s

ELSEVIER

Coacervates as models of membraneless organelles
N. Amy Yewdall®, Alain A. M. André®, Tiemei Lu and

Evan Spruijt

Abstract

Coacervates are condensed liquid-like droplets, usually
formed with oppositely charged polymeric molecules. They
have been studied extensively in colloid and interface science
for their remarkable material properties. The liquid—liquid
phase separation underlying coacervate formation also plays
an important role in the formation of various membraneless
organelles (MLOs) that are found in many living cells. There-
fore, there is an increasing interest to use well-characterized
coacervates as in vitro models that mimic specific aspects of
MLOs. Here, we review five aspects — physical and chemical
properties, hierarchical organization, uptake selectivity, for-
mation dynamics, and maturation — that are of particular in-
terest and discuss how useful coacervates are to better
understand these aspects of MLOs.
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Introduction

Cells contain a vast number of biomolecular reactions
and processes that must be tightly regulated and orga-
nized for survival. Compartmentalization is a powerful
strategy to organize and control these processes. By
selectively localizing biomolecules in separated com-
partments, reactions can be temporarily inhibited or
jump-started [1,2], new assemblies can be formed, and
noise can be suppressed [3]. In recent years, liquid—
liquid phase separation has emerged as a prevalent
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mechanism to realize the formation of a particular class
of dynamic compartments in cells, called membraneless
organelles (MLOs) [2]. MLOs are condensed bodies,
usually in a liquid (droplet) state, containing various
intrinsically disordered proteins (IDPs) often found
together with nucleic acids. However, despite the
widespread occurrence of MLOs, many aspects
regarding their formation dynamics, aging, and impact
on cellular processes remain poorly understood
(Figure 1). In order to understand the physicochemical
principles underlying MLO functioning, detailed
studies are needed in both living cells and model sys-
tems, to examine the characteristics and behavior of
MLOs iz vivo, and to elucidate the underlying molecular
interactions and assembly processes responsible for
those properties. In this review, we evaluate complex
coacervates as models for understanding MLOs.

Complex coacervates have shown great potential as
models for compartments and materials formed by
liquid—liquid phase separation (also termed conden-
sates) [1,4,5]. Coacervation is a term used mostly in
colloid science and chemistry to describe the conden-
sation of polymeric molecules into a liquid, hydrated
state. The phenomenon was first observed in mixed
solutions of oppositely charged biopolymers and in solu-
tions of isoelectric proteins with (poly)phenols [6,7].
"This process is called complex coacervation to highlight the
complexation of oppositely charged molecules that
drives the condensation, as opposed to simple coacerva-
tion, which involves a single self-associating molecule
(Figure 1). The number of examples of coacervation has
grown significantly in the past decade, and now includes
peptides, nucleic acids, lipids, small molecules (com-
bined with longer biopolymers), and many synthetic
polymers [1,8,9]. The vast majority of examples are
unambiguous complex coacervates, but the distinction
between simple and complex coacervates is not always
as simple. Some ampholytic polymers, for instance, can
self-associate to form auro complex coacervates (Figure 1),
whereas phase-separated droplets of certain aromatic-
rich disordered proteins can take up significant
amounts of RNA by specific binding, resulting in mixed
condensates with charged components [2]. In this review,
we will use coacervates to describe all these condensed
droplets formed by synthetic (bio)molecules, whether
driven by charge complexation or other (self-)associ-
ating interactions. We have chosen to omit the  vitro
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Figure 1
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Improving understanding of membraneless organelles by mimicking their characteristic properties and behavior using coacervates. Numerous MLOs
have been identified in eukaryotic cells, and they are widely believed to play a role in a variety of functions, as highlighted in (a). For most in vitro studies,
specific aspects of MLOs are generally selected to be mimicked (b). To study these aspects in minimal models, simple and complex coacervates
consisting of different types of (mostly charged) macromolecules can be used (c).

reconstituted MLOs formed by purified proteins that
were identified as drivers of MLOs formation # vivo
from our comparison. These purified proteins can often
form droplets 7z vitro in the same way as synthetic co-
acervates are formed. However, our aim here is to
discuss how well ‘simple’ coacervate models, made of
synthetic biomolecules, can mimic the properties,
behavior, and functions of MLOs. Nevertheless, the
following sections will show that the distinction be-
tween coacervates and (m vitro) MLOs is not always
sharp and gradually fading, as more aspects of ML.Os are
being mimicked by new generations of coacervates with
increasing complexity.

In the past few years, coacervate research has seen a
tremendous development, in part inspired by the rapid
advances in the field of MLLOs and the need for model
systems that are simple enough to allow systematic and
quantitative investigation of MLO characteristics. Since
coacervates and most MLOs are both formed through
liquid—liquid phase separation, driven by the same
attractive interactions, coacervates have a clear potential
to mimic material properties, hierarchical organization,
and sequestration of MLOs. However, most contem-
porary coacervate models lack the chemical and
compositional richness of MLOs, which explains why

there remains a gap between coacervates in MLOs in
terms of selectivity, regulation, and metastability. By
highlighting ways in which coacervates mimic MLOs,
illustrated by notable recent developments in the field,
this review aims to bridge the gap between these two
types of condensates. We have organized the discussion
in order of decreasing ability of coacervates to mimic the
characteristics of MLOs: from (i) the typical (equilib-
rium) material properties of coacervates and MLOs,
which can often be mimicked quantitatively, to (ii) hi-
erarchical organization into subcompartments, (iii)
selectivity of biomolecular sequestration and the
ensuing potential for catalysis, (iv) dynamics of forma-
tion, and ultimately, (v) metastability and aging. In
making the comparison, we identify some intrinsic
limitations of coacervates and the current gaps between
coacervates and MLOs, which will hopefully inspire
future research.

Physical and chemical properties

From a physicochemical point of view, one of the most
relevant aspects to mimic of MLOs are the material
properties (Figure 2), which affect not only the
deformability and wetting behavior but also the uptake
of client molecules by partitioning and catalytic prop-
erties. As coacervates and MLOs are both typically
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Figure 2
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An overview of some relevant physicochemical properties of MLOs versus coacervates, highlighting the parameters: time of coalescence (), relative
permittivity (g,), interfacial tension (), viscosity (1), and ‘density’ (p). The similarity in permeability (indicated as mesh) and the higher charge screening of
coacervates compared to MLOs (greater number of grey spheres representing ion pairs) is also indicated. This is in contrast to the more variable
interaction mechanisms (- T, cation- 7, and charge—charge) that occur within the more chemically complex MLOs (left box).

formed by phase separation of macromolecules in solu-
tion, driven by the same types of underlying in-
teractions, it is not surprising that many material
properties are very similar, or at least have a similar
range. Coacervates are usually dense viscoelastic liquids,
extending to gels and solids as their hydration is
decreased [10,11]. Depending on composition and salt
concentration, complex coacervates can exhibit an
elastic response to deformation at short timescales
(usually ms-s) [12], but they ultimately flow and fuse as
liquids. Their viscosity can vary widely and depends on
the chemical structure and length of the components
and can be tuned by the salt concentration or temper-
ature. Typically, coacervates have a viscosity of 0.1—
100 Pae-s, but much higher viscosities have been
reported.

MLOs have similar material properties, although they
are not a uniform class. Significant efforts have been
made to elucidate the physical state (liquid, gel, glass)
specific MLOs are in. For many MLOs, videos showing
fusion, flow, dripping, or wetting [13] confirmed that
they behave like liquid droplets. The viscosity of liquid
MLOs is usually estimated from fluorescence recovery
after photobleaching (FRAP) measurements, and
typical values are close to 1—50 Pa«s [14,15], well within
the range available to coacervates. However, there are
various limitations and challenges in using FRAP to
quantify viscosity and other properties of MLOs, as
highlighted recently [16,17], and recovery should not be
taken as proof that liquid—liquid phase separation un-
derlies their formation. Alternative approaches (such as
microrheology or fluorescence correlation spectroscopy)
should also be considered to derive these parameters,

but also these must be used with caution [15]. Finally,
not all MLOs display complete fusion: some keep an
irregular shape after merging and show incomplete re-
covery after photobleaching. These MLOs are better
described as soft gels [13], similar to complex co-
acervates at low salt concentrations. Recent experi-
ments suggest that MLOs can age and undergo a
transformation from a liquid state to a more gel-like or
even solid aggregate state, which we will discuss below.

Besides the physical state, the chemical composition of
MLOs has an important influence on the role of MLOs
in the cell. From a coarse-grained point of view, co-
acervates and MLOs have very similar overall composi-
tions. Estimates of the water content of coacervates vary
from 40% for hydrophobic polyelectrolytes [18] to 60—
90% for hydrophilic ones [19,20], while the concentra-
tion of organic material (e.g. peptides, nucleic acids) is
estimated to be around 300—500 mg/mL [19,21].
Similar estimates for MLLOs show far greater variation,
partly because the quantification of such high concen-
trations of protein in living cells, for instance, by
fluorescence-based methods, is far from trivial [15,22].
In the case of Ddx4, local concentrations of 200—
300 mg/ml. have been measured by NMR on m vitro
reconstituted droplets [23]. It is interesting to note that
such protein concentrations are far beyond the solubility
limit for most proteins [24]. Therefore, the condensed
phase could be regarded as a way for cells to store certain
proteins in large amounts, and a buffering function of
MLOs has been suggested [3].

Derived from this overall composition, the relative
permittivity (which is a measure of the local
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polarizability of the medium) inside coacervates and
MLOs has been estimated to be significantly lower than
water. For complex coacervates, this has been expressed
as an effective dielectric constant of about 40—50 [25],
compared to 45 for Ddx4-based MLOs [26]. This
lowered permittivity has significant implications for
both partitioning and the intermolecular interactions
between molecules inside the dense phase. Most
organic client molecules, including peptides and pro-
teins, are less polarizable than water and tend to be
concentrated inside coacervates by partitioning [1], and
the same is expected for MLOs on this basis. The lower
relative permittivity also means that some intermolec-
ular interactions, such as base stacking interactions, are
weaker than in pure water, whereas others, such as ion
pairing, are stronger. This alteration of intermolecular
interaction strengths can have far-reaching conse-
quences. As an example, double-stranded DNA
(dsDNA) that is stable in an aqueous buffer can spon-
taneously dehybridize inside a Ddx4 droplet [27]. The
local environment was found to have an equivalent
effect as a 4 M GuHCI solution. The same effect was
recently also observed in complex coacervates of short
peptides, which suggests that it is caused by the effec-
tive overall composition and permittivity [28]. Similar
effects of altered intermolecular interaction strengths
are expected for protein—protein and protein—RNA
interactions, which rely on a combination of hydropho-
bic effects, TT-TT interactions, cation-Tt interactions, ion
pairing, and hydrogen bonding.

From a more detailed, chemical point of view, the
composition of coacervates and MLOs differs signifi-
cantly. Most complex coacervates are made of highly
charged synthetic polymers, peptides, or nucleic acids,
whereas the proteins involved in MLO formation have at
most 10—20% of charged residues. The remaining 80—
90% of amino acids are predominantly polar neutral and
aromatic residues, including Gly, Ser, Thr, Asn, Gln, Phe,
and Tyr [29,30]. As a consequence, the local charge
concentration in complex coacervates is far greater than
in most MLOs, which results in a stronger charge
screening, although the effect may be negligible in
practice, as the screening length is already shorter than
1 nm in physiological conditions. Interestingly, the dif-
ference in the amino acid composition does not lead to a
difference in permittivity, as discussed above, but it
results in easier nonspecific RNA uptake based on
charge neutralization in complex coacervates on average

[21].

Finally, coacervates have been known for their low
interfacial tension, which is not only relevant for their
deformability but also for the rate with which they
coarsen through Ostwald ripening, and their tendency to
wet other interfaces [31] or form multiphase assemblies
(see next section). The interfacial tension is related to
the strength of the interactions that drive phase

separation, which is often set by the salt concentration,
and it depends on the length of the components making
up the coacervate. Estimates of the interfacial tension of
complex coacervates are between 10 and 500 pUN/m
[32]. For MLOs, the interfacial tension has not been
quantified directly # vivo, but estimates from m vitro
reconstituted protein droplets point at much lower
interfacial tensions of around 0.4—1.0 pUN/m [33,34].
However, we question the relevance of comparison be-
tween absolute values of the interfacial tension deter-
mined  vitro, as the liquid—liquid interface of MLOs
i vivo may be significantly altered by the presence of
large amounts of proteins and other clients in the sur-
rounding outer phase. These proteins can directly alter
the interfacial tension by changing the effective solvent
properties and indirectly affect the stability and coars-
ening of MLOs via interfacial adsorption [35] and
depletion [36].

Hierarchical organization

Unlike the first examples of complex coacervates, most
MLOs are composed of many coexisting bio-
macromolecules. In concert with their more chemically
complex composition, a hierarchical organization into
subcompartments has been observed in several MLLOs
(possible arrangements are shown schematically in
Figure 3a). The nucleolus is the most prominent
example of a cellular condensate organized into distinct
subcompartments (Figure 3a—b), and its hierarchical
organization has been linked to its functional role in
ribosome biogenesis [37]. The nucleolus in mammalian
cells consists of three coexisting phase-separated do-
mains: a fibrillar center, embedded in a dense fibrillar
component, which is in turn located inside the granular
component. In an 7 vitro reconstituted model system or
upon disruption of actin polymerization # vivo, these
three domains are all liquid-like but with differing
properties that underlie their immiscibility [33]. The
phase-separated nature of the domains is essential for
the shuttling of locally produced rRNAs and other client
molecules between the different subcompartments
(phases) without a physical barrier, and thus, for ribo-
some biogenesis. The same is true for other MLLOs, such
as stress granules, paraspeckles, and Cajal bodies
(Figure 3d—e), although a consensus about the physical
state of the internal domains has not been reached in all
cases [38].

Inspired by the observations of higher-order organiza-
tion in certain MLOs, there has been a significant in-
terest in recent years to develop multiphase coacervates
with a similar hierarchical organization (Figure 3g—I).
The underlying reasoning is that if hierarchical organi-
zation is purely the result of physical—chemical in-
teractions leading to phase separation in MLOs, then
model coacervates should be able to display the same
organization provided that the intermolecular
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Hierarchical organization in MLOs and coacervates. A schematic illustration of three experimentally observed hierarchical arrangements highlighting the
relative magnitude of the interfacial tension (), relative permittivity (g;), and density (p) (a). The parameter a. is a measure for the relative size of the
domains, as defined in Ref. [39]. Various examples of hierarchical organization in MLOs: the nucleolus (b-c), paraspeckles (d), Cajal bodies (e). By
contrast, many MLOs also remain separated (f). Efforts to mimic these structures in coacervates have used a variety of electrolytes. These examples
include ssDNA(red)/PLys(Me)s core coacervates in a ssDNA/GFP-K;» (green) outer coacervate phase (g); nested multiphase organization in the
2xRRASL peptide (green)/Prot (red)/pGlu (blue) coacervate system (h), and the pLys (green)/Q-dextran (orange)/ss-oligo system (i); nested triple co-
acervates with an ATP/PAH inner core, surrounded by a PSPMA/PDDA shell in a PAA/PDDA outer coacervate phase (j); multiphase coacervates with
double cores, some appearing partially wetted, observed with PAH, Prot, 2xRRASL, PAA, pGlu, and polyU (k); and partial wetting and lens-shaped
domains observed in a pLys (red)/pAsp (green)/polyU coacervate system (I). Nonstandard abbreviations include protamine sulfate (Prot), poly-uridylic
acid (polyU), poly-L-glutamic acid (pGlu). Images were taken with permission from Refs. [13,26,33,38—41].

interactions are well tuned. Once established, coacer-
vate model systems could help to elucidate the princi-
ples of multiphase separation and the mutual
arrangement of the phases.

Multiple groups have now shown that multicomponent
mixtures of charged polymers, nucleic acids, or proteins
can undergo multiphase separation and form coacervates
with a hierarchical organization [39—43]. Both mixing all
components directly, and combining macromolecule
pairs into coacervates followed by mixing of the co-
acervates, yields the same hierarchical organization, and
up to three coexisting coacervates have been found
[39,40]. Most examples of multiphase coacervates show

complete wetting [39—41,43], which is explained by the
low interfacial tension between two coexisting co-
acervates caused by the chemical similarity between
different coacervates (Figure 3a). However, partial
wetting has been found in the case of polyallylamine/
polyacrylic acid (PAH/PAA) and protamine/poly-
glutamate double coacervates [40] and in the case of a
prion-like domain from FUS and arginine-rich peptide/
RNA complex coacervates [42]. The coexisting co-
acervates are apparently very distinct in these systems,
resulting in a higher interfacial tension.

The phenomenon of multiphase coacervate formation is
generic and has been realized with many different
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combinations of synthetic polymers, peptides, and
nucleic acids so far. It has been argued that the critical
salt concentration of the coacervate systems can be used
as a means to predict the possibility of multiphase
coacervate formation [39]. In general, the most hydro-
phobic coacervate is found at the core of the multiphase
assembly, but other interactions can also be found at the
core, such as in polyA:polyC condensates [44]. It is
interesting to note that the arrangement order of co-
acervates may depend on their respective size if the
interfacial tension is sufficiently low [39].

Moreau et al. have shown that an internal liquid domain
can also be formed inside a coacervate by segregative
phase separation of a small molecule, tetracthylene
glycol, inside a complex coacervate of poly(-
diallyldimethylammonium chloride) (PDDA) and ATP
[45]. Alternatively, internal dilute-phase domains (vac-
uoles) can be created by perturbation of complex co-
acervates in an electric field [46]. The inverse
arrangement, with complex coacervates droplets form-
ing an inner core phase inside a dextran-rich droplet
[47], shows that segregation plays an important role in
the hierarchical organization of condensates, a situation
that may be similar to that inside the cell. Lu and Spruijt
have pointed out that the formation of multiphase
complex coacervates from mixtures of oppositely
charged macromolecules is, in essence, also caused by
segregation between like-charged components of the
mixture, causing them to end up in distinct condensed
phases [39]. In light of this, the formation of multiple
domains in MLOs inside cells likely originates from a
similar mechanism of segregation between charged
components inside the MLOs. Classical polymer theory
predicts that for long macromolecules, a small difference
in solvent affinity suffices to induce their phase
separation.

These findings in coacervates suggest that basic
principles of physical chemistry and phase separation
can explain the occurrence of hierarchically organized
MLOs in living cells. At the same time, cells also
contain many MLOs that remain clearly separated and
that do not adopt a hierarchical organization,
contrasting the notion that multiphase separation is a
generic phenomenon in complex coacervates that
occurs in a wide range of systems (Figure 3f). Fully
separated but coexisting complex coacervates without
stabilizing agents have not been observed yet. This
raises the question if the separated nature of some
cellular MLOs is the result of their unfavorable in-
teractions, within the framework of interfacial tensions
discussed above [37,39], or if it is caused by another
factor 7z vivo that is not mimicked by coacervates, such
as an active turnover of condensates [48] or a stabi-
lizing layer in the form of adsorbed proteins [35]. In
the latter case, synthetic analogs in the form of block
copolymers [49] or modified proteins [50] could be

used to mimic this situation # vitro by stabilizing
complex coacervates.

Towards selective uptake: partitioning and
enzymatic catalysis

In addition to hierarchical organization, MLO and
coacervate physical properties also dictate which client
molecules are partitioned into the dense phase. This
exclusion or preferential uptake has a direct conse-
quence on downstream biochemical reactions that occur
in this unusual microenvironment. The degree of
partitioning is set by the molar Gibbs free energy dif-
ference of the client molecule between two phases and
is influenced by a combination of different driving forces
(e.g. polarity, electrostatic, hydrogen bonding capacity;,
porosity/mesh, the binding capacity of components)
outlined in our recent review [1]. In most cases, mul-
tiple driving forces control the partitioning of molecules,
especially those of higher complexity, into the dense
phase.

Due to the often charge-driven nature of coacervation,
electrostatic interactions play an important role in
determining the partitioning propensity of client mol-
ecules into the dense coacervate phase. Here the release
of bound counter ions upon complexation is entropically
favored and drives the process for a variety of client
molecules. Inspired by MLOs that sequester nucleic
acids and charged IDPs as client molecules, numerous,
usually positively charged coacervate models have suc-
cessfully harnessed electrostatically driven partitioning
for charged client molecules [51,52], as well as RNA
[21,28,53,54] and small single-stranded DNA (ssDNA)
[55]. Additionally, electrostatic interactions can be
enhanced to favor partitioning of client proteins into the
dense phase, for example, by modifying their surface
charge via succinylation of lysine residues [56,57] or
engineering the protein sequence to alter the p/ of the
protein [58]. In the charge patterning of client proteins,
regular distribution of aromatic and charged residues
also plays an important role in favorable partitioning into
condensates [22,59,60]. These examples of partitioning
into coacervates are only minimally selective; that is,
clients with the most favorable electrostatic interactions
are selected. In contrast, MLOs exhibit a more subtle
regulation, in which client proteins can have post-
translational modifications, such as phosphorylation, to
affect partitioning. Moreover, partitioning into MLOs
often involves a combination of driving forces that re-
sults in finely tuned selectivity between client mole-
cules of similar chemical composition, such as RNAs
with different tertiary structures [61,62].

Multiple driving forces, and therefore selectivity, can be
achieved through coacervate compositions that are more
chemically and physically intricate. For instance, the
mesh size of the dense phase limits the size of
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250 260

Selective partitioning of DNA and proteins. The organelles formed from the intrinsically disordered N-terminus of Ddx4 proteins excluded double-stranded
DNA but allowed single-stranded DNA to permeate the dense phase (a, top panel). The DNAs were fluorescently labeled, and the average and SD (error
bar) confocal emission intensities from inside and outside the organelles were used to quantify the partition equilibrium coefficient and its corresponding
free energy (a, bottom panel). The permeability of in vitro droplets of LAF1 proteins was probed using fluorescent dextran of different molecular weights
(from left to right): 10 kDa dextran permeates the droplets, while 70 and 155 kDa dextran molecules are excluded from the droplets. The schematic below
illustrates the void rich nature of LAF-1 protein droplets and their probe-size dependent permeability. The flexible RGG domain in LAF-1 is depicted in
blue, and the envelopes defined by the Rg of LAF-1 are shown in black-dash circles (b, bottom). In contrast, coacervates made from PDDA/PAA showed
the inclusion of native fluorescently labeled BSA protein (i), but the exclusion of denatured protein in 10 M urea (ii). This selectivity was restored when

proteins were allowed to refold when urea was diluted 10-fold (iii). The CD spectra (¢

, bottom panel) of native BSA denatured BSA-FITC in 10 M urea and

after refolding procedures. Images were taken with permission from Refs. [15,26,35].

molecules that can partition into it [15,27] (Figure 4). In
fact, the mesh size of Ddx4 coacervates result in higher
partitioning of ssDNA but not dsDNA due to the
increased nucleic rigidity and size of dsDNA [26]. Co-
acervates can display rudimentary selectivity for
retaining large clients, such as long templated RNA [54]
or DNA-complexed with supramolecular polymers [55],
whereas the smaller nucleic acid counterparts are freely
diffusible. In addition to mesh size, MLLOs also harness
the specificity of protein—protein interactions to recruit
client components to the coacervate phase, introducing
extra functionality to the dense phase [63]. This feature
can be engineered into client protein sequences where
fused protein tags or interaction domains can drive
partitioning into the dense phase [64—66]. Besides
engineering clients, the local environment around the
coacervate can be tuned to affect selectivity, such as by
altering solution pH [67], which can shift the equilib-
rium in favor of or against the partitioning of certain
protein components, where native proteins with patchy
surface charge had enhanced uptake. Finally, recent
studies on the multiphase organization in complex co-
acervates have demonstrated that the partitioning of
client molecules can be controlled into distinct com-
partments [39,40]. Multiphase organization could,
therefore, reflect another method by which cells achieve
selective partitioning. Although the partitioning of
client molecules is shaped by a combination of driving

forces, the selectivity is underpinned by the chemical
complexity of MLOs, which is a feature yet to be
matched in coacervate systems.

Selective partitioning of client molecules into the dense
phases offers control of downstream enzyme catalysis
that can impact MLO function. Synthetic MLLOs can be
used to modulate cellular activity [68], highlighting the
importance of understanding the effects of altered
enzymatic activity within and near MLOs. The dense
phase of MLOs and coacervates exert two main in-
fluences on internalized enzymes (i) the partitioning
effect of client molecules altering the local concentra-
tions and availability of substrates and reactants; and (ii)
altered enzyme conformation due to the highly charged
and crowded microenvironment, thereby altering the
energy landscape of the enzymatic reaction. It is diffi-
cult to disentangle which of these factors exert the most
impact on catalysis, as concentrations of individual
components are often not quantified, and the systematic
study of these factors is often omitted. Nonetheless,
model coacervate systems have successfully encapsu-
lated enzymes [52,69—71] and ribozymes [53,54] that
retain catalytic function. The composition and resulting
physical properties of the coacervate may impact enzy-
matic activity: some increase, decrease or have no effect
[72]. In addition to affecting internalized protein ac-
tivity, coacervate formation has been shown to arrest
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GFP production due to the sequestration of protein
machinery required for translation [73]. So far, it seems
possible to realize many outcomes in coacervates that
are also possible in MLOs, but the control or predict-
ability of such catalytic processes is still missing.

Formation dynamics and regulation

MLOs are highly dynamic structures that are formed
and disassembled within seconds to minutes # vivo. The
dynamic condensation of MLLOs occurs in most cases
through nucleation and growth [74] and is believed to
result from regulation through a combination of post-
translational modifications [75], competitive binding,
and chaperone activity of, for example, small heat shock
proteins [76]. Equivalent regulation of formation and
dissolution remains an elusive feature that is yet to be
fully mimicked in coacervates [77]. Coacervates can be
used as models to understand the process of condensa-
tion upon reversible changes in solubility. Reversible
control over coacervate models has largely been studied
via two routes: (i) by changing the environment, causing
a passive change in interactions or (ii) by utilizing
enzymatic reactions that actively change the phase
separating molecules (through covalent modifications)
and thereby control coacervation, as summarized in
Figure 5.

Figure 5

Current Opinion in Colloid & Interface Science

Passive and active control over coacervation. Top, passive control from
left to right: light can be used to control coacervation through the con-
version of a positively charged azobenzene with DNA. Increasing or
decreasing the pH can be used to neutralize either the polyanion (ATP
pH ~ 4) or polycation (pLys pH ~ 11) involved in complex coacervation.
Several examples showed that temperature could inhibit or induce
coacervation. Bottom, active control from left to right: polymerization re-
actions such as extending RNA through PNPase or T7-polymerase of a
plasmid can induce coacervation with a cationic species. Serine phos-
phorylation through post-translational modifications (PTMs) has been
used to control the coacervation of a cationic peptide. Through metabolic
enzymatic reactions, concentrations of ADP and ATP can be varied, which
controls their coacervation with pLys.

Passive control through environmental changes
Altering environmental conditions can be considered a
passive way to control coacervation as it does not require
internal regulation. Various environmental parameters —
- such as temperature, pH, salt and light — have been
used to control coacervation. For the most part, these
parameters can also affect living systems, and MLO
formation could provide a mechanism to survive these
fluctuations by temporarily storing sensitive bio-
molecules in protective compartments [78].

Heat stress is one of the triggers known to induce stress
granule formation. Phosphorylation of translation initi-
ation factors by stress-activated kinases is believed to be
a key mechanism that leads to inhibition of translation
and stress granule assembly [79,80]. However, other
mechanisms, including a direct effect of temperature on
protein solubility, cannot be ruled out. For understand-
ing whether changes in temperature could have a direct
effect on phase separation, coacervate model systems
could be used. Several examples of temperature-
sensitive coacervates have been reported, including
poly(styrene sulfonate) (PSS) and poly(diallyl dime-
thylammonium bromide) (PDADMAB) [81], lysine-rich
elastin-like polypeptide (ELLP) and hyaluronic acid [82],
and spermine and poly-U [83]. In all these cases, coac-
ervation started at temperatures above 25—30 °C, and
lower critical solution temperature (LCST) behavior
was observed. In general, these systems contain higher
levels of hydrophobic moieties (e.g. PDADMAB and
ELP) [81,82] or involve RNA with a more compact
secondary structure at low temperatures, such as polyU
[83]. On the other hand, dissolution of coacervates at
40—60 °C following upper critical solution temperature
(UCST) behavior has been reported by Kim et al. using
protamine, an arginine-rich polypeptide, with either
citrate or triphosphate [84].

Most i vitro MLLO studies consider a constant pH in a
narrow regime between pH 7—8 (physiological), while
pH changes could affect side chain charges [85]. The
pH-sensitive phase boundaries for pLys/ATP co-
acervates were shown to occur between pH 2 and pH 11
[51]. Recently, two research groups exploited these
phase transitions to control coacervation by pH within
liposomes [31,86]. Although the coacervate system is
identical, the approaches to disassembling the co-
acervates highlighted the two different phase bound-
aries: Tang and coworkers neutralized the positive
charge of plLys above pH 11 [86], while Dekker and
coworkers neutralized the negative charge of the ATP
nucleotide below pH 5 [31]. Similar pH changes are
unlikely to take place in the cytoplasm of living cells,
but the development of coacervate systems with more
diverse component chemistries such that their phase
behavior can be controlled in a narrower pH range near-
physiological values could further narrow the gap in
understanding the role of pH on MLLO dynamics.
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Finally, light is a powerful tool to obtain spatiotemporal
control over coacervation. Using an azobenzene
trimethyl-ammonium bromide (azo-TAB) molecule as
the positively charged component, Mann’s group
showed reversible light-controlled coacervation with
double-stranded DNA [87]. Light-activated PhoCl
protein cleavage has been used to induce the coacer-
vation of RGG-mScarlet proteins [88]. Where light
might go in the direction of active control over coacer-
vation, it is not the most logical approach when
mimicking MLOs. However, light can be used as a
powerful tool to induce the formation of artificial light-
responsive MLO (OptoDroplets) in living cells, as
shown by Shin and coworkers (see Section Metastability
for more details) [89]. Enzymes, on the other hand,
offer a more physiological approach to control
coacervation.

Active control by enzymes

While MLO formation induced by variations in external
conditions (passive) could serve as a mechanism to
protect biomolecules from damage, most MLOs are
actively controlled by enzymatic processes, conforma-
tional changes, or chaperones that can hold or release
phase separating proteins. Efforts to mimic such enzy-
matic control over phase separation have recently
resulted in the first enzymatically controlled co-
acervates, in which metabolic enzymes were used to
produce or hydrolyze ATP. Nakashima et al. used the
pLys/ATP coacervate system, combined with two kinase
enzymes to controlled both coacervation and dissolu-
tion, depending on whether ATP was produced or
consumed [90]. Deshpande et al. used this same enzy-
matic system to control coacervation in liposomes and
used different enzymatic reactions to control the dy-
namic formation of coacervates [70].

The products of enzyme-catalyzed elongation or olig-
omerization reactions can also promote coacervation
(Figure 5). For instance, a re-entrant phase transition
was observed in a system where RNA is produced by
T7 polymerases [91]. RNA-peptide coacervates were
formed until a certain threshold concentration was
reached. Beyond this threshold, coacervates started to
dissolve due to an excess of RNA. This model system
has interesting implications for MLLOs as many con-
densates in the nucleus are involved in RNA transport
and processing. Spoelstra et al. were able to control
coacervate formation through the use of the poly-
nucleotide phosphorylase (PNPase) enzyme that ex-
tends the 5-end of RNA [92]. Although the initial
RNA primer was too short to induce phase separation,
extending the RNA eventually increased charge in-
teractions that resulted in coacervation. Dissolution
through nuclease activity could be a route to actively
control dissolution, as shown for the protease trypsin
on poly-(L-lysine-L-serine) and poly-L-glutamic acid

coacervates [93]. These examples demonstrate that
enzymes can provide routes to actively control the
formation and dissolution of coacervates in a rudi-
mentary way. In addition, recent work demonstrating
that chemical reduction and oxidation can be used to
control the assembly of micelles with complex coac-
ervate cores by changing the effective valency of the
constituents could open the way for similar control of
coacervation through redox enzymes [94].

Nevertheless, a significant gap between MLOs and co-
acervates remains, as biological systems often control
coacervate formation through post-translational modifi-
cations (PTMs) of the IDP condensate components. For
instance, the methylation of Arg residues in FUS pro-
teins was shown to disassemble condensates [95]. To
the best of our knowledge, there has been only one
coacervate model of this phenomenon: Aumiller Jr. and
Keating showed that serine phosphorylation of
[RRASL], peptides can reversibly control coacervation
[96]. Expanding this approach to other (synthetic)
coacervate models may be challenging, as many enzymes
have specific recognition sequences based on protein
chemistry.

Finally, one of the most challenging mechanisms of
control over the formation dynamics to mimic is the
conformational changes triggered by host-guest bindings
to proteins. There are several biological examples where
binding of ATP triggers conformational changes that
play a role in phase separation, as suggested for stress
granules [97], or RNA binding to form a P-granule
gradient [98]. To our knowledge, there are no coacervate
systems that can mimic such a switch on host-guest
binding to control coacervation.

Figure 6
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Various phases that are accessible to metastable coacervates.
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Metastability: liquid-to-solid phase
transitions

Once formed, certain MLLOs can undergo phase transi-
tions from the liquid state to gel-like or solid forms
(Figure 6). Liquid-to-solid phase transitions are of in-
terest as they are linked to the emergence of various
pathologies and the regulation of cellular processes
[99,100]. Phase transitions of the metastable liquid
(coacervate) state occur when long-range associative
forces (such as electrostatics) facilitates local re-
arrangements that enable solid-like assemblies (such
as cross-f structures stabilized by close-range, direc-
tional interactions) to form over time [4]. This results in
a lower free energy state where the system becomes gel-
like or forms solid aggregates that can no longer revert
back to the dense liquid phase. These liquid-to-solid
transitions in metastable liquid condensates can be
considered a case of nonclassical nucleation, where
proteins can self-assemble from a condensed liquid state
instead of directly from a solution [101]. Formation of
the close-range interactions involved in the formation of
solid aggregates can be facilitated by increasing local
concentrations of proteins or by introducing crowding
agents [36]. The effect of increasing associative in-
teractions between phase separating proteins on the
aging and solidification of droplets was nicely illustrated
in MLO models containing light-triggered Cry2 protein
associations, called OptoDroplets [89]. OptoDroplets
showed a decreasing fluidity as Cry2 associations
increased with higher light exposure. The gels formed
were initially reversible but can age into irreversible
aggregates. The crowded coacervate provides an envi-
ronment where close-range interactions can be ampli-
fied, which can then lead to phase transitions.

MLOs that undergo liquid-to-solid phase transition
are, in fact, moving away from the very nature of co-
acervates, as previously described. Accurately
modeling this feature, therefore, poses a fundamental
challenge to coacervate systems. Several recent ex-
amples suggest that a form of liquid-to-solid transi-
tions might be possible in coacervates when the
external conditions are changed afrer coacervation.
Strengthening the internal ion-pair interactions
inside coacervate by salt-induced dehydration leads
to dynamic arrest and yields irreversible gel-like
states [11]. DNA hybridization can also induce
liquid-to-solid transitions in pLys-DNA coacervates,
which result in the reversible formation of solid ag-
gregates [102]. Last, pH-sensitive peptides that
facilitate intermolecular charge transfer can also age
to form irreversible solid aggregates [103]. All of
these solid states do not quite resemble the mor-
phologies or characteristics of liquid-to-solid transi-
tions in MLOs, leaving a discernible gap to be filled
by coacervate models.

Conclusion

Understanding how biomolecular processes are orga-
nized and regulated in living cells is of relevance for a
wide range of topics. Appropriate iz vitro models of
MLOs can help to elucidate the roles and characteristics
of these dynamic, droplet-like structures by enabling
i vitro experiments in controlled conditions that would
not be possible i vivo. Coacervates — a term stemming
from colloid science — share important characteristics
with MLOs, and as highlighted in this review, can suc-
cessfully mimic certain properties. Since coacervates are
formed by liquid—liquid phase separation, driven by the
same attractive interactions as is often the case in
MLOs, they have comparable material properties, and
they exhibit the same potential for hierarchical organi-
zation, selective sequestration, and in principle, dy-
namic formation. However, most coacervate models are
based on compositionally simple components whose
phase separation is driven by a single type of interaction
(e.g., charge complexation). They lack the chemical and
compositional richness of many MLOs, which often
contain many co-assembled proteins, each with a unique
arrangement of amino acids and potential for in-
teractions. This complexity explains, to a large extent,
the superior selectivity, actively regulated formation and
dissolution, and even the metastability seen in some
MLOs. In order to mimic these features of MLOs
better, reconstituted and designer proteins are being
used to successfully create m vitro droplets with the
same molecular composition as MLOs [104—106]. With
increasing complexity, the boundaries between co-
acervates and (artificial) MLOs slowly fade away, and
the more protein-based coacervate droplets will be
capable of mimicking the characteristics of MLOs. By
using such a bottom-up approach, we will be able to
establish which level of complexity is required to mimic
each property of an MLO.

However, one crucial aspect that has so far been lacking
in almost all 7z vitro models is the out-of-equilibrium
nature of the cellular environment. Cells are funda-
mentally active, and a constant turnover of chemical
energy governs the formation, stability, and arrangement
of cytoskeletal structures, protein complexes, and also
MLOs. Active processes can keep droplets stable or
proteins soluble [48], and they can literally shape ML.Os
[33,38] and alter their physical state by fluidization.
Recapitulating these processes in coacervate models to
understand the underlying physical effects is a major
challenge for the coming years, of which the first steps
are being made [92,107].
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