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Abstract 

The readiness potential (RP) and the event-related desynchronization (ERD) are neural signals 

that build up over the motor cortex 1.5-2 seconds prior to movement onset. Bai et al. (2011) 

were amongst the first to reliably detect movement intent online based on these signals. 

Interestingly, these brain signals typically build up prior to the moment a person reports to 

consciously intend to act. However, how these subjective reports relate to these neural 

preparatory signals remains unclear. To investigate this, we developed a brain-computer 

interface (BCI), based on the Bai study, that predicts movement intent based on these brain 

signals and then feeds this prediction back by means of functional electrical stimulation (FES). 

Three experiments were conducted. In the first experiment we successfully replicated the Bai 

study offline. We found we could predict movement intent offline based on the ERD (-

0.7±0.17s) and the RP (-0.43±0.84s) before movement onset. In the second experiment we 

investigated the effect of FES stimulation on EEG data. We showed FES stimulation mostly 

influences the EEG data on and after movement onset and was thus not an issue for our study. 

In our third experiment we used online classification to investigate if a person is aware of their 

intention to act when movement preparation is detected in the brain. The online classification 

did not work as expected due to a high false positive rate. Therefore, we could not answer the 

main question in this experiment. We believe the online classification was affected by an 

anticipation buildup over time. By using more time points for classifier training, building in 

trials that provide a measure of anticipation alone and creating more variance in action timing, 

we believe it will be possible to predict movement intent in real-time and investigate how the 

subjective experience of intending to act relate to the RP/ERD.    
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1. Introduction 

 

On a daily basis, humans can spontaneously decide when to initiate a movement and when to 

commit to a certain course of action to accomplish a task (Haggard, 2008; Lew, Chavarriaga, 

Silvoni, & Millán, 2012). In a recent review article, Shibasaki (2012) described the main 

electrophysiological activities associated with self-paced voluntary movements, highlighting 

the readiness potential (RP) and the event-related desynchronization (ERD) over the (pre) motor 

cortex as factors commonly associated with movement preparation.  

  The RP is a slow negative cortical potential that is known to build up over the motor 

cortex as early as 2 seconds prior to movement onset. It can be divided into two components: 

the early RP, characterized by a slow negative slope, starting from 2 seconds before voluntary 

movement onset in the pre-supplementary motor area and the late RP, characterized by a steeper 

negative slope lateralized over the primary motor area which starts around 400 milliseconds 

before voluntary movement (Kornhuber & Deecke, 1965; Shibasaki & Hallett, 2006). 

The ERD in the alpha (8-12 Hz) and beta (13-30 Hz) frequency bands also occurs around 

1.5 - 2 seconds prior to movement onset and starts bilaterally over the motor cortex 

(Pfurtscheller & Aranibar, 1979). The beta ERD has been found to be contralateral prior to 

dominant hand movement as opposed to bilateral prior to non-dominant hand movement (Bai, 

Mari, Vorbach, & Hallett, 2005). These neural signals are typically not seen before movement 

onset when the movement was passive or involuntary (Müller et al., 2003; Shibasaki & Hallett, 

2006). 

Both the RP and ERD have been used to predict movement onset on a single trial level. 

Bai et al. (2011) were amongst the first to reliably detect the intention to move before movement 

onset based on EEG signals in real-time. They demonstrated that voluntary movement could be 

predicted on average 620 ± 250 milliseconds before its onset. Schneider, Houdayer, Bai and 

Hallett (2013), using the same methods as Bai et al. (2011), also showed they could predict 

movement intent before its onset in real-time with a low false positive rate. Based on these and 

other studies (Blankertz et al., 2006; Fried, Mukamel, & Kreiman, 2011; Lew et al., 2012) it 

should be possible to predict the intention to move based on the RP and alpha/beta ERD in real-

time before movement onset. If prediction in real-time is possible, it provides a means to feed 

this prediction back to a person in order to investigate their subjective experience of intending 

to act at that moment. 

Interestingly, these brain signals typically build up prior to the moment a person reports 
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to consciously intend to act, suggesting the brain starts preparing an act before a person is aware 

of their intention (Libet, Gleason, Wright, & Pearl, 1983).  However, how these subjective 

reports relate to these neural preparatory signals remains unclear.   

  In the current study we developed a brain-computer interface (BCI), based on the 

methods used by Bai et al. (2011), that tries to predict when someone has the intention to move 

based on the RP and/or ERD and then feeds this prediction back to the person by means of 

functional electrical stimulation (FES). We conducted three experiments. In our first 

experiment we replicated Bai et al. (2011) offline. In experiment 2 we investigated the effects 

of FES stimulation on EEG signals. Finally, in our third experiment we used online 

classification to investigate how the subjective reports of intending to act relate to the RP and/or 

ERD. 

A BCI is a real-time system that can translate brain activity into control signals of 

external devices (Soekadar, Birbaumer, Slutzky, & Cohen, 2015). Neurophysiological signals 

from the brain are measured and used to make a direct online connection between the brain and 

a device such as a computer or a prosthetic device (van Gerven et al., 2009). This system can 

be used to replace, restore, enhance or improve neurophysiological activity in the brain 

(Wolpaw & Wolpaw, 2012). 

Functional electrical stimulation (FES) is a technique that can be used to artificially 

activate the sensorimotor system by sending short pulses of electrical charge to the muscles 

(Popović, 2014). By placing electrodes near the motor point of the muscle and by applying 

short, constant-current pulses, the potential of the nerve is depolarized which leads to a 

contraction of the innervated muscle fibers. This suggests FES could potentially be used to feed 

the predictions back to the participant by performing a forced movement. By carefully selecting 

the right individual stimulation current and position of the FES electrodes, FES movements can 

be made very similar to a voluntary movement.  

With this setup, we investigated if a person is aware of their intention to act when 

movement preparation is detected in the brain. To study this, participants were asked to report 

on their subjective experience after each movement. A movement could be initiated by the 

participant’s muscle activity, by their brain (classifier) or randomly. Every type of movement 

ended with FES stimulation, making it ambiguous by what source the movement was initiated. 

This setup provided us with a way to compare the ERD and RP signals prior to movements that 

were reported as intended, unintended and movements they were not sure of.  

Based on previous literature (Bai et al., 2011; Fried et al., 2011; Lew et al., 2012; 

Schneider et al., 2013a), we hypothesized that we can reliably predict movement onset in real-
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time based on the neural preparatory activity over the motor cortex. The RP is generally only 

visible after averaging over 40–50 voluntary movements. In contrast to the RP, the ERD can 

sometimes be observed on a single-trial level (Bai et al., 2011). Hence, we expected the ERD 

to be a better feature for online prediction as the RP is more difficult to detect on a single trial 

level.  

Since the RP/ERD signals are only seen before the onset of voluntary movements 

(Müller et al., 2003; Shibasaki & Hallett, 2006) we expected these signals to be significantly 

different prior to a movement that was reported to be unintended compared to one that was 

reported as intended. Specifically, we expected only ERD or RP activity present before 

movement onset when a movement was reported as intended. No ERD or RP signal was 

expected to be present before a movement that was reported as unintended.   

Next to providing us with a better understanding of how a person’s subjective 

experience of intending to act relates to the neural preparatory activity for action, successful 

prediction of movement intent may provide us with faster and more convenient ways to control 

prosthetic devices or wheelchairs. In current brain-computer interface systems, users can 

control external devices by means of volitional or conscious control. Reliable prediction of 

voluntary movement may lead to a more effective BCI system that does not rely on attention, 

as sustained attention may tire the user (Sellers & Donchin, 2006). Additionally, delays in 

activating an assistive device could be minimized by detecting movement intent early on, which 

potentially increases the therapeutic benefit by minimizing the time between motor planning in 

the cortex and the execution of that plan with the assistive device (Muralidharan, Chae, & 

Taylor, 2011). Finally, if early detection of movement intent is possible, this could be used to 

develop a BCI system for certain patients that can intervene with and inhibit an upcoming 

movement (Bai et al., 2011).      

 

2. Experiment 1 

Bai et al. (2011) were amongst the first to reliably detect movement intent before movement 

onset based on the ongoing EEG signals in real-time. In this first experiment we replicated Bai 

et al. (2011) offline to confirm we could predict movement intent before its onset based on the 

RP and alpha/beta ERD.  
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2.1 Methods 

2.1.1. Participants 

Four healthy participants took part in this experiment, all participated voluntarily and gave 

written informed consent. The average age of the participants was 24 (SD=3.1) ranging from 

21 to 28 years old. Two participants were right-handed, two were left-handed and all had normal 

or corrected to normal vision.  

 

2.1.2. Data acquisition 

The experiment was designed and run in PsychoPy (Peirce, 2007). EEG was recorded using the 

‘Biosemi ActiveTwo’ system with 64 Ag/AgCl active electrodes. They were placed according 

to the International 10/20 System (Klem, Lüders, Jasper, & Elger, 1999). Four EOG 

(electrooculography) electrodes were placed around the eyes to measure eye movements and 

eye blinks. One was placed above the left eye, one below the left eye and two on the sides of 

each eye. Two electrodes behind the ears (mastoids) were used as reference electrodes. 

Additionally, two EMG (electromyogram) electrodes were placed on the arm (extensor carpi 

ulnaris muscle) and wrist bone to record muscular activity from arm movements. Participants 

were asked to make tapping movements on a tap pad. The tap pad recorded the audio signal 

that was generated by the tapping and was used as a measure of movement onset.   

 

2.1.3. Experimental procedure  

The experiment took place in an electrically shielded room. Participants were seated in a chair 

in front of a computer screen at a distance of approximately 70 centimeters. Their right forearm 

was resting on a pillow in such a way they could relax their arm. They were asked to tap on the 

tap pad in front of them by making a self-paced voluntary wrist extension with their right hand. 

They were specifically asked not to plan their movements but to be as spontaneous as possible.  

  Each trial started with a green square in the middle of the screen and participants were 

instructed that the goal was to keep this square green. If they moved too fast (< 5 seconds), the 

green square turned red for 3 seconds, if they moved too slow (>15 seconds) the square turned 

blue for 3 seconds. This was done to make sure we got a good baseline for analyzing the EEG 

data before the participant intended to act and to keep the experiment going by making sure the 

participants didn’t wait too long before acting. When they moved between 5-15 seconds the 

square stayed green. Similar to the red and blue feedback, there was a 3 second period before 

they could move again. However, now this was a “silent” feedback phase as the square stayed 

green. In 20% of the trials the square turned red or blue even though they moved in the right 



6 

 

time range. This was done to keep the movements spontaneous. A fixation cross appeared in 

the middle of the square for 0.5 seconds to indicate a tap was registered and a new trial would 

start. The experiment consisted of 21 blocks of 10 trials. After each block participants received 

feedback on how many trials they got correct (i.e. kept the square green). The whole procedure, 

including cap fitting, took about 1.5 hours. 

 

2.1.4. Data analysis 

Data was analyzed in MATLAB (MathWorks Inc., Natick, MA, USA). Offline classification 

was performed for both the ERD and RP. Similar to Bai et al. (2011), EEG data from 1.5 

seconds before tap onset to tap onset was labeled as ‘movement state’, where movement related 

activity was expected to occur. Data within 1,5 seconds from trial start was labeled as ‘non-

movement state’, where no movement related activity was expected. Since we expected only 

relevant activities over the motor cortex, only the central electrodes (C1, C2, C3, C4, Cz, FC1, 

FC2, FC3, FC4, FCz, CP1, CP2, CP3, CP4, CPz) were used for classification. The time-

frequency data was temporally filtered; the Welch method with a Hanning window was applied 

to estimate power spectral density (PSD). A 4 Hz frequency resolution (256/4= 64 segment 

length) was used to estimate the PSD. Temporal filtering was done to reduce spectral leakage 

(Smith, 1997). Relevant activities were expected in the alpha and/or beta bands, so only the 8-

30Hz frequency bands were taken into account. Surface Laplacian derivation (SLD) was 

performed for spatial filtering, meaning the EEG signal from each electrode was referenced to 

the averaged potentials from the nearest four orthogonal electrodes (Hjorth, 1975).  By using 

SLD, the local EEG potentials were enhanced by increasing spatial specificity (Bai et al., 2007; 

Pfurtscheller, 1988). For the RP the data was low-pass filtered at 10Hz and SLD was performed 

for spatial filtering.  Finally, bad trials were removed when the channel or trial power deviated 

more than 3.5 standard deviations from the mean. This preprocessed data was used to train a 

linear classifier. The classifier was applied offline with 1.5 second time windows in steps of 

100 milliseconds. This was repeated 10 times for cross-validation. For each run, the classifier 

was trained on a random 2/3 of the data and applied on the other 1/3 of the data. To calculate 

when the movement and non-movement class significantly differed from each other, a binomial 

test was performed to the determine the earliest point where the classification performance was 

higher than the 95% confidence interval for chance performance (Billinger et al., 2012).  
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2.2 Results   

One participant was excluded from offline classification as the data contained a lot of electrical 

noise. The classifier training performance for the ERD for each participant was 74%, 68% and 

89%. For the RP the training performances for each subject were 67%, 70% and 65%. Table 1 

shows the results of the binomial test for each subject. It shows the first time points a significant 

class difference was found for each participant for the ERD and RP and the time point when 

movement intent was expected to be predicted.  For instance, for participant 1, the first time a 

significant difference between ‘move’ and ‘non-movement’ classes for the ERD was found at 

-2.3 seconds. Since the classifier was applied with 1.5 second time windows, the actual 

prediction was made 1.5 seconds later. Thus, for subject 1 movement intent was expected to be 

predicted 0.8 seconds before movement onset. Predictions based on the ERD were found on 

average 0.7 (SD=0.17) seconds before movement intent. Predictions based on the RP were 

found on average 0.43 (SD=0.84) seconds before movement     

 

Table 1. Results offline classification based on the ERD and RP for each subject. First columns 

show the first time point a difference was found for the ERD and RP classifiers. The last two 

columns show the time points the expected predictions were made for each classifier.  

 

As shown in the table, predictions based on the ERD were made as early as 0.8 seconds before 

movement onset, whereas predictions based on the RP (with the exception of participant 2) 

were made on or a little after movement onset.  Based on these results, we expected it should 

be possible to predict movement intent in real-time prior to movement onset based on the RP 

and/or ERD over the motor cortex. We also expected the ERD to be a better feature for online 

prediction than the RP as the predictions are generally made earlier.  

 

3. Experiment 2 

As mentioned briefly in the introduction, FES could provide a means to feed the predictions 

back to the participants. Qiu et al. (2016) quantitatively compared ERD patterns during active, 

passive and FES-induced movement. They found that beta ERD values induced by FES 

Participant Start window 

significant 

difference ERD (s) 

Start window 

significant 

difference RP (s) 

Prediction 

movement 

intent ERD (s) 

Prediction 

movement 

intent RP (s) 

1 -2.3  -1.4 -0.8  0.1 

2 -2.0 -2.9 -0.5  -1.4 

3 -2.3 -1.5 -0.8 0 
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movements significantly correlated with beta ERD values from voluntary movements while no 

significant correlation was found between ERD values of FES-induced movements and passive 

movements, as well as voluntary and passive movement. Müller et al. (2003) found that the 

main difference between movement elicited by FES and self-paced or passive movements was 

that there was no ERD detected prior to movement onset. This suggests that sensorimotor 

processing during FES involves some of the same processes as voluntary movement. In both 

voluntary movement and movement by FES, efferent nerves of the muscles were stimulated, 

either by active motor commands or by FES, and in both cases afferent input could be 

anticipated.  

  We want to make the forced movements as similar as possible to voluntary movements. 

FES stimulation could be a good technique for that. One possible issue with using FES is the 

possibly large effect of FES stimulation on the ongoing EEG signals, which could make 

analysis difficult. In this second experiment we aimed to investigate the effect of FES 

stimulation on EEG data, specifically on the RP and alpha/beta ERD.   

 

3.1 Methods 

3.1.1. Participants 

Three healthy participants took part in this experiment. All participated voluntarily and gave 

written informed consent. The average age was 30 (SD=10.3) ranging from 21 to 41. All 

participants had normal or corrected to normal vision and all were right-handed. 

 

3.1.2. Data acquisition 

The Motionstim 8 stimulator (Krauth & Timmermann, Germany) was used to perform 

functional electrical stimulation. Two oval FES electrodes (4x6cm) were placed around the 

extensor carpi ulnaris muscle in such a way that the movement made by FES was similar to the 

participant’s voluntary wrist extension. Stimulation frequency was set to 20 Hz with a 300 

milliseconds pulse duration. Stimulation current was determined for each subject individually. 

For all three participants this was set to 20 microVolts. The same set-up for measuring EEG, 

EMG and audio data was used as in the first experiment. 

 

3.1.3. Experimental procedure 

After capfitting, the FES stimulation was set up. Starting with a low current (6 microVolts), the 

participant was introduced to the stimulation. The stimulation current was slowly increased 

until the stimulated movement was most similar to the participant’s own movement. The 
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experimental task was the same as in experiment 1. However, now there were two conditions. 

At the beginning of the trial either the words ‘FES trial’ or ‘TAP trial’ were presented on the 

screen. In case of a ‘FES trial’, participants were asked to wait until the FES device would make 

a forced movement. The FES stimulation was made randomly between 5 and 15 seconds. In 

case of a ‘TAP trial’, the participant was asked to make a self-paced voluntary wrist extension 

with their right hand while performing the same task as described in experiment 1. The two 

conditions were randomized and the experiment consisted 21 blocks of 10 trials. The whole 

procedure, including cap fitting and setting up de FES, took about 2 hours. 

  

3.1.4. Data analysis 

Data was analyzed in MATLAB (MathWorks Inc., Natick, MA, USA). For each subject a time-

frequency analysis and an ERP analysis was performed. The data was sliced in trials of -10 to 

10 seconds around the recorded taps. All trials with movements before 5 seconds were deleted. 

The data was then split up in ‘TAP trials’ and ‘FES trials’ and the two conditions were 

preprocessed separately. The data was detrended and re-referenced to the average of the 

mastoids. After this the data was time-locked to EMG onset, as we found this to be a more 

accurate indicator of movement onset. The EMG channel on the wrist bone was subtracted from 

the channel on the forearm muscle. The signal was band-pass filtered (51-250 Hz), rectified, 

and a first order low-pass Butterworth filter was applied with a normalized cut-off frequency 

of 16/128 Hz (cut-off frequency / (sampling frequency/2)). EMG onset was determined as the 

mean plus 5 times the standard deviation of the EMG signal. Eye blinks and eye movements 

were subtracted. Bad channels and bad trials that deviated more than 2.5 standard deviations 

from the mean were removed. The data was visually inspected afterwards and if clear artifacts 

were still seen, extra trials/channels were deleted manually. The data was then low-pass filtered 

at 47 Hz and high-pass filtered 0.2 Hz. For the ERP analysis, preprocessed data was baseline 

corrected using a baseline window of 5 to 4 seconds before movement onset and a timelock 

analysis using FieldTrip (Oostenveld, Fries, Maris, & Schoffelen, 2011) was performed. For 

the time-frequency analysis, we used a (multi)taper approach implemented in FieldTrip. A 

Hanning window of 500 milliseconds was applied to frequencies between 2 and 30 Hz. This 

was done in steps of 100 milliseconds, from 5 seconds before tap to 3 seconds after the tap. 

Next to the individual analysis, a time-frequency analysis and ERP analysis was performed over 

the grand average of all participants.   
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3.2 Results 

As expected, we found clear FES artifacts when a forced movement was performed. Figure 1 

shows an example of the effect of FES stimulation in channel Cz (central channel on the motor 

cortex). As shown in this figure, both RP and ERD signals returned to baseline within 500 

milliseconds. Furthermore, the FES artifacts are found mostly on and after movement onset. 

Since we are interested in the EEG signals before movement onset, we don’t expect the FES 

stimulation to be an issue for analyzing the neural preparatory activity.   

Figure 1. A. Grand average of the RP for channel Cz. B. Grand average for time-frequency 

representation for channel Cz. The colorbar shows the relative power change. Time 0 (marked 

by the dashed line) is the point of movement onset based on the EMG signal.  

 

4. Experiment 3 

In the final experiment we combined the two previous experiments and developed a brain-

computer interface that predicts when someone has the intention to move. As soon as movement 

intent was detected, the person received feedback through a forced movement by means of FES. 

With this setup, we aimed to investigate whether we can reliably predict movement onset in 

real-time based on the ongoing EEG activity, as well as how the subjective experience of 

intending to act relates to the neural preparatory signals.  

  Investigating the subjective experience of intending to act is quite complex. There are 

many ways to ask about a person’s intention and many ways a person can interpret what an 

intention is (Verbaarschot, Farquhar, & Haselager, 2015). Furthermore, internal and external 

influences can affect a person’s report of their intention to act. For instance, the amount of effort 

you have to invest in your movement influences whether or not you attribute a movement to 
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yourself. Moreover, a temporal delay of an action’s consequence leads to attributing the 

consequences to others (Minohara, Wen, Hamasaki, Maeda, & Kato, 2016). Another well-

known example is the “self-serving bias”, meaning that we tend to attribute positive outcomes 

to oneself and negative outcomes to external factors (Gentsch & Synofzik, 2014; Greenberg, 

Pyszczynski, & Solomon, 1982). This suggests positive or negative feedback during the 

experiment could influence the participant’s subjective report. In our experiment we explained 

the difference between wanting to move or not wanting to move as the difference between 

something you do (or wanted to do) and something that happened to you.   

 

4.1 Methods  

4.1.1 Participants 

Eight healthy participants took part in this study. Participants received course credits or money 

for their participation. The average age of the participants was 27.4 (SD=7.8) ranging from 19 

to 43 years old. All participants were right-handed and had normal or corrected to normal 

vision. All gave written informed consent. One participant was excluded before the start of the 

experiment since we could not invoke a movement with FES that was similar to the participant’s 

own movement. Three participants were excluded after stage 1 of the experiment: one was 

excluded because the classifier training performance was too low (<50%) and two participants 

were excluded due to technical difficulties with online classification (further explained in 4.4). 

This leaves four participants who completed the whole experiment.  

 

4.1.2 Data acquisition  

The experiment was designed and run in PsychoPy (Peirce, 2007) and MATLAB (MathWorks 

Inc., Natick, MA, USA). The same set-up for measuring EEG and EMG was used as in the first 

and second experiment. The tap pad was no longer used to record movement onset, since the 

recorded taps did not provide an accurate indicator of movement onset in experiment 1 and 2. 

EMG electrodes were placed on the arm (extensor carpi ulnaris muscle) and the wrist bone to 

record muscular activity from arm movements and to continuously detect movement onset. The 

Motionstim 8 stimulator (Krauth & Timmermann, Germany) was again used to perform 

functional electrical stimulation. Two oval FES electrodes (4x6cm) were placed around the 

extensor carpi ulnaris muscle and stimulation frequency was set to 20 Hz with a 300 

milliseconds pulse duration. Stimulation current was determined for each subject individually 

and ranged from 18 to 22 microVolts.    
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4.1.3 Experimental procedure 

The experiment took place in an electrically shielded room. Participants were seated in a chair 

in front of a computer screen at a distance of approximately 70 centimeters. Both forearms were 

resting on the table in front of them and a button box was placed by their left hand. After 

capfitting and setting up the FES stimulation, a quick EMG training was performed to 

continuously decode muscle movement. Participants were informed that this training served as 

a check to see if we could correctly detect their muscle activity. Next, participants received the 

experimental instructions.  

  The experiment was divided into two identical parts, with a questionnaire in between to 

give participants a short break from the stimulation. Both parts took about 35 minutes 

(depending on the participant’s reaction time). Another questionnaire was given at the end of 

the experiment. Including capfitting, setting up the FES, filling out the questionnaires and 

debriefing the experiment took approximately 2,5 hours.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The experimental set-up.  

 

4.1.4 Experimental paradigm 

The task participants performed was similar to that of experiment 1 and 2: self-paced voluntary 

movements while keeping the green square on the screen. However, this third experiment 

consisted of two stages. The first stage consisted of voluntary movements and randomly 

triggered FES movements and served to gather training data for our classifier. The second stage 
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consisted of voluntary movements and FES triggered movements in response to real-time 

predictions made by the classifier. At the start of each stage, participants received identical 

instructions. They were informed that we were trying to develop a new brain-computer interface 

that predicts when they were intending to move and that the FES triggers were based on their 

brain data (their intentions). This was done to create uncertainty about the decision of who made 

the movement: their own motor system, their brain or something random.  

In the first stage FES triggers were sent randomly. Participants were asked to make one 

tap movement each trial by making a self-paced voluntary wrist extension with their right hand. 

During each trial a FES trigger would be sent at random. After 10 trials, the running average of 

the participant’s reaction time was calculated and random FES triggers were sent within a range 

of -2 to 2 seconds around that average. However, if EMG activity was detected prior to the 

random trigger, a FES trigger was sent right away to initiate a forced movement. This was done 

in order to make the voluntary movements as similar as possible to the forced FES movements. 

After each trial the following question was presented: “Did you want to make this movement?”. 

Participants could answer with “Yes”, “No” or “Don’t know” using the button box. Since 

participants received FES stimulation during both voluntary and forced movements, they could 

not answer this question based on the presence of FES stimulation alone. After they answered 

the question, they received feedback on whether their movement was made in the right time 

range (red, green or blue square). The feedback was given after the question to avoid the effect 

of negative or positive feedback on the participant’s report. This first stage consisted of 11 

blocks of 10 trials. The first block was intended to familiarize them with the experiment. After 

each block the participant received feedback on how many trials they kept the green square on 

the screen and there was time for a short break. After stage 1, participants filled in a 

questionnaire that went into more detail about their subjective experience during the first part 

of the experiment. While the participants were filling in the questionnaire, a classifier was 

trained based on trials from the first stage. If the training performance of the classifier was less 

than 50%, the subject was excluded from the second stage of the experiment.  

Stage 2 was similar to stage 1 except now the FES triggers were not random, but based 

on classifier predictions. This stage consisted of 10 blocks of 10 trials. Afterwards, a second 

questionnaire consisting of questions about their subjective experience in this stage, as well as 

compared with the first, was filled out. We hypothesized that EMG-triggered movements would 

be reported as “intended” close to 100% of the time in both stages as we expected muscle 

activity to occur only when the participant intended to make a movement. For the random-

triggered movements it is more difficult. Random FES triggers were sent within a range of -2 
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to 2 seconds around the running average of the participant’s reaction time and a movement was 

classified as a random-triggered movement only if the random trigger was sent before muscle 

onset. We assume that the participant can be aware of their intention when probed 2 seconds 

before muscle activity (Verbaarschot, Haselager, & Farquhar, 2016). Moreover, if we assume 

that both the distribution of actions and the distribution of random FES triggers are uniform and 

4 seconds wide, the chance the FES trigger is sent in the 2 second window prior to the action, 

given that the trigger happened before the action, was estimated to be around 75%1. Thus the 

random-triggered trials were expected to be reported as intended 75% of the time. Finally, if 

the RP and alpha/beta ERD are predictive of the awareness of intending to act, we expected that 

the brain-triggered trials (the trials with classifier predictions) of stage 2 would be reported as 

‘intended’ close to 100% of the time. 

Figure 3. The experimental design. A.  The start of the trial is indicated with a green square and 

fixation cross in the middle of the screen. B. Question with corresponding buttons to press. C. 

In this example the feedback was red (indicating they moved too fast), but it could also be a 

blue or green square. D. This shows an example of feedback at the end of each block.  

 

4.2  Real-time prediction  

4.2.1 EMG detection 

For training the EMG detector, participants performed a short task. In the task, either the word 

“relax” or “right hand” was shown on the computer screen for 3 seconds. Participants were 

asked to rest their right arm as long as the word “relax” was on the screen and make wrist 

                                                           
1 In a 4 second window, we will always find 100% intention for the first 2 seconds, assuming the subject is 
aware of their intention 2 seconds before movement. If the action happens later in time, the time window 
up until the point of the action gets bigger, but the intention window stays the same length (2 sec). This 
then decreases the chance the trigger is presented in the intention window. This chance decreases as a 
function of movement time (2/4 when action happened at 4 sec) and we estimate this to be 75%.  
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extensions as long as the word “right hand” was on the screen. Six “relax” and six “right hand” 

trials were performed in alternating order.  

 The EMG channel on the wrist bone was subtracted from the channel on the forearm 

muscle. The signal was band-pass filtered (70-250 Hz), rectified, and a first order low-pass 

Butterworth filter was applied with a normalized cut-off frequency of 16/128 Hz. Three seconds 

of data from the start of the “right hand” trials were labeled as movement data. The mean and 

standard deviation of the movement data was calculated and the threshold for movement was 

set as the mean plus 3 times the standard deviation. EMG input was continuously decoded every 

50 milliseconds and whenever the input was detected to be higher than the threshold, a trigger 

was sent to the FES device to make a forced movement.  

    

4.2.2 EEG classifier  

EMG-triggered trials from stage 1 of the experiment were used to train a linear classifier based 

on the RP and ERD. EMG onset was determined as the point where the EMG signal was higher 

than the threshold (as described in 4.2.1). The data from 500 milliseconds before EMG onset to 

EMG onset was labeled as ‘movement’ data and the data from -5000 to -4500 milliseconds 

before EMG onset was labeled as ‘non-movement’ data.  

  Surface Laplacian derivation was performed for spatial filtering. For the ERD, data was 

temporally filtered using the welch method with a Hanning window, with a 4 Hz frequency 

resolution (256/4= 64 segment length) applied to estimate PSD. We only expected relevant 

information in the alpha and beta frequency bands, so only the 8-30 Hz bands were taken into 

account. RP data was spatially filtered by performing SLD and low-pass filtered at 10Hz. 

Relevant EEG activity was assumed to occur over the motor cortex. However, all 64 EEG 

electrodes were used for training the classifier. This might introduce more noise, but if there 

are artifacts we expect them to occur in the whole brain, thus the other electrodes provide us 

with useful information.  

 

4.2.3 Determining the optimal threshold for prediction 

Initially, cross-validated classifier predictions from the training data were used to determine a 

threshold for prediction. The median for the positive predictions for the RP and ERD was 

computed and used as the RP and ERD threshold. The classifier was continuously applied to 

the data every 500 milliseconds, with steps of 100 milliseconds. Every step, the last 10 

predictions were saved and a prediction event was sent to activate the FES device whenever 8 

out of 10 ERD prediction values were higher than the ERD threshold and 4 out of 10 RP 
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prediction values were higher than the RP threshold. A larger amount of ERD predictions was 

chosen as we expected the ERD to be a better feature for online prediction and thus to predict 

movement intent more accurately than the RP.  

  This method was tested with two pilot subjects. During testing it was found that for one 

participant almost no predictions were sent and for the other participant predictions were sent 

all the time. The data was analyzed offline and we found the RP did not contribute much to 

early detection of movement intent. Based on this, the results of our first pilot and previous 

literature (Bai et al., 2011) we decided to only use the ERD signal for online classification. As 

our thresholds for the pilot subjects were not reliable, we used another approach to determine a 

threshold for online prediction in the experiment.  

  Based on the data of the trained ERD classifier, receiver operation characteristic (ROC) 

curves were made for each participant showing the true positive rate (sensitivity) against the 

false positive rate (1-specificity) at different threshold settings for the ERD data. In an ideal 

situation, predictions would be made with a low false positive rate (predicted movement, when 

there was no movement) and a high true positive rate (predicted movement when there was 

movement). However, there is a tradeoff between the two. For our experiment we decided it 

was more important to have a low false positive rate than to have a high true positive rate, so 

that when a prediction was made, the movement would likely follow. As the ERD and RP are 

known to build up over the motor cortex up to 2 seconds before movement onset (Kornhuber 

& Deecke, 1965; Pfurtscheller & Aranibar, 1979), positive predictions that occur in that time 

window were considered to be true positives. Positive predictions that were made prior to that 

time window were considered to be false positives. To ensure a minimal false positive rate and 

to predict movement intent before its onset, we tried several different thresholds for predicting 

movement intent online. These will be described in the paragraphs below.  

  We wanted to allow one false positive prediction per trial. The average trial length was 

expected to be approximately 7 seconds. The classifier was applied every 500 milliseconds to 

the data, with steps of 100 milliseconds, so every 100 milliseconds a prediction was made. 

Under the assumption that these predictions were independent of each other, this means that 

every second we get 10 predictions. Thus, the false positive rate was set at 1/70, allowing one 

false prediction per 70 predictions. The ROC curve was used to determine the ERD threshold 

matching the desired false positive rate. Two participants were tested in both stages and we 

found the false positive rate (FPR) to be much higher than expected. Offline analysis showed 

there was a large negative baseline shift and more extreme prediction values in the second part 

of the experiment compared to the first part. This difference in prediction values between the 



17 

 

first and second stage is shown in figure 4. This means determining a threshold for classification 

based on the first part of the experiment alone is not sufficient. Instead, we need an adaptive 

threshold that continuously adapts to hit our target FPR.    

For the adaptive threshold the time-constant of the adaptation. i.e. how fast the threshold 

was expected to change, was set at 50 predictions. As we wanted a minimum amount of false 

positive predictions we set the target percentile to 95%, meaning 95% of the predictions should 

be below the threshold (< 0). It adapts by computing a running estimate of the 95% point of the 

last N predictions. It then shifts the outputs such that predictions lower than the 95% percentile 

have values less than 0 and those higher having a value greater than 0. Whenever a prediction 

was higher than the threshold an event was sent, initiating a forced FES movement. The 

classifier was again applied every 500 milliseconds with steps of 100 milliseconds. Two 

participants completed the whole experiment with this adaptive threshold.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Difference between training and testing. The upper plot shows the prediction values 

for each prediction that was made during the training phase. The plot below shows the 

prediction values for each prediction in the testing phase.  

 

4.3 Data analysis 

Data was analyzed in MATLAB (MathWorks). For each participant a time-frequency analysis 

and an ERP analysis was performed. All trials with movements before 5 seconds were deleted. 

The data was then split up in ‘intended trials’ and ‘unintended trials’ based on the subjective 

reports. The conditions were preprocessed separately. The data was detrended and re-referenced 
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to the average of the mastoids. Eye blinks and eye movements and muscle artifacts were 

subtracted. Bad channels were removed when they deviated more than 3 standard deviations 

from the mean. Bad trials were removed when they deviated more than 2 standard deviations 

from the mean. The data was visually inspected afterwards and if clear artifacts were still seen, 

extra trials/channels were deleted manually. Moreover, the data was low-pass filtered at 47 Hz 

and high-pass filtered 0.2 Hz. Within subject cluster-based permutation tests2 were performed 

to investigate whether there was a significant difference in ERD and RP signals between 

intended and unintended trials. The response rate for EMG-triggered, random-triggered and 

brain-triggered trials was computed and for each subject and the questionnaires were analyzed.   

 

4.4 Results 

4.4.1. Questionnaire  

The questionnaire after the first part of the experiment showed that 5/7 participants used a 

strategy to decide when to act. Two out of those five, reported to be counting during the 

beginning of the experiment (until the experimenter told them to be more spontaneous) in order 

to time their actions correctly. Other timing strategies included actively thinking of something 

else before acting (1 participant) or trying to be surprising (2 participants). These strategies 

were not considered a problem for the experiment as these result in more spontaneous 

movements. In the first stage FES triggers were random and EMG based. 4/7 Participants 

reported that the FES triggers were sometimes right, 2/7 reported the FES triggers to be accurate 

most of the time. 1/7 Participants reported the FES triggers were not accurate. 5/7 Participants 

felt free to make a movement whenever they wanted to. 4/7 Participants reported they really 

wanted move when the FES was activated, 3/7 reported they wanted to move most of the time. 

3/7 Participants felt in control of their movements, 1/7 did not feel in control and the other 3/7 

reported feeling in control only in trials the computer predicted accurately according to them, 

i.e. when the FES was activated based on the EMG. 

The second part of the questionnaire was filled in by the 4 participants that completed 

both stages of the experiment. All 4 participants reported FES triggers, now brain and EMG 

based, were less accurate compared to the first stage. Differences that were noticed were that 

they got more red squares (indicating they moved too fast), that the FES device stimulated more 

often and that the computer seemed more sensitive.  1/4 Participants reported to feel free to 

make a movement whenever they wanted to, 2/4 sometimes felt free and 1/4 felt like he/she had 

                                                           
2 See: www.fieldtriptoolbox.org/tutorial/cluster_permutation_timelock 
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to move before the FES trigger would be sent. Finally, 3/4 participants reported feeling in 

control of their movement when the FES was initiated by the EMG, not when the FES was 

initiated by the classifier. 1/4 Participants did not feel in control of their movements.  

 

 4.4.2. Response rate intended report 

For each subject the EEG data was split up in ‘intended trials’, ‘unintended trials’ and ‘don’t 

know trials’ based on the subjective reports. Table 3 shows an overview of the amount of 

‘intended’, ‘unintended’ and ‘don’t know’ reports for EMG-triggered and random-triggered 

trials in stage 1 of the experiment and EMG-triggered and brain-triggered trials in stage 2 of 

the experiment. For each participant we calculated the response rate for intended trials, e.g. 

what percentage of brain-triggered trials were reported as intended. This was calculated by 

dividing the number of intended trials by the total number of trials for each movement 

condition. Figure 5 shows these response rates.  

Figure 5. Response rate for intended trials for each condition. The blue colored bars are the 

EMG-triggered trials in both plots. The red colored bars in the left plot are the random-triggered 

trials and the red colored bars in the right plot are the brain-triggered trials. As an example, for 

subject one 100% of the EMG-triggered trials were reported as intended, and 81,58% of the 

random-triggered trials were reported as intended.  

 

As explained in section 4.1.4, EMG-triggered trials and brain-triggered trials were expected to 

be reported as intended close to 100% of the time. Random-triggered trials were expected to be 
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reported as intended 75% of the time. To test whether these hypotheses were true, a Wilson 

confidence interval was performed with an α of 0.05 (Wilson, 1927). The confidence interval 

tells us that, at a given level of uncertainty (0.05), if our null-hypothesis is correct, the true value 

for the population will likely be in that range. Table 2 shows the results of this binomial test. In 

stage 1, the majority of EMG-triggered trials were significantly different from our null 

hypothesis, meaning that the EMG-triggered trials were not reported as intended 100% of the 

time for those subjects. Random-triggered trials were significantly different for five subjects in 

stage 1. For two subjects the null-hypothesis was not rejected, meaning the response rate was 

likely around 75%. All confidence intervals can be found in table 2.  

 

 Table 2. Response rates and their confidence intervals for EMG-triggered, random-triggered 

trials and brain-triggered trials for each subject.  

* = significantly different from null-hypothesis 

Subject Response rate 

EMG trials 

Wilson confidence 

interval (H0 = 1.0) 

Response rate 

random trials 

Wilson confidence 

interval (H0 = .75) 

Stage 1     

1 100% [0.9417 – 1.0000] 81.58% [0.6658 – 0.9078]  

2 95.74% [0.8956 – 0.9833] * 18.75% [0.0659 – 0.4301] * 

3 94.44% [0.8765 – 0.9760] * 20% [0.0807 – 0.4160] * 

4 89.47% [0.8170 – 0.9418] * 26.67% [0.1090 – 0.5195] * 

5 75.64% [0.6506 – 0.8381] * 21.88% [0.1102 – 0.3875] * 

6 97.1% [0.9003 – 0.9920] * 2.44% [0.0043 – 0.1260] * 

7 96% [0.8654 – 0.9890] * 68.33% [0.5577 – 0.7869]  

Subject Response rate 

EMG trials 

Wilson confidence 

interval (H0 = 1.0) 

Response rate 

brain trials 

Wilson confidence 

interval (H0 = 1.0) 

Stage 2     

1 100% [0.9442 – 1.0000] 34.29% [0.2083 – 0.5085] * 

3 87.88% [0.7267 – 0.9518] * 10.45% [0.0515 – 0.2003] * 

4 100% [0.9536 – 1.0000] 4.76% [0.0085 – 0.2267] * 

6 100% [0.8794 – 1.0000] 5.56% [0.0218 –  0.1343] * 
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Table 3. Overview of all trials in stage 1 and 2 for each subject before removal of bad trials. 

This table shows the amount of intended, unintended and don’t know reports for EMG-

triggered, random-triggered movements in stage 1 and EMG-triggered and brain-triggered 

movement in stage 2. 

 
        Report 

 

Participant 

 

 

 

Intended 

 

Unintended 

 

Don’t know 

 

Total 

Stage 1      

1 EMG 

Random 

62 

31 

0 

7 

0 

0 

62 

38 

2 EMG  

Random 

90 

3 

4 

13 

0 

0 

94 

16 

3 EMG 

Random 

85 

4 

5 

16 

0 

0 

90 

20 

4 EMG 

Random  

85 

4 

10 

11 

0 

0 

95 

15 

5 EMG  

Random 

59 

7 

12 

24 

7 

1 

78 

32 

6 EMG 

Random 

67 

1 

1 

32 

1 

8 

69 

41 

7 EMG 

Random  

48 

41 

2 

15 

0 

4 

50 

60 

Stage 2      

1 

 

EMG 

Brain 

65 

12 

0 

23 

0 

0 

65 

35 

3 EMG  

Brain 

29 

7 

4 

59 

0 

1 

33 

67 

4 EMG 

Brain 

79 

1 

0 

20 

0 

0 

79 

21 

6 EMG 

Brain  

28 

4 

0 

56 

0 

12 

28 

72 
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4.4.3. EEG data  

As can be seen in table 3, there were only a few trials reported as ‘don’t know’, moreover for 

these trials it would be unclear what to look for when analyzing the data. Therefore, we chose 

not to analyze the ‘don’t know’ trials. Furthermore, there were much less trials that were 

reported as unintended compared to ones that were reported as intended. Important to note is 

that table 3 shows the amount of trials before bad trial removal. As a consequence of the 

unbalanced number of intended and unintended trials, we chose to not perform cluster-based 

permutation tests to compare intended versus unintended trials for each subject separately. 

Instead, within-subject cluster-based permutation tests were performed to see if there were 

significant differences over all subjects between intended movements and unintended 

movements. The tests were performed per stage and for the RP and ERD separately (4 tests in 

total). Only the central electrodes were included (C1, C2, C3, C4, Cz, FC1, FC2, FC3, FC4, 

FCz, CP1, CP2, CP3, CP4, CPz) since we only expected relevant activity over the motor cortex. 

For all four tests, no significant clusters were found. These results show that, over all subjects, 

there was no difference found between intended and unintended movements for both the ERD 

and RP signals in both stage 1 and stage 2. The grand averages over all subjects for intended vs 

unintended trials for the RP and ERD were calculated and plotted in figure 6.  

 

4.4.4. Online predictions  

Participant 1 and 3 were tested with the original threshold based on the ROC curve as explained 

in 4.2.3. Participant 4 and 6 were tested with the adaptive threshold. During testing it was found 

that the adaptive threshold did not work well for all participants.  For two participants the online 

predictions were constantly sent within 1 second after trial start, hence it was decided to end 

the experiment. Histograms were made offline to check the timing of the first predictions in 

each trial. Figure 7 shows examples of two cases: subject 1, where the online classification 

worked quite well, but not a lot of predictions were made and subject 6, where there were a lot 

of predictions, but these were often made early. 

  These histograms show that the online classification did not work as expected. Either 

predictions were not made often (participant 1) or the false positive rate was much higher than 

expected (participant 3, 4 and 6). The clear trade-off between false positive predictions and true 

positive predictions is visual in these plots. To achieve a low false positive rate, we must have 

a low true positive rate, i.e. not many predictions. To achieve a reasonable true positive rate, 

we get many false predictions. Finding a good trade-off between the two is challenging. 
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Figure 6. Grand averages over all subjects. Stage 1 included 461 intended vs. 129 unintended 

trials. Stage 2 included 169 intended vs. 23 unintended trials. A shows the grand averages of 

the ERD of channel C3 for intended data vs unintended data. B. shows the same as A but now 

for stage 2. C. shows the grand averages for the RP in both stages. The left plot shows the 

intended (blue line) vs. unintended (red line) in stage 1, whereas the right plot shows this for 

stage 2. The color bar in A and B shows the relative power change compared to the baseline (-

4 to -3 seconds).  
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Figure 7. histogram of online predictions for participant 1 and 6. For each trial we looked when 

the first prediction was made relative to trial start. This was done in windows of 100 

milliseconds. A prediction was always followed by an action. The histograms show all 

predictions made from trial start (0) to the maximum action onset in seconds for the participant.  

 

 

5. Discussion 

 
We conducted three experiments to investigate if we can predict movement intent in real-time 

based on the RP and/or ERD and to find out how the subjective reports of intending to act relate 

to these signals. We hypothesized we could predict movement intent in real-time based on the 

ongoing neural preparatory signals. Furthermore, we expected these signals to be significantly 

different prior to an electrically stimulated movement that was reported to be unintended 

compared to one that was reported as intended. 

               With our first experiment we successfully replicated Bai et al. (2011) offline. We 

showed we could predict movement intent offline before its onset and that movement intent 

was detected earlier based on the ERD (-0.7±0.17 s) than the RP (-0.43±0.84 s). The prediction 

onsets we found were in line with the prediction onsets that Bai et al. found (-0.62±0.25 s). 

Moreover, predictions based on the ERD were more consistent than predictions based the RP 

over all subjects (as shown by the standard deviations). Since the ERD predictions were made 

earlier and more consistently than the RP predictions, the ERD seems to be a better and more 

reliable feature for online prediction of movement intent than the RP.   

  In the second experiment we showed FES stimulation mostly influences the data on and 

after movement onset. In this experiment, we asked participants to just wait until the FES device 

made a forced movement. When analyzing the data for ‘FES trials’, no ERD or RP signals were 
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found before movement onset (see figure 1), providing more evidence the RP and ERD signals 

are not seen before the onset of involuntary movements (Müller et al., 2003; Shibasaki & 

Hallett, 2006).  

Before interpreting the results of the third experiment, it is important to note that the 

sample size of 7 participants for this experiment was very low. Even fewer participants were 

tested in the second stage of the experiment. Furthermore, there were not enough trials in all 

conditions to make good comparisons for each subject separately, as can be seen in table 3 in 

section 4.4.2. As a consequence, it was chosen to perform a cluster-based permutation test on 

the grand averages over all participants. No significant differences were found between 

electrically stimulated movements that were reported as intended compared to ones that were 

reported as unintended. This was the same for the RP and ERD and both experiment stages. 

Here, it is important to mention that there were many fewer unintended than intended trials (e.g. 

Stage 1:  129 unintended trials vs. 461 intended trials over all subjects and for stage 2: 23 

unintended trials vs. 129 intended trials over all subjects). Few participants and few trials make 

it difficult to interpret our results as this leads to a low statistical power (Button et al., 2013). 

Moreover, the online classification did not work as expected and predictions were often made 

more than 2 seconds before movement onset, thus resulting in a lot of false predictions.    

  For these reasons, we could not answer one of our main questions of whether a person 

was aware of their intention to act when ERD or RP activity was detected in the brain. In the 

next section possible explanations and solutions will be provided.   

  For 5 out of 7 participants random-triggered trials were reported as intended much less 

often than expected. Looking at the questionnaire, 3 out of those 5 reported to only feel in 

control of their own movements, not of the FES-initiated movements. This suggests random-

triggered movements were easily distinguishable from the EMG-triggered ones and that these 

participants were not aware of their intention to act when the random-triggers happened. One 

of the 5 participants reported only 2.4% of random-triggered trials as intended in stage 1. This 

participant reported to not feel free to make a movement whenever he/she wanted to and did 

not feel in control of their movement at all, confirming the low percentage of intended random 

trials.  

Even though the random-triggered trials were reported as intended much less often than 

expected, there were a lot less unintended reports for each participant compared to intended 

reports. This could be explained by having only a small amount of random-triggered trials per 

subject (as can be seen in table 3). Random triggers were only sent when they occurred before 

muscle onset was detected. Thus, if the subject consistently moved earlier than expected few 
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random triggers were sent. A possible solution to ensure that more randomly-triggered 

movements were experienced would be to weight the random-trigger distribution. By making 

the triggers in the period before the mean reaction time weigh more heavily, more random 

triggers could be made before the participants moved themselves. Moreover, the brain-triggered 

trials in stage 2 were not reported as intended close to 100% of the time. The classifier made a 

lot of false predictions. This means the FES triggers that were based on the brain were often 

made very early. For these false predictions, no intended reports were expected.  

The high false positive rate was one of the reasons our classification did not work well. 

In order to say something about the relation between the RP and/or ERD and the subjective 

experience, we need enough true positives, i.e. trials that happen in the participant’s ‘intention 

awareness’ window.  However, since there is a trade-off between the true and false positive 

rate, this results in either many false predictions of movement when there was no movement 

intention, or in very few true predictions when there was a movement intention. Finding a good 

trade-off between the two is difficult. 

 During the development of this experiment we identified trial-time as a significant 

potential confound in this experiment. Even when participants were asked to be spontaneous, 

they tended to move at particular points in time after trial start. Since we wanted to identify 

brain signatures associated with movement, this is a potential problem as it is difficult to 

disentangle movement-related brain signals from brain signals associated with time since trial 

start. For instance, if a participant always moves at 8s after movement start, and they generate 

two main brain signals, one movement related signal in the 2 seconds before the movement, 

and one trial-related signal which only occurs 6 seconds after trial start, then with this 

experimental design we cannot separate these two signals.   

  Due to the random triggers used in our experiment, we expect an anticipation signal to 

build up over time, from trial start as the participant anticipates the upcoming stimulation.  A 

well-known signal that is associated with anticipation is the contingent negative variation 

(CNV). The CNV is a slow negative cortical potential that can be observed during response 

anticipation over the motor cortex and typically depends on the contingency of two successive 

stimuli (Gangadhar, Chavarriaga, & Millan, 2009; Tecce, 1972; Walter, Cooper, Aldridge, 

McCallum, & Winter, 1964). Since participants knew trial start was always followed by FES 

stimulation, there was likely a buildup of the CNV. Thus, we indeed have a potential confound 

of brain signals associated with trial-time (via the CNV) and those associated with movement 

intention. This confound is an issue when training a classifier to identify movement intention 

from non-movement intention. This means the classifier can ‘cheat’ by using the CNV to make 
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movement intention predictions indirectly based on time since trial start, instead of using 

movement related brain signals. There are a few ways to address this confound issue. When 

training the classifier, we need to weaken the connection between trial-time and the labelling 

of the data as ‘movement’ or ‘non-movement’ data. One way to do this is to broaden the range 

of data which is labeled as ‘movement’ or ‘non-movement’.  For instance, if we label all data 

from 1500 milliseconds before movement onset until the movement as ‘movement’ and all data 

from trial start until 3500 milliseconds before the movement as ‘non-movement’, the classifier 

is less able to ‘cheat’ as it must find a brain signal which generalizes over a range of trial-times.   

  Furthermore, inducing more variation in movement time would help a lot, as then, for 

example, 4 seconds after trial start would sometimes be a classified as a ‘movement’ and 

sometimes as a ‘non-movement’, again forcing the classifier to identify a brain signal that’s not 

time-based to identify movement intentions.  

  Moreover, it would be good to include trials with no self-initiated movement, but only 

movement by FES, so that we have a measure of expectancy alone without an intention process 

in there. These trials can then also be used to train the classifier by using them as a negative 

‘non-movement’ class. Finally, it would be good to ensure enough time for the data to return to 

baseline, as otherwise the classifier could respond to other events (e.g. visual feedback). This 

could for instance be done, by making the classifier wait 1 second after trial start before listening 

to data.  

We suspect a lot of experiments that investigate the intention to act deal with this 

anticipation build up over time. In future research we need take this into account when 

designing our experiments. By building in trials where there is anticipation but no intention 

process and by forcing the classifier to identify movement-related brain signals we think this 

issue can be addressed. In the future, we would like to implement these possible solutions, use 

a bigger sample size and provide a more convincing argument to whether or not a person is 

aware of their intention act when the neural preparatory signals are predicted in the brain. We 

believe that, if we implement these solutions we will be able to control the false positive rate, 

and that we can achieve similar results as Bai et al. (2011), Lew et al. (2012) and Schneider et 

al. (2013) in real-time. With these changes, we hope we can contribute to finding out how a 

person’s subjective experience relates to the neural preparatory activity.  

 

 

 



28 

 

References 

 

Bai, O., Lin, P., Vorbach, S., Li, J., Furlani, S., & Hallett, M. (2007). Exploration of 

computational methods for classification of movement intention during human voluntary 

movement from single trial EEG. Clinical Neurophysiology, 118(12), 2637–2655. 

Bai, O., Mari, Z., Vorbach, S., & Hallett, M. (2005). Asymmetric spatiotemporal patterns of 

event-related desynchronization preceding voluntary sequential finger movements: a 

high-resolution EEG study. Clinical Neurophysiology, 116(5), 1213–1221.  

Bai, O., Rathi, V., Lin, P., Huang, D., Battapady, H., Fei, D. Y., … Hallett, M. (2011). 

Prediction of human voluntary movement before it occurs. Clinical Neurophysiology, 

122(2), 364–372. 

 Billinger, M., Daly, I., Kaiser, V., Jin, J., Allison, B. Z., Müller-Putz, G. R., & Brunner, C. 

(2012). Is It Significant? Guidelines for Reporting BCI Performance (pp. 333–354).  

Blankertz, B., Dornhege, G., Krauledat, M., Kunzmann, V., Losch, F., Curio, G., & Müller, 

K.-R. (2006). The Berlin Brain-Computer Interface: Machine learning based detection of 

user specific brain states. Computer, 12(6), 581–607.  

Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S. J., & 

Munafò, M. R. (2013). Power failure: why small sample size undermines the reliability 

of neuroscience. Nature Reviews Neuroscience, 14(5), 365–376.  

Fried, I., Mukamel, R., & Kreiman, G. (2011). Internally Generated Preactivation of Single 

Neurons in Human Medial Frontal Cortex Predicts Volition. Neuron, 69(3), 548–562.  

Gangadhar, G., Chavarriaga, R., & Millan, J. del R. (2009). Anticipation based Brain-

Computer Interfacing (aBCI). In 2009 4th International IEEE/EMBS Conference on 

Neural Engineering, 459–462.  

Gentsch, A., & Synofzik, M. (2014). Affective coding: the emotional dimension of agency. 

Frontiers in Human Neuroscience, 8, 608.  

Greenberg, J., Pyszczynski, T., & Solomon, S. (1982). The self-serving attributional bias: 

Beyond self-presentation. Journal of Experimental Social Psychology, 18(1), 56–67.  

Haggard, P. (2008). Human volition: towards a neuroscience of will. Nature Reviews. 

Neuroscience, 9(12), 934–46. 

Hjorth, B. (1975). An on-line transformation of EEG scalp potentials into orthogonal source 

derivations. Electroencephalography and Clinical Neurophysiology, 39(5), 526–30.  

Klem, G. H., Lüders, H. O., Jasper, H. H., & Elger, C. (1999). The ten-twenty electrode 



29 

 

system of the International Federation. The International Federation of Clinical 

Neurophysiology. Electroencephalography and Clinical Neurophysiology. Supplement, 

52, 3–6.  

Kornhuber, H. H., & Deecke, L. (1965). Changes in the brain potential in voluntary 

movements and passive movements in man: Readiness potential and reafferent 

potentials. Pflugers Archiv Fur Die Gesamte Physiologie Des Menschen Und Der Tiere, 

284, 1–17. 

Lew, E., Chavarriaga, R., Silvoni, S., & Millán, J. del R. (2012). Detection of self-paced 

reaching movement intention from EEG signals. Frontiers in Neuroengineering, 5 (13).  

Libet, B., Gleason, C. a., Wright, E. W., & Pearl, D. K. (1983). Time of Conscious Intention 

To Act in Relation To Onset of Cerebral Activity (Readiness-Potential). Brain, 106(3), 

623–642. 

Minohara, R., Wen, W., Hamasaki, S., Maeda, T., & Kato, M. (2016). Strength of Intentional 

Effort Enhances the Sense of Agency. Frontiers in Psychology, 7, 1–5.  

Müller, G. R., Neuper, C., Rupp, R., Keinrath, C., Gerner, H. J., & Pfurtscheller, G. (2003). 

Event-related beta EEG changes during wrist movements induced by functional 

electrical stimulation of forearm muscles in man. Neuroscience Letters, 340(2), 143–147.  

Muralidharan, A., Chae, J., & Taylor, D. M. (2011). Extracting attempted hand movements 

from eegs in people with complete hand paralysis following stroke. Frontiers in 

Neuroscience, 5.  

Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: Open Source 

Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. 

Computational Intelligence and Neuroscience, 1–9.  

Peirce, J. W. (2007). PsychoPy—Psychophysics software in Python. Journal of Neuroscience 

Methods, 162(1), 8–13. 

Pfurtscheller, G. (1988). Mapping of event-related desynchronization and type of derivation. 

Electroencephalography and Clinical Neurophysiology, 70(2), 190–3.  

Pfurtscheller, G., & Aranibar, A. (1979). Evaluation of event-related desynchronization 

(ERD) preceding and following voluntary self-paced movement. 

Electroencephalography and Clinical Neurophysiology, 46(2), 138–146.  

Popović, D. B. (2014). Advances in functional electrical stimulation (FES). Journal of 

Electromyography and Kinesiology, 24(6), 795–802.  

Qiu, S., Yi, W., Xu, J., Qi, H., Du, J., Wang, C., … Ming, D. (2016). Event-Related Beta 

EEG Changes During Active, Passive Movement and Functional Electrical Stimulation 



30 

 

of the Lower Limb. IEEE Transactions on Neural Systems and Rehabilitation 

Engineering, 24(2), 283–290.  

Schneider, L., Houdayer, E., Bai, O., & Hallett, M. (2013a). What We Think before a 

Voluntary Movement. Journal of Cognitive Neuroscience, 25(6), 822–829.  

Schneider, L., Houdayer, E., Bai, O., & Hallett, M. (2013b). What we think before a voluntary 

movement. Journal of Cognitive Neuroscience, 25(6), 822–9.  

Sellers, E. W., & Donchin, E. (2006). A P300-based brain-computer interface: Initial tests by 

ALS patients. Clinical Neurophysiology, 117(3), 538–548.  

Shibasaki, H. (2012). Cortical activities associated with voluntary movements and involuntary 

movements. Clinical Neurophysiology. 

Shibasaki, H., & Hallett, M. (2006). What is the Bereitschaftspotential? Clinical 

Neurophysiology.  

Smith, S. W. (1997). The scientist and engineer’s guide to digital signal processing. 

California Technical Pub. 

Soekadar, S. R., Birbaumer, N., Slutzky, M. W., & Cohen, L. G. (2015). Brain–machine 

interfaces in neurorehabilitation of stroke. Neurobiology of Disease, 83, 172–179.  

Tecce, J. J. (1972). Contingent negative variation (CNV) and psychological processes in man. 

Psychological Bulletin, 77(2), 73–108. 

van Gerven, M., Farquhar, J., Schaefer, R., Vlek, R., Geuze, J., Nijholt, A., … Desain, P. 

(2009). The brain-computer interface cycle. Journal of Neural Engineering, 6(4), 41001.  

Verbaarschot, C., Farquhar, J., & Haselager, P. (2015). Lost in time...The search for intentions 

and Readiness Potentials. Consciousness and Cognition, 33, 300–315. 

Verbaarschot, C., Haselager, P., & Farquhar, J. (2016). Detecting traces of consciousness in 

the process of intending to act. Experimental Brain Research, 234(7), 1945–1956.  

Walter, W. G., Cooper, R., Aldridge, V. J., McCallum, W. C., & Winter, A. L. (1964). 

Contingent negative variation: An electric sign of sensorimotor association and 

expectancy in the human brain. Nature, 203, 380–384. 

Wilson, E. B. (1927). Probable Inference, the Law of Succession, and Statistical Inference. 

Journal of the American Statistical Association, 22(158), 209.  

Wolpaw, J. R., & Wolpaw, E. W. (2012). Brain-computer interfaces : principles and practice. 

Oxford University Press. 

 

 

 


