifies requirements of the modelled system and the re-
lationships between requirements and the modelled components that need to implement
the requirement.

• The Use case diagram describes the relationship between actors (something or some-
one that interacts with the system) and the actions that an actor can perform on the
system (the use case).

• The Activity diagram specifies the behaviour of a system component by modelling
the control flow and data flow.

• The Sequence diagram models the communication between objects on a timeline.
These objects can be actors or system components.
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• The State machine diagram shows the sequences of states that an object or an
interaction go through during its lifetime in response to events (or triggers), which may
result in side-effects.

• The Block definition diagram represents a system component as a block. A block
can contain interfaces, where the system component can communicate through ports,
the contents of the system component which can be their properties or related state
machine diagrams, or how a block relates to another block.

• The Internal block diagram is a diagram owned by a particular block that shows its
encapsulated structural contents. An internal block diagram gives a white-box perspec-
tive of a black-box block.

• The Parametric diagram is a type of internal block diagram which ensures that its
owner block adheres to specified mathematical formulas. Such a formula can for example
be a law of nature.

• The Package diagram is used to organize the structure of the entire repository of the
SysML model[12].

2.3 Related Work

This section describes the related work that has been done in this research field. We will look
at research that attempts to formalize the semi-formal SysML models for various purposes.

The semantics of UML and SysML models have been formalized before in preceding aca-
demic research. In [20], the formalization of UML state machines is given in two steps. First,
the structure of a state machine is translated to a term rewrite system. Secondly, the opera-
tional semantics of the state machines is defined. During these steps, decisions needed to be
made regarding the behaviour of certain UML state machine constructs.
Since SysML is a subset and an extension of UML 2, the majority of the formalization can
be re-applied. The formalization of SysML state machines is also defined in [1] and [5]. An
attempt has also been done at formalizing SysML activity diagrams in [18]. The paper de-
scribes an activity calculus and an operational semantics for activity diagrams. This activity
calculus is an algebraic-like language that captures the behaviour of an activity diagram. This
paper is explored in more detail in section 2.3.2.
Finally, in section 2.3.3, we will take a look at an attempt on translating a SysML activity
diagram to TorXakis. In [13], a step-by-step approach for this translation is provided. This
step-by-step approach is the result of a case study where activity diagrams were manually
translated to TorXakis for MBT.
In the following sections, we lay out the different related work areas in more detail.

2.3.1 FormaSig

The FormaSig3 project is a collaboration of the Dutch and German railway infrastructure
managers, Prorail and Deutsche Bahn, and the Eindhoven University of Technology (TUE)
and the University of Twente. The goal of the project is to formalize the EULYNX standard

3Formal Methods in Railway Signaling Infrastructure Standardization Processes.
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so that the formalization can be used to check if it satisfies a collection of safety properties.
EULYNX is an initiative of thirteen European railway infrastructure managers to specify a
standard for interfaces between the various components of a railway signalling system such
as a signal, point, level crossing and an interlocking. This standard is modelled in SysML.
The goal of FormaSig is formalizing these SysML models into mCRL2.
mCRL2 (micro Common Representation Language 2) is a specification language in which
the behaviour of distributed systems can be specified and analyzed[11]. The mCRL2 toolset
provides over 60 tools which use a mCRL2 specification. FormaSig uses the model checking
tool to check if the safety criteria are met with EULYNX. Moreover, FormaSig uses MBT to
test if the EULYNX implementation conforms to the formal model. The mCRL2 toolset does
not provide an MBT tool, but the MBT tool JTorX (see section 2.1.7) uses as input language
an mCRL2 specification[10]. Figure 2.9 gives an overview of the test architecture of FormaSig.

Figure 2.9: Test architecture of FormaSig. Using a formalized mCRL2 model from the EUL-
YNX SysML model, model checking and MBT are applied[5].

Since the SysML model of EULYNX predominantly uses the state machine diagram for its
behaviour specification, the FormaSig project formalizes this diagram in [5] and they applied
this formalization on EULYNX in [28].
mCRL2 was chosen in favour of other formalization language, because mCRL2 is founded
and developed in the TUE and because the mCRL2 toolset provided all needed tools for
FormaSig, explained Mark Bouwman and Djurre van der Wal from FormaSig in an interview
we conducted with them.

The formalization approach of FormaSig first formalizes SysML state machine diagrams gen-
erally after which this formalization is adapted to suit EULYNX. The goal of FormaSig is
to achieve a high degree of modularity with formalizing SysML state machine diagrams in
mCRL2. FormaSig achieves this by first abstracting away from the properties of a SysML
state machine diagram that have ambiguous semantics according to them. These properties
are for example the granularity of interleaving i.e. what is considered an atomic step on the
SUT, the run-to-completion semantics, i.e. if a step in the state machine is executed from
start to finish before the next step can be started, or not, and the syntax and semantics of
the action language, the language used to describe the actions in a SysML state machine[28].
This generic formalization consists of two parts.

1. The semantics of SysML is formalized. This consists of formalizing a SysML state
machine by creating data structures in mCRL2 that can represent the structure of a
state machine and by formalizing how a state machine progresses from the current state
to the next state.
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2. The action language, the language used to specify guards and the effects of transitions
in a state machine, is used to enhance the formalization of step 1 by taking into account
guards on transitions when a state machine progresses from the current state to the next
state and by taking into account the effects of the actions performed when transitioning
from one state to another.

This formalization is adapted to suit EULYNX and its properties (granularity of interleaving,
run-to-completion semantics and the action language). This adapted formalization is applied
and used for model checking in [28].

2.3.2 Activity Diagrams

Preceding academic research has also been conducted on formalizing SysML activity diagrams.
Yosr Jarraya et al. describe in their paper[18] an Activity Calculus (AC) for activity diagrams.
This defined AC is a grammar in Backus-Naur-Form (BNF) that can be used to express
activity diagrams. In addition to the AC, Structural Operational Semantics (SOS) for this
AC is given using derivation rules. The SOS gives meaning or semantics to the activity
diagrams in SysML.

Difference between Activity Diagram and State Machine Diagram

Activity Diagrams and State Machine diagrams are both used to model behaviour of a system.
However, these diagrams are different. Figure 2.10 compares an activity diagram to a state
machine diagram. An activity diagram describes a sequence of actions in a flowchart. An
activity diagram automatically transitions to the next action if the preceding action has
finished. In contrary to activity diagrams, state machine diagrams only transition to the next
state when an event is triggered. A state machine diagram is used to model the lifetime
behaviour of a single system component. Activity diagrams are used to model the control
flow of an activity, a flow of action which may involve multiple system components, which
can involve concurrency and synchronization.

Action 1

Action 2

(a) Activity Diagram

Event 1

State 1

Event 2

State 2

(b) State Machine Diagram

Figure 2.10: Comparison between an activity diagram and a state machine diagram.
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Activity Calculus

The AC is defined on the basic constructs of an activity diagram which can be seen in figure
2.11. These activity diagram constructs are a subset of all SysML activity diagram constructs.
Figure 2.15 shows other activity diagram constructs that will be considered later.

Action Initial Activity Final Flow Final Fork / Join Decision / Merge

Figure 2.11: Basic constructs of a SysML activity diagram considered in the Activity Calculus.

The grammar that describes the structure of the activity diagrams is given in Backus-
Naur-Form (BNF), conceptually a term rewriting system for context-free grammars, and can
be seen in figure 2.12.

A ::= ϵ

| ι ↣ N

N ::= ϵ

| l : ⊗
| l : ⊙
| l : Merge(N )

| l : x.Join(N )

| l : Fork(N ,N )

| l : Decisionp(⟨g⟩N , ⟨¬g⟩N )

| l : Decision(⟨g⟩N , ⟨¬g⟩N )

| l : a ↣ N
| l

(a) Unmarked

B ::= A
| ι ↣ M
| ι ↣ N

M ::= N
| l : Merge(M)

| l : x.Join(M)

| l : Fork(M,M)

| l : Decisionp(⟨g⟩M, ⟨¬g⟩M)

| l : Decision(⟨g⟩M, ⟨¬g⟩M)

| l : a
n
↣ M

| Mn

(b) Marked

Figure 2.12: Grammar of the syntax of the Activity Calculus

The ι symbol represents the initial state. The ↣ corresponds to an edge in an activity dia-
gram. ϵ is the empty activity. The letter l denotes the label of the corresponding construct.
The x in the Join step denotes the number of incoming edges. There are two Decision steps,
a probabilistic case and a non-deterministic case. Both cases contain a boolean guard g.
Either g is true or ¬g. For the probabilistic case, p denotes the probability the first case is
chosen. The probability of choosing the second case is 1− p.
In their paper, Yosr Jarraya et al. also define grammar for the so-called marked syntax of
the AC. The idea behind providing a marked syntax is the ability to express the state of the
activity diagram. These marks are represented as overhead bars and we will encounter them
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in the SOS.

Figure 2.13 shows the relation between the activity diagram constructs and the AC syntax.

Figure 2.13: Relation between activity diagram (AD) constructs and the activity calculus
(AC) syntax[18].

We show an example of a SysML activity diagram with its corresponding AC representation
to illustrate how this translation is performed.
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[thirsty] 
{p=0.4}

[not thirsty] 
{p=0.6} Insert Coin

Push Button

Dispense 
Water Bottle

Push Button

Dispense 
Chocolate Bar

Print 
Receipt

Figure 2.14: Activity diagram of a vending machine.

The activity diagram of figure 2.14 can be expressed using the unmarked term Avending such
that:

Avending = ι ↣ l1 : Decision0.4(⟨thirsty⟩N1, ⟨not thirsty⟩N2)

N1 = l2 : PushButton ↣ l3 : DispenseWaterBottle ↣ l4 : Merge(l5 : ⊙)

N2 = l6 : InsertCoin ↣ l7 : PushButton ↣ l8 : Fork(N3,N4)

N3 = l9 : DispenseChocolateBar ↣ l10 : 2.Join(l4)

N4 = l11 : PrintReceipt ↣ l12 : 2.Join(l4)

Structural Operational Semantics

To show meaning to the AC, a structural operational semantics (SOS) needs to be defined.
SOS consists of rewrite rules that can be applied on AC terms. These rules formalize the
meaning, or semantics, of AC terms and they therefore indirectly formalize the semantics of
SysML activity diagrams. The rules can be found in appendix A.
It is important to note that the defined rewrite rules are not derived from the SysML specifica-
tion, because no such semantics exist, but are derived from an interpretation of the behaviour
of activity diagrams. Hence, these rewrite rules might suggest a different meaning than ex-
pected in another environment.
Conceptually, the meaning of the derivation rules (and therefore the behaviour of activity
diagrams) is as follows.

1. To describe the state in which an activity diagram is in, the notion of tokens is used.
A token correspond with one overbar in the grammar of figure 2.12b. It is possible to
have multiple bar on a single construct, because loops in the diagram are permitted.
For clarity, ι1 = ι and ι0 = ι.
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2. The token flow starts by giving the initial node a token. If there are multiple initial
nodes, we replace these by a single initial node which connects to all the targets of the
initial nodes via a fork node. This is equivalent semantically, because the fork node
allows all its descendants to run asynchronously, just like having multiple initial nodes
would do.

3. When an action receives a token, it starts running the action. Only when an action is
completely finished, it can pass its token to the next construct.

4. The flow of an activity diagram can be ended by a flow final node, which deletes a token.
All flows end abruptly when an activity final node is reached, since then all tokens are
deleted.

5. The fork node gives each of its descendants a token when it receives a token. The result
of this is that tasks actions will be executed in parallel. Conversely, the join node waits
until all incoming edges have ‘delivered’ a token, and only then forwards this token to
the next node.

6. The decision node can pass an incoming token to one of its descendants. Conversely,
a merge node can forward an incoming token, from one of the incoming edges, to the
outgoing edge.

Updated Formalization

To the best of our knowledge, the formalization of SysML activity diagrams discussed in the
previous subsection was the first academic work on this topic. Since then, there has been one
notable contribution[23] to the formalization of the activity diagrams, which expanded on the
previous work. The SysML activity diagram constructs considered in the formalization of [23]
are displayed in figure 2.15.

Action Initial Activity Final Flow Final Fork / Join Decision / Merge

Receive Signal Send Signal Call Behaviour

Figure 2.15: Constructs of a SysML activity diagram considered in NuAC[23]. A call be-
haviour A is encoded to a separate NuAC term so that it can be referenced from other NuAC
terms.

Table 2.2 shows the updated relation between the SysML activity diagram constructs and
the NuAC terms. The terms Decision, Merge, Fork and Join have been abbreviated to D,
M, F and J respectively.
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Table 2.2: Relation between activity diagram artifacts and the New Activity Calculus (NuAC) syntax[23].
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The new constructs are the receive signal action (indicated with a ? symbol), the send
signal action (indicated with a ! symbol) and the call behaviour action (indicated with a ↑
symbol) which together cover all behaviour constructs of the SysML activity diagram. The
send and receive actions are accompanied by an object v, the send or received object. The
properties of v do not influence the control flow of a SysML activity diagram. The grammar
of the AC has been updated to the New Activity Calculus (NuAC), which can be seen in
figure 2.16.

A ::= ϵ

| l : ιn ↣ N

N ::= N
| l : Fork(N ,N )

| l : Decision(A, p, g,N ,N )

| l

| l : X n
↣ N

| l : ⊗
| l : ⊙

X ::= aB
| Join(x1, x2)

| Merge(x1, x2)

B ::= ↑ A
| !v

| ?v

| ϵ

Figure 2.16: Syntax of New Activity Calculus (NuAC): Updated and optimized syntax of AC

The derivation rules have also been updated for NuAC. The rules and their conceptual
meaning can be found in table 2.3. We will use these derivation rules in our own translation
algorithm in section 3.4. The derivation rules must be understood before being able to cor-
rectly use them when defining a formalization. The result of SOS is a derivation tree which
models the possible execution paths of the NuAC term. The derivation rules specify how a
NuAC term can transition to the final state, which indirectly specifies the flow (i.e. order) of
actions in an activity diagram from an initial node to a final node, which is the behaviour of
an activity diagram.

Σ is defined as the set of labels for the transitions in NuAC. For clarification, these la-
bels are not related to the labels of the actions of an activity diagram. The executing active
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node has label α ∈ Σ, ϵ ∈ Σ is the empty action and p is a probability with p ∈ [0, 1]. A
general transition is in the form A α−→p A′, where A and A′ are NuAC terms. p indicates
the probability that the transitions occurs, which is denoted by P (A, α,A′). For simplicity
A α−→p A′ = A α−→ A′ for p = 1 which means that the transition is non-probabilistic. A[N ]
means that N is a sub-term of A and |A| is term A without tokens. For the call behaviour
a ↑ N , A[a ↑ N ] is denoted by A ↑a N .
For space constraints, the terms Decision, Merge, Fork and Join in the derivation rules have
been abbreviated to D, M, F and J respectively.
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Identifier Derivation Rule Description

INT-1 l : ι ↣ N ϵ−→ l : ι ↣ N This axiom starts the execution of the
expression by putting a token on the
initial node ι.

INT-2 l : ι ↣ N l−→ l : ι ↣ N Propagate token from the initial node
to N .

ACT-1 ∀n > 0,m ≥ 0, l : am ↣ N n l−→: am+1 ↣ N
n−1

Execute action a.

ACT-2 ∀n,m ≥ 0, l : am+1 ↣ N
n l−→: am ↣ N n

Propagate token to N after execution
of a.

ACT-3 ∀n,m ≥ 0
N

α−→pN ′

l:am↣Nn α−→pl:am↣N ′n
Probabilistic version of ACT-2

BEH-0 ∀n > 0, l : a ↑ An
↣ N l−→ l : a ↑ An−1

↣ N Execute the called behaviour A from
a.

BEH-1 ∀n > 0, A=l′:ι↣N ,A′=l′:ι↣N
l:a↑An

↣N
l−→l:a↑A′n−1

↣N
Generalized case of BEH-0 where a
is executed.

BEH-2 ∀n ≥ 0, A[l′:⊙]
l′−→|A|

l:a↑An
↣N

l′−→l:a↑|A|n↣N
Finish the called behaviour and con-
tinue with N

BEH-3 ∀n > 0,
A

α−→pA′

l:a↑An
↣N

α−→pl:a↑A′n↣N
Effect of the call behaviour when ex-
ecuting A

BEH-4 ∀n ≥ 0,
N

α−→pN ′

l:a↑An
↣N

α−→pl:a↑A
n
↣N ′

Effect of the call behaviour when ex-
ecuting A

FRK-1 ∀n > 0, l : F (N ,N )
n l−→ l : F (N ,N )

n−1
Propagate incoming token of the fork
to its sub-terms.

FRK-2 ∀n ≥ 0,
N

α−→pN ′

l:F (N ,N )
n α−→pl:F (N ′,N )

n Execute a sub-term of the fork.

DEC-1 ∀n > 0, l : D(g,N ,N )
n l,g−→ l : D(g,N ,N )

n−1
Token flows to the edge satisfying
guard g.

DEC-2 ∀n > 0, l : D(p, g,N ,N )
n l,g−→p l : D(p, g,N ,N )

n−1
Probabilistic version of DEC-1.

DEC-3 ∀n > 0, A=l′:ι↣N ,A′=l′:ι↣N
l:D(A,p,g,N ,N )

n l−→l:D(A′,p,g,N ,N )
n−1

Initiate an invoked behaviour.

DEC-4 ∀n > 0, A[l′:⊙]
l′−→|A|

l:D(A,p,g,N ,N )
n l′,g−−→l:D(|A|,p,g,N ,N )

n
Token flow of a guarded path while
terminating behaviour A.

DEC-5 ∀n > 0,
N

α−→qN ′

l:D(A,p,g,N ,M)
n−1 α−→ql:D(A,p,g,N ′,M)

n−1 Change of a decision term when a sub-
term changes.

MRG-1 ∀n ≥ 0, l : N ↣ l′ : M(x, y)
n l−→ l : N ↣ l′ : M(x, y)

n
Propagate token from incoming on a
merge term.

MRG-2 l : M(x, y) ↣ N l−→ l : M(x, y) ↣ N Propagate token from one of the in-
coming edges to term N .
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MRG-3 A[l : M(x, y) ↣ N , lX ]
l−→ A[l : M(x, y) ↣ N , lX ] MRG-1 in a sub-term.

MRG-4
N

α−→pN ′

l:M(x,y)↣N
α−→pl:M(x,y)↣N ′

Change of a merge term when N
changes.

JON-1 ∀n ≥ 0, l : N ↣ l′ : J(x, y)
n l−→ l : N ↣ l′ : J(x, y)

n
Activate pin x from an outgoing join.

JON-2 l : J(x, y) ↣ N l−→ l : J(x, y) ↣ N Activate pin x from an incoming join
to N .

JON-3 A[l : J(x, y) ↣ N , lX ]
l−→ A[l : J(x, y) ↣ N , lX ] Fuse labels referring to the same join.

JON-4
N

α−→pN ′

l:J(x,y)↣N
α−→pl:J(x,y)↣N ′

Change of a join term when sub-term
N changes.

SND ∀n > 0, l : a!v
n
↣ N l−→ l : a!v

n−1
↣ N Propagation of the token after sending

object v.

REC ∀n,m ≥ 1, l
′:a!v

m
↣N ′ l′−→l′:a!v

m−1
↣N ′

l:a?v
n
↣N

l−→l:a?v
n−1

↣N
Token flow when receiving object v af-
ter sending, which is a synchronous
communication.

COM ∀n,m > 0,

l:a!v
n
↣N1

l−→l:a!v
n−1

↣N1,

l′:a?v
n
↣N2

l′−→l′:a?v
n−1

↣N2

A[l:a!v
n
↣N1,l′:a?v

m
↣N2]−→

A[l:a!v
n−1

↣N1,l′:a?v
m−1

↣N2]

Sending and receiving object v.

FFin A[l : ⊗]
l−→ A[l : ⊗] Remove token when a flow final node

is reached.

AFin A[l : ⊙]
l−→ |A| Remove all tokens when activity final

is reached.

PRG-1
N

α−→pN ′

A[N ]
α−→pA[N ′]

Apply another other rule to a sub-
term.

PRG-2
N1

α−→p1N
′
1,N2

α−→p2N
′
2

A[N1,N2]
α−→p1×p2A[N ′

1,N ′
2]

Apply another rule on two sub-terms.

Table 2.3: NuAC derivation rules and their conceptual meaning[23].
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2.3.3 SysML Activity Diagrams to TorXakis Translation Approach

In her document [13], Kyra Hameleers, has documented her findings on translating a SysML
activity diagram to TorXakis. Even though this procedure is not formally defined, this
document is relevant for our research, because the approach described in [13] is based on
the SysML models of ADAPTO, which we will be using for our case study. Furthermore,
TorXakis is one of the contending formal languages for using MBT with SysML we will
explore in this thesis.

The approach consists of the boilerplate code, the code that can be generated independently
of the activity diagram, and the translation algorithm. This part consist of two sections:
translating diagrams without parallelism and with parallelism.

Boilerplate

To get aTorXakismodel up and running, the communication channels and how they connect
and communicate with our adapter and SUT need to be defined. To define the channels, the
type of the messages used for the communication needs to be chosen. One option is to use
the String type, which is chosen, because this option gives the most flexibility since messages
are not restricted. The channel definition can be found in listing 2.1.

1 CHANDEF Channels ::= In :: String

2 ; Out :: String

3 ENDDEF

Listing 2.1: Channel definition. Over the channels strings can be communicated

To define how we communicate with the adapter, a connection definition needs to be
created. Since TorXakis and the adapter will be run on the same computer, TorXakis is
hosted locally. The unoccupied port 7890 is chosen for the communication. The resulting
connection definition is laid out in listing 2.2.

1 CNECTDEF Sut

2 ::=

3 CLIENTSOCK

4

5 CHAN OUT In HOST "localhost" PORT 7890

6 ENCODE In ? s -> ! s

7

8 CHAN IN Out HOST "localhost" PORT 7890

9 DECODE Out ! s <- ? s

10 ENDDEF

Listing 2.2: Connection definition. Port 7890 is used to send and retrieve messages

TorXakis needs a model to test. The model definition can be created in advance, in
which the translated activity diagram will be executed. The starting procedure will be called
start process. This procedure will contain the actual translations. The resulting model can
be found in listing 2.3.

1 MODELDEF Model

2 ::=

3 CHAN IN In

4 CHAN OUT Out

5
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6 BEHAVIOUR start_process[In , Out]()

7 ENDDEF

Listing 2.3: Model definition

Now that we have defined the boilerplate code, we can start the translation process. There
are two options for translating. If the diagram has a linear control flow i.e. does not contain
a Fork-, Join-, Decision-, or Merge node, the Linear translation option is used. Otherwise,
the Non-Linear translation option is used.

Linear

When the to be translated SysML activity diagram is linear, i.e. does not contain parallelism
or non-linear control flow, which can be recognized by the parallelize or synchronize construct,
as can be seen in figure 2.17 or decision or merge symbols, as can be seen in figure 2.18.

In this case the State Automaton Definition, or STAUTDEF in TorXakis can be used. This
definition corresponds with the mathematical Labelled Transition System (LTS). To define a
state automaton definition, the possible states, the transitions between these states and the
initial state are needed. A STAUTDEF also supports variables. The translation procedure goes
as follows.

• We start at the initial activity. From here, there should be a linear path through the
diagram, since we did not encounter parallelization constructs. We will call the initial
activity init and we will add it to the STATE and INIT sections of the state automaton
definition.

• We can now consider each arrow (control flow) between the activities as a state. Since
these arrows are not named, we need to choose a unique name. We choose to call the
state the same as the transition name, but starting with a lowercased letter.

• Each state name has to be added to the STATE section of the state automaton definition.

• For each action construct, we need to add a transition to the TRANS section of the state
automaton definition. To create a transition, we need the source state, the target state
and the communication. The communication consists of a channel and the message
that will be sent over that channel. For the Send signal action (figure 2.15), the Output
channel is used, because a signal is outputted. Otherwise, the Input channel is used,
because the termination of any action is the input for the next action. This also holds
for the Receive signal action, because this action is started by an input trigger.

• When the final activity is reached, we are done.

Listing 2.4 shows a complete state automaton definition that result from these steps.

1 STAUTDEF start_process[In :: String; Out :: String ]()

2 ::=

3 STATE

4 init , activity1 , activity2

5 INIT

6 init

7 TRANS

8 init -> In ! "Activity1" -> activity1
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9 activity1 -> Out ! "Activity2" -> activity2

10 ENDDEF

Listing 2.4: State automaton definition.

Non-Linear

When the to be translated SysML activity diagram is non-linear, a different procedure is
required. A non-linear activity diagram contains one or more of parallelism or control flow
symbols which can be recognized by symbols in figures 2.17 and 2.18.

(a) Parallelize (b) Synchronize

Figure 2.17: Symbols used for parallelism

(a) Decision (b) Merge

Figure 2.18: Symbols used for control flow

Instead of defining a STAUTDEF, we define the model using the process definition PROCDEF.
A process definition in TorXakis supports parallelism and control flow transitions. The
following steps need to be taken in the updated translation procedure:

1. When we encounter the parallelize symbol, shown in figure 2.17a, we split up the con-
secutive paths and translate these recursively. We connect these paths with the parallel
operator |||.
When we encounter the synchronize symbol, shown in figure 2.17b, we have reached the
end of the parallelization. To show this in TorXakis, we use the EXIT keyword for each
of the paths that are synchronized. We need to mark the recursive translations with
the keyword EXIT as well so that TorXakis knows that this procedure can end. We
use the >>> operator to concatenate two procedures. In this case, we use the operator
to continue after we have synchronized. This operator can only be used when the pre-
ceding process is marked with the EXIT keyword.
The result can be found in listing 2.5.

1 PROCDEF parallel_procedure[In :: String; Out :: String ]() ::=

2 (left_path[In , Out]() ||| right_path[In , Out]()) >>> continuation

3 ENDDEF

4 PROCDEF left_path[In :: String; Out :: String ]() EXIT ::=

5 -- recursive translation

6 >>> EXIT

7 ENDDEF

8 PROCDEF right_path[In :: String; Out :: String ]() EXIT ::=
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9 -- recursive translation

10 >>> EXIT

11 ENDDEF

12

Listing 2.5: Parallel procedure

2. The process is similar for the control flow symbols, but we use the operator ## to in-
dicate that either the left or the right path can be chosen. When the decision node
contains a guard in one or more of its outgoing paths, we can use the guard statement
in TorXakis. The guard statement is a boolean expression between double scare brack-
ets. It connects to the procedure it is guarding for with the =>> operator. Assuming the
left path does not have a guard but the right one does, the result will look like listing 2.6.

1 PROCDEF decision_procedure[In :: Transition; Out :: Transition ]() ::=

2 (left_path[In , Out]() ||| ([[ guard ]] =>> right_path[In , Out]()))

↪→ >>> continuation

3 ENDDEF

4 PROCDEF left_path[In :: Transition; Out :: Transition ]() EXIT ::=

5 -- recursive translation

6 >>> EXIT

7 ENDDEF

8 PROCDEF right_path[In :: Transition; Out :: Transition ]() EXIT ::=

9 -- recursive translation

10 >>> EXIT

11 ENDDEF

12

Listing 2.6: Parallel procedure with a guard on the right branch

3. There are two different SysML constructs used to indicate the end of the procedure.
The Flow Final node (2.15) indicates that the path has reached its final state. The
Activity Final node (2.15) indicates that the entire activity diagram has reached its
final state.

All actions in the activity diagram are translated to TorXakis according to the Linear
approach. To indicate that the translated actions are executed in order, they are joined with
the TorXakis sequence operator (>->).

This concludes the translation procedure.

Example

To illustrate the effect of applying the translation procedure, we apply the translation proce-
dure on the activity diagram shown in figure 2.19.
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Figure 2.19: Coffee machine activity diagram

We observe that the coffee machine activity diagram uses parallelization, which can be
recognized by the fork node and synchronize node. Therefore, we will use the non-linear trans-
lation procedure. Listing 2.7 shows the result of the application of the non-linear translation
procedure on the coffee machine activity diagram.

1 PROCDEF Make_Coffee[In , Out :: Transition ]() EXIT

2 ::=

3 (parallel_1[In , Out]() ||| parallel_2[In , Out]())

4 >>> continuation[In, Out ]()

5 ENDDEF

6

7 PROCDEF parallel_1[In , Out :: Transition ]() EXIT

8 ::=

9 In ! "Boil the water"

10 >-> In ! "Send water boiled"

11 >-> In ! "Receive water boiled"

12 >-> EXIT

13 ENDDEF

14

15 PROCDEF parallel_2[In , Out :: Transition ]() EXIT

16 ::=

17 In ! "Grind coffee beans"

18 >-> In ! "Send beans grinded"

19 >-> In ! "Receive beans grinded"

20 >-> EXIT

21 ENDDEF

22

23 PROCDEF continuation[In , Out :: Transition ]() EXIT

24 ::=

25 In ! "Mix"

26 >-> In ! "Pour in a cup"

27 >-> EXIT

28 ENDDEF

29

30 CHANDEF Channels ::= In :: String

31 ; Out :: String

32 ENDDEF

33
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34 MODELDEF Model

35 ::=

36 CHAN IN In

37 CHAN OUT Out

38

39 BEHAVIOUR Make_Coffee [In ,Out] ( )

40 ENDDEF

41

42 CNECTDEF Sut

43 ::=

44 CLIENTSOCK

45

46 CHAN OUT In HOST "localhost" PORT 7890

47 ENCODE In ? qop -> ! qop

48

49 CHAN IN Out HOST "localhost" PORT 7890

50 DECODE Out ! s <- ? s

51 ENDDEF

Listing 2.7: Result of translating the coffee machine activity diagram from figure 2.19 using
the non-linear translation procedure.

After applying the translation procedure, we observe the following:

1. It depends on the interpretation of the viewer of the activity diagram what action can
be categorized as an output, because this is not specified in the activity diagram. The
‘Pour in a cup’ action for example could be interpreted as an observable output from
the coffee machine, but this is not expressed in the activity diagram and is therefore
translated to an input.

2. It depends on the interpretation of the viewer of the activity diagram what action can
be categorized as an input or as an internal action, because this is not specified in the
activity diagram. The ‘Send water boiled’ action for example could be interpreted as
an internal action from the coffee machine, because it might not be observable from the
outside. Since this is not expressed by the activity diagram, the action is translated to
an input.

When defining our own translation algorithm, we take these observations into account.

2.4 ADAPTO

In this section, we will explain what ADAPTO is and how it works. ADAPTO is an automated
storage and retrieval system developed by Vanderlande. ADAPTO consists of storage racks
with rails in between them. Battery powered shuttles move over these racks to pickup items
at specific instructions communicated and received by the shuttles over Wi-Fi. Figure 2.20
shows how a shuttle picks up an item from a rack. At the front of the racks is a crossrail on
each level. This allows for shuttles to move to different aisles on the same level. ADAPTO
can be configured to have a fixed number of shuttles per level or to allow shuttles to change
levels via shuttle lifts.
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Figure 2.20: A single ADAPTO shuttle

Usually ADAPTO is used in a large warehouse that needs to store and retrieve items
efficiently from its large storage facility. ADAPTO solves the following problems for its
customers:

• Items are automatically retrieved and stored in the system. This saves on manual
labour.

• Since ADAPTO works automatically, it is less prone to errors when storing and retriev-
ing orders.

• More items can be stored in the same volume than in a traditional warehouse where
items need to be reachable by humans. Figure 2.22 shows that ADAPTO is scalable in
all three dimensions and that storage is very dense.

Figure 2.21 shows how an aisle of ADAPTO looks like, including the item elevator.

Figure 2.21: Side view of a single aisle of ADAPTO. The shuttles retrieve an item in the
warehouse and delivers it to the item elevator.
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Figure 2.22: ADAPTO is scalable

2.4.1 Testing

ADAPTO is currently used in multiple facilities in several countries with the Netherlands as
the greatest market and this number is growing. To save costs on customer service and to
appeal to potential customers, Vanderlande profits from having reliable software. To make
sure their software and hardware systems are reliable, they test it.

Currently, ADAPTO is tested using three main concepts, namely automatic gherkin tests,
endurance testing and manual testing.

Automatic Gherkin Tests

The first way ADAPTO is tested, is with automatic tests. Gherkin tests are used for this.
They are handwritten tests that can be executed automatically. The goal of a Gherkin test
is to test a flow of the tested system while making it understandable for non-technical people
to understand the test. This is done by defining a test as a list of sentences that resemble
natural language. Each sentence represents one of three possible clauses which can occur in
a Gherkin test[19].

The possible clauses and their meaning from the ADAPTO Gherkin tests are:

• The Given clause indicates a precondition.

• The When clause indicates an action done on the SUT.

• The Then clause describes the expected post condition of the SUT. This statement is
checked to check if the test passes.
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• The And keyword has the same semantics as the keyword from the line above in the test.
This works recursively. This keyword is used to make the test cases more similar to the
English language and easier to read for people without a technical background.

A Gherkin test is a list of clauses. For ADAPTO, each clause in this list is executed in
sequence. The next clause starts only when the current clause is finished executing. This
also holds for the statements of lines 5, 6 and 7; these states are reached after each other in
sequence.

An example of a Gherkin test can be found in listing 2.8.

1 Scenario: Make coffee

2 Given coffee machine is started

3 When pressing the start button

4 Then coffee is poured in a cup

Listing 2.8: Gherkin test that describes a simple coffee machine.

To make a Gherkin test actually work, additional steps have to be undertaken, since a com-
puter can not yet understand such a Gherkin test and use it on the SUT. Regular expressions
are used to link each line in a Gherkin test to a function in the ADAPTO software. Listing
2.9 shows an example of such a regular expression.

1 [When(@” ( p r e s s i n g | ho ld ing ) the s t a r t button with id ”” ( . ∗ ) ””” ) ]
2 pub l i c void Interact ingWithStartButton ( Interact ionType

↪→ interact ionType , i n t id )
3 {
4 // Perform the corre spond ing a c t i on s on the SUT.
5 }
Listing 2.9: Regular expression that links the clause on line 3 of listing 2.8 to an action on
the SUT.

The body of the function performs the associated actions of the Gherkin clause on the SUT.
Now the Gherkin test can be executed.
For ADAPTO, each of the linked functions corresponds to a predefined action on the SUT.
These actions are called the step definitions and together these form an abstraction layer
over the underlying implementation. These step definitions are used in all parts of the test
automation where actions on the SUT are communicated.

We will analyze the structure of a Gherkin test and how it is related to an MBT test, because
we found similarities between Gherkin tests and MBT tests that we can use in our case study.
We do this to better understand the semantics of a Gherkin test. This way, a Gherkin test
written for ADAPTO may be used in combination with SysML models for MBT. As we have
seen, a Gherkin test contains three possible clauses.

• Given

This clause describes the assumed precondition of the test. We have two options when
translating this clause into an MBT test. We can make sure that the SUT satisfies the
precondition before we start the test which allows us to ignore this clause. The other
option is to consider this clause an input which configure the SUT according to the
precondition.
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• When

This clause describes an input on the ADAPTO system. In model based testing, this
would be an input as well.

• Then

This clause describes the expected post condition of ADAPTO. In model based testing,
we can consider this an output by observing when the post condition holds[19].

Endurance Testing

The other way ADAPTO is currently tested is with endurance testing. Endurance testing
is running a system how it normally would be used for a longer period of time. When run-
ning a system for a longer period, it is more likely to enter rare states. This way edge cases
are encountered and therefore tested which, if the system keeps running, indicates a reliable
system[16]. If a failure occurs during an endurance test, the problem can not only be in the
software, but also in the hardware. Some hardware failures are taken into account by the
software, but significant hardware defects or failures are not. For example, when ADAPTO
stops running after an earthquake and the whole system collapses, the software cannot real-
isticly be held accountable.

At Vanderlande an ADAPTO system is running most of the time and is checked regularly to
check if the system is still running as usual.

2.4.2 SysML at Vanderlande

Currently, Vanderlande is in the process of modelling SysML models. At the moment, Sys-
tem/Subsystem Design Descriptions (SSDDs) are used to design the behaviour of the to be
implemented software. These SSDDs are used as a basis for translation to SysML. For future
system design, SysML models will be designed directly from the determined system behaviour.
The modelling of SysML models is outside the scope of this thesis. The goal of the SysML
modelling is to use the models for the software development, because the models are clearer
than SSDDs. In addition to this, the SysML models can be used to explain (future) employees
how the ADAPTO system works by providing them a visual overview with the models as op-
posed to explaining in natural language or by showing code. At the moment the development
of the SysML models is still in an experimental phase.

Not all diagrams of SysML are used to model ADAPTO. Figure 2.23 shows the 9 SysML
diagrams structured by the type of diagram from figure 2.8 with the diagrams that are used
in the SysML models of ADAPTO coloured in.
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SysML Diagrams

Requirement Diagram Behavioural DiagramsStructural Diagrams

Package Diagram

Block Definition Diagram

Internal Block Diagram

Parametric Diagram

Use Case Diagram

State Machine Diagram

Activity Diagram

Sequence Diagram

Figure 2.23: SysML diagrams grouped by their type[14]. The orange coloured and striped
diagrams are used in the SysML models of ADAPTO. The blue coloured and dotted blocks
indicate a group (or an interface in UML).

Activity diagrams are used for modelling the behaviour of ADAPTO in favour of state
machine diagrams, because activity diagrams allow for modelling parallel behaviour in a
system, which the SysML models of ADAPTO takes advantage of. According to [12], activity
diagrams are reducible to state machine diagrams. This implies that state machine diagrams
can model parallel behaviour as well. Modelling parallel behaviour in state machine diagrams
is however less trivial than in activity diagrams. Furthermore, Vanderlande has decided to
model case studies for ADAPTO, which is better suited for activity diagrams, in contrary to
state machine diagrams which are generally used to model the behaviour of a specific system
component.

2.5 Conclusion

In this section, we conclude the background by providing a summary including how each part
of the background will be used in the remainder of this thesis.

In section 2.1, we introduced the underlying principles of Model-Based Testing. We started
with a Labelled Transition System; the datastructure used in Model-Based Testing. With
Model-Based Testing, we want to check if the behavioural model of the SUT (specification)
matches its implementation. The specification and implementation can both be considered as
an LTS. To determine whether one LTS behaves according to another LTS, a relation needs
to be defined. We covered trace equivalence, ioco and uioco. Model-Based Testing tools im-
plement such a relation. We have covered four Model-Based Testing tools. One of which is
TorXakis, which implements the ioco relation.

38



2.5 CONCLUSION BACKGROUND

In section 2.2, we discussed SysML and the nine diagrams that make up a SysML model.
Since the goal of our research is to use SysML models for Model-Based Testing, we discussed
which SysML diagrams are best suited for Model-Based Testing. We concluded that at least
a SysML diagram that models behaviour should be used, since Model-Based Testing tests
behaviour. Depending on the SysML model, it should be determined which (behavioural)
diagram(s) should be used for Model-Based Testing.

In section 2.3 we discussed related work for the research topic of this thesis. We discussed
that SysML state machine diagrams have been formalized and used for Model-Based Testing
before in the FormaSig project. We used the research of FormaSig to get an idea of how a
SysML diagram could be formalized for Model-Based Testing, and to compare the transla-
tion approach to our own approach. We also looked at two papers that formalized the SysML
activity diagram. [18] proposes a grammar for the activity diagram and derivation rules on
the grammar terms to formalize the behaviour. [23] expands on this work by supporting all
SysML activity diagram constructs. We will use these papers as a basis for our translation
algorithm in section 3.4 where we will use the same concept of defining a grammar defining
the semantics of each term. Moreover, we laid out the translation procedure that was created
at Vanderlande by manually translating SysML activity diagrams to TorXakis. We propose
an enhancement for this procedure in section 3.3.

In section 2.4 we explained what ADAPTO is, which components there are and what func-
tions these components have. We laid out how ADAPTO currently gets tested. We focused
on Gherkin tests, since we will use these tests in a case study in section 4.3.1 where we
attempt to translate Gherkin tests of ADAPTO to TorXakis. Finally, we discussed how
SysML models are modelled for ADAPTO. We will use this information for determining the
translation source of our translation algorithm from SysML to an Model-Based Testing tool
in section 3.1.
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Chapter 3

Translation from SysML to
Model-Based Testing

In this chapter, we will define a translation algorithm from SysML models to a translation
target that can be used for Model-Based Testing (MBT). Before we define this algorithm, we
first determine what translation source and translation target are best suited to achieve our
goal: applying MBT on systems with SysML models. The algorithm we define is based on
previous work from [18], [23] and [13], but is adapted to suit our translation. Furthermore,
we propose an enhancement to translation procedure in [13].

3.1 Translation Source

From section 2.2.1, we learn that there are 9 types of diagrams a SysML model can consist of.
Four of these diagrams are used to model the behaviour of the system. Since MBT requires a
behaviour model of the System Under Test (SUT), we naturally want to incorporate at least
one of the behavioural diagrams of SysML.

In the FormaSig project[28], the SysML diagrams that are used for the translation to mCRL2
are the Internal Block Diagram, the Block Definition Diagram and the State Machine Dia-
gram. The first two diagrams model the structure of the SUT while the latter one describes
the behaviour. State machine diagrams are chosen for the formalization in mCRL2, because
that is the main diagram that is used to model behaviour of the EULYNX system in the
FormaSig project.

For our case study, we will apply our algorithm on the ADAPTO system. The SysML models
that are developed for ADAPTO use the Activity Diagram (AD) to model the behaviour.
Section 2.4.2 explains why the decision to use ADs is made. Since the AD is the main dia-
gram used to model behaviour for ADAPTO, we choose to use this diagram as our basis for
the translation algorithm.

3.2 Translation Target

We consider the following five translation target contestants for our translation. Since the
goal is to use model based testing, we naturally need to choose a target that supports this.
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1. Labelled Transition System

2. Symbolic Transition System

3. mCRL2

4. Axini

5. TorXakis

3.2.1 Labelled Transition System

Labelled transition systems (LTSs) are the underlying models of the model based testing
theory (section 2.1.1). For flexibility purposes, it would make sense to formalize a SysML
activity diagram to an LTS. Hereafter, this formalized activity diagram can be converted to
a modelling language that an MBT tool accepts as an input.

Pros

The ability to choose an MBT tool is the main benefit of this approach.

Cons

The cons of using LTSs as the target of our translation are:

1. The flexibility is also the main drawback of this approach; the resulting LTS needs to
be translated to a language that an MBT tool understands before we can apply MBT.

2. Usually, complex software systems use large or unbound data domains which results in
a state space explosion. This can result in a long runtime for a Model-Based Testing
tool.

3.2.2 Symbolic Transition System

Symbolic transition systems counter the problem of a state space explosion that LTSs have.
This is done by treating data symbolically. This means that data is stored outside the
transition system. A transition can alter this data or can have a guard which is used to check
if that transition is allowed according to the stored data. If not specified, the initial value of
an integer value is 0.
Figure 2.6 shows an STS of a vending machine. It only outputs a chocolate bar after the
button is pressed when there is enough money inserted. The figure also shows the guard
money >= 10, which indicates that that transition can only be taken if the variable money is
greater than or equal to 10. The action money− = 10 is also shown in the figure. This actions
indicates that each time the transition is performed, the money variable is decremented by
10.
This STS has three states. The LTS equivalent would have significantly more states if there
are just a few different coins that can be inserted. This is because the state in the LTS would
represent the money variable in the STS. If a coin could have any integer value, an LTS for
this STS would not even exist, because the LTS would need a countably infinite number of
states; at least one for each value the coin can have.
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Pros

The pros of using STSs as the target of our translation are:

1. As with LTSs, choosing STSs as the source of the translation algorithm ensures that
any MBT tool can be used.

2. As stated above, STSs counter the problem of state space explosion that LTSs have.

Cons

As with LTSs, an STS needs to be translated to a language that an MBT tool understands
before we can apply MBT.

3.2.3 mCRL2

The mCRL2 language is a formal language that describes models. A toolkit is included that
can do model checking. To use mCRL2 for model based testing, the JTorX model based tester
is a popular choice since this application can read mCRL2 as input. As Van der Wal and
Bouwman explain in their research, it is possible to translate the EULYNX SysML models
to mCRL2[28]. The translation in mCRL2 would be the process calculus that works on the
derivation rules of (Nu)AC.

Pros

The pros of using mCRL2 as the target of our translation are:

1. No additional translation is needed, provided that you use the JTorX model based
tester.

2. There is currently a tool in development by Van der Wal and Bouwman that translates
SysML to mCRL2 developed. However, as of writing this, this tool is not available yet
and is only applicable on state machine diagrams. We did not consider this approach
in this thesis, because we opted for another translation target.

Cons

The cons of using mCRL2 as the target of our translation are:

1. JTorX is the predecessor of TorXakis and has not been updated and maintained for
several years.

2. It is not straightforward to use a different model based testing tool for mCRL2 models
unless an additional translation layer is developed to translate these models to the
language of a different tool. Since this is the question that we are trying to answer with
this comparison, this requirement defeats the purpose of using mCRL2 in the case we
do not want to use JTorX.

3.2.4 TorXakis

TorXakis is initially developed for research purposes. The model based testing tool is based
on the ioco theory introduced by Tretmans[27]. The translation in the TorXakis modelling
language would be the process calculus that works on the derivation rules of (Nu)AC. We did
not consider the MBT tool TorX, because it is the predecessor of JTorX and TorXakis.
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Pros

The pros of using the TorXakis language as the target of our translation are:

1. TorXakis is open source.

2. TorXakis is free for commercial use under the BSD 3-Clause License.

3. Preceding work from [13] has been done inside Vanderlande which is based on TorX-
akis. This work can be used as a basis for our translation algorithm.

Cons

The cons of using the TorXakis language as the target of our translation are:

1. Since the software is free to use, there is no customer support available.

2. As we learned from 2.1.7, TorXakis does not have the ability of modelling time. Since
the activity diagrams of ADAPTO occasionally use timer constructs, it can be an issue
that modelling time is not supported in TorXakis. One option to overcome this limi-
tation is by ignoring the occasional timer constructs in the activity diagrams. Another
solution is to allow a transition that has a timer, but increase the time TorXakis waits
on the next output to at least the time the timer waits.

3.2.5 Axini

Axini (section 2.1.7) is a modern model based testing tool developed for commercial use.

Pros

The pros of using the Axini language as the target of our translation are:

1. In addition to modelling expressiveness of TorXakis, Axini allows for the modelling
of time. This could for example be used to check for an output after a given amount of
time.

2. Since Axini is developed for commercial use, the tool is maintained and updated regu-
larly.

3. Support is available from the Axini team.

Cons

The cons of using the Axini language as the target of our translation are:

1. The tool is not open source and can therefore not be inspected. This might be a con
when we are concerned about the behaviour of the underlying source code.

2. The tool is not free to use.
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Considering all observations and preceding academic work, we have decided to build on [18]
and [23] by proposing a translation algorithm that is suitable for translating (ADAPTO)
SysML activity diagrams to TorXakis. Our algorithm will consist of two steps. First, we
define a grammar that is able to encode all information from SysML activity diagrams which is
required for the translation. After this, we need to translate this intermediate representation
to a modelling language. We have chosen to translate to the TorXakis modelling language,
because the result of the translation can directly be used by an MBT tool without having to
perform an additional translation step, unlike LTSs and STSs and because TorXakis has a
lower entry barrier than Axini because Vanderlande already has some knowledge regarding
using TorXakis and TorXakis is freely available. Furthermore, we have chosen to use the
second option for solving the presence of timer constructs in ADAPTO activity diagrams:
by configuring TorXakis to wait long enough for outputs that may only occur after a set
timeout. This answers SQ1.
Now that we have established our translation source and target, we will adapt preceding
work to make it suitable for our use case: MBT with TorXakis. We do this by deriving an
updated formalization for MBT with TorXakis from [18] and [23] after we have proposed
an enhancement to the translation procedure from [13]. This is done to gain insight in
the translation procedure and to provide Vanderlande with a more maintainable translation
procedure if they decide to continue using the procedure. These two translation procedures
will be used in the case study in chapter 4.

3.3 Activity Diagram Translation Enhancement

In this section, we propose an enhancement to the SysML activity diagram to TorXakis
translation procedure from [13]. We do this to gain inside in the translation procedure which
could be beneficial for our subsequent translation methods and to provide Vanderlande with
a more maintainable translation procedure if they decide to continue using this translation
procedure.

In the procedure, Strings are used for the communication channels. While this does offer
flexibility for the messages that are communicated between TorXakis and the adapter, this
flexibility comes at a cost. Since we can send anything we want to the adapter, it is also
possible to send illegal instructions. To make our communication type-safe, we have decided
to declare the type TYPEDEF Transition and use this type for our channels. This way it has
to be explicitly stated which messages are allowed to be sent in the communication with the
adapter. This can be done by adding a constructor to the Transition type. The updated
channel definition can be seen in listing 3.1.

1 CHANDEF Channels ::= In :: Transition

2 ; Out :: Transition

3 ENDDEF

Listing 3.1: Channel definition. Over the channels only messages with the Transition type
can be communicated

The introduction of the Transition type also implies that the connection definition needs
to be adapted. Since we would like to continue to ensure type-safety, we need to encode the
outgoing messages and decode the incoming messages. Since the transitions may contain
arguments, it is preferred to structure our data. TorXakis has XML encoding and decoding
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built in with the respective functions toXml and fromXml which we will use. The adapted
connection definition is laid out in listing 3.2.

1 CNECTDEF Sut

2 ::=

3 CLIENTSOCK

4

5 CHAN OUT In HOST "localhost" PORT 7890

6 ENCODE In ? s -> ! toXml(s)

7

8 CHAN IN Out HOST "localhost" PORT 7890

9 DECODE Out ! s <- ? fromXml(s)

10 ENDDEF

Listing 3.2: Connection definition. Using port 7890, messages

Now that the channels communicate Transitions instead of Strings, we need to make
some adjustments to the translation procedure.

When translating actions in the activity diagram, for each action we need to add a con-
structor to the Transition type. Since the translation procedure does not consider data flow
between actions, these actions do not require arguments which allows us to use the name
of the action with all whitespaces replaced with underscores to comply to the grammar of
TorXakis.
Listing 3.3 shows what the Transition type looks like after translating the actions Activity1
and Activity2.

1 TYPEDEF Transition

2 ::=

3 Activity1

4 | Activity2

5 ENDDEF

Listing 3.3: Type safe transitions with the Transition type.

3.4 Translation Algorithm

We define an algorithm that systematically can translate a SysML activity diagram to the
TorXakis modelling language. We do this by first transforming the graph of the activity
diagram into an intermediate representation. This intermediate representation is a formal
language based on the grammars 2.12 and 2.16 from the Activity Calculus (AC)[18] and the
New Activity Calculus (NuAC) [23] respectively where the SysML activity diagram has been
formalized. We combine these grammars to suit our needs. The choices we made for our
Adapted Grammar are:

• We want to model the semantics of the activity diagram in the TorXakis modelling
language. This means that the grammar does not have to support tokens, because the
state does not have to be kept track of; we only want to define the structure of the
activity diagram in the grammar. TorXakis keeps track of the state. Therefore, we
only need to consider the unmarked grammar from figure 2.12a.

• We will add the Send Signal, Receive Signal and Call Behaviour activity diagram con-
structs considered in [23] to our grammar to make our solution more complete and
versatile and to make it compatible with the activity diagrams of ADAPTO.
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• We omit the probabilistic decision term, because an MBT internally decides with what
probability each path can be chosen.

• We remove empty term ϵ, because we do not allow empty activity diagrams.

• The grammar does not support Decision or Fork nodes with more than two outgoing
edges. This does not limit the terms we can create, because a term (fork or decision)
with n outgoing edges is semantically equivalent to chaining this term n− 1 times. An
example of this can be seen in figure 3.1. This can be proven with the FRK-1 rule
from table 2.3 which describes that a token incoming on a fork propagates a token to
each outgoing edge.

• The grammar does not support multiple incoming edges to an action. This notation
is sometimes used as shorthand for a merge node, so we can fix this issue by adding a
merge node when an action has multiple incoming edges. This operation is shown in
figure 3.2.

(a) Fork with three outgoing edges. (b) Chained fork.

Figure 3.1: The fork with three outgoing edges is semantically equivalent to the chained fork.

Action

(a) Shorthand merge notation.

Action

(b) Meaning of the shorthand notation.

Figure 3.2: The adapted grammar uses the extended notation when a merge is written in the
shorthand notation.

The resulting adapted grammar can be found in figure 3.3. The terms Merge, Join,
Fork and Decision are allowed to be abbreviated to M , J , F and D respectively for space
constraints.
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A ::= a.ι ↣ N

N ::= l : ⊗
| l : ⊙
| l : Merge(N )

| l : Join(N )

| l : Fork(N ,N )

| l : Decision(N ,N )

| l : B ↣ N
| l

B ::= a

| !a

| ?a

| ↑ a.A

Figure 3.3: Adapted Grammar

Table 3.1 shows the SysML activity diagram constructs and the corresponding Adapted
Grammar term.
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Activity Diagram construct Adapted Grammar term

a.ι ↣ N

l : ⊗

l : ⊙

l : Merge(N )

l : Join(N )

l : Fork(N ,N )

l : Decision(N ,N )

l : B ↣ N

a

!a

?a

↑ a.A

Table 3.1: Relation between Activity Diagram constructs and Adapted Grammar terms.

We define a translation function T that takes an adapted grammar term and translates
it to the TorXakis modelling language. In these translation steps, the function T is used
recursively. The translations are based on the derivation rules from table 2.3 that encapsulates
the semantics of a SysML activity diagram.

48
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Term TorXakis Syntax (T (Term)) Description

a.ι ↣ N PROCDEF a [In, Out :: Transition]() EXIT

↪→ ::= T (N ) ENDDEF

For each initial state a new process is created
with its name a. This process is called at the
call behaviour term or in the model definition
if this is the main initial state.

l : ⊗ EXIT The EXIT keyword of TorXakis stops the cur-
rent flow, just as rule FFin in table 2.3 de-
scribes.

l : ⊙ EXIT Just like rule FFin, the EXIT keyword of
TorXakis stops all flows in the current dia-
gram, just as rule AFin in table 2.3 describes.

l : M(N ) l [In, Out]() ; PROCDEF l [In, Out ::

↪→ Transition]() EXIT ::= T (N ) ENDDEF; l [
↪→ In, Out]()

For each merge term (M) a new process is cre-
ated. This process can be referenced when an
incoming edge of the merge reaches the node.

l : J(N ) EXIT; . . . >>> T (N ) When a Join node is reached, stop the current
flow. Where the corresponding fork is defined
i.e. the fork that divided the flow which is
getting merged by this join, continue with the
enable operator (>>>). This operator ensures
that all incoming edges of the join are finished
before continuing with N as is described in
rules JON-1 and JON-2 from table 2.3.

l : F (N1,N2) ((T (N1)) ||| (T (N2))) The TorXakis parallel operator ||| allows
for the terms on the left-hand side and right-
hand side to execute in parallel, just as rule
FRK-1 in 2.3 for a fork (F ) describes.

l : D(N1,N2) ((T (N1)) ## (T (N2))) The TorXakis choice operator ## allows for
the execution of either the term on the left-
hand side or the term on the right-hand side,
just as rules DEC-1 and DEC-2 in 2.3 for a
decision (D) describe.

l : B ↣ N T (B) >-> T (N ) or T (B) >>> T (N ) if B is a
function call

The >-> operator chains the actions, described
in rules ACT-1 and ACT-2. The enable op-
erator (>>>) is required for a call behaviour
term, because the enable operator continues
with N only when B finishes. This behaviour
is described in the rule BEH-2 from table 2.3.

l l [In, Out]() A reached label indicates that it has already
been encountered en translated before in the
algorithm. Therefore, we can call the process
with name l.
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a In ! a or Out ! a Depending on action a, this is either an input
or output.

!a Out ! a A send action is an output. The TorX-
akis behaviour corresponds with the SND
rule from table 2.3.

?a In ! a A receive action is an input. The TorX-
akis behaviour corresponds with the REC
rule from table 2.3.

↑ a.A a [In, Out]() ; T (A) When a call behaviour with name a is reached,
it recursively is translated using the function
T if this has not been done before. Then this
process a is called according to rule BEH-0
from table 2.3.

Table 3.2: Translation of the Adapted Grammar terms in TorXakis.
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As an example, we will apply the algorithm on the coffee machine activity diagram dis-
played in figure 2.19.

First, we need to adjust the activity diagram such that our adapted grammar can express
it. Our grammar does not support the notion of groups. These are the boxes in the diagram
labelled with Boiler, Mixer and Grinder. We can omit these groups since their sole purpose
is to make the diagram more structured and have no semantic meaning. We also notice the
Action Pins Pin1, Pin2, Pin3 and Pin4 in the diagram. An Action pin denotes the transfer
of data from a source action to a target action. For the behaviour of this activity diagram,
this data is not relevant and does not influence the behaviour and semantics. In general, the
data that flows between action pins does not need to be translated to a TorXakis model,
because even when edges have guards, we allow all transitions in the TorXakis model. The
output of the SUT communicates the taken path to TorXakis. Therefore, we can interpret
an input pin, an edge and an output pin as a normal edge.

After the preprocessing steps, we can continue. We need to rewrite the activity diagram
to the adapted grammar. We do this by starting at the initial node. Then we traverse the
diagram. When the flow splits, we create new terms to which can be referred. This process
needs to be done manually at the moment, but chapter 5 describes how this algorithm can
be implemented and used.
The coffee machine activity diagram from figure 2.19 can be expressed by the adapted gram-
mar term Acoffee where:

Acoffee = Make Coffee.ι ↣ l0 : F (N1,N2)

N1 = l1 : Boil the water ↣ l2 : Send water boiled ↣ l3 : Receive water boiled ↣ l4 : Join(N3)

N2 = l5 : Grind coffee beans ↣ l6 : Send beans grinded ↣ l7 : Receive beans grinded ↣ l4

N3 = l8 : Mix ↣ l9 : Pour in a cup ↣ l10 : ⊙

Listing 3.4 shows the translation of the term Acoffee to the TorXakis modelling language
using the translation function T .

1 PROCDEF Make_Coffee[In , Out :: Transition ]() EXIT

2 ::=

3 (l1[In, Out]() ||| l5[In , Out]())

4 >>> l8[In, Out ]()

5 ENDDEF

6

7 PROCDEF l1[In , Out :: Transition ]() EXIT

8 ::=

9 In ! Boil_the_water

10 >-> In ! Send_water_boiled

11 >-> In ! Receive_water_boiled

12 >-> EXIT

13 ENDDEF

14

15 PROCDEF l5[In , Out :: Transition ]() EXIT

16 ::=

17 In ! Grind_coffee_beans

18 >-> In ! Send_beans_grinded

19 >-> In ! Receive_beans_grinded

20 >-> EXIT

21 ENDDEF
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22

23 PROCDEF l8[In , Out :: Transition ]() EXIT

24 ::=

25 In ! Mix

26 >-> In ! Pour_in_a_cup

27 >-> EXIT

28 ENDDEF

Listing 3.4: Translation of the term Acoffee to the TorXakis modelling language using the
translation function T

We notice the following things from the result of the translation.

1. The Transition type is not defined. As we discussed in 3.3, for type safety we will
need to define this type that includes all possible actions. This type definition can be
found in listing 3.5.

2. An instance (or constructor) of a type cannot contain spaces in TorXakis. Since
each action will be a constructor of the Transition type, we replace all spaces by
underscores.

3. As can be seen on line 3, sub-terms can be refactored in new processes. The reason for
doing this is code legibility.

4. To make the model work, we need to add a model definition, channel definition and
connection definition. These definitions can be found in listing 3.5.

5. From the model it can be noted that all actions are marked as inputs. Translating each
action in a SysML activity diagram is the only part of the algorithm that may need
manual guidance. Depending on the testing requirements, an action can be handled
differently. Since the activities in the coffee machine activity diagram do not use send
signal actions or receive signal action, we cannot determine with certainty whether an
action is an input or output.
In the example of the coffee machine, one might say that the Send water boiled and
Send beans grinded actions are outputs, because the Boiler and Grinder send the boiled
water and beans as output respectively. If the components of the coffee machine (Boiler,
Grinder and Mixer) are considered as stand-alone units for MBT, then the inputs and
outputs would make sense. However, since MBT is a black-box testing technique, the
internal steps of the machine are not considered and abstracted away with a τ transition.
When the coffee machine is considered as a whole, it might be the case that the cup
of coffee is the only observable output, which would imply that the TorXakis model
would only consist of one output. This would result in a trivial TorXakis model that
only outputs a Pour in cup output when the coffee is poured in a cup after the activity
diagram is started (which is the only input).

1 TYPEDEF Transition

2 ::=

3 Boil_the_water

4 | Send_water_boiled

5 | Receive_water_boiled

6 | Grind_coffee_beans

7 | Send_beans_grinded
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8 | Receive_beans_grinded

9 | Mix

10 | Pour_in_a_cup

11 ENDDEF

12

13 MODELDEF Model

14 ::=

15 CHAN IN Input

16 CHAN OUT Output

17

18 BEHAVIOUR

19 Make_Coffee[Input , Output ]()

20 ENDDEF

21

22 CHANDEF Channels

23 ::=

24 Input :: Transition;

25 Output :: Transition

26 ENDDEF

27

28 CNECTDEF Sut

29 ::=

30 CLIENTSOCK

31

32 CHAN OUT Input HOST "localhost" PORT 7890

33 ENCODE Input ? s -> ! toString(s)

34

35 CHAN IN Output HOST "localhost" PORT 7890

36 DECODE Output ! fromString(s) <- ? s

37 ENDDEF

Listing 3.5: Additional TorXakis code required to make the model from listing 3.4 run.

3.5 Reductions

The translation algorithm produces a TorXakis model that adheres to the behaviour of the
activity diagram according to the formalized derivation rules from [18] and [23], because these
rules were used to define the translation of the terms in the adapted grammar to TorXakis
terms. However, the model can be more compacted by applying one of the reductions listed
below. Each reduction does not alter the behaviour of the resulting model.

• Superfluous parentheses can be removed. This is the case when there are multiple
parentheses, ((A)) = (A), or when there are parentheses surrounding a single action.

• Statements including EXIT can be reduced if they contain a reducible sub-term. The
terms A ||| EXIT or EXIT ||| A can be rewritten to A, because executing an EXIT state-
ment in parallel stops immediately. This is visualized in figure 3.4. These terms can be
rewritten to A. The terms A >>> EXIT and A >-> EXIT can be replaced by A if and only
if the EXIT statement is the final statement of the process.

• PROCDEFs that only contain an EXIT statement can be removed. In all places where this
process is referenced, replace the reference by EXIT and apply the reduction from the
previous point. Construct A >-> EXIT can be replaced by A.
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• The term B ## (A ## B) can be reduced to A ## B, because two consecutive decisions
that lead to the same term does not differ from having only one such decision. This is
visualized in figure 3.5.

Let say we have just translated an activity diagram in model A. Let us call the function
that applies the reductions listed above R. Applying function R n times is noted as Rn.
We continue to apply R on A until Rn+1(A) = Rn(A); i.e. a fixpoint has been reached and
therefore there are no further reductions possible. It is possible that after one application
of R, new constructs form that can be further reduced. This process terminates since each
reduction strictly reduces the size of the term. This process is also confluent i.e. the order
of applying R on a term, because each reduction does not affect the general terms (like A
or B). This means that if a reduction could be done on A, but also on a term with A as
subterm, the former reduction can still be applied if first the reduction is applied where A is
the subterm. Together, this means that each resulting TorXakis model can be reduced to
its unique normal form.

(a) Fork before reduction. (b) Fork after reduction.

Figure 3.4: A fork can be reduced when one of its outgoing edges point to a FlowFinal node.

(a) Double decision before reduction. (b) Single decision after reduction.

Figure 3.5: A double decision that points twice to the same term can be reduced to one
decision.

3.6 Discussion

In the previous section we have defined a formalization for the SysML activity diagram and
an algorithm that translates the formal language to the TorXakis modelling language. In
theory, this algorithm can be applied on any activity diagram. In practice however, there are
three points that need to be considered when applying this algorithm.
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• All behavioural activity diagram constructs are supported by the algorithm. However,
constructs like groups and action pins, which we do not consider, are available in activity
diagrams. The activity diagram needs to be preprocessed by omitting these constructs.
These operations do not influence the semantics of the activity diagram. The SysML
timer construct (figure 3.6) is also not supported by the algorithm, because TorXakis
does not support the notion of time. There is however a workaround for this limitation.
We can set the param Sim deltaTime and param Sut deltaTime of TorXakis to the
highest timer value we found during the algorithm. This way, TorXakis waits for the
next action as long as is specified.

• The most important question a user of this algorithm should ask themselves is What
does this activity diagram represent? In MBT, the software system is considered a black
box. The SUT can be stimulated by providing inputs. Then the outputs are validated
against the model. SysML activity diagrams on the other hand are usually used for
modelling the internal behaviour of the SUT, so the number of inputs and observable
outputs might be low. Therefore, it has to be determined carefully what exactly the
inputs and outputs are the tester wants to include in the MBT model. If an action is
determined to be internal, the τ operation or ISTEP can be used.

• The SysML activity diagram does not support regular actions i.e. not considering
send signal actions or receive signal actions, to be labelled as inputs or outputs. Since
this concept is fundamental for MBT, it is important that the translation algorithm is
aided by someone with domain knowledge about the translated model to indicate which
activities can be considered inputs, outputs or internal steps.

Figure 3.6: SysML Timer
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Chapter 4

Case Study on ADAPTO

In this chapter, we will perform a case study on applying Model-Based Testing (MBT) on a
system which is modelled with SysML models. This system will be ADAPTO. We attempt
to apply Model-Based Testing on ADAPTO in three different ways. We first attempt to
apply the found structure of Gherkin tests in section 2.4.1 on the existing Gherkin tests of
ADAPTO, because we want to test if the existing Gherkin tests would provide sufficient in-
formation to be a viable option for using with MBT. We will apply the enhanced translation
procedure from section 3.3 on the SysML activity diagrams of ADAPTO, because we want
to learn how the existing translation procedure works on the activity diagrams of ADAPTO
and to see if our proposed enhancement provides any benefit. Finally, we will apply our
translation algorithm from section 3.4 on the SysML activity diagrams of ADAPTO to see
if the formalization and translation is applicable on the activity diagrams of ADAPTO. For
each of these methods, we discuss their usability and limitations.

Note: in the public version of this thesis, sensitive information/diagrams covered under a
signed NDA are replaced by public information/diagrams.

4.1 System Under Test

Let us first define the system under test (SUT). The SUT for this case study is Vanderlande’s
ADAPTO storage system, which is explained in section 2.4.

With MBT, we are interested in the behaviour of the SUT. Hence, we will consider the
behaviour diagrams from figure 2.23. As can be seen the only behavioural diagrams used in
our SUT are Use Case Diagrams (UCDs) and Activity Diagrams. The UCDs that are mod-
elled for ADAPTO provide an overview of how ADAPTO can be used. This is not thorough
and granular enough for our testing (see section 4.2.2). Furthermore, the UCDs do not cover
all parts of the system that Vanderlande is interested in testing. Therefore, we decided to
focus our research on activity diagrams.

We will use the same activity diagrams for each of the three methods we will apply on
the SUT. We decided to test the core of the ADAPTO system: storing an incoming storage
tray (TSU). This flow covers the hardware components shuttles and lifts, the communications
between the ADAPTO components (communicating to what level and location the TSU needs

56



4.2 ADAPTER CASE STUDY

to be moved and instructing the lift and shuttle to execute this) and error handling. The
considered activity diagram can be found in figure 2.19. These also include the nested activity
diagrams that are referenced from other activity diagrams.

4.2 Adapter

To use our SUT for model based testing in TorXakis, we need to use an adapter. An adapter
functions as the layer in between the SUT and the TorXakis model. Essentially TorX-
akis sends messages to the adapter over the network which get interpreted by the adapter.
Then the adapter performs the corresponding action on the SUT. This communication is
bidirectional. Figure 2.7 shows this communication in a diagram.

4.2.1 Step Definitions

The step definitions of ADAPTO are considered the atomic actions on ADAPTO when test-
ing the system, because these are the instructions that can be given to ADAPTO by a user
controlling ADAPTO. The definitions are grouped by each component of ADAPTO in order
to make it clearer to which component the WCF needs to send which instruction. These def-
initions are an abstraction of underlying sequences of actions that together form a commonly
used action. Examples are show in figure 4.3.1. The step definitions of ADAPTO have been
developed with automatic testing in mind, which is mentioned in section 2.4.1.

The step definitions include sending instructions to the ADAPTO components and retrieving
information about the state of the components. Therefore, they are suitable to be used with
TorXakis. The step definitions containing instructions for ADAPTO can be matched with
TorXakis inputs and the step definitions containing state information can be matched with
the outputs.

4.2.2 Granularity

When applying model based testing on a system, a decision needs to be made on which
granularity of the steps in the system should be used. The granularity is what steps on the
SUT are considered atomic. When choosing a low level granularity, for example the bits that
make up a message send between ADAPTO components, the model becomes too complex;
you lose overview. On the other hand, when choosing a high level granularity, for example
only considering if the system is turned on or off, a lot of valuable information might be lost.

Picking a suitable granularity often lies in the middle of these extremes. In our case, we
chose to consider the step definitions atomic, because of the following three reasons:

• Step definitions are the instructions that can be given to ADAPTO by a user controlling
ADAPTO.

• The step definitions are currently used by the automatic Gherkin tests for ADAPTO
and the step definitions are deemed to provide sufficient insight in these Gherkin tests
while not being too low level.

• For ADAPTO, the step definitions are already developed and can therefore be used
trivially from an adapter.
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4.3 First Attempts

To determine the feasibility of using the SysML models created for ADAPTO for MBT, we
started with a top-down approach. In our situation this means that we first investigated
how SysML models would be translated for MBT. We tried to formalize the SysML activ-
ity diagrams without truly understanding how we would like to test our SUT. Therefore, we
switched to a bottom-up approach, which means that we first make our goal of the translation
clear and then researching how to achieve that goal.

For our bottom-up approach, the first goal was to set up the foundation: being able to
communicate from TorXakis via an adapter to our SUT. We did this by creating a trivial
TorXakis model which could turn the SUT on and off. The model can be found in listing
4.1.

1 STAUTDEF

2 STATE

3 off , on

4 INIT

5 off

6 TRANS

7 off -> In ! "turnOn" -> on

8 on -> Out ! "isTurnedOn" -> on

9 on -> In ! "turnOff" -> off

10 ENDDEF

Listing 4.1: State Automaton Definition that can turn on and off a SUT

Even though this is a very basic model, we can already learn a lot about our SUT. In this
model, the messages ‘turnOn’, ‘isTurnedOn’ and ‘turnOff’ are sent to the adapter as plain
strings. The adapter interprets these messages and calls the corresponding step definition.
Later, as we create more complex models, we use a type safe message system, which is
mentioned in section 2.3.3, for the communication.
After the ‘turnOn’ message is sent by TorXakis, it can do two possible steps. Either
TorXakis expects a ‘isTurnedOn’ message or it sends a ‘turnOff’ message. In the latter case
the SUT should turn off after it has been turned on and the test would succeed. In the other
case however, the test fails. This is because TorXakis expects the message ‘isTurnedOn’ for
which it waits at most 1 second. Since ADAPTO takes approximately 45 seconds to boot on
our system, the test fails. To solve this issue, we can adjust some TorXakis parameters to
allow for a waiting time of one minute. This is done by performing the commands in listing
4.3.

1 param param Sim deltaTime 60000
2 param param Sut deltaTime 60000

Using the step definitions, we can retrieve the current state of the SUT in order to check
whether it is turned on. This check busy waits until the SUT is in the checked state. The
busy waiting stops after a set timeout. If the checked state is not (yet) reached by that time,
the assert in the step definition will fail and therefore the adapter will stop running. This
also implies that the TorXakis test fails, because either the timeout has been reached or
the connection between the adapter and TorXakis is lost.
Now that we have a basic TorXakis model working, we will construct a more interesting
model. We will do this by using one of the automatic Gherkin tests as a basis.
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4.3.1 Gherkin Tests

The relation between Gherkin tests and TorXakis is discussed in section 2.4.1. Now we will
create a TorXakis model from a Gherkin test.
For this manual translation, we have chosen a Gherkin test that will retrieve a TSU from
storage and deposits it in a module outbound -a conveyor belt just outside the ADAPTO
system which can be accessed-. This test can be found in listing 4.2.

1 Scenario: Make coffee

2 Given Coffee machine is started

3 And cup is placed under the faucet

4 When pressing the start button

5 Then water is boiled

6 And beans are grinded

7 And water and beans are mixed

8 And coffee is poured in the cup

Listing 4.2: Make coffee Gherkin test

A Gherkin test is used for automatic testing. Since the goal of a Gherkin test is to create
a test in a human-readable way, the steps in such a test need to be translated for a computer
to understand. This process is done with regular expressions that match the sentences. This
way the arguments are also retrieved. Since the Gherkin test are created in terms of the step
definitions, each line in a Gherkin test corresponds with a step definition. We will use this
fact too in our TorXakis translation.

We can translate each of the lines in the given Gherkin test to TorXakis using the re-
lation we found in section 2.4.1. To connect the translations, we assume that clauses are
evaluated consecutively instead of allowing parallel evaluations. This is also in line with the
way that Gherkin tests for ADAPTO are created. Since we will be translating a linear flow to
TorXakis, we can use the linear translation procedure from section 2.3.3 in combination with
our proposed enhancement in section 3.3 for defining the structure of the resulting TorXakis
model. This includes defining a Transition type for all transitions. When adding a con-
structor to a type definition (TYPEDEF), TorXakis generates the following functions. Given
the constructor X { y :: Int }, the function isX is created to determine if an object is of type
X. The function y is also generated, which takes as input an object and returns the integer
value associated with the argument of the object. Naturally, this object has to be of type X.
Since these functions are created, TorXakis does not allow for constructors or arguments
to have the same identifier, because there will be more than one function with the same
name. Since some step definitions have the same argument labels as other step definitions
and according to the translating procedure from section 2.3.3, we have to create constructors
in our defined Transition type, we need to make sure that no duplicate constructor names
or argument names occur by adding a postfix to the identifiers that do. The result of the
translation can be found in listing 4.3.

1 TYPEDEF Trans i t i on
2 : :=
3 S ta r t c o f f e e mach in e
4 | Place cup unde r f auce t
5 | Pre s s s t a r t bu t t on
6 | Boi l wate r
7 | Grind beans
8 | Mix water and beans
9 | Pour in a cup
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10 | Stop co f f e e mach ine
11 ENDDEF
12

13 STAUTDEF Make cof fee [ Inp , Outp : : Trans i t i on ] ( )
14 : :=
15 STATE s0 , s1 , s2 , s3 , s4 , s5 , s6 , s7
16 INIT s0
17 TRANS
18 s0 −> Inp ! S t a r t c o f f e e mach in e −> s1
19 s1 −> Inp ! P lace cup unde r f auce t −> s2
20 s2 −> Inp ! P r e s s s t a r t bu t t on −> s3
21 s3 −> Inp ! Bo i l wate r −> s4
22 s4 −> Inp ! Grind beans −> s5
23 s5 −> Inp ! Mix water and beans −> s6
24 s6 −> Outp ! Pour in a cup −> s7
25 s7 −> Inp ! S top co f f e e mach ine −> s0
26 ENDDEF

Listing 4.3: Make coffee model

The state machine of this TorXakis STAUTDEF can be seen in figure 4.1. In this model,
the transitions are labelled according to the Gherkin test clauses. For each trigger, the word
‘Trigger’ is appended to the end of the label. The state labels are made up labels for the
states in between transitions. When testing this model on our SUT, we find that TorXakis
does not receive the outputs from the adapter. This is because our SUT does not send
messages about the state of itself automatically after turning the system on and creating a
retrieve order. We solved this problem by adding a trigger for each output. When we expect
and output, we first send a trigger to our adapter. The adapter checks if the SUT is in the
requested state and writes the corresponding message to the output.

Start_coffee_machines0 Place_cup_under_faucets1 s2

Boil_water

s3

Grind_beans s4Mix_water_and_beans s5Pour_in_a_cup s6

Stop_coffee_machines

s7

Press_start_button

Figure 4.1: State machine for the make coffee Gherkin test

We figured out that a Gherkin test is essentially one path from an initial node to a final
node in the underlying SysML model. A SysML activity diagram can therefore be associated
with multiple Gherkin tests. Since it is more efficient to translate one activity diagram than
multiple Gherkin tests and because the translated TorXakis test can fail, we will now move
on to translating the SysML activity diagrams to TorXakis.

4.3.2 Applying Translation Procedure

Before we apply our translation algorithm from section 3.4 on the activity diagrams of
ADAPTO, we will first apply the enhanced translation procedure from section 3.3. The
sole purpose of using this translation procedure is to gain knowledge about how Vanderlande
has translated activity diagrams before. Because we know that this translation procedure
is not formal, we know that we cannot use this procedure reliably on all activity diagrams.

60



4.4 PREPROCESSING ACTIVITY DIAGRAMS CASE STUDY

Therefore, we limit ourselves to applying this translation procedure on a subset of the activity
diagrams to understand the workings of the procedure. We will apply this procedure on the
activity diagram in figure 2.19

To translate this activity diagram, we will use the non-linear translation procedure described
in section 2.3.3, because our diagrams contain non-linear nodes like forks and joins. In con-
trary to what we mentioned in section 4.2.2, we adapt the granularity of this translation
procedure such that each action in the activity diagram corresponds to one step in TorX-
akis. This is done to match the original translation procedure and to therefore understand
how this procedure works. Since the goal of applying this translation procedure is to show
how control flow would be translated to TorXakis, we decided to use the String type for the
communications.

In section 4.2.2 we determined that step definitions are the atomic actions that need to
be considered for testing ADAPTO. We need to find a way to apply this granularity while
translating the activity diagrams. In the next section, we will show how we achieve this by
preprocessing the activity diagrams. After the preprocessing, we will apply the translation
algorithm from section 3.4 on the preprocessed activity diagrams. This translation algorithm
is formal, while the translation procedure we used in this section is not.

4.4 Preprocessing Activity Diagrams

To ensure that the translated TorXakis model uses the granularity specified in section 4.2.2,
we preprocess the activity diagrams to simplify the application of the translation algorithm
afterwards. We use the following preprocessing steps:

4.4.1 Preprocessing Steps

Since we will consider the ADAPTO step definitions as atomic steps, we need to solve the
following two problems.

1. Determine if an activity in a SysML activity diagram corresponds to a step definition
from ADAPTO.

2. Find a procedure that removes an action that does not correspond to a step definition
from the activity diagram while not influencing the behaviour of the activity diagram.

There is no correlation between the activity diagrams and the step definitions according
to Vanderlande. Therefore, we need to find a way to determine for a given activity whether
it corresponds to a step definition. The following steps are taken to solve issues 1 and 2 listed
above.

1. Create a list of all the names of the step definitions of ADAPTO. This can be done
manually by going through the source code and copying each method name or for
example by using a regular expression on the source code to extract all the names of
the step definitions.

2. While doing the procedure from section 2.3.3, when an activity is reached, first check
if this activity is a step definition. The activity name is a sentence in English, so any
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method that can check whether this sentence matches a step definition would probably
need a manual check. Now there is a match or not.

• In case of a match, continue the procedure normally.

• In case of no match, we have two options.

– We can translate the activity to an internal (τ) step in TorXakis.

– We can remove the activity from the diagram. We do this by performing a
delete operation. This operation first takes the input flow arrow set I and the
output flow arrow set O. Each set contains edges stating the source activity
and the target activity as a tuple. These two sets and the activity itself are
removed from the activity diagram. The edges in the set {(sI , tO)|(sI , tI) ∈
I, (sO, tO) ∈ O} are added to the activity diagram. Duplicate edges i.e. edges
with the same source and target are removed.

The first option is easier to implement, but the second option reduces the state
space of the resulting TorXakis model. This state space reduction can be signifi-
cant if a lot of activities need to be deleted, as is the case for the ADAPTO SysML
models.

Figure 4.2 shows the effect of changing an action in an internal action and how the delete
operation affects an action.

Action

i1 i2

o1 o2

(a) Before

i1 i2

o1 o2

(b) Internal step

i1 i2

o1 o2

(c) After deletion

Figure 4.2: The effect of changing an action in an internal action or applying the delete
operation

We want to ensure that applying the delete operation does not affect the test verdicts of
an MBT tool. Therefore, we will argue the following properties of the delete operation.

• Let us call the model that results from the translation algorithm of the activity diagram
before the delete operation sbefore and the model that results from the translation algo-
rithm of the activity diagram after the delete operation safter. We have traces(sbefore)
= traces(safter), because a trace is a τ -abstracted sequence of observable actions. This
means that unobservable τ actions are not included in a trace. These actions are exactly
the actions we remove using the delete operation, because only the internal actions that
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do not correspond with an ADAPTO step definition is deleted, hence traces(sbefore) =
traces(safter).
We cannot conclude properties about the delete operation regarding preserving Straces
or ioco, because we cannot say in what cases we can observe quiescence in the trans-
lated activity diagram, because the semantics regarding the behaviour of choosing a
next action in SysML activity diagrams is not formally defined.
Figure 4.3 shows an example where applying the delete operation may result in different
suspension traces. In figure 4.3a, after the τ action, we can only perform input c, hence
the system is quiescent. In figure 4.3b, we can choose between output b or input c,
hence the system is not quiescent. Therefore, the out-sets are not equivalent and we
cannot show ioco. Since choosing the next action in an activity diagram is not formally
defined, we cannot say if after action a in figure 4.3b which action is performed. Since
the next step in this state is not formally defined, we conclude that we cannot conclude
whether the delete operation preserves suspension traces or ioco.

• The model before the delete operation is not trace equivalent to the model after the
delete operation. This is because the LTS equivalent to the activity diagram before ap-
plying the delete operation has a strace that includes the to be the deleted action. Since
this action will be deleted, the LTS equivalent to the activity diagram after applying
the delete operation does not have a trace that includes the deleted action.

a

c

b

(a) Before deletion

a

cb

(b) After deletion

Figure 4.3: When applying the delete operation, the suspension traces may change, depending
on the semantics of SysML activity diagrams.

4.5 Application of the Translation Algorithm

In this section we will apply the adjustments from section 4.4 on the activity diagram from
figure 2.19. After this, we will apply the translation algorithm from section 3.4 on the pre-
processed activity diagrams. We will use the resulting TorXakis model for MBT on the
SUT.
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4.5.1 Preprocessing

As we determined in section 4.4, there are two possible options to reduce the activity diagrams
to only use step definitions as actions. We figured that the majority (> 80%) of the actions in
the activity diagrams of ADAPTO are not step definitions. This is because in the ADAPTO
activity diagrams, internal steps as well as the communication between ADAPTO components
is modelled, while these are not observable from the outside. In our case study, we also came
across activity diagrams that do not contain actions that correspond to a step definition.
These activity diagrams were either not completed or they model only internal actions. In
this case, the delete operation removes these diagrams completely and where these models
are referenced in call behaviours, can be deleted as well. Since a large part of the actions
in activity diagrams do not correspond to a step definition, converting the actions in the
activity diagrams that do not correspond to a step definition into an internal action would
make the preprocessed model unnecessarily large while being unclear to read because of all
the internal steps scattered throughout the activity diagram. Therefore, we chose to use
the delete operation. When applying the first step of the translation algorithm, which is
encoding the activity diagrams in the Adapted Grammar, we simultaneously performed the
delete operation on the actions that do not correspond with a step definition. We determined
that an action needed to be deleted by manually checking if a step definition existed for this
action. We could not reliably do this process automatically, because the actions are described
in natural language, while the step definitions are functions in the source code. In the next
section, we show the results of applying the translation algorithm as well as the results of
testing using the resulting model.

4.6 Results

In this section, we first show the results of applying the translation algorithm (section 3.4)
on the preprocessed activity diagram from figure 2.19. After this, we use the resulting model
for MBT and show the results.

4.6.1 Encoding Activity Diagrams

Figure 4.4 shows the result of encoding the activity diagram from figure 2.19 which describe
the behaviour when storing a TSU into the Adapted Grammar while deleting actions that do
not correspond to a step definition. This activity diagram can be expressed by the adapted
grammar term Acoffee where:

Acoffee = ι ↣ l1 : Fork(N1,N2)

N1 = l2 : Boil the water ↣ l3 : Send water boiled ↣ l4 : Receive water boiled ↣ l5 : 2.Join(l6)

N2 = l7 : Grind coffee beans ↣ l8 : Send beans grinded ↣ l9 : Receive beans grinded ↣ l10 : 2.Join(l6)

N3 = l6 : Mix ↣ l11 : Pour in a cup ↣ l12 : ⊙

Figure 4.4: Adapted Grammar term of the preprocessed coffee machine activity diagram.

⊥ indicates that a term is undefined. This happens when in the provided activity diagram
a nested activity diagram is referenced through a call behaviour, but is not (yet) defined in
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the SysML model. This happens, because the SysML models are not finished and still being
worked on. A workaround for this is to replace each ⊥ with the empty term ⊗.

4.6.2 Encoding Activity Diagrams

Listing 4.4 shows the TorXakis model when translating the adapted grammar term from
figure 4.4 to the TorXakis modelling language. Note that this listing shows the translation
after applying the reductions from section 3.5.

1 PROCDEF Make_Coffee[In , Out :: Transition ]() EXIT

2 ::=

3 (parallel_1[In , Out]() ||| parallel_2[In , Out]())

4 >>> continuation[In, Out ]()

5 ENDDEF

6

7 PROCDEF parallel_1[In , Out :: Transition ]() EXIT

8 ::=

9 In ! "Boil the water"

10 >-> In ! "Send water boiled"

11 >-> In ! "Receive water boiled"

12 >-> EXIT

13 ENDDEF

14

15 PROCDEF parallel_2[In , Out :: Transition ]() EXIT

16 ::=

17 In ! "Grind coffee beans"

18 >-> In ! "Send beans grinded"

19 >-> In ! "Receive beans grinded"

20 >-> EXIT

21 ENDDEF

22

23 PROCDEF continuation[In , Out :: Transition ]() EXIT

24 ::=

25 In ! "Mix"

26 >-> In ! "Pour in a cup"

27 >-> EXIT

28 ENDDEF

29

30 CHANDEF Channels ::= In :: String

31 ; Out :: String

32 ENDDEF

33

34 MODELDEF Model

35 ::=

36 CHAN IN In

37 CHAN OUT Out

38

39 BEHAVIOUR Make_Coffee [In ,Out] ( )

40 ENDDEF

41

42 CNECTDEF Sut

43 ::=

44 CLIENTSOCK

45

46 CHAN OUT In HOST "localhost" PORT 7890

47 ENCODE In ? qop -> ! qop

48
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49 CHAN IN Out HOST "localhost" PORT 7890

50 DECODE Out ! s <- ? s

51 ENDDEF

Listing 4.4: Resulting TorXakis model translating the adapted grammar term from figure
4.4.

We observed the following in the resulting translation:

• First, we noticed that all actions in the resulting model are outputs. That is because the
activity diagrams model the behaviour of ADAPTO after a store order is created. This
order is the input of the system. Furthermore, the preconditions in the Gherkin tests
of ADAPTO, i.e. the when clauses, are implicitly assumed in the activity diagrams,
but are not listed in the activity diagram. Therefore, we have to make sure that the
SUT is configured according to the assumptions of the SysML model to make applying
MBT make sense. In the case of ADAPTO, this is starting the system using a level
captive topology. This means that shuttles are not allowed to move from one level to
another, the number of shuttles is equal or greater than the number of levels and that
the shuttles are divided over the levels equally.

• As we expected, the actions that ended up in the model (the step definitions) closely
resemble the Gherkin tests that tests the store order functionality. In essence, the
resulting model is the result of merging all Gherkin tests into one, which is what we
wanted to achieve, because from this model the Gherkin tests should be derivable, which
they are.

• The step definitions that correspond with the actions in the resulting model may have
arguments. These arguments contain information about the current order (e.g. location
of the pickup point). These arguments cannot be modelled in the current TorXakis
model. We decided to abstract away over the arguments of a specific order. Instead,
when we create a store order (in the adapter for example), we keep track of all the
relevant arguments and use them when calling a step definition when the corresponding
TorXakis action is retrieved in the adapter. This would be relatively simple to add
by communicating these arguments from ADAPTO through the adapter to TorXakis,
and by using these arguments for the transitions in TorXakis.

4.6.3 Using the Resulting Model for MBT

We attempted to use theTorXakismodel from listing 4.4 for MBT on our SUT. We could not
properly test the resulting model, because several SysML activity diagrams were incomplete or
not yet defined since the modelling process is still a work in progress. However, we attempted
to test the SUT based on the resulting model and found three faults in the resulting model
which are all caused by faults in the activity diagram used for translation.

1. On line 83, there is an infinite loop since process l72 is unconditionally invoked from
itself.

2. The process Store TSU on level is invoked on line 55, after which it is called a second
time on line 9. Since this process moves the TSU in question, invoking it twice would
result in faulty behaviour of the SUT even though this double invoking is modelled in
the activity diagram where the resulting model is based on.

66



4.7 CONCLUSION CASE STUDY

3. The state of the order changes in parallel, because in the activity diagram where the
resulting model is based on, forks are used, while the state changes in reality happen
sequentially on the SUT. This may result in the state change Order deposited (line
39) to occur before the state change Order picked up (line 36). This is faulty since an
order must be picked up first before it is deposited at the intended location.

We asked the modeller of the SysML models of ADAPTO of Vanderlande for a reaction on
these findings. She told that at the moment it is not possible to confirm or deny if the activity
diagrams are correct, because the diagrams are a work in progress. We suspect that these
faults are because the SysML activity diagrams are not modelled after the real implementation
of ADAPTO. Therefore, we cannot conclude that there are faults in ADAPTO.

4.7 Conclusion

In this section, we summarize and conclude the findings of our case study: attempting to use
MBT for ADAPTO using Gherkin tests and SysML activity diagrams.

We found that determining the granularity of the action in the activity diagrams of ADAPTO
was an important first step for our case study, because we needed to have a clear understand-
ing of the goal of testing ADAPTO with MBT. We figured that considering the step definitions
as atomic steps for MBT was the best option, because these were already used for the auto-
matic Gherkin tests to test ADAPTO. Since the Gherkin tests use the step definitions, our
first translation attempt was to derive a state automaton from a Gherkin for TorXakis. We
concluded that this was possible, but not really feasible since a model should be generated
for each Gherkin test to test the SUT extensively. Since the activity diagrams describe all
flows for a particular task in ADAPTO, we shifted to using activity diagrams instead for the
translation. First, we applied a translation procedure which informally describes the required
steps for a successful translation. Finally, we decided to apply the translation algorithm
from section 3.4 on the activity diagrams, because this is a formal and complete solution
that has the highest probability of success. We found that the algorithm could be applied
automatically, provided its implementation, short of two actions itemized below.

4.7.1 Domain Knowledge

We established during the case study that manual input will still be required when creating
models in the TorXakis modelling language from the SysML models of the SUT. In the case
of our case study, these manual inputs are:

• Determining whether an action in a SysML activity diagram needs to be considered an
internal action or an action that needs to be modelled.

• For the actions that need to be modelled, the action needs to be associated with a step
definition.

To do these manual operations, the ADAPTO step definitions are required to be known.
In addition to this, understanding how ADAPTO works helps with understanding how one
should give the manual input. Deciding which granularity of the atomic actions is best in
the case of this specific SUT requires understanding of the SUT in question. For each system
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which strives to use MBT and already has models describing its behaviour, such as SysML
models, the requirements and best solutions might vary. Therefore, we can conclude that
domain knowledge about the SysML models is required to be able to derive an MBT model
from SysML models. To perform the manual operations, one needs to be familiar with the
step definitions and requires therefore domain knowledge. The general structure and the gran-
ularity of the atomic operations on the SUT are however the minimum required knowledge.
This answers SQ2: How much domain knowledge is required to effectively translate SysML
models of real world system to a modelling language for MBT?

The translation algorithm that is used in this case study to translate the SysML activity
diagrams considered in this case study can be applied to other activity diagrams to then use
the translations for MBT. However, manually applying this translation algorithm to each ac-
tivity diagram is a time-consuming and error-prone task. Therefore, we will provide a guide
on implementing this translation algorithm so that it can be used automatically. The manual
parts of the translation algorithm cannot be implemented of course, but we think it is still
worth it to implement this algorithm for using MBT from SysML activity diagrams, because
the manual task of linking actions in activity diagrams to step definitions only has to be done
once, after which this linking table can be re-used. We are not sure that such an implemen-
tation would provide added academic value, because the implementation will be focused on
ADAPTO specifically. Therefore, the implementation is not part of this thesis.
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Chapter 5

Translation Algorithm
Implementation Guide

In this chapter we will provide a step-by-step approach that explains how the translation
algorithm from chapter 3 can be implemented. This algorithm translates a SysML activity
diagram to the TorXakis modelling language. The implementation of the algorithm is not
part of this thesis, because we found that the relation between actions in activity diagrams
to TorXakis in- and outputs are not generalizable as we discussed in section 3.6. Therefore,
we determined that including such an implementation would not provide sufficient academic
value.

This approach focuses on implementing a translation algorithm specifically for ADAPTO
and should be a convenient entry point when this implementation will be realized in the fu-
ture. This implementation is specific to ADAPTO because of the chosen granularity for the
translation. In the case of ADAPTO, we need to only use the actions of the activity diagrams
that correspond to step definitions. Apart from this specialization, this implementation guide
is applicable to other activity diagrams.

5.1 Step-by-step approach

The translation algorithm consists of two steps: encoding a SysML activity diagram in the
adapted grammar and translating the adapted grammar to the TorXakis modelling lan-
guage. The way we designed the adapted grammar makes it that the first step, encoding
activity diagrams in the adapted grammar, should not require manual input after it is imple-
mented. The second step however, may require manual input when using the implemented
translation algorithm.

5.1.1 Encoding Activity Diagrams

First, we need to encode the activity diagram in the Adapted Grammar. For this, we are
using the underlying structure for a SysML activity diagram. The visual diagram is derived
from the underlying XML source code. An example of such an XML file can be seen in
appendix C. This code describes the activity diagram from figure 2.19.
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In theory, the programming language used for this implementation does not matter, how-
ever, we recommend using a statically typed language that supports sum types, since this
allows us to encode the adapted grammar in a type-safe and elegant way. Swift and Rust are
examples of languages that support this.
To transform this XML to the Adapted Grammar (figure 3.3), the following steps are required:

1. First, we create the datastructures required to encode the adapted grammar. This could
be done by creating an enumeration type for each constructor in the grammar: N , A
and B. Each enumeration should contain a case for each possible term that type can
be. So for example, the enumeration that describes N contains 8 cases. The cases that
contain a recursive term should have an argument with the type of that term. All cases
with a label should have an argument that describes this label. This could be a String
or an Integer for example. The cases that have an action name should have an argument
of type String for this name.

2. The XML format of SysML is described in [12]. To encode an XML file in our datastruc-
tures, we need to traverse the abstract syntax tree (AST) of the code. We recommend
using an XML parsing library if this functionality is not built-in in the programming
language that is used. Now we should be able to parse an XML file and recursively
traverse through the AST. We learn from appendix C that an activity diagram is an
ownedBehaviour with an attribute in the tag that says xmi:type=‘uml:Activity’, so
we can start our process when this tag is reached.

3. The children of this tag are the elements in the activity diagram. In XML, the order
of the children is not specified. However, we can use the identifiers of the elements to
determine which nodes are connected to other nodes.

4. In the traversal of the AST, we should keep track of all nodes and edges. Keep in mind
that we have to recursively traverse the group construct. For each node we visit, we add
the identifier and the type to a list of all constructs. For edges, we store the identifiers
of the source and target nodes. Keep in mind that we omit action pins in the adapted
grammar. When an action pin is visited, we can store the identifier and correspond it
to the action the pin is attached to.

5. Since most terms require a label as an identifier, we need this label to be unique.
Therefore, we keep track of a global counter that is used for the label. If this counter is
used in a label, we increment this counter.

6. Now we have a list of all relevant constructs. We start by finding the initial node. If
there are multiple initial nodes, we implement the idea illustrated in figure 3.1. For
each of the edges, we check if the source is the initial node. If so, we can create our
first term a.ι ↣ N with a the name of the activity diagram. N will be the term that
the initial node is connected to. This process of looking up edges continues with the
node that is connected to the initial node. When a fork or decision node is reached,
the recursive process is applied on both sub-terms. When on all paths a FlowFinal
or ActivityF inal node is reached, we finish the procedure. We now have a term in the
Adapted Grammar that describes the activity diagram.
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5.1.2 Reduction

After the translation, we would like to reduce the resulting model as much as possible ac-
cording to the reductions listed in section 3.5. Even though the mentioned reductions are
applied after the translation to TorXakis, the better choice is to apply these reductions on
the adapted grammar (or intermediate representation in the code) when implementing the
translation algorithm. The reductions can be implemented as follows:

• Superfluous parentheses in the adapted grammar term of the encoded activity diagram
can be recognized by checking if the parentheses are needed when a closing parenthesis
is added to the translation. This usually occurs when translating a fork or decision.

• Reductions regarding EXIT statements can be recursively applied on the root term of the
encoded activity diagram. It can be checked if a sub-term is a FlowFinal or ActivityFinal
node in the implementation.

• If an A term only has an EXIT statement as the body, it can simply be removed. It
should be recursively checked if this term is used anywhere. Each occurrence should be
replaced by a FlowFinal node, after which the reduction of the previous point should
be applied.

• To check if a double decision has two identical sub-terms, terms should be equatable.
The implementation of this is programming language dependent.

These reductions should be applied until the term does not change anymore after the next
reduction. This can be tracked by a Boolean variable that is initialized with false and is set
to true when a reduction is applied. After the reduction, this variable can be checked. If it
is true, do another reduction step. Otherwise, stop. Set the variable back to false.

5.1.3 Translating to TorXakis

Now that we have encoded an activity diagram in the adapted grammar, we can translate
this to TorXakis. We perform the following steps to achieve this:

1. Since we have defined enumerations for each constructor in the grammar, we can define
a function for each enumeration that translates each case in the enumeration to the
TorXakis code that represents this term. We can use a String as the return type for
this function. If we reach a case that has another term that needs to be translated in
its arguments, we recursively call the function that translates this term. We use the
result of this translation in the result of the translation of the entire term.

2. This approach works for all but two terms in the adapted grammar: The Join and the
Action. We will explain how to deal with these two cases.

• Join: When we reach a join, we stop the current flow with the EXIT keyword.
Then, we need to continue where the parallelization has started using the enable
operator (>>>). We use a stack to keep track of the latest fork that we visited while
traversing the AST. When we visit a Fork, we push the translation together with
an identifier on the stack. We also use this identifier as a placeholder for where
the translated fork must be inserted. When we visit a Join, we pop the top value
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of the stack and add the translation of the continuation of the Join to this String
with the enable operator. Then we add this entire String to another map with the
identifier as the key. After everything is translated, we add all remaining values of
the stack to the map (this happens when not all forks are accompanied by a join).
Finally, we replace the identifiers placeholder of the forks with the values in the
map.

• Action: We have discussed in section 3.6 that the translation of actions require
manual input. When an action is visited while traversing the AST, the implemen-
tation can ask if the action should be translated to an input, output or internal
step. There is another method possible that does not require human interaction.
In the ADAPTO behavioural model, the step definitions are considered atomic.
With other words, the step definitions define the granularity of the model. Using
this fact, we can create a list of these step actions including whether they can be
considered an input or output. When an action in the activity diagram is visited,
we check if this activity is in the list. If it is, we create an input or output, de-
pending on what the step definition is. If not, we create an internal step. Since the
activities in the activity diagrams are written in plain text and do not necessarily
correspond to a step definition, this method might not be feasible.

3. For each translated action, we need to add a constructor to the Transition type we
discussed in section 3.3. We also need to add support for each translation action in
the adapter. We do this by calling the corresponding step definition when the adapter
receives a message containing the action.

4. To complete the translation, we need to include the boilerplate for the channel definition,
connection definition and the model definition, which is laid out in section 2.3.3.

This answers SQ3: Which steps are required to implement the formalization algorithm
to be used on a real world system?

5.2 Conclusion

The step-by-step guide shows how the translation algorithm from section 3.4 can be im-
plemented and adapted to suit ADAPTO. Even though the translation algorithm does not
support data flow, we deem that implementing the translation algorithm is achievable and a
viable option for using MBT with SysML activity diagrams, because the lack of data flow only
limits the randomization of inputs in TorXakis, but not the actual behaviour when hard
coding the predetermined arguments. To make the application of the implemented transla-
tion algorithm easier, we can optimize the manual steps. The labelling of actions in activity
diagrams can be streamlined by using an identifier in each label that corresponds to a step
definition for example. This makes the manual step only a one time effort.
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Chapter 6

Conclusion & Discussion

In this chapter, we conclude the research in this thesis by answering the research question.
We interpret the conclusion in the discussion. Finally, we summarize a recommendation for
Vanderlande concerning using Model-Based Testing (MBT) for ADAPTO and perhaps for
other systems in their company.

Let us recall the research question: To what extent can SysML models be used for Model-
Based Testing?
We found that the behavioural diagrams of SysML were contenders to be used as a transla-
tion source for MBT, because the model that is used for MBT to test if an implementation
adheres to it describes the behaviour of the System Under Test (SUT). Preceding academic
work has been done for the FormaSig project[28] on using the SysML state machine diagrams
in combination with the SysML structural diagrams to derive formal mCRL2 models which
can be used for formal verification and MBT. We found that using SysML activity diagrams
for the translation to TorXakis was better suited in our situation, because the only be-
havioural SysML diagrams that are substantially used for ADAPTO are activity diagrams.
This is explained more in detail in the answer on SQ1 : Which formalization language is most
suitable for SysML models in the case of MBT? in section 3.2. We defined a translation
algorithm based on the formalization of SysML activity diagrams in other preceding work.
We therefore showed that it is possible to use SysML models for Model-Based Testing to
the extent of the limitations of the translation algorithm by translating SysML activity dia-
grams to the TorXakis modelling language. The translation algorithm can mostly be used
on SysML activity diagrams in other industries as well, because the only ADAPTO specific
steps from the case study are preprocessing the activity diagrams such that they adhere to our
predefined granularity. When all actions of an activity diagram already correspond to inputs
and outputs of the modelled system, or if a custom preprocessing step is defined, the transla-
tion algorithm can be applied on those activity diagrams. The translation algorithm has the
limitation that manual input is required by someone with domain knowledge about ADAPTO.

The fact that domain knowledge is required is a limitation, because the translation algo-
rithm cannot be effectively applied on a SysML activity diagram without a domain expert.
This is because the granularity of the tested actions needs to be determined. It may be the
case that not all actions modelled in an activity diagram need to be used for MBT or need to
be considered as internal steps. Furthermore, the actions that will be used for MBT need to
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be categorized as an input or output, because this information is not encoded in an activity
diagram. This categorization requires domain knowledge. Each action in the activity diagram
does not correspond to multiple inputs, outputs or internal actions, because the activity dia-
grams of ADAPTO are modelled using the step definitions, which are the inputs or outputs,
supplemented with other actions which can be considered as internal actions. The need for
domain knowledge is further explained in the answer on SQ2 in section 4.7.1.

Domain knowledge is also required for the manual input that is required for the transla-
tion algorithm. For each action in an activity diagram, it needs to be determined if said
action is an internal action or need to be used for MBT. In the latter case, the action needs
to be categorized as in input or output, because this information is needed for MBT. We
did find that such an action is usually an output, because an activity diagram describes the
action flow for a certain procedure, which can be considered the input. It can however not be
assumed that an action is always an output. The fact that the translation algorithm requires
manual input means that it cannot be fully implemented. We explain how to implement the
translation algorithm and how to deal with its limitations in the answer of SQ3 in chapter 5.

6.1 Discussion

Now that we have concluded that using SysML activity diagrams for MBT with TorXakis is
possible, albeit with limitations, we will discuss if this process is desirable. The goal of devel-
oping this translation algorithm is to minimize manual labour to create behavioural models
for MBT. We found that the translation algorithm requires manual input by someone with
domain knowledge. In some circumstances, it could be that this amount of work by a domain
expert is similar to the work it would require to develop a behavioural model without the
use of SysML models. For example, it might be that using the translation algorithm is a
short-term temporary solution, or that for a certain company the SysML activity diagrams
are developed very precise and are therefore well suited for using the translation algorithm;
when the granularity of the actions in the activity diagram correspond to the inputs and
outputs for MBT for example. If a behavioural model is developed manually by a domain
expert, it could be that the resulting model is ‘better’ than the model generated from the
translation algorithm. Here ‘better’ can be defined as shorter, more compact, uncluttered,
better performant and more precise. In chapter 7 we mention that research can be done to
compare a model generated by the translation algorithm with a model developed by a domain
expert, as well as additional research ideas for future work.

Furthermore, we would like to point out that depending on the software development lifecy-
cle activity diagrams are useful for translation to MBT. To clarify, when a SysML activity
diagram is modeled after a current implementation, the activity diagram acts more as an
implementation instead of a specification. This means that the activity diagram describes
how the implementation behaves instead of specifying how the implementation is allowed to
behave. On the contrary, activity diagrams can be used and are more likely to be used as a
specifications over implementations when the activity diagrams are modeled as a specifica-
tion for the software before it is implemented. This observation implies that the usefulness
of using SysML activity diagrams for MBT depends on the function of SysML models in a
specific software development lifecycle. When activity diagrams are modelled independently
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of an existing implementation there is a higher probability of finding mistakes or subtleties
compared to when the activity diagrams are modeled dependently on the implementation.

6.2 Recommendation

This section provides a recommendation for Vanderlande on using MBT in their software
development lifecycle.

Foremost, we recommend that Vanderlande uses MBT for testing their software, because
MBT has numerous advantages over the traditional testing techniques that are currently
used in the company: it solves the problem of an exponential growing number of test cases
as the systems get more complex and it ensures more reliable software.

• The work required to apply MBT to a system does not scale exponentially with the
complexity of the SUT. This fact was the premise of this thesis. Instead, only the
model that describes the behaviour of the system needs to be maintained. With complex
systems, the time it costs to create these models outweigh the time it costs to keep up
with the testing work of the currently used testing techniques. This saves money in the
medium to long term.

• Since a behavioural model for MBT describes the behaviour of the SUT, test cases can
be derived from this model. Since these test cases are generated automatically, they
can cover cases that could be overlooked when test cases are created manually. This
implies that using MBT is less error-prone and this will result in more reliable software,
which is important for the clients of Vanderlande.

The only work it costs to use MBT is creating a behaviour model. In this thesis, we explored
the feasibility of using the already existing SysML models as a basis for automatically gener-
ating these models. We found that we can use the activity diagrams to generate a TorXakis
model. However, we found that using our algorithm would still require manual input. Specif-
ically, it has to be decided which actions in an activity diagram need to be considered internal
steps, inputs or outputs for the MBT tool. Furthermore, when the SysML models are up-
dated, the manual inputs need to be updated as well.
We would recommend implementing this translation algorithm of section 3.4 using the guide
from chapter 5. To minimize the manual work required when using this translation algorithm,
we recommend labeling the actions in activity diagrams consistently. For example, by using
an identifier in the label which maps to a step definition. This way, a table which maps
identifiers to step definitions only needs to be created once.
To ensure that the TorXakis models yielded from the translation algorithm comply to the
ADAPTO implementation, we would recommend hiring or educating a modeller with knowl-
edge about MBT. The benefit for doing this is that, provided this modeller has domain
knowledge about the systems that need to be modelled, the modeller exactly knows how the
system needs to be modelled for MBT. Furthermore, it will be easier to keep this model
updated.
Finally, we would recommend using TorXakis as the MBT tool, since the translation algo-
rithm in this thesis is based on TorXakis and TorXakis is free under the BSD3 license.
If Vanderlande prefers to use maintained software with active support, we would recommend
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using Axini as the MBT tool. The fact that Axini supports the modelling of time while
TorXakis does not should not be a decisive factor when choosing an MBT tool, since this
problem is solved by setting the timeout of TorXakis, which is mentioned in section 4.3.
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Chapter 7

Future Work

In this chapter, we present six research possibilities for future work. We explain each subject
and elaborate why research on the topic would have academic value. These research ideas are
formed while performing the research in this thesis. This could either be because a certain
question could not be answered yet, or because an interesting idea was thought of that is
outside the scope of this thesis.

• The first suggestion is to implement the translation algorithm from SysML activity
diagrams to TorXakis mentioned in section 3.4. The fact that part of the algorithm
requires manual input should be considered. Chapter 5 can be used as a reference for
the implementation. However, since this chapter focuses on the implementation of the
ADAPTO system specifically, we do not have to filter the actions. This implies that we
assume the granularity of the activity diagram: namely that each action correspond to
an input or output for Model-Based Testing (MBT). As a result, the implementation
would be more generic, which has more academic value.

• We have defined a translation algorithm from SysML activity diagrams to TorXakis
which abstracts over data flow between actions in activity diagrams. Even though we
briefly mentioned how this data flow could be considered in the translation algorithm,
further research can be done to actually formalizing this data flow. This research could
also include a comparison between the translation without or with modelling data flow
to see what added value the latter algorithm provides.

• We have shown that it is possible to partially derive behavioural models for MBT from
SysML activity diagrams. Provided that the activity diagrams correctly describe the
behaviour of the system according to the semantic derivation rules from figure 2.3, we
can apply MBT. Further research can be done on using the output of an MBT tool
to extract the information required to figure out mistakes in the software. This is not
trivial, because the model used for MBT is derived from the activity diagrams, which
describe the behaviour of the software implementation. So there are two steps required
from source code to model, which need to be traversed in the opposite direction from
the output of the MBT tool to fixing the errors in the source code.

• The translation algorithm (section 3.4) could be adapted to work with Axini. To do this,
the Adapted Grammar could be altered to suit the translation to the Axini modelling
language better. For example, the modelling of time could be allowed by the grammar.

77



FUTURE WORK

The resulting algorithm could be compared to the algorithm mentioned in this thesis to
find which MBT tool is better suited under what circumstances for using SysML activity
diagrams as a basis for creating the behavioural models. Note that this is not required
for ADAPTO, but using Axini might be better suited for other systems modelled with
SysML activity diagrams compared to TorXakis.

• Since the translation algorithm requires manual input by someone with domain knowl-
edge about the to be tested system, which is also the case by manually developing a
behavioural model, research can be done to the properties of a behavioural model from
both instances. Criteria that can be used to determine which model is better can be:
which model is shorter, more compact, independent, uncluttered, requires less time to
develop, better performant or more precise.

• The highest bar for using MBT for a system is developing the behavioural model. Re-
search could be done to the possibilities to lower the bar for using MBT. This could
either be done by using already developed parts of a software product (e.g. automat-
ic/gherkin tests) and generate a model from it or by developing a tool in which a model
can be defined, after which code is generated which adheres to the model.

• Since the semantics of SysML behavioural diagrams are not formally defined (i.e. they
are semi-formal), research could be done on developing a systems modelling tool that
has the benefits of SysML (easy to model systems, simple to understand due to visual
diagrams) while having a formally defined semantics that could easily (perhaps auto-
matically) be used for MBT. This research could be performed bottom-up, i.e. start
with SysML and improve or formalize it such that using MBT on a SysML model be-
comes trivial or top-down, i.e. start with an MBT tool and develop a tool that allows
the modeller to view and edit the model visually. Such a systems modelling tool would
lower the bar for using MBT for the industry, which in turn helps to reduce testing cost
and yield more reliable software.
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Appendix A

Derivation Rules Activity Calculus

Figure A.1: Rules for initial Figure A.2: Rules for action prefixing

Figure A.3: Rules for finals Figure A.4: Merge rules

Figure A.5: Fork rules
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Figure A.6: Probabilistic decision rules

Figure A.7: Non-deterministic decision rules

Figure A.8: Join rules
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Appendix B

Adapter

1 us ing System ;
2 us ing System . Threading ;
3 us ing System . D iagnos t i c s ;
4 us ing System . IO ;
5 us ing System . Net ;
6 us ing System . Net . Sockets ;
7 us ing System . Linq ;
8 us ing System . Co l l e c t i o n s . Generic ;
9 us ing System .Xml ;

10

11 namespace TorXakisAdapter
12 {
13 c l a s s Program
14 {
15 s t a t i c void Main ( s t r i n g [ ] a rgs )
16 {
17 bool l ogg ing = true ;
18 t ry
19 {
20 TcpListener s e r v e r = new TcpListener ( IPAddress . Parse ( ” 1 2 7 . 0 . 0 . 1 ” ) ,

↪→ 7890) ;
21 s e r v e r . S ta r t ( ) ;
22

23 Console . WriteLine ( ”Waiting f o r TorXakis” ) ;
24

25 // Connect with TorXakis
26 TcpClient c l i e n t = s e r v e r . AcceptTcpClient ( ) ;
27

28 // Create Streams
29 BufferedStream stream = new BufferedStream ( c l i e n t . GetStream ( ) ) ;
30 StreamReader reader = new StreamReader ( stream ) ;
31 StreamWriter wr i t e r = new StreamWriter ( stream ) ;
32

33 // I n i t i a l i z e c o f f e e machine
34 CoffeeMachine co f feeMachine = new CoffeeMachine ( ) ;
35

36 Console . WriteLine ( ”Connected” ) ;
37

38 s t r i n g l i n e ;
39 whi le ( ( l i n e = reader . ReadLine ( ) ) != nu l l )
40 {
41 XmlDocument xmlDocument = new XmlDocument ( ) ;
42 xmlDocument . LoadXml( l i n e ) ;
43 XmlNode node = xmlDocument . ChildNodes . Item (0) . ChildNodes . Item (0) ;
44 XmlNodeList arguments = node . ChildNodes ;
45 i f ( l o gg ing )
46 {
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47 Console . WriteLine ( ” Input : ” + node .Name) ;
48 }
49

50 i n t argumentIndex = 0 ;
51 i n t i ( )
52 {
53 r e turn Int32 . Parse ( arguments . Item ( argumentIndex++) . InnerText ) ;
54 }
55

56 s t r i n g s ( )
57 {
58 r e turn arguments . Item ( argumentIndex++) . InnerText ;
59 }
60

61

62 switch ( node .Name)
63 {
64 case ”TurnOn” :
65 co f feeMachine . TurnOn( ) ;
66 break ;
67 case ”PressButton” :
68 co f feeMachine . StartMakingCoffee ( ) ;
69 break
70 case ”TurnOff” :
71 co f feeMachine . TurnOff ( ) ;
72 break ;
73 }
74 }
75

76 s c ena r i oP l ay e r I n t e r a c t o r . StopEnvironment ( ) ;
77

78 void wr i t e ( s t r i n g command , ( s t r i ng , ob j e c t ) [ ] arguments )
79 {
80 s t r i n g argumentString = s t r i n g . Join ( s t r i n g . Empty , arguments . ToList

↪→ ( ) . S e l e c t ( argument => $”<{argument . Item1}>{argument . Item2}</{argument . Item1}>” ) )
↪→ ;

81 s t r i n g message = $”<TorXakisMsg><{command}>{argumentString}</{
↪→ command}></TorXakisMsg>” ;

82 i f ( l o gg ing )
83 {
84 Console . WriteLine ( ”Output : ” + command) ;
85 }
86 wr i t e r . WriteLine ( message ) ;
87 wr i t e r . Flush ( ) ;
88 }
89 }
90 catch ( Exception e )
91 {
92 Console . WriteLine ( e . ToString ( ) ) ;
93 }
94 }
95 }
96 }
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Coffee Machine XML Code

1 <ownedBehavior xmi:type=” uml :Act iv i ty ” xmi : id=”
↪→ EAID AC000001 2081 4d99 89A6 3F7905DD104B” name=”EA Activity1 ” v i s i b i l i t y=”
↪→ pub l i c ”>

2 <node xmi:type=”uml :Act iv i tyFina lNode ” xmi : id=”
↪→ EAID 2CFF1FBC 9154 4588 B91F 8F4736149393” name=”Act i v i t yF ina l ” v i s i b i l i t y=”
↪→ pub l i c ”>

3 <incoming xm i : i d r e f=”EAID 7CEB6951 6AD3 4c83 915B A8D0B352938E”/>
4 </node>
5 <node xmi:type=” uml : In i t i a lNode ” xmi : id=”EAID 5DF25D88 4B8E 4712 BEEB 27723BB6222F

↪→ ” name=” A c t i v i t y I n i t i a l ” v i s i b i l i t y=” pub l i c ”>
6 <outgoing xm i : i d r e f=”EAID DAADBB4F 627B 4539 96BE B193526CF680”/>
7 </node>
8 <edge xmi:type=”uml:ControlFlow” xmi : id=”EAID DAADBB4F 627B 4539 96BE B193526CF680

↪→ ” v i s i b i l i t y=” pub l i c ” source=”EAID 5DF25D88 4B8E 4712 BEEB 27723BB6222F” ta r g e t=
↪→ ”EAID 1FFB060A 62D9 4d63 B9A2 35FA046A8290”/>

9 <group xmi:type=” uml :Ac t i v i t yPa r t i t i on ” xmi : id=”
↪→ EAID 5D58F9F8 68CA 47dc B122 D105B60EEAE8” name=”Bo i l e r ” v i s i b i l i t y=” pub l i c ”>

10 <node xm i : i d r e f=”EAID F0A626D3 531F 4169 8CAA 7F682FA03A73”/>
11 <containedNode xmi:type=”uml:Action ” xmi : id=”

↪→ EAID F0A626D3 531F 4169 8CAA 7F682FA03A73” name=”Send water bo i l ed ” v i s i b i l i t y=”
↪→ pub l i c ”>

12 <incoming xm i : i d r e f=”EAID 7843B214 FBF5 4676 B65D D5248ED5BA0B”/>
13 <output xmi:type=”uml:OutputPin” xmi : id=”

↪→ EAID E772B898 11EF 49d6 B1A8 9A09C1DB85F3” name=”Pin1” v i s i b i l i t y=” pub l i c ”
↪→ orde r ing=”FIFO”>

14 <outgoing xm i : i d r e f=”EAID EDEF6CAC 6040 4524 B5C6 0050CE2228C2”/>
15 <type xm i : i d r e f=”EAID FF0CBADA 0C16 4153 80ED 4EC9063FB387”/>
16 </output>
17 </ containedNode>
18 <containedEdge xmi:type=”uml:ObjectFlow” xmi : id=”

↪→ EAID EDEF6CAC 6040 4524 B5C6 0050CE2228C2” v i s i b i l i t y=” pub l i c ” source=”
↪→ EAID E772B898 11EF 49d6 B1A8 9A09C1DB85F3” ta r g e t=”
↪→ EAID DD3A08BF BF6E 4c5f BA6C 4E5D776A1367”/>

19 <node xm i : i d r e f=”EAID 29E9F1B6 C365 4987 BBDE 83D5E952210D”/>
20 <containedNode xmi:type=”uml:Action ” xmi : id=”

↪→ EAID 29E9F1B6 C365 4987 BBDE 83D5E952210D” name=”Boi l the water ” v i s i b i l i t y=”
↪→ pub l i c ”>

21 <incoming xm i : i d r e f=”EAID 6C439DF4 852A 4c6b BA75 8DEB4D440430”/>
22 <outgoing xm i : i d r e f=”EAID C4C938BA DA9A 45da 8E8F D7527A31E063”/>
23 <outgoing xm i : i d r e f=”EAID 7843B214 FBF5 4676 B65D D5248ED5BA0B”/>
24 </ containedNode>
25 <containedEdge xmi:type=”uml:ControlFlow” xmi : id=”

↪→ EAID 7843B214 FBF5 4676 B65D D5248ED5BA0B” v i s i b i l i t y=” pub l i c ” source=”
↪→ EAID 29E9F1B6 C365 4987 BBDE 83D5E952210D” ta r g e t=”
↪→ EAID F0A626D3 531F 4169 8CAA 7F682FA03A73”/>

26 <containedEdge xmi:type=”uml:ControlFlow” xmi : id=”
↪→ EAID C4C938BA DA9A 45da 8E8F D7527A31E063” v i s i b i l i t y=” pub l i c ” source=”
↪→ EAID 29E9F1B6 C365 4987 BBDE 83D5E952210D” ta r g e t=”
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↪→ EAID 157D29CD D250 4689 AFE7 16BCDF4E77C4”/>
27 <node xm i : i d r e f=”EAID 157D29CD D250 4689 AFE7 16BCDF4E77C4”/>
28 <containedNode xmi:type=”uml:SendSignalAct ion ” xmi : id=”

↪→ EAID 157D29CD D250 4689 AFE7 16BCDF4E77C4” name=”Send [ water bo i l ed ] ” v i s i b i l i t y
↪→ =” pub l i c ”>

29 <incoming xm i : i d r e f=”EAID C4C938BA DA9A 45da 8E8F D7527A31E063”/>
30 <outgoing xm i : i d r e f=”EAID BCCC01C1 4122 4069 BD6B 9128DF85ECDB”/>
31 <t a r g e t xmi:type=”uml:InputPin ” xmi : id=”

↪→ EAID BFCC5845 518D 4000 8BDE 0865FE8AC1EF” name=” ta rg e t ” v i s i b i l i t y=” pub l i c ”
↪→ orde r ing=”FIFO”/>

32 </ containedNode>
33 <containedEdge xmi:type=”uml:ControlFlow” xmi : id=”

↪→ EAID BCCC01C1 4122 4069 BD6B 9128DF85ECDB” v i s i b i l i t y=” pub l i c ” source=”
↪→ EAID 157D29CD D250 4689 AFE7 16BCDF4E77C4” ta r g e t=”
↪→ EAID CAEA0C64 7D17 4934 8B6C 510380F7D70A”/>

34 </group>
35 <node xmi:type=”uml:Action ” xmi : id=”EAID E63E0237 2D40 4731 9740 20CBC5226FCF”

↪→ name=”Grind c o f f e e beans” v i s i b i l i t y=” pub l i c ”>
36 <incoming xm i : i d r e f=”EAID CFEFFD05 99EF 4fb2 BC75 5F529556F7F7”/>
37 <outgoing xm i : i d r e f=”EAID BA289373 ACAA 44b9 8F57 77A96BD91BD3”/>
38 <outgoing xm i : i d r e f=”EAID 2B613922 6B8B 4085 B29C 53DF353645C2”/>
39 </node>
40 <edge xmi:type=”uml:ControlFlow” xmi : id=”EAID 2B613922 6B8B 4085 B29C 53DF353645C2

↪→ ” v i s i b i l i t y=” pub l i c ” source=”EAID E63E0237 2D40 4731 9740 20CBC5226FCF” ta r g e t=
↪→ ”EAID E95C690C 5B2B 4df9 9605 35F211AEE719”/>

41 <edge xmi:type=”uml:ControlFlow” xmi : id=”EAID BA289373 ACAA 44b9 8F57 77A96BD91BD3
↪→ ” v i s i b i l i t y=” pub l i c ” source=”EAID E63E0237 2D40 4731 9740 20CBC5226FCF” ta r g e t=
↪→ ”EAID B682FF92 AF78 4ce9 9C2C 5E29104025B1”/>

42 <group xmi:type=” uml :Ac t i v i t yPa r t i t i on ” xmi : id=”
↪→ EAID 7560CB75 62A5 45e1 AEB4 D6C8DAE238E9” name=”Grinder ” v i s i b i l i t y=” pub l i c ”/>

43 <group xmi:type=” uml :Ac t i v i t yPa r t i t i on ” xmi : id=”
↪→ EAID 3ECC5A02 69A3 46b6 A93D A6D5E8D835C2” name=”Grinder ” v i s i b i l i t y=” pub l i c ”>

44 <node xm i : i d r e f=”EAID E95C690C 5B2B 4df9 9605 35F211AEE719”/>
45 <containedNode xmi:type=”uml:Action ” xmi : id=”

↪→ EAID E95C690C 5B2B 4df9 9605 35F211AEE719” name=”Send beans gr inded ” v i s i b i l i t y=
↪→ ” pub l i c ”>

46 <incoming xm i : i d r e f=”EAID 2B613922 6B8B 4085 B29C 53DF353645C2”/>
47 <output xmi:type=”uml:OutputPin” xmi : id=”

↪→ EAID 817EBB61 DDF1 4c02 BE66 CDC34F52E281” name=”Pin3” v i s i b i l i t y=” pub l i c ”
↪→ orde r ing=”FIFO”>

48 <outgoing xm i : i d r e f=”EAID 1D5F6B83 FBD8 4bf2 8D2E 8E80098DE595”/>
49 <type xm i : i d r e f=”EAID 6E96564F BFC6 4d0d A96E 5E548DD936E1”/>
50 </output>
51 </ containedNode>
52 <containedEdge xmi:type=”uml:ObjectFlow” xmi : id=”

↪→ EAID 1D5F6B83 FBD8 4bf2 8D2E 8E80098DE595” v i s i b i l i t y=” pub l i c ” source=”
↪→ EAID 817EBB61 DDF1 4c02 BE66 CDC34F52E281” ta r g e t=”
↪→ EAID BCAE5E2F 6EEF 4793 B331 68F9653027C1”/>

53 <node xm i : i d r e f=”EAID B682FF92 AF78 4ce9 9C2C 5E29104025B1”/>
54 <containedNode xmi:type=”uml:SendSignalAct ion ” xmi : id=”

↪→ EAID B682FF92 AF78 4ce9 9C2C 5E29104025B1” name=”Send [ Cof f ee gr inded ] ”
↪→ v i s i b i l i t y=” pub l i c ”>

55 <incoming xm i : i d r e f=”EAID BA289373 ACAA 44b9 8F57 77A96BD91BD3”/>
56 <outgoing xm i : i d r e f=”EAID FEF369CB 1AF4 4538 8A51 4903228D6B76”/>
57 <t a r g e t xmi:type=”uml:InputPin ” xmi : id=”

↪→ EAID 48D0FFFB 7042 472f BF3F 7D86C5BC83CB” name=” ta rg e t ” v i s i b i l i t y=” pub l i c ”
↪→ orde r ing=”FIFO”/>

58 </ containedNode>
59 <containedEdge xmi:type=”uml:ControlFlow” xmi : id=”

↪→ EAID FEF369CB 1AF4 4538 8A51 4903228D6B76” v i s i b i l i t y=” pub l i c ” source=”
↪→ EAID B682FF92 AF78 4ce9 9C2C 5E29104025B1” ta r g e t=”
↪→ EAID AAE99A46 3EE1 451e B54E 38F56F792B2A”/>

60 </group>
61 <group xmi:type=” uml :Ac t i v i t yPa r t i t i on ” xmi : id=”

↪→ EAID BE6A6304 FDB7 41b4 BE1B 92B15B1FF7EB” name=”Mixer” v i s i b i l i t y=” pub l i c ”>
62 <node xm i : i d r e f=”EAID F062FA5B 12EF 4188 B50C D013075CCEAB”/>
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63 <containedNode xmi:type=”uml:Action ” xmi : id=”
↪→ EAID F062FA5B 12EF 4188 B50C D013075CCEAB” name=”Pour in a cup” v i s i b i l i t y=”
↪→ pub l i c ”>

64 <incoming xm i : i d r e f=”EAID 4118333C 30B2 4ab5 8AB0 1B9D885787D8”/>
65 <outgoing xm i : i d r e f=”EAID 7CEB6951 6AD3 4c83 915B A8D0B352938E”/>
66 </ containedNode>
67 <containedEdge xmi:type=”uml:ControlFlow” xmi : id=”

↪→ EAID 7CEB6951 6AD3 4c83 915B A8D0B352938E” v i s i b i l i t y=” pub l i c ” source=”
↪→ EAID F062FA5B 12EF 4188 B50C D013075CCEAB” ta rg e t=”
↪→ EAID 2CFF1FBC 9154 4588 B91F 8F4736149393”/>

68 <node xm i : i d r e f=”EAID 9614F308 ABA4 47a3 8938 80F181247AD8”/>
69 <containedNode xmi:type=”uml:Action ” xmi : id=”

↪→ EAID 9614F308 ABA4 47a3 8938 80F181247AD8” name=”Mix” v i s i b i l i t y=” pub l i c ”>
70 <incoming xm i : i d r e f=”EAID 6A361CDD E0D8 456e B69B CDE3F0EF618E”/>
71 <outgoing xm i : i d r e f=”EAID 4118333C 30B2 4ab5 8AB0 1B9D885787D8”/>
72 </ containedNode>
73 <containedEdge xmi:type=”uml:ControlFlow” xmi : id=”

↪→ EAID 4118333C 30B2 4ab5 8AB0 1B9D885787D8” v i s i b i l i t y=” pub l i c ” source=”
↪→ EAID 9614F308 ABA4 47a3 8938 80F181247AD8” ta r g e t=”
↪→ EAID F062FA5B 12EF 4188 B50C D013075CCEAB”/>

74 <node xm i : i d r e f=”EAID DE10536F 4A53 479a B28A 8EEA6E264C45”/>
75 <containedNode xmi:type=”uml:Action ” xmi : id=”

↪→ EAID DE10536F 4A53 479a B28A 8EEA6E264C45” name=”Receive beans gr inded ”
↪→ v i s i b i l i t y=” pub l i c ”>

76 <outgoing xm i : i d r e f=”EAID B7849965 3508 425d 9AA4 F0805DEEA6C9”/>
77 <input xmi:type=”uml:InputPin ” xmi : id=”

↪→ EAID BCAE5E2F 6EEF 4793 B331 68F9653027C1” name=”Pin4” v i s i b i l i t y=” pub l i c ”
↪→ orde r ing=”FIFO”>

78 <incoming xm i : i d r e f=”EAID 1D5F6B83 FBD8 4bf2 8D2E 8E80098DE595”/>
79 <type xm i : i d r e f=”EAID 6E96564F BFC6 4d0d A96E 5E548DD936E1”/>
80 </ input>
81 </ containedNode>
82 <containedEdge xmi:type=”uml:ControlFlow” xmi : id=”

↪→ EAID B7849965 3508 425d 9AA4 F0805DEEA6C9” v i s i b i l i t y=” pub l i c ” source=”
↪→ EAID DE10536F 4A53 479a B28A 8EEA6E264C45” ta r g e t=”
↪→ EAID 583178B1 9A49 450c B66E BDF1A12E7CE5”/>

83 <node xm i : i d r e f=”EAID 0572336B A904 47c2 846E F08704657D44”/>
84 <containedNode xmi:type=”uml:Action ” xmi : id=”

↪→ EAID 0572336B A904 47c2 846E F08704657D44” name=”Receive water bo i l e d ”
↪→ v i s i b i l i t y=” pub l i c ”>

85 <outgoing xm i : i d r e f=”EAID 43CD027C 751F 46fd AE54 D848961B167F”/>
86 <input xmi:type=”uml:InputPin ” xmi : id=”

↪→ EAID DD3A08BF BF6E 4c5f BA6C 4E5D776A1367” name=”Pin2” v i s i b i l i t y=” pub l i c ”
↪→ orde r ing=”FIFO”>

87 <incoming xm i : i d r e f=”EAID EDEF6CAC 6040 4524 B5C6 0050CE2228C2”/>
88 <type xm i : i d r e f=”EAID FF0CBADA 0C16 4153 80ED 4EC9063FB387”/>
89 </ input>
90 </ containedNode>
91 <containedEdge xmi:type=”uml:ControlFlow” xmi : id=”

↪→ EAID 43CD027C 751F 46fd AE54 D848961B167F” v i s i b i l i t y=” pub l i c ” source=”
↪→ EAID 0572336B A904 47c2 846E F08704657D44” ta r g e t=”
↪→ EAID 583178B1 9A49 450c B66E BDF1A12E7CE5”/>

92 <node xm i : i d r e f=”EAID AAE99A46 3EE1 451e B54E 38F56F792B2A”/>
93 <containedNode xmi:type=”uml:AcceptEventAction” xmi : id=”

↪→ EAID AAE99A46 3EE1 451e B54E 38F56F792B2A” name=”Receive [ Co f f ee gr inded ] ”
↪→ v i s i b i l i t y=” pub l i c ”>

94 <incoming xm i : i d r e f=”EAID FEF369CB 1AF4 4538 8A51 4903228D6B76”/>
95 <outgoing xm i : i d r e f=”EAID 653F0797 F98C 42d7 A132 3D742BAF03AE”/>
96 </ containedNode>
97 <containedEdge xmi:type=”uml:ControlFlow” xmi : id=”

↪→ EAID 653F0797 F98C 42d7 A132 3D742BAF03AE” v i s i b i l i t y=” pub l i c ” source=”
↪→ EAID AAE99A46 3EE1 451e B54E 38F56F792B2A” ta r g e t=”
↪→ EAID 583178B1 9A49 450c B66E BDF1A12E7CE5”/>

98 <node xm i : i d r e f=”EAID CAEA0C64 7D17 4934 8B6C 510380F7D70A”/>
99 <containedNode xmi:type=”uml:AcceptEventAction” xmi : id=”

↪→ EAID CAEA0C64 7D17 4934 8B6C 510380F7D70A” name=”Receive [ water bo i l ed ] ”
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↪→ v i s i b i l i t y=” pub l i c ”>
100 <incoming xm i : i d r e f=”EAID BCCC01C1 4122 4069 BD6B 9128DF85ECDB”/>
101 <outgoing xm i : i d r e f=”EAID BEE40766 BAE6 4fdc AFB6 52DB6ABEA996”/>
102 </ containedNode>
103 <containedEdge xmi:type=”uml:ControlFlow” xmi : id=”

↪→ EAID BEE40766 BAE6 4fdc AFB6 52DB6ABEA996” v i s i b i l i t y=” pub l i c ” source=”
↪→ EAID CAEA0C64 7D17 4934 8B6C 510380F7D70A” ta r g e t=”
↪→ EAID 583178B1 9A49 450c B66E BDF1A12E7CE5”/>

104 </group>
105 <node xmi:type=”uml:ForkNode” xmi : id=”EAID 1FFB060A 62D9 4d63 B9A2 35FA046A8290”

↪→ v i s i b i l i t y=” pub l i c ”>
106 <incoming xm i : i d r e f=”EAID DAADBB4F 627B 4539 96BE B193526CF680”/>
107 <outgoing xm i : i d r e f=”EAID CFEFFD05 99EF 4fb2 BC75 5F529556F7F7”/>
108 <outgoing xm i : i d r e f=”EAID 6C439DF4 852A 4c6b BA75 8DEB4D440430”/>
109 </node>
110 <edge xmi:type=”uml:ControlFlow” xmi : id=”EAID 6C439DF4 852A 4c6b BA75 8DEB4D440430

↪→ ” v i s i b i l i t y=” pub l i c ” source=”EAID 1FFB060A 62D9 4d63 B9A2 35FA046A8290” ta r g e t=
↪→ ”EAID 29E9F1B6 C365 4987 BBDE 83D5E952210D”/>

111 <edge xmi:type=”uml:ControlFlow” xmi : id=”EAID CFEFFD05 99EF 4fb2 BC75 5F529556F7F7
↪→ ” v i s i b i l i t y=” pub l i c ” source=”EAID 1FFB060A 62D9 4d63 B9A2 35FA046A8290” ta r g e t=
↪→ ”EAID E63E0237 2D40 4731 9740 20CBC5226FCF”/>

112 <node xmi:type=”uml:ForkNode” xmi : id=”EAID 583178B1 9A49 450c B66E BDF1A12E7CE5”
↪→ v i s i b i l i t y=” pub l i c ”>

113 <incoming xm i : i d r e f=”EAID BEE40766 BAE6 4fdc AFB6 52DB6ABEA996”/>
114 <incoming xm i : i d r e f=”EAID B7849965 3508 425d 9AA4 F0805DEEA6C9”/>
115 <incoming xm i : i d r e f=”EAID 653F0797 F98C 42d7 A132 3D742BAF03AE”/>
116 <incoming xm i : i d r e f=”EAID 43CD027C 751F 46fd AE54 D848961B167F”/>
117 <outgoing xm i : i d r e f=”EAID 6A361CDD E0D8 456e B69B CDE3F0EF618E”/>
118 </node>
119 <edge xmi:type=”uml:ControlFlow” xmi : id=”EAID 6A361CDD E0D8 456e B69B CDE3F0EF618E

↪→ ” v i s i b i l i t y=” pub l i c ” source=”EAID 583178B1 9A49 450c B66E BDF1A12E7CE5” ta r g e t=
↪→ ”EAID 9614F308 ABA4 47a3 8938 80F181247AD8”/>

120 </ownedBehavior>
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