
Journal of Physics: Condensed Matter

J. Phys.: Condens. Matter 26 (2014) 075101 (16pp) doi:10.1088/0953-8984/26/7/075101

Sedimentation dynamics and equilibrium
profiles in multicomponent mixtures of
colloidal particles
E Spruijt1 and P M Biesheuvel2,3

1 Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen,
The Netherlands
2 Wetsus, Centre of Excellence for Sustainable Water Technology, Agora 1, 8934 CJ Leeuwarden,
The Netherlands
3 Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6,
6703 HB Wageningen, The Netherlands

E-mail: e.spruijt@science.ru.nl and maarten.biesheuvel@wur.nl

Received 8 July 2013, in final form 14 August 2013
Published 21 January 2014

Abstract
In this paper we give a general theoretical framework that describes the sedimentation of multicomponent
mixtures of particles with sizes ranging from molecules to macroscopic bodies. Both equilibrium
sedimentation profiles and the dynamic process of settling, or its converse, creaming, are modeled.
Equilibrium profiles are found to be in perfect agreement with experiments. Our model reconciles two
apparently contradicting points of view about buoyancy, thereby resolving a long-lived paradox about the
correct choice of the buoyant density. On the one hand, the buoyancy force follows necessarily from the
suspension density, as it relates to the hydrostatic pressure gradient. On the other hand, sedimentation
profiles of colloidal suspensions can be calculated directly using the fluid density as apparent buoyant
density in colloidal systems in sedimentation–diffusion equilibrium (SDE) as a result of balancing
gravitational and thermodynamic forces. Surprisingly, this balance also holds in multicomponent mixtures.
This analysis resolves the ongoing debate of the correct choice of buoyant density (fluid or suspension): both
approaches can be used in their own domain. We present calculations of equilibrium sedimentation profiles
and dynamic sedimentation that show the consequences of these insights. In bidisperse mixtures of colloids,
particles with a lower mass density than the homogeneous suspension will first cream and then settle,
whereas particles with a suspension-matched mass density form transient, bimodal particle distributions
during sedimentation, which disappear when equilibrium is reached. In all these cases, the centers of the
distributions of the particles with the lowest mass density of the two, regardless of their actual mass, will be
located in equilibrium above the so-called isopycnic point, a natural consequence of their hard-sphere
interactions. We include these interactions using the Boublik–Mansoori–Carnahan–Starling–Leland
(BMCSL) equation of state. Finally, we demonstrate that our model is not limited to hard spheres, by
extending it to charged spherical particles, and to dumbbells, trimers and short chains of connected beads.

Keywords: sedimentation, centrifugation, multi-component colloidal mixtures, buoyancy, Archimedes,
osmotic pressure
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1. Introduction

Sedimentation of proteins, colloids and larger particulate mat-
ter remains an intriguing and inspiring topic [1–5]. It controls

situations as diverse as the settling of food products [6], such
as fruit juices and stocks, sedimentation and syneresis of
paints during storage [7], wastewater treatment, the natural
accretion of riverbeds [8] and the purification of proteins and
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nanoparticles by ultracentrifugation [9]. Despite the wide
range of fields in which sedimentation plays a prominent role,
some of its aspects, especially in multicomponent mixtures,
remain poorly understood. One of the most fundamental puz-
zles centers around the correct choice of the buoyant density
ρb [3], which is the density that must be used to calculate the
buoyant force acting on a particle submersed in a fluid that
also contains other (colloidal) particles.

When the density distribution of colloidal particles in
equilibrium is concerned, it is often asserted that for ρb one
must use that of the pure fluid (i.e., that of the liquid, or sol-
vent), ρF [2]. On the other hand, the suspension density, ρsusp,
is typically used when describing the settling of mesoscopic
particles [10–17]. Likewise, the suspension density is used to
evaluate the buoyant mass in colloidal suspensions in which
one of the particles is much larger than the others, such that
the solvent and the small particles together can be thought of
as an effective fluid with density ρsusp. The suspension density
is the volume-averaged density of a mixture, averaging over
all particle types, including the fluid,

ρsusp =
∑

i

φiρi + (1−φ)ρF = ρF+
∑

i

φi (ρi − ρF) (1.1)

where φi is the volume fraction of particle type i (φ =
∑

i φi is
the total particle volume fraction), ρi the particle mass density,
and the summation runs over all particle types. If the particle
concentrations vary with position, the suspension density
becomes a function of position as well. For a one-component
system with particles that settle, we have ρsusp >ρF, and thus,
the buoyancy force on a particle, which counteracts gravity, is
higher if we assume that ρb is given by ρsusp than by ρF.

In this contribution we demonstrate the interrelationship
between both approaches mentioned above. As it turns out,
the suspension density determines the buoyancy force on
a particle, both in and out of equilibrium, but, due to an
exactly matching correction of the thermodynamic force that
acts on the colloidal particles in equilibrium, the resulting
equilibrium sedimentation profile can be calculated using the
fluid density as the apparent buoyant density. We emphasize
that the approach we follow applies to suspended particles of
any size, ranging from ions in density gradient centrifugation to
colloidal particles and mesoscopic particles in slurries, and to
particles in either monodisperse or polydisperse mixtures. We
do not include an arbitrary size criterion to distinguish between
large and small particles, as we do not need to combine the
latter with the solvent in an effective fluid. Instead, in our
approach all particles, small and large, are treated in the same
way. Taking this approach, we show how the same theoretical
model describes that (1) the suspension density is the buoyant
density, while (2) the fluid density can be used to calculate
sedimentation profiles in a simplified force balance when
sedimentation–diffusion equilibrium (SDE) is reached. This
result reconciles theories for equilibrated colloidal suspensions
in gravity and centrifugal fields with theories for the dynamics
of settling or its converse, creaming, of mesoscopic and
granular matter, and resolves the paradox of the correct choice
of the buoyant density [2, 18–21].

We demonstrate that the generalized theory we outline
predicts the correct equilibrium sedimentation profiles in bidis-
perse colloidal mixtures by matching predictions to beau-
tiful experimental sedimentation profiles that were recently
reported by Piazza and co-workers [1]. To describe the thermo-
dynamic interactions in these mixtures, we use the Boublik–
Mansoori–Carnahan–Starling–Leland (BMCSL) equation of
state, which has been proven accurate up to considerably high
volume fractions (up to ∼0.5, [22]). We derive an elegant
power series of the BMCSL expression for the excess con-
tribution to the chemical potential of particles in a mixture
of many types of particles. As the theory is not limited
to equilibrium, our approach also allows calculation of the
entire dynamic development of these and other sedimentation
profiles. This leads to predictions of sedimentation dynamics
that are in qualitative agreement with experiments reported in
the literature.

This paper is organized as follows. In section 2 we
show how the classical sedimentation–diffusion equilibrium
profile follows from a simple force balance in suspensions
of monodisperse particles. In section 3 we extend this force
balance to a general theoretical framework that describes
both equilibrium density profiles and dynamic sedimentation
in terms of both potentials and forces for multicomponent
mixtures. We apply this framework in section 4 to a model
system which consists of a bidisperse mixture of hard spheres.
We derive a useful and elegant power series for the equation
of state in multicomponent mixtures of hard spheres, and
we give analytical expressions for the SDE profiles beyond
the tracer limit. In section 5 we turn to sedimentation in
centrifugal fields and we discuss a limiting case of the theory
presented in the preceding sections. In section 6 we extend
our theory to charged colloids and we discuss the assumption
of fixed colloidal charge versus that of a regulated colloidal
charge. In section 7 we briefly address the particle shape and
connectivity as an important factor in the SDE profiles and their
dynamic development. We propose a simple modification of
the equation of state from section 4 for hard spherical particles
that are connected into dumbbells (dimers), trimers and short
chains of connected beads, and present calculations of their
SDE profiles.

2. A simple force balance for hard spheres in
equilibrium

We first consider the density profiles of sedimenting, monodis-
perse hard spheres in equilibrium, based on a simple force
balance [1, 23, 24]. We assume that both the particles and the
fluid are incompressible and that the particles tend to settle
under the influence of gravity. Equilibrium refers to a dynamic
state in which the average concentration profiles of the particles
do not change, as a result of balancing forces. Each particle is
acted on by the body force, Fbody,

Fbody
i =−mi g=−viρi g (2.1)

where mi is the mass of a particle i, vi the volume (vi = πσ
3
i /6

for hard spheres), σi its diameter, ρi its mass density, and g the
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acceleration due to gravity (here defined as a positive number,
+9.81 m s−2). We choose the upward z-direction to be opposite
to the direction of the gravitational acceleration.

The external body force is balanced by a thermodynamic
force F th,tot, originating from the gradient of the chemical
potential µi of particle type i, which is a function of both the
pressure and the concentration of particles, in the system at
constant temperature that we consider here [24]:

F th,tot
i =−∇µi =−

(
∂µi

∂ni

)
P,T
∇ni −

(
∂µi

∂P

)
ni ,T
∇P (2.2)

where ni = φi/vi is the number concentration of species i
and φi is their volume fraction. For the sedimenting systems
considered here, only gradients in z are relevant. In the
second term, (∂µi/∂P)ni ,T is the specific volume of the
particles, which is simply their volume vi if they are assumed
incompressible. The second term can be identified as the
buoyancy force, where P is the hydrostatic pressure Ph, which
is given by [12, 18–20]

∂Ph

∂z
=−ρsusp g. (2.3)

The body force and the buoyancy force are commonly consid-
ered in combination, and we define the gravitational force here
as a summation of the external body force and the buoyancy
force [15, 23]:

Fgrav
i =−viρi g− vi

∂Ph

∂z
=−vi (ρi − ρsusp)g=−mb

i g (2.4)

where the buoyant mass mb
i is a function of the suspension

density.
The first term in equation (2.2) is the concentration-

dependent part of the total thermodynamic force [24], and
we will refer to that force as the thermodynamic force F th in
this work, omitting the labels for constant temperature from
here on:

F th
i =−

(
∂µi

∂ni

)
P

∂ni

∂z
=−

(
∂µi

∂φi

)
P

∂φi

∂z
. (2.5)

The chemical potential µi in equation (2.5) is commonly
separated into an ideal and an excess contribution (µi =

µid
i +µ

exc
i ). We note that the thermodynamic force can also

be written in terms of an integral over the total pair correlation
function h(r), as shown by Belloni [25] and Piazza et al
[1, 21].

In the case of complex mixtures of (possibly soft or
charged) particles, explicit expressions for the chemical poten-
tial of the particles often do not exist, and in fact, the opposite
route is commonly employed: by careful measurements of the
sedimentation profiles of colloidal particles in equilibrium,
information about the thermodynamic equation of state can be
obtained through the µi ’s [26, 27].

It is convenient to write the thermodynamic force in
terms of the osmotic compressibility (∂5/∂φi )µF , because
this quantity is experimentally accessible by light scat-
tering measurements [28], and because various theoretical
expressions exist for the compressibility of suspensions of

hard spheres in a fluid continuum. For the incompressible
one-component suspension we consider here, we find (see
also supporting information for the general case available at
stacks.iop.org/JPhysCM/26/075101/mmedia) [23, 28]

1
vc

(
∂µc

∂φ

)
P
=

1
vc

(
∂µc

∂φ

)
µF

−

(
∂5

∂φ

)
µF

=
1−φ
φ

(
∂5

∂φ

)
µF

(2.6)

where the label c is used to denote the colloidal particles, 5
is the osmotic pressure and µF the chemical potential of the
solvent. We note that the derivatives in the rhs of equation (2.6)
are understood to be taken at constant chemical potential of
the solvent, as is the case when adopting a continuum model
for the solvent [29–31]. It is important to distinguish the
thermodynamic force as written in equation (2.5), in which
the solvent is an explicit component, from the alternative
notation of (the contribution to) the thermodynamic force in
equation (2.6), in which a continuum model for the solvent
is assumed. Transformation between these expressions shows
that in the latter case the gradient of the osmotic pressure
becomes a natural part of the thermodynamic force acting on
the colloids (see supporting information), which gives rise to a
factor (1− φ) for monodisperse, incompressible suspensions
(see equation (2.6)).

Inserting equation (2.6) in equation (2.5) and balancing
the thermodynamic force with the gravitational force (Fgrav

+

F th
= 0), leads to:

− vc(ρc− ρsusp)g=
vc(1−φ)

φ

(
∂5

∂φ

)
µF

∂φ

∂z
. (2.7)

The density difference between the particles and the suspen-
sion can be written as ρc − ρsusp = (1− φ)(ρc − ρF) (equa-
tion (1.1)), leading to the following well-known differential
equation for the density profile of colloids [23, 28, 32]:

1
φ

∂φ

∂z
=−(ρc− ρF)g

(
∂5

∂φ

)−1

µF

. (2.8)

It is important to notice that, even though the buoyancy con-
tribution to the gravitational force (equations (2.3) and (2.4))
depends on the suspension density (as it results from the hydro-
static pressure gradient), the equilibrium sedimentation profile
can be calculated by taking the density difference between
a particle and the pure solvent as an apparent buoyant den-
sity (equation (2.8)). The difference between equations (2.4)
and (2.8) originates from a canceling of factors (1− φ). We
note that the same differential equation for the sedimentation
profile is obtained from the analogous force balance on the
solvent (see supporting information).

Equation (2.8) is commonly used as the basis for describ-
ing the equilibrium density profiles of suspensions of colloidal
particles. In very dilute solutions, the osmotic pressure may
be approximated by Van’t Hoff’s law (5 = nkBT ) and the

3
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equilibrium density profile is solved analytically to the well-
known barometric distribution

lim
φ→0

φ(z)= φ0 e−z/Lg (2.9)

with the gravitational length

Lg =
kBT

vc(ρc− ρF)g
. (2.10)

In more concentrated suspensions of hard spheres the Carnahan–
Starling equation of state for hard spheres in a fluid continuum

5

kBT
=
φ+φ2

+φ3
−φ4

vc(1−φ)3
(2.11)

µexc
c

kBT
=
φ(8− 9φ+ 3φ2)

(1−φ)3
(2.12)

provides a very accurate prediction of the osmotic pressure
up to volume fractions as high as 0.5 [22]. The chemical
potential in equation (2.12) is related to the osmotic pressure
via vc(∂5/∂φ)= φ(∂µc/∂φ), and is valid within a continuum
model for the solvent.

The resulting differential equation for the equilibrium
density profile

∂φ

∂z
=−

1
Lg

(
1
φ
+

8− 2φ
(1−φ)4

)−1

(2.13)

has the following solution for z(φ) [30, 33]

z
Lg
= ln

(
φ0

φ

)
−

1
(1−φ)2

+
1

(1−φ0)2

−
2

(1−φ)3
+

2
(1−φ0)3

(2.14)

where φ0 is the volume fraction at z = 0.
The approach outlined above, based on a simple force

balance for particles in equilibrium, is quite insightful for
monodisperse hard spheres under the influence of gravity
alone. In the following section we present a more general
approach for multicomponent mixtures of (charged) particles
in external fields in and out of equilibrium, which simplifies
to equation (2.8) for the equilibrium density distribution of
a one-component suspension as we have considered here. In
view of the applications to bidisperse mixtures of hard spheres,
charged colloids and clusters of particles, we will treat the
suspending fluid as a continuum in the remainder of this paper,
as in the rhs of equation (2.6) [30, 34].

3. General theory for sedimentation dynamics and
equilibrium density profiles of (colloidal) particle
mixtures

3.1. The total potential

The total potentialµtot
i of a particle i suspended in a continuum

fluid can be written as follows

µtot
i =µi +µ

ext
i +µ

el
i + vi P tot

=µid
i +µ

exc
i +mi gz+ Qiψ + vi P tot (3.1)

where µ is the chemical potential, which can be separated
into an ideal contribution µid and an excess contribution µexc.
The excess contribution is due to volumetric interactions with
other particles and can also include activity corrections. µext

is the contribution due to an external field; in this section
we will only consider the field of gravity; hence, µext is the
contribution due to the body force of equation (2.1). µel is
the contribution due to the electrostatic potential of charged
particles in a mean-field approximation. Finally, vi P tot is
the insertion energy, required to insert a particle of type i
(volume vi ) against the total pressure, P tot. Each term will be
discussed in turn in this section. This description holds both
for dynamically changing situations (i.e., settling particles) and
for equilibrium. It can be used for ions, dissolved molecules,
colloidal particles, mesoscopic non-colloidal particles, and for
any kind of mixture of these particles, regardless of the particle
size and shape.

The ideal contribution to the chemical potential of particle
of type i is equal to kBT ln ni , where ni is the number
concentration of particles of type i (ni = φi/vi ). We assume
that all particles are incompressible, and hence, the ideal
contribution to the chemical potential can be written as

µid
i = kBT lnφi . (3.2)

The excess contribution to the chemical potential de-
scribes volumetric interactions between the colloids. This is
a key parameter in the description of most sedimentation–
diffusion equilibria (SDE) of hard spheres and charged par-
ticles and we will discuss our choice for all cases in detail
hereafter.

Without any external fields besides gravity, the external
potential term is simply

µext
i =mi gz = viρi gz. (3.3)

We will discuss how this contribution is modified in a centrifu-
gal field in section 5.

The electrostatic term will be discussed in section 6 in
detail. In a mean-field description for particles of fixed charge
it is simply µel

i = kBT Zi y, where Zi is the charge number of
the particle (e.g., ±1 for a monovalent ion), Qi = Zi e and y
the dimensionless electrical potential (y = eψ/kBT ).

Within the continuum model for the fluid, the insertion
pressure term is based on the total pressure, P tot, which is
equal to the local hydrostatic pressure Ph minus the local
osmotic pressure 5 [35–42]:

P tot
= Ph

−5. (3.4)

In an equilibrium model, and when the contribution due to
gravity can be neglected, such as for the diffuse part of
the electrical double layer in Poisson–Boltzmann theory, Ph

will be equal to 5, and as a result, the insertion energy
vanishes [41]. If gravity is more prominent, such as in
suspensions of sedimenting particles, Ph is no longer always
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equal to 5, and the insertion pressure must be taken into
account, as we will describe hereafter4. The hydrostatic
pressure in a suspension, both in equilibrium and during
sedimentation, is given by equation (2.3).

3.2. Forces

The expression for the total potential in equation (3.1) can
be written in terms of forces, by taking the derivative of
equation (3.1) with respect to z. For the case of uncharged
particles, this results in

F tot
i = −

∂µtot
i
∂z

= −
∂µid

i
∂z
−
∂µexc

i
∂z
− vi (ρi − ρsusp)g+ vi

∂5

∂z
(3.5)

where the term vi (ρi − ρsusp)g is the gravitational force,
which combines the body force mi g with the buoyancy force
vi (∂Ph/∂z), as used already in equation (2.4). The other force
elements in equation (3.5), taken together, constitute the ther-
modynamic force F th, which was derived in an alternative way
in equation (2.5) (see supporting information). Equation (3.5)
applies to both equilibrium sedimentation profiles and settling
particles, as long as local thermal equilibrium is assumed.

In SDE, the total force acting on the particles is zero, and
the gravitational force is balanced by the thermodynamic force.
In that case, we can write the force balance in equation (3.5)
more concisely as:

F tot
i =−

kBT
φi

∂φi

∂z
−
∂µexc

i
∂z
− vi (ρi − ρF)g= 0 (3.6)

using the following expression for the osmotic pressure gradi-
ent in SDE (see supporting information) [30]:

∂5

∂z
=−g(ρsusp− ρF). (3.7)

We note that equation (3.7) can be used for multicom-
ponent mixtures and for suspensions of charged particles (Zi
unequal to zero) as well, if we assume local electroneutrality
(
∑

i ni Zi = 0).
In the case of settling particles, the total force is not equal

to zero, but it is balanced by a frictional force [15]. We will
discuss this friction in more detail in sections 3.3 and 4.2.

Equation (3.5) clearly shows that the buoyancy force
is determined by the density of the surrounding suspension.
Only in equilibrium are the gravitational and thermodynamic
force equal and can the fluid density be used as an ap-
parent buoyant density, see equation (3.6), as discussed in
section 2 (equation (2.8)). Interestingly, one can think of
various situations in which the thermodynamic force is absent
or negligible, and only the gravitational force remains (equa-
tion (3.6)). First of all, for particles that are beyond colloidal

4 The theory presented in our work closely relates to that in [27],
which was rigorously based on Maxwell–Stefan theory [82, 83]. The
crucial difference is that in [27] the volumetric insertion term vP (for
instance, equation (13) in [27]) is based on Ph, whereas we argue
that it must be based on the total pressure, P tot

= Ph
−5.

dimensions, i.e., mesoscopic or macroscopic particles, the
thermodynamic force in equation (3.5) is negligible. Solely
the suspension density determines whether these particles
move upward (‘cream’), or down (‘settle’) (relative to the
solvent velocity). This is a well-known point of view con-
cerning particle sedimentation in engineering fields [11, 13,
16, 17]. Eventually, these particles will stop moving when
the gravitational force has vanished, in other words, when
their mass density is equal to the local suspension density (the
so-called isopycnic point [1]). Secondly, in any suspension,
ranging from suspensions of mesoscopic particles, to colloids
and even down to mixtures of molecules, the thermodynamic
force is absent directly after homogenizing (shaking) the
suspension, since all concentration gradients are zero. Hence,
only the gravitational force remains, and particles with a
density smaller than the (homogeneous) suspension density
will initially cream, whereas others will initially settle.

Indeed, a simple but elegant experiment with a suspension
containing two types of particles, of which one (polystyrene,
PS) has a mass density smaller than the suspension, but larger
than the pure solvent, and the other (alumina) has a density
larger than the suspension, unambiguously shows that the
lighter particles initially cream and, only after the heavier
particles have settled and the local suspension density has
dropped below that of PS, start to settle themselves [17].
Figure 1 summarizes this process clearly. We emphasize that
a choice for the density of the pure fluid in equation (3.5) as
the buoyant density would predict that both types of particles
would settle directly after shaking, in stark contrast with
experimental evidence.

If we continue observing a settling colloidal suspension,
we would find that a thermodynamic force gradually develops,
from zero directly after mixing, to its final value at equilibrium,
where the equilibrium force balance of equation (3.6) holds.
We demonstrate this effect in detail in section 4.2, where we
consider the application of our approach outlined in this section
to a bidisperse mixture of hard spheres.

3.3. Dynamic sedimentation

During particle settling, before sedimentation–diffusion equi-
librium is reached, the thermodynamic force does not yet bal-
ance the gravitational force. Thus, our general equation (3.5)
provides the basis for a model to describe particle motion
in this situation. We still consider uncharged particles and
refer to section 6 for a discussion on charged particles. Before
equilibrium is reached, the total force acting on a particle i
in suspension is balanced by a drag (friction) force, which
is proportional to the particle’s velocity relative to the solvent
velocity vi− vF in the case that we only consider particle–fluid
friction and neglect the effect of acceleration:

vi− vF =
Di

kBT
F tot

i =−Di

(
1
φi

∂φi

∂z
+β

∂µexc
i
∂z

+ βvi (ρi − ρsusp)g−βvi
∂5

∂z

)
(3.8)

where β = 1/kBT . The proportionality constant is a diffusion
coefficient, which can be approximated by Di = kBT/3πηFσi
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Figure 1. Pictures showing the dynamic sedimentation of a bidisperse mixture of alumina (AKP-30, mean diameter σ = 375 nm) and a trace
amount of PS particles (PB-4, Maxi-Blast Inc., size range σ = 150–250 µm). Additional details can be found in [17]. The total height of the
flask with cap is 63 mm. Within one minute after homogenization, the PS particles that were homogeneously distributed (a), have creamed
to the top of the flask (b). Then, they slowly settle as the alumina particles sediment. The numbers below the pictures indicate the time in
days after the start of the sedimentation experiment.

with ηF the fluid viscosity, for spherical particles at low
Reynolds numbers and low particle concentrations. In the cal-
culations in this paper, we set the particle hindrance functions
to unity. These hindrance functions provide a correction to the
diffusion coefficient Di to account for non-dilute conditions
(hydrodynamic effects) [24]. The time-evolution of the particle
density profiles can be obtained from the gradient of the
volumetric flux φi vi [43]:

∂φi

∂t
=−

∂

∂z
(φi vi). (3.9)

In a multicomponent mixture of N types of particles in
a common solvent, as many combinations of equations (3.8)
and (3.9), combined with the requirement that there is no net
flow of the suspension∑

i

φi vi+ (1−φ)vF = 0, (3.10)

constitute a complete set of equations describing the dynamic
sedimentation of these particles. This description is valid for
particles of any size, from ions to colloids and mesoscopic par-
ticles, and any shape, provided that local thermal equilibrium is
satisfied and that the correct equation of state is used to evaluate
the osmotic pressure and the chemical potential. In general, the
osmotic pressure 5, chemical potential µi , and suspension
density ρsusp (equation (1.1)) are explicit functions of all φi .
Equation (3.10) ensures a zero net flow of the suspension,
which is appropriate in a closed system. In open systems,
like sedimentation–filtration set-ups with a continuous flow
of fluid [44], and liquid fluidized beds [45], equation (3.10)
should be modified to account for net in/outflow of solvent
(and/or particles).

4. Application to a bidisperse mixture of hard
spheres

In this section we apply the theory outlined in the previous
section to a model bidisperse mixture of hard spheres, like
the system recently reported by Piazza et al [1]. A very
small amount of larger particles (poly(methyl methacrylate),
PMMA, type 1, σ1 is 440, 600 or 800 nm) is mixed in
a suspension of smaller particles (MFA, a trifluoroethylene
copolymer, type 2, σ2 = 180 nm). The system is in a so-called

tracer limit, which implies that the presence of the minority
species (1) does not influence the sedimentation of the majority
species (2) and that interactions between particles of the
minority species can be neglected (φ1� φ2).

4.1. Equilibrium density profiles

Piazza et al reported that when SDE is reached, an interesting
phenomenon is observed. The larger particles (type 1), which
have a much larger mass per particle than the smaller particles
(πσ 3

1 ρ1/6> πσ 3
2 ρ2/6), concentrate in a discrete band at the

very top (in the tail) of the distribution of the small majority
particles (type 2). The band is located at a height where the
local suspension density is distinctly lower than the density
of particle 1, in other words, lower than the isopycnic density
(see figure 2 in [1]). A similar observation was reported earlier
by Morganthaler and Price [46]. These observations suggest
that an additional force acts on the large particles, pushing
them up [1]. In our view, this must be the thermodynamic
force we have discussed in the previous sections, as will be
demonstrated here.

In equilibrium the total force on each particle is zero
(equation (3.6)). For each particle we thus have a force balance:

∂µid
i

∂z
+
∂µexc

i
∂z
=−vi (ρi − ρF)g (4.1a)

1
φi

∂φi

∂z
+β

∑
j

∂µexc
i

∂φ j

∂φ j

∂z
=−

1
Lg,i

(4.1b)

where Lg,i = kBT/vi (ρi − ρF)g is the gravitational length (see
equation (2.10)) and the summation in equation (4.1b) runs
over all particle types (including i itself). Equation (4.1) is an
important result, as it shows that not only in a one-component
system (one particle plus fluid), but also in a multicomponent
mixture, in equilibrium, the density profile can be related
directly to the density difference of each particle with the
fluid density, ρF (and not ρsusp), whereas all interactions
with other particles are included through µexc

i . Like in the
single-component case discussed in section 2, the fact that
the SDE density profiles can be related directly to the density
difference of each particle with the fluid is the result of a
canceling of terms in the thermodynamic and gravitational
force.

6
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To describe the excess chemical potential, i.e., the vol-
umetric interactions between the particles in a bidisperse
mixture of hard spheres, we will use the Boublik–Mansoori–
Carnahan–Starling–Leland (BMCSL) equation of state, which
applies to any mixture of hard spheres of unequal sizes.

The BMCSL expressions for osmotic pressure5, free en-
ergy density f, and chemical potential µi are given
by [47, 48]

5

kBT
=

6
π

[
ξ0

1−φ
+

3ξ1ξ2

(1−φ)2
+
ξ3

2 (3−φ)
(1−φ)3

]
(4.2)

f
kBT
=

∑
i

φi

vi
ln
φi

vi
+

6
π

[
−ξ0 ln(1−φ)

+
3ξ1ξ2

1−φ
+

ξ3
2

φ(1−φ)2
+
ξ3

2 ln(1−φ)
φ3

]
(4.3)

µi

kBT
=
µid

i
kBT
+
µexc

i
kBT

= lnφi −

(
1+

2ξ3
2σ

3
i

φ3 −
3ξ2

2σi
2

φ2

)
ln(1−φ)

+
3ξ2σi + 3ξ1σi

2
+ ξ0σ

3
i

1−φ
+

3ξ2
2σi

2

φ(1−φ)2

+
3ξ1ξ2σ

3
i

(1−φ)2
− ξ3

2σ
3
i
φ2
− 5φ+ 2

φ2(1−φ)3
(4.4)

where

ξk =
∑

j

φ jσ j
k−3 (4.5)

and vi is the particle volume (vi = πσ
3
i /6 for hard spheres),

φi is the individual particle volume fraction and φ is the total
particle volume fraction.

The above expression for the excess contribution of
species i to the chemical potential (equation (4.4)) may be
expanded into a power series in terms of the total volume
fraction φ (see supporting information for a derivation):

µexc
i

kBT
=

∞∑
λ=1

[(
λ2
− 2λ− 1+

2
λ

)
A3
+ 3

(
λ−

1
λ

)
A2

+ 3(λ− 1)AB+ 3A+ 3B+C +
1
λ

]
φλ (4.6)

where A=
∑

i αi jζi , B =
∑

i α
2
i jζi and C =

∑
i α

3
i jζi , αi j is

the size ratio σi/σ j , and ζi is the relative fraction of each
particle type, i.e., ζi = φi/φ. For a one-component suspension,
the series in equation (4.6) correctly reduces to the power
series expansion of the Carnahan–Starling equation, µexc

=

8φ + 15φ2
+ 24φ3

+ · · · [49], which for low concentrations
simplifies to µexc

= 8φ [50]. For the case that particles of type
i are much smaller than all other particles, we have α = 0, and
equation (4.6) reduces to the power series expansion of the
Bikerman equation, µexc

= φ + φ2/2+ φ3/3+ · · · [49, 51].
Finally, the limiting form of equation (4.6) in the case that the

particles of type i are much larger than all other particles (i.e.,
the ‘colloid-in-electrolyte’ limit) is derived in the supporting
information.

In this work especially the tracer limit, in which φ1� φ2,
is of interest. In this limit the full expression for µexc

1 (derived
from equation (4.4)) is given by

µexc
1

kBT
=−(1− 3α2

+ 2α3) ln (1−φ2)

+
αφ2

(1−φ2)3
[5α− 3αφ2+ 2+ (3φ2

2
− 6φ2+ 1)(1+α−α2)]

(4.7)

where α now is the size ratio of particle type 1 over 2:
α = σ1/σ2.5 Note that α is the same as 1/q in the work of
Piazza et al [2]. The expansion of equation (4.7) in a power
series yields

µexc
1

kBT
=

∞∑
λ=1

[(1+ λα)3+ 3(λ− 1)α2

+ (λ− 1)(λ− 2)α3
]
φλ2
λ
, (4.8)

for which the first three terms are

µexc
1

kBT
= (1+α)3φ2+ ((1+ 2α)3+ 3α2)

φ2
2

2

+ ((1+ 3α)3+ 6α2
+ 2α3)

φ3
2

3
. (4.9)

A combination of equation (4.8) and the force balance in
equation (4.1) leads to an expression for the equilibrium
density profile of the minority particles 1. Since we consider
the tracer limit, ∂µexc

1 /∂φ1 = 0 holds, and we arrive at

1
φ1

∂φ1

∂z
+

( ∞∑
λ=1

[(1+ λα)3+ 3(λ− 1)α2

+ (λ− 1)(λ− 2)α3
]φ2

λ−1
)
∂φ2

∂z
=−

1
Lg,1

(4.10)

which can easily be solved for any given gradient of the ma-
jority particle. To calculate the equilibrium density profile and
the concentration gradient of the majority particles 2, we use
the Carnahan–Starling expression for µexc

2 (equation (2.12))
with φ = φ2 to obtain the force balance in equation (3.6) and
the density distribution given by equation (2.13).

Figure 2 shows the result of our calculation for the
PMMA/MFA system that was recently reported by Piazza
et al [1]. We take the following parameters from Piazza et al:
ρ2 = ρMFA = 2.14 g cm−3, ρ1 = ρPMMA = 1.19 g cm−3, ρF =

1.04 g cm−3, σ2 = 180 nm and σ1 = 440, 600 or 800 nm,
resulting in Lg,2 = 124.8 µm and Lg,1 = 62.7, 24.7 and
10.4 µm for σ1 = 440, 600 and 800 nm, respectively (T =
298 K). Note that we did not use a 10% larger value for σ2 to
fit the density profile of MFA particles [1]. Like in figure 2 of

5 Similar expressions as equations (4.6) and (4.7) are given as
equations (6) and (A1) in [49], but there these equations are not
correct.
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Figure 2. Equilibrium sedimentation profiles of various bidisperse
suspensions of hard spheres with MFA (σ2 = 180 nm,
ρ2 = 2.14 g cm−3) always as the majority species and PMMA
(σ1 = 440, 600 or 800 nm, ρ1 = 1.19 g cm−3) as tracers in a
solution of urea in water (ρF = 1.04 g cm−3). Symbols are data
obtained from turbidity measurements [1]. fPMMA is the
distribution of PMMA colloids (in mm−1), normalized to 1. Solid
lines are theoretical predictions of the density profiles from
equations (2.13) and (4.10). The dotted line indicates the isopycnic
point for the PMMA particles. Clearly, the maxima of all PMMA
density profiles are located above the isopycnic point as a result of
excluded volume interactions between the hard spheres.

Piazza et al [1] we plot the normalized distribution of each of
the three PMMA particles as a function of height z. It is clear
that the theory outlined above accurately describes all tracer
particle distributions, with respect to both the location of the
bands and the width of the bands. Each fraction of PMMA
particle is located in a band with its center of mass far above
the isopycnic point. The smaller these minority particles, the
higher up the bands are located. In our view, the agreement
between our theoretical framework and the experimental data
in figure 2 implies that the additional force acting on the large
particles and pushing them up to above the isopycnic point
is, in fact, the thermodynamic force. This agrees with the
expression for the additional force in equation (1) of Piazza
et al [1], although we would not conclude from this equation
that the effective buoyant density is larger than that of the
suspension, as is stated at various points in Piazza et al [1, 2].
Instead, we argue that the thermodynamic force is due to the
gradient in the concentration of the majority (type 2) particles
and the associated excluded volume that pushes the minority
particles (type 1) up.

In addition to the separate force balances to calculate the
equilibrium density profiles, we can combine the two force
balances to predict the maximum in the distribution in the
tracer particle type 1. At this point ∂φ1/∂z = 0, and thus, mak-
ing use of equation (4.1), ∂µexc

1 /∂z = (∂µexc
1 /∂φ2)(∂φ2/∂z).

An analytical expression for ∂µexc
1 /∂φ2 can easily be derived

from equation (4.4), both in the tracer limit and in the general
case of mixtures of hard spheres (see supporting information).
After inserting the analytical expression for ∂µexc

1 /∂φ2 in the
tracer limit, expressing ∂φ2/∂z in terms ofµexc

2 using the force
balance for type 2 particles (equation (4.1)), and inserting
equation (2.12) for µexc

2 , we obtain the following expression

for the particle volume fraction of particles of type 2 at the
maximum in the distribution of particles of type 1, φ∗2 ,

Lg,2

Lg,1
= α3φiso

2

= [6α3
+ 2α3(3− 2α)(1−φ∗2 )+ 3α(1−α2)(1−φ∗2 )

2

+(2α3
− 3α2

+ 1)(1−φ∗2 )
3
]/[φ∗2

−1
(1−φ∗2 )

4
− 2φ∗2 + 8]

(4.11)

where

φiso
2 =

ρ1− ρF

ρ2− ρF
(4.12)

is the ‘isopycnic’ volume fraction of particles of type 2,
being the volume fraction of particle type 2 required to have
a suspension density equal to the particle mass density of
particle type 1, thus where ρsusp = ρ1. Equation (4.11) is in
perfect agreement with equation (27) in [21]. Alternatively,
∂µexc

1 /∂φ2 can be approximated by the series of powers in
equation (4.8), with the corresponding expression for φ∗2 given
in the supporting information. Taking the limits of α→∞
and φ∗2 small, then equation (4.11) simplifies to the expression
in [1] (with q = 1/α)

φ∗2 =
φiso

2

(1+ 1
α
)3
. (4.13)

We note that equation (4.13) is a simplification obtained
under very rigorous assumptions. That equation (4.13) works
so well in the data by Piazza et al is an amazing surprise.
Equation (4.11) is the alternative, complete expression to
predict the maximum in the distribution of the tracer particles.

4.2. Dynamic sedimentation

A direct added value of the general theory described in sec-
tion 3 is that we can also evaluate the dynamics of the settling
process in a bidisperse mixture. Combining equations (3.8)
and (3.10), and inserting the expression for µexc

2 for the
majority particles, type 2 (equation (2.12)), we obtain:

v2 =−(1−φ2)
2 D2

[
1

Lg,2
+

(
1
φ2
+

8− 2φ2

(1−φ2)4

)
∂φ2

∂z

]
(4.14)

v1 =−D1

[
1
φ1

∂φ1

∂z
−

(
α3
(

1+
φ2(8− 2φ2)

(1−φ2)4

)
−β

∂µexc
1

∂φ2

)
×
∂φ2

∂z
+
α3(φiso

2 −φ2)

Lg,2

]
−

φ2v2

1−φ2
. (4.15)

These equations provide a complete set with which the
density profile of particles 1 and 2 can be calculated at any
point in time. Figure 3 summarizes the resulting dynamics of
sedimentation in the system used also in figure 2, but now for
several values of the density of the minority particle 1. These
plots clearly show the consequences of the definition of the
buoyancy force given in equation (2.4). The corresponding
movies are included as supporting information.
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Figure 3. Theoretical predictions (equations (4.14) and (4.15)) for the sedimentation dynamics of three types of bidisperse suspensions of
hard spheres. In all cases MFA (σ2 = 180 nm, ρ2 = 2.14 g cm−3, φ2 at t = 0 is 0.145) is the majority component, and the second type of
particles (σ1 = 1.0 µm, varying density) is present in a trace amount (φ1 at t = 0 is 10−4). The solvent is a solution of urea in water
(ρF = 1.04 g cm−3). The suspensions are in a container with a height of 5 mm. Snapshots are shown at t = 0, 100, 1000, 2000 and 5000 min
after homogenization. In series A (deuterated PMMA tracers, ρ1 = 1.28 g cm−3) the tracer particles have a higher density than the
homogeneous suspension (ρsusp = 1.20 g cm−3) and they initially settle. In series B (PMMA tracers, ρ1 = 1.19 g cm−3) the tracer particles
have an almost equal density to the homogeneous suspension and they form a transient bimodal distribution. In series C (PEMA tracers,
ρ1 = 1.12 g cm−3) the tracer particles have a lower density than the homogeneous suspension and they initially cream.

These dynamic calculations are based on a container
of height 5 mm filled with a suspension of MFA (σ =
180 nm, ρ2 = 2.14 g cm−3) in urea/water (ρF = 1.04 g cm−3)
at an initial volume fraction of 0.145, and, hence, the sus-
pension has an average density of 1.185 g cm−3. If we

insert a trace amount of PMMA particles in this container,
its density (ρ1 = 1.19 g cm−3) would be almost equal to that
of the suspension, and, as a result, Fgrav

= 0 (equation (2.4)).
However, as the MFA particles, which have a much higher
density than the suspension, start to settle, the local density
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at the top of the container drops below that of PMMA, while
the local density at the bottom gradually increases due to the
settling MFA particles. Consequently, the PMMA particles at
the top start to settle and those at the bottom start to cream,
giving rise to a transient bimodal particle distribution (see
figure 3). Eventually, the peaks meet at the equilibrium height,
in agreement with figure 2.

If the PMMA particles are replaced by tracers with a
slightly different density, such as poly(ethyl methacrylate)
(PEMA, ρPEMA = 1.12 g cm−3), or deuterated poly(methyl
methacrylate) (d-PMMA, ρd-PMMA = 1.28 g cm−3), the sedi-
mentation dynamics changes accordingly. In the case we use
the heavier d-PMMA particles, they all settle directly from
the start, and, while the MFA particles reach their equilibrium
density profile, the d-PMMA particles slowly cream to their
equilibrium position, which is just below that of the PMMA
particles. An illustration of such behavior is given by the
experiments recently reported by Parola et al [33], where silica
particles were found to cream to the top of a diffuse PMMA
sediment over a time of 15 days.

In experiments with the lighter PEMA particles, on the
other hand, our calculations predict that they first cream to the
top of the container, even though their density is larger than
the density of the solvent and their size is of the same order
of magnitude as the size of the MFA particles. Only after the
MFA have started to settle under the influence of gravity, the
PEMA particles will settle as well. This prediction is exactly
matched by the experimental observations in [17]. The key to
this behavior is, as explained above, that the buoyancy force on
the PEMA particles is given by the density of the suspension,
as opposed to the density of the fluid.

Eventually, all tracer particles reach their equilibrium
positions well above the isopycnic point, at a point where
the local density is lower than the isopycnic density. The
reason for this behavior must be the thermodynamic force that
finds its origin in the hard-sphere excluded volume interactions
between MFA and tracer particles. The location of the maxima
is accurately predicted by equation (4.11). In general, also in
multicomponent mixtures of hard spheres beyond the tracer
limit (see section 4.3), in equilibrium the centers of mass of
the distributions of the particles with the lowest mass density
will be located above the isopycnic point. Like for the mixtures
with tracer particles, this is a natural consequence of their
hard-sphere interactions.

4.3. Beyond the tracer limit

In many suspensions, none of the components is present
in trace amounts only, and all volume fractions must be
taken into account. As a consequence, the limiting equa-
tions (4.7) and (4.10) must be replaced by the full versions
in equations (4.1) and (4.4). A convenient way to write these
equations in general for a suspension with N different com-
ponents was introduced by Biben and Hansen [52] and

Schmidt et al [53]:

µ11(z) µ12(z) · · ·
µ21(z) µ22(z)
...

. . .



∂φ1
∂z (z)
∂φ2
∂z (z)
...

=−


1
Lg,1

1
Lg,2
...

 (4.16)

where µi j = β(∂µi/∂φ j )= (1/φi )+ β(∂µ
exc
i /∂φi ) for i = j

and β(∂µexc
i /∂φ j ) for i 6= j . For the case of mixtures of hard

spheres, an analytical expression exists for the partial deriva-
tive of the chemical potential (∂µexc

i /∂φ j ) (see supporting
information). Using standard numerical solution techniques,
both the equilibrium sedimentation profiles and the dynamic
development of those profiles can be calculated. The full set
of equations that was used to do so, is given in the supporting
information. We emphasize that the calculations of dynamic
sedimentation are an extension of the work in [52, 53], as
equation (4.16) only applies in equilibrium.

In figure 4 we show an example of a calculation of the
SDE profile for a three-component mixture of hard spheres.
The dynamic development of these profiles is visualized
in the movies in the supporting information. The initially
homogeneous suspension settles under the influence of gravity
over a period of weeks (figure 4(a)) into layers of the different
particles. With suitable coloring of the particles it would
be possible to follow the formation of these bands in detail
experimentally.

When the particle densities are chosen such that the light
particles have a lower density than the initial suspension, the
same phenomenon as in figure 3 can be observed: the lightest
particles first cream to the top, revert their motion after some
time, and then start settle. However, the dynamic development
of the sedimentation–diffusion equilibrium profiles is differ-
ent from the bidisperse mixture (see supplementary movie
4 available at stacks.iop.org/JPhysCM/26/075101/mmedia).
This difference results from the fact that the buoyancy force
is determined by the suspension density, as opposed to the
fluid density. In a multicomponent mixture, each particle will
settle with a different velocity and thus create time-dependent
density gradients. More complicated patterns of sedimentation
can be achieved in mixtures with even more components,
which may also be relevant for manufacturers interested in
the shelf life of complex suspensions.

5. Application to ultracentrifugation of DNA,
proteins and other (bio)colloids

One of the most frequent applications of sedimentation of col-
loidal mixtures is (analytical) ultracentrifugation of DNA, pro-
teins and subcellular components. Equilibrium sedimentation
by centrifugation, which is usually done by density gradient
centrifugation, or isopycnic centrifugation, can for instance
be used to separate DNA molecules of equal length based on
their GC-content [54], to separate RNA from linear DNA, and
linear DNA from supercoiled plasmid DNA [55, 56], to purify
various proteins, to analyze the binding or complexation of two
biomacromolecules [57, 58], and to separate nanorods based
on their length and aspect ratio [59]. In ultracentrifugation
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(a) (b)

Figure 4. Theoretical predictions (equation (4.16)) of the equilibrium sedimentation profiles of two multicomponent mixtures of hard
spheres. All species are present in equal and significant amounts. The solvent in both cases is water with ρF = 1.00 g cm−3. (a) A
three-component mixture with σ1 = 200 nm, ρ1 = 2.20 g cm−3, σ2 = 360 nm, ρ2 = 1.35 g cm−3, σ3 = 600 nm and ρ3 = 1.05 g cm−3. The
total sedimentation profile extends to a height z of ∼3 mm. (b) A three-component mixture with σ1 = 40 nm, ρ1 = 1.60 g cm−3,
σ2 = 68 nm, ρ2 = 1.25 g cm−3, σ3 = 110 nm and ρ3 = 1.02 g cm−3. The total sedimentation profile extends to a height z of ∼80 cm.

the process of sedimentation takes place in a centrifugal field
with an effective strength that is much larger than that of the
gravitational field considered in the previous sections. The
theory presented in the previous sections can, however, still be
applied to calculate the equilibrium sedimentation profiles and
dynamics of sedimentation, if the centrifugal field is taken into
account in µext

i and Ph in equation (3.1). Then, the centrifugal
force, which combines the body force miω

2r and the buoyancy
force vi (∂Ph/∂r), analogous to the gravitational force, is

Fcentr
i =−viρiω

2r − vi
∂Ph

∂r
=−vi (ρi − ρsusp)ω

2r (5.1)

µcentr
i =

miω
2r2

2
+ vi Ph

=
viρiω

2r2

2
+

∫
ρsusp(r)ωr dr

(5.2)

where ω is the angular velocity of the centrifuge (in rad s−1),
r is the distance to the center of the centrifugal axis, and
the equivalent field strength is expressed by ω2r (relative
centrifugal force, rcf), or sometimes by 30ω/π (revolutions
per minute, rpm). Similar to the body force (and potential), the
centrifugal field must be taken into account in the hydrostatic
pressure gradient as well (see equation (2.3)), and, thus,
the total force for the case of uncharged particles in a
centrifugal field becomes (see supporting information for
more details):

F tot
i = −

∂µtot
i
∂z

= −
∂µid

i
∂z
−
∂µexc

i
∂z
− vi (ρi − ρsusp)ω

2r + vi
∂5

∂z
.

(5.3)

Typically, the forces generated by the centrifugal fields
that are used for instance to separate DNA molecules or
proteins, are the equivalent of 105–106 g. Consequently, for
most particles other than small molecules (for which vi is
small enough) the centrifugal contribution to the total force

dominates the thermodynamic forces (−∂µi/∂z) and any
possible other corrections due to particle charges (DNA) or
other soft particle interactions. Hence, for DNA, proteins,
membranes, colloids, and other particles the total force can
safely be simplified to

F tot
i ≈−vi (ρi − ρsusp)ω

2r. (5.4)

As a logical result, these particles will come to a halt
(F tot

i = 0) when their density is equal to the density of the
surrounding suspension, hence the name isopycnic centrifuga-
tion.

In density gradient centrifugation the varying density in
the direction of the centrifugal force is typically generated by
small molecules, such as cesium chloride (σCs ≈ 0.34 nm) or
sucrose (σsucr ≈ 0.92 nm), or small particles such as Percoll
(silica of σ ≈ 10 nm coated with poly(vinyl pyrrolidone)).
A crude estimate of the width of the sedimentation profiles
of these small molecules can be obtained from the so-called
centrifugal length Lω, which is the centrifugal equivalent of
the gravitational length in equation (2.10)

Lω =

√
kBT

vc(ρc− ρF)ω2 . (5.5)

In a typical density gradient centrifugation experiment,
based on cesium chloride with a centrifugal acceleration of
ω2r = 2× 105 g (r = 25 cm), the density gradient of the heavy
cesium ions will be significant for a typical centrifuge tube,
based on the estimated Lω,Cs = 5.1 cm (σCs = 0.34 nm,MCs =

132.9 g mol−1). In agreement with the theory in the previous
sections, a thermodynamic force will oppose the sedimentation
of the cesium ions, leading to a characteristic SDE density
profile. In this case, hard-sphere interactions alone cannot
fully describe the sedimentation profile. Most importantly, the
cesium ion concentrations will be strongly correlated with the
chloride ion concentrations as a result of electroneutrality,
which will mutually affect the sedimentation profiles of
cesium and chloride ions. In a sucrose gradient, the estimated
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centrifugal length at similar centrifuge settings is Lω,sucr =

5.7 cm (σsucr = 0.92 nm,Msucr = 342 g mol−1).
Nonetheless, exact calculation of the thermodynamic

force is often not necessary in density gradient centrifugation
to determine the equilibrium profiles of the biomolecules or
colloids of interest, since they will end up at the point where
their density is matched with the density of the surrounding
(cesium chloride or sucrose) solution (see equation (5.4))
and the local density can be measured by refractive index
measurements of the solution or by weighing successive
aliquots of equal volume from the gradient.

Analytical ultracentrifugation can also be used to obtain
information about the size, shape and effective density of a
particle without density gradients (in pure water for instance).
Application of equation (3.8) to a particle in a centrifugal field
yields a characteristic sedimentation velocity as a function of
buoyant mass and size of the particle

vi− vF ≈ βDi vi (ρi − ρsusp)ω
2r. (5.6)

In experiments without density gradients the sedimenta-
tion velocity is approximately constant, after a short startup
time. It is common to report sedimentation coefficients instead
of sedimentation velocities. Sedimentation coefficients s are
defined as the terminal sedimentation velocity (approximated
by equation (5.6)) normalized by the applied acceleration
(ω2r ).

si =
vi

ω2r
≈ βDi vi (ρi − ρsusp)+

vF

ω2r
(5.7)

which leads to the well-known Stokes sedimentation coef-
ficient in the dilute limit (φ→ 0) for the Stokes–Einstein
approximation of the diffusion coefficient: si = σ

2
i (ρi −

ρF)/18ηF. Sedimentation coefficients have units of time
(Svedberg or second, 1 S = 10−13 s). Theoretical consid-
erations that link the sedimentation coefficients to particle
density, size and shape date back to Svedberg [28, 60], who
mostly considered the ratio si/Di in dilute limits. We note
that in the more general case of sedimenting particles, the
density of the suspension and the diffusivity of the particles
in suspension are the relevant parameters that govern the
sedimentation behavior of particles in a centrifugal field, in
agreement with the general force balance in equations (3.5)
and (3.8). In simple, single-component suspensions of hard
spheres, however, the sedimentation coefficient of the colloidal
particles may also be calculated using the fluid density (see
supporting information) [28].

Finally, the dynamics of sedimentation in an ultracen-
trifuge can also be used to separate particles with identical
densities but different sizes or shapes [61, 62]. Particles with
different sizes and shapes will differ in their characteristic sedi-
mentation velocity vi and diffusivity Di . Initially homogenized
mixtures of these particles may thus separate into temporary
bands during sedimentation [61], which can be isolated for
further studies.

6. Application to charged colloids

So far we have limited our theory to particles that only
interact as hard spheres. However, when the particles are

charged, and the ionic strength of the solvent is low, the
sedimentation–diffusion equilibrium (SDE) profile becomes
strongly inflated because gravity (centrifugation) must not only
compete with the entropy of the colloids, but with those of
the ions as well [30, 63–65]. In this section we analyze how
the presence of charges on the colloids modifies the theory
outlined in the previous sections. We use a set of experimental
data on charged silica particles (σ ≈ 40 nm) in ethanol in a
centrifugal field from [26, 66]. We will use these data to show
the differences in the predicted behavior between particles with
a fixed charge and particles with a charge that depends on the
local concentration of ions and colloids.

The experimental sedimentation profiles of charged silica
particles, which are based on the data in figure 11 of [66]
and corrected for the actual size of the silica particles,
are shown in figure 5(a). These sedimentation profiles are
strongly inflated due to the electrostatic interactions between
the particles, as can be seen from the corresponding theoretical
sedimentation profile of uncharged hard spheres with the same
centrifugal length, depicted at the very left in figure 5(a). The
sedimentation–diffusion equilibrium profiles and the osmotic
pressure of the one-component suspension of charged silica
particles (we neglect the effect of gravity on the ions) are
interrelated via [27, 63, 67–72]

∂5

∂r
=

n(r)kBT r
L2
ω

= φ(ρc− ρF)ω
2r (6.1)

where n(r) is the colloid number density, ω is the centrifugal
speed (in rad s−1), r is the radial coordinate, Lω is the
centrifugal length (see equation (5.5)) and the label c is used
to denote the colloidal particles.

In equilibrium, the total potential of the particles (see
equation (3.1)) is constant with height. For charged particles
the electrostatic contribution to the total potential must be
taken into account explicitly. If the charge of the particles is a
function of the local concentration of ions (including protons
as the most common charge-determining ions), it thus depends
on the local electrostatic potential ψ (or y), and an additional
equation is needed to take this charge regulation into account,
as discussed in detail in [63].

In the derivation of the equation of state for charged
colloids in suspension, we use a mean-field approach, as
was done in the thermodynamic derivations in the previous
sections as well. We further assume that the colloids are
very dilute (µexc

i = 0), which is supported by experiments
(see figure 5(a)), and we assume that a condition of local
electroneutrality holds at each height in the column, which is a
reasonable assumption throughout the bulk of the sedimenting
sample, except very close to the top and bottom walls [65, 73].
Hence, at each height

Zφ
vc
− 2n∞ sinh y = 0 (6.2)

holds, where n∞ is the ionic strength of the suspension,
evaluated in the absence of colloids (i.e., in the supernatant),
assuming that all ions are monovalent, fully dissociated, and
Boltzmann distributed in the potential field without volumetric
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(a)

(b)

(c)

Figure 5. (a) Centrifugal sedimentation–diffusion equilibrium
density profiles for σ = 43.8 nm silica particles in ethanol
(Lω = 2.94 mm) at different values of the ionic strength, as a result
of different average volume fractions of colloids: φ0 = 0.045%
corresponds to κ−1

= 56 nm, φ0 = 0.20% to κ−1
= 47 nm and

φ0 = 0.48% to κ−1
= 39 nm [26, 63]. The black line close to the

left vertical axis is a theoretical sedimentation profile of uncharged
hard spheres with the same centrifugal length Lω. (b) Osmotic
pressure (equation (6.1)) data as a function of volume fraction φ for
the data in (a) on a double-logarithmic scale. (c) The same on a
linear scale. All dashed lines are fits to a model that assumes a fixed
colloid charge (with Zc = 33, 46 and 65 for φ0 = 0.045%, 0.20%
and 0.48% respectively); solid lines are fits to a model that includes
charge regulation (with Z∞ = 35, 54 and 79).

interactions and no centrifugal force acting on them. Using
equation (6.2), the local electrostatic potential ψ (or y) in
equation (3.1) can be written as a function of the colloid volume
fraction φ.

The osmotic pressure of a colloidal mixture of particles
of a fixed colloid charge, Zc, is given by [74–77]

5c

kBT
=
φ

vc
+ 2n∞

√1+
(

Zcφ

2n∞vc

)2

− 1

 . (6.3)

If instead, the charge of the colloids is regulated by
the local ion concentration, according to a simple Langmuir
isotherm in the limit of a low ionization degree, equation (6.3)
must be replaced by [63]

5c

kBT
=
φ

vc
+ 2n∞

[
X + X−1

2
− 1

]
(6.4)

with

X =

√
1+

Z∞φ
n∞vc

(6.5)

where Z∞ is the charge of the colloids at infinite colloid
dilution (φ→ 0). As the concentration of colloids increases,
the actual charge Zr(φ) becomes less than Z∞, according to

Zr(φ)= Z∞

√
n∞vc

n∞vc+ Z∞φ
. (6.6)

As an example, for one data set in figure 5 we estimate that the
charge of σ = 44 nm colloids in suspension with an ionic
strength n∞ = 10−5 nm−3 (κ−1

= 39 nm) decreases from
Zr = 79 at infinite dilution to Zr = 25 when the particles are
compressed to φ = 5%. Equation (6.6) also shows that when
the ionic strength n∞ increases, the charge reduction upon
increasing φ is suppressed. We note that the model for charge
regulation has the same number of free parameters as the model
for a fixed colloid charge.

In figure 5 we compare the model assuming a fixed
particle charge, and the model assuming charge regulation,
with the data. We use values for the ionic strength (via
Debye length, κ−1) as shown in table 1 of [63], and a
value of Lω = 2.94 mm, based on a measured value for the
particle diameter σ = 43.8 nm, for all data sets. Figure 5(b)
shows osmotic pressure data and theoretical predictions on a
double-logarithmic scale. Both the model with a fixed charge
and the model with a regulated charge seem to describe the
data quite well. However, when we look at the same data
on a linear scale in figure 5(c) we see a significant deviation
at high φ (φ > 0.35%) for the fixed charge model, as also
observed in [66]. On the other hand, the model including
charge regulation remains very accurate up to much higher
concentrations: up to φ ≈ 1.4% for the φ0 = 0.48% dataset.
At even higher φ equation (6.4) overestimates the osmotic
pressure, suggesting that either the charge of the colloids
decreases more rapidly than predicted by equation (6.4), or
a weak non-electrostatic attraction develops at high φ.

Using the same values for Z∞ we also predict the
correct sedimentation–diffusion equilibrium density profiles
(equation (6.1) and figure 5(a)). Finally, we note that we have
used the same values for the charge at infinite dilution Z∞ as
in [63] and the same values for κ−1 and n∞ as in [26, 66].

In conclusion, assuming regulation of the charge of silica
colloids upon compression, we obtain a very accurate descrip-
tion of the osmotic pressure of colloidal silica in ethanol,
much better than when a fixed charge is assumed. Up to a
particle volume fraction of at least 1%, no further corrections
are required to describe the data. On a double-logarithmic
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scale the experimental 5c(φ) data follow a characteristic
S-shaped curve, which is accurately reproduced only by the
charge-regulation model. These findings suggest that silica
particles indeed reduce their surface charge when they are
being concentrated [63, 71], and that charge regulation should
be included in an accurate model for the equation of state
of silica in ethanol, and, most likely, in other suspensions of
charged colloids as well.

7. Application to dumbbells, trimers and colloidal
chains

In this final section we briefly address the particle shape as an
important factor in the SDE profiles and their dynamic devel-
opment. For multicomponent suspensions of rods or disks, we
give the relevant expressions for the chemical potential, based
on previous reports, in the supporting information.

For multicomponent systems containing one or more
particle types that consist of hard spherical particles (beads)
that are connected into dumbbells (dimers, consisting of two
beads) [78, 79], trimers (three beads) [61] or short chains of N
particles (N beads) [80], we propose a simple modification of
the BMCSL theory and the power series as given in section 4,
namely we correct the terms that account for the translational
entropy of the connected particles in equations (4.1) and
(4.3) with a 1/Ni term, i.e. the ideal term lnφi and the
term for these particles in ξ0. This approach is common in
Flory–Huggins polymer theory and has been suggested before
in [81]. As a result, in the polydisperse mixture the parameter
ξ0 (equations (4.4) and (4.5)) will change according to:

ξ0,N =
∑

j

φ jσ
−3
j N−1

j (7.1)

and the ideal entropy term (φi/vi ) ln(φi/vi ) in equation (4.1)
will change to (φi/Nivi ) ln(φi/vi ). The other terms, which
account for excluded volume interactions, will remain un-
changed, assuming that the volume excluded by two connected
hard spheres is equal to the volume excluded by two separate
hard spheres of equal size. Thus, using the definition of
the chemical potential: µi = vi (∂ f/∂φi ) and (∂ξ0,N/∂φi )=

(ξ0,N/Niσ
3
i ), we can derive the following expression for

the excess chemical potential per bead of species i in a
polydisperse mixture according to the BMCSL equation of
state,

µexc
i,N

kBT
= −

(
1
Ni
+

2ξ3
2σ

3
i

φ3 −
3ξ2

2σi
2

φ2

)
ln(1−φ)

+
3ξ2σi + 3ξ1σi

2
+ ξ0,Nσ

3
i

1−φ
+

3ξ2
2σi

2

φ(1−φ)2

+
3ξ1ξ2σ

3
i

(1−φ)2
− ξ3

2σ
3
i
φ2
− 5φ+ 2

φ2(1−φ)3
. (7.2)

Following the same strategy as in section 4 we can write
equation (7.2) as a series of powers of φ:

µexc
i,N

kBT
=

∞∑
λ=1

[(
λ2
− 2λ− 1+

2
λ

)
A3
+ 3

(
λ−

1
λ

)
A2

+ 3(λ− 1)AB+ 3A+ 3B+CN +
1
λNi

]
φλ (7.3)

where CN =
∑

j α
3
i jζ j/N j . The derivation of this series is

given in the supporting information. In the case that we have
only two species (monomers and N-mers) and the fraction of
N-mers is very small: φN � φ1:

µexc
N

kBT
=

∞∑
λ=1

[
(1+ λα)3+ 3(λ− 1)α2

+ (λ− 1)(λ− 2)α3
− 1+

1
N

]
φλ1
λ
. (7.4)

In figure 6 we show the effect of the connectivity of
particles on the SDE profiles. As expected, SDE profiles
of dimers, trimers and, in general, N-mers extend less far
than SDE profiles of monomeric particles. The translational
entropy that opposes the effect of gravity is smaller for the
clusters than for monomers. The effect is, however, small
and the separation of the clusters will be even smaller in a
strong centrifugal field (assuming all clusters have the same
density ρc). As a consequence, it is, in practice, very difficult
to separate clusters of the same density but of different size, in
a simple sedimentation experiment or by centrifugation (see
section 5) [61]. Instead, separation of these clusters during
dynamic centrifugation relies on differences in sedimentation
velocity caused by differences in the effective cross-sectional
area of the clusters.

8. Concluding remarks

Sedimentation of proteins, colloids, and larger particulate
matter remains an intriguing and inspiring topic. We argue that
the suspension density must be used to calculate the buoyancy
force. As a result of canceling terms in the gravitational
(centrifugal) force and the thermodynamic force or potential,
the equilibrium sedimentation profiles can be calculated using
the difference between the density of the sedimenting particles
and the fluid. Nonetheless, many experimental phenomena
in sedimenting systems require the consideration that the
suspension density is the buoyant density. We have given a
general theoretical framework that can be used to calculate
both equilibrium sedimentation profiles and their dynamic de-
velopment, under the assumption of local thermal equilibrium,
for any kind of particles and mixtures of particles.

We have shown examples for mixtures of hard spheres,
clusters of spheres and for suspensions of charged particles.
For suspensions of hard spheres to which a trace amount of
another type of particle is added, the theory can be simplified
using an elegant power series of the BMCSL equation of
state. We have shown that this expression yields predictions
for the entire density profiles of the tracer particles that are
in perfect agreement with experiments. In multicomponent
mixtures outside the tracer limit, the full theory must be
used and we have shown that it predicts interesting cases
of sedimentation banding for hard spheres of different sizes
and densities. We extended our theory to charged particles,
and spheres that are connected into dimers, trimers and short
chains. Our approach is not limited to particles in a certain
size range. It can be applied to mixtures, to hard and charged
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Figure 6. (a) Theoretical predictions (equations (4.1) and (7.2)) of the equilibrium sedimentation profiles of a suspension of hard spheres
(beads) (σ = 300 nm, ρ = 1.19 g cm−3) that are either unconnected (monomers, label 1) or connected together as dimers (2), trimers (3),
pentamers (5), heptamers (7) or decamers (10), each in a solution with ρF = 1.04 g cm−3. For each profile the equilibrium volume fraction
at z = 0 is fixed at φ = 0.30. (b) As in (a), but for a mixture of monomers, dimers, trimers, pentamers, heptamers and decamers, with for
each type the same amount. The inset shows the cumulative volume fraction profile of this multicomponent mixture.

particles, and it covers both equilibrium sedimentation profiles
and their dynamic development.

For soft, compressible particles and strongly interacting
particles, our general theoretical framework might serve as a
basis for a further generalization of the concept of buoyancy.
We believe that our formulation of the buoyancy force as a
pressure gradient and the thermodynamic force as a gradient
of the (total) potential and the gradient of the osmotic pressure
(see section 3) opens the possibility to define buoyancy and
describe sedimentation for particles without a well-defined
volume, such as star-shaped polymers and compressible mi-
crogel beads, and for particles that are strongly interacting.
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