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Adsorption of charged and neutral polymer chains on silica surfaces: The role of electrostatics,
volume exclusion, and hydrogen bonding
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We develop an off-lattice (continuum) model to describe the adsorption of neutral polymer chains and
polyelectrolytes to surfaces. Our continuum description allows taking excluded volume interactions between
polymer chains and ions directly into account. To implement those interactions, we use a modified hard-sphere
equation of state, adapted for mixtures of connected beads. Our model is applicable to neutral, charged, and
ionizable surfaces and polymer chains alike and accounts for polarizability effects of the adsorbed layer and
chemical interactions between polymer chains and the surface. We compare our model predictions to data of a
classical system for polymer adsorption: neutral poly(N -vinylpyrrolidone) (PVP) on silica surfaces. The model
shows that PVP adsorption on silica is driven by surface hydrogen bonding with an effective maximum binding
energy of about 1.3 kBT per PVP segment at low pH. As the pH increases, the Si-OH groups become increasingly
dissociated, leading to a lower capacity for H bonding and simultaneous counterion accumulation and volume
exclusion close to the surface. Together these effects result in a characteristic adsorption isotherm, with the
adsorbed amount dropping sharply at a critical pH. Using this model for adsorption data on silica surfaces
cleaned by either a piranha solution or an O2 plasma, we find that the former have a significantly higher density
of silanol groups.
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I. INTRODUCTION

The adsorption of polymer chains onto surfaces has been
investigated extensively since the discovery in the 1950s that
particle suspensions could be stabilized against flocculation
by layers of adsorbed polymer chains [1–3]. Stabilization of
particle suspensions poses a critical step in the development of
many products used in everyday life, such as paints, detergents,
cosmetics, and pesticides [1–6]. Particle stabilization is equally
important for many novel applications related to drug delivery
and particle-based analysis of complex media [7–10]. In all
these cases, a detailed understanding of the physicochemical
nature of polymer adsorption is indispensable.

Many features of polymer adsorption are now well under-
stood. For polymer adsorption to take place, the adsorption
energy per segment must be higher than a critical value [3].
Upon adsorption polymer chains lose both conformational
and translational freedom, which must be compensated for
by the adsorption energy. For long polymer chains the loss
of conformational freedom will dominate the total entropy
loss. An adsorbed polymer chain is commonly described as a
series of trains, loops, and tails [3,11,12]. De Gennes [11,12],
translated this simple qualitative description of polymer
adsorption into clear quantitative predictions of the density
profile of adsorbed polymer chains. Three regions of the
density profile can be distinguished: (i) the proximal region
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close to the surface has the highest concentration of polymer
chains (trains) and is affected most directly by the exact nature
of the polymer-surface interactions, (ii) the central region
is made up of loops and tails with a density that decreases
following a power law, and (iii) the distal region is dominated
by tails, with an exponentially decreasing density.

Two of the most widely used experimental model systems
to study the physics of polymer adsorption consist of nonionic
polymers adsorbing onto negatively charged silica surfaces
in water. Both poly(ethylene oxide) (PEO) and poly(N -
vinylpyrollidone) (PVP) have received much attention [13–
20]. Experiments have been carried out on both colloidal
silica and planar silica surfaces, using NMR, ellipsometry,
reflectometry, and x-ray and neutron scattering and reflec-
tion. Neutron reflection and neutron scattering measurements
showed typical density profiles to be mostly exponential [20],
in line with De Gennes’ predictions for the distal region,
while NMR enabled differentiation between trains on the
one hand and loops and tails on the other [16]. Finally,
the adsorption energy of PVP [14] and PEO [21] to silica
was determined experimentally by measuring the desorption
transition in binary solvents.

The chemical nature of most surfaces to which polymer
chains adsorb, including the model silica and mica surfaces,
depends strongly on the solution properties. The surface
of silica consists of siloxane (Si-O-Si) and silanol (Si-OH)
groups [22]. The degree of dissociation of the silanol groups (to
Si-O−), and thus the surface charge, varies dramatically with
the pH and ionic strength of the aqueous solution [23]. Van
der Beek et al. showed that, as a consequence, the adsorption
to silica of the two model polymers, PVP and PEO, depends
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on the pH as well, with the adsorbed amount dropping sharply
between pH 9 and 11 [16]. Others showed that an increase
in ionic strength leads to a decrease in the adsorbed amount
for both PEO [24] and PVP [25]. Hydrogen bonding with
Si-OH groups is the driving force for the adsorption of both
PEO and PVP to silica [13,16]. An increase in either pH or
ionic strength, or both, leads to dissociation of silanol groups
and therefore to a decreased hydrogen bonding capacity.
In addition, the concentration of counterions close to the
surface increases dramatically at high surface charge, leading
to significant excluded volume interactions between ions and
polymer chains and further polymer chain desorption.

Recently, De Vos et al. showed that the adsorption of PVP
to a silica surface also depends on the method used to clean
and prepare the silica surface [25]. For an O2 plasma-cleaned
silica surface, a drop in polymer adsorption was observed
between pH 7 and 10, while for piranha-cleaned silica surface
the drop was observed between pH 9 and 11. The difference
was attributed to different silanol densities resulting from the
surface treatments.

Based on the existing experiments at a wide range of pH
and salt concentrations, it is clear that the ionizable character
of silica plays a key role in the adsorption of neutral polymer
chains such as PVP and PEO. Nevertheless, only few theoret-
ical models describe and predict their adsorption as a function
of pH and ionic strength. Pattanayek and Juvekar developed a
model for the adsorption of PEO to silica at different pH with a
pH-dependent attraction parameter [26]. Their model did not
include ionic strength or excluded volume effects. Postmus
et al. used lattice-based, numerical self-consistent field theory
to take the volume of ions explicitly into account [24]. In
their model the adsorption energy was a function of the
density of Si-OH groups and they found qualitative agreement
with experimental data. A full quantitative comparison proved
difficult due to the lattice-based approach in which Kuhn
length, monomer size, and ion size are all coupled parameters.

In this paper we give an off-lattice (continuum) description
of polymer adsorption to a charged, hard surface, making
use of the Edwards equation in the ground-state dominance

approximation, combined with a modified Poisson-Boltzmann
equation for the (polymer-modified) electrical double layer
that develops next to the silica surface. Both ionizable surfaces
(silica) and polymer chains can be included in a self-consistent
way in the electrostatic calculation. Excluded volume effects
of both polymer chains and ions are taken into account using
a recently developed off-lattice model, modified to account
polymer connectivity. Here we apply this equation of state for
the first time to the case of polymer adsorption. Our model
based on hydrogen bonding between Si-OH surface groups
and the polymer chains correctly predicts the experimentally
measured pH-dependent adsorption-desorption isotherm of
a neutral model polymer, poly(vinyl pyrrolidone) (PVP) to
silica [25]. The adsorbed amount of PVP decays sharply for
pH � pKa,s, in good agreement with experimental data, due
to the combined deprotonation of Si-OH groups and excluded
volume interactions between polymer chains and ions that
accumulate close to the charging silica surface. By contrast,
alternative models in which the surface-polymer interactions
are independent of the SiOH density or based on attractive elec-
trostatic interactions cannot describe the experimental data.

II. THEORY

We consider a solution of polymer chains and ions (see
Fig. 1). In general, a polymer chain of contour length L = aN

can be divided in various ways in N segments of length a.
One possible choice for the segment length, which we adopt
in this paper, is the Kuhn length, capturing the flexibility of the
polymer chains. The polymer chains can be either neutral or
charged. When comparing our model with experimental data
in Sec. III we will consider only neutral polymer chains of
poly(vinylpyrrolidone) (PVP), but here we first give a general
description that also applies to polyelectrolytes.

We define a polymer line charge density, i.e., the charge
per unit length along the polymer backbone, αpλ, where
αp is the ionization degree (αp = 1 for strong or quenched
polyelectrolytes, and 0 < αp < 1 for weak or ionizable poly-
electrolytes). The maximum line charge density λ (unit m−1)
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FIG. 1. (Color online) Artist’s impression of the interface between a silica surface and the solution containing adsorbing polymer chains
(PVP) and ions, as implemented in our model.
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can be negative (polyanions), positive (polycations), or 0
(neutral polymer chains). The polymer segments have a
volume vp per unit length (unit m3/m). When representing
the polymers as chains of connected spheres (for which the
term beads will be used hereafter), we can express the bead
diameter as σp = √

6vp/π [27]. In this way, the volume per unit
length vp of a particular polymer is related to the mass density
ρ of the pure polymer phase by ρ = M/(vpdNAv), with M

the molar mass of a chemical monomer, d its backbone length
(e.g., about 0.25 nm for a −CH2CHR− backbone), and NAv

Avogadro’s number.
Besides polymer chains, the solution contains positive and

negative ions. For simplicity we will assume here that both
ions are monovalent (z+ = 1, z− = −1) and that they have the
same hydrated ion size σion. We consider an open isothermal
system, in which the number density of small ions in the
polymer-free electrolyte reservoir is fixed at n∞. Moreover,
in the polymer-containing bulk solution we fix the bulk
concentration of polymer to φb

p and we calculate all changes
in free energy of the polymer chains with reference to this
polymer bulk concentration.

When a surface is brought into contact with the polymer-
containing solution, concentration gradients of polymers and
ions are formed near the surface. Volume exclusion interac-
tions between polymer chains and ions will modify the concen-
trations of ions near the surface. If, in addition the surface or the
polymer chains, or both, are charged, electrostatic interactions
also influence the concentration profiles of ions. Here we will
consider a particular surface with a density of ionizable groups
given by � (unit m−2), with a charge sign zs. The surface
ionization degree αs defines the fraction of ionizable groups
that are charged and varies from 0 to 1 (strongly charged
surfaces). For neutral surfaces � = 0.

Solvent is implicit in our model and we treat it as a con-
tinuous medium with an average permittivity ε0εw and density
ρw. Consequently, variations in the electrostatic potential or
concentrations over typical distances smaller than the size of
a solvent molecule (0.28 nm for water) are not meaningful.
However, we typically consider excluded volume interactions
between hydrated ions and polymer chains, which are much
larger than the individual solvent molecules. In addition, the
influence of solvent molecules on directional interactions, such
as hydrogen bonds, cannot be described explicitly. Instead,
we describe hydrogen bonding interactions between polymer
chains and a surface implicitly (see Sec. II C).

A. Ground-state dominance approximation

The density profile of a Gaussian polymer chain near a
surface is described by the Edwards equation

∂G(r,r ′,n)

∂n
= a2

6
∇2G(r,r ′,n) − U (r)

kBT
G(r,r ′,n), (1)

where G(r,r ′,N ) is a two-point Green’s function that is
proportional to the statistical weight of a polymer chain of
length N with ends at positions r and r ′ [28,29]. When
applied to polymer chains, G is often referred to as chain
propagator or chain order parameter [28,30,31]. U (r) con-
stitutes an external potential, defined per polymer segment,
which we write as U (r)/kBT = a u(r) with u(r) the exchange

potential in kBT per unit length. In our model we will
adopt a mean-field approximation, implying that the exchange
potential is determined by the potential of a polymer chain
in a mean field of all other species. In this approximation
u(r) is essentially the difference between the local chemical
potential (per unit length) of a polymer chain and its chemical
potential in the bulk solution [32]. It includes all electrostatic,
dipolar, chemical, and excess volume interactions, but not the
connectivity of the polymer chains. Finally, we note that Eq. (1)
implicitly assumes that the polymer chains obey random walk
statistics [28,31,33,34].

The general solution to the above equation can be written
as a series of eigenfunctions [29]. For very long polymer
chains the contribution of the ground-state eigenfunction
dominates all other terms and the solution can be limited to the
ground-state term. In this so-called ground-state dominance
approximation, the Edwards equation can be rewritten as

a2

6
∇2G(r) = u(r) a G(r). (2)

The chain order parameter G is related to the local polymer
volume fraction φp by φp(r) = a vp G2 [32]. The ground-state
dominance approximation is mostly applied to polymer chains
bound (by adsorption, for instance) to regions with dimensions
small compared to the unperturbed chain size, as the Gaussian
chain statistics is likely to remain valid for sufficiently small
length scales [31,34]. It has been argued that this approach
cannot capture more sophisticated details of the adsorption of
either neutral polymer chains or polyelectrolytes. For neutral
polymer chains, the main objection is the fact that chain
ends (tails) are ignored in the ground-state dominance ap-
proximation [31,35,36]. For polyelectrolytes, chain stiffening
and charge correlations between nearby segments are not
described satisfactorily [31,37]. Despite these limitations, we
will use the ground-state dominance approximation in this
work to provide a practicable model for the adsorption of long
(possibly charged) polymer chain and to allow comparison of
different adsorption mechanisms.

Before treating the exchange potential u(r) in Sec. II C, we
first discuss how the electrostatic potential ψ is related to the
concentrations of polymer chains and ions.

B. Electrostatics

1. Electrostatic potential

The dimensionless electrostatic potential y = eψ/kBT can
be obtained by solving Poisson’s equation

∇ · [ε(r)∇y(r)] = − e

kBT
ρc(r), (3)

where ε(r) is the local permittivity, e is the electron charge, and
ρc(r) the local charge density. Since polymer volume fractions
can become quite high near strongly adsorbing surfaces, the
local permittivity ε(r) may be different from that of pure
solvent ε0εw. It is therefore important to take gradients in ε into
account in Gauss’ law. Electrostatic correlations were recently
included in a fourth-order modified Poisson equation [38] that
could be applied to the case of polymer adsorption as well.
However, we will limit our model to the second-order Poisson
equation described by Eq. (3). For linear variations in local
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permittivity we can write:

ε(r) = ε0[φp(r)εp + (1 − φp)εw] = ε0εw[1 − θφp(r)], (4)

where εw and εp are the relative permittivities of the pure
solvent (electrolyte) and the pure polymer phase, respectively,
and θ = 1 − εp/εw is their relative difference.

The local charge density ρc(r) is determined by the
concentration of small ions and the volume fraction of polymer
chains: ρc(r)/e = z+n+(r) + z−n−(r) + αp(r)λφp(r)/vp. The
concentration of small ions can be written in terms of the local
electrostatic potential using the modified Boltzmann equation

n±(r) = n∞ exp[−z±y(r) − 
μex
± (r)], (5)

where n∞ is the ionic strength in the (polymer-free) refer-
ence solution and 
μex

± (r) is the excess chemical potential
difference per ion (in units kBT ) due to volume exclusion
between ions, and between ions and polymer segments, which
we will account for using a hard-sphere approximation (see
Sec. II C). Since we have assumed that both ions have the same
size, 
μex

+ = 
μex
− = 
μex

ion. High concentrations of ions and
polymer chains close to the surface will result in strong re-
pulsive volumetric interactions, disfavoring a further increase
in concentration. The incorporation of volumetric interactions
via a hard-sphere equation of state in the Poisson-Boltzmann
equation has been found to yield realistic predictions for
ion accumulation and surface pressure near highly charged
surfaces without polymer chains [39].

Inserting Eqs. (4) and (5) in Eq. (3) yields a modified
Poisson-Boltzmann equation for monovalent electrolytes:

[1 − θφp(r)]∇2y(r) − θ ∇φp(r)∇y(r)

= κ2

(
sinh y(r)

exp 
μex
ion(r)

− φp(r)αp(r)λ

2vpn∞

)
, (6)

where we used the Debye screening length of the electrolyte
reference solution κ−1, defined by κ2 = 2n∞e2/(ε0εwkBT ).

The gradient of the electrostatic potential ∇y(r) at the
adsorbing surface is defined by the charge density of the
surface � (in m−2):

∇y(r)|0 = − αszs�κ2

2n∞
(
1 − θφ0

p

) , (7)

where the subscript 0 at the left-hand side indicates the gradient
at the surface and φ0

p at the right-hand side indicates the
polymer volume fraction at the surface.

The electrostatic potential in the bulk solution yb follows
from the condition of electroneutrality. By setting the left-hand
side of Eq. (6) to zero, we find

yb = sinh−1

(
φb

p αb
p λ exp

(

μex,b

ion

)
2vpn∞

)
, (8)

where 
μex,b
ion is the excess chemical potential difference

per ion in the bulk (in units kBT ) due to volume exclusion
between ions (at volume fractions φb

± = πσ 3
ionn

b
±/6) and

polymer segments (at volume fraction φb
p), as compared to

the isothermal ion reservoir (containing only ions at density
n∞). Finally, we set the electrostatic potential gradient far from
the surface to zero.

2. Ionizable groups

Both the polymer chains and the surface may contain
(weakly) ionizable groups. In general, the degree of ionization
will depend on the local electrostatic potential. For simplicity
we assume only the dissociation or association of H+ ions from
the polymer and the surface. For PVP adsorption on silica this
description suffices, and we refer to Ref. [40] for an overview
of different ionization models of polymer chains and surfaces.

For the surface we can write

ln
(
α−1

s − 1
) = zsy

0 + zs ln(10) (pH − pKa,s) (9)

and for the polymer chains

ln
[
α−1

p (r) − 1
] = zpy(r) + zp ln(10) (pH − pKa,p), (10)

where pKa is the dissociation constant (of the polymer, p, or
the surface, s), and pH is defined in the reference electrolyte
solution (where y = y∞ = 0). In the bulk we have y = yb, and
αb

p can be calculated from Eq. (10). As a result, for ionizable
polymer chains Eqs. (8) and (10) provide a closed set of
expressions defining the electrostatic potential and degree of
ionization in the bulk. For strongly charged polyelectrolytes,
αb

p = 1 and Eq. (8) defines the electrostatic potential in the
bulk.

3. Stern layer

The fact that the ions and the polymer chains cannot
approach a (charged) surface to infinite proximity due to their
finite size can be taken into account by introducing the concept
of a Stern layer, into which the charge of the ions and the
polymer chains cannot penetrate [41]. The Stern layer has a
capacitance CSt (F/m2) and the decrease of the electrostatic
potential across the Stern layer is inversely proportional to the
capacitance:

y0 − yd = αs zs e2�

CStkBT
. (11)

When implementing Eq. (11) for planar surfaces, Eq. (7)
remains unchanged, and the surface charge αszs�e is directly
related to the potential at the boundary of the diffuse part of
the electric double layer yd . For strongly curved surfaces, the
difference in field strength at the surface and at the boundary
of the diffuse part of the electric double layer must formally
be taken into account [42].

In solutions containing multiple charged species, such as
cations, anions, and polyelectrolytes, the Stern layer is no
longer simply a single layer of fixed capacity, as the dimensions
of all charged species will be different [43]. Nevertheless, we
will use the concept of a single Stern layer with fixed capacity
here to account for the finite size of the small ions.

C. Exchange potential

The adsorption of the polymer chains is governed by the
exchange potential u(r) [Eq. (2)]. This exchange potential is
the difference between the local chemical potential of the
polymer chains (per unit length) μtot

p (r) and their chemical
potential in the bulk solution μtot, b

p . Here we consider the
following contributions to the polymer chemical potential (all
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μ’s are expressed in kBT per unit length, except for μ’s per
bead or per ion in Sec. II C 3).

1. Electrostatic interactions

For polymer chains with a fixed charge, the mean-field
electrostatic contribution to the chemical potential is

μel = λy, (12)

where λ is the polymer line charge density. For polymer chains
with weakly ionizable groups, λ must be replaced by the
actual line charge density αpλ, and an additional (chemical)
contribution for the dissociation of ionizable groups must be
added to Eq. (12) [32,44]:

μel, cr = αpλ y − zpλ

∫ αp

0
y ′ dα′

p = λ ln(1 − αp). (13)

For neutral polymer chains λ = 0, and there is no electrostatic
contribution to the local chemical potential.

2. Polarization

Permittivity differences between the polymer chains (εp)
and the solution (εw) give rise to a polarization contribution
to the chemical potential in the presence of gradients of the
electrostatic potential [45,46]:

μdiel = −vpkBT

2e2

∂ε

∂φp
(∇y)2 = vpn∞θ

κ2
(∇y)2 , (14)

where we used (∂ε/∂φp) = −θε0εw. Gradients in μdiel give
rise to a dielectrophoretic force that can be used to manipulate
and transport different types of particles [47].

3. Volume exclusion

Volume exclusion interactions between polymer chains and
ions are very important in regions of high concentration,
such as close to a charged, adsorbing surface. Previously,
Flory-Huggins theory has been used to account for volume
exclusion of polymer chains mutually [48,49]. Volume exclu-
sion interactions between polymer chains and ions have been
taken into account at the PB level, thus treating the ions as
point charges [32]. Here, we will describe the excess chemical
potential due to volume exclusion interactions using the
equation of state for polydisperse mixtures of hard spheres and
chains of connected spheres [50,51]. This equation of state is a
modification of the well-known Boublik-Mansoori-Carnahan-
Starling-Leland (BMCSL) equation of state for mixtures of
hard spheres. We treat the hydrated ions as charged beads
with a hard-sphere diameter σion and the polymers as chains of
connected, touching beads with a hard-sphere diameter σpol.
The size of the beads that make up the polymer chains is
chosen such that the chain of beads has the same volume per
unit length as the polymer chain we used in the ground-state
dominance approximation σp = √

6vp/π .
In Ref. [51] we presented the modified BMCSL equation

of state for such mixtures of beads and assemblies of beads, by
correcting for the translational entropy of the assemblies. The
excess chemical potential per bead of species i (μex

i,bead) can be
rewritten as the product of the excess chemical potential per
unit length μex

i , which is used in the exchange potential u, and

the bead size σi :

μex
i, bead = σiμ

ex
i = −

(
1

Nb,i

+ 2ξ 3
2 σ 3

i

φ3
− 3ξ 2

2 σ 2
i

φ2

)
ln (1 − φ)

+ 3ξ2σi + 3ξ1σ
2

i + ξ ′
0 σ 3

i

1 − φ
+ 3ξ 2

2 σ 2
i + 3ξ1ξ2σ

3
i φ

φ(1 − φ)2

− ξ 3
2 σ 3

i

(
φ2 − 5φ + 2

φ2(1 − φ)3

)
, (15)

where the ξk’s are weighted sums of the volume fractions
of all species, which depend on the position in solution:
ξk = ∑

j φjσ
k−3
j , and ξ ′

0 = ∑
j φjσ

−3
j N−1

b,j . The σi’s are the
(effective hard-sphere) diameters of the beads of species i,
Nb,p = L/σp is the number of connected beads per polymer
chain, and φ is the total volume fraction of all species:
φ = ∑

j φj . For the solution of polymer chains and ions we
consider here, φ = φp + φ+ + φ−.

Equation (15) is generally valid for arbitrary mixtures of
long and short polymer chains, and ions of various sizes.
This equation can be used for both the ions (Nb,ion = 1) and
the polymer chains (Nb,p = L/σp), and can be expanded into
a power series of the total volume fraction φ, resulting in
Eq. (7.3) of Ref. [51].

Elegant simplifications of Eq. (15) exists in a number
of well-studied limits: (i) a solution of only monomers (or
ions), each having a hard-sphere diameter σ , (ii) a solution
of monomers (or ions) of size σp and polymer chains (of
connected monomeric beads of the same size), and (iii) a
solution of polymer chains with ions that are treated as point
charges (σion = 0).

In situation (i), the excess chemical potential (per monomer
or per ion) is given by the well-known Carnahan-Starling
equation:

μex
ion, CS = φ(8 − 9φ + 3φ2)

(1 − φ)3
= 3 − φ

(1 − φ)3
− 3 (16)

with φ the total monomer or ion volume fraction.
In situation (ii), taking Nb,p → ∞, the excess chemical

potential of the polymer chains (per polymeric bead) simplifies
to a modified Carnahan-Starling equation:

μex
pol, CS = ln(1 − φ) + fmφ

1 − φ
+ 7φ

(1 − φ)2
+ 2φ3

(1 − φ)3
(17)

with fm the fraction of all beads that are not part of the polymer
chains. If the solution contains only polymers, fm = 0 and the
second term in Eq. (17) vanishes, leading to a well-known
power series expansion [27,57]:

μex
pol, CS = 6φp + 27

2
φ2

p + 68

3
φ3

p + . . . . (18)

The excess chemical potential of the monomeric beads in
this mixture is slightly higher, because of their translational
entropy:

μex
mon, CS = fmφ

1 − φ
+ 7φ

(1 − φ)2
+ 2φ3

(1 − φ)3
. (19)

If ions of negligible volume are added to such a polymer
solution [situation (iii)], an ion insertion pressure vpσp�

must be added to the polymer chemical potential, where
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� = n∞/(1 − φp) is the osmotic pressure due to the ions [51].
For the ionic point charges, an excess chemical potential due
to volume exclusion by the polymer chains can be found from
Eq. (15) (with σion = 0 and Nb,p → ∞):

μex
ions, point = − ln (1 − φ) . (20)

Returning to the general case of a mixture of polymer chains
and ions, which both have a nonzero effective hard core size,
we will use the full Eq. (15) for both the polymer chains
and the ions in our model. For the ions we insert the excess
chemical potential difference per ion (per bead), μex

ion,bead, in
the Boltzmann equation [Eqs. (5) and (8), abbreviated there
as μex

ion], using the ion reservoir (with φion = 2πσ 3
ionn∞/6)

as a reference. For the polymer chains, we include the excess
chemical potential per unit length μex

p in the exchange potential
u(r).

4. Ideal mixing entropy

An ideal entropy contribution to the exchange potential
of the polymer chains is generally omitted in the ground
state dominance approximation, as this approach is valid only
for sufficiently long chains (N → ∞) and the ideal entropy
contribution to the exchange potential scales as 1/N per unit
length:

μid = ln φp

L
. (21)

For ions, however, the ideal entropy term is crucial, and is
included in the Boltzmann equation (5).

5. Chemical interactions between polymer chains

Nonelectrostatic attractions or repulsions that are not
related to volume exclusions between the polymer chains (e.g.,
hydrophobic interactions) can be included in the same way as
in Flory-Huggins theory:

μatt = −2χvpφp, (22)

where χ is an energy per unit volume of the polymer chains,
and χvp is the corresponding energy per unit length. A positive
energy implies attraction between the polymer chains.

6. Chemical interactions of polymers with the surface

Besides electrostatic attractions between polymer chains
and the surface, adsorption of polymer chains can be driven by
a physical interaction (e.g., Van der Waals force between the
polymer chains and the surface) or by the formation of specific
(chemical) bonds between polymer chains and surface (e.g.,
H bonds). We are specifically interested in describing H-bond
interactions between the surface and the polymer chains and
we take these interactions into account by assuming that the
range of H-bonding interactions is very short, and that the
decay of the adsorption potential near the surface as a result
of H bonds can be described in the following general way:

μads(x) = εs exp[−ω (x/σp + δ)6]. (23)

The parameters ω and δ affect the range of attraction beyond
the bead size σp: the adsorption potential has decreased to half
its value at the surface at x1/2 = σp ln(2)/ω − δσp. In addition,
ω also affects the sharpness of the decay: ∂μads/∂x|1/2 ≈

−εs/(σpω
4). We typically use ω = 0.5 and δ = 0, such that

the adsorption potential decays sharply to 0 around r = σp,
implying that only polymer segments that are closer than the
effective bead size will be attracted by the surface.

The adsorption strength per unit length εs can be adapted
to the nature of the polymer-surface interactions: a fixed
value εs (kBT per unit length) for hydrophobic interactions,
or proportional to the number of surface OH groups for H
bonds: εs = ε′

s(1 − αs)�.
In previous work on adsorption of neutral polymer chains

and polyelectrolytes where the size of the polymer chains and
the ions was not explicitly taken into account, the adsorption
potential was assumed to be an infinitely sharp function at
the surface [28–30]. Our choice of the adsorption potential
in Eq. (23) ensures a narrow adsorption region (i.e., the
adsorption layer is small compared to the unperturbed chain
size), while allowing easy numerical implementation.

7. Combined

The exchange potential per unit length u that governs the
adsorption of polymer chains is a combination of the different
contributions listed above, taking into account the reference
values in the bulk, where φp = φb

p , y = yb, αp = αb
p, φ+ =

πσ 3
ionn

b
+/6, φ− = πσ 3

ionn
b
−/6, and nb

+ and nb
− are given by

Eq. (5) (with 
μex,b
ion of the bulk).

In the following sections we will consider the adsorption
of polymer chains to flat surfaces. Therefore, we only need to
take into account concentration gradients perpendicular to the
surface (in a direction we call x). The boundary conditions
for the key variables G and y are set as follows. At the
surface, dG/dx = 0 (implying an indifferent surface [32,52])
and dy/dx is given by Eq. (7). In the bulk, dG/dx = 0 and
dy/dx = 0.

We solved the adsorption profiles of polymer chains and
the corresponding concentration profiles of ions numerically,
adopting a finite difference scheme to approximate all deriva-
tives. We use a simple linear discretization with a typical step
of 0.05 nm, and we verified that finer discretization yields the
same adsorbed amounts.

The adsorbed amount of polymer (mass per unit area) is
calculated from:

� = ρ

∫ ∞

0

[
φp(r) − φb

p

]
dx, (24)

where ρ = M/(vpdNAv) is the mass density of the pure poly-
mer (ρ = 1.2 g/cm3 for PVP, and we use vp = 0.67 nm3/nm
and d = 0.25 nm).

Before concentrating further on the specific case of PVP
adsorption to silica surfaces, we examined the importance of
excluded volume interactions for a typical case of polyelec-
trolyte chains adsorbing to an oppositely charged surface with
a fixed surface charge in the presence of ions. Figure 2 shows
how the adsorption profile of polyelectrolytes and the ion
density profile change as we take excluded volume interactions
between ions and polymer chains into account at different
levels. Profiles I–IV correspond to the profiles reported in
Fig. 1 of Ref. [32], with IV including volume exclusion by the
ions approximated via the osmotic pressure, and profile V was
calculated using the modified BMCSL equation of state given
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FIG. 2. (Color online) (a) Adsorption profiles of polyelectrolytes on an oppositely charged surface in the presence of a 1:1 electrolyte,
using various models to account for the excluded volume interactions. Profiles I–IV are calculated using the exchange potential definitions
in Fig. 1 of Ref. [32] (v = 0.5 nm3/nm, vFH = 0.18 nm3, zs� = −1 nm−2 (fixed charge), zpλ = 1 nm−1 (fixed charge), a = 1 nm, εp = 20,
εw = 78, χ = 0, n∞/NAv = 10 mM, and φb

p = 10−3), profile V includes the volume exclusion term of Eq. (15) for both polymer chains and
ions (σp = √

6v/π = 0.98 nm and σion = 0.69 nm), and x denotes the distance from the surface. (b) and (c) Individual contributions to the
exchange potential u for profile IV and V, respectively. All potential energy differences approach zero far from the surface. The electrostatic
potential difference 
μel first becomes positive (around x ≈ 2 nm) before decaying to zero.

by Eq. (15) to account for all excluded volume interactions.
The relative contributions to the exchange potential u for
profiles IV and V are plotted in Figs. 2(b) and 2(c), respectively.
It is clear that volume exclusion (
μFH + 
μex

ions, points or

μex

p, BMCSL) is the dominant repulsive interaction, limiting
the accumulation of polymer chains (and ions) close to the
surface. When taking these excluded volume interactions into
account using the modified BMCSL equation of state, we find
an adsorbed amount of 0.4 mg/m2 (for ρ = 1.2 g/cm3), which
is typical for the adsorption of hydrophilic polyelectrolytes on
oppositely charged surfaces [53].

III. RESULTS AND DISCUSSION

We further tested the continuum model described above by
calculating the pH and salt-dependent adsorption isotherms
for the classical experimental model system of PVP and silica.
The adsorption experiments were carried out with aqueous
solutions of PVP (Mw = 40 kg/mol, PolyScience, USA) on
silicon wafers with a thermally grown silicon oxide layer
(75 nm) that were freshly cleaned directly before the experi-
ments using either a piranha solution or an oxygen plasma. The
experimental procedures are described in detail in Ref. [25].
Plasma-cleaned surfaces exhibited a static water (Milli-Q)
contact angle θ ≈ 30◦, whereas piranha-cleaned surfaces had
a static contact angle θ < 10◦. Adsorption isotherms were
recorded using a fixed angle optical reflectometer, equipped
with an impinging jet flow cell [15].

In our model we describe the PVP chains with a Kuhn
length a of 1 nm and a volume vp of 0.67 nm3/nm, which
corresponds to a pure polymer mass density ρ = 1.2 g/cm3.
To implement excluded volume interactions, the polymer
chains will be modeled by an equivalent chain of connected
beads of size σp = 1.13 nm each. The polymer chains are
neutral (λ = 0), and we assume there are no nonelectrostatic

attractions or repulsions (other than hard-sphere volume
exclusion) between the polymer chains: χ = 0, hence μatt = 0
[Eq. (22)]. Unless specified otherwise we set φb

p = 10−3, which
would correspond to an equilibrium bulk PVP concentration
of 1.2 g/L.

Both monovalent ions (z+ = 1, z− = −1) are described
as hard spheres with a hydrated diameter σion = 0.69 nm,
corresponding to the average hydrated diameter of Na+ (0.716
nm) and Cl− (0.664 nm) [54].

We model the silica surface as a flat surface with ionizable
SiOH groups (zs = −1) at a total density �. The dissociation
equilibrium of SiOH groups can be modeled as a single
step reaction with a pKa,s = 7.5 [55]. As will become clear,
the total density of ionizable groups � depends on the
pretreatment of the surface and is a crucial parameter in
determining the adsorption behavior. For amorphous layers
of silicon dioxide [56], the density � has an upper limit
of 5 nm−2 [22,24]. For piranha-cleaned surfaces we used
� = 3.8 nm−2, whereas for plasma-cleaned silica surfaces
we used � = 1.5 nm−2 to fit the adsorption isotherms to
the data.

A. Hydrogen bonding and the effects of pH

The hydrogen bonding between the PVP and the SiOH
surface groups are included using the adsorption potential in
Eq. (23), with an adsorption strength that is proportional to
the potential density of H bonds. This potential density of H
bonds is given by the actual density of SiOH groups (1 − αs)�,
with an upper limit that we describe empirically as σp/(3vpd)
(in nm−2), originating from the maximum number of H-bond
acceptors on PVP [πσ 3

p /(12vpd) per half a bead], divided by
the projected area (πσ 2

p /4). The strength of the adsorption is
dictated by the amplitude ε′

s of the adsorption potential and we
used a value of −ε′

s/kBT = 2.3 nm [Eq. (23)], which amounts
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FIG. 3. (Color online) (a) Adsorbed amount of PVP on silica as a function of the solution bulk pH. The adsorption strength is assumed
proportional to the number of potential H bonds between PVP and silica [Eq. (23), with ε′

s = −3.5 kBT /nm, and � = 3.8 nm−2 for piranha-
cleaned surfaces and 1.5 nm−2 for plasma-cleaned surfaces]. The Stern layer capacitance is CSt = 2.4 F/m2. (b) Polymer (top) and ion (bottom)
volume fraction profiles near silica surfaces with � = 3.8 (left) and 1.5 (right) nm−2, at varying solution pH as indicated by the labels.

to a maximum adsorption energy (per unit length of polymer)
of about 5.2 kBT /nm, based on the maximum potential
H-bond density described above. If we further assume that
d = 0.25 nm per monomeric unit, we find a typical H-bonding
energy of 1.3 kBT per segment. Cohen Stuart et al. have
reported a segmental adsorption energy of χ = 4 kBT , based
on analysis of experimental displacement data in the context
of a lattice-based theory [14]. This value is significantly larger
than the value we have used. A full comparison is, however,
difficult, because in our case ε′

s defines only the amplitude of
the adsorption potential, and the finite range of the potential,
which is of order σp in our case, also affects the adsorbed
amount.

Figure 3 shows the experimental and theoretical polymer
adsorption as a function of pH for the two types of silica
surfaces. The main difference between the two experimental
adsorption isotherms is a shift in the pH value at which the
adsorbed amount of polymer sharply decreases, by about
1 pH unit. This seemingly small difference is significant,
because in that region the driving force for dissociation of
surface groups increases by a factor of 10 [Eq. (9)], assuming
that the pKa,s of the surface groups does not change. Our
model correctly describes the adsorption to both types of silica
surfaces with only the density of ionizable groups � as an
adjustable parameter. This is in accordance with the hypothesis
derived from contact angle measurements that the difference in
cleaning procedure leads to different densities of SiOH groups
on the surface [25]: a plasma-cleaned surface will have mostly
siloxane groups (Si-O-Si) at the silicon-air interface, whereas
a piranha-cleaned surface has (up to four times) more silanol
groups (SiOH).

We note that the difference in silanol density does not
lead to a large difference in adsorbed amount at low pH.
Both on piranha- and on plasma-cleaned surfaces PVP is
found to adsorb at 0.6 mg/m2 in experiments, which is well
captured by our model of hydrogen bonding. The reason for
the identical adsorbed amount is that the capacity for hydrogen

bond formation is limited from two sides, by the hydrogen
bond donors (SiOH) on one side, and by acceptors (PVP) on
the other. At low pH, the density of hydrogen bond donors
on silica is larger than the maximum acceptor density and the
contribution of hydrogen bonds to the exchange potential is
almost equal for both surfaces at low pH.

As a direct consequence of the different SiOH surface
densities, Fig. 3(b) shows that the polymer density profiles
near plasma- and piranha-cleaned surfaces are qualitatively
different around the transition points. Piranha-cleaned silica
surfaces have a sufficiently high density of SiOH groups that
PVP can still adsorb at relatively high degrees of dissociation
(pH ∼ 10). However, the significant accumulation of ions
close to the charged surface leads to strong volumetric
repulsion and expulsion of polymer segments from the regions
of highest ion density, giving rise to a distinct peak in polymer
density at a characteristic distance of the order of the ion
size [see Fig. 3(b)]. On plasma-cleaned surfaces the density
of SiOH groups is lower and volume exclusion is not yet
significant at the transition pH. Therefore, polymer density
profiles remain sigmoidal with the maximum density closest
to the surface. This difference is likely measurable in neutron
reflection experiments for instance, and could be relevant for
systems in which polymer chains contribute to stabilization
against aggregation.

To further investigate the nature of the adsorption between
PVP and silica, we adapted our model for the driving force for
adsorption. We implemented either a fixed adsorption strength
[−εs = 4.0 kBT/nm in Eq. (23)] or a hypothetical protonation
of PVP, yielding a charge-regulated electrostatic attraction
between the silica surface and PVP [with λ = 4 nm−1, pKa,p =
6 in Eq. (13) and εs = 0]. Figure 4(a) shows the best possible
fits for both alternative adsorption mechanisms. Clearly, both
alternatives fail to predict the correct experimental adsorption
isotherm for PVP on silica. The first alternative is that of a fixed
adsorption strength, which is often assumed for hydrophobic
polymers and hydrophobic surfaces, and fails to predict the
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FIG. 4. (Color online) Alternative models for the adsorbed amount of PVP on silica as a function of the solution bulk pH: (a) fixed adsorption
strength of −4 kBT per unit length of polymer, regardless the number of Si-OH groups on the surface (dashed lines), and electrostatic attraction
between the ionizable silica surface and the polymer chains (λ = 4.0 nm−1, pKa,p = 6, dotted lines); (b) H bonding without volume effects,
using an adsorption strength ε′

s = −1.2 kBT /nm [Eq. (23)]. In both cases, the density of ionizable groups on the silica surface is � = 3.8
(piranha-cleaned) and 1.5 nm−2 (plasma-cleaned).

very sharp desorption transition around pH 9 (plasma-cleaned)
or pH 10 (piranha-cleaned). The second alternative of an
electrostatic attraction yields a completely different shape of
the pH-dependent adsorption isotherm. The adsorbed amount
goes to zero at extreme pH, as the driving force for adsorption
vanishes at low pH (surface uncharged) and high pH (polymer
uncharged). Moreover, the adsorbed amount can only be
increased significantly if the pKa,p of the polymeric groups
is taken much higher than that of the silanol groups, which
would mean that the polymer chains are strongly positively
charged up to pH 7, which is experimentally not the case for
PVP.

We finally assess the relevance of excluded volume in-
teractions in our model by calculating the same adsorption
profiles without any volume exclusion [see Fig. 4(b)]. In this
case, the desorption transition at pH > pKa,s becomes less
sharp, especially for the plasma-cleaned surfaces. Secondly,
the adsorbed amount at low pH is predicted to be slightly
lower for the plasma-cleaned surface, and we underestimate
systematically the experimental data at low pH. Finally, to
fit the experimental data the H-bonding adsorption strength
must be decreased to unrealistically low values (−ε′

s/kBT =
1.8 nm, or ∼ 0.46 kBT per H bond). We thus conclude
that both the hydrogen bonding-based adsorption mechanism
[Fig. 4(a)] and the excluded volume interactions between ions
and polymer chains [Fig. 4(b)] are important to include, in
order to correctly predict the adsorption isotherms of PVP to
silica.

B. Salt-induced desorption of polymer

Apart from the solution pH, adsorption of PVP to silica
is affected strongly by the bulk ionic strength. This can be
understood qualitatively by the fact that ions can screen surface
charges of the silica, leading to enhanced proton dissociation
and, hence, a lower density of SiOH groups and a weaker
hydrogen bond-based adsorption. Experiments indicate that

the adsorbed amount of PVP can be decreased to zero at pH 7
by increasing the bulk concentration of monovalent electrolyte
to 1 M. At low pH the adsorption does not decrease upon
increasing the ionic strength from 1 mM to 1 M, since the
driving force for dissociation is negligible [Eq. (9)]. In the
field of polymer adsorption, the effect of ionic strength has not
yet been described by off-lattice models [26]. In SCF lattice
models, the desorption transition could be shifted to lower pH
by increasing the salt concentration, but not below the pKa,s of
the silica surface [24]. Here, we investigate the salt dependence
of polymer adsorption in our off-lattice model.

Figure 5 shows the experimental data and model prediction
for the adsorbed amount as a function of bulk ionic strength.
At pH 3.5 no significant change in the adsorbed amount was
measured for salt concentrations between 1 mM and 1 M. At
pH 7, however, the adsorbed amount decreased from close
to 0.6 mg/m2 at 1 mM NaCl to 0 mg/m2 at 1 M NaCl. Our
model predicts a similar salt-induced desorption, but only at
significantly higher pH than found experimentally. At pH 7 we
find no desorption, but instead a slightly increased adsorption
at very high salt concentrations, due to the fact the the bulk ion
volume fraction increases to non-negligible values and there-
fore the difference in chemical potential (μex

p, BMCSL) between
the bulk and the surface becomes smaller [see Fig. 5(b)]. At
pH 8.5, however, we do predict full desorption from an initial
� ≈ 0.5 mg/m2 upon increasing the ionic strength to 1 M.
These findings are very similar to those of Postmus et al.
for lattice-based models of polymer adsorption [24]. They
also found that the anticipated effect of ions, to screen the
silica surface charge and increase the dissociation of silanol
groups, only occurs for pH > pKa,s, because there is hardly
any silanol dissociation at low pH. Thus, the remarkable
dissociation at pH 7 in experiments, which has been observed
before in experiments of PEO adsorption on silica [24], is
therefore likely caused by additional interactions between
the ions and the surface. One possibility, as suggested by
Postmus et al., is that specific chemical interactions between
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FIG. 5. (Color online) (a) Adsorbed amount of PVP on plasma-cleaned silica as a function of the bulk ionic strength for two pH values in
experiments: pH 3.5 (open diamonds) and 7.0 (filled triangles). The predicted salt-dependent adsorption isotherms of our model as described
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the (uncharged) silica and the counterions lead to an enhanced
counterion density at the silica surface and a decreased
accessibility of H-bond donors and, hence, a lower adsorbed
amount.

IV. CONCLUSIONS

We have developed an off-lattice (continuum) model
to describe the adsorption of neutral polymer chains and
polyelectrolytes to surfaces. Our model includes excluded
volume interactions between polymer chains and ions by
means of a hard-sphere equation of state of mixtures of beads
and strings of connected beads. For a set of experiments on
the PVP/silica model system, we could correctly predict the
adsorption isotherms for plasma-cleaned and piranha-cleaned
surfaces, taking into account that the only change induced by
the cleaning technique is the density of silanol groups. The

driving force for adsorption was found to be the formation
of hydrogen bonds (1.3 kBT per hydrogen bond), which is
limited by both the density of silanol groups and the density
of PVP chains. Alternative models, in which the adsorption
energy is constant or driven by electrostatic attraction all fail
to describe the experimental adsorption isotherms. Our model
was able to predict a salt-induced desorption at pH > pKa,s,
but not at pH as low as 7, which was found experimentally.
Additional specific chemical interactions between the surface
and the ions are likely needed to predict this desorption
correctly.
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