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1 Force balances in suspensions of particles

1.1 Suspension with one type of particle

The concentration-dependent part of thermodynamic force on a particle in a one-component suspension of monodis-

perse particles at constant temperature, omitting the labels for constant temperature for clarity, can be written

as

F th
i = −

(
∂µc

∂φ

)
P

∂φ

∂z
(1)

where the label c is used to denote the colloidal particles, the label F is used to denote the suspending fluid and φ

is the volume fraction of colloidal particles. The derivative of the chemical potential to particle concentration can

be rewritten using the method of Jacobian determinants [1, 2](
∂µc

∂φ

)
P

=

(
∂µc

∂φ

)
µF

+
(∂µc/∂P )nc (∂µF/∂φ)P

(∂µF/∂P )nc

. (2)

The derivative (∂µc/∂P )nc
is the specific volumes of the colloidal particles, which for an incompressible

suspension is equal to the particle volume vc. The derivative (∂µF/∂P )nc can be shown to be [2](
∂µF

∂φ

)
nc

= v̄F − φ κ
(
∂µF

∂φ

)
P

(3)

where κ = −(1/V )(∂V/∂P )T is the isothermal compressibility. For an incompressible suspension (κ = 0), the

above expression simplifies to the molecular volume of the fluid vF.

Using the Gibbs-Duhem equation for this suspension at constant (local) pressure [3, 4]:

0 = nF dµF + nc dµc dµF = − nc
nF

dµc , (4)

we can rewrite Equation 2 for an incompressible suspension:

(
∂µc

∂φ

)
P

=

(
∂µc

∂φ

)
µF

+
vcnc
vFnF

(
∂µc

∂φ

)
P

=

(
∂µc

∂φ

)
µF

+
φ

1− φ

(
∂µc

∂φ

)
P

(5a)(
∂µc

∂φ

)
P

= (1− φ)

(
∂µc

∂φ

)
µF

=
vc(1− φ)

φ

(
∂Π

∂φ

)
µF

. (5b)

We note that the differential equation describing the SDE in a one-component suspension can also be obtained

by considering the forces acting on the fluid. The gravitational force:

F grav
F = −vFρFg − vF

∂P h

∂z
= −vi(ρF − ρsusp)g (6)

should be balanced by the thermodynamic force [4]:
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F th
F = −

(
∂µF

∂φ

)
P

∂φ

∂z
= +vF

(
∂Π

∂φ

)
µF

∂φ

∂z
(7)

which, after rewriting, leads to:

F grav
F + F th

F = 0 (8a)

∂φ

∂z
=

(ρF − ρsusp)g

(∂Π/∂φ)µF

= − φ(ρc − ρF)g

(∂Π/∂φ)µF

(8b)

1.2 Suspension with multiple types of particles

In general, in a multicomponent suspension of particles, the thermodynamic force depends on the concentration

gradient of all components:

F th
i = − µi

∂z
= −

∑
j

(
∂µi
∂φj

)
P,nk

∂φj
∂z

(9)

where nk indicates that the derivative is taken at a constant concentration of all other components k 6= j. For

i = j, and assuming that the suspension is incompressible, we have:

(
∂µi
∂φi

)
P,nk

=

(
∂µi
∂φi

)
µF,nk

+
(∂µi/∂P )ni,nk

(∂µF/∂φi)P,nk

(∂µF/∂P )ni,nk

(10a)

=

(
∂µi
∂φi

)
µF,nk

+
vi
vF

(
∂µF

∂φi

)
P,nk

. (10b)

For i 6= j, we have:

(
∂µi
∂φj

)
P,nk

=

(
∂µi
∂φj

)
µF,nk

+
(∂µi/∂P )nj ,nk

(∂µF/∂φj)P,nk

(∂µF/∂P )nj ,nk

(11a)

=

(
∂µi
∂φj

)
µF,nk

+
vi
vF

(
∂µF

∂φj

)
P,nk

. (11b)

Summation yields:

F th
i = −

∑
j

(
∂µi
∂φj

)
µF,nk

∂φj
∂z
− vi

vF

∑
j

(
∂µF

∂φj

)
P,nk

∂φj
∂z

(12a)

= −
∑
j

(
∂µi
∂φj

)
µF,nk

∂φj
∂z

+ vi
∂Π

∂z
(12b)

where we used vF dΠ = −dµF [1, 4]. This final equation is in agreement with the thermodynamic force we used in

our generalized theory in the main text.

2 Osmotic pressure gradient in equilibrium

First of all, we note that the Gibbs-Duhem (GD) equation for the system with the fluid treated as a continuum,

dΠ =
∑
i

ni dµi , (13)

where the sum runs over all particle types (solvent excluded), allows writing the gradient of the chemical potential

as a gradient of the osmotic pressure, for the case of incompressible particles and an incompressible fluid. For a

single-component suspension, we obtain

vc
∂Π

∂φ
= φ

∂µc

∂φ
. (14)
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We note that the GD equation (Equation 13) follows logically from the definitions of the osmotic pressure and the

chemical potential:

µi = vi
∂f

∂φi
(15a)

Π = φ
∑
i

φi
∂

∂φi

(
f

φ

)
(15b)

where φ =
∑
i φi is the total particle volume fraction and f is the free energy density of the mixture.

If we now multiply the equation for the total force (cf. Equation 3.6 in the main text):

by ni, sum over all particle species, and insert the GD equation 13 for the gradients of the chemical potential, and

Equation 1.1 from the main text for the suspension density, we arrive at the following expression for the osmotic

pressure gradient in equilibrium:

∂Π

∂z
= −g(ρsusp − ρF) . (16)

3 Power series expansion of BMCSL equation of state

The excess chemical potential of an ion in the BMCSL equation of state can be written as

µex
i

kBT
= −

(
1 +

2ξ2
3σi

3

φ3
− 3ξ2

2σi
2

φ2

)
ln (1− φ) +

3ξ2σi + 3ξ1σi
2 + ξ0σi

3

1− φ

+
3ξ2

2σi
2

φ(1− φ)2
+

3ξ1ξ2σi
3

(1− φ)2
− ξ23σi3

φ2 − 5φ+ 2

φ2(1− φ)3
(17)

where ξk (k = 0, 1, 2) is given by ξk =
∑
j φjσj

k−3 where j runs over all particles. We rewrite the products ξkσi
3−k

as follows

ξkσi
3−k =

∑
j

φjσi
3−kσj

k−3 = φ
∑
j

α 3−k
ij ζj (18)

where αij = σi/σj is the ratio of the particle sizes and ζj = φj/φ = φj/
∑
m φm is the relative volume fraction of

particles j (e.g., in a mixture of 50 particles of type 1 and 50 particles of type 2 that have a three times smaller

volume than particles 1, ζ1 = 0.75 and ζ2 = 0.25). Consequently,
∑
j ζj = 1. We assume that the weighted

sums of the fractions of particles (
∑
j α

k
ij ζj) are independent of the overall volume fraction φ and we abbreviate∑

j αij ζj = A,
∑
j α

2
ij ζj = B and

∑
j α

3
ij ζj = C.

In order to find an expansion of Equation 17 we rewrite it in terms of A, B and C

µex
i

kBT
= −

(
1 + 2A3 − 3A2

)
ln (1− φ) +

3A+ 3B + C

1/φ− 1
+

3A2φ+ 3ABφ2

(1− φ)2
−A3 φ

3 − 5φ2 + 2φ

(1− φ)3
. (19)

The power series expansion around φ = 0 of Equation 19 reads

lim
φ→0

µex
i

kBT
=

∞∑
λ=1

1

λ

(
1 + 2A3 − 3A2

)
φλ + (3A+ 3B + C)φλ + 3A2λφλ + 3AB(λ− 1)φλ + (λ2 − 2λ− 1)A3φλ(20)

=

∞∑
λ=1

[(
λ2 − 2λ− 1 +

2

λ

)
A3 + 3

(
λ− 1

λ

)
A2 + 3 (λ− 1)AB + 3A+ 3B + C +

1

λ

]
φλ

Several useful limits of this power series are considered in detail.
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3.1 Equally sized spheres

In the limit of equally sized spheres, αij = 1 for all i and j. Consequently, A = 1, B = 1 and C = 1 and

lim
φ→0

µex,CS
i

kBT
=

∞∑
λ=1

[
λ2 + 4λ+ 3

]
φλ (21)

which yields the prefactors of the power series expansion of the Carnahan-Starling equation of state for hard spheres

(8, 15, 24, 35, 48, . . . ).

3.2 Infinitely small particles i, σ1 � σ2

In the limit of infinitely small particles i, αii = 1 and αij = 0 for i 6= j, and ζi = 0. Consequently, A = 0, B = 0

and C = 0, and

lim
φ→0

µex,Bik
i

kBT
=

∞∑
λ=1

1

λ
φλ (22)

which yields the prefactors of the Bikerman expression (1, 1/2, 1/3, 1/4, . . . ).

3.3 Tracer limit φ1 � φ2

In the tracer limit with φ1 � φ2, ζ1 = 0 and ζ2 = 1. Consequently, A = α12 = σ1/σ2, B = α 2
12 and C = α 3

12, and

lim
φ→0

µex,trace
i

kBT
=

∞∑
λ=1

1

λ

[
(1 + λα)3 + 3(λ− 1)α2 + (λ− 1)(λ− 2)α3

]
φλ2 (23)

where we abbreviated α = α12. Note that this equation will hold for all tracer particles that have a negligible

concentration, in multicomponent mixtures with one majority species (type 2 in the above example).

Note that in the above three limits (Sections 1.1, 1.2 and 1.3), the assumption that the weighted sums of the

fractions of particles are independent of the overall volume fraction φ is no longer needed, since the particles either

have the same volume (Section 1.1), one has a negligible volume (Section 1.2) or one has a negligible volume

fraction (Section 1.3). Therefore, these limits can safely be applied in sedimentation problems. The full expression

in Equation 19 can be used in homogenized mixtures. In sedimentation problems, where the local fraction of one

component does depend on the overall volume fraction, the power series expansion in Equation 19 must be applied

with care.

4 BMCSL equation of state for connected spheres (dimers, trimers

and colloidal chains)

For the free energy density of the BMCSL equation of state of mixtures of monomers, dimers, trimers, etc., we

propose:

f

kBT
=
∑
i

φi
Nivi

ln
φi
vi

+
6

π

[
−ξ0,N ln(1− φ) +

3ξ1ξ2
1− φ

+
ξ2

3

φ(1− φ)2
+
ξ2

3 ln(1− φ)

φ2

]
(24)

where

ξ0, N =
∑
j

φjσ
−3
j N−1j . (25)

Using Equation 15a, we obtain the following expression for the excess chemical potential per bead (which is the

hard sphere subelement of the dimers, trimers, etc.) in a BMCSL mixture of (clusters of) hard spheres:

µex
i, N

kBT
= −

(
1

Ni
+

2ξ2
3σi

3

φ3
− 3ξ2

2σi
2

φ2

)
ln (1− φ) +

3ξ2σi + 3ξ1σi
2 + ξ0, Nσi

3

1− φ

+
3ξ2

2σi
2

φ(1− φ)2
+

3ξ1ξ2σi
3

(1− φ)2
− ξ23σi3

φ2 − 5φ+ 2

φ2(1− φ)3
(26)
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and the ideal part of the chemical potential per bead is

µid
i, N =

kBT

Ni
lnφi . (27)

An elegant expansion of excess chemical potential term in Equation 26 can be found, following the same strategy

as outlined in the previous section. We use

ξ0, Nσi
3 = φ

∑
j

N−1j α 3
ij ζj = φCN and

∂ξ0, N
∂φi

=
ξ0, N
Niσi3

(28)

The resulting expansion in powers of φ can then be written as

lim
φ→0

µex
i

kBT
=

∞∑
λ=1

1

λ

(
1

Ni
+ 2A3 − 3A2

)
φλ + (3A+ 3B + CN )φλ

+3A2λφλ + 3AB(λ− 1)φλ + (λ2 − 2λ− 1)A3φλ (29)

=

∞∑
λ=1

[(
λ2 − 2λ− 1 +

2

λ

)
A3 + 3

(
λ− 1

λ

)
A2 + 3 (λ− 1)AB + 3A+ 3B + CN +

1

λNi

]
φλ .

5 Direct differential equations of sedimentation profiles in two- and

three-component mixtures

The general differential equation that describes the sedimentation profiles in multicomponent mixtures of colloidal

particles is given by Equation 4.1 in the main text. For each component, the differential equation depends on all

gradients ∂φi/∂z and on the derivatives ∂µi/∂φj , which can be written explicitly.

5.1 Full expression for ∂µi/∂φj

Starting from Equation 17, the partial derivatives can be written as

β
∂µexc

i

∂φj
= −6σi

3ξ2
φ4

ln (1− φ)

(
ξ2φ

(
1

σi
+

1

σj

)
− ξ22 −

φ2

σiσj

)

+
3σi/σj + 3(σi/σj)

2 + (σi/σj)
3

1− φ
+

3ξ2σi + 3ξ1σi
2 + ξ0σi

3

(1− φ)2

+
φ2

(1− φ)4

(
3ξ1σi

3

σj
+

3ξ2σi
3

σj2

)
+

φ

(1− φ)4

(
ξ2

2σi
2

(
3− 6ξ1σi

ξ2

)
+

3ξ2σi
2(2− 2ξ1σi + ξ2σi)

σj
− 6ξ2σi

3

σj2

)
+

1

(1− φ)4

(
ξ2

2σi
2

(
6ξ1σi
ξ2
− 5ξ2σi − 18

)
+

3ξ1σi
3 − 12ξ2σi

2 − 18ξ2
2σi

3

σj
+

3ξ2σi
3

σj2

)
+

1

φ(1− φ)4

(
ξ2

2σi
2(26ξ2σi + 21) +

6ξ2σi
2 + 21ξ2

2σi
3

σj

)
+

1

φ2(1− φ)4

(
−ξ22σi2(21ξ2σi + 6)− 6ξ2

2σi
3

σj

)
+

6ξ2
3σi

3

φ3(1− φ)4
. (30)

In addition, βµid
i = (1/φi)(∂φi/∂z), hence, ∂µid

i /∂φj = 0, for i 6= j, and ∂µi/∂φj = ∂µex
i /∂φj .

In the tracer limit, with one majority component (the volume fractions of all other components i can be neglected

compared to the volume fraction of the majority component, φi � φ, we write αi = σi/σ, with σ the diameter of

the particles of the majority species, and thus ∂µexc
i /∂φ can be written analytically as follows:

β
∂µexc

i

∂φ
=

6α3
i + 2α3

i (3− 2αi)(1− φ) + 3αi(1− α2
i )(1− φ)2 + (2α3

i − 3α2
i + 1)(1− φ)3

(1− φ)4
(31)

5



which, for α = 1 simplifies to the derivative of the Carnahan-Starling equation of state (see also eq. A9 in Ref. [5]):

β
∂µexc

∂φ

∣∣∣∣
α=1

=
8− 2φ

(1− φ)4
. (32)

Using this expression in Equation 31, we find that the particle volume fraction of the majority particles at the

maximum in the distribution of one of the tracer particles i is given by Equation 4.11 in the main text (with αi = α

and φ∗2 = φ). Alternatively, ∂µexc
1 /∂φ2 can be approximated by a series of powers (Equation 4.8 in the main text)

and the expression for φ∗ becomes:

Lg,2

Lg,1
= α3φiso2 =

∞∑
λ=1

[
(1 + λα)3 + 3(λ− 1)α2 + (λ− 1)(λ− 2)α3

]
φ∗2
λ

1 + (8φ∗2 − 2φ∗2
2)(1− φ∗2)−4

. (33)

5.2 Two-component mixtures

We abbreviate β∂µex
i /∂φj as µij . Please note that this definition of µij differs slightly from the definition used in

the main text, for reasons of clarity of the equations below. In a two-component mixture, two differential equations

with two unknown density gradients define the sedimentation profile.

1

φ1

∂φ1
∂z

+ µ11
∂φ1
∂z

+ µ12
∂φ2
∂z

= − 1

Lg,1
(34)

1

φ2

∂φ2
∂z

+ µ21
∂φ1
∂z

+ µ22
∂φ2
∂z

= − 1

Lg,2
(35)

After rewriting, we obtain:

∂φ1
∂z

=

(
− 1

Lg,1
+

µ12

Lg,2(1/φ2 + µ22)

)(
1

φ1
+ µ11 −

µ12µ21

1/φ2 + µ22

)−1
(36)

∂φ2
∂z

=

(
− 1

Lg,2
+

µ21

Lg,1(1/φ1 + µ11)

)(
1

φ2
+ µ22 −

µ21µ12

1/φ1 + µ11

)−1
≈ − 1

Lg,2(1/φ2 + µ22)
(37)

where the second (approximate) identity hold for the majority species in the tracer limit. These direct differential

equations can be solved by standard numerical integration techniques.

5.3 Three-component mixtures

In a three-component mixture, three differential equations with three unknown density gradients define the sedi-

mentation profile.

1

φ1

∂φ1
∂z

+ µ11
∂φ1
∂z

+ µ12
∂φ2
∂z

+ µ13
∂φ3
∂z

= − 1

Lg,1
(38)

1

φ2

∂φ2
∂z

+ µ21
∂φ1
∂z

+ µ22
∂φ2
∂z

+ µ23
∂φ3
∂z

= − 1

Lg,2
(39)

1

φ3

∂φ3
∂z

+ µ31
∂φ1
∂z

+ µ32
∂φ2
∂z

+ µ33
∂φ3
∂z

= − 1

Lg,3
(40)

We abbreviate (1/φi + µii) as µ∗i . After rewriting, we obtain:
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∂φ1
∂z

=
L −1g,1 (µ23µ32 − µ∗2µ∗3) + L −1g,2 (µ∗3µ12 − µ13µ32) + L −1g,3 (µ∗2µ13 − µ12µ23)

µ∗1(µ∗2µ
∗
3 − µ23µ32) + µ12(µ23µ31 − µ∗3µ21) + µ13(µ21µ32 − µ∗2µ31)

(41)

∂φ2
∂z

=
L −1g,1 (µ∗3µ21 − µ23µ31) + L −1g,2 (µ13µ31 − µ∗1µ∗3) + L −1g,3 (µ∗1µ23 − µ13µ21)

µ∗2(µ∗1µ
∗
3 − µ13µ31) + µ21(µ12µ32 − µ∗3µ12) + µ23(µ12µ31 − µ∗1µ32)

(42)

∂φ3
∂z

=
L −1g,1 (µ∗2µ31 − µ21µ32) + L −1g,2 (µ∗1µ32 − µ31µ12) + L −1g,3 (µ12µ21 − µ∗1µ∗2)

µ∗3(µ∗1µ
∗
2 − µ12µ21) + µ31(µ12µ23 − µ∗2µ13) + µ32(µ21µ13 − µ∗1µ23)

(43)

6 Force balance in a centrifugal field

Starting from Equation 51 in the main text, we obtain the following force balance for a one-component suspension

in sedimentation-diffusion equilibrium in a centrifugal field (incompressible particles and fluid)

F tot
i = 0 =

vc(ρc − ρF)ω2r

kBT
= − 1

φ

∂φ

∂r
− β ∂µ

ex
i

∂φ

∂φ

∂r
(44)

∂φ

∂r2
= −2vc(ρc − ρF)ω2

kBT

(
1

φ
+
∂µex

c

∂φ

)−1
(45)

∂φ

∂r2
= − 2

Lω
2

(
φ

1 + 8φ−2φ2

(1−φ)4

)
. (46)

In Equation 46 we inserted the Carnahan-Starling equation of state for hard spheres.

7 Sedimentation coefficient in a one-component suspension

We start from Equation 55 in the main text, and insert an expression for the fluid velocity in single component

suspensions of hard spheres from Equation 29 in the main text:

si =
vc

ω2r
≈ βDc vc(ρc − ρsusp)− φ

1− φ
vc

ω2r
(47)

= βDc vc(1− φ)2(ρc − ρF) . (48)

8 Equations of state for mixtures of rods and disks

For rods we may use the analytical 1-D equation of state of Tonks gas [6].

µex
rod

kBT
= ln

(
1

1− η

)
+

η

1− η
(49)

where η is the line fraction (1-D analogue of the volume fraction). This EOS is expected to yield realistic results

for very long rods, which are forced to orient themselves in the direction of gravity as they sediment, due to the

high flow resistance in any other orientation.

For (mixtures of) disks, we may use the empirical 2-D equation of state of Boublik, which was recently reported

[7].

µex
i

kBT
= Ac,i

(
1 + γs + γ2s y/7

1− y
+
γs y(1 + γs y/14)

(1− y)2

)
(50)
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where y is the 2-D filling fraction, Ac,i is area of the disk, Rc,i is the mean radius (perimeter divided by 2π) and

γs is given by

γs =
π
∑
i xiRc,i

2∑
i xiAc,i

(51)

9 Movies

The following set of movies is available as Supporting Information:

1. tracer A dpmma yz 5fps.mp4

(see also Figure 2A) Sedimentation dynamic of a bidisperse suspension of hard spheres with one majority

particle (left panel, blue line: MFA, σ2 = 180 nm, ρ2 = 2.14 g/cm3, φ2 at t = 0 is 0.15) and one particle

present in trace amounts (right panel, red line: d-PMMA, σ1 = 1.0 µm, ρ1 = 1.28 g/cm3, φ1 at t = 0 is 10−4)

in a mixture of urea and water (ρF = 1.04 g/cm3) as solvent. The tracer particles have a higher density than

the homogeneous suspension (ρsusp at t = 0 is 1.20 g/cm3). Progress of time is indicated in the left panel in

seconds.

2. tracer A dpmma zy 5fps.mp4

Same as movie [tracer A dpmma yz 5fps.mp4], but with φ plotted on the x-axis and height plotted on the

y-axis.

3. tracer B pmma yz 5fps.mp4

(see also Figure 2B) Sedimentation dynamic of a bidisperse suspension of hard spheres with one majority

particle (left panel, blue line: MFA, σ2 = 180 nm, ρ2 = 2.14 g/cm3, φ2 at t = 0 is 0.15) and one particle

present in trace amounts (right panel, red line: PMMA, σ1 = 1.0 µm, ρ1 = 1.19 g/cm3, φ1 at t = 0 is 10−4)

in a mixture of urea and water (ρF = 1.04 g/cm3) as solvent. The tracer particles have almost the same

density as the homogeneous suspension (ρsusp at t = 0 is 1.20 g/cm3). Progress of time is indicated in the

left panel in seconds.

4. tracer B pmma zy 5fps.mp4

Same as movie [tracer B dpmma yz 5fps.mp4], but with φ plotted on the x-axis and height plotted on the

y-axis.

5. tracer C pema yz 5fps.mp4

(see also Figure 2C) Sedimentation dynamic of a bidisperse suspension of hard spheres with one majority

particle (left panel, blue line: MFA, σ2 = 180 nm, ρ2 = 2.14 g/cm3, φ2 at t = 0 is 0.15) and one particle

present in trace amounts (right panel, red line: PEMA, σ1 = 1.0 µm, ρ1 = 1.12 g/cm3, φ1 at t = 0 is 10−4)

in a mixture of urea and water (ρF = 1.04 g/cm3) as solvent. The tracer particles have a lower density than

the homogeneous suspension (ρsusp at t = 0 is 1.20 g/cm3). Progress of time is indicated in the left panel in

seconds.

6. tracer C pema zy 5fps.mp4

Same as movie [tracer C dpmma yz 5fps.mp4], but with φ plotted on the x-axis and height plotted on the

y-axis.

7. flag A yz 8fps.mp4

(see also Figure 3a) Sedimentation dynamics of a three-component mixture of hard spheres with σ1 = 200

nm, ρ1 = 2.20 g/cm3 (left panel, red line); σ2 = 360 nm, ρ2 = 1.35 g/cm3 (middle panel, blue line); σ3 =

600 nm and ρ3 = 1.05 g/cm3 (right panel, green line). All three components have an average volume fraction

of φ0 = 7.5%. The solvent is water with ρF = 1.00 g/cm3 and the total sedimentation profiles extends

approximately 3 mm. Progress of time is indicated in the left panel in seconds.

8. flag A zy 8fps.mp4

Same as movie [flag A yz 8fps.mp4], but with φ plotted on the x-axis and height plotted on the y-axis.

9. flag A color rwb withtext.mp4

Same as movie [flag A yz 8fps.mp4], but visualized using three different colors: blue for component 1, white

for component 2 and red for component 3. The brightness of the colors is a measure for the concentration of

particles.
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10. flag B yz 8fps.mp4

Sedimentation dynamics of a three-component mixture of hard spheres with σ1 = 200 nm, ρ1 = 2.20 g/cm3

(left panel, red line); σ2 = 300 nm, ρ2 = 1.30 g/cm3 (middle panel, blue line); σ3 = 600 nm and ρ3 = 1.05

g/cm3 (right panel, green line). All three components have an average volume fraction of φ0 = 5.4%. The

solvent is a mixture of water and urea with ρF = 1.04 g/cm3 and the total sedimentation profiles extends

approximately 6 mm. Progress of time is indicated in the left panel in seconds.

11. flag B zy 8fps.mp4

Same as movie [flag B yz 8fps.mp4], but with φ plotted on the x-axis and height plotted on the y-axis.
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