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Editorials

From the Editors-in-Chief

Dear reader,

We are very proud to present our first issue of  the 13th volume of  the Proceedings of  the Master’s Programme 
Cognitive Neuroscience. 

As you can see, the journal is currently run by two women. More so, of  its 31 members  (the most 
members we ever had!), 27 are female! This is rather the exception than the rule in most fields inside and 
outside of  science. In 2017, 19.3% of  all Dutch professors were female - a very sad percentage. This needs 
to change, and as the current occupation of  the journal proves, it is already changing! Going through our 
journal, not only will you find mostly excellent theses written by our very own female alumni, but also two 
more editorials written by an influential female scientist and a cognitive neuroscience master alumnus here 
at the Donders Institute and connected research institutes. Putting the focus on women in science is not the 
only change we made this issue.

This year, we decided to implement a few changes in our public appearance and internal proceedings, 
some of  them still in progress, others already implemented. One of  these changes can be seen on this 
very issue you are holding right now. For the first time we had a photo cover contest. The journal team 
invited current master students to submit pictures of  their data to demonstrate the art attributes of  science 
produced in our master’s programme. This year Nicholas Bechet won, and you can admire the Kabuki 
Syndrome neurons, retrieved and grown from stem cells from a Kabuki Syndrome patient on this cover.

As usual, we show our diverse research in the master’s programme Cognitive Neuroscience and the 
Donders Institute for Brain, Cognition and Behaviour, ranging from speech-gesture combinations, 
predictive processing in adults with autism to spatial navigation, hand choice for action and exercise in 
Parkinson’s Disease in the current printed issue. This issue also shows our diverse range of  methods used 
in our programme ranging from eye-tracking, electroencephalography (EEG), electromyography (EMG) to 
transcranial magnetic stimulation (TMS) or functional magnetic resonance imaging (fMRI).

Every thesis selected for publication went through a rough selection procedure, being reviewed, asked 
to be revised and resubmitted. Only the very best, and most creative articles were selected and the whole 
team worked very hard to publish this issue on time. Further submissions that are not included in the printed 
version of  our journal can be found on our website. 

Lastly, we want to thank our amazing team for their hard work on this issue. Without them, it would not 
have been possible to publish this issue.

Enjoy discovering our diverse research, beautiful data and be inspired!

Nijmegen, December 2017

Your Editors-in-Chief
Lisanne and Katharina
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Our minds are like wardrobes, 
we need to clear it out once in a while

In the second year of  my PhD I visited an international conference on one of  my favourite topics in 
neuroscience - multisensory integration. A woman gave a talk that was related to the well-known Shams 
illusion (i.e. a single flash of  light is perceived as two flashes if  you simultaneously hear two beeps). First, 
I was surprised that the speaker was called Shams. Then, I was shocked and ashamed that I obviously had 
assumed that the audiovisual phenomenon was named after a male scientist.

Implicit biases are everywhere. I have them. You have them. They spare nobody, not even scientists who 
consider themselves to be objective. How come, women on average earn less than men (even when one 
corrects for age and experience)? Why do you find fewer women, the higher you look in an organization? 
If  we are objective researchers, it must be that women are not good or not motivated enough, right? That’s 
not it. Many factors contribute to inequality in science, and they are mainly due to the scientific culture. In 
2012 an experiment demonstrated a clear favour for male candidates. The application by the fictional student 
John was evaluated better than the one by the fictional Jennifer although the two applications were identical 
(Moss-Racusin et al., 2012). Remember this citation since you might need it in the future. 

Currently, a lot of  time and energy is spent on convincing scientists that they are not always objective 
even if  they would like to be. Luckily, good scientists do not only try to be objective, but are also critical and 
reflective so that they can ask themselves whether they really are objective. While it is almost impossible to 
get rid of  implicit biases, the good news is that we can change our behaviour.  It is up to each and every one 
of  us what we do with them. Do we act upon them or not? If  you organize a symposium, invite women 
and men from around the world to give a talk since they all serve as role models for the next generation of  
scientists. If  you sit in a meeting and a good point is made, take it seriously, no matter who brought it up, PI 
or student, woman or man. The first step in making science a better place, is admitting implicit biases and 
critically reflecting on how we currently evaluate science and scientists. Academics often claim that they look 
for excellence. However, if  you ask what they mean by that, it turns out that the majority simply believes 
that they recognize it once they see it or they describe an ideal candidate that does not exist (Van den Brink 
& Benschop, 2011).  We tend to be more generous in forgiving male candidates if  they do not meet all these 
unrealistic criteria than female candidates. Fortunately, science nowadays is in transition and reconsiders the 
current evaluation system – a shift from quantity (e.g. publication list) to quality (e.g. five most influential 
publications) gives hope. 

It is great to see the high quality theses by the next generation of  scientists in this issue. That is what you 
are, whether you choose a career in science or not. Your critical thinking and cleverness are valuable qualities.  
Do not let any biases stop you from pursuing your dreams. 

Claudia Lüttke

Sustainable Science Officer 2017 of  the Donders Insitute and 
Policy Officer for Gender and Diversity at FNWI and CNS Alumnus 2012
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A headstart for women

When you go to the RU homepage these days (as on December 18), the two top posts each show a picture 
with a group of  female academics. The first photo’s caption reads “26,5 percent female professors: Radboud 
University raises the bar”, the second one comes with the headline “Christine Mohrmann Grant for 10 
promising female researchers”. Apparently, gender diversity is quite high on the agenda of  our university 
these days. And rightly so: even though the percentage of  female professors in Nijmegen (26.5%) is way 
above the national average (19.3%), there are still many microcosms within the RU that are men’s worlds, 
one among which is the realm of  senior positions at the Donders Institute. The Donders has more than 65% 
women among its PhD students, but only 15% female professors, so it is clear that something has to be done 
if  we do not want to lose much of  our female talent in the ‘leaky pipeline’ along the way to the academic top.

There are many explanations for this leaky pipeline, some of  which can be attributed to women themselves 
(dislike of  power games and competition, lack of  self-confidence and ambition, etc.), but not all of  them 
can. A few weeks ago, I was asked to give a talk about gender equality in science for the new arrivals of  the 
Max Planck Graduate School (IMPRS). I was asked for this because I am a member of  the ‘Donders gender 
steering group’, an advisory committee that develops suggestions for the Donders board of  directors to 
improve the gender balance at the Donders Institute, something that has been criticized as very much less-
than-optimal in previous external evaluations. I had never given such a talk and I delved into the literature 
(which was fun!). The part that struck me most was that on gender bias: given the exact same qualifications, 
women are consistently perceived as less competent than men, with sometimes far-reaching consequences 
for women’s careers. 

In one of  many, very well-controlled studies (Moss-Racusin et al., 2012), 127 members of  natural science 
faculties in the US were given a fictitious students CV and motivation letter who applied for an (also fictitious) 
lab manager position. Apparently, within this specific academic environment in the US, it is common for 
excellent students to take on a lab manager position after graduation, with the aim to acquire relevant 
research skills and experience before they apply for a PhD position. The participants were told that the study 
investigated the factors that determine the selection process for this kind of  position. Thus, they evaluated 
the candidate in terms of  his/ her competence and likelihood to be hired, and they indicated the salary they 
would be prepared to offer this person. Now, crucially, all participants received exactly the same application, 
with one exception: for half  of  the participants, the candidate’s first name was ‘John’, for the others, it was 
‘Jennifer’. The result was very similar to those of  many other studies with similar research designs: while John 
received an average competence rating of  4.1 on a five-point scale, Jennifer only got 3.3. As a consequence, 
John was a lot more likely to be hired (3.8) than Jennifer (2.9), and the yearly salary he was offered was about 
$3500 higher than hers. 

This is sad. What’s even worse is the additional finding that female judges, i.e. female researchers who 
made it all the way to academic faculty in the natural sciences, were just as ‘bad’ as men were in terms of  how 
strongly they displayed this gender bias. Who on earth should know better than these women that the gender 
of  the first name on a CV says nothing about this person’s qualifications? Apparently, simply getting more 
women into higher positions does not solve the problem; awareness and self-reflection seem to be crucial, 
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too. We are all implicitly biased, out of  reasons I’m not sure I understand, and chances are that I am biased, 
too. Only when we consciously make an effort to counteract those biases that, by the way, concern every 
aspect of  scientific achievement (receiving grants, getting publications, being cited, becoming tenured, etc.), 
can we change something. 

I am really happy that the current issue of  the CNS journal is a start in this direction. The majority (about 
60%) of  our CNS master students are women. Therefore, in this issue, there was the explicit policy to have a 
majority of  women among the first authors. As talent is certainly very likely to be equally distributed across 
our male and female students, making sure that the gender proportion in the selected population matches 
that in the sampling population is surely a good start to fight those biases that sneak in every time you don’t 
pay attention.

As a result, you will find five excellent papers from various fields within Cognitive Science in this issue, 
four of  which written by women and one by a man who graduated from the CNS research master course this 
year. These top-level articles demonstrate not only the excellence of  research at the Donders Institute, but 
above all the high incidence of  outstanding talent in our Master students. All five of  these young research 
talents deserve every possible encouragement to pursue an academic career, and every chance to make it as 
far in science as their aptitude and ambitions take them, unhindered by gender and other biases. Hopefully, 
their first publication in this journal provides a first step in this encouragement.

Kristin Lemhöfer

Principal Investigator and Associate Professor 
at the Donders Institute for Brain, Cognition and Behavior 
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About the cover

What we are looking at in this particular image is two astrocytes, which are used to support the growth 
of  neurons, which we derive from induced pluripotent stem cells (IPSC’s). The cells themselves were 
transfected with a particular fluorescent protein isolated from reef  coral (dsRed), which localizes throughout 
the cells thus permitting their visualization when utilizing fluorescence microscopy. The cells seen on the 
cover were used in support of  a control line of  IPSC-derived neurons and fall under a project wherein we 
were looking to investigate an in vitro model for a multiple congenital anomaly syndrome named Kabuki 
Syndrome (KS), which is strongly associated with epigenetic dysregulation. As such the project was carried 
out in the RadboudUMC in the Nadif  Kasri Lab, which is making groundbreaking work in the application 
of  IPSC models to better understand disorders bounded by intellectual disability and linked to such 
epigenetic dysregulation. The reason we transfect and image the IPSC-derived neurons is to morphologically 
characterize how neurons derived from control lines might differ in complexity to those derived from a 
patient suffering from a particular disorder or syndrome. By extrapolating how cells differ morphologically, 
and when coupling this readout to network and single cell electrophysiological data, we have the capacity to 
gain a greater understanding of  the molecular mechanisms that underlie these disorders and furthermore test 
novel therapeutic agents in a personalized, patient specific, modus.

Nicholas Bechet

Winner of  the photo cover contest
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The ParkCycle Study: Investigating the Effects 
of Aerobic Exercise on Resting-State Functional 

Connectivity in Parkinson’s Disease

Eva Klimars1

Supervisor: Ian Cameron1

1Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, the Netherlands

Parkinson’s disease is characterised by nigro-striatal dopamine depletion and it has been suggested that 
this depletion influences cortico-striatal functional connectivity. Aerobic exercise is known to promote 
neuroplasticity, suggesting it might induce partial neurorestoration in cortico-striatal circuits. Therefore, 
we investigated if  a six-month aerobic exercise intervention can partially normalise disease-related changes 
in functional connectivity in a randomised controlled trial. Patients with Parkinson’s disease underwent 
resting-state fMRI scanning before and after the exercise intervention or control intervention where subjects 
simply maintained their activity level, and we performed a longitudinal group comparison of  the resting-state 
functional connectivity between different subdivisions of  the putamen and the rest of  the brain, because 
distinct striatal subregions are differentially affected by dopamine depletion. Aside from the whole-brain 
search volume, we also performed a region of  interest analysis focusing on changes in connectivity between 
the putamen and the right inferior parietal cortex, a region previously identified as showing changes in 
cortico-striatal connectivity because of  Parkinson’s disease. At the whole brain-level, we observed an increase 
in resting-state functional connectivity between the right dorsoposterior putamen and the posterolateral 
cerebellum for the aerobic exercise intervention group, and the opposite pattern (i.e., a decrease) for the 
control group. When restricting the search volume to the right inferior parietal cortex, we also found that the 
intervention group showed a decrease in functional connectivity between a subregion of  this area and the 
dorsoanterior putamen, while an increase was observed in the control group. These results do support the 
possibility for changes in functional connectivity to occur as the results of  aerobic training, however, the small 
sample size necessitates a larger, sufficiently powered study to verify our results.

Keywords: Parkinson’s disease, basal ganglia, aerobic exercise, functional connectivity
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Parkinson’s disease (PD) is a neurodegenerative 
disorder, characterised by prominent motor 
symptoms of  tremor, bradykinesia, and rigidity. PD 
is hallmarked by loss of  dopaminergic neurons in 
the substantia nigra, leading to subsequent dopamine 
deficiency (Bernheimer, Birkmayer, Hornykiewicz, 
Jellinger, & Seitelberger, 1973; Kish, Shannak, 
& Hornykiewicz, 1988; Macdonald & Monchi, 
2011). The dopaminergic system innervates basal 
ganglia (BG) structures and their projection targets, 
for instance the thalamus and brainstem motor 
center, hence the BG and their target regions are 
strongly affected by the degeneration of  dopamine-
producing cells occurring in PD (Dirkx et al., 2017). 
However, the various BG regions are differentially 
affected in PD, because degeneration can occur at 
different stages and to varying degrees throughout 
disease progression. This is because different 
regions receive divergent dopaminergic inputs. For 
example, the ventral striatum, including the ventral 
putamen, is innervated by dopamine produced in 
the relatively spared ventral tegmental area, while the 
dorsal striatum, containing the bulk of  the putamen, 
receives dopaminergic inputs from the more affected 
substantia nigra (Djaldetti et al., 2011; Fearnley & 
Lees, 1991; Macdonald & Monchi, 2011; McRitchie, 
Cartwright, & Halliday, 1997). Additionally to this 
ventral/dorsal gradient, the posterior and anterior 
striatum can be distinguished based on their relative 
dopamine decline. The largest dopamine depletion 
in PD has been observed in caudal portions of  
the striatum, especially the posterior putamen. 
This is important, because motor deficits, typical 
for idiopathic PD, are mostly the consequence of  
dopamine loss in the putamen (Guttman et al., 1997; 
Kish et al., 1988; Ueda & Kimura, 2003; Yu, Liu, 
Wang, Chen, & Liu, 2013). In contrast, the anterior 
putamen starts declining at a later stage of  PD, but 
then displays the same rate of  progression, meaning 
a disparity is maintained throughout the course of  
the disease (Bruck et al., 2006; Nurmi et al., 2001). 
It has been proposed that the local impairments in 
the BG processing may propagate through various 
cortico-striatal connections and thereby alter the 
activity in other brain areas, which in turn could 
cause some of  the PD symptoms (Obeso, Marin, et 
al., 2008).

Although, Parkinson’s disease is mainly thought 
to be a movement disorder, there are also more 
behavioural and cognitive domains impaired aside 
from motor control. For example, impairments 
in associative learning, planning, attentional 
control, working memory, and emotion have 
been documented. Many of  these functions are 

mediated by the BG through cortico-striatal loops 
(Grande et al., 2006; McNab & Klingberg, 2008; 
Muller, Philiastides, & Newsome, 2005; Obeso, 
Rodriguez-Oroz et al., 2008; Tommasi et al., 2015). 
These functionally segregated loops have a parallel 
topology and reciprocally connect the BG to several 
widespread cortical areas, including prefrontal and 
fronto-parietal regions (Alexander, DeLong, & 
Strick, 1986; Yelnik, 2008). According to the parallel 
loop model of  Alexander et al. (1986) there are five 
segregated functional loops, in which each striatal 
subpart receives input from another cortical area 
and sends back connections to the same part of  the 
cortex through specific BG nuclei and the thalamo-
cortical connections. Based on the associated 
cortical regions, each loop was designated to 
process a specific set of  motor and cognitive tasks. 
Following this study, multiple slightly modified, and 
further or less subdivided loop models have been 
proposed (Lawrence, Sahakian, & Robbins, 1998; 
Nakano, Kayahara, Tsutsumi, & Ushiro, 2000; 
Saint-Cyr, 2003). Regardless, the various model 
versions consistently link the caudal and dorsolateral 
striatum, including most of  the putamen, to motor 
and premotor areas, thus implicating these BG 
regions in motor functions. The models also agree 
on cognitive cortico-striatal circuits incorporating 
more anterior regions of  the striatum, such as the 
rostral putamen and the caudate nucleus (Alexander 
et al., 1986; Haber, Fudge, & McFarland, 2000; 
Postuma & Dagher, 2006). Considering the local 
and regionally specific changes in BG activity in 
PD and the spatial specificity as well as functional 
segregation of  the cortico-striatal loops, it can be 
concluded that dysfunctional striatal dopaminergic 
function differentially affects the loops and thus 
leads to changes in the balance of  activity between 
the cortico-striatal circuits. These differential 
changes in the circuits and subsequent altered 
functional connectivity have been implicated in 
the development of  the PD pathology explaining 
among others motor symptoms (Shine et al., 2013) 
and the occurrence of  other PD features (Monchi, 
Petrides, Mejia-Constain, & Strafella, 2007; Owen, 
2004; Zgaljardic, Borod, Foldi, & Mattis, 2003). As 
alterations in the cortico-striatal network are thus 
causally implicated in the PD pathology, it is of  major 
interest to characterize the distinct disease-related 
connectivity profile of  the network. This can be 
done using functional magnetic resonance imaging 
(fMRI) to examine the functional connectivity. 
Many studies have focused on investigating 
functional connectivity differences in PD related to 
performance of  a specific task (Helmich, Aarts, de 
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Lange, Bloem, & Toni, 2009; Palmer, Eigenraam, et 
al., 2009; Palmer, Li, Wang, & McKeown, 2010; Wu, 
Chan, & Hallett, 2010; Wu et al., 2012), but recently 
exploration of  resting-state functional connectivity 
(RSFC) is of  growing interest as findings are not 
limited to a specific brain process and functions.

In a previous study, Helmich et al. (2010) analysed 
the RSFC in PD and showed decreased coupling 
between the posterior putamen and a portion of  
the sensorimotor system, the inferior parietal cortex 
(IPC), while this region showed increased functional 
connectivity with the anterior putamen. This shift in 
recruitment follows the above described dopamine 
gradient present in PD (i.e., the anterior putamen is 
relatively spared compared to the posterior putamen), 
hence dopamine depletion in the posterior putamen 
could be causing the remapping of  cortico-striatal 
connectivity. On the one hand, the connectivity 
change observed may reflect a compensatory process 
in PD patients, which is beneficial for some 
behavioural functions as certain parts of  the cortex 
are redirected to less affected parts of  the striatum. 
On the other hand, however, this remapping may 
not be optimal if  it results in inefficient processing 
by the anterior putamen, thereby affecting cognitive 
functions. Because of  this, it is critical to further 
examine if  there are compensatory processes 
occurring in the cortico-striatal network in PD, and 
if  those are beneficial or maladaptive. Moreover, it 
is also crucial to investigate if  those compensatory 
processes could be influenced with cost-efficient, 
non-invasive interventions. A potentially effective 
intervention, aerobic exercise, will be discussed here 
in detail.

In addition to overt motor impairments, 
physical activity is found to be generally lower 
in PD patients and decreases along with disease 
progression, meaning that their health and quality 
of  life are reduced even further. This is especially 
concerning, as physical activity has been shown to 
induce beneficial adaptive neuroplasticity in healthy 
subjects (Hillman, Erickson, & Kramer, 2008; 
Thomas, Dennis, Bandettini, & Johansen-Berg, 
2012), namely larger prefrontal and temporal white 
and grey matter (Gordon et al., 2008), which have 
been shown to be predictive of  better cognitive 
performance in older adults (Erickson et al., 2007; 
Marks et al., 2007). There are several lines of  
evidence that physical activity is beneficial to healthy 
aging, and to neuroprotection. First, in MPTP-
lesioned mice (a murine model of  PD), aerobic 
exercise (AE) induces neurorestoration, or in other 
words, increases dopaminergic transmission and 
reduces glutamate transmission in the nigrostriatal 

system and promotes behavioural recovery (Fisher 
et al., 2004; Petzinger et al., 2007; Tillerson, Caudle, 
Reveron, & Miller, 2002). Similarly, exercise-induced 
neuroplasticity in dopaminergic signalling was 
also observed in PD patients (Fisher et al., 2013). 
Furthermore, in PD patients, positive behavioural 
responses were stimulated by AE as it generally 
improved motor action, balance and gait as well as 
postural control (Shu et al., 2014). More specifically, 
forced stationary cycling improved UPDRS motor 
scores and bimanual dexterity (Alberts, Linder, 
Penko, Lowe, & Phillips, 2011; Ridgel, Vitek, & 
Alberts, 2009). Finally, the pedalling rate during 
an eight week forced-rate lower-extremity exercise 
intervention could be positively correlated to 
functional connectivity changes between the most 
affected primary motor cortex and the ipsilateral 
thalamus (as well as a trend towards an increase in 
connectivity to the putamen) during a bilateral finger 
tapping task (Shah et al., 2016).

Taken together, there is sufficient evidence that 
exercise may be able to restore neuronal function 
in the more strongly impaired motor networks of  
the BG. Therefore, the effects of  AE on functional 
connectivity networks in PD were investigated in 
a randomised controlled trial involving AE in one 
group of  patients, compared to a six-month waiting 
period in another group of  PD patients. Based on 
the previous findings from Helmich et al. (2010) we 
were specifically interested in the influence of  AE 
on functional connectivity between the putamen and 
the sensorimotor system, but we were also interested 
in non-motor areas to examine the breadth of  AEs 
influence in the brain. Therefore, we performed a 
whole-brain analysis, as well as a region of  interest 
(ROI) analysis focusing on connectivity between the 
putamen and the inferior parietal cortex, a portion of  
the sensorimotor system. In both analyses, voxel-wise 
temporal correlations with the putamen seed regions 
were determined for the defined search volume (i.e., 
whole brain or ROI), to identify if  there is statistical 
dependency among activation time-series of  the 
putamen seed regions and other brain areas, which 
will be referred to as functional connectivity from 
now on. The main question addressed by this study, 
is whether AE can (partially) restore those changes 
documented by Helmich et al. (2010), who observed 
a shift in cortico-striatal connectivity from the 
posterior to the anterior putamen. We hypothesised 
that disease-related network connectivity changes 
will indeed (partially) normalize after AE.



Nijmegen CNS | VOL 13 | ISSUE 14

Eva Klimars

Methods

Recruitment of Subjects

Twenty-one participants, between 30 and 75 years 
of  age, with the diagnosis of  idiopathic Parkinson’s 
disease were recruited from the neurology 
department of  the Radboudumc Nijmegen, the 
Netherlands during a 24-month period. Before the 
baseline assessments all subjects signed an informed 
consent form according to institutional guidelines of  
the local ethics committee (CMO region Arnhem-
Nijmegen, the Netherlands). For inclusion, patients 
had to fulfil all of  the following criteria:

• early disease stage (i.e., Hoehn & Yahr stage 
I-II)

• ability to cycle unaffected
• normal cognitive function (i.e., Mini-Mental 

State Examination score > 24)
• low risk of  cardiovascular disease, thus no 

hypertension, diabetes mellitus, cardiac valve 
defects, rhythm disorder, heart failure; also a 
body mass index (BMI) < 30

• untreated for PD or receiving anti-Parkinson 
medication for less than two years and a 
stable dopaminergic response for at least one 
month

• medical history that did not include stroke or 
transient ischemic attack, 

• no use of  beta-blockers or daily 
institutionalized care

• sedentary lifestyle
• MRI compatibility
• computer with internet access at home
• ability to complete Dutch or English 

questionnaires
The Hoehn & Yahr stage I and II are defined as 

“unilateral involvement only, usually with minimal or 
no functional impairment” and “bilateral or midline 
involvement, without impairment of  balance” 
respectively, hence patients were only minimally 
disabled (Hoehn & Yahr, 1967). Patients who did not 
have moderate intensity aerobic physical activity for 
a minimum of  30 minutes on five days each week or 
vigorous intensity aerobic activity for a minimum of  
20 minutes on three days each week were considered 
sedentary according to the recommendations of  the 
American College of  Sports Medicine and American 
Heart Association for older adults (65+ years) and 
adults aged 50–64 with clinically significant chronic 
conditions or functional limitations (Nelson et al., 
2007). Of  the 21 originally recruited subjects, one 
subject dropped out and three more were excluded 

from the analysis due to scanner artefacts and 
excessive motion. Therefore, the remaining 17 
subjects were included in the analysis. 

Randomization and Concealment

After completion of  the baseline assessment 
participants were randomly assigned, by an 
independent biostatistician, to either the AE group 
or the control group with an allocation ratio of  1:1. 
Permuted blocks of  varying size (maximally three 
consecutive patients with the same allocation) were 
employed to ensure balance over time.

Intervention

Patients in the AE group performed three to 
five individual training sessions per week, of  at 
least 30 minutes on a stationary bike, at home 
for about six months. They were instructed to 
exercise at 60-80% of  their heart rate reserve, 
which was calculated using the Karvonen formula 
(Karvonen, Kentala, & Mustala, 1957). Usage of  
the equipment was explained during a home visit 
and also a practice session was performed to see if  
the patient understood the instructions and training 
objectives. The stationary bikes (Amada Sport, Velp, 
the Netherlands) were equipped with a computer, 
which provided feedback on the current heart 
rate, exercise time, pedalling cadence and power 
in Watts. Participants could select from a range 
of  real-life videos of  well-known cycling routes, 
such as the Alpe d’Huez, to create diverse training 
sessions of  30 to 45 minutes. The playback speed 
of  the video was influenced by their pedalling rate. 
All exercise and performance data of  each patient 
were automatically uploaded to a cloud-based 
database and monitored by the exercise physiologist 
on a biweekly basis. Training performance was 
evaluated through an online monitoring system 
and training goals and preferences were adjusted by 
the exercise physiologist based on the participant’s 
improvements. For instance, if  a patient was able to 
complete the created routes too easily and the target 
heart rate was not met, a more challenging route was 
created and alternatives were sought corresponding 
with the participant’s preferences. Adherence to the 
intervention was determined halfway the training 
period (after three months) and at the end of  the 
intervention (after six months). 

Patients in the control group continued their 
usual physical activities and were instructed to keep 
those as stable as possible. They also kept receiving 
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the usual care related to their PD, which was provided 
by their own neurologist. In the case of  changes in 
activity level or medication they were instructed to 
inform the research team. There was no additional 
contact with the control group during the trial 
besides the baseline and follow-up assessments. The 
actual time interval between the two assessments 
was comparable between the two groups, with on 
average 216.4 (σ = 28.1) days for the AE group and 
195.5 (σ = 24.7) days for the control group.

Clinical assessments and statistical 
analysis

All clinical measurements were obtained during 
two identical sessions: one at baseline and one at 
the end of  the six-month intervention period. All 
assessments were done in OFF medication state 
and the baseline and follow-up ratings for each 
participant were done by the same assessor. All 
assessors received extensive training before the 
first assessment. Baseline tests were done before 
randomisation. The severity of  motor symptoms 
was assessed during both sessions using part III 
of  the Unified Parkinson’s Disease Rating Scale in 
order to estimate disease progression visible from 
motor symptoms. To ensure that our results are 
not confounded by the development of  cognitive 
impairments or changes in the usual everyday 
physical activity, the Mini-Mental State Examination 
Questionnaire and the LASA Physical Activity 
Questionnaire were also filled in twice by participants.

The clinical data were analysed using IBM 
SPSS Statistics (23.0, SPSS Inc., Chicago, USA). 
Independent-samples t-tests were performed to 
assess between-group differences in clinical score 
development from baseline to follow-up. Moreover, 
between-session differences for clinical scores of  
both groups were tested for using paired-samples 
t-tests. Additionally, baseline characteristics of  the 
two groups were compared by performing a Mann-
Whitney U test to validate that the two patient 
populations are comparable. Statistical significance 
was assumed when p < .05.

Image Acquisition

Imaging data were acquired during two identical 
MRI sessions: one at baseline and one six months 
later after the intervention period. Structural and 
functional images were acquired in the morning, at 
least 12 hours after the last dose of  dopaminergic 
medication, which is defined as off-condition 

(Langston et al., 1992). Imaging was performed on 
a 1.5-Tesla MRI scanner (Siemens Avanto, Erlangen, 
Germany) equipped with an 8-channel phased-array 
head coil. For each subject a high-resolution T1-
weighted MPRAGE anatomical scan was obtained 
(TR = 2730 ms, TE = 2.95 ms, TI = 1000 ms, flip 
angle = 7°, 176 sagittal slices, matrix size = 350 × 263 
× 350 mm, voxel size = 1.0 × 1.0 × 1.0 mm, field of  
view [FOV] = 256 mm, scanning time approximately 
11.5 minutes). Furthermore, about 8.5 minutes of  
resting-state functional MRI (rsfMRI) data were 
collected consisting of  266 interleaved whole-brain 
functional volumes using a gradient-echo echo-
planar imaging (GE-EPI) sequence (TR = 1870 ms, 
TE = 35 ms, flip angle = 80°, 39 axial slices, matrix 
size = 224 × 224 × 137 mm, voxel size = 3.5 × 3.5 × 
3.5 mm, FOV = 224 mm). Participants were verbally 
instructed to lie still with their eyes open, to think of  
nothing in particular and to stay awake. The subject’s 
eyes were monitored by the experimenter to confirm 
wakefulness during the scanning.

Preprocessing of Functional MRI 
Images

Imaging preprocessing was performed using 
FSL software, version 5.0.9 (http://fmrib.ox.ac.
uk/fsl; Jenkinson, Beckmann, Behrens, Woolrich, 
& Smith, 2012). The functional data were 
preprocessed using the FMRI Expert Analysis 
Tool (FEAT v6.00), including motion correction 
with MCFLIRT (Jenkinson, Bannister, Brady, & 
Smith, 2002), slice-timing correction, grand mean 
scaling, spatial smoothing using a Gaussian kernel 
of  5 mm full width at half-maximum (FWHM) 
and deletion of  the first four volumes to allow the 
magnetisation to reach dynamic equilibrium, leaving 
262 volumes for later analysis. Also, for the higher-
level analysis required registration transformations 
were generated. First, the anatomical scans were 
brain extracted with the brain extraction tool 
implemented in FSL (BET v2.1; Smith, 2002) as 
needed for the boundary based linear registration 
method (Greve & Fischl, 2009) of  the FMRIB’s 
Linear Image Registration Tool (FLIRT; Jenkinson et 
al., 2002; Jenkinson & Smith, 2001), which was used 
to find the linear transformation to the structural 
space. Second, the non-linear transformation for 
transferring the anatomical images to the standard 
space was estimated using the FMRIB tool for 
small-displacement non-linear registration (FNIRT; 
Andersson, Jenkinson, & Smith, 2007). Third, 
both transformations were concatenated and 
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saved for later use in the group-level analysis.  In 
the following, ICA-AROMA (Pruim et al., 2015) 
was used to identify and remove motion-related 
artefacts using non-aggressive denoising. Mean 
displacement for subjects of  the AE and control 
group during the baseline session was 0.19 mm and 
0.20 mm, respectively. Mean displacement during 
the follow-up session was comparable, 0.19 mm for 
the AE group and 0.22 mm for the control group. 
Two-sample t-tests did not reveal any significant 
differences in motion between the two groups 
for the baseline session (tdf=15 = −0.951, p = .360), 
follow-up session (tdf=15 = −0.643, p = .530) and both 
combined (tdf=32 = −1.019, p = .316) or between the 
two session (tdf=32 = −0.574, p = .571). Additionally, 
nuisance regression was done, including 24 motion 
parameters and signals from white matter (WM) and 
cerebrospinal fluid (CSF) to filter out residual effects 
of  motion using linear regression. Lastly, a high-
pass filter with a cut-off  frequency of  0.01 Hz was 
applied. Global signal regression was not performed 
as it has been shown to introduce anti-correlations 
in resting-state data (Murphy, Birn, Handwerker, 
Jones, & Bandettini, 2009).

Longitudinal Seed-Based Analysis

First-Level Time-Series Analysis. The 
putamen was segmented from each subject’s whole-
head native space anatomical images using the 
model-based subcortical segmentation tool FIRST 
(Patenaude, Smith, Kennedy, & Jenkinson, 2011). 
The output was then linearly transformed to the 
native functional space using FLIRT. Next, the 
segmented putamen was first split manually into a 
left and right part. Then, to further subdivide the 
left and right putamen, four masks were created for 
the dorsoanterior-, dorsoposterior-, ventroanterior- 
and ventroposterior part of  the brain. The borders 
between these masks were drawn at y = 0 and z = 
0 in MNI (Montreal Neurological Institute) space 
based on previous work (Helmich et al., 2015; 
Postuma & Dagher, 2006) such that they passed 
through the anterior commissure. A gap of  4 mm 
was left between the different masks to minimise 
partial volume effects, so dorsal was defined as 
z ≥ 2 mm, ventral as z ≤ 2 mm, anterior as y ≥ 
2 mm and posterior as ≤ 2 mm. The four masks 
were transformed non-linearly to the subject’s 
functional space using the applywarp command and 
by multiplying them with the masks of  the left 
and right putamen both were subdivided into four 
regions, resulting in a total of  eight seed regions. 

Afterwards, it was verified in all subjects that the 
various transformations were successful and it was 
ensured that there was no overlap between any seed 
regions. This procedure made it possible to run the 
time-series analysis in native space. Next, the mean 
time course was calculated for each seed region and 
input as regressor into the first-level analysis. For each 
subject a multiple regression analysis was performed 
including the time courses from all eight seed regions, 
and whole-brain voxels. Thereby eight zstat images 
were obtained, reflecting the degree of  correlation 
of  each voxel’s time course with the regressors.

Group-Level Analysis. The first-level zstat 
images were registered to the MNI standard space 
applying the earlier, FEAT-generated transformation 
using applywarp. As longitudinal effects were of  
interest for this analysis, the paired difference 
(post − pre) of  the zstats was calculated. Next, we 
performed two separate seed-based analyses for 
different search volumes using non-parametric tests, 
as due to the small number of  subjects we cannot 
assume that our results are normally distributed. 
First, whole-brain analysis was performed, including 
only the voxels present in all participants. To identify 
group (i.e., intervention-induced) differences in the 
longitudinal connectivity change, non-parametric 
permutation testing with 5000 permutations was 
performed on the paired difference zstat images 
using the Randomise tool of  FSL (v2.9; Winkler, 
Ridgway, Webster, Smith, & Nichols, 2014). The 
family-wise error (FWE) rate was controlled by 
applying cluster-based thresholding with an initial 
cluster-forming threshold of  z = 3.1, chosen based 
on methods of  Woo et al. (2014) and Eklund et al. 
(2016). The significance level was set at one-tailed p 
< .05. Second, another group comparison was done 
using Randomise, also applying 5000 permutations, 
focusing on a target region in the right inferior 
parietal cortex (IPC), which had been identified 
by previous studies (Helmich et al., 2010; Helmich 
et al., 2015). Voxel-wise tests were masked with a 
12 mm sphere around the MNI coordinates [+56, 
−20, +28]. Threshold-Free Cluster Enhancement 
(TFCE; Smith & Nichols, 2009) was applied and 
between-group effects were considered significant 
if  a one-tailed p-value < .05 (FWE corrected) 
was reached. Gender and age were also added 
to both models as covariates of  no interest.

Supplementary Analyses

Furthermore, we performed four post hoc 
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analyses to confirm that the two intervention groups 
did not differ at baseline and to examine the validity 
of  the results from the seed-based analysis (i.e., test 
if  the observed differences might indeed be caused 
by intervention effects). First, it was explored if  
RSFC differences between the AE and control group 
were already present at baseline. This was done for 
the whole brain as well as for the previously defined 
IPC target region. In both cases non-parametric 
permutation testing was performed, using the zstat 
images from the baseline session of  each subject as 
input. Second, we tested for an intervention effect 
by doing a non-parametric two-sample paired t-test, 
comparing the baseline and follow-up session of  the 
subjects from the AE group. Again, this was done 
for the whole brain and the 12 mm sphere in the 
IPC. All analyses were done with Randomise, applying 
5000 permutations. For the two whole-brain 
analyses, cluster-based thresholding with a cluster-
forming threshold of  z = 3.1 was applied. TFCE 
was used for the ROI analyses, for which the search 
volume was restricted to the IPC.

After the longitudinal seed-based analysis, we 
also carried out an fMRI-based power analysis, 

to estimate the number of  subjects required for 
detecting significant intervention effects in a study 
that would test for between session differences in a 
group of  PD patients, who all undergo a six-month 
aerobic exercise intervention. This was done using 
novel methods developed by Mumford and Nichols 
(2008), which are implemented in the fMRIpower 
software package (fmripower.org). This method uses 
pilot data, in this case our outcome data from the 
post hoc analysis comparing the baseline and follow-
up session of  the subjects from the AE group. The 
estimation is done under the assumption that the 
data acquired in this future study will have similar 
characteristics (e.g., similar number of  runs per 
subject and a comparable length of  the runs) and 
that the scanner noise characteristics will be about 
the same. The power calculation was based on the 
previously by Helmich et al. (2010) identified target 
region in the right IPC, consisting of  a 12 mm sphere 
drawn around the MNI coordinates [+56, −20, +28]. 
The significance level was set at one-tailed p < .05. 
The effect size was expressed in standard deviation 
units, which is analogous to the Cohen’s D measure.

Table 1. 

Baseline characteristics and clinical score development from baseline to follow-up per allocation
Aerobic exercise (n = 9) Control (n = 8) p-value

Baseline characteristics
Mean age in years (SD) 54.7 (10.7) 58.5 (6.7) .387
No. of men (%) 6 (66.7%) 5 (62.5%) .888
Disease duration in months 10 (10.5) 10 (8.8) .888
No. of patients using medication (%) 7 (77.8%) 7 (87.5%) .541
      Levodopa 7 (77.8%) 6 (75%) .963
      Dopamine agonist - 1 (12.5%) .673
LED 375 (343.8) 375 (328.1) .815
No. of patients with H&Y grade I (%) 4 (44.4%) 4 (50%) .721
UPDRS III 17 (11)† 15 (4.8) .852
MMSE 29 (1.5) 29 (1.8) .370
LAPAQ outdoor 17.1 (15) 23.6 (33.8) .236

Clinical score development from baseline to follow-up session
Mean UPDRS III difference [95% CI] 2.0 [−2.8, 6.8] † 6.8 [1.5, 12.0] .128
Mean MMSE difference [95% CI) 0.1 [−0.6, 0.8] −0.3 [−1.3, 0.8] .522
Mean LAPAQ outdoor difference [95% CI] 1.0 [−8.9, 10.8] 11.2 [−4.4, 26.9] .216
Note. Numbers express the median followed by the interquartile range in brackets unless indicated 
otherwise. LED = Levodopa Equivalent Dose; H&Y = Hoehn and Yahr scale; UPDRS = Unified Parkinson’s 
Disease Rating Scale; MMSE = Mini-Mental State Examination; LAPAQ = LASA Physical Activity 
Questionnaire (only outdoor and sports activities, reported in minutes per day); SD = Standard 
Deviation; CI = Confidence Interval. †Missing data from three subjects.
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Results

Patients

In total 17 patients (11 men, 6 women) were 
included in the analysis. Nine subjects were assigned 
to the AE group and the remaining eight subjects 
were allocated to the control group. Baseline 
characteristics were similar between the two groups 
as depicted by Table 1. Within the six months 
between the assessments, the Unified Parkinson’s 
Disease Rating Scale Part III (UPDRS III) score 
significantly increased in the control group subjects 
by 6.8 units on average (tdf=7 = −3.021, p = .019), 
which might indicate disease progression, while the 
not changing significantly for participants in the AE 
group (mean difference = 2.0 units, tdf=5 = −1.074, p 
= .332). The cognitive function, as examined by the 
Mini-Mental State Examination, stayed about the 
same for subjects of  the AE group (tdf=8 = −0.359, 
p = .729) as well as the control group (tdf=7 = 0.552, 
p = .598) and also the physical activity, determined 

using the LASA Physical Activity Questionnaire, was 
not significantly altered when comparing the follow-
up and baseline assessment for the intervention 
(tdf=8 = −0.224, p = .829) and control group (tdf=7 = 
−1.698, p = .133). Importantly, the two groups did 
not show any differences in the clinical score change 
from baseline to follow-up (Table 1).

Longitudinal Functional Connectivity 
Differences Between Groups

The whole-brain analysis of  voxel-wise 
connectivity with the striatal seed regions revealed 
a significant cluster in the cerebellum, which 
showed a greater increase in resting-state functional 
connectivity (RSFC) with the right dorsoposterior 
putamen for the AE group, but the opposite pattern 
for the control group (MNI coordinates peak voxel: 
+28; -78; -20, p-value = .0292, cluster size = 173 
voxels [2 mm isotropic]). The cluster was located in 
the right cerebellar lobule VI and crus I regions (Fig. 
1).

When restricting the search volume to a 12 mm 

Fig. 2. Between-group difference in the longitudinal change of RSFC between the putamen and the 
right IPC. A small cluster in the right IPC showed a larger increase in RSFC with the right dorsoanterior 
putamen for the control group compared to the AE group. Displayed slices are in line with the peak 
voxel of the cluster at MNI coordinates [+54, -18, +30].

Fig. 1. Between-group difference in the longitudinal change of RSFC of the whole brain with the putamen. 
Significant differences were found in the posterolateral cerebellum, which showed a larger increase in 
RSFC with the right dorsoposterior putamen for the AE group compared to the control group. Displayed 
slices are in line with the center of gravity of the cluster, located at MNI coordinates [+36, -64, -23].
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sphere in the right IPC, which had been previously 
identified as region displaying altered functional 
connectivity with distinct putamen subdivisions 
(Helmich et al., 2010), a small significant cluster 
was found, for which the RSFC with the right 
dorsoanterior putamen increased in the control 
group within the six months, while decreasing in the 
AE group (MNI coordinates peak voxel: +54; -18; 
+30, p-value = .0228, cluster size = 2 voxels [2 mm 
isotropic]). This peak in the parietal lobe, shown in 
Figure 2, was part of  a larger cluster of  activation 

that was found at p = .08 (cluster size = 11 voxels [2 
mm isotropic]).

Note however, that these group differences 
observed in both longitudinal seed-based analyses 
were driven by opposing changes in RSFC between the 
putamen and the posterolateral cerebellum or right 
IPC for both groups. That means that on the group-
level, the RSFC between seed and target region 
increased from the baseline session to the follow-
up for one group, while decreasing for the other. 
For the cerebellar cluster, shown in Figure 1, all 

Fig. 3. Between session z-value difference in the posterolateral cerebellum. A. The variation in between-
session z-value change is depicted for both groups. Whiskers represent the full range from minimum 
to maximum value. The mean between-session z-score difference is indicated with diamonds. Subjects 
of the AE group (Int) increased in z-value from baseline to follow-up, while the subjects of the control 
group (Con) showed a z-score decrease. B. The individual changes in z-value from baseline (session 1) to 
follow-up (session 2). Subjects of the AE group are shown in blue with a continuous line, control subjects 
in red with a dashed line.

Fig. 4. Between session z-value difference in the right IPC. A. The variation in between-session z-value 
change is depicted for both groups. Whiskers represent the full range from minimum to maximum value. 
The mean between-session z-score difference is indicated with diamonds. Subjects of the AE group (Int) 
decreased in z-value from baseline to follow-up, while the subjects of the control group (Con) showed a 
z-score increase. B. The individual changes in z-value from baseline (session 1) to follow-up (session 2). 
Subjects of the AE group are shown in blue with a continuous line, control subjects in red with a dashed 
line.
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subjects of  the AE group increased in z-value from 
baseline to follow-up, with a mean z-score increase 
of  0.84, while all the control subjects showed a 
z-score decrease, which was −0.79 on average (Fig. 
3A). Note, however, that the connectivity of  the 
dorsoposterior putamen with the posterolateral 
cerebellum seems to differ between the two groups 
at baseline (Fig. 3B). A similar, but reversed pattern 
was found for the IPC. There was a mean decrease 
in the z-score of  −1.08 for the AE group and a 
mean increase of  0.68 for the control group (Fig. 
4A). The individual time-series correlation scores of  
the IPC cluster with the dorsoanterior putamen are 
shown in Figure 4B.

Supplementary Analyses

The whole-brain analysis comparing the baseline 
RSFC for both intervention groups did not reveal 
any significant group differences at baseline. 
In addition, intervention effects could not be 
confirmed by the whole-brain two-sample paired 
t-test comparing both sessions of  the participants 
that underwent the AE training. Also for an adjusted 
search volume, including only the 12 mm sphere in 
the right IPC, no group differences were detected 
for the baseline session. However, when testing for 
an intervention effect in the AE group in the right 
IPC, a small cluster showed a significant increase 
in connectivity from baseline to follow-up with 
the left dorsoposterior putamen (MNI coordinates 
peak voxel: +50; -22; +28, p-value = .0466, cluster 
size = 2 voxels [2 mm isotropic]) (Fig. S1). Note 
that the coordinates and the associated seed region 
did not match the coordinates and corresponding 
seed regions of  the clusters found by the initial 
longitudinal seed-based analysis. The power analysis 
revealed that with 134 subjects we will have at least 

80% power to detect a mean differences between the 
two sessions of  0.216 standard deviation units in the 
right IPC (Fig. S2). 

Discussion

Our longitudinal seed-based analysis revealed two 
clusters, in the posterolateral cerebellum and right 
IPC, driven by a group difference in the alteration 
of  functional connectivity with the putamen from 
baseline to follow-up assessment. Initially, the group 
comparison of  the longitudinal change in RSFC 
between the putamen and the rest of  the brain showed 
differences in the posterolateral cerebellum. This is 
striking, because the cerebellum has been implicated 
in both pathological and compensatory processes in 
PD, implying a functional relevance to changes in 
the BG-cerebellar connectivity. The cerebellum has 
been found to display hyperactivation during motor 
execution and motor learning in PD patients (Wu & 
Hallett, 2013) and other changes in the cerebellum 
such as altered dopaminergic neurotransmission and 
decrease in gray matter volume have been suggested 
to be associated with the motor symptoms in PD 
(Lewis et al., 2013). More specifically, modifications 
of  striato-cerebellar connections in PD have been 
reported by previous studies. For example, during 
a self-initiated movement task, decreased effective 
connectivity was observed for striato-thalamo-
cortical and striato-cerebellar connections (Wu et al., 
2011), which might reflect abnormal signalling from 
the BG influencing cerebellar function (Bostan, 
Dum, & Strick, 2010). In addition, many studies have 
suggested that cerebello-thalamo-cortical pathways 
are involved in pathological, as well as compensatory 
processes in PD. 

On the one hand, tremor-dominant Parkinson’s 

Fig. S1. Longitudinal RSFC change between the putamen and the right IPC of the intervention group. 
A small cluster in the right IPC showed a significant increase in connectivity from baseline to follow-up 
with the left dorsoposterior putamen for the AE group. Displayed slices are in line with the peak voxel 
of the cluster at MNI coordinates [+50, -22, +28].
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Fig. S2. Effect size estimation and power curve 
for the right IPC as determined by fmripower. 
Calculations were done based on a between-
session comparison of the resting-state fMRI data 
from the AE group. The effect size is expressed in 
standard deviation (SD) units. In total 134 subjects 
would be required, to have at least 80% power 
to detect a between-session mean differences of 
about 0.216 standard deviation units in the right 
IPC.

patients showed increased functional connectivity 
between the BG and cerebello-thalamo-cortical 
circuits and tremor amplitude-related activity 
correlated with the latter, indicating that the 
cerebellum could be involved in the propagation 
and transmission of  the resting tremor, which might 
be underlain by a pathological interaction between 
the BG and these circuits (Helmich, Janssen, Oyen, 
Bloem, & Toni, 2011). On the other hand, the 
cerebello-thalamo-cortical network was increasingly 
engaged in a visually guided sinusoidal force task as it 
became more challenging (Palmer, Ng, Abugharbieh, 
Eigenraam, & McKeown, 2009) and recruitment of  
these circuits positively correlated with the severity 
and progression of  symptoms during early stages 
of  PD (Sen, Kawaguchi, Truong, Lewis, & Huang, 
2010; Wu et al., 2009). It has been proposed that 
this increased connectivity in cerebello-thalamo-
cortical loops compensates for hypofunction in the 
striato-thalamo-cortical, which induces a decline in 
motor performance (Wu & Hallett, 2008), thereby 
preserving near-normal motor function. Recently, 
also altered functional connectivity between the 
putamen and the cerebellum was found, which 
seemed to be compensating for pathological changes 
in the connectivity of  the putamen with the primary 
motor cortex (Simioni, Dagher, & Fellows, 2016).

Taken together, the group difference in RSFC 

change between the putamen and the posterolateral 
cerebellum that we observed, could be driven by 
opposing processes occurring in subjects AE group 
compared to control subjects. That means that 
the increase in RSFC in the intervention group 
might reflect a potentially compensatory alteration 
to improve motor function induced by AE. In 
contrast, in the absence of  the additional physical 
activity, pathological processes might dominate in 
the control group and the decrease in functional 
connectivity could simply represent progression 
of  PD. The notion that disease progression might 
occur in control subjects, but not in subjects of  the 
AE group, as it is counteracted by compensatory 
processes induced by AE, is not fully supported by 
the clinical data: while the UPDRS III score worsens 
for control subjects, there is no significant change 
in participants undergoing the physical training, but 
a direct comparison of  the change in the UPDRS 
III score within the six months between groups did 
not reveal significant differences. Still, it is possible 
that disease-related functional connectivity changes 
in the posterolateral cerebellum are indeed restored 
by a long-term moderately intensive aerobic exercise 
intervention. That being said, our results might be 
influenced by methodological confounds, which will 
be described in the study limitations section.

It is also interesting that we detected group 
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differences in RSFC between the putamen and 
the region previously identified by Helmich et al. 
(2010) in the right IPC. The authors interpreted 
the shift in cortico-striatal functional connectivity 
from the posterior putamen to the anterior putamen 
as a compensatory mechanism in idiopathic PD, 
which was dependent on the spatial pattern of  
dopamine depletion in the striatum. Transferring 
this hypothesis to our study and assuming that 
AE is able to (partially) restore the connectivity 
pattern present in the healthy brain, we would have 
expected to see the largest group differences in 
cortico-striatal functional connectivity in the heavily 
dopamine depleted dorsoposterior and less affected 
ventroanterior putamen. Specifically, the RSFC 
of  the ventroanterior putamen with the right IPC 
should have increased or not changed for the control 
group, while the AE group should have displayed 
a decrease in RSFC between the two regions from 
baseline to follow-up. The reversed pattern would 
be expected for the dorsoposterior putamen. In 
contrast to this, we found a differential longitudinal 
functional connectivity change with the right IPC in 
the dorsoanterior putamen only; RSFC decreased 
during the six months for subjects of  the AE group 
and increased in the control group. It could be that 
effects were observed in this putamen subregion as 
the dopamine gradient might not be perfectly in line 
with the dorsoposterior-ventroanterior axis and the 
borders between the subdivisions of  the putamen 
were drawn at arbitrary coordinates. Moreover, there 
is a chance that partial volume effects were not fully 
eliminated when creating the seed regions. More 
general study limitations, applying to all analyses 
carried out in this study, will be covered in the next 
section. 

Study Limitations

There are a number of  methodological 
constraints, which could have potentially influenced 
the outcome of  our analyses. First of  all, we have 
to acknowledge that the small sample size limits the 
detection power, while at the same time increasing 
the chance to find false positives as explained by 
Button et al. (2013) in detail. We cannot fully remove 
the doubts about our findings reflecting a true effect 
as, for example, the cluster size was generally quite 
small. Moreover, the post hoc analyses could not 
provide support for the intervention leading to the 
group differences detected by the longitudinal group 
comparison: no effect of  AE on the functional 
connectivity with the putamen was found in the 

whole-brain analysis. Additionally, when restricting 
the target area to the right IPC, the post hoc 
analysis only revealed a between-session difference 
in RSFC between the left dorsoposterior putamen 
and another IPC area that did not align with the 
coordinates of  the significant cluster in the right 
IPC observed before. We, therefore, cannot confirm 
potential effects of  aerobic exercise on resting-state 
functional connectivity in Parkinson’s disease with 
absolute certainty. It is possible that we discovered a 
true effect here, still the power analysis performed, 
points towards it rather being a false positive, as it 
suggests that the number of  participants required to 
detect significant effects is much higher. It remains 
unclear how the significant cluster in the right 
IPC identified by the post hoc analysis should be 
interpreted. The between-session difference was 
marginally significant, but not large enough to also 
be observed in the whole-brain analysis. We cannot 
draw any conclusions about the nature of  this cluster 
due to the small sample size and subsequent limited 
number of  data points.

Second, it is possible that our methods restrict us 
to finding only the largest group differences, which 
are driven by opposing longitudinal changes in both 
groups. For example, as Figure 3B shows, the mean 
cluster z-values of  the groups seem to be dissimilar 
at baseline already for the posterolateral cerebellum, 
despite this segregation not being confirmed by post 
hoc analyses. A similar distinction, although to a lesser 
extent, could be observed in the right IPC (Fig. 4B). 
This is striking, because assuming that differences in 
the RSFC change between the two groups are caused 
by the intervention, we would expect the groups 
to not differ at baseline and then diverge until the 
follow-up session. In addition, there is a surprisingly 
large change in RSFC in both groups, which leads 
to an almost inverted connectivity pattern in the 
follow-up assessment. It seems that our methods 
are such that only the largest group differences in 
longitudinal RSFC alteration are detected and we are 
prone to finding this kind of  distinctness in which 
the functional connectivity pattern is reversed from 
baseline to follow-up.

Conclusion

In this study we identified the posterolateral 
cerebellum as a region in which both pathological 
changes in RSFC with the putamen, as a consequence 
of  PD, as well as restoration of  those connectivity 
changes, induced by aerobic exercise, might occur. 
By comparing PD patients undergoing physical 
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training and patients not receiving this six-month 
intervention, we also found opposing longitudinal 
changes in cortico-striatal connectivity in the right 
IPC, a region that previously had been shown to 
display altered connectivity with distinct putamen 
subregions in Parkinson’s patients, potentially 
reflecting compensatory mechanisms taking place in 
PD. However, we have to acknowledge that there is 
the possibility of  the small sample size undermining 
the reliability of  our results. A larger follow-up study 
is required to confirm potential effects of  aerobic 
exercise on resting-state functional connectivity in 
Parkinson’s disease.
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For successful spatial navigation, accurate memory or representation of  the environment is required. The 
hippocampus has been shown to be highly involved in spatial navigation. Also, the frontal cortex has been 
suggested to be implicated. The hippocampus is thought to play a role in the formation of  a cognitive map 
of  the environment. In such a map, the representation of  distances between locations is important. Previous 
research has suggested that similarity in neural activation pattern between pairs of  locations correlates with 
the distance between these locations. In our study, we aimed to take a more fine-grained look at cognitive 
map formation. We investigated whether the represented distances were Euclidean or path distances, or 
both. Thereby, we looked at the hippocampus and the frontal pole. We used navigational tasks in a virtual 
city, functional magnetic resonance imaging (fMRI), and representational similarity analysis to investigate 
neural representations of  distances between locations in the virtual environment. We furthermore wanted 
to investigate the use of  different navigational strategies and their effect on neural distance representations. 
To this end, participants performed several additional behavioural spatial tasks. Our results suggest that 
both objective and remembered path distances are represented in a right lateral frontal region. We found 
no evidence for representations in the hippocampus. We also did not find evidence for Euclidean distance 
representations. However, based on previous research, it is more likely that we did not pick up on these 
effects rather than that they are not present. Further analyses on our data may give a clearer view on this, 
but that lies beyond the scope of  this thesis. Considering navigational abilities, we show that there are clear 
behavioural differences between people. These suggest differential use of  navigational strategies. 

Keywords: spatial navigation, hippocampus, frontal cortex, representational similarity analysis, navigational strategies
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NEURAL METRICS OF SPACE

Finding our way in familiar and unfamiliar 
environments is a very important aspect of  our 
daily lives. For successful navigation, we have to 
adequately remember or represent the environment 
in some sort of  mental map. The hippocampus 
has been shown to be highly involved in spatial 
memory and spatial navigation (Burgess, Maguire, 
& O’Keefe, 2002; Eichenbaum, Dudchenko, Wood, 
Shapiro, & Tanila, 1999; O’Keefe & Dostrovsky, 
1971; O’Keefe & Nadel, 1978). This structure 
seems to be the region where a cognitive map of  
the spatial environment is formed, which we can 
use to navigate in this environment (Burgess et 
al., 2002; Iglói, Doeller, Berthoz, Rondi-Reig, & 
Burgess, 2010; O’Keefe & Nadel, 1978). Cognitive 
map formation was already suggested by Tolman 
in 1948 as a mental representation of  a spatial 
environment in the rat brain. A cognitive map as 
considered in this paper is a neural representation of  
a map of  a spatial environment (Burgess et al., 2002; 
McNaughton, Battaglia, Jensen, Moser, & Moser, 
2006; O’Keefe & Nadel, 1978). It can be used to 
efficiently navigate to goals in that environment. 
Representation of  distances between locations in the 
environment is very important when forming such a 
map. Thereby, locations with a low distance between 
each other are suggested to be neurally represented 
more similarly than locations with a higher distance 
(Deuker, Bellmund, Navarro Schröder, & Doeller, 
2016; Morgan, MacEvoy, Aguirre, & Epstein, 2011). 
In the current study, we aimed to further investigate 
the formation of  a cognitive map in humans.

Spatial navigation, memory and cognitive 
mapping have been studied a lot in rodents. Using 
single-cell recordings, a few types of  cells have been 
found in the rodent brain that are active in relation 
to the spatial environment the animal is in (Moser, 
Kropff, & Moser, 2008). Importantly, they are also 
related to spatial navigation. These cell types are, 
for instance, place cells in the hippocampus, which 
fire when the rat is in a specific location (O’Keefe 
& Conway, 1978; O’Keefe & Dostrovsky, 1971; 
Wilson & McNaughton, 1993), and grid cells in the 
entorhinal cortex, which fire when the rat is at a node 
of  a hypothetical grid that covers the environment 
(Hafting, Fyhn, Molden, Moser, & Moser, 2005). 
These specific cells stably represent the location of  
animal in its environment. These findings indicate 
that such cells contribute to a general representation 
of  a map of  the spatial environment in the brain. 
This suggests the formation of  a cognitive map of  
space (O’Keefe & Nadel, 1978; Hafting et al., 2005). 

Findings about such spatially tuned neurons also 
extend to the human brain. Neuronal recordings in 

the human hippocampus during a spatial navigation 
task showed that some neurons respond only at 
certain locations (Ekstrom et al., 2003). This is 
similar to the place cells found in rats. Furthermore, 
evidence for grid-cell-like representations in the 
entorhinal cortex have been found in humans, 
using functional magnetic resonance imaging 
(fMRI) during a spatial navigation task in a virtual 
environment (Doeller, Barry, & Burgess, 2010). 
More research has been conducted investigating 
spatial navigation and its neural underpinnings in 
humans, using spatial tasks in virtual environments 
(Deuker et al., 2016; Doeller, Barry, & Burgess, 
2012; Ekstrom et al., 2003; Hartley, Lever, Burgess, 
& O’Keefe, 2014; Iglói et al., 2015; Kaplan, Horner, 
Bandettini, Doeller, & Burgess, 2014; Viard, Doeller, 
Hartley, Bird, & Burgess, 2011), supporting the use 
of  virtual environments in this field of  research.

These findings suggest that the hippocampal 
formation is also highly involved in spatial navigation 
in humans and that the human hippocampus forms 
a cognitive map of  the environment. This has been 
assessed more specifically in a study by Deuker et 
al. (2016), where participants navigated through 
a virtual city called Donderstown. In this city, 16 
objects were placed with various spatial and temporal 
distances between them. Participants had to learn the 
locations of  these objects during an object location 
task. Using representational similarity analysis 
(RSA; see Methods for details; Kriegeskorte et al., 
2008), they could analyse neural pattern similarity 
between objects. In other words, they analysed how 
similar pairs of  objects were represented in the 
hippocampus in relationship to their temporal and 
spatial distance in the task. Participants also had to 
estimate the distance between the objects. These 
remembered distances were correlated with the 
neural similarity. They found a negative correlation 
in the right hippocampus. This suggests that objects 
that were remembered as closer together in space, 
were represented more similarly in the hippocampus 
than objects that were remembered further apart 
(Deuker et al., 2016). It furthermore indicated that 
remembered spatial distances were represented in 
the hippocampus. These findings are therefore in 
accordance with the theory of  the hippocampus 
forming a cognitive map of  the environment. 
Similar results were obtained for temporal distances 
between objects.

The study by Deuker and colleagues (2016) 
thus shows interesting results suggesting that 
spatial and temporal distances between locations 
are represented in the hippocampus. We aimed to 
expand these findings by taking a closer look at 
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representations of  spatial distances in a cognitive 
map. It might be that the represented distances are 
the length of  a straight line between two locations 
(Euclidean distance), or the distance of  the path 
navigated between two locations (path distance). In 
the current study, we wanted to investigate whether 
one or the other distance type is represented in a 
cognitive map, or both.

A study by Howard et al. (2014) suggests that 
both distance types are represented. Here, the path 
distance was encoded by the posterior hippocampus, 
and Euclidean distance by the entorhinal cortex. In 
this study, when the path distance to the goal suddenly 
changed because the goal was moved, the signal 
change in the posterior hippocampus correlated with 
the distance change. In a similar fashion, when the 
Euclidean distance to their goal suddenly changed, 
the signal change in the entorhinal cortex correlated 
with this distance change. These representations, 
however, were not representations in the sense of  
similarity in neural activation patterns between 
locations, in contrast to the study by Deuker et al. 
(2016). Furthermore, the fMRI measures were done 
during navigation, not before and after learning 
locations. Therefore, this study may suggest retrieval 
of  spatial memory or a cognitive map rather than 
storage of  a cognitive map. Besides, the navigation 
was no real, active navigation, but a movie of  a path 
with several navigational decisions. In the current 
study, we used a different approach to investigate 
Euclidean versus path distance representation, 
adapted from Deuker and colleagues (2016).

Not only the hippocampus has been shown to be 
involved in human spatial navigation. Also frontal 
areas were found in relation to navigation, and for 
instance related to navigational goals and spatial 
planning. More specifically, the medial prefrontal 
cortex (mPFC; Doeller et al., 2010; Iglói et al., 2010; 
Spiers & Maguire, 2007; Viard et al., 2011), as well as 
the lateral prefrontal cortex (lPFC; Viard et al., 2011), 
anterior cingulate and orbitofrontal cortex (Ekstrom 
et al., 2003) are shown to be involved. Therefore, 
we did not only focus on the hippocampus, but also 
looked at frontal regions. In the interest of  time, we 
looked at the predefined mask of  the frontal pole. 

In the current study, we aimed to take a more 
fine-grained look at the formation of  a cognitive 
map for spatial navigation. Therefore, we analysed 
neural representations of  distances between 
locations in an environment, and assessed whether 
differences in these representations correlated with 
Euclidean or path distance, or with both. In other 
words, we tested whether the formed cognitive 
map is based on Euclidean distances or on path 

distances. Additionally, we wanted to test whether 
these representations adapt when routes change. 
This, however, goes beyond the scope of  this thesis, 
and was not further addressed for this paper. We let 
participants navigate in a virtual city marked with 
certain locations. The virtual city was adapted from 
‘Donderstown’ (Deuker et al., 2016), using Unreal 
Development Kit (Unreal Engine 3, Epic Games, 
Inc.). Figure 1 shows a bird’s-eye view of  the city. Our 
experimental sessions took place on two consecutive 
days. On day 1, participants first performed a 
Training task (Fig. 2), to learn the locations and the 
shortest routes between them. There were eight 
locations marked by a black box (Fig. 1). Different 
than in the task by Deuker et al. (2016), participants 
freely navigated from location to location, thereby 
approaching the locations from different directions. 
Additionally, the order in which they encountered 
locations was pseudo-randomised (see Methods), 
while in Deuker et al. (2016) this order was always 
the same. There were also three roadblocks placed 
(Fig. 1). These roadblocks allowed us to manipulate 
some routes and to introduce clear distinctions 
between the Euclidean and path distances between 
location pairs. The path distances were the shortest 
possible routes between the locations, which the 
participants were instructed to learn. We chose the 
locations and the roadblocks such that some location 
pairs have a similar Euclidean and path distance, 
but other pairs have large differences. For example, 
the two objects in Figure 1 have a much larger path 
distance (dashed arrow) than Euclidean distance 
(continuous arrow). This was done in order to be 
able to distinguish between neural representations 
of  Euclidean and path distances. The whole Training 
task was divided into four blocks. To test knowledge 
of  the locations, a short test phase started after each 
block. Here, the black boxes were removed from the 
city. Participants had to navigate around, and ‘drop’ 
boxes at the eight locations as they remember. On 
day 2, participants performed a second navigation 
task (Object Location task). Here, the locations were 
associated with an object. Participants had to learn 
the locations of  the objects, and the shortest routes 
between them. Associating objects with the locations 
allowed us to later analyse the neural representations 
of  distances between the locations (objects). On 
the second day, participants furthermore performed 
a third navigation task (Route Change). Here, the 
locations and objects remained the same, but two 
of  the roadblocks were relocated. This introduced 
a change in some routes and thus also in their path 
distance. This was done to answer our additional 
research question concerning whether distance 
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representations adapted when routes change, and 
was not further analysed for this thesis. For a more 
detailed description of  the navigation tasks, see the 
Methods section. We presented the objects before 
the Training on day 1, and after the Object Location 
and the Route Change task on day 2, in a picture 

viewing task during fMRI sessions (Fig. 2, RSApre, 
RSApost, and RSApost_2). The objects were presented 
in a random order, different for each participant, but 
in the same order during the three fMRI sessions. 
Using RSA, we analysed the change in neural pattern 
similarity between each object pair from before to 
after the Object Location task. Data from RSApost_2 
was not analysed for this thesis. RSA further allowed 
us to test whether these changes correlated with 
the Euclidean or path distance between the object 
pairs. Thereby we investigated whether the distance 
representations were based on the Euclidean or the 
path distance between objects, or on both. Based on 
the results of  Deuker et al. (2016), we hypothesised 
that the change in neural similarity between each 
object pair would correlate negatively with the 
distances.

It may furthermore be the case that individual 
differences in for example navigational strategies may 
affect representations of  distances in a cognitive map. 
For instance, representations of  the environment in 
spatial memory can be egocentric (perspective from 
own body or location) or allocentric (based on distal 
cues in the environment), and thus differ in point 
of  view (Burgess, 2006; Klatzky, 1998). Therefore, 
spatial navigation could also be egocentric or 
allocentric. Egocentric navigation is based on 
remembered left and/or right turns (sequence 
or stimulus-response memory), and allocentric 
navigation is based on environmental cues (place 
memory; Astur, Purton, Zaniewski, Cimadevilla, & 
Markus, 2016; Iglói et al., 2010). Previous research 
has shown that a distinction can be made between 
the stable use of  these two navigational strategies 
(Astur et al., 2016; Iglói et al., 2010).

In the current study, we also wanted to address 
the use of  different navigational strategies and their 
impact on representation of  distances in a cognitive 
map. For example, some people may have a kind 

Fig. 1. Bird’s-eye view of the virtual city 
environment. The eight locations are marked with 
a black square, and the three roadblocks with 
a red bar. Examples of two objects are pointed 
out on two locations. Their Euclidean distance is 
indicated by the straight arrow, and their path 
distance by the dashed arrow.

Fig. 2. Experimental 2-day design overview. On day 1, the RSApre-block was executed during an fMRI 
session. The Training task, Santa Barbara Sense of Direction Scale, and T-maze task were performed 
during a behavioural session. On day 2, The Object Location, Distance Estimation and Object Placement 
tasks were performed during a behavioural session. The RSApost and RSApost_2-blocks and Route Change 
task were executed during an fMRI session. The Route Change, RSApost_2, and second Distance Estimation 
task were not analysed for this thesis.
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of  bird’s-eye view map in their mind that they 
use to navigate. This can be called a map-based 
navigation strategy. On the contrary, some people 
may only remember the paths they took from their 
own point of  view, and only remember which left 
or right turn they took where. This can be called 
a route-based navigation strategy. We conducted 
several behavioural spatial tasks to distinguish 
between a map- or route-based strategy. To this end, 
participants performed the Santa Barbara Sense of  
Direction Scale questionnaire (SBSOD; Hegarty, 
Richardson, Montello, Lovelace, & Subbiah, 2002) 
and a T-maze task (Astur et al., 2016) on day 1 (Fig 
2). The SBSOD contains questions about general 
navigational abilities, and thus obtains a value that 
can be used as a measure of  self-report about 
such abilities. The T-maze task is a short task that 
roughly classifies the participants as having a map- 
or route-based navigation strategy. On the second 
day, they performed a Distance Estimation task 
after the Object Location and Route Change tasks, 
and an Object Placement Task at the end of  the 
session on day 2 (Fig. 2). We assumed that a higher 
performance on these spatial tasks indicates a map-
based strategy, and lower performance a route-based 
strategy. For a more detailed description of  the tasks, 
see the Methods section. To investigate whether 
there is a relationship between spatial behaviour and 
navigational strategies, we correlated performances 
of  the spatial tasks with each other. 

Furthermore, we investigated whether there 
was a link between the behavioural measures, and 
the neural similarity measures from the RSA. We 
tested whether there were correlations between 
performances on the SBSOD and Object Placement 
task and how well Euclidean and path distances 
are represented in the brain. Thereby we assessed 
whether different navigational strategies can affect 
neural representations of  distances in a cognitive 
map that is formed during navigation. 

Results

Neural representations of distances

To investigate neural representations of  
distances between the objects, we analysed data 
from the fMRI sessions using RSA. In our study, 
this analysis method generated changes in neural 
pattern similarity between object pairs, from before 
to after the navigation task (from the first RSA-
block to the second). We wanted to assess how the 
representations change due to learning the locations 

in the Object Location task, by testing whether 
the change in neural similarity correlated with the 
distance between each object pair. 

 The neural activation pattern for all objects was 
correlated with each other (so each object pair), 
both before (RSApre), and after (RSApost) the Object 
Location task, to get the neural similarity. Data of  
the RSApre-block was then subtracted from data of  
the RSApost-block (pre-post design; Fig. 3) for each 
object pair, yielding the change in neural similarity 
in a so-called similarity matrix (8×8). These matrices 
were symmetrical, so we only used the upper half  of  
the matrix (above the diagonal) for analyses. 

Subsequently, we tested whether neural 
representations of  distances between objects 
(locations) were Euclidean or path distances. We 
compared the RSA results with predictions on how 
the neural similarity between objects would change 
based on either of  the distance types. Besides the 
objective distances, we also used the behaviourally 
informed distances (those estimated by the 
participant) as predictions. Before the navigation 
tasks, there was presumably no association between 
the objects, so the neural similarity should be random 
and low. After the navigation tasks, so after learning 
the locations and the routes, the associations were 
predicted to be changed according to the distances 
between the object pairs. Therefore, the distances 
were predictions of  how the neural similarity would 
change. These distances were stored in so-called 
8 × 8 prediction matrices (Fig. 3). These matrices 
were symmetrical, so we only used the upper half  of  
the matrix (above the diagonal) for analyses. There 
were four prediction matrices (objective Euclidean 
and path distances, and behaviourally informed 
Euclidean and path distances), so four conditions 
for which the neural data was further analysed. The 
behaviourally informed prediction matrices were 
obtained for each participant, using data from the 
Distance Estimation task. The change in neural 
similarity between each object pair, as obtained 
from the RSA, was then correlated with the four 
prediction matrices. This yielded a correlation value 
for each of  the four conditions, respectively. We 
hypothesised that this correlation would be negative, 
since we expect an object pair with high distance 
having low neural similarity and a pair with a low 
distance having high similarity. 

These analyses were performed using a whole-
brain searchlight analysis. Thereby, the RSA 
was done on a sphere (searchlight) around each 
grey matter voxel in the brain. The correlation 
values for the four conditions were read back 
into the centre voxel of  each searchlight, giving a 
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correlation value for each voxel, per condition. 
On these correlation values, a permutation 
test was performed to test in which voxels the  
correlation with the predictions was significantly 
different from zero. The p-values were FWE-
corrected for multiple comparisons, for the whole 
brain. Small-volume correction was also applied 
for the left, right, and whole hippocampus, and 
for the frontal pole. In addition to the voxel-wise 
corrections, a Threshold-Free Cluster Enhancement 
(TFCE) analysis was performed. Peak voxels were 
extracted with a threshold of  p < .001 (uncorrected).

There were no voxels in either conditions that 
were significant after whole-brain FWE-correction. 
The peak voxels that were extracted with a threshold 
of  p < .001 (uncorrected) and T ≥ 3.7 are listed in 
Table 1. These comprise mostly frontal areas. There 
was only one voxel in the left hippocampal formation 
that had an effect in the objective Euclidean and 
path distance conditions (p < .001 uncorrected, see 

Table 1).
After small-volume correction, there were no 

voxels that survived in the left, right, or whole 
hippocampus. In the frontal pole, there was a 
cluster in a right lateral region that survived small-
volume correction for both the objective and 
behaviourally informed path distance conditions 
(peak objective: T = 4.81, p < .05 FWE-corrected; 
Fig. 4; peak behaviourally informed: T = 5.44, p < 
.01 FWE-corrected; Fig. 5; Table 1). Both clusters 
survived small-volume correction after TFCE, but 
the behaviourally informed condition also survived 
without. For the behaviourally informed path 
distance condition, the peak T-value is higher than 
for the objective condition, suggesting a stronger 
effect for the behaviourally informed condition. 
The correlation of  neural similarity with distance 
in the peak voxel in the RSApre and RSApost-blocks 
separately are also presented in Figure 4 and 5. 
For the peak voxel of  both clusters, there was 

Fig. 3. Pre-post design of RSA. Neural similarity between each object pair was obtained from RSApre and 
RSApost. The data from RSApre was subtracted from RSApost , yielding the change in neural similarity for 
each object pair. This similarity matrix was correlated with the prediction matrices of all distance types 
(objective Euclidean and path distance, and behaviourally informed Euclidean and path distance). In the 
similarity and prediction matrices, all objects are on the rows and columns (four objects are shown as 
an example here). Neural similarity is colour-coded in these examples, with a darker colour indicating 
higher neural similarity. Since the matrices are symmetrical, only data from above the diagonal are 
analysed.
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Fig. 4. Change in neural similarity between object pairs correlated with objective path distance in a 
cluster in a right lateral frontal pole area (peak voxel 48, 40, 14; T = 4.81, p < .05 FWE-corrected). This 
is the only cluster that survives small-volume correction, using TFCE. There was a significant increase 
in correlation between neural similarity and distance (neural similarity correlation) from RSApre (Pre) 
to RSApost (Post). This indicates a significant positive correlation between neural similarity change and 
objective path distance. Brain is displayed in the radiological convention. ***p < .001.

Fig. 5. Change in neural similarity between object pairs correlated with behaviourally informed path 
distance in a cluster in a right lateral frontal pole area (peak voxel 50, 40, 14; T = 5.44, p < .01 FWE-
corrected). This was the only cluster that survived small-volume correction, using TFCE. There was a 
significant increase in correlation between neural similarity and distance (neural similarity correlation) 
from RSApre (Pre) to RSApost (Post). This indicates a significant positive correlation between neural 
similarity change and behaviourally informed path distance. Brain is displayed in the radiological 
convention. ***p < .001.
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a significant negative correlation in RSApre, and 
a significant positive correlation in RSApost. The 
change in neural similarity (from pre to post) thus 
correlated positively with distance.   

Spatial behaviour 

To check whether participants learned the 
locations and the shortest routes between them, we 
calculated learning curves of  the Training and Object 
Location tasks on how many mistakes they made 
when finding the shortest routes (supplementary Fig. 
S1, see online appendix). These learning curves went 
down of  both navigation tasks, so they made less 
mistakes as they proceeded in the tasks. The learning 
curves of  the Object Location tasks decrease faster 
and reach a lower level than those of  the Training, 
suggesting that the participants remembered the 
shortest routes between the locations from the 
Training task. The mean percentage of  correctly 
placed boxes in the test phases of  Training task is 
90% (SD = 19%), suggesting the participants know 
the locations by the end of  this task. There were 
four participants who did not complete the Training 
due to time issues. Hence, they navigated a reduced 
amount of  times between some location pairs. To 
check whether this could cause a bias, we correlated 
this amount with the distance between the locations 
of  those pairs. We found no significant correlation. 
Therefore, we found no indication that the fact that 
some participants did not finish the Training biased 
results concerning distances between objects (i.e., 
RSA results). 

Of  the SBSOD and Object Placement task, 

we calculated the mean score and mean error 
per participant, respectively (supplementary Fig. 
S2 and S3). For both Distance Estimation tasks 
(Euclidean and path distance), we correlated the 
estimated distance with the objective distance for 
each participant, and tested whether the correlations 
across participants were different from zero, using 
a t-test. For both tasks, we found a positive mean 
correlation (Euclidean: r = 0.78; path: r = 0.85), 
which was significant (Euclidean: t(21) = 22.41, p < 
.001; path: t(21) = 45.24, p < .001). We additionally 
used a t-test to see whether there was a difference in 
performance between Euclidean and path distance 
estimation. We found no significant difference, but 
a trend (t(42) = -1.73,  p = .09), with slightly better 
performance on path distance. Using the T-maze 
task, we found that 10 participants had a spatial 
strategy (Spatial strategy group), 10 participants had 
a response strategy (Response strategy group), and 
2 participants had a mixed strategy (supplementary 
Fig. S4, and the Methods section for more details 
on this task). Data of  participants in the Spatial 
and Response strategy groups (not the mixed 
group) were used to investigate whether there were 
differences in the other spatial tasks between these 
two strategy groups. 

Relations between spatial tasks. To determine 
whether there is a relationship between spatial 
behaviour and navigational strategies, we correlated 
the performances of  our behavioural tasks with each 
other. We found a significant correlation of  SBSOD 
score with Distance Estimation performance for 
both Euclidean (r = 0.68, p < .001) and path distance 
(r = 0.65, p < .01; Fig. 6). There was a significant 

Fig. 6. Correlations of Distance Estimation performance with SBSOD score. A. Correlation of Euclidean 
distance estimation performance with SBSOD score (r = 0.68, p < .001), including a linear fitted trendline. 
Each dot refers to a participant. B. Correlation of path distance estimation performance with SBSOD 
score (r = 0.65, p < .01), including linear fitted trendline. Each dot is a participant.
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Table 1.

Peak voxels of clusters found in the four conditions, with a threshold of p < .001, uncorrected, if not stated 
differently. They are ordered according to the cluster index given by FSL, from high to low index. *After 
TFCE. **Belong to the same cluster.

Condition Region Sig. T-value Peak (MNI)
x y z

Euclidean 
distance

Frontal pole < .001 4.84 44 40 12

Superior frontal gyrus < .001 5.08 22 24 50

Middle/inferior temporal gyrus < .001 4.84 56 -18 -22

Temporal pole < .001 3.84 -54 6 -4

Temporal pole < .001 3.76 -54 6 -8

Parahippocampal gyrus/left 
hippocampus

< .001 4.62 -32 -38 -8

Path distance Frontal pole < .05 FWE-corr.* 4.81 48 40 14

Frontal pole/orbitofrontal cortex < .001 4.02 30 34 -16

Middle frontal gyrus < .001 4.21 40 20 46

Superior frontal gyrus < .001 4.33 22 24 50

Superior frontal gyrus < .001 4.19 18 26 54

Temporal pole < .001 3.73 -54 6 -4

Parahippocampal gyrus/left 
hippocampus

< .001 3.90 -32 -38 -8

Cingulate gyrus/precuneous cortex < .001 3.99 6 -34 48

Superior frontal gyrus < .001 3.73 -16 6 66

Euclidean 
distance 
(behaviourally 
informed)

Frontal pole < .001 4.54 44 38 12

Lingual gyrus < .001 3.75 30 -42 -6

Superior/middle frontal gyrus < .001 4.14 24 24 50

Temporal pole < .001 4.71 36 12 -36

Central opercular cortex < .001 4.21 52 -8 8

Post/precentral gyrus < .001 3.96 -40 -22 52

Path distance 
(behaviourally 
informed)

Frontal pole** < .01 FWE-corr.* 5.44 50 40 14

Frontal pole** < .05 FWE-corr.* 5.15 44 40 12

Superior frontal gyrus < .001 5.09 22 24 50

Middle frontal gyrus < .001 3.89 32 10 52

Middle/superior frontal gyrus < .001 3.84 28 6 56

Lateral occipital cortex < .001 4.15 12 -82 44

Middle frontal gyrus < .001 4.34 38 0 62

Lateral occipital cortex < .001 4.00 -40 -72 46

Middle temporal gyrus < .001 3.71 -50 2 -26

Superior frontal gyrus < .001 4.08 -16 6 66

Frontal pole < .001 3.99 -36 44 22

Frontal pole/frontal orbital cortex < .001 3.92 30 34 -16

Temporal fusiform cortex < .001 4.21 38 -4 -40

Frontal pole < .001 3.70 42 44 12

Frontal pole < .001 3.78 46 44 22

Superior parietal lobule < .001 3.92 32 -52 50

Temporal fusiform cortex < .001 3.97 36 -8 -34
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negative correlation between SBSOD scores and 
mean errors on the Object Placement task (r = -0.70, 
p < .001; Fig. 7). When correlating the Distance 
Estimation performance with the Object Placement 
errors, we found a significant negative correlation 
for Euclidean (r = -0.58, p < .01) and path distance 
estimation (r = -0.67, p < .001; supplementary Fig. 
S5).

We furthermore tested whether there was a 
difference in performance for the behavioural tasks 
between the Spatial and Response strategy group 
from the T-maze task. Therefore, we compared 
performance of  both groups using 2-sample t-tests. 
For the SBSOD scores, there was no difference 
between the strategy groups (t(18) = 1.20, p = .25; 
supplementary Fig. S6). For performance on the 
Distance Estimation task, there was a significant 
difference for Euclidean distance (t(18) = 2.33, 
p < .05; Fig. 8), with a higher performance in the 
Spatial strategy group (Spatial: M = 0.87, SD = 
0.06; Response: M = 0.71, SD = 0.20). We found 
a trend for path distance estimation (t(18) = 1.82, 
p = .08, Fig. 8), with slightly higher performance in 
the Spatial strategy group (Spatial: M = 0.89, SD = 
0.05; Response: M = 0.82, SD = 0.12). We found no 
difference in mean error in the Object Placement 
task between the Spatial and Response strategy 
group (t(18) = -0.96, p = .35; supplementary Fig. S7). 

Post-hoc analysis: Correlating RSA 
results with spatial behaviour

To investigate whether there is a link between the 

RSA results and the behavioural data as a post-hoc 
analysis, we took the peak voxel from each region 
of  interest (left, right, and whole hippocampus, 
frontal pole, and whole brain). For each peak 
voxel, we retrieved the correlation value (of  neural 
similarity change with distance) in that voxel for 
each participant. Then, we correlated these peak 
voxel correlation values with scores on the SBSOD 
and Object Placement task, and also tested whether 
there were differences in peak voxel correlation 
between the Spatial and Response strategy groups 
of  the T-maze task. The peak voxels and their 
regions taken here are shown in Table 2. The frontal 
pole peak voxels for the path distances are the peak 
voxels from the clusters that survived small-volume 
correction for RSA in the path distance conditions 
(Table 2). There was a second significant frontal 
pole peak voxel in the behaviourally informed path 
distance condition that survived FWE-correction 
(Table 1). This voxel was also included in the post-
hoc analyses (Table 2). For all three hippocampal 
masks there were no peak voxels found.  

For the SBSOD, there was no significant 
correlation with any peak voxel. For the Object 
Placement task, there was a significant positive 
correlation in the whole-brain peak voxel (superior 
frontal gyrus) in the objective Euclidean distance 
condition (r = 0.48, p < .05). In this peak voxel, there 
was a positive correlation of  neural similarity change 
with distance (T = 5.08, p < .001 uncorrected). 
There were no significant differences between the 
Spatial and Response strategy groups for any peak 
voxel correlation values in any condition. 

Table 2. 

Peak voxels in the whole brain and frontal pole mask, for the four conditions, used for post-hoc analyses. 
They are found using a threshold of p < .001, uncorrected, if not stated differently. *After TFCE.

Condition Mask Region Sig. T-value Peak (MNI)
x y z

Euclidean distance Whole brain Superior frontal gyrus < .001 5.08 22 24 50
Frontal pole Frontal pole < .001 4.84 44 40 12

Path distance Whole brain Frontal pole < .001 4.81 48 40 14
Frontal pole Frontal pole < .05 FWE-corr.* 4.81 48 40 14

Euclidean distance
(behaviourally 
informed)

Whole brain Temporal pole < .001 4.71 36 12 -36
Frontal pole Frontal pole < .001 4.54 44 38 12

Path distance
(behaviourally 
informed)

Whole brain Frontal pole < .001 5.44 50 40 14
Frontal pole Frontal pole < .01 FWE-corr.* 5.44 50 40 14

Frontal pole Frontal pole < .05 FWE-corr.* 5.15 44 40 12
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Discussion

Path distances were represented in a 
right lateral frontal region

Analysis of  behaviour during the Training and 
Object Location tasks suggested that the participants 
learned the locations and the shortest routes between 
them. When correlating the change in neural 
similarity from RSApre to RSApost with the prediction 
matrices for the four types of  distances (objective 
Euclidean and path distance, and behaviourally 
informed Euclidean and path distance), we found 
a cluster in the right lateral frontal pole for the 
path distance that survived correction for multiple 
comparisons. This effect was found for both the 
objective and behaviourally informed condition. 
This means that after learning certain locations in 
an environment and routes between them, the path 
distances were represented in the right lateral frontal 
pole. When not correcting for multiple comparisons, 
we found more clusters showing an effect (p < .001 
uncorrected, Table 1), for instance in the superior 
frontal gyrus and the temporal pole. With a larger 
sample size than 22, so with data from the larger 
project, we might therefore find more brain regions 
where distances are represented, possibly in the 
other conditions as well.

The higher peak T-value for the behaviourally 
informed path distance condition suggests 
stronger path distance representations when they 
are behaviourally informed. The latter can be 
related to previous research (Deuker et al., 2016), 
where they also found a correlation of  change in 

neural representation with the remembered, so 
behaviourally informed, distances. They furthermore 
found a neural representation of  temporal distance 
judgements, and additionally that spatial judgements 
were influenced by temporal distances. Therefore, 
the behaviourally informed distance representation 
in our study may have been affected and strengthened 
by the experienced temporal distance between 
objects as well. Temporal distance was proportional 
to the path distance, therefore, it is a challenge to 
distinguish them in our task.

Finding an effect in a frontal region is in line with 
previous findings that also frontal regions, not only 
the hippocampus, are involved in spatial navigation 
(Doeller et al., 2010; Ekstrom et al., 2003; Iglói et 
al., 2010; Spiers & Maguire, 2007; Viard et al., 2011). 
Since the prefrontal cortex is involved in spatial 
planning (Iglói et al., 2010; Viard et al., 2011), our 
effects in the frontal pole region could for instance 
reflect distance representation of  navigational goals. 
The effects in the right lateral frontal regions in 
our study, however, were in the opposite direction 
than hypothesised. We found a positive correlation 
of  change in neural similarity with distance. This 
would mean that the closer the locations were 
together, the lower the neural similarity between the 
locations. A stronger effect could then be related 
to a less accurate representation of  distances. This 
finding, however, seems to be in accordance with the 
results by Spiers and Maguire (2007). They found a 
positive correlation of  mPFC activity with distance 
to goal, but a negative correlation of  activity in the 
hippocampal formation. Together with our results 
and those of  for example Deuker et al. (2016), this 
may suggest an opposite representation of  distance 

Fig. 7. Correlation of SBSOD score with mean 
error on the Object Placement task (r = -0.70, p < 
.001), including a linear fitted trendline. Each dot 
refers to a participant. 

Fig. 8. The mean performance on the Distance 
Estimation tasks, for the Euclidean and path 
distance, for the Spatial and Response strategy 
group of the T-maze task. *p < .05.
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in frontal regions than in the hippocampal formation. 
Furthermore, when looking at the neural 

similarity correlation with distance in RSApre and 
RSApost separately, there already was an effect in 
RSApre. There we found a negative correlation before 
associations of  the locations with objects. This was 
unexpected, since we assumed the associations 
between objects before the navigation tasks to be 
random and low. This could mean that the association 
between objects somehow correlated with distance 
before the navigation task, but randomisation of  
objects across participants makes this possibility 
very small. There was a larger spread around the 
mean in RSApre, which was in accordance with our 
expectation that the association should be random. 
In RSApost there is an equally large effect as in RSApre, 
but in the opposite direction. On the one hand, for 
this kind of  fMRI analyses (RSA), a population of  22 
participants is rather small. It could be that the effects 
shown here have just become significant, but will 
disappear, or even change direction, with data from 
a larger sample size. On the other hand, it could very 
well be that there actually is a positive correlation in 
this frontal region. This was also supported by some 
other research (Spiers & Maguire, 2007). Although 
unexpected, correlation of  neural similarity change 
with distance in the opposite direction is still some 
sort of  representation of  distance. It thus could 
still be some kind of  neural representation of  
the spatial environment. In addition, because the 
effect was stronger for behaviourally informed 
distance, it could also point to an even less accurate 
behaviourally informed distance representation. 
When connecting this to earlier findings about 
temporal distance (Deuker et al., 2016), it could be 
the case that influences of  temporal distance on 
spatial judgements distorted the representation of  
spatial distance. A positive correlation would also 
be in accordance with the peak voxel correlation 
with errors on the Object Placement task. There 
we found a significant positive correlation as well. 
In the context of  the positive correlation of  neural 
similarity change with distance, it would mean that 
a higher error on the task relates to a less accurate 
representation of  Euclidean distance, as expected. 
This, however, is a different peak voxel and a 
different condition, so we should be very careful 
with interpreting this link.

No evidence for distance 
representations in the hippocampus

We find no evidence for representations of  

distances in the hippocampus. This is in contrast to 
our hypotheses, and not in line with earlier studies 
about spatial memory and cognitive mapping. 
Nevertheless, given the extended evidence that the 
hippocampus is involved in spatial navigation and 
the formation of  a cognitive map of  space (Deuker 
et al., 2016; Howard et al., 2014; Iglói et al., 2010; 
Morgan et al, 2011; O’Keefe & Nadel, 1978), it 
would be more likely that we did not pick up on the 
hippocampal effects with our sample size and design 
rather than that they were not there. 

In the study by Deuker et al. (2016), however, they 
also did not find the effects using parametric tests. 
There, they assigned the distances between locations 
to four bins, ranging from very close to very far. Then 
they found an effect in the hippocampus comparing 
the lower with higher distances. Furthermore, they 
did not test for other regions than the hippocampus. 
It could be the case that in that study there actually 
was a frontal effect as well. Furthermore, in our 
study, we would possibly also find an effect in the 
hippocampus if  we analysed our data similar to what 
has been done in Deuker et al. (2016). We could for 
example only compare the extreme distances (e.g., 
the eight highest and eight lowest distances) in some 
further analyses on our data.

Another possibility is that different navigational 
strategies affected neural representations of  
space, and thus of  distances. This is further what 
we hypothesised. Since we found an effect in the 
behavioural tasks between the Spatial and Response 
strategy group, these groups could also have 
differential neural representations. They perhaps 
show contrasting effects that would cancel each 
other out when testing across all participants. 
For instance, Iglói et al. (2010) showed opposite 
hippocampal effects for allocentric and egocentric 
responses during spatial navigation. There, the 
right hippocampus was active during allocentric 
responses, and the left hippocampus during 
egocentric responses. Something similar could be the 
case in our study, in the sense that people showing 
one or the other strategy could have opposite effects 
on neural distance representations. We possibly do 
not distinguish those in our design. In the Distance 
Estimation task, the Spatial strategy group was 
better at estimating the Euclidean distance than 
the Response strategy group. Based on this finding, 
Euclidean distances might be neurally stronger 
represented in the Spatial strategy group. To further 
investigate this, we could do some additional analyses 
on our data. We could test whether in the Spatial 
group the Euclidean distance is better represented 
than the path distance, and in the Response group 
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the other way around. We could furthermore check 
whether this would give effects in hippocampus.

No evidence for Euclidean distance 
representation

Our results furthermore suggest that only the 
path distance is represented in the brain, but give no 
evidence for representations of  Euclidean distance. 
However, it is unlikely that these distances are not 
represented in the brain at all (Howard et al., 2014; 
Spiers & Maguire, 2007). The effect of  path distance 
could for instance also be the representation of  
the temporal aspect of  spatial navigation that 
strengthens the path distance representation (see 
above). Temporal distance is proportional to the path 
distance, therefore, it is a challenge to distinguish this 
in our task. Nevertheless, the temporal aspect has 
been shown to be represented in the hippocampus 
as well (Deuker et al., 2016), of  which we show no 
effects in our study. For our larger project, however, 
we additionally aimed to look at how representations 
would alter when routes between the locations 
change. Therefore, participants performed a 
third navigation task (Route Change task). Results 
from some preliminary RSA analyses on this data 
suggests that after this task, the objective, but not 
behaviourally informed, Euclidean distance was 
represented in a right lateral frontal pole region. This 
region was similar to where the path distances were 
represented. It might be the case that after walking 
more different routes, and approaching locations 
from even more directions, people are better at 
inferring the Euclidean distances between them. 
This could lead to a stronger neural representation 
of  these distances as well.

Spatial behaviour may affect neural 
representation of distances

Considering the behavioural tasks, we found clear 
links between them. The SBSOD scores correlated 
with performance on the Distance Estimation and 
Object Placement tasks. Participants’ self-reports 
on general navigational abilities thus correlated with 
how well they can estimate distances and replicate 
locations in a bird’s-eye view map of  an environment. 
These results suggest that performances on these 
tasks have some relation with navigational abilities, 
and that they are consistent across different 
measures. This is also supported by comparisons 
between the Spatial and Response strategy group 
from the T-maze task. The Spatial strategy group 

was significantly better at estimating the Euclidean 
distance between objects. They were close to 
significantly better at estimating the path distance as 
well. There, however, were no differences between 
the groups considering SBSOD score and error in 
the Object Placement task. Although not consistent 
over all tasks, the results suggest that there are 
consistent differences on a neural basis between 
people considering navigational strategy, and that 
these are reflected in other behavioural measures. 
These findings are in line with our hypotheses about 
differences between people considering navigational 
strategies. They are furthermore consistent with 
other research on such strategies (Astur et al., 
2016; Iglói et al., 2010), where they showed clear 
distinctions. These differential strategies may affect 
spatial representations in a cognitive map.

In the post-hoc analyses, we correlated 
behavioural performances with peak voxel 
correlations. Considering the Object Placement 
task, we found that the lower the error in placing 
objects in a bird’s-eye view map, the stronger the 
neural effect for objective Euclidean distance was 
in the whole-brain peak voxel (superior frontal 
gyrus). Since we found positive correlations of  
neural similarity change with distance, this would 
mean that a lower error on the task would relate 
to better representation of  Euclidean distance. 
This is according to our predictions, since a better 
representation of  Euclidean distances would 
benefit the ability of  locating locations in a bird’s-
eye view map. Furthermore, this link could support 
the prediction that Euclidean distances are more 
strongly represented than path distances in people 
with a map-based navigational strategy. Again, the 
distinction between the two strategies in neural data 
is supported by previous findings (Iglói et al., 2010). 
Our results, however, are not very robust. We only 
show a significant effect for one spatial task (Object 
Placement) in a peak voxel in one condition, and the 
Object Placement task is also related to the virtual 
city of  the navigation tasks. Furthermore, the peak 
voxel where we found this effect was in the objective 
Euclidean distance condition. We, however, did not 
find a significant effect that indicated representation 
of  Euclidean distances. Therefore, we should be 
careful with the interpretation of  these findings. The 
post-hoc results may give a hypothesis for additional 
experiments, but further research is needed to give a 
more clear-cut indication.
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Concluding remarks

In short, our results indicate that path distances 
between learned locations in a certain environment 
are represented in a right lateral frontal pole area. 
These effects become stronger when distances are 
behaviourally informed. The correlations between 
change in neural similarity and distances, however, 
were positive. This suggests that a stronger 
effect relates to less accurate representation of  
distances. In our study, we did not find evidence 
for representations in the hippocampus, nor for 
Euclidean distance representations. It however 
is likely, based on previous research, that we did 
not pick up on these effects rather than that they 
are not present at all. Further analyses on our data 
may give a clearer view on that. We furthermore 
show that there are clear behavioural differences 
between people considering navigational abilities, 
and these suggest differential use of  navigational 
strategies. In addition, post-hoc analyses give some 
suggestion that these differences between people are 
related to differences in neural representations of  
locations. However, more research focused on such 
relationships is essential.
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Methods

Participants

A group of  22 participants was recruited (12 
females, mean age 21.73, SD = 2.10) via the Research 
Participation System of  Radboud University. A 
sample size of  N = 29 was calculated using G*Power 
(http://www.gpower.hhu.de/), based on an effect 
size of  d = -1.07 (found in a similar study by Deuker 
et al., 2016), and on an α-level of  p < .0001 (required 
for fMRI multiple comparisons), two-tailed and a 
power of  0.9. Due to time limitations for this Master 
thesis, we were not able to include all 29 subjects in 
this study. Ethical approval of  the study was given 
by the local ethics committee (CMO Regio Arnhem-
Nijmegen). Written informed consent was given 
by all participants, and they filled out a screening 
form for fMRI to make sure they did not meet any 
fMRI exclusion criteria. Participants were paid for 
their participation time, 10 euros per hour for MRI, 
8 euros per hour for behavioural time, and 2 euros 
per hour in addition outside office hours and during 
weekends. Participants who could not complete all 
tasks were excluded from further analysis. We also 
excluded participants for further analyses based on 
movement during one or more of  the fMRI sessions 
(motion exceeding twice the voxel size: 4.0 mm).

Experimental sessions 

The experiments took place on two consecutive 
days. Participants performed three navigation 
sessions in a virtual city environment, adapted from 
‘Donderstown’ (Deuker et al., 2016; Fig. 1). This is an 
environment, developed using Unreal Development 
Kit (Unreal Engine 3, Epic Games, Inc.). Using 
this city, we simulated a life-like experience of  
wayfinding and navigating between certain locations. 
Eight locations in this city were marked with a black 
box. Participants first underwent a Training session 
to learn the city and the locations in the city (Fig. 

2). On day two of  the experiments, they performed 
a second navigation task (Object Location, Fig. 2), 
in which objects were associated with the locations. 
In this task, participants had to learn the locations 
of  these objects. They furthermore performed a 
third navigation task in the same city on the second 
day, the Route Change task (Fig. 2).  Here, two of  
the three roadblock had changed location. In this 
way, we modulated some of  the routes and thereby 
their path distance. Participants had to learn the 
new shortest routes between objects. Before the 
Training, after the Object Location task, and after 
the Route Change task, participants performed a 
picture viewing task during an fMRI session (Fig. 
2, RSApre and RSApost, and RSApost_2). Furthermore, 
they did several additional behavioural tasks that 
could give an indication about their navigational 
strategies (Fig. 2): The Santa Barbara Sense of  
Direction Scale questionnaire (SBSOD, Hegarty 
et al., 2002), a T-maze task (Astur et al., 2016), a 
Distance Estimation task, and an Object Placement 
task (see below for more details).

Navigation tasks

Training task. The Training navigational session 
took place in the virtual city environment, in which 
eight locations were marked with a black box (Fig. 
1; Fig. 9A for a screenshot of  the task). The aim of  
this task was for the participants to learn the eight 
locations, and the shortest routes between them. 
In all tasks in a virtual environment, participants 
navigated using the arrow keys on a keyboard. They 
could only walk on the streets. There were also three 
roadblocks placed in the city (Fig. 9B). Due to this, 
participants could not always take the shortest route, 
but sometimes had to take a detour. The roadblocks 
allowed us to make clear distinctions between the 
Euclidean and path distances of  a location pair, 
and later, in the Route Change task, to manipulate 
distance of  some routes. The path distances were 
the shortest possible routes between the locations, 
which the participants were instructed to learn. We 
chose the locations and the roadblocks such that 
some location pairs have a similar Euclidean and 
path distance, but other pairs have large differences. 
At the beginning of  a trial, they received instructions 
to go to the next box, and find the shortest route 
possible. These instructions were presented on the 
screen for 1000 ms. The box on the target location 
for that trial would become multi-coloured (Fig. 9C). 
To give some sort of  feedback whether they are 
walking in the right direction or not, a signal was also 
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presented on the screen, similar to a Wi-Fi signal 
ranging (Fig. 9B-D). This would become stronger 
(maximum eight bars) as the participant got closer 
to the target box. When the participant arrived at 
the target box, they received written feedback about 
whether they had walked the shortest possible 
route. This feedback was presented for 2000 ms. 
The program that was used to develop the task in 
the virtual city (Unreal Development Kit) tracked 
the routes the participants had taken, and could 
compare this to the optimal route. In this way, it 
could give feedback about whether they had walked 
the shortest path. Then the next trial would start, 
with another location as the target. In this way, by 
navigating from location to location, participants 
learned the eight locations in the city, and the 

shortest routes between them. There was a total of  
112 trials, which were pseudo-randomised. This was 
done so that the target location of  one trial was the 
start location of  the subsequent trial, and that the 
start and target location within a trial were never the 
same. Additionally, participants navigated an equal 
amount of  times (twice) between each location pair, 
in both directions (so four times in total). Therefore, 
there were exactly 14 repetitions per location. The 
trials were divided into four blocks of  28 trials each. 
After each block, a test phase would start, to test 
knowledge about the locations. In this phase, the 
blocks were removed from the city. Participants 
had to walk around, and drop the eight boxes at the 
locations they remembered (Fig. 9E). The dropped 
box was considered correct when it was placed 

Fig. 9. Screenshots from the Training and Object Location tasks. A. An example of a black box that marks 
a location. B. An example of a roadblock (brick wall). The signal at the lower left corner is the signal until 
the target box. C. An example of a multi-coloured target box. The signal at the lower left corner is the 
signal until the target box. D. Screenshot of a weaker signal until the target box. E. Screenshot of one of 
the test phases during the Training task. F. Screenshot of the second half of the Object Location task, with 
the target object presented at the lower left corner.
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within a radius of  approximately eight times the box 
size of  a correct location. When participants placed 
a box further away, a multi-coloured box appeared 
on the closest correct location. They first had to go 
to this box, before they could continue dropping 
the remaining boxes. During this test phase, they 
received feedback when they placed a box correctly. 
The amount of  remaining boxes was presented on 
the screen during the whole test phase.

Object Location task. In the second navigational 
task, the Object Location task, the same city as in the 
Training task was used (Fig. 1). The same locations 
were marked and the roadblocks also remained at the 
same places. Only in this task, objects were associated 
with each location. Thus, objects were now ‘placed’ 
in the city. In this navigation task, participants 
had to learn the locations of  the objects, and the 
shortest routes possible between them. For the first 
half  of  the task (56 trials), the trials were similar to 
the trials during the Training task. But here, when 
participants arrived at the target box, the object that 
was associated with that location, was presented on 
the screen for 2000 ms. For the second half  of  the 
task (56 trials), participants were not presented with 

the signal reflecting distance until the target box 
anymore. During these trials, the object associated 
with the target location for that trial was visible at 
the lower left corner of  the screen (Fig. 9F). They 
were instructed to navigate to the location of  that 
object. This change in feedback while navigating 
was done to encourage participants to learn the 
object locations, instead of  just following the signal. 
The Object Location task also had 112 trials in 
total, which were, similarly to the Training, pseudo-
randomised. Participants navigated twice between 
each object pair, in both directions, so there were 
14 repetitions per object. For each participant, the 
eight objects were randomly picked out of  a pool of  
twelve objects (Fig. 10). Their associated locations 
were also randomised across participants.

Route Change task. The Route Change task was 
similar to the second half  of  Object Location task. 
However, here, two of  the three roadblocks were 
placed on a different location (supplementary Fig. 
S8). Due to this, compared to the Object Location 
task, nine routes became shorter and nine became 
longer. We chose the new roadblocks such that 
some location pairs with small differences between 

Fig. 10. All twelve objects used in the experiments. For each participant, eight objects were randomly 
picked out of these twelve, and associated with the locations in the city.
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Euclidean and path distance in the Object Location 
task had large differences in the Route Change task 
or vice versa. The locations and associated objects 
in the city remained the same. Participants had to 
learn the new shortest routes between the objects. 
The Route Change task consisted of  56 pseudo-
randomised (see Training and Object Location tasks) 
trials, with 7 repetitions per object. Similar to the 
second half  of  the Object Location task, the object 
of  the target location was presented at the lower left 
corner of  the screen during the whole trial. At the 
beginning of  a trial, participants were instructed to 
navigate the shortest route to the location of  that 
object. When the participant arrived at the target 
location, the associated object was again presented 
on the whole screen. The participants also received 
feedback about whether they walked the shortest 
route or not. Then, the next trial started.

Additional behavioural spatial tasks

Picture Viewing task. During the fMRI sessions 
(Fig. 2) before the Training (RSApre), after the Object 
Location task (RSApost), and after the Route Change 
task (RSApost_2) participants performed a picture 
viewing task (PVT; Deuker et al., 2016). During this 
task, they were presented with a stream of  pictures 
of  the objects that they encountered in the city. 
Objects were presented for 2000 ms, with a jittered 
inter-trial interval (2500, 4000, or 5500 ms). They 
were presented in random order for each participant, 
but the order was the same for all three RSA-blocks 
within a participant. To ensure participants would 
pay attention to all the objects, we implemented an 
oddball-paradigm. Here, an object that was never 
encountered in the city (a bathtub), was presented at 
various points in the stream of  objects. Participants 
had to press a button every time an object appeared, 
but one button at this oddball object, and another 
button at every other object. These buttons were 
randomised across participants. Each object was 
repeated 20 times, and the oddball appeared after 
20% of  the trials. The PVT was programmed in 
Presentation®.

Santa Barbara Sense of Direction Scale. The 
SBSOD (Hegarty et al., 2002) is a questionnaire 
consisting of  fifteen questions. It is a self-report 
measure and assesses some general navigational or 
spatial abilities and sense of  direction. The score 
can range from 1 to 7, and a higher score would 
mean higher general navigational abilities. This 
questionnaire was programmed in Presentation®.

T-maze task. The T-maze task was adapted from 
a highly similar task used by Astur et al. (2016), 
to indicate use of  an allocentric or egocentric (or 
map-based or route-based) navigation strategy. It 
took place in virtual room, developed using Unreal 
Development Kit (Unreal Engine 3, Epic Games, 
Inc.). In this room, a T-shaped platform was located, 
and a few landmarks were placed throughout the 
room (supplementary Fig. S9 for screenshots of  the 
virtual room). Participants started on the platform 
at the bottom of  the T. At the end of  both arms of  
the T, a box was placed, and only one of  these boxes 
contained a reward. The reward box was on the 
same arm throughout the whole task. Participants 
were instructed to find this reward box. They could 
only walk on the platform. When they arrived at the 
box, they received positive feedback (a smiling face) 
when it was the reward box, and negative feedback 
(a sad face) when it was the box without the reward. 
Then they started over from the bottom of  the T. 
This was repeated for ten trials. Two of  those ten 
trials were probe trials. The first was on trial 4, 6, or 
8, and the second on trial 10. During these probe 
trials, the T-platform was rotated 180˚, while the 
reward box remained on the same location in the 
room. Participants received positive feedback in 
both arms during the probe trials. Walking to the 
reward box during these probe trials would indicate 
use of  an allocentric (spatial) navigation strategy 
or use of  place memory. Taking the same (left or 
right) turn as in non-probe trials would indicate an 
egocentric (response) strategy or use of  stimulus-
response memory. The location of  the reward box 
was randomised across participants, as well as the 
trial number (4, 6, or 8) of  the first probe trial.

Distance Estimation task. After learning the 
locations of  the objects and the shortest routes 
in the Object Location task, participants had to 
estimate the distance between each object pair. They 
first estimated the Euclidean distance, and then the 
length of  the shortest route (including roadblocks). 
Here, the distance between the two objects that 
were furthest apart in space was set to 100 (arbitrary 
units), and a distance of  0 would mean objects are 
on the same location. The estimation was therefore 
a number between 0 and 100. Participants also 
performed this task after the Route Change task, 
where the path distance was based on the new 
roadblock locations. The order in which the object 
pairs were presented was random and randomised 
across participants. The task was programmed 
in Presentation®. The estimated distances were 
later also used to create behaviourally informed 
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prediction matrices of  the distances between objects 
for the searchlight analysis. 

Object Placement task. Next to estimating 
distances between objects, participants performed 
an Object Placement task. Here, they were presented 
with an empty map of  the city, so without buildings, 
only the streets (supplementary Fig. S10). They 
had to mark the locations of  the learned objects 
in this empty map, as they remember them. Higher 
accuracy in placement of  the object would indicate 
that the participant uses a more allocentric or map-
based navigation. This was a paper-pencil task. The 
empty map was overlaid with a grid (supplementary 
Fig. S10), which allowed us to calculate the distance 
of  the location marked by the participant to the 
correct location. The mean error across objects was 
considered the score of  the participant.

MRI image acquisition

MRI images were acquired on a Siemens PrismaFit 
scanner (3T; Siemens, Erlangen, Germany) for most 
participants (21), and for one on a Siemens Prisma. 
There are no technical issues that would cause any 
confounds due to scanning on two scanners. Both 
sessions within each participant were scanned on the 
same scanner. 

For the functional scans, a multiband sequence 
was used (TR = 1500 ms, TE = 28 ms, multiband 
acceleration factor 4, 84 slices, voxel size = 2.0 × 
2.0 × 2.0 mm3, field of  view (FOV) = 210 × 210 
× 168 mm, flip angle = 65˚).  Functional images 
for the RSApre-block were acquired on day 1 of  
the experiment, and for the the RSApost-block on 
day 2 (Fig. 2). During the fMRI sessions for the 
RSA-blocks, stimulus onsets in the PVT were 
fixed to volume onsets in the multiband sequence. 
Furthermore, a structural scan (T1) was obtained for 
each participant (TR = 2300 ms, TE = 3.03 ms, 192 
slices, voxel size = 1.0 × 1.0 × 1.0 mm3, field of  view 
(FOV) = 256 × 256 × 192 mm, flip angle = 8˚). This 
was the case for most participants on day 1 (21), and 
for one participant on day 2 due to time issues. In 
addition, for most participants, a gradient fieldmap 
was obtained on both days (for two participants not 
on day 1, and for two not on day 2), using a gradient 
echo sequence (TR = 1020 ms, TE1 = 10 ms, 64 
slices, voxel size = 3.5 × 3.5 × 2.0 mm3, FOV = 224 
× 224 × 128 mm, flip angle = 45˚).

fMRI preprocessing

Functional MRI images were preprocessed using 
FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). The 
brain was extracted from the structural scan, using 
the FSL brain extraction toolbox. The structural 
scan was then downsampled from 1.0 mm isotropic 
voxel size to 2.0 mm isotropic voxel size. Images 
were further preprocessed in FSL FEAT. No spatial 
smoothing was applied. For the functional runs and 
participants of  whom a fieldmap scan was acquired, 
the functional scans from both fMRI sessions 
underwent distortion correction. Motion correction 
was applied using MCFLIRT (three rotation and 
three translation estimated parameters), and images 
also underwent high-pass temporal filtering. The 
structural scan was segmented into white matter, 
grey matter, and cerebrospinal fluid. Functional 
scans were registered to the downsampled structural 
scan. Participants whose movement exceeded twice 
the voxel size (2 × 2.0 mm) in the functional run of  
one or more of  the RSA-blocks were excluded for 
further analysis. 

Representational similarity analysis

Data from the fMRI sessions during the RSA-
blocks were analysed using RSA (Kriegeskorte et al., 
2008) for multivariate pattern analysis. By subtracting 
results from the RSApre-block from RSApost-block 
(pre-post design; Fig. 3), this analysis yielded a 
change in neural pattern similarity between each 
object pair. This change presumably arose due to 
learning the locations of  the objects and the routes 
between them during the Object Location task. 

For each functional MRI run, a general 
linear model (GLM) analysis was performed. All 
presentations (the onset and duration) of  each object 
during the PVT were entered as a regressor, as well 
as six motion parameters derived from the motion 
correction during preprocessing. These regressors 
were predictors for the voxel time-series, for each 
object. The data was modelled by convolving 
the regressors with the canonical haemodynamic 
response function (HRF). A pseudo-contrast of  1 
against 0 was used. The GLM yielded β-values for 
each object in each voxel, for both RSA-blocks. It 
resulted in eight GLMs per RSA-block for each 
participant.

Prediction matrices. To test whether neural 
representations of  distances between objects 
(locations) were Euclidean or path distances, 



Nijmegen CNS | VOL 13 | ISSUE 1 35

NEURAL METRICS OF SPACE

predictions about the change in neural similarity 
were made. Besides the objective distances, we 
also used the behaviourally informed distances 
(those estimated by the participant) as predictions. 
Before the navigation tasks, we assumed there was 
no association between the objects, so the neural 
similarity should be random and low. After the 
navigation tasks, so after learning the locations 
and the routes, the associations were assumed to 
be changed according to the distances between 
the object pairs. Therefore, the distances were 
predictions of  how the neural similarity will change. 
These distances were stored in so-called prediction 
matrices (8 × 8), with all objects on the rows and 
columns (Fig. 3). These matrices were symmetrical, 
so we only used the upper half  of  the matrix 
(above the diagonal) for analyses. There were four 
prediction matrices (objective Euclidean and path 
distances, and behaviourally informed Euclidean 
and path distances), so four conditions for which the 
neural data was further analysed. The behaviourally 
informed prediction matrices were obtained for each 
participant, using data from the Distance Estimation 
task. 

Searchlight analysis. For within-subject 
searchlight analysis, a sphere with a radius of  6 
voxels was formed around each voxel (centre voxel), 
for which only grey matter voxels were considered 
(Deuker et al., 2016). Only spheres with 30 or more 
surviving voxels were analysed. The β-values from 
the GLM were first registered to the T1-space of  
the participant. Within each searchlight, using RSA, 
the GLM data was correlated between each object 
pair, yielding the neural pattern similarity for each 
object pair, for both the RSApre and RSApost-block. 
Then, this neural similarity in the RSApre-block was 
subtracted from the RSApost-block. This yielded the 
change in neural similarity in that searchlight, for 
each object pair, from RSApre to RSApost. This change 
in neural similarity between the objects formed an 
8 × 8 similarity matrix (Fig. 3). Since this was a 
symmetric matrix, only the upper half  (above the 
diagonal) was used for further analysis. 

The similarity matrix of  the searchlight was then 
correlated with each of  the four prediction matrices 
(four conditions). This gave a correlation value for 
this searchlight with each prediction matrix. These 
correlation values were read back into the centre 
voxel of  the searchlight. This analysis was done for 
a searchlight of  each grey matter voxel (when its 
sphere had a minimum of  30 grey matter voxels). 
In this way, a correlation value was assigned to each 
of  those voxels, for each condition. The whole 

searchlight analysis thus yielded four images per 
participant, one for each condition, and within one 
image, a correlation value assigned to each searchlight 
centre voxel. All of  the images were registered to 
standard MNI space.

Second-level analyses

Second-level analyses were performed on the 
searchlight data, to analyse, across all participants, 
in which voxels the correlation with the prediction 
matrices were significantly different from zero. For 
each condition, the images containing searchlight 
data (correlation values for each voxel) from all 
participants were merged into one 4D image. A 
whole-brain mask was created that only contained 
grey matter voxels shared by all participants. In 
addition, masks were created for regions of  interest 
(ROIs): the left, right, and whole hippocampus, 
and the frontal pole. Then, for whole-brain and the 
ROIs, a permutation test was performed using FSL, 
to test whether the correlation of  each voxel with 
each prediction matrix was significantly different 
from zero across all participants. The p-values were 
FWE-corrected for multiple comparisons; whole-
brain for the whole brain mask, and small-volume 
corrected for the ROIs. In addition to this voxel-wise 
correction, a Threshold-Free Cluster Enhancement 
(TFCE) analysis was performed. Peak voxels were 
extracted with a threshold p < .001 (uncorrected), 
using FSL randomise. 

Behavioural data analysis

All analyses of  behavioural data were performed 
in Matlab. All correlations were Pearson’s 
correlations.

Navigation tasks. Behavioural data from both 
the Training and the Object Location tasks were 
analysed to check whether participants indeed 
learned the locations and shortest routes between 
them. First of  all, learning curves were calculated. 
We could track the paths that participants navigated, 
using checkpoints that were regularly placed on 
the streets in the virtual city. The checkpoints were 
invisible to the participants. For every trial, we 
knew which checkpoints belonged to the current 
shortest path, and which ones did not. We could 
thus calculate the proportion of  passed checkpoints 
that did not belong to the shortest path compared 
to the total amount of  passed checkpoints. The 
learning curve was then computed by calculating this 
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proportion for each trial, up until that trial. Learning 
curves were generated for both the Training and the 
Object Location tasks. Furthermore, from the test 
phases of  the Training task, we calculated what the 
maximum amount of  correctly-placed boxes was, as 
a percentage of  the total of  eight boxes.

Santa Barbara Sense of Direction Scale. The 
SBSOD questionnaire was scored according to the 
guidelines of  its developers (Hegarty et al., 2002). 
For each question, an answer was given which 
corresponded to a score ranging from 1 to 7. Some 
of  the questions had to be reverse scored. In this 
way, each question received a score ranging from 1 
to 7, in which a higher score indicates higher ability. 
The total score of  all 15 questions was divided by 
the number of  questions, to calculate the final score 
(also ranging from 1 to 7). The higher the final score, 
the higher the self-report of  general navigational 
abilities.

T-maze task. From behavioural data of  the T-maze 
task, it was assessed whether participants used a 
spatial or a response strategy during the probe trials, 
and how consistent they were on using one or the 
other strategy across probe trials (Astur et al., 2016). 
When participants walked to the correct reward box 
on both probe trials, they were considered as having 
a spatial strategy. When they took the same turn on 
both probe trials as on non-probe trials, they were 
considered as having a response strategy. Participants 
who had a different response during probe trials, had 
a mixed response. Participants were then divided into 
three groups: those who use a spatial strategy, those 
who use a response strategy, and a mixed response 
group. The Spatial and Response strategy groups 
were used for later analyses, to investigate whether 
these can also be distinguished in the other spatial 
behavioural and fMRI measurements.

Distance Estimation task. The estimations of  
the Euclidean and path distances between each 
object pair were correlated with the objective 
distances. These correlation values were considered 
the performance on this task. Performance was 
furthermore compared between short and long 
distances (median split of  objective distances), using 
a 2-sample t-test. Results from the latter can be 
found in the appendix.

Object Placement task. For the Object Placement 
task, we analysed how accurate participants marked 
the locations of  the objects in the empty city map. 
The empty map was overlaid with a grid, so each 

marked location had an x- and y-coordinate on 
this grid. Using these coordinates, the distance 
between the location of  each object marked by the 
participants and its correct location was calculated. 
This distance was considered the error for that 
object, and the mean error across all eight objects 
was calculated for each participant.

Correlation between behavioural spatial 
tasks. Data from the different additional behavioural 
spatial tasks were correlated with each other. The 
SBSOD scores of  all participants were correlated 
with performance on the Distance Estimation task 
(for Euclidean and path distance), and with errors 
on the Object Placement task. Distance Estimation 
performances were also correlated with errors on the 
Object Placement task. Furthermore, for these three 
tasks, data was compared for the Spatial strategy and 
Response strategy group from the T-maze task, and 
tested whether they were significantly different using 
a 2-sample t-test.

Linking behavioural data to neural data

As post-hoc analyses, the neural data were linked 
to the behavioural data. For each condition, the peak 
voxel was extracted for each brain mask (left, right, 
and whole hippocampus, frontal pole, and whole 
brain). For all these peak voxels, the correlation 
value from the searchlight analysis was obtained, for 
all participant. These correlation values were then 
correlated to the scores of  all participants for the 
SBSOD and Object Placement task. In addition, 
the peak voxel correlation values were compared 
between the Spatial and Response strategy group 
from the T-maze task, and tested whether they were 
significantly different using a 2-sample t-test.
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Decisions of  hand choice for an action depends on whether the body is stationary or in motion. Recently, 
it has been shown that during lateral sinusoidal motion of  the body, there is a bias to choose the right hand 
for leftward acceleration, which reverses to the left hand for rightward acceleration. Furthermore, this bias 
disappears at zero acceleration, when the body moves at maximum velocity. The neural correlates underlying 
these observations have not yet been studied. Here, using single-pulse transcranial magnetic stimulation, 
we investigated the excitability of  the left primary motor cortex (M1) during a hand selection task under 
passive whole-body translations, imposed by a sled. Given these preferences for hand choices during motion, 
we expected that the excitability of  the left M1 would be increased for leftward accelerations, decreased for 
rightward accelerations, and unchanged at maximum velocity. We measured the peak-to-peak amplitude of  
the motor evoked potential (MEP) from the lateral triceps of  the right arm using surface electromyography 
(EMG) at eight equally-spaced phases of  the sinusoidal whole-body translation. Results showed that MEP 
amplitude modulates with the whole-body motion, with the highest MEP amplitude when the body was at 
increasing leftward acceleration (phase 45º). A sinusoidal relationship between MEP amplitude and phase of  
motion outperformed a phase-independent relationship. In summary, our data suggest that passive whole-
body acceleration affects corticospinal excitability, thereby biasing upcoming hand choices in an acceleration 
dependent manner. 

Keywords: decision making; hand choice; self-motion; vestibular system; transcranial magnetic stimulation; motor-evoked potentials; 
primary motor cortex
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 The human body is equipped with various 
effector systems to interact with the environment. 
How does its controller, the brain, decide which 
effector to use in a particular task? Consider a 
reaching movement to a cup that can be performed 
with either the left or right hand. In reaching tasks, 
several studies found that we tend to use the right 
hand when objects are located to the right from 
the body midline, and we tend to use the left hand 
for objects to the left (Bryden, Pryde, & Roy, 2000; 
Gabbard, Tapia, & Helbig, 2003; Schweighofer et 
al., 2015), while for objects positioned around the 
body midline people tend to use their dominant 
hand more often (Coelho, Przbyla, Yadav, & 
Sainburg, 2013; Oliveira, Diedrichsen, Verstynen, 
& Ivry, 2010; Przybyla, Coelho, Akpinar, Kirazci, 
& Sainburg, 2013). Also, we choose our dominant 
hand for challenging tasks, such as when we have to 
grasp an object (Gabbard et al., 2003; Mamolo, Roy, 
Rohr, & Bryden, 2006). 

The hand selection process preceding the actual 
hand movement is also influenced by other factors 
than handedness and target location, such as the 
expected rewards associated with using either the left 
or the right hand. For instance, people make more use 
of  their nondominant hand if  either the associated 
expected reward related to this hand increases, 
or if  the expected reward for the dominant hand 
decreases (Stoloff, Taylor, Xu, Ridderikhoff, & Ivry, 
2011). Another factor is that hand choice depends 
on the expected biomechanical costs associated with 
using either the left or the right hand (Cisek, 2012). 
If  people are free to choose between two potential 
reaching movements with one hand, they tend to 
choose the biomechanically cheaper option in terms 
of  path distance, movement energy and stability 
(Cos, Bélanger, & Cisek, 2011). This suggests that the 
biomechanical costs of  a movement are predicted 
before movement initiation and are used to make 
a calculated decision concerning hand choice (Cos, 
Duque, & Cisek, 2014). 

The decisions in these studies are made while 
participants are seated with their trunk stationary 
in space. But in fact, this is a special, simple case 
of  hand selection. In everyday life, our body is 
nonstationary and translates through space, like 
when we actively walk or passively sit in the train. 
How are hand choices affected by these real-life 
situations, i.e., while the body is in motion?

When we are moving passively, the vestibular 
system detects linear accelerations via otoliths and 
via pressure sensors in the skin (Angelaki & Cullen, 
2008). A recent study reported that passive whole-
body motion modulates hand choice (Bakker, Weijer, 

Beers, Selen, & Medendorp, 2017). Right-handed 
participants were sinusoidally translated along the 
inter-aural axis using a sled, with peak accelerations 
at the turning points of  the sled and peak velocities 
at the center of  the sled motion (leftward and 
rightward). Participants were asked to perform 
reaching movements to body-fixed targets at eight 
phases of  the motion. Hand choices were affected 
by the whole-body acceleration, resulting in a higher 
preference of  using the right hand for leftward 
accelerations and a lower preference of  using the 
right hand for rightward accelerations, but no effect 
of  peak velocity on hand choice. Their findings were 
interpreted as if  the brain takes on the instantaneous 
acceleration signal at target onset, derived from the 
otoliths, when deciding on hand choice in motion 
(Bakker et al., 2017). To date, however, the neural 
correlates of  hand selection during passive whole-
body motion have not been studied. 

From a neural perspective, it has been suggested 
that several processes, such as action selection and 
movement planning, are operating in parallel and are 
continuously updated to bias the competition towards 
a movement execution (Bestmann & Duque, 2016; 
Cisek, 2007; Cisek & Kalaska, 2010). Evidence for 
this dynamic competition is found in neuronal firing 
of  the dorsal premotor cortex in primates (Cisek & 
Kalaska, 2005). In humans, changes in activity from 
both posterior parietal cortex and dorsal premotor 
cortex were examined when participants were either 
informed or uninformed before target onset about 
which hand to use for the reach (Bernier, Cieslak, 
& Grafton, 2012). They found that the contralateral 
activity of  these regions increased for the chosen 
hand only after target onset, suggesting that a hand 
has to be selected first before a movement plan is to 
be made (Bernier et al., 2012). 

Others have examined the primary motor cortex 
(M1) in hand selection tasks by using single-pulse 
transcranial magnetic stimulation (spTMS; for 
reviews, see: Hallett, 2007; Kobayashi & Pascual-
Leone, 2003; Merabet & Pascual-Leone, 2009; 
Sandrini, Umilta, & Rusconi, 2011). SpTMS on 
the scalp induces a small electrical current in the 
underlying cortical tissue. As a result, muscles on the 
body side contralateral to the stimulation site will 
exhibit motor evoked potentials (MEPs) in surface 
electromyography (EMG). By measuring the peak-to-
peak amplitude of  these MEPs, one can quantify the 
level of  corticospinal excitability, which is assumed 
to be the current neural state of  the M1 associated 
with the selection of  movements (Barker, Jalinous, 
& Freeston, 1985; Bestmann & Krakauer, 2015; 
Leocani, Cohen, Wassermann, Ikoma, & Hallett, 
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2000). Several studies concerning hand selection 
describe a gradual increase in MEP amplitude for 
the selected hand 100 ms prior to execution in the 
contralateral M1 (Leocani et al., 2000; Cos et al., 
2014), whereas a continuous suppression in MEP 
amplitude was found for the nonselected hand, even 
during movement execution (Duque et al., 2005). 

 Here, we investigated the corticospinal 
excitability of  the left M1 for hand selection during 
passive whole-body motion in an adapted version of  
the paradigm used by Bakker et al. (2017). We applied 
spTMS to the left M1 at eight equally spaced phases 
of  the motion while participants performed a hand 
choice task. Peak-to-peak MEP amplitudes from 
the lateral triceps of  the right arm were measured 
as an indicator of  corticospinal excitability. We 
expected that the left M1 would be more excitable 
for leftward accelerations (Leocani et al., 2000), i.e., 
at phases where the preference of  using the right 
hand is higher, and that it would be less excitable 
for rightward accelerations (Duque et al., 2005), i.e., 
at phases where the preference of  using the right 
hand is lower, with no effect of  velocity on the 
corticospinal excitability for hand selection.

Methods

Participants

Eight participants (five females, aged 18-
42) completed the intake and the Transcranial 
magnetic stimulation (TMS) experiment (2 sessions 
on separate days) except for one participant who 
completed only one session. All participants had 
normal or corrected-to-normal vision, no known 
sensory, perceptual or motor deficits and no history 
of  psychiatric or neurological illness. Participants 
were right-handed according to the Edinburgh 
Handedness Inventory (mean laterality quotient 
= 84, SD = 16; Oldfield, 1971), except for one 
participant who was left-handed (laterality quotient 
= 22). Participants gave written informed consent 
and received course credits or payment proportional 
to their participation. The study was approved by 
the local medical ethical committee (Commissie 
Mensgebonden Onderzoek region Arnhem-
Nijmegen, The Netherlands) and conformed to the 
Declaration of  Helsinki. In addition to these eight 
participants, we tested another five participants 
during the intake session. These participants were 
not included in the main experiment, because their 
resting motor threshold for the lateral triceps was 
above 80% of  the maximum machine output. 

Furthermore, of  the remaining eight participants, 
one complete dataset was excluded due to 
substandard behavioural characterization. The 
following behavioural and reaction time analyses 
are based on seven participants. Also, one complete 
MEP dataset was excluded, for in the first session 
MEP amplitudes were not obtained consistently, 
and in the second session MEP amplitudes were 
obtained at 113% instead of  120% of  maximum 
machine output. As a result, the following MEP 
analyses are based on six participants. 

Experimental Setup

Participants performed a hand selection task in a 
dimly lit room while being translated side-to-side by 
a custom-built sled (see Fig. 1A) that was powered 
by a linear motor (TB15N, Technotion, Almelo, 
The Netherlands) and controlled by a Kollmorgen 
s700 drive (Danaher, Washington, DC). The sled 
performed continuous sinusoidal motion with an 
amplitude of  0.15 m and a period of  1.6 s, resulting 
in a peak velocity of  0.59 m/s and peak acceleration 
of  2.3 m/s² (Bakker et al., 2017). The participant’s 
body was restrained with a five-point seat belt and 
the head was fixed to the sled by a personalized 
facemask (Posicast).  

During the intake, a Posicast thermoplastic mask 
was created to prevent the participant’s head to 
move during the experiment (see Fig. 1A). In this 
procedure, the mask was placed in a water bath of  
70 ºC for 1 minute. It was pulled out from the water 
bath and excess water was removed. While seated on 
the sled, the mask was placed over the participant’s 
face and the investigator formed the thermoplastic 
around the nasion, chin and ears. After it hardened 
for 10 minutes, it was taken from the participant’s 
face and was left for further hardening for another 
24 hours. Holes for the eyes and mouth were cut 
out.

During the experimental sessions, an MC-B65-
HO figure-of-8 coil (MagVenture, Farum, Denmark) 
was fixed to the left side of  the sled (see Fig. 1A) 
and was connected to a Magpro-X-100 magnetic 
stimulator (MagVenture, Farum, Denmark). 
Participants could stop the motion of  the sled at 
any time by pressing one or both emergency buttons 
located on either side of  the chair. The experimenter 
observed the participant by a camera and an intercom 
system.

Reach targets were presented on a 27” touch screen 
(ProLite, Iiyama, Iiyama Corporation, Tokyo, Japan) 
that had full HD 1080p resolution (1920x1080, see 
Fig. 1B). The screen was mounted horizontally on a 
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table frame in front of  the participants at about the 
level of  their diaphragm. A photodiode registered 
the exact phase of  the sled motion at the time of  
target presentation. Presentation delays were well 
accounted for and targets appeared within 5° of  the 
desired phase of  the sinusoidal motion. Participants 
could rest their elbows on supporting frames 
attached to the same table frame. The position of  
the sled, the tips of  the left and right index finger, 
and the tip of  the nose were recorded at 500 Hz 
using an Optotrak Certus system (NDI, Northern 
Digital Instruments, Waterloo, Canada). 

EMG activity was recorded from six right arm 
muscles: first dorsal interosseous, brachioradialis, 
biceps long head, biceps short head, triceps lateral 
head (TLAT), and triceps long head. EMG data were 
recorded using a TrignoTM EMG system (Delsys, 
Inc., Boston, Massachusetts). EMG data were 
collected using wireless surface electrodes that were 
band-passed filtered (30-450 Hz), amplified (1000x) 
and sampled at 1111 Hz. 

The TMS coil was placed tightly on the scalp 
over the left M1 with the handle pointing towards 
the back of  the head, tilted 45º to the left (see Fig. 
1C). The marker on the tip of  the nose was taken 
as a proxy residual movement between the head 
and the coil. This resulted in sinusoidal motions 
that were negligible (X = 3.65 mm, SD = 1.62, Y 
= 5.05 mm, SD = 2.13, Z = 3.95 mm, SD = 2.21; 
Tarapore et al., 2014). During the intake and the 
experimental sessions, we used single pulses to 
identify the optimal location for producing MEPs 
in the TLAT. The resting motor threshold (rMT) is 
the minimum intensity needed to produce an MEP 
in the TLAT in 5 of  10 consecutive trials (Schutter 
& van Honk, 2006). The ascending staircase method 
was used, starting at 30% of  maximum machine 
output while increasing the percentage in small steps 
until rMT was found (~5%, Schutter & van Honk, 
2006). The mean rMT for each session was 61.8% 
(SD = 10.3) and 66.2% (SD = 13.2) of  maximum 
machine output, respectively. We chose to increase 
the intensity for the experimental sessions to 120% 
of  rMT per participant, so that the MEPs were 
visible on each trial.

During the intake, participants were familiarized 
with the setup, task, and the TMS procedure and  
they received the personalized facemask. The two 
experimental sessions were scheduled at least one 
day apart and were performed at the same time 
of  day. In one experimental session, targets were 
displayed at the peaks of  sled acceleration (phases 
90° and 270°, at the turning points, see Figs. 1C 
and 1D) and at the peaks of  sled velocity (phases 

0° and 180°, at the center of  the motion). In the 
other experimental session, targets were displayed at 
phases 45°, 135°, 225°, and 315° that are in between 
the peaks of  the velocity and acceleration. Visual 
stimuli, TMS pulses and sled motion were controlled 
using custom written software in Python 2.7 (Kivy 
extension, version 1.9.0).

Task

Start positions, red discs of  3.5 cm in diameter, 
were presented on the touch screen at a distance of  
approximately 30 cm from the participants’ sternum 
and 8 cm on either side of  the body midline. Targets, 
yellow discs of  3.5 cm in diameter, appeared on a 
semicircle with a radius of  30 cm from the point 
midway at 35 possible directions: -40°, -35°, -30°, 
-28°, -26°, -24°, -22°, -20°, -18°, -16°, -14°, -12°, 
-10°, -8°, -6°, -4°, -2°, 0°, 2°, 4°, 6°, 8°, 10°, 12°, 14°, 
16°, 18°, 20°, 22°, 24°, 26°, 28°, 30°, 35°, and 40°. A 
2.5 cm x 2.5 cm green fixation cross was placed on 
the body midline, 12 cm further away than the two 
start positions. 

Participants were instructed to look at the 
fixation cross and touch both start positions with 
their left and right index finger to initiate a trial. 
There were three types of  trials: single target, catch, 
and TMS. When a single target was presented, 
participants were instructed to touch the target as 
quickly and accurately as possible with either their 
left or right index finger. To avoid predetermined 
hand choices for participants that select one hand 
prior to the target, ~8% of  behavioural trials acted 
as catch trials where two targets were presented, 
and the participant had to touch both targets using 
both index fingers. In case of  a TMS trial, no targets 
appeared, and no reach had to be made. Instead, 
participants received a short magnetic pulse (~1 
ms) to their left M1 at one of  eight phases of  the 
sled motion. Participants were explicitly instructed 
that after a TMS pulse the start positions would 
automatically turn red, and they had to initiate the 
next trial by pressing the start positions again. A 
time interval of  3 s was implemented after the TMS 
trials, avoiding influences of  the pulse on choice 
behaviour and reaction times of  the preceding trial. 
Participants could not predict the upcoming trial 
type, because trials were randomized under the 
restriction that after a TMS or catch trial no repeat 
occurred in four subsequent trials.

A Bayesian adaptive approach adjusted the 
target direction for the single target trials based on 
the hand choice of  all previous trials (ψ-procedure, 
Kontsevich & Tyler, 1999; Prins, 2013). This method 
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computes the expected information to be gained for 
every next possible target, based on the information 
from the previous hand choices, i.e., the posterior 
probabilities, and selects the target with the most 
optimal expected information. In one-fourth of  all 
single target trials a peripheral target was presented, 
which was not determined by the ψ-procedure. Note 
that these trials were still used to compute the optimal 
location of  the next stimulus by the ψ-procedure. 
This adaptive procedure to select the target direction 
was run for each sled phase independently.

Inter-trial intervals (ITI) were randomized 

ranging from 1.6 s to 2.8 s. However, ITI could be 
extended by at least 1.6 s (one motion cycle) if  the 
participant did not return their index fingers back 
to the start position in time (600 ms before the 
upcoming trial).

Participants performed six blocks of  120 trials 
for each session. Sessions were counterbalanced 
across participants. One block lasted for ~6 minutes 
and consisted of  96 single target trials, 16 TMS trials 
and 8 catch trials. After each block there was a short 
break (~1 minute) in which the lights were switched 
on and the sled was halted. Each session took ~75 

Fig. 1. Setup and stimuli. A. Picture of the sled with the touch screen, head mask and TMS coil. B. 
Illustration of possible screen configurations for the start positions (top), a single target trial (middle) 
and a catch trial (bottom).  C. Sinusoidal motion with TMS coil. D. Acceleration-velocity phase plot. 
Targets were displayed at 8 phases of the sinusoidal motion (grey circles).
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minutes, where the task lasted ~50 minutes with a 
total of  720 trials for each session.

Data Analysis
 

Choice Behaviour Analysis 

Hand choice was determined as the hand that 
first reached 30 cm/s away from a start location, as 
determined by the Optotrak data. Missing Optotrak 
data were interpolated with the function interp1 
in MATLAB. Trials were excluded when more 
than 10% of  the first 500 ms of  a trial consisted 
of  missing data. This was the case for 14% of  all 
trials with a range of  3%-39% for each participant. 
If  Optotrak data were missing, hand choice was 
determined by the first hand leaving the touch screen. 
Hand choice data were fitted for each phase by a 
cumulative Gaussian distribution using a maximum 
likelihood approach including a lapse rate parameter 
(Wichmann & Hill, 2001):

(1) 

Target direction is represented by x. Parameter  μ 
indicates the target direction for which participants 
were equally likely to use their left and right hand: the 
point of  subjective equality (PSE). A negative PSE 
demonstrates a shift towards right hand choices. 
Parameter σ represents the standard deviation of  
the curve or the participant’s variability in responses, 
whereas parameter λ represents the lapses produced 
by the participant. 

We investigated hand choice by comparing the 
PSEs for the four peak phases of  the sled motion 
with Wilcoxon rank sum tests (α = .05), since the 
data were not normally distributed. By comparing 
PSEs at phases with equal velocity but opposing 
accelerations, we investigated the influence of  
acceleration on hand choice (phases 90° and 270°). 
Moreover, by comparing the PSEs at phases with 
equal acceleration but opposing velocities, we 
investigated the influence of  velocity on hand choice 
(phases 0° and 180°). 

We examined the relation between PSE and 
the actual size of  the acceleration and velocity 
amplitudes at each phase for each participant. We 
calculated the Fisher z-transformed correlation 
coefficients for each participant and tested the mean 
correlation against zero with a t-test. 

Finally, we investigated whether the modulation 
between hand choice and acceleration was sinusoidal 
(Bakker et al., 2017), with a higher preference of  using 

the right hand for leftward accelerations and a lower 
preference of  using the right hand for rightward 
accelerations. We fitted a sinusoidal psychometric 
function to the hand choice data for all phases and 
for each participant, while assuming for μ:

(2)            PSE(phase) = A sin(phase – phase0) + B

Here, A is the amplitude of  the sinusoid, B is 
the vertical offset or handedness, and phase0 is 
the phase or horizontal shift according to the sled 
motion. Moreover, we assumed a fixed σ that reflects 
the variability of  hand choices, and λ for the eight 
phases (Bakker et al., 2017). For each session, we first 
normalized the PSEs by subtracting the mean PSE 
for all phases of  a session from the separate phases 
of  that session. The sinusoidal model contained five 
parameters (A, B, phase0, σ, λ) for each participant. 
In addition, we fitted another psychometric model 
that assumes no modulation of  the motion on PSE, 
where μ:

(3)            PSE(phase) = constant

We assumed a fixed σ and λ for the eight phases. 
The constant model contained three parameters 
(A, B, phase0) for each participant. We used the 
Akaike Information Criterion (AIC) to compare the 
likelihoods of  these models (Burnham & Anderson, 
2002). The AIC estimates the quality of  a model 
based on the goodness-of- fit and penalizes for an 
increase in number of  parameters:

(4)            AIC = –2logL+2k

The total likelihood of  the data given the model 
is represented by L and the number of  parameters 
is captured by k. The model that describes the data 
best on the individual and group level has the lowest 
score relative to the other model. Because AIC is 
silent about the absolute quality of  the model, it can 
only support the conclusion in combination with 
other results in this study.

Reaction Time Analysis

 We investigated whether sled motion affected the 
reaction times concerning hand choices. Reaction 
times were computed as follows. A low-pass filter 
using a fifth order, bi-directional Butterworth filter 
with a cutoff  frequency of  10 Hz was applied to 
the position data (Bakker et al., 2017). By subtracting 
the position of  the sled from the markers, data were 
converted into a body-centered reference frame. 
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Speed was computed as the magnitude of  the time 
derivative of  the finger position in three dimensions. 
Reaction time (RT) was defined as the first moment 
after target onset at which the hand speed exceeded 
7.5 cm/s in a range between 150 ms and 500 ms 
(Bakker et al., 2017) after target onset. Using the 
latter criterion, another 3% of  trials were excluded.

People typically choose the hand ipsilateral 
to the target. If  competition increases between 
hands for reach execution, for example for targets 
around the PSE, one would expect RTs to increase. 
We investigated the effect of  this competition by 
comparing RTs for the two targets around the PSE 
for each participant with RT to peripheral targets 
more than 10 degrees to the left or right. A two-way 
repeated measures ANOVA was performed, with 
the factors hand (left, right) and target direction 
(PSE, periphery). Because this competition could 
change according to the phase of  the motion, 
we also performed a two-way repeated measures 
ANOVA, with the factors hand (left, right) and 
phase (8 different phases). 

Corticospinal Excitability Analysis

 As a measure of  corticospinal excitability, we 
focused on the MEPs from the lateral triceps, which 
is an extensor muscle to be recruited first when 
reaching in the present task. To analyse the peak-to-
peak MEP amplitudes, we first excluded trials that 
had a background EMG activity of  100 µV or higher 
in a time window of  200 ms preceding the TMS 
pulse (4 trials; Duque et al., 2005). Subsequently, for 
each trial we calculated the peak-to-peak amplitude 
of  the MEP by subtracting the minimum value 
from the maximum value within a time interval of  
0-60 ms after the TMS pulse. Within sessions, these 
MEP amplitudes were transformed into z-scores 
by subtracting the mean and dividing them by the 
standard deviation and were then grouped by phase. 
Finally, to account for outliers, z-transformed MEP 
values with 2 standard deviations of  the mean or 
higher were excluded from the analyses (4% of  all 
trials), leaving at least 21 MEP values for each phase 
for every participant (Wilhelm, Quoilin, Petitjean, 
& Duque, 2016). By z-scoring, we accounted for 
corticospinal excitability differences between the 
two sessions. 

We performed a repeated measures ANOVA 
on MEP amplitude with factor phase (8 different 
phases) to verify whether there is an effect of  passive 
whole-body motion on the left M1 corticospinal 
excitability. Also, we compared the MEP amplitudes 
for the four peak phases of  the sled motion with 

Wilcoxon rank sum tests (α = .05), since the 
data were not normally distributed. Analogous 
to the hand choice analyses, we compared the 
MEP amplitude at phases with equal velocity but 
opposing accelerations to investigate the influence 
of  acceleration on corticospinal excitability (phases 
90° and 270°). Moreover, by comparing the MEP 
amplitude at phases with equal acceleration but 
opposing velocities, we investigated the influence of  
velocity on corticospinal excitability (phases 0° and 
180°). 

We investigated the relation between MEP 
magnitude and the associated acceleration and 
velocity at each phase for each participant. We 
calculated the Fisher z-transformed correlation 
coefficients for each participant and tested the mean 
correlation against zero with a t-test. 

Finally, we investigated whether the modulation 
between MEP and acceleration is sinusoidal, and 
analogous to the behavioural observations. We fitted 
a sinusoidal function to the MEP data for all phases 
for each participant, where :

(5)            MEP(phase) = A sin(phase – phase0) + B

Here, A is the amplitude of  the sinusoid, B is the 
vertical offset, and phase0 is the phase or horizontal 
shift according to the sled motion. This sinusoidal 
MEP model contained three parameters (A, B, 
phase0) for each participant. An alternative model 
was also tested for which the MEP is unrelated to 
phase, where :

(6)            MEP(phase) = constant

The constant model contained only one 
parameter (constant) for each participant. We used the 
least squares AIC to compare the sinusoid and the 
constant model: 

(7)            AIC = 2k + n*log(SSE)

Here, k is the number of  parameters, n is number 
of  data points, and SSE is the sum of  squared errors. 

Control Study

We performed a control experiment with 
one participant to test whether we probed a task-
dependent effect as opposed to a default task-
independent modulation of  whole-body motion on 
the corticospinal excitability of  the M1. Features 
of  the experiment were kept the same, except for 
the following: (1) No hand choice task had to be 



Nijmegen CNS | VOL 13 | ISSUE 144

Béla S. Roesink

performed during the experiment; (2) all eight 
phases were probed with TMS in one session; (3) 
Phases were randomized in such a way that pulses 
were given in between 3.2 s and 6.4 s (2-4 cycles of  
the motion) after the participant pressed the start 
positions again. This guaranteed that there were at 
least 3 s in between pulses and that pulses came fairly 
unexpected. The rMT was comparable with previous 
mentioned values (57%). The data preparation was 
comparable, with six trials excluded for having a 
background EMG activity of  100 µV or higher in 
a time window of  200 ms preceding the TMS pulse. 
Six z-scored MEPs with two standard deviations 
from the mean or higher were excluded, leaving at 
least 22 MEPs for each phase to be analysed.

Results

Choice Behaviour 

We studied the effect of  passive whole-body 
translation on hand choice by presenting targets 
at different body-centric locations. Targets were 
probed at eight different phases of  sled motion with 
adaptive procedures. We measured the PSE; the 
target direction for which participants were equally 
likely to reach with their left and right hand. 

Figure 2A and 2B show the psychometric curves 
fitted to the proportion of  right hand responses for 
each target of  one representative participant, with 
circle size representing the number of  trials for 
each target direction. Hand choice was consistent 
for peripheral targets such as –40° (always left hand 
choice) and 40° (always right hand choice). Negative 
PSEs demonstrate an overall preference of  using the 
right hand for this participant. Figure 2A shows that 
when the participant is at the right turning point and 
accelerated to the left (blue circles, blue fitted curve), 
the preference of  using the right hand increases 
(PSE = -7.0°). Moreover, when the participant is 
at the left turning point and accelerated to the right 
(red circles, red fitted curve), the preference of  using 
the left hand increases, although the right hand is 
still chosen more often (PSE = -3.9°). This suggests 
that this participant’s hand choice depends on the 
direction of  acceleration. Figure 2B shows that 
hand choice is similar at the peaks of  leftward and 
rightward velocity, when acceleration was zero (PSE 
= -5.3° and -5.5°). This implies that this participant’s 
hand choice does not depend on the direction of  
velocity. All PSEs as a function of  phase are depicted 
in Figure 4A for this participant. 

In general, all participants exhibited this 

individual effect. A Wilcoxon signed-rank test 
showed a significant difference between PSEs for 
opposite directions of  peak acceleration (z = -2.37, 
p = .018), with a preference of  using the right hand 
for the leftward acceleration (PSE = -4.9°, SD = 
6.6) and a preference of  using the left hand for the 
rightward acceleration, although the right hand is 
still chosen more often (PSE = -1.4°, SD = 5.6). 
This suggests that hand choice depends on the 
direction of  acceleration. Also, a Wilcoxon signed-
rank test showed no significant difference (z = -1.52, 
p = .128) between PSEs for opposite directions of  
peak velocity (PSE = -1.9°, SD = 5.7 and PSE = 
-3.6°, SD = 7.3). This implies that hand choice does 
not depend on the direction of  velocity. All PSEs 
(with SEs) as a function of  phase for all participants 
are depicted in Figure 4B.

To understand the relation between PSE and 
the corresponding size of  the acceleration for 
each phase, we calculated individual correlation 
coefficients. All participants showed a positive 
correlation between PSE and acceleration size, with 
the mean significantly different from zero (Fisher’s r 
to z transform, r = .71, t(6) = 3.13, p = .020). Figure 
2C illustrates the linear relation between PSE and 
acceleration. We also calculated the correlation 
between PSE and velocity in the same way for each 
participant, resulting in four positive and three 
negative correlations, and a nonsignificant mean 
correlation (r = .18, t(6) = 0.06, p = .955, see Fig. 
2D). These results suggest that there is a relation 
between PSE and the size of  acceleration, but not 
for velocity. 

Finally, we tested whether the effect of  
acceleration on hand choice modulates sinusoidally 
with phase. We first verified the assumption that  
from the fitted psychometric curves did not differ 
across the eight phases for all participants with a 
repeated measures ANOVA (F(2.10, 71.59)= 0.46, p 
= 0.653). We fitted a psychometric sinusoidal model 
and a constant model to the hand choice data for all 
phases and for each participant. Lower AIC values 
indicate a better fit for the sinusoidal model (1017.6; 
see Table 1) compared to the constant model 
(1025.6). 

Figure 4A shows the sinusoidal fit to the data 
of  the representative participant. Table 2 lists the 
best-fit parameters for each participant for the 
sinusoidal model (A, B, phase0, σ, λ). We verified 
that the amplitude, parameter A, was significantly 
different from zero (t(6) = 4.56, p = .004). This 
suggests that the choice bias varies with phase. The 
participants’ best-fit parameters were averaged, and 
the resulting mean curve is overlaid on the mean 
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PSE as a function of  phase with shaded error bars 
of  the mean sinusoid in Figure 4B. As shown, the 
phase modulation is biased by the peak acceleration, 
not peak velocity, with a higher preference of  using 
the right hand for leftward accelerations and a lower 
preference of  using the right hand for rightward 
accelerations. 

Reaction Time 

We investigated whether an effect of  competition 
between hands for reach execution could be discerned 
based on RTs for targets around the PSE compared 
to peripheral targets. A repeated measures ANOVA 
with factors hand (left, right) and target direction 
(PSE, periphery) on all RTs (phases combined) 
showed that movements to targets around the PSE 
were initiated slower (M = 327 ms, SD = 10.8) than 
movements to targets in the periphery (M = 309 
ms, SD = 5.9), supporting a competition process 

Participant PSE=sin PSE=B Difference
in model

PSE

MEP=sin MEP=B Difference
in model

MEP
1 957.4 966.8 9.4 -3.46 -1.28 2.18

2 1077.2 1082.3 5.1 0.58 5.94 5.36

3 1099.8 1099.3 0.5 -17.75 -19.65 1.9

4 970.5 993.1 22.6 - - -

5 1012.6 1031.5 18.9 3.14 5.53 2.39

6 1441.5 1444.6 3.1 -4.27 -0.44 3.83

7 564.3 561.8 2.5 -14.01 -8.25 5.76

Mean 1017.6
(SD=258.6)

1025.6
(SD=259.4)

-5.96
(SD=8.23)

-0.28
(SD=10.21)

Table 1. 

Akaike Information Criteria (AIC). Lower AIC values are expressed in bold.

A B Phase 
0

σ λ A B Phase
0

1 1.1 -4.1 164.9 5.0 0 0.299 -0.178 315.8

2 1.8 -4.4 225.1 10.4 0.041 0.531 -0.0758 300.0

3 1.1 -4.1 261.4 10.4 0.034 0.062 -0.0906 8.1

4 1.5 -.02 203.6 4.4 0.012 - - -

5 2.8 3.1 191.5 9.1 0.019 0.462 -0.105 284.4

6 4.1 -14.6 182.0 28.9 0 0.339 -0.129 347.5

7 1.3 0.0 178.5 11.9 0.020 0.077 -0.185 86.5

Mean 1.96 -3.46 201
(SD=
8.19)

11.44 0.018
(SD=

0.016)

0.30
(SD=
0.19)

-0.13
(SD=
0.05)

103.7
(SD=

54.39)

Participant Acceleration MEP

Table 2.

Fitted parameters for the sinusoidal model.
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(F(1,6) = 7.12, p = .037; Bakker et al., 2017). This 
effect is shown in Figure 2E. Participants responded 
generally faster with their left hand (M = 308 ms, SD 
= 8.2) than their right hand (M = 327 ms, SD = 8.2; 
F(1,6) = 34.85, p = .001). There was no interaction 
effect.

To investigate the relation between phase and RT, 
we conducted another repeated measures ANOVA 
with factors hand (left, right) and phase (8 different 

phases) on RT. This demonstrated a main effect 
of  phase on RT (F(3.92, 19.58) = 3.92, p = .017; 
Huynh-Feldt). Also, a main effect of  hand on RT 
showed that participants responded faster with their 
left (M = 321 ms, SD = 6.7) than their right hand 
(M = 337 ms, SD = 6.7; F(1,5) = 9.05, p = .030). 
An interaction effect between hand and phase was 
found that was in line with the competition analysis 
(F(4.26, 21.28) = 4.54, p = .008; Huynh-Feldt). 

Fig. 2. PSE plots for a single participant. The probability of a right-hand choice for each target direction 
is shown, optimally fitted with the psychometric curve. Circle size represents the number of trials for 
each target direction. A. Hand choice for leftward and rightward peak acceleration. B. Hand choice 
for leftward and rightward peak velocity. C. Mean PSEs (with error bars indicating SEs) are plotted 
as a function of acceleration, accompanied by the 95% confidence interval (dotted lines) around the 
regression line. D. Mean PSEs (with SEs) are plotted as a function of velocity, accompanied by 95% 
confidence interval (dotted lines) around the regression line. E. Mean left (red) and right hand (blue) 
reaction times (with SEs) for targets around PSE (center) and periphery (exterior). F. Mean left (red) and 
right hand (blue) reaction times (with SEs) for each phase.
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Figure 2F shows the relation between phase and RT, 
implying that the choice bias with phase changes 
according to RT in both hands.

Corticospinal Excitability

The main objective of  this study was to 
examine the effect of  passive sinusoidal whole-
body translations on corticospinal excitability in the 
left M1 for hand selection and to see whether this 
excitability can be associated with the behavioural 
findings. We measured the peak-to-peak MEP 
amplitude of  the right TLAT while pulses were 
applied at eight different phases of  sled motion. 

If  acceleration modulates the MEP amplitudes, 
we expect a difference between MEPs measured at 
peak acceleration. However, if  velocity modulates 
the MEP amplitudes, we expect a difference 
between MEPs measured at peak velocity. Figure 
3A shows the averaged MEP amplitudes for each 
phase over time for the representative participant. 
Here, the peak-to-peak MEP amplitude for the first 
leftward acceleration (phase 45°) is largest compared 
to all other phases. Figure 4C shows the z-scored 
MEP values with accompanied error bars indicating 
SEs as a function of  phase for the representative 
participant, where the MEP value is highest for the 
first leftward acceleration (phase 45°) compared to 
all other phases.

A repeated measures ANOVA verified this 
effect across participants (F(7, 28) = 6.57,  p<.001), 
suggesting that whole-body translation does affect 
the left M1 corticospinal excitability for hand 
selection (see Figure 4D). A Wilcoxon signed-rank 
test showed no significant difference (z = -1.36, p 
= .173) between MEP amplitudes for leftward peak 
acceleration (M = -0.10, SD = 0.19) and rightward 
peak acceleration (M = -0.24, SD = 0.09). A 
Wilcoxon signed-rank test between MEP amplitudes 
for opposite directions of  peak velocity (M = 0.08, 
SD = 0.28 and M = -0.32, SD = 0.27) showed no 
significant difference (z = -1.57 , p = .116). These 
results suggest that whole-body translation does not 
affect the left M1 corticospinal excitability for hand 
selection at the peaks (leftward and rightward) of  
acceleration and velocity.

We next correlated the MEP values with 
the corresponding size of  the acceleration. All 
participants showed a negative correlation between 
MEP value and acceleration size. This correlation 
was significantly different from zero (Fisher’s r to 
z transform, r = -0.55, t(5) = 3.45, p = .018). Figure 
3B illustrates the linear relation between MEP and 
acceleration. We also calculated the correlation 
between MEP magnitude and velocity in the same 
way for each participant, resulting in four positive 
and two negative correlations, and a nonsignificant 
mean correlation (r = 0.58, t(5) = 0.86, p = .432, 

Fig. 3A. Evolution of MEP amplitudes over time plotted as a function of phase for one representative 
participant. B. Mean z-normalized MEP amplitude as a function of acceleration, fitted regression slope 
and 95% confidence interval around the regression line (dotted lines). C. Mean z-normalized MEP 
amplitude as a function of velocity, fitted regression slope and 95% confidence interval around the 
regression line (dotted lines).
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Fig. 3C). These results suggest that there is a relation 
between MEP amplitude and the size of  acceleration, 
but not for velocity.

Finally, we tested whether the effect of  
acceleration on MEP amplitude modulates 
sinusoidally with phase. We fitted a sinusoidal model 
and a constant model to the MEP amplitudes for all 
phases and for each participant. Lower AIC values 
indicate a better fit for the sinusoidal model (-5.96; 
see Table 1) compared to the constant model (-0.28). 

Figure 4C shows the best-fitted sinusoid for the 
representative participant. Table 2 lists the best-
fit parameters for each participant (A, B, phase0). 
We verified that the amplitude, parameter A, was 
significantly different from zero (t(5) = 3.73, p 
= .014). This suggests that the MEP amplitude 
modulates sinusoidally with phase. The participants’ 
best-fit parameters were averaged, yielding a best-fit 

curve that is overlaid on the mean MEP amplitude 
as a function of  phase with shaded error bars of  
the mean sinusoid in Figure 4D. The model shows 
that the phase modulation is biased by the increasing 
leftward acceleration (phase 45°) and the increasing 
rightward acceleration (phase 225°), but is not biased 
by peak velocity. Higher MEP amplitudes are only 
observed for the increasing leftward acceleration 
(phase 45°), but no changes in MEP amplitude for 
rightward accelerations.

Control Study

To understand whether the MEP modulation 
was caused by the hand choice task or simply reflects 
a default task-independent modulation of  whole-
body motion on the corticospinal excitability of  the 
M1, we performed a control experiment with one 

Fig. 4. Sinusoidal fits to the PSE and MEP modulations. Left panels, data from the representative 
participant; right panels, data from all participants; upper panels, PSE as a function of phase; lower 
panels, MEP amplitude as a function of phase. All panels are accompanied by the sinusoidal model fit 
(error bars are used when appropriate; the standard error for the sinusoid is indicated by the shaded 
area). 

Fig. 5. Control study in a single participant. MEP amplitude as a function of phase (with SEs).
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participant. In Figure 5, one can observe the MEP 
amplitude as a function of  phase, which is different 
from when a hand selection task is involved. There 
was no significant correlation between MEP 
amplitude and the associated acceleration (r = .18, 
p = .667) or velocity (r = .008, p = .986). This single 
participant control study proposes that we have 
successfully explored a task-dependent effect of  
passive whole-body motion on hand selection. 

Discussion

This is the first study to investigate the 
corticospinal excitability of  the left primary motor 
cortex (M1) for hand selection during passive whole-
body motion. We applied single-pulse transcranial 
magnetic stimulation (spTMS) to the left M1 at 
eight equally-spaced phases of  the motion while 
participants performed a hand choice task. Motor 
evoked potential (MEP) amplitudes were measured 
from the lateral triceps of  the right arm as an 
indicator of  corticospinal excitability. Our results 
show that passive whole-body motion affects the 
left M1 corticospinal excitability for hand selection. 
We found that MEP amplitudes were dependent on 
the phase of  the motion, with the highest amplitude 
for the increasing leftward acceleration (phase 45°) 
of  the sinusoidal sled motion. We verified that there 
is no effect of  velocity on the left M1 corticospinal 
excitability for hand selection. 

We replicated the main behavioural findings by 
Bakker et al. (2017). Hand choices were affected by 
the whole-body acceleration, resulting in a higher 
preference for using the right hand for leftward 
accelerations and a lower preference for using the 
right hand for rightward accelerations, but no effect 
of  peak velocity on hand choice. Our RT results 
showed that we successfully probed a competition 
process for hand selection, with longer RTs for 
reaches to targets around the PSE compared to 
targets from the periphery. Overall, participants 
responded faster with their left hand than their right 
hand.

We showed that the sinusoidal model described the 
data better than a phase-independent model (i.e. no 
influence of  passive whole-body motion on cortical 
excitability). Figure 4D shows that the sinusoid 
increases for leftward accelerations and decreases 
for rightward accelerations. However, results are not 
pure symmetrical, with a strong increase in MEP 
amplitude for the increasing leftward acceleration 
(phase 45°) but no decrease in MEP amplitude for 
the increasing rightward acceleration (phase 225°). 

One explanation for this could be that the arm has 
to compensate for the inertia corresponding to the 
direction of  the sled acceleration. In body-centered 
coordinates, during leftward acceleration, inertia 
drives both hands to the right, while during rightward 
acceleration, inertia drives both hands to the left. 
Because we are reading out the state of  the left M1 
for the right lateral triceps, we only see an increase 
in MEP amplitude for leftward accelerations, while 
for rightward accelerations this effect is much 
smaller. This suggests that biomechanical costs of  
possible reaching movements with the right hand are 
calculated before movement initiation during passive 
whole-body motion (Cos et al., 2014).

Although our control study is severely limited 
by testing only a single participant, the result may 
suggest that we successfully explored a task-
dependent effect of  passive whole-body motion 
on hand selection. The control data show that the 
modulation of  excitability was different than when 
participants were translated and performed a hand 
choice task. Still, the results of  the control study 
cannot rule out the biomechanical cost explanation, 
because there were neither hand choices nor 
biomechanical costs to calculate during the control 
study. To test the biomechanical cost explanation, 
one could perform the same experiment, but instead 
of  making reaching movements, participants would 
have to move the index finger while MEPs of  the 
first dorsal interosseous of  the selected hand are 
measured (Duque et al., 2005). We expect that the 
influence of  inertial forces of  the acceleration on 
the index finger is negligible. This would remove 
the biomechanical cost calculation of  the reaching 
movement, making it possible to discern whether 
the difference in cortical excitability that we found 
is related to calculating these costs or is related to 
selecting which hand to use.

Initially, we assumed a symmetrical, i.e. sinusoidal 
modulation of  corticospinal excitability for the lateral 
triceps, similar to the sinusoidal choice modulation 
of  the arms. We expected that the left M1 would 
be more excitable at phases where the right hand 
was preferred (leftward accelerations), and that the 
left M1 would be less excitable at phases where the 
left hand was preferred (rightward accelerations). 
Contrary to our expectations, no decrease in MEP 
amplitude for the left M1 was observed for rightward 
accelerations, but rather a constant level of  cortical 
excitability was found. One explanation is that 
we only probed a facilitating process for the right 
lateral triceps in the left M1. Several studies have 
described that during ‘Go’ signals with a predefined 
hand, only a gradual increase in MEP amplitude is 
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probed for that hand 100 ms prior to execution in 
the contralateral M1, whereas the unchosen hand is 
often not explicitly suppressed (Bestmann & Duque, 
2016; Leocani et al., 2000). This differs considerably 
from a competition resolution concerning which 
hand to use, where the nonselected hand is 
suppressed. Perhaps the passive whole-body motion 
only facilitates the selection in favor of  one arm, in 
our case, the right arm. It would be interesting to 
verify if  the right M1 works in a similar way for the 
left arm.

One reservation of  our study is that we had a 
limited number of  participants. A reason for this 
is that we had to exclude five participants, because 
their rMTs for the lateral triceps were above 80% of  
the maximum machine output. We experienced that 
the brachioradialis and bicep were easier to target 
with spTMS. If  the data of  these muscles resembles 
the effects found in this study, one could adopt one 
of  these muscles for recruitment.

Conclusion

Our study shows that the corticospinal excitability 
of  the left M1 for hand selection is affected by 
whole-body translation and as such may be a readout 
of  a bias modulation for hand selection. However, 
further studies are needed to understand how the 
brain exactly incorporates whole-body motion for 
hand selection.
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Behavioural measures show that five-year-olds can integrate iconic gestures that co-occur with speech. Both 
behavioural and neuroscientific studies show that adults integrate gestures (e.g. a C-shaped hand depicting a 
glass while moving it towards the mouth to indicate drinking) with simultaneous speech. However, no study 
has investigated the underlying neural activity of  online multimodal semantic integration processes in seven-
year-old children. We used electroencephalography (EEG) to record Dutch speaking children’s brain activity 
while they watched videos of  simultaneously presented speech-gesture combinations of  action gestures and 
action verbs in matching and mismatching conditions. We observed an N400 effect with larger amplitude to 
mismatching speech-gesture combinations compared to matching speech-gesture pairs, reflecting semantic 
integration of  gestural information to the spoken word. Our findings suggest that seven-year-old children 
display adult-like online neural integration strategies of  iconic gestures co-occurring with speech. 

Keywords: gesture comprehension in children, speech gesture integration, EEG
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As human beings, we interact and communicate 
with others by using language. Language, however, 
does not only refer to the auditory modality of  
spoken language. Rather, we communicate in a 
multimodal way: we gesture while we speak. Speech 
and gesture form an integrated system that combines 
auditory and visual information to create a unified 
message (Kelly, Özyürek, & Maris, 2010; McNeill, 
1992). Iconic co-speech gestures are specific hand 
movements made during speaking (McNeill, 1992). 
These gestures represent movements and actions 
of  people or depict concrete objects and events in 
space, such as a C-shaped hand depicting a glass 
while moving it towards the mouth to indicate 
drinking (McNeill, 1992).  In adults, gestures are 
not only integrated during linguistic production 
(Kita & Özyürek, 2003), but also during linguistic 
comprehension (Kelly, Barr, Church, & Lynch, 
1999). Neuroscientific studies investigating adults’ 
ability to integrate gesture to speech have further 
confirmed that auditory and visual input are 
processed simultaneously rather than sequentially, 
suggesting the presence of  an integrated system both 
during production and comprehension (Drijvers & 
Özyürek, submitted; Habets, Kita, Shao, Özyürek, & 
Hagoort, 2011; Wu & Coulson, 2007).

Despite the speech-gesture integration found on 
cognitive, behavioural and neural levels in adults, we 
know little about such processes in children. Some 
studies show that children’s ability to integrate iconic 
gestures to speech during language comprehension 
emerges between the ages of  three and five 
(McNeil, Alibali, & Evans, 2000; Sekine, Sowden, 
& Kita, 2015; Stanfield, Williamson, & Özçalışkan, 
2013). However, these findings are based on offline 
measures of  behavioural experiments and provide 
only limited information about the development of  
an integrated system in children. Behavioural results 
about children’s integration abilities in language 
comprehension are scarce, and neuroscientific 
findings about the underlying cognitive processes 
of  gesture-speech integration especially regarding 
online measures are practically non-existent. We do 
not know at what age children develop the ability to 
combine and integrate gestures to speech. Therefore, 
the current study aimed, as a first step, to expand 
upon previous behavioural results. We investigated 
whether seven-year-old children can integrate 
information communicated through gestures to the 
auditory information from speech during language 
comprehension by recording children’s brain activity.

Developmental trajectory of gesture 

Children gesture before they speak (Bates, 
Benigni, Bretherton, Camaioni, & Volterra, 1979; 
Carpenter, Nagell, Tomasello, Butterworth, & 
Moore, 1998). Twelve-month-old infants are able 
to extend their index finger to point to draw an 
individual’s attention to a specific object (declarative 
pointing) or to request that object (imperative 
pointing) before they are able to communicate 
verbally (Behne, Liszkowski, Carpenter, & 
Tomasello, 2012; Carpenter et al., 1998). Such 
deictic (pointing) gestures are among the first signs 
of  a child’s desire to communicate with his or her 
caregiver, and gestures therefore appear to serve as 
the building block of  language development and 
human communication (Kita, 2003; McNeill, 1992). 
In addition to deictic gestures, infants around 12-13 
months of  age begin to produce words to refer to 
objects and events in their environment (Sheehan, 
Namy, & Mills, 2007). Not only do children produce 
single words, but they often do so in combination 
with a pointing gesture, which may be a further sign 
of  the infant’s wish to communicate intentionally 
(Bates et al., 1979). A speech-gesture combination 
can be produced to communicate redundant 
information, such as naming an object with a single 
word while pointing at it, or may be used to add 
semantic meaning to the single spoken word, such 
as pointing to an object while referring to the person 
who owns it (Greenfield & Smith, 1976). In a recent 
study, Igualada and colleagues were able to confirm 
a predictive relationship between 12-month-old 
infants’ use of  speech-gesture combination and their 
expressive language development at 18 months of  
age (Igualada, Bosch, & Prieto, 2015). One-year-old 
infants preferred to communicate by using pointing-
speech combinations rather than a pointing gesture 
only, suggesting that children use this strategy to 
reinforce the information they want to communicate 
(Igualada, Bosch, & Prieto, 2015; Liszkowski, 
Albrecht, Carpenter, & Tomasello, 2008). This 
reinforcement strategy may relate to the advancement 
of  communicative strategies and therefore influence 
expressive language use around 18 months. This 
transitional period of  a language learner to explore 
additional means of  communication may reflect 
cognitive change in advancing from one-word speech 
to two-word speech. Speech-gesture combinations 
therefore seem to be predictive of  the age a child will 
produce two-word combinations (Goldin-Meadow 
& Butcher, 2003; Iverson & Goldin-Meadow, 2005; 
Özçaliskan & Goldin-Meadow, 2005, 2009). The 



Nijmegen CNS | VOL 13 | ISSUE 154

Christina Schoechl

development of  gesture and early speech appear to 
be tightly connected, and gesture-speech integration 
in production may start to emerge during the one-
word period (Butcher & Goldin-Meadow, 2000).

Although young children are able to produce 
deictic gestures and speech-gesture combinations 
around their first birthday, Schulze and Tomasello 
(2015) suggest that comprehending the 
communicative intention of  others’ deictic gestures 
may not become robust until around 18 months of  
age. The use of  speech-gesture combinations at the 
one-word stage in infants suggests their intention to 
communicate, but applying a communicative meaning 
to another person’s gesture requires the infant to 
have developed an understanding of  the other as an 
intentional agent who also wants to communicate 
information (Behne, Carpenter, & Tomasello, 2005; 
Carpenter et al., 1998). During the second year of  
life, young children are beginning to understand the 
importance of  a caregiver’s communicative cues 
as they learn to establish a meaningful connection 
between a word and its referent (Kita, 2003). 

While one-year-old children frequently use deictic 
gestures, iconic gestures may emerge as the result 
of  having acquired a spoken language, as children 
only produce them after they have learned their 
first verbs (Özçalışkan & Goldin-Meadow, 2011). In 
comparison to deictic gestures that appear to serve 
as a building block for, and precede spoken language, 
children start producing iconic gestures around their 
second birthday when they develop a sensitivity to 
iconicity (the resemblance between a symbol and its 
referent) of  hand movements (Hrabic, Williamson, 
& Özçalışkan, 2014; Namy, Campbell, & Tomasello, 
2004; Özçalışkan & Goldin-Meadow, 2005, 2011). 
Establishing a connection between an iconic gesture 
and a referent (gestured object or action) seems 
to be more complex and cognitively demanding 
for children than establishing a relation between 
a pointing gesture and a referent (Özçalışkan & 
Goldin-Meadow, 2011). Nevertheless, Furman, 
Küntay and Özyürek (2014) show that in languages 
where verbs are acquired early, iconic gestures might 
also emerge earlier than two years of  age.

Young children seem to start producing gestures 
describing a specific action (representational gestures) 
earlier than they produce iconic gestures describing 
an object (e.g., forming a cupped hand to represent 
a round circle; Hrabic et al., 2014; Namy et al., 
2004; Özçalışkan & Goldin-Meadow, 2011). During 
comprehension, children may understand nonverbal 
symbols, such as gestures, as either representational, 
iconic or arbitrary (Namy et al., 2004), but the 
interpretation of  a gesture as either form may follow a 

different developmental trajectory. While 18-month-
old infants showed a robust mapping of  both iconic 
and arbitrary gestures to their referents, 26-month-
old infants failed to map arbitrary gestures to their 
referents (Namy & Waxman, 1998). It appears as 
if  children interpret the iconicity of  gestures as a 
relevant source of  information from a young age, 
when they are developing sensitivity to both the 
auditory and the visual modality of  communication. 
Arbitrary gestures, however, may not seem as 
communicatively informative as iconic gestures 
during this period of  focused attention to spoken 
language development and may be interpreted 
differently than representational or iconic gestures. 

As children acquire a larger spoken vocabulary, 
more resources may be allocated to the development 
of  spoken language as children learn to speak (Namy 
et al., 2004). In turn, four-year-old children are more 
competent language users than young infants, and 
have developed an enhanced understanding of  
the communicative intentions of  others. Such an 
understanding of  language may allow for a more 
flexible processing of  unconventional symbols such 
as arbitrary gestures (Namy et al., 2004). Four-year-
old children, just like 18-month-olds, display a robust 
mapping of  arbitrary gestures to their referent. The 
U-shaped development of  the sensitivity to arbitrary 
gestures may be related to children’s ‘zooming in’ 
to the most informative modality to learn more 
spoken words (Namy et al., 2004; Namy & Waxman, 
1998). The maturation of  language and an increase 
in understanding the communicative intentions of  
both speech and gestures may provide an important 
leeway for understanding and processing speech-
gesture combinations. 

Can children comprehend a gesture in 
combination with speech ?

The processing of  information communicated 
simultaneously through two modalities is cognitively 
challenging, but children seem to get better at 
understanding the importance of  visual input and 
learn to combine it with the auditory information 
as they get older (Sekine et al., 2015; Stanfield et al., 
2013). In a previous study (Stanfield et al., 2013), 
an experimenter sitting across from a two-, a three- 
or a four-year-old child said ‘I am eating’ while 
simultaneously producing an iconic action gesture 
depicting an object (e.g., moving the hands to the 
mouth as if  eating a sandwich). This speech-gesture 
combination was produced twice before the child 
was given two different pictures, one of  which always 
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matched the object depicted by the iconic gesture. 
The child then had to select the picture that best 
matched what the experimenter had communicated. 
Three- and four-year-old children, but not two-
year-olds, were able to reliably select the correct 
picture. The ability to understand speech-gesture 
combinations with iconic action gestures depicting 
information about an object therefore appears to 
develop around age three. 

Speech-gesture combinations with iconic 
gestures conveying action information about motion 
may, however, be more difficult to process. Motion 
can be communicated by depicting the manner 
and path of  a particular event, such as gesturing 
running (manner) up a hill (path; Talmy, 2000) and 
children as young as three years are able to produce 
such iconic action gestures (Özyürek et al., 2008). 
However, when three- and four-year-old children 
were asked to distinguish between manner and 
path of  an iconic action gesture about motion in 
speech-gesture combinations, three-year-olds failed 
to comprehend the action information of  the iconic 
gesture (Hrabic et al., 2014). In Hrabic et al.’s (2014) 
study, children watched video clips with speech-
gesture combinations in three different conditions. 
The gesture either conveyed both manner and path, 
only manner, or only path of  a particular motion. 
Children were then asked to select one animation 
out of  two that best matched the video clip they had 
watched. Only the animation displaying a character 
depicting the same manner and path information 
as presented via the iconic gesture in the video 
clip was the correct choice. The other animation 
displayed either manner only or path only. Although 
three-year-old children can produce iconic gestures 
conveying motion information, only four-year-old 
children selected the correct animations reliably 
during a comprehension task (Hrabic et al., 2014). 
These findings suggest that comprehending gestures 
conveying information about motion follows the 
production of  iconic gestures depicting object 
information. 

Are gestures integrated to speech 
during comprehension on a behavioural 
level?

From the presented literature we can see that 
producing and understanding iconic gestures in 
speech-gesture combinations develops within the 
first few years of  life. However, iconic gestures 
do not always only convey additional information 
that is not apparent in speech, but gestures and 

speech may also mutually constrain each other. 
Speech and gesture may convey information that 
is different, yet, when combined, present useful 
information for comprehending a message. During 
comprehension, people automatically try to establish 
a semantic relation between both the visual and the 
auditory modalities and adults are able to integrate 
multimodal information without effort (Habets et 
al., 2011; Kelly et al., 2010). For children, however, 
interpreting information from two modalities that 
mutually constrain each other is more challenging. 
Sekine et al. (2015) presented three- and five-year-
old children with short video clips of  an actress 
performing an iconic action gesture (e.g. eating with 
a fork) while she said, ‘One is eating’. The videos 
were presented in three different conditions. In the 
first condition, children only heard the sound of  the 
videos (verbal only, VO). In the second condition 
children only saw the video, but did not hear the 
sound (gesture only, GO), whereas in the third 
condition children both saw the video and heard 
the sound (verbal and gesture combined, VG). After 
each video, children had to select one picture of  four 
that best matched the information from the video. As 
in previous studies, only one picture was the correct 
choice that corresponded to the VG condition. A 
second picture represented only the verbal modality, 
so that the picture matched the action (eating) but 
the shape of  the gesture did not (eating an apple 
instead of  using a fork). A third picture was only a 
match for the gesture condition, in that the gesture 
matched the iconic action gesture (eating with a 
fork) but the meaning of  the gesture represented 
brushing teeth. The fourth picture was an unrelated 
distractor, such as a person taking a photograph. 
Only five-year-old children reliably selected the 
picture that matched the display of  both the speech 
and the gesture. The findings of  Stanfield et al. 
(2013) and Hrabic et al. (2014) suggest that children 
between the ages of  three and five are learning 
to comprehend information conveyed through 
gesture to co-occurring speech. Moreover, Sekine 
et al.’s findings show that, behaviourally, children 
may start to integrate information from gestures to 
speech conveying different, but semantically related, 
information around the age of  five. 

There is behavioural evidence to confirm the 
existence of  a unified system that automatically 
allows for the integration of  both modalities during 
production and comprehension in adults (Kelly et 
al., 1999, 2010; Kelly, Healey, Özyürek, & Holler, 
2015). Although there is one neuroscientific study 
(based on functional magnetic resonance imaging, 
fMRI) showing that eight-year-old childrens’ brains 
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appear to be sensitive to the meaning of  hand 
movements (Dick, Goldin-Meadow, Solodkin, & 
Small, 2012), there is only one study showing that 
younger children may also be able to integrate two 
modalities during language comprehension on a 
behavioural level (Sekine et al., 2015). These results 
are, however, only based on offline behavioural 
measures, which neither allow us to assume a 
direct relationship between neural mechanisms 
that process speech and gesture, nor do these 
behavioural results confirm an integrated neural 
system in children. In turn, neuroscientific measures, 
such as electroencephalography (EEG) or fMRI (as 
in Dick et al., 2012), can provide information about 
the underlying neural correlates of  multimodal 
integration processes. 

Neural integration of speech and 
gesture in adults

The N400, a negative deflection measured 
between 300 and 500 ms after stimulus onset 
using EEG, is a good measure for neurocognitive 
processing of  semantic information of  pictures, 
words, or sentences during language comprehension 
(Kutas & Hillyard, 1980, 1984). The amplitude of  
the N400 varies as a function of  the semantic fit 
between the meaning of  a word and its context (a 
word, a sentence or a discourse; Hagoort & Van 
Berkum, 2007), and indexes the ease of  semantic 
processing in language. The N400 amplitude is 
larger in response to semantically mismatching 
information in comparison to matching information 
(Kutas & Federmeier, 2011). The N400 congruency 
effect is observed as the difference of  the brain 
activity of  mismatching information compared to 
the brain activity of  matching information. 

In addition to semantically mismatching 
speech, gestures have been found to evoke similar 
effects (Wu & Coulson, 2007). When participants 
were presented with gestures that followed words 
unrelated to the gesture, a larger N400 effect was 
observed when compared to words that related to the 
previously produced gesture (Wu & Coulson, 2007). 
The integration processes of  semantically related 
or unrelated information from two modalities can, 
therefore, also be investigated using event-related 
potentials (ERPs) such as the N400. This method 
presents advantages over other neuroimaging 
techniques since it is easier to carry out with young 
children when compared to, for example, fMRI. 
The EEG technique is non-invasive and pain free, 
and this practicality allows us to get valid measures 

of  children’s brain activity underlying multimodal 
integration processes. Moreover, it allows us to 
investigate such processes with a high temporal 
resolution.

In a study (Özyürek, Willems, Kita, & Hagoort, 
2007), adults’ ERPs were recorded while they 
watched video clips of  a person creating speech-
gesture combinations in a sentence. When a 
particular gesture mismatched the information from 
the preceding sentence, a stronger N400 effect 
was observed than when the gesture semantically 
matched the context of  the sentence (Kelly, Kravitz, 
& Hopkins, 2004; Wu & Coulson, 2007; Özyürek 
et al., 2007). Similar results were found in studies 
investigating speech-gesture combinations with 
single action verbs (Drijvers & Özyürek, submitted;  
Habets et al., 2011). In Drijvers and Özyürek 
(submitted), adults watched a video clip of  an actress 
saying ‘to drink’ while she gestured ‘to type’. The 
mismatching information from the visual modality 
elicited a stronger N400 effect than when adults saw 
a matching speech-gesture combination (Drijvers 
& Özyürek, submitted). When information that is 
presented via two different modalities is a semantic 
mismatch, adults appear to have a difficult time 
processing the contrasting information, and the N400 
effect indicates processes of  semantic integration. 
The findings of  these studies investigating neural/
neurocognitive processes of  multimodal integration 
add value to the behavioural results from speech-
gesture integration studies. Moreover, such findings 
provide strong evidence for the presence of  an 
integrated system that automatically processes and 
combines speech and gesture (Kelly et al., 2010). 

Neural measures of speech and gesture 
in children

Literature about children’s ability to process and 
integrate multimodal information during language 
comprehension is scarce and has only reported 
on offline measures in behavioural tasks. Studies, 
such as Sheehan and colleagues, have reported on 
neuroscientific evidence of  infant’s sensitivity to 
gestures (Sheehan et al., 2007). In their study, the 
authors recorded ERPs from 18- and 26-month-old 
infants in a priming task that included both words 
and gestures. Infants watched a video clip of  a 
person either naming an object or using an action 
gesture to depict an object while the children’s brain 
activity was recorded. The order of  presentation of  
the stimuli was sequential, as the video was followed 
by a picture of  an object that either matched or 
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mismatched the preceding word or gesture. The 
resulting ERPs from both conditions (word or 
gesture) in response to a matching or a mismatching 
picture were compared, and an N400 effect was 
observed to pictures preceded by a word in both age 
groups. However, only 18-month-old infants showed 
a significant N400 effect for pictures preceded by a 
gesture. These findings suggest that younger infants, 
who have a limited spoken vocabulary, may place 
similar semantic and communicative expectations 
to words and gestures (Sheehan et al., 2007). These 
findings align with Namy et al.’s (2004) behavioural 
data of  18-month-old but not 26-month-old infants’ 
sensitivity to arbitrary gestures. Even though 
26-month-olds showed a behavioural sensitivity 
to iconic gestures, the fact that such sensitivity is 
absent in online neural measures may further point 
to a U-shaped development of  gesture sensitivity. As 
children get older, and they learn to appreciate the 
conventional role of  words, they may rely less on the 
visual modality in communication as can be seen in 
both behavioural and neuroscientific investigations. 
Despite young children’s sensitivity to gesture, it 
is still unclear how gesture is integrated with co-
occurring speech. 

In addition to the ERP results of  sequential 
processing of  gesture, there is neuroscientific 
evidence showing that children are sensitive to 
auditory semantic linguistic integration during speech 
comprehension (Atchley et al., 2006; Benau, Morris, 
& Couperus, 2011; Holcomb, Coffey, & Neville, 
1992). Most of  the studies investigating semantic 
integration have focused on children around the age 
of  seven and older, except Holcomb et al., 1992, who 
included five-year-olds in their study (Atchley et al., 
2006; Benau et al., 2011). All of  these authors have 
reported an N400 effect to semantically mismatching 
words at the end of  auditory sentences that is similar 
to the effect observed in adults (Atchley et al., 2006; 
Benau et al., 2011; Holcomb et al., 1992). In adults, 
the N400 effect can be observed in the posterior 
regions, but the topography for the N400 in children 
appears not to be localized (Holcomb et al., 1992). 
Nevertheless, one recent study investigating semantic 
processing in preschool-aged children reported on 
an effect distributed around the posterior regions 
(Pijnacker et al., 2017). The authors presented 
auditory sentences ending with either a matching or 
a mismatching word to children between the ages 
of  four and six while recording the children’s brain 
activity. The results of  the ERPs are in line with 
previous research, showing a robust N400 effect to 
mismatching words compared to matching words. 
Although the posteriorly observed N400 in this age 

group is similarly distributed as the effect observed 
in adults, it is important to mention that ERPs 
of  children and adults may not be comparable, 
since children’s brains are not fully developed and 
differences in neural density or myelination may 
affect the brain activity in different ways (DeBoer, 
Scott, & Nelson, 2005). 

Despite the sensitivity to gestures observed 
in 18-month-old infants, five-year-olds’ ability 
to integrate speech-gesture combinations on a 
behavioural level, and the evidence of  semantic 
integration in the spoken modality in five- to seven-
year-old children, it is not clear whether seven-year-
old children integrate gesture to speech on a neural 
level. To fill this gap and learn more about children’s 
integration abilities we tested seven-year-old children 
in a match-mismatch paradigm with simultaneous 
speech-gesture word combinations.

The present study

The present study aimed to investigate whether 
seven-year-old children were able to integrate visual 
information communicated through gesture to 
auditory information from speech. To test this, we 
used EEG to measure children’s brain activity while 
they watched video clips of  a woman producing 
either matching or mismatching speech-gesture 
combinations of  single action verbs/gestures. As in 
Drijvers and Özyürek (submitted), we hypothesized 
that mismatching speech-gesture pairs would elicit 
a larger N400 effect than matching pairs. We did 
not make specific predictions about the amplitude, 
the latency or the distribution of  the effect, given 
the limited literature reporting on N400 effects in 
children. We chose to focus on the N400 because it is 
a robust effect that allows for a detailed investigation 
of  the brain activity for semantic integration 
processes. To our knowledge, this is the first study 
to use ERPs to investigate multimodal integration 
in children during language comprehension. EEG 
research with young children presents challenges 
and requires participants to sit still and stay attentive. 
Since no research has been carried out in this area, 
we decided, as a first step, to select an age group in 
which we can predict an N400 effect to be present 
based on behavioural results. The added value 
of  using EEG instead of  behavioural measures 
with seven-year-old children is that such online 
measures allowed us to learn more about the time 
course of  speech-gesture integration. Moreover, we 
could test whether the N400 effect would be more 
distributed over the scalp in children than it is in 
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adults, predicted based on the findings by Holcomb 
et al. (1992) and Dick et al. (2012). Additionally, we 
recorded children’s reaction times and error rates 
in a behavioural task, during which children had to 
respond ‘yes’ to a question when they heard a verb in 
a previous trial, and had to respond with ‘no’ when 
the verb they heard did not match the previous trial. 
This task served two purposes. First, by presenting a 
question to which the children had to respond to we 
were able to check whether children stayed attentive 
during the experiment. Second, this task allowed us 
to investigate how the congruency of  the video clips 
would influence children’s behavioural responses 
and may suggest how children process integration 
on a behavioural level. 

We expected to see faster responses and fewer 
errors to verbs that matched the previous trial. We 
further predicted that children would be faster and 
more accurate in responding to a question following 
a matching speech-gesture video. Based on the 
behavioural studies and the findings about auditory 
semantic processing, we expected to observe a 
stronger N400 effect to mismatching videos when 
compared to matching videos, which would suggest 
that a fully developed integrated system exists in 
children around seven years old. Since the presence 
of  an integrated system in adults has been confirmed 
by several studies, we believe it to be important to 
investigate the development of  such a system in 
children. In addition, ERPs can provide information 
about topographical processing differences and 
differences in the time-course of  speech-gesture 
integration processes in children and adults. 

Method

Participants

Our final sample consisted of  17 native Dutch 
speaking children with a mean age of  7.37 (SD = 
0.46, 11 female). Some children reported to have 
some knowledge of  English (3), Frisian (1) or 
Russian (2; through school or family). All children 
were right handed and reported no developmental 
issues such as autism or attention deficit hyperactivity 
disorder (ADHD). We recruited participants by 
contacting local schools, sports centres and libraries, 
and handed out flyers to individuals in the city centre 
of  Nijmegen, The Netherlands.1  

Materials

Verb list. The list of  Dutch action verbs used 
in the present study was based on a list created 
by Drijvers & Özyürek (2016). The original list 
consisted of  240 verbs out of  which we selected 
170, based on the criteria that 80% of  five- and 
six-year-old children in the Netherlands are familiar 
with these verbs (Bacchini, Boland, Hulsbeek, Pot, & 
Smits, 2005; Schaerlaekens, Kohnstamm, Lejaegere, 
& Vries, 1999). We created a list with verb-gesture 
combinations in two conditions: 1) verb-gesture 
match and 2) verb-gesture mismatch. We carefully 
controlled the items in the mismatch condition so 
that a verb and its mismatching gesture were neither 
semantically nor phonetically related. For example, 
the verb ‘koken’ (‘to cook’) was combined with a 
mismatching gesture ‘slaan’ (‘to hit’). This verb-gesture 
combination had no semantic or phonetic relation. 
See Appendix A for all verb-gesture combinations. 

Video stimuli. For each verb on the list a 
female native Dutch speaker produced a gesture 
with simultaneous speech in both conditions. The 
actress, wearing neutral coloured clothing, was 
standing in front of  a neutral-coloured background 
(see Figure 1) facing the camera placed in front of  
her, while producing speech-gesture combinations. 
We instructed the actress to create the gestures 
spontaneously, but made sure the gestures were iconic 
and representative of  the action the verbs described 
(e.g., typing gesture resembling fingers typing on 
a keyboard for the verb ‘to type’). We further told 
the actress to speak in a child-directed voice and 
have a neutral, but friendly, facial expression. In the 
mismatch condition the actress combined a verb 
with a mismatching gesture. The videos displayed 
the actress from head to knees, her hands hanging 
casually to the side of  her body, and were recorded 
using the camera Canon XF205. Each video clip 
was edited with ELAN (Version 4.6.1, Lausberg & 
Sloetjes, 2009) to be 2300 ms long. In each video 
the preparation of  the gesture started at 120 ms and 
the gesture lasted until the end of  the video clip. 
The average onset of  speech was around 660 ms 
(SD = 0.1) after the start of  the video (Figure 1).

Pre-test for stimuli selection. To ensure that 
seven-year-old children can understand the selected 
gestures and can relate them to the relevant verbs, 

1Our study was funded by the EU Research and Innovation Program Horizon 2020 – Marie Skłodowska-Curie Individual 
Fellowship (2016 – 2018) and was approved by the Ethische Toetsingscommissie (ETC) Geesteswetenschappen 
Nijmegen, The Netherlands.
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we conducted a pre-test at two elementary schools in 
the Netherlands. To this end, we tested 104 children 
(Mage = 6.74, SD = 0.64) in 8 different groups with 
8 different lists, containing 43/44 items each (half  
match, half  mismatch). Those children did not 
participate in the ERP experiment. The lists were 
carefully constructed so that no speech-gesture pair 
occurred twice. After children were split into smaller 
groups (N ranging from 11 to 14), we introduced 
them to our actress in the videos as ‘Lore, the girl 
who had lost her voice’. We explained that Lore was 
trying to communicate particular words by using 
her hands only. We told the children to pay close 
attention to her gestures, because they would have 
to decide if  Lore’s gestures looked like a word they 
knew or not. In the context of  this story, children 
were asked to watch the short video clips, presented 
with PowerPoint, during which Lore would perform 
a hand movement that was indicative of  a certain 
verb. We presented the video clips without sound 
to make sure that children focused on the gesture 
only. After playing the video clip twice, we asked the 
children “Hoe erg vind je deze beweging lijken op 
‘boksen’?” (“Does this gesture look like ‘to box’?”). 
Children had to allocate stars to Lore’s performance 
on a scale from 1 star (not at all) to 5 stars (very 
much) to indicate how much the gesture represented 
the verb we asked the children about (see Appendix 
B for questionnaire). Each group had four practice 
items before the actual ratings to make sure children 
understood the rating procedure. Based on these 
ratings, we selected 120 verbs that fulfilled the 
following criteria: 1) The mean rating of  match items 
was 3 or above (SD ± 1), and 2) the mean rating of  
mismatch items was of  2.6 or below (SD ± 1). To 
obtain a total of  120 words we had to include seven 
items that had larger standard deviations; These items 
were marked as critical to be removed from analysis 
if  we would observe an item effect on these verbs. We 

excluded four children from the final analysis due to 
lack of  attention or their non-native language status. 

Multimodal Task

EEG stimuli. The final verb list for the EEG trials 
consisted of  120 items selected based on the pre-test 
ratings, suggesting that these are the speech-gesture 
combinations best understood by 6 to 8-year-old 
children. Sixty verbs were presented in the matching 
condition, whereas the other 60 items were a 
mismatching speech-gesture combination. Each of  
the 120 video clips was presented only once and all 
combinations were counter-balanced to ensure that 
no gesture would occur twice (either in a match or a 
mismatch condition). Each trial started with a fixation-
cross (500 ms), followed by a grey transition screen 
(500 ms, for baseline measure). The video clip was 
played (2300 ms), and after a short delay period (1000 
ms), a fixation-cross appeared again on the screen. 
Each child received six practice trials (see Figure 2A). 

Behavioural trials. We added 40 behavioural 
trials (20 match, 20 mismatch) that were presented 
randomly after the videos throughout the 120 video 
stimuli. We presented the question “Hoorde je 
‘boksen’?” (“Did you hear ‘to box´?”) 1000 ms after 
the video clip ended, and children had to respond by 
pressing a button. Children pressed a green button 
‘Ja’ (‘Yes’) if  ‘boksen’ matched the verb of  the EEG 
trial. Children pressed a red button ‘Nee’ (‘No’) 
if  ‘boksen’ mismatched the verb of  the EEG trial. 
The mismatching target verb did not occur in the 
video stimuli list. If  children failed to respond to 
the question, the following trial started after a 5000 
ms delay during which a grey transition screen was 
presented (see Figure 2B). We selected one third of  
the total number of  trials to have a behavioural trial. 
This allowed us to present the trials at randomized 

Fig. 1. Time-line of the video clip.  The speech-gesture combination in this example is ‘boksen’ (‘to box’). 
The gesture started 120 ms after onset of the video. The stroke (i.e., the meaningful part of the gesture) 
occurred before the speech onset (on average at 660 ms after video onset). Gesture retraction occurred 
before both the speech and the gesture ended at video offset at 2300 ms. 
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positions throughout the experiment without 
building up an expectation of  a question following 
every (or every second) video. A further reason for 
40 behavioural trials was to collect enough responses 
to analyse reaction times and error rates. A lower 
number of  trials would not have been sufficient for 
a reliable statistical analysis. Before the start of  the 
experiment, we presented three behavioural practice 
trials to make sure children understood the procedure. 

Procedure

Upon arrival, we asked the participants’ parents 
to fill out a consent from. We also asked the parents 
to fill out The Edinburgh Inventory of  Handedness 
(Oldfield, 1971) and a general demographics 
information sheet. The child sat in front of  a mirror, 
so s/he could see him-/herself  while we fitted him/
her with the EEG cap (actiCap). We prepared the 
cap for children before they arrived by putting the 
electrodes in the corresponding holes. We allowed 
the child to touch the electrode cap to make him/
her feel comfortable, while a student assistant gave 

the child a detailed step-by-step explanation of  
the procedure. While we put the EEG cap on the 
child’s head and filled the electrodes with gel, the 
child colored lightbulbs on a sheet of  paper when 
the electrode light switched from red to green. After 
the impedance check, we walked the child into an 
electrically and acoustically shielded room to sit in 
front of  a computer monitor (distance between the 
child and the monitor was 60 cm). We asked the child 
to hold the two-button box like a game-controller, so 
the child would press the button with their left and 
their right thumb. Before the experiment started, 
we showed the child his/her brain waves on the 
computer monitor and demonstrated how sensitive 
the brain waves are to movement, blinking and 
chewing. Afterwards, the student assistant explained 
to the participant that s/he would watch short video 
clips of  a girl uttering verbs. We instructed the 
participant to attentively watch and listen to the video 
clips and to sit as still as possible. We also explained 
that sometimes they would hear a question, which 
they would have to answer with either yes or no by 
pressing the corresponding button on the button 
box. 

Fig. 2. Figure A shows the structure of an EEG trial. Figure B shows the structure of an EEG trial with 
a behavioural trial that followed 1000 ms after a video clip was played. There were no visual stimuli 
present when children heard a question. We measured ERPs from speech onset (~660 ms after video 
onset).
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We presented the video stimuli on a monitor 
using the Presentation software (Version 19.0, 
Neurobehavioural Systems, inc.). Behavioural trials 
were presented randomly throughout the experiment 
and occurred after the video clip was played. 
Participants heard “Hoorde je ‘boksen’?” (“Did you 
hear ‘to box’?”) and had to press a button as fast as 
possible (see Figure 2B). The order of  the video 
and behavioural trials was pseudo-randomized and 
presented in four blocks of  40 trials, lasting around 4 
minutes per block. Each block consisted of  30 video 
clips (15 in each condition) and 10 behavioural trials 
(five yes- and five no-responses). After each block, a 
student assistant entered the room to make sure the 
child would take a break. During the break, the child 
completed a simple maze to disengage him/her 
from the computer monitor. After completing the 
maze, the child put a stamp on a map to visualize the 
progress of  the experiment. This allowed the child 
to see how many blocks were left and it encouraged 
him/her to stay engaged during the task. To make 
sure the child kept his/her eyes on the screen and 
watched the videos (instead of  only listening to the 
speech), we told the child that one video might be 
presented in black and white. After each block, we 
asked the child whether s/he had spotted a black 
and white video. The EEG recording procedure, 
including the breaks, lasted around 40 minutes. After 
completion of  the experiment, children received 
stickers and a certificate of  participation. Parents 
and their children could choose their compensation. 
We offered €20, €10 and a children’s book, or two 
books. 

Behavioural data analysis

We analysed the behavioural data with RStudio 
(RStudio Team, 2015). We included only the 17 
children who were also included in the EEG 
analyses. First, we inspected the accuracy scores of  
all children to remove those participants with low 
accuracy scores (no participants were excluded, 
mean accuracy 98.66%, range 92.31% - 100.00%). 
We removed null responses (when children failed 
to press a button) from the dataset. We calculated 
outliers from all the reaction times (RTs) and 
removed those data points that fell above or below 
two and a half  standard deviations from the grand 
mean. This resulted in a dataset of  656 data points 
for the accuracy analysis. We only analysed RTs of  
correct responses (measured at word onset). This 
resulted in a dataset of  649 data points. 

Because our reaction time data was not normally 

distributed, we log-transformed the reaction times 
to attenuate the non-normality. We analysed our 
normalized RT data with linear mixed effects models 
with participants and items as cross-random effects. For 
the analyses we considered the following factorial 
predictors: congruency of  the speech-gesture video 
(speech-gesture congruency; 2 levels: match or mismatch), 
congruency of  the behavioural trial (audio congruency; 
2 levels: match or mismatch). We also considered 
random slopes for audio congruency by item. We 
performed a stepwise variable selection procedure 
to obtain the best fitting model. We added one 
predictor at a time and evaluated whether the model 
would be improved by including a certain predictor 
(i.e., when a predictor was not part of  the model our 
current model assumed to have a lower AIC). The 
final model contained the following predictors: Trial, 
speech-gesture congruency, audio congruency and a random 
slope for audio congruency by item. 

EEG data acquisition and analysis

We recorded the EEG continuously throughout 
the experiment from 32 Ag/AgCl electrodes. 
Twenty-seven electrodes were mounted in a cap 
according to the 10-20 international system, four 
electrodes were used for bipolar horizontal and 
vertical electrooculograms (EOG) and one electrode 
was placed on the right mastoid. The reference 
electrode was placed on the left mastoid and re-
referenced offline to the average of  the left and 
right mastoid electrodes. Electrode impedance was 
kept below 5 KΩ. The EEG was filtered through a 
0.02 – 100 Hz band-pass filter and digitized on-line 
with a sampling frequency of  500 Hz (BrainVision 
Recorder, Brain Products, Gilching, Germany). 

We pre-processed the EEG data with BrainVision 
Analyzer (Version 2.1.1, Brain Products, Gilching, 
Germany). First, we re-referenced the EEG data 
offline to the average of  the left and right mastoid 
and filtered the data with a high-pass filter at 0.01 Hz 
and a low-pass filter at 35 Hz. We further segmented 
the data into epochs from 200 ms before to 1000 ms 
after the onset of  the videos. After a semi-automatic 
artifact rejection routine removing only muscle-
related artifacts, we rejected eye-movement artifacts 
using an ocular independent component analysis 
(ICA). The mean number of  analysable trials was 34 
(SD = 7.44) for matching trials and 34 (SD = 8.55) 
for mismatching trials. On average, we excluded 
41% of  the trials for each participant (49/120). We 
excluded four participants from analyses due to 
an insufficient sum of  artefact-free trials and one 
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participant due to hardware malfunction. 
We calculated the time-locked average (time-

locked to speech onset) for each condition of  the 
remaining trials for each participant to obtain the 
ERPs in the time window 0 to 1000 ms. To evaluate 
the differences between the matching and the 
mismatching condition we used a non-parametric 
cluster-based permutation test (Maris & Oostenveld, 
2007) and analysed our data using the Fieldtrip 
toolbox (Oostenveld, Fries, Maris, & Schoffelen, 
2011) running under MATLAB (Mathworks, Natick, 
MA).

In the cluster-based permutation test, t-values for 
every data point of  each condition were calculated 
to determine which data points exceeded the pre-set 
threshold of  0.05. All adjacent data points exceeding 
this threshold were considered and grouped into 
clusters. The t-values in each cluster were summed 
to calculate the cluster-level statistics. Further, the 
significance probability was calculated by means 
of  the Monte-Carlo permutation. To calculate this, 
a participant’s time-locked average is randomly 
assigned (5000 times) to one of  the two conditions 
to calculate the largest cluster-level statistic for 
every permutation. The highest cluster-level statistic 
from each randomized calculation was entered 
into the Monte-Carlo permutation distribution 
and cluster-level statistics were calculated for the 
data. The statistics were then compared against this 
permutation distribution. Only those clusters that 
fell into the highest or lowest 2.5th percentile of  the 
distribution were considered significant (see Maris & 
Oostenveld, 2007).

Results

Behavioural results

The children in our study showed accuracy means 
ranging from 92% to 100% (Table 1), suggesting 
that children performed at ceiling. Because there 
was no variation in our data with respect to accuracy, 
the linear mixed effects model could not be fitted 
(due to convergence errors), and we used a two-way 
repeated measure analysis of  variance (ANOVA). 
We did not observe a significant main effect in the 
accuracy scores (speech-gesture congruency F(1,16) = 
1.247,  p = .28; audio congruency F(1,16) = 0.146, p 
= .71) and no significant interaction (speech-gesture 
congruency * audio congruency F(1,16) = 0.128, p =  .72).

In contrast to what had been hypothesized, we 
observed a main effect of  RTs in audio congruency 
(Table 2). These results show that children were 
significantly faster in responding to words that 
matched the speech of  the previous video clip. 
However, there was no significant interaction 
between audio congruency and speech-gesture congruency 
(this interaction was removed from the final model), 
indicating that children in our study were able to 
allocate their attention to one modality when asked to 
do so. The final model of  RTs revealed a significant 
effect of  Trial, showing that children’s RTs became 
faster during the experiment. In addition, the model 
suggested that items showed a different sensitivity in 
response to audio congruency. We report the relevant 
statistics and corresponding coefficients of  the final 
model in Table 3.

Table 1. 

Mean accuracy scores and standard errors in parentheses.
Audio congruency (behavioural trials)
Match Mismatch

Speech-gesture congruency
Match 0.988 (0.009) 0.982 (0.010)
Mismatch 0.993 (0.006) 0.994 (0.006)

Table 2. 

Mean RT scores and standard errors in parentheses. 
Audio congruency (behavioural trials)
Match Mismatch

Speech-gesture congruency
Match 1237.09 (24.82) 1423.37 (26.31)
Mismatch 1253.73 (23) 1411.21 (27.77)
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EEG results

We included the entire time window (0 ms at 
speech onset to 1000 ms) for the EEG data analysis. 
The ERPs of  both conditions were time-locked to 
the speech onset and we compared the data of  both 
conditions of  all 17 participants. The cluster-based 
permutation test revealed two significant clusters in 
the time windows from 80 ms to 300 ms and from 
326 ms to 562 ms after speech onset and showed 
a significant difference between the matching and 

the mismatching conditions (p<.05). However, these 
clusters only reached significance in a two-tailed 
test (α = 0.05). As a second step, we selected a pre-
defined time window for the N400 analysis based 
on previous work in semantic integration research 
(Holcomb et al., 1992). This time window was chosen 
based on visual inspection and previous research on 
speech-gesture integration in adults investigating the 
N400 effect (Drijvers & Özyürek, submitted; Habets 
et al., 2011).When we selected the time window 
from 300 ms to 600 ms after speech onset, a one-

Fig. 3. Figure A shows the topoplot of the significant effect at 400 ms after speech onset. The significant 
electrodes at this time-point were C3, Cz, CP5, CP1, CP2, CP6, P7, Pz, P4 and P8. Figure B shows the grand 
average waveforms for ERPs elicited in the match (red) and mismatch (blue) condition at electrode Cz. 
Negativity is plotted downward. Waveforms are time-locked to 200 ms before speech onset (baseline).

Table 3. 

Summary of the model predicting RTs. Note. t < -1.96 and t > 1.96 is significant, printed in bold. For 
speech-gesture congruency we used congruent as the reference in the intercept; for audio congruency 
we put congruent in the intercept.
Predictor β Standard error t
Intercept 7.060 0.033 216.47
Trial -0.084 0.012 -7.11
Speech-gesture congruency 0.001 0.017 0.08
Audio congruency 0.138 0.018 7.64
Random effects Var. Standard deviation
Item (intercept) 0.011 0.102
Item (Audio congruency) 0.005 0.074
Participant (intercept) 0.013 0.116
Residual 0.036 0.190
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tailed test revealed one significant cluster between 
326 ms and 562 ms after speech onset (p<.025). The 
plots in Figure 3A show that the N400 effect was 
larger for the mismatching videos compared to the 
matching videos and was more pronounced over 
central-parietal electrodes. The electrodes showing 
significance based on the cluster-based permutation 
test in the time window 300-600 ms were Cz (plotted 
in Figure 3B), C3, CP5, CP1, CP2, CP6, P7, Pz, P4 
and P8 (see Figure 3A). 

Discussion

The aim of  our study was to investigate seven-
year-old children’s ability to integrate iconic gestures 
that co-occur with speech during online language 
comprehension. Offline behavioural measures about 
speech-gesture integration allow us to assume that 
five-year-old children are able to process multimodal 
information. There is evidence of  five to seven-
year-old children’s ability to semantically integrate 
linguistic information, as indicated by an N400 
effect to linguistic information of  a sentence that 
mismatches its preceding context. Despite these 
behavioural findings, and Dick et al.’s (2012) report 
on the neural sensitivity to co-speech gestures in 
eight-year-old children, it remains unclear as to 
how seven-year-old children process gestures that 
simultaneously occur with speech on a neural level.  
In the present study, we therefore investigated the 
brain activity underlying speech-gesture integration 
processes in seven-year-old children. To this end, 
we examined the amplitude of  children’s brain 
activity in response to gestures that either matched 
or mismatched simultaneous speech presented in 
short video clips. We were specifically interested in 
the N400 component, which we expected to have 
increased amplitude in response to mismatching 
videos, and would suggest semantic integration of  
multimodal information. 

We observed a significant congruency effect of  
gestures mismatching simultaneous speech 300-
600 ms after speech onset (see Figure 3) during 
an analysis with a pre-defined time window. If, 
however, we consider the entire time window in our 
analysis, we observe two significant clusters only 
when using a two-sided test. It may be possible that 
the N400 effect starts very early (at speech onset), if  
participants were able to predict the upcoming word 
based on meaningful information in the gesture that 
preceded speech. However, given that we do not see 
such an early effect in adults (Drijvers & Özyürek, 
submitted), the effect observed in our data may 

have had a different cause. This early effect could 
be driven by the choice of  our baseline window, 
which was selected to be 200 ms before the speech 
onset (instead of  before video onset). However, 
during this period children are already exposed to 
hand movements on the video clips, as the gesture 
preparation starts before the speech onset. Future 
analysis should consider a baseline window before 
the video onset, where no movement occurs and 
a potential influence of  such movements on brain 
activity could be dismissed.

Nevertheless, if  we choose the time window 
based on previous literature to investigate our data 
in the pre-defined time window of  300-600 ms after 
speech onset, our findings are in line with previous 
research investigating gesture integration with 
single action verbs in adults, where a more negative 
amplitude for gestures that mismatched the co-
occurring verb was observed (Drijvers & Özyürek, 
submitted; Habets et al., 2011). Our findings further 
extend to findings investigating congruency effects 
in a sentence context (Kelly et al., 2004; Özyürek 
et al., 2007; Wu & Coulson, 2007). We show that 
the auditory and visual information communicated 
through two modalities is processed and integrated 
simultaneously with speech in children similarly to 
adults. The effect we observed at the centro-parietal 
electrodes is similar in topography and time-course 
to the N400 observed in Drijvers and Özyürek 
(submitted), suggesting that integration processes in 
children may be similar to those observed in adults. 
Moreover, the N400 effect observed in response 
to words or pictures that mismatch the preceding 
context in linguistic priming tasks also mirrors 
our findings during unimodal semantic integration 
(Atchley et al., 2006; Benau et al., 2011; Holcomb 
et al., 1992). However, our findings go beyond 
unimodal integration and we were able to show that 
semantic integration difficulties do not only occur 
during information processing of  the auditory 
modality, but are apparent when information is 
communicated via two modalities. As the N400 
effect we observe to speech-gesture integration in 
children is apparent in the same time window as 
in linguistic semantic priming studies, we believe 
that linguistic semantic integration and multimodal 
(speech-gesture) integration are strongly related 
processes. 

Although we cannot provide an explanation 
for the significant divergence of  matching vs. 
mismatching brain activity occurring at speech 
onset, we can speculate that the gestures contained 
meaningful information that allowed the children 
to guess the upcoming words, which may have led 
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to an early N400 effect. Additionally, the gestures 
in our study were both observational (e.g., ‘groeien’ 
- ‘to grow’) and action (e.g. ‘kloppen’ - ‘to knock’). It 
may be that gestures that are performed by the 
children themselves are understood more easily and 
processed faster than observational gestures. This 
may have led to early processing of  specific gestures 
and may relate to the early effect we observed at 
speech onset. Moreover, regarding speech, the initial 
phoneme or the first syllable of  individual words 
may have played a role. In some cases, it may be 
easier to decide which word was heard based on 
the first few phonemes (e.g. ‘drinken’ – ‘to drink’), 
whereas other words that had either two or three 
syllables or an affix (e.g. ‘afwassen’ – ‘to do the dishes’) 
may have required more phonemes or syllables 
to be recognizable. This effect may share some 
similarity with the P2 component assumed to reflect 
phonological processing of  speech information 
(Dorman, 1974). It is, however, unclear why we 
observe this early effect. Nevertheless, we are not 
the first to observe this early effect of  divergence at 
the speech onset (Kelly et al., 2004).  

Our findings are novel because no study has 
investigated the time course of  neural processes 
underlying speech-gesture integration in children and 
we are able to show strong neural evidence for a tight 
link between gesture and speech integration during 
children’s language comprehension. Our results 
further support the integrated systems hypothesis 
and expand the theory to include children (Kelly et 
al., 2010). The tight link between speech and gesture 
in language production is already apparent in young 
infants, as they rely on speech-gesture combinations 
to communicate. Although we are not sure when the 
integration of  speech-gesture combination during 
language comprehension develops, we provide 
evidence that a mismatching gesture appears to be 
disruptive for language processing on a neural level 
in seven-year-old children and that integration of  
speech and gesture has already developed. Seven-
year-old children display adult-like activities in how 
their brain processes and integrates gestures to 
speech, and it may be interesting to investigate at 
what age we cannot observe neuroscientific evidence 
of  online processing abilities. 

The observed effect in our study shows that our 
brains are sensitive to semantically mismatching 
information at a relatively early age. Although the 
behavioural task in our study biased children’s 
attention to the speech, children cannot help but 
consider both the visual and auditory modalities 
when processing a multimodal message online, as 
indicated by the N400 effect. Children were, however, 

able to focus their attention to only the spoken 
modality when specifically instructed to do so. Our 
behavioural results suggest that children were able to 
‘ignore’ the visual mode when we asked them to give 
a behavioural response on whether they had heard a 
word, and the ERPs still showed an integration effect 
of  gesture.  Seven-year-old children were particularly 
accurate in making offline choices about our stimuli, 
and they appear to be capable of  giving an accurate 
response. Although children quickly learned how 
to respond to a question during our experiment, 
they still had to stay attentive, as not every video 
was followed by a question. The fact that children 
performed at ceiling and were able to stay focused 
until the end of  the experiment suggests advanced 
cognitive development in seven-year-olds. It seems 
that our behavioural task was easy for children, and 
a measure for cognitive control may have revealed 
children’s executive function and self-regulation 
abilities. Future studies should also include tasks 
that allow for investigations of  children’s working 
memory, mental flexibility and cognitive control 
abilities. Such measures could have provided more 
insight about children’s ability to consciously keep 
and allocate their attention in our study.

With our study we are able to provide ecologically 
valid results of  neural activity showing that semantic 
integration of  gestures takes place immediately and 
simultaneously in relation to speech in children. 
Additionally, we are able to present evidence that 
seven-year-old children may process speech and 
gesture in a similar way to adults. Although we are 
not able to draw inferences about when the ability 
to integrate iconic co-speech gestures develops, we 
are able to show that seven-year-old children can 
automatically integrate information that is presented 
via two different modalities. An advantage of  ERPs 
is the detailed temporal information about the 
unfolding of  speech-gesture integration processes, 
both in adults and in children. The temporal 
synchrony of  multimodal processing may suggest 
that gestures not only aid our comprehension of  
a message, but also puts forward that gestures are 
strongly integrated into our understanding of  a 
message. Iconic gestures are processed semantically 
and neural processes of  speech-gesture combinations 
rely on overlapping resources in the brain similar to 
those involved in semantic processing of  speech 
(Drivers & Öyzürek, submitted; Kelly et al., 2010; 
Özyürek et al., 2007). Therefore, our brain processes 
and interprets iconic gestures to be an equally 
relevant communicative component of  language 
comprehension. Gestures appear to affect and 
improve the conceptual understanding of  a message. 
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Given that the integration of  gestures to speech is 
apparent in seven-year-old children, multimodal 
communication may be a powerful tool to enhance 
comprehension in educational settings. We can use 
this knowledge and build on the fact that co-speech 
gestures in natural conversation start simultaneously 
with co-expressive words (Goldin-Meadow, 2003; 
Hostetter, Bieda, Alibali, Nathan, & Knuth, 2006; 
Kelly, Kravitz, & Hopkins, 2004; Kendon, 2004; 
Kita & Özyürek, 2003; McNeill, 1992).

Future research could utilize the neuroscientific 
results we are presenting and investigate how children 
with language disorders may process simultaneous 
speech-gesture combinations. Co-speech gestures 
are an inevitable part of  human communication, 
and we may be able to use this naturally occurring 
phenomenon to improve communication 
with children with language disorders or other 
developmental challenges. 

Conclusion

Children develop an understanding of  gestures 
as a communicative function from an early age and 
integrating both gesture and spoken language is a 
necessary aspect for simultaneous processing of  
multimodal communication. Our study provides 
important methodological implications for the 
investigation of  children’s ability to comprehend 
multimodal communications. Based on our findings, 
we can conclude that the ability to process iconic 
gestures co-occurring with speech is a skill that 
has fully developed in seven-year-old children. The 
simultaneous presentation of  audiovisual language 
may closely relate to real-world language use and 
may aid the development of  strategies to improve 
communication with children in educational settings. 
Our findings further support the claim that human 
language is complex and multimodal, and that 
gestures have the potential to greatly contribute to 
language comprehension not only in adults, but also 
in children. 
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Autism Spectrum Disorder (ASD) is a 
neurodevelopmental disorder with a wide range of  
symptoms. The most prominent impairments are in 
the social domain, such as difficulties in verbal and 
non-verbal communication. However, individuals 
with ASD also show symptoms in nonsocial domains, 
such as rigid behaviours and hypo- or hypersensitivity 
to sensory input (American Psychiatric Association, 
2013). Classically, neurocognitive theories about 
ASD focused on either the social or the nonsocial 
aspect of  ASD (eg. Boucher, 1989; Happé & Frith, 
2006). As a result, no theory so far has been able 
to capture all symptoms. Recently, however, a 
promising new theory has been put forward; the 
Predictive Processing account of  ASD (Pellicano & 
Burr, 2012; Van De Cruys et al., 2014). Proponents 
claim that this framework can explain the whole 
range of  symptoms (Van De Cruys et al., 2014). 
However, although some studies have already found 
evidence for this theory (eg. Pellicano, Jeffery, Burr, 
& Rhodes, 2007; Turi et al., 2015), two important 
questions remain open: First, studies investigating 
predictive processing in ASD have found different 
results in children compared to adults with ASD. A 
reconciliation from a developmental perspective is 
missing. Second, predictive processing is operating 
on different hierarchical levels, such as low-level 
versus high-level visual processes. Whether there are 
differences in how these levels are affected in ASD 
has not yet been investigated. These two questions 
will be approached in this study, by investigating an 
adolescent population with ASD using two tasks 
of  predictive processing operating on different 
hierarchical levels.

Predictive Processing

Predictive processing is a model unifying many 
different brain functions, such as perception and 
motor control in one framework (Friston, 2010). 
The key claim of  predictive processing is that 
the brain predicts future sensory input based on 
knowledge in a probabilistic manner by assigning 
prior probabilities to expectations. Therefore, world 
knowledge and expectations shape perception. 
World knowledge is organized in generative models 
that are constantly being updated to match the world 
best (Clark, 2013). From these generative models, 
predictions are formed about future sensory input. 
This happens in a hierarchical manner: more abstract, 
high-level predictions lead to more concrete, low-
level predictions (Clark, 2013). An example for a 
(visually) high-level prediction would be what your 

whole house looks like, whereas the texture of  
your house’s walls would be a (visually) low-level 
prediction. At first the high-level prediction (your 
house) is activated, this in turn leads to a top-down 
cascade of  activations of  low-level predictions (eg. 
texture of  the walls). 

The generative models are constantly updated 
by comparing them with the actual sensory input 
(Clark, 2013). When the prediction does not match 
the sensory input, a prediction error occurs. This 
prediction error can result in an updating of  the 
generative model but should only do so if  the 
prediction error carries relevant information about 
the world (Kwisthout, Bekkering, & van Rooij, 
2017). Often, prediction errors are merely the result 
of  some sensory noise (eg. you forgot your glasses 
and cannot see your house properly), or some 
random variation in the environment (eg. it is raining 
and your percept of  the house is blurred). In this 
case, prediction errors are irreducible and should 
not lead to an updating of  the generative model. 
In other cases, however, prediction errors reflect 
a systematic change in the environment (eg. your 
house got painted). In this case, the prediction errors 
are reducible by updating the generative model. 

Predictive processing has been computationally 
formalized in a Bayesian framework, where 
predictions and prediction errors are operationalized 
by conditional probability density functions (see 
Fig. 1). Prior knowledge and incoming sensory 
information can be represented as distributions 
of  probability. The maximum of  a distribution 
represents the event with the highest probability, 
and the amount of  variance represents its precision. 
A broad prior distribution (see Fig. 1B) reflects a 
very unspecific expectation. This is, for instance, the 
case when situations are unfamiliar, such as when 
entering a friend’s house for the first time. One does 
expect a living room and a kitchen, but the location, 
size and other details are still unknown. However, 
when entering a familiar house, one has very specific 
and precise predictions about these details. 

Predictive Processing in ASD

Multiple research groups have suggested 
explaining ASD with the predictive processing 
framework (Pellicano & Burr, 2012; Sevgi et al., 
2016; Sinha et al., 2014; Van de Cruys et al., 2014). 
Although there are some small differences between 
the individual accounts, a common proposal is that 
individuals with ASD rely to a lesser extent on their 
previous knowledge and to a bigger extent on their 
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immediate sensory input. As a result, perception in 
individuals with ASD is more veridical. Although this 
framework is mainly about perception in ASD, some 
authors argue that these changes in perception can 
lead to other symptoms, for example, in the social 
domain (Van De Cruys et al., 2014). Social situations 
are one of  the most complex situations in everyday 
life. Perceptual input in social situations is particularly 
noisy and has to be interpreted with regard to many 
different contexts and background knowledge (Van 
de Cruys et al., 2014). However, since this knowledge 
is weighted less, and the (exceptionally noisy) sensory 
input is weighted more, individuals with ASD should 
(and do) show exceptional difficulties in interpreting 
social situations and building reliable generative 
models (Van de Cruys et al., 2014). This, in turn, 
leads to abnormal behaviour in social situations or 
put differently: it leads to social symptoms.

However, bridging the gap from rather simple 
aberrations in perception to very complex symptoms 
in the social domain has proven difficult. Studies 
investigating predictive processing in ASD have so 
far focused on investigating low-level perceptual 
processes, for example with adaptation paradigms 
(eg. Pellicano, Jeffery, Burr, & Rhodes, 2007; Turi et 
al., 2015). Only a few studies have also investigated 
high-order social processes, such as action prediction 
(Chambon et al., 2017; Falck-Ytter, 2010; Schuwerk, 
Sodian, & Paulus, 2016). In this study, these two tasks 
will be used: an adaptation task to investigate low-
level perceptual processes and an action prediction 
paradigm to investigate high-level social processes.

Adaptation in ASD

Adaptation is the process of  changing the 

perception based on previous experiences and 
predictions. Since this influence of  expectations has 
been hypothesised to be smaller in ASD, this makes 
adaptation an ideal paradigm to study differences 
between individuals with ASD and typically 
developing individuals (TDs). 

In adaptation tasks, the repeated presentation of  
stimuli that share a specific feature (eg. faces with 
the same gaze direction) induces an expectation of  
this particular feature in stimuli. For example, when 
repeatedly presented with face stimuli that look 
to the right, one learns to expect faces with that 
particular gaze direction. The later perception of  a 
deviant stimulus (eg. a face looking straight ahead) is 
influenced by that expectation and is biased towards 
the opposite gaze direction (slightly to the left, in 
this example).  The extent to which the expectation 
influences perception is called the adaptation 
after-effect, and can be quantified by comparing a 
behavioural or neurophysiological response to the 
test stimulus with or without a previous adaptation 
phase (Nordt, Hoehl, & Weigelt, 2015). 

Studies investigating the adaptation effect in 
children with ASD have repeatedly found that their 
adaptation after-effect is decreased in comparison 
to TD controls (Ewing, Pellicano, & Rhodes, 2013; 
Pellicano, Jeffery, Burr, & Rhodes, 2007; Turi et al., 
2015). Surprisingly, studies investigating adaptation 
effects in adults have found no difference between 
adults with ASD and TDs (eg. Cook, Brewer, Shah, 
& Bird, 2014; Walsh, Vida, Morrisey, & Rutherford, 
2015; Walsh, Vida, & Rutherford, 2014). Some have 
argued that the difference in perceptual processing 
leading to a reduced adaptation after-effect can be 
overcome during development (Nordt et al., 2015). 
This would also explain why children with ASD 

Fig. 1. Visualization of Predictive Processing Using Conditional Probability Density Functions. A. 
In typical individuals, the distribution of the sensory input is shifted towards the prior distribution 
of expectations. The resulting posterior distribution, or subjective percept, is therefore a weighted 
combination between the two distributions. B. In individuals with ASD the posterior distribution is 
closer to the distribution of the sensory input. This can be either to a flatter prior distribution, or a more 
precise sensory input, or both, as depicted. (Figure adapted from Brock, 2012).
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show more severe symptoms than adults with ASD 
(Burd et al., 2002; Shattuck et al., 2007). Although 
this has not been investigated directly, it seems 
evident that perception changes in individuals with 
ASD throughout development. The developmental 
course of  these changes has, however, not yet been 
investigated. To study this developmental course, 
a first logical step would be to test predictive 
processing abilities in adolescents with ASD.

Action Prediction in ASD

The second task that was used in this study is 
an action prediction task. Action understanding and 
prediction are essential for everyday interactions 
(Sebanz & Knoblich, 2009). To understand what 
another person is intending, and doing so before 
the other person has completed their action makes 
it possible to synchronize actions and builds the 
basis for interactions (Bekkering et al., 2009; Meyer, 
Bekkering, Paulus, & Hunnius, 2010). The neural 
implementation of  action prediction has been shown 
to be the Mirror Neuron System (MNS) (Maranesi, 
Livi, Fogassi, Rizzolatti, & Bonini, 2014). Mirror 
neurons are active both during the execution and 
the observation of  an action (Caggiano et al., 1996). 
They are therefore hypothesised to simulate others’’ 
actions in order to understand them (Cattaneo et 
al., 2007). Crucially, it has also been shown that the 
MNS is active before observing an action (Kilner, 
Vargas, Duval, Blakemore, & Sirigu, 2004) indicating 
that the MNS also takes a role in predicting others’ 
actions (Kilner, Friston, & Frith, 2007).

Multiple studies have found that action 
prediction is impaired in individuals with ASD, using 
behavioural, or (neuro-)physiological measurements: 
A behavioural study showed that children with ASD 
performed worse on predicting the outcome of  
familiar and unfamiliar actions compared to TDs and 
children with mental retardation (Zalla, Labruyère, 
Clément, & Georgieff, 2010). This indicates that 
not only do children with ASD show impairments 
in explicit predictive processing, but also that this 
impairment is specific for ASD. Another way to 
measure action prediction is through eye movements 
while participants are watching an action sequence 
(Flanagan & Johansson, 2003). People look at the 
target location of  an action before the action arrives 
there (eg. looking at the binder while the paper is 
still being perforated; Poljac, Dahlslätt, & Bekkering, 
2013). This is achieved by high-level priors, such 
as the representation of  the action goal, guiding 
eye-movements in a top-down fashion, leading 

to so-called predictive eye movements (Elsner, 
D’Ausilio, Gredebäck, Falck-Ytter, & Fadiga, 2013). 
Predictive eye movements can also be observed in 
more complex actions. TD adults make predictive 
eye movements in three-step actions (Braukmann et 
al., 2017; Poljac et al., 2013). Interestingly, predictive 
eye movements became more frequent, longer and 
earlier in later action steps, showing that participants 
were able to integrate knowledge from previous 
steps to form better predictions about future steps. 
It can be assumed that individuals with ASD do 
not show this pattern of  increasing predictive eye 
movements in this task since they rely to a lesser 
extent on previous knowledge and expectations.

Goal of this study

Although predictive processing accounts seem 
promising to explain symptoms in ASD, there are 
some gaps in the past literature. On the one hand, 
the developmental course of  predictive processing 
over the lifespan is still unclear. Children with ASD 
seem to perform differently to adults with ASD 
but the ages between those two groups have not 
yet been investigated. On the other hand, there is 
a large gap between tasks measuring predictive 
processing on a very basic perceptual level and the 
complex symptoms individuals with ASD display. 
Action prediction paradigms could help to bridge 
this gap, since they require predictive processing 
on a relatively high level, compared to adaptation 
paradigms.

This study investigated the differences in 
predictive processing between adolescents with ASD 
and TDs using two paradigms: In the adaptation 
task, participants were adapted to gaze direction. 
The adaptation after-effect was measured using 
behavioural responses (Ewing, Pellicano, & Rhodes, 
2013). In line with previous research (Pellicano et 
al., 2007; Pellicano, Rhodes, & Calder, 2013; Turi 
et al., 2015), we hypothesised that the ASD group 
would show smaller adaptation after-effects, namely 
a smaller bias in their behavioural responses. In the 
action prediction task, participants watched short 
videos of  everyday three-step actions (Braukmann et 
al., 2017). Predictive processing was operationalised 
using predictive eye-movements and MNS activation 
(beta-desynchronisation over central brain areas). We 
hypothesised that the TD group shows increasing 
predictive eye-movements, and increasing beta-
power desynchronisation over the three action 
steps (Braukmann et al., 2017; Poljac et al., 2013). 
This increase should be smaller when stimuli are 
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occluded, withholding crucial information. For the 
ASD group, we hypothesised based on recently 
proposed predictive processing accounts of  ASD 
(Pellicano & Burr, 2012; Sinha et al., 2014; Van 
de Cruys et al., 2014), that the ASD group both 
shows less predictive eye-movements (i.e. fewer 
predictive fixations, and less predictive fixations) 
and beta-power desynchronisation overall, and a 
smaller increase of  predictive eye-movements and 
beta-power desynchronisation over the three action 
steps, compared to the TD group. Additionally, we 
expected a smaller difference between an occluded 
and an un-occluded condition in the ASD group. 

Methods

Participants

Participants from the ASD group were between 
12 and 18 years old (mean age = 14.6 years, SE = 
3.43; see Table 1). They  were recruited through 
Karakter child psychiatry clinics (https://www.
karakter.com/) and were all diagnosed with 
Autism Spectrum Disorder according to the DSM 
5 (American Psychiatric Association, 2013), or 
with Asperger’s Syndrome, Autism, or pervasive 
developmental disorder not otherwise specified 
(PDD NOS) according to the DSM 4 (American 
Psychiatric Associaton, 2000). To confirm the 
diagnosis, a researcher completed the Autism 
Diagnostic Interview, Revised (ADI-R) with one 
parent of  each participant from the ASD group. 

TD participants were recruited via local schools. 
However, this only resulted in two participants 
(ages 12 and 16 years old). Therefore, additional 
students were recruited from the university to serve 
as a control group (ages 21 to 27 years old). The 
two young controls and the student controls were 
put together in the TD control group. The TD 
participants did not report having any psychiatric 
disorders.

Procedure

Before the testing day, participants had received 
detailed information about the study and the 
informed consent forms by email. On the testing 
day, underaged participants were accompanied by at 
least one parent or guardian. They were first shown 
around the lab and encouraged to ask questions. 
When participants felt comfortable, they were asked 
to sit in the chair where the EEG-measurement 
took place and the EEG procedure was explained. 
Participants always performed the action prediction 
task first, followed by the adaptation task. The 
action prediction task took around 45 minutes, and  
the adaptation task took around ten minutes. At the 
beginning of  each task, the eye tracker was calibrated 
using a nine-point calibration. After successful 
calibration, the participants were debriefed to 
remind them what the task was about. Additionally, 
the parents of  participants with ASD completed the 
ADI-R, which was either done during the EEG and 
IQ measurements or on a second meeting. In total, 
the underaged participants spent approximately four 
hours, and the TD students approximately 1.5 hours 
in the lab.

Experimental Setup

Stimuli from the adaptation and the action 
prediction task were presented on a 27” BenQ 
XL2420Z screen with a resolution of  1920*1080 
and a vertical refresh rate of  120 Hz. Participants 
were seated approximately 70 cm away from 
and centered to the screen. The experiment was 
performed using Presentation® software (Version 
18.0, Neurobehavioral Systems, Inc., Berkeley, 
CA, www.neurobs.com). Behavioural responses 
were recorded using a Bits-to-Serial-Interface 
(BITSI) button box with three buttons, a custom 
production of  the technical support group of  the 
social sciences faculty at the Radboud University 
Nijmegen (http://tsgdoc.socsci.ru.nl). Eye tracking 
data were recorded by an SMI RED 500 eye tracker 
(SensoMotoricInstruments, Teltow, Germany), 

Variable
Total
(n = 20)

ASD
(n = 9)

TD
(n = 11)

Age in years 18.4 (SE = 4.39) 14.63 (SE = 3.43) 22.3 (SE = 3.45)
Sex 7 female, 13 male 1 female, 8 male 6 female, 5 male

Table 1.

 Demographics of study population.
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positioned directly under the screen using a 
sampling rate of  500 Hz. EEG data was recorded 
at 500 Hz using 32 active Ag/AgCl channels of  the 
ActiCap System (Brain Products GmbH, Gilching, 
Germany), bandpass-filtered between .016 and 
125 Hz using the program Brain Vision Recorder 
(Brain Products GmbH, Gilching, Germany). The 
electrodes were placed according to the international 
10/20 system. The electrode on the left mastoid 
served as an online reference and the AFz electrode 
served as ground electrode. Impedances were kept 
below 20 kΩ when possible. Additionally, vertical 
and horizontal oculomotor activity was recorded 
using four passive electrodes placed at the left and 
right outer canthi and above and below the left eye 
(horizontal and vertical EOGs).

Offline, the EEG and EOG data were analyzed 
using Fieldtrip (Oostenveld, Fries, Maris, & 
Schoffelen, 2011). First, the data was demeaned 
and detrended and artifacts were rejected by 
visual inspection per trial and channel for each 
participant. Then, eye artifacts were removed using 
an independent component analysis by identifying 
two factors corresponding to horizontal and vertical 
eye movements respectively. Identification of  these 
factors was done by investigating the correlation 
between the 20 biggest factors and choosing the 
two factors with the biggest correlation with the 
EOG data. Additionally, the correlations and time 
courses of  the 20 biggest factors were plotted for 
visual inspection to confirm that the two factors 
with the biggest correlations did indeed show the 
typical pattern of  reflecting eye movements (see Fig. 
1 in the Appendix for an example). When this was 
not the case, factors that visually matched vertical or 
horizontal eye movements were taken, if  they also 
showed a very strong correlation. Finally, excluded 
channels were interpolated by nearest neighboring 
channels. Data was then re-referenced using the 
average of  all channels. The channel of  interest 

(COI) for the action prediction task was Cz and the 
frequency of  interest (FOI) was beta (16-25 Hz). 
This COI and FOI were chosen to measure MNS 
activation, according to Braukmann and colleagues 
(2017).

Adaptation Task 

The adaptation task was adapted from the task 
used by Ewing and colleagues (2013). The task 
comprised three blocks: preadaptation, adaptation 
and postadaptation. Stimuli presented in these blocks 
were pictures of  faces of  12 different individuals. 
From each individual, five different stimuli were 
available (Jenkins, Beaver, & Calder, 2006): one 
where the individual looked straight at the camera 
(0°), two where the individual looked slightly to the 
left/right (L5°, R5°) and two where the individual 
looked strongly to the left/right (L25°, R25°, see 
Fig. 2).

During the preadaptation block, participants 
saw randomised stimuli with 0°, L5° and R5° gaze. 
Following the procedure of  Ewing et al. (2013), 
each stimulus was presented for 1500ms. After 
each stimulus, participants had to indicate in which 
direction the face was looking (straight, left or 
right) by button press. In total, each participant saw 
36 different stimuli. During the adaptation block, 
participants viewed adaptor stimuli with either L25° 
or R25° gaze. Each individual stimulus was presented 
twice, leading to 24 trials. Here, participants were 
not asked to indicate the gaze direction. In the final 
postadaptation block, participants were presented 
with the same test stimuli as in the pre-adaptation 
phase. However, before each test stimulus, a top-
up adaptor of  L25° or R25° gaze was presented for 
4000ms. After each test stimulus, participants were 
again asked to indicate gaze direction of  the test 
stimulus.

Fig. 2. Example Stimuli Items for the Adaptation Task. A-E show different stimuli from the same 
individual. A shows a 0° gaze, B shows a 5° gaze to the right, C shows a 5° gaze to the left. D and E show 
a 25° degree to the right and left respectively.
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Action Prediction Task 

The action prediction task was adapted from 
Braukmann et al. (2017). In this task, participants 
were asked to passively watch short video clips 
(approximately ten seconds) of  everyday actions 
consisting of  three action steps (see Fig 3). The 
videos were divided into two conditions: occluded 
and unoccluded. In the unoccluded condition, 
participants should be able to infer the action goal 
based on the displayed objects and on the previous 
action steps, and predict future action steps. In the 
occluded condition, gray rectangles (occluders) hid 
the objects in the videos by moving in front of  the 
objects. In this occluded condition, participants 
should not be able to infer the action goal and form 
predictions, since crucial information was missing. 
Participants were instructed to watch the videos 
attentively and to keep as still as possible while EEG 
and eye movements were recorded. The participants 
performed no behavioural task. In total, 27 videos 
were presented, each four times, twice in the un-
occluded and twice in the occluded condition, 
leading to 108 trials. Trials were divided into four 
blocks.

Results

For easier comprehension, analyses and results 
are hereafter presented per task.

Adaptation Task

Analysis of  the behavioural data was performed 
in R, version 3.4.1 (R Development Core Team, 
2017) using the packages gdata (Warnes et al., 2017), 
multilevel (Bliese, 2016), ordinal (Christensen, 2015) 
and gmodels (Warnes, Bolker, Lumley, & Johnson, 
2015). Data visualization was done with the package 
ggplot2 (Wickham, 2009). Button presses recorded 
during the preadaptation and post-adaptation block 
were analyzed. First, button presses and stimulus 
gaze direction were recoded from left, straight, and 
right to adapted, straight and unadapted, depending 
on adaptation direction of  the participant (eg. if  a 
participant was adapted using left-looking stimuli, 
all button responses indicating “left” were recoded 
to “adapted”, button responses for “right” were 
recorded to “unadapted”, button responses for 
straight always remained the same, regardless of  
adaptation direction). 

One participant from the ASD group could not 

Fig. 3. Frames from Videos in the Action Prediction Task. A. Un-occluded condition where predictions in 
the form of goal representations should be possible. In a first step, the actor takes the money, in a second 
step she puts it into the purse, and in the third step she puts the purse into a bag. B. Occluded condition 
where predictions in the form of goal representations should be impossible because crucial information 
is missing. The participant is not able to infer the goal and should therefore not form predictions.
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perform the task due to technical difficulties and 
one participant from the ASD group was excluded 
from further analysis because his performance in 
the preadaptation block was below chance level 
(27.7% correct responses, chance level being 33%). 
The overall group performance of  the remaining 
participants was 72.1% (SE = 10.3%) in the pre-
adaptation block.

On the remaining data, an ordered logistic 
multilevel regression (Meijer & York, 2008) was 
performed with a random intercept and random 
slopes per participant. Fixed effects were the 
independent variables. Gaze Direction of  the 
Stimulus (adapted, un-adapted, straight), Block (pre-
adaptation, post-adaptation), Group (ASD, TD) and 
a Block * Group interaction and the control variable 
Age. Results showed significant main effects of  Gaze 
Direction of  the Stimulus (b = 2.86, p < .001), Block 
(b = -1.22, p < .001), and a significant interaction of  
Block * Group (b = -1.00, p = .003). The significant 
effect of  Block indicates that participants classified 
the same stimuli differently before compared to after 
the adaptation. This indicates that an adaptation after-
effect was induced. More crucially, the significant 
interaction indicates that the size of  the adaptation 
aftereffect differed between the two groups. The 
other independent variables, Age and Group, were 
not significant (all ps > .268). A full summary of  the 
statistics can be found in Table 2 and a visualization 
of  button responses to the straight looking stimuli 
is presented in Figure 4. Figures for the adapted and 
unadapted stimuli can be found in the Appendix 
(Fig. 2 & 3).

Action Prediction Task

Eye Tracking Data Preprocessing and 
Analyses. The raw data files and the video 
files were read into SMI BeGaze 3.6.52 

(SensoMotoricInstruments, Teltow, Germany). 
There, areas of  interest (AOIs) were defined for 
each video, both in its un-occluded and occluded 
condition, following Braukmann et al. (2017). AOIs 
were four stationary rectangles per video, three 
around each object in the video and one around the 
lower part of  the actor’s face since some actions 
ended there. One of  the four AOIs was always 
unused since each video only had three action steps. 
Fixations were defined as lasting a minimum of  50 
ms. Fixations to the AOIs were then exported from 
SMI BeGaze and read into MATLAB 2012b (The 
MathWorks, Inc., Natick, Massachusetts, United 
States). Additionally, time windows of  interest 
(TOI) were defined for each video and loaded into 
MATLAB. TOIs classified fixations as predictive 
(looking at the AOI after the actor’s hand moved 
towards the AOI but before entering it), reactive 
(looking at the AOI after the actor’s hand entered 
the AOI) or neither (occurring outside of  TOIs). 
The reactive time window was always as long as 
the predictive time window and fixations being 
neither reactive nor predictive were excluded from 
further analysis. These fixations were then analysed 
using three different measures: First, predictive 
and reactive fixations were treated as two different 
outcomes and analysed using a logistic multilevel 
regression (Predictive vs Reactive Fixations). Second and 
third, the Onset and the Duration of  Predictive Fixation 
were analysed using multilevel regressions. Onset 
of  Predictive Fixation was coded relative to the end 
of  the TOI. Large values therefore indicate earlier 
onsets and vice versa.

For the statistical analyses, I decided to analyse 
each of  the three measures with three different 
multilevel regression models. In the first model, the 
fixed effects Group (ASD, TD), Action Step (one, 
two, three), Condition (un-occluded, occluded), 
the two-way interactions Group * Action Step, 

Table 2. 

Summary of the fixed effects in the ordered logistic multilevel regression for the behavioral data in the 
adaptation task.
Variable b SE p
Group .05 .35 .893
Gaze direction of stimulus 2.86*** .21 < .001
Block -1.22*** .27 < .001
Block * Group interaction -1.00** .34 .003
Age .03 .03 .268

Note: ** indicates a significant result to a level < .01, *** indicates a significant result to a level < .001
Significant findings are printed in bold.
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Group * Condition, and Action Step * Condition, 
and the three-way interaction Group * Action 
Step * Condition were included. Random effects 
were a random intercept and random slopes for 
Condition and Action Step per participant and 
random intercepts per stimulus. Additionally, age of  
the participant and DoTOI were included as fixed 
effects to control for their influence. To investigate 
potential significant three-way interactions, two 
additional models were planned for each measure: 
In these second and third models, data from each 
group (ASD and TD) was analysed separately, using 
the same model as above, except for the predictor 
group and its interactions.

To test whether all assumptions were met for 
the linear mixed models (Onset and Duration of 
Predictive Fixation), residuals of  the models were 
inspected visually. If  residuals seemed to deviate 
from normality and/or heteroscedasticity, the 
outcome variable was transformed (eg. using a log or 
square root transformation), until the assumptions 
were met. P-values for these non-binomial multilevel 
regressions were obtained by estimating the number 
of  degrees of  freedom using the Kenward-Roger 
approximation (Halekoh & Hojsgaard, 2014; 
Kenward & Roger, 1997).

Eye Tracking Results. Data from three 
participants from the ASD group was not available 
due to technical reasons. Furthermore, for one 

participant from the TD group only one fixation in 
total was registered. This participant was therefore 
also excluded. The remaining 16 participants were 
analyzed using the statistics program R, version 
3.4.1  (R Development Core Team, 2017) with the 
packages lme4 (Bates, Maechler, Bolker, & Walker, 
2015), pbkrtest (Halekoh & Hojsgaard, 2014), car 
(Fox & Weisberg, 2011), lattice (Sarkar, 2008), MuMIn 
(Barton, 2016) and gmodels (Warnes et al., 2015). Data 
visualization was realized with the package ggplot2 
(Wickham, 2009).

Predictive versus Reactive Fixations. The 
first analysis investigated the difference between 
predictive and reactive fixations using a multilevel 
logistic regression model. Unfortunately, the planned 
first model with the three-way interaction did not 
converge with 200 million iterations. Therefore, 
the most parsimonious model (Condition predicts 
type of  fixation) was used as a starting point from 
where consecutively predictors were added until the 
best model fit according to the Akaike information 
criterion (AIC) was achieved. The terms Age and 
DoTOI (both z-standardised, see Bates et al., 2015) 
were not included but neither resulted a significant 
effect when used as predictors alone (ps > .306). The 
resulting model included the main effects of  Group, 
Action Step, Condition, and the interactions Group 
* Action Step, Group * Condition, and Action Step 
* Condition. Although adding more predictors 

Fig. 4. Button Responses to Straight Looking Stimuli in Adaptation Task. These boxplots show parts 
of the behavioral results from the adaptation task. Diamonds indicate means. This graph shows that 
in the pre-adaptation block, both groups perform equally well in classifying straight gaze direction. In 
the post-adaptation block, however, performance of the TD group is influenced by the adaptation block 
while performance of the ASD group remains unaffected.  
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resulted in a better model fit according to the AIC, 
only the effect of  Condition was significant (b = 
1.30, p = .002, all other ps > .219). 

Onset of Predictive Fixations. The second 
analysis investigated the Onset of  Predictive 
Fixations. Since this variable showed a strong 
skewness which could not be captured by a 
linear model, it was first transformed. Taking 
its square root resulted in a better distribution 
compared to a log-transformation. Residuals were 
inspected visually and did not seem to violate 
the criteria of  normality and homoscedasticity.

Results from the first model showed a significant 
effect of  the interactions Group * Condition (b = 
12.11, p = .012), Action Step * Condition (b = 5.22, 
p = .011) and Group * Action Step * Condition (b 
= -5.88, p = .007) and the control variable DoTOI 
(b = .01, p < .001). The other effects did not reach 
significance (all ps > .121, except Group where p = 
.080). The fixed effects combined explained 14% of  
the variance (R2 = .14). For the full results, see Table 
3 and for visualization of  the data see Figure 6.

The significant three-way interaction indicates 
that the interaction of  Action Step and Condition 
differentially affected the two groups. To further 
investigate this, two consecutive models were 
performed, for the ASD and TD group, respectively. 
In the ASD-model, no effect yielded a significant 
result (all ps > .121, except DoTOI, p = .074). In 
the TD-model, no effects except the control variable 
DoTOI (b = .01, p < .001) were significant although 
Condition was close to significance (b = 4.09, p = 
.056). All other effects did not reach significance (all 
ps > .652). For a full summary, see Table 5.

These results indicate that while predictive 
fixations from the TD group probably began earlier 
in the un-occluded condition compared to the 
occluded one, the onset of  predictive fixations did 
not differ in the ASD group. Also, a shorter DoTOI 
in the TD group led to later predictive fixations, while 
it had barely an effect on the predictive fixations in 
the ASD group. Interestingly, the interaction Action 
Step * Condition was significant in the first model 
but failed to reach significance in either of  the group 
models.

Duration of Predictive Fixations. In the 
third analysis the Duration of  Predictive Fixations 
was investigated. Since the data was not normally 
distributed, it was first transformed. From a log-
transformation and a square root transformation, 
the latter yielded residuals that visually seemed 
to better fit the assumptions of  normality and 
homoscedasticity. Results from the first model 
showed that the effects of  Group (b = -6.59, p 
= .048), Action Step (b = -2.75, p = .036), the 
interactions Group * Action Step (b = 3.46, p = .015), 
Group * Condition (b = 8.40, p = .028) and Group 
* Action Step * Condition (b = -3.44, p = .044), as 
well as the control variable DoTOI (b = .88, p < 
.001) were significant. The interaction Action Step 
* Condition just failed to reach significance with p 
= .07, and p-values for Condition and Age were > 
.145 (see Table 3 for a full summary and Figure 7 
for boxplots of  the data). The fixed effects together 
explained 6% of  the variance. 

Again, the significant three-way interaction was 
further investigated with two models, separately 
investigating the two groups. Results for the ASD-

Fig. 5. Boxplots of Predictive versus Reactive Fixations from the action prediction task. These Boxplots 
show the ratio between Predictive and Reactive Fixations, in the un-occluded and occluded condition, 
over the action steps, by group. Diamonds indicate means. Results showed significantly more predictive 
fixations in the un-occluded condition compared to the occluded condition.
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group did not show any significant effect (all ps > 
.183, except Action Step * Condition where p = 
.090). Results for the TD-group show a significant 
effect of  Condition (b = 3.10, p = .027) and of  
DoTOI (b = 1.14, p < .001). A full summary of  
these results can be found in Table 6.

These results show a similar pattern to the 
previous measure Onset of  predictive fixations: in 
the occluded condition, predictive fixations from the 
TD group were significantly shorter than for the un-
occluded condition. This was not the case for the 
ASD group. Also, DoTOI had an influence on the 
duration of  predictive fixations in the TD group, but 
not in the ASD group. In the first model, a significant 
interaction of  Group * Action Step was observed. 
In both consecutive models, however, Action Step 
failed to reach significance. However, b-values for 
each group have different signs which might explain 
the significant interaction in the first model.

Duration of Time Window of Interest as 
a Predictor. The previous analyses showed 
that DoTOI has a significant effect in two of  the 
three fixation measures (Duration and Onset of  
Predictive Fixations). This is an interesting finding 
because of  three reasons: First of  all, this effect 
has not been taken into consideration in previous 
studies (Braukmann et al., 2017; Poljac et al., 2013). 
Secondly, the effect of  Action Step found in those 
previous studies could not be replicated in the TD 
sample in this study (Table 4 and 5). And lastly, when 
investigated more closely, it is revealed that both 
the mean and the standard deviation (SD) of  the 
DoTOI corresponding to the first action step are 
smaller (mean = 992.35 ms, SD = 205.51 ms) than 
compared to the second (mean = 1451.75 ms, SD 
= 295.67 ms) and third (mean = 1433.46 ms, SD = 
281.62 ms) action step. A linear model with contrasts 

Fig. 6. Boxplots of Predictive Fixation Onsets in the action prediction task. These boxplots show the 
onset of predictive fixations relative to the endpoint of the predictive window of interest. Hence, larger 
numbers indicate an earlier onset. Diamonds indicate means. Results indicate earlier fixations for the TD 
group in the un-occluded condition compared to the occluded condition.

Fig. 7. Boxplots of Predictive Fixation Durations in the action prediction task. These boxplots represent 
the raw durations of predictive fixations in ms. Diamonds indicate means. Results show that predictive 
fixations were longer for the TD group in the un-occluded  compared to the occluded condition.
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Table 3. 

Summary of the fixed effects in the first multilevel regression models including the three-way interaction 
for the eye tracking data in the action prediction task.
Variable Onset of Predictive Fixationa Duration of Predictive Fixationa

b SE t Appr. 
dfs

p b SE t Appr. 
dfs

p

Group -7.36 4.05 -1.82 115.60 .080 -6.59* 3.20 -2.06 89.62 .048
Action Step -2.13 1.72 -1.24 189.25 .220 -2.75* 1.29 -2.12 230.27 .036
Condition -6.99 4.40 -1.59 422.11 .122 -5.21 3.49 -1.50 409.05 .146
Group * Action Step 2.80 1.86 1.51 120.99 .139 3.46* 1.39 2.50 148.05 .015
Group * Condition 12.11* 4.69 2.58 374.01 .012 8.40* 3.70 2.27 373.42 .028
Action Step * 
Condition

5.22* 2.00 2.61 632.52 .011 2.92 1.56 1.87 612.67 .068

Group * Action Step * 
Condition

-5.88** 2.13 -2.76 655.47 .007 -3.44* 1.67 -2.06 652.59 .044

Age -.24 .14 -1.69 8.72 .188 .07 .11 .63 8.90 .610
Duration of Time 
Window of Interestb

2.42*** .34 7.17 463.69 < .001 .88*** .26 3.42 417.03 < .001

Note: * indicates a significant result to a level < .05, ** indicates a significant result to a level < .01, *** 
indicates a significant result to a level < .001.
Significant findings to either of those levels are printed in bold. 
a The outcome variable of this model was transformed using a square root transformation.
b This variable was z-standardized.
Note that the model for Predictive versus Reactive Fixations did not converge and is therefore not 
represented here. 
R2 for fixed effects:
R2 (Onset of Predictive Fixation) = .14
R2 (Duration of Predictive Fixation) = .06
R2 for fixed and random effects combined:
R2 (Onset of Predictive Fixation) = .30
R2 (Duration of Predictive Fixation) = .20

Table 4. 

Summary of the fixed effects in the group-wise logistic multilevel regression models investigating Predictive 
versus Reactive Fixations for the eye tracking data in the action prediction task.

Variable
b SE z p

Group -.49 .56 -.88 .380
Action Step .16 .22 .71 .478
Condition 1.30** .43 3.04 .002
Group * Action Step -.10 .22 -.47 .642
Group * Condition .18 .35 .52 .603
Action Step * Condition -.17 .14 -1.23 .219

Note: * indicates a significant result to a level < .05, ** indicates a significant result to a level < .01, *** 
indicates a significant result to a level < .001.
Significant findings are printed in bold.
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Table 5. 

Summary of the fixed effects in the second and third multilevel regression models investigating Onset of 
Predictive Fixation for the eye tracking data in the action prediction task.
Variable ASD Groupa TD Groupa

b SE t Appr. 
dfs

p b SE t Appr. 
dfs

p

Action Step 4.17 1.67 2.49 3.23 .203 .35 .76 .46 106.08 .653
Condition 5.71 5.03 1.14 25.15 .418 4.09 2.07 1.97 49.69 .056
Action Step * Condition -4.43 2.05 -2.16 40.94 .122 -.38 .88 -.43 57.39 .671
Age -1.15 .76 -1.50 1.82 .493 -.06 .20 -.29 7.92 .778
Duration of Time 
Window of Interest b

1.67 .86 -2.16 113.07 .074 2.23*** .36 6.19 159.54 < .001

Note: * indicates a significant result to a level < .05, ** indicates a significant result to a level < .01, *** 
indicates a significant result to a level < .001.
Significant findings are printed in bold.
a The outcome variable of this model was transformed using a square root transformation.
b This variable was z-standardized.
R2 for fixed effects:
R2 (ASD) = .16
R2 (TD) = .11
R2 for fixed and random effects combined:
R2 (ASD) = .59
R2 (TD) = .26

Table 6. 

Summary of the fixed effects in the second and third multilevel regression models investigating Duration of 
Predictive Fixation for the eye tracking data in the action prediction task.
Variable ASD Groupa TD Groupa

b SE t Appr. 
dfs

p b SE t Appr. 
dfs

p

Action Step -1.54 1.38 -1.11 13.04 .323 .46 .59 .79 38.99 .454
Condition -6.07 3.56 -1.71 41.83 .184 3.10* 1.33 2.33 122.76 .027
Action Step * Condition 3.43 1.56 2.20 62.55 .090 -.45 .59 -.76 688.75 .466
Age .02 .53 .04 1.54 .985 .06 .12 .54 7.34 .666
Duration of Time 
Window of Interestb

-.58 .63 -.93 96.00 .388 1.14*** .28 4.14 362.31 < .001

Note: * indicates a significant result to a level < .05, ** indicates a significant result to a level < .01, *** 
indicates a significant result to a level < .001.
Significant findings are printed in bold.
a The outcome variable of this model was transformed using a square root transformation.
b This variable was z-standardized.
R2 for fixed effects:
R2 (ASD) = .05
R2 (TD) = .06
R2 for fixed and random effects combined:
R2 (ASD) = .24
R2 (TD) = .20



Nijmegen CNS | VOL 13 | ISSUE 182

Ricarda Weiland

was used to evaluate two differences in DoTOI. 
First, the difference between the first action step and 
the other two, and second, the difference between 
the second and third action step. Results revealed 
that DoTOI for the first action step is significantly 
shorter than the other two (b = 137.28 ms, p < .001) 
and that there is no significant difference between 
action step two and three (b = -17.78 ms, p = .626). 
A full summary of  the model can be found in the 
Appendix (Table 1). This shows that the DoTOI of  
the first action step is significantly shorter compared 
to the second and third action step. Also, there is no 
difference between the second and third action step. 

Taking these three points into account, it is 
possible that in past studies (Braukmann et al., 2017; 
Poljac et al., 2013) the effect of  DoTOI has been 
explained by the variable of  Action Step. To explore 
this possibility further, the two measures Onset of  
Predictive Fixations and Duration of  Predictive Fixations 
were analysed again in the student TD sample 
(n = 9) without DoTOI as a predictor. This data 
should correspond most closely to the data from 
Braukmann et al. (2017). Predictive versus Reactive 
Fixation was not analysed again since DoTOI did 
not reach significance (see Table 4).

Results for the Onset of  Predictive Fixations show 
indeed that without DoTOI as a predictor, the 
factor Action Step becomes significant (b = 2.87, 
p < .001). Similarly, results for the Duration of  
Predictive Fixations shows that the factor Action Step 
becomes significant (b = 1.87, p < .001). For a full 

summary of  the models, see the Appendix (Table 
2). This indicates that the influence of  Action Step 
and DoTOI might overlap, making it difficult to 
interpret results when DoTOI is not controlled for.

Electrophysiological Analysis. The pre-
processed data (see Experimental Setup) was analyzed 
using a fast Fourier transformation, separately for 
each action step, in the un-occluded and occluded 
condition, respectively, and the fixation in between 
trials. Timings for action steps were determined for 
each video separately. Beta-power was furthermore 
z-standardised using the grand mean and standard 
deviations and then analysed using a multilevel 
regression. Model residuals were inspected visually 
and did not seem to deviate from normality and 
homoscedasticity. P-values were again obtained by 
using the Kenward-Roger approximation of  the 
number of  degrees of  freedom.

Electrophysiological Results. One participant 
had to be excluded from analysis due to technical 
difficulties. The remaining 19 participants were 
analysed using R, version 3.4.1  (R Development 
Core Team, 2017) with the packages lme4 (Bates 
et al., 2015) and pbkrtest (Halekoh & Hojsgaard, 
2014). Data was visualised with the package ggplot2 
(Wickham, 2009).

A multilevel regression with the fixed effects 
Group (ASD, TD), Action Step (one, two, three), 
Condition (un-occluded, occluded), the two-

Table 7. 

Summary of the fixed effects in the multilevel regression for the electrophysiological data in the action 
prediction task.
Variable b SE t Approximated 

dfs
p

Group .61 .60 1.03 36.91 .310
Action Step -.25 .12 -1.97 89.00 .052
Condition -.16 .38 -.41 89.00 .682
Group * Action Step -.23 .17 -1.35 89.00 .180
Group * Condition -.50 .52 -.96 89.00 .342
Action Step * Condition .05 .18 .28 89.00 .782
Group * Action Step * Condition .28 .24 1.13 89.00 .260
Age -.08 .68 -1.94 16.00 .070

Note: * indicates a significant result to a level < .05
Significant findings are printed in bold.
R2 for fixed effects:
R2 = .21
R2 for fixed and random effects combined:
R2 = .81
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way interactions Group * Action Step, Group * 
Condition and Action Step * Condition, and a three-
way interaction Group * Action Step * Condition, 
plus the control variable Age, along with a random 
intercept and slope per participant was performed. 
A summary of  the fixed effects can be found in 
Table 7.

Results reveal a nearly significant negative effect 
of  Action Step (t = 1.97, p = .052), indicating a beta-
power desynchronisation over the action steps. All 
other effects did not reach significance (all ps > .070).

To further investigate the effect of  Action Step, 
I performed a second multilevel regression with the 
contrasts Action Step 1-2 and Action Step 2-3. The 
results show a smaller effect of  the first contrast (t 
= .63) than the second (t = -1.31). However, both 
effects are rather small, indicating that the marginal 
significance of  the factor in the first model was 
mainly driven by the difference between Action Step 
one and three. Boxplots for the data can be found 
in Figure 8.

Discussion

In this study, I used two different tasks to examine 
predictive processing in adolescents with ASD and 
TD controls. These tasks shed light on a previously 
untested age group with ASD. This is also the first 
study to examine predictive processing mechanisms 
operating on different hierarchical levels in ASD. 
However, results must be interpreted with utmost 
caution since the control group was not matched for 
either age or IQ.

Adaptation Task

Results from the adaptation task show that 
adolescents with ASD show a smaller adaptation 
after-effect compared to TDs. This indicates that 
their perception relies more on immediate sensory 
input and less on previous experiences (see Fig. 1). 
This is in line with the predictive processing account 
of  ASD (eg. Pellicano & Burr, 2012; Van De Cruys 
et al., 2014) proposing an imbalance between the 
weighting of  priors and sensory information in 
the perceptual process. This result is particularly 
interesting in the light of  the developmental changes 
in individuals with ASD. Previous studies in children 
showed a bigger adaptation after-effect for TD 
compared to ASD (eg. Ewing et al., 2013; Pellicano, 
Rhodes, & Calder, 2013; Turi et al., 2015), whereas 
studies with adult participants did not show such a 
difference (Cook et al., 2014; Walsh et al., 2015). The 
present study is the first attempt to investigate the 
age between childhood and adulthood. Interestingly, 
the effect is still present during adolescence. 
Previous studies have argued that the reduced 
adaptation after-effect in ASD is only observable 
during a limited time window in development and 
not representative for ASD in general (Cook et al., 
2014; Nordt et al., 2015). 

The present results, however, showed that the 
reduced adaptation after-effect is present in a much 
bigger age range than previously assumed. This 
raises the question when and, most importantly, 
why this effect vanishes in individuals with ASD at 
some point after adolescence. An important factor 
might be brain maturation. The adolescent brain is 
subjected to major changes, such as white matter 

Fig. 8. Boxplots of the beta-power (16-25Hz) per action step per group. Although the analyses did not 
show an interaction between Group * Action Step, the plot here shows a slight trend: whereas beta-
power for the TD seems to decrease over the action steps, this does not seem to be the case for the ASD 
group.
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increase and grey matter decrease and changes in 
the neurotransmitter systems (Arain et al., 2013; 
Blakemore & Choudhury, 2006; Wahlstrom, Collins, 
White, & Luciana, 2010). These developments have 
extensively been interpreted in the light of  changes 
in behaviour and higher cognitive functions in TDs 
(Kilford, Garrett, & Blakemore, 2016; Knoll, Magis-
Weinberg, Speekenbrink, & Blakemore, 2015; Pfeifer 
& Blakemore, 2012), but no evidence seems to point 
to a change in more basic perceptual processes in 
TDs, such as adaptation. However, individuals with 
ASD might show some delayed developments. 
Indeed, one study showed that visual processing of  
complex stimuli still develops during adolescence in 
individuals with ASD, especially stimuli processed 
in temporal lobes (O’Hearn et al., 2014; O’Hearn, 
Schroer, Minshew, & Luna, 2010). Gaze direction is 
indeed processed in temporal areas (Hooker et al., 
2003). Performance in categorising gaze direction 
is comparable in adolescents with and without 
ASD (Webster & Potter, 2008), indicating that the 
adaptation effect alone is subject to development 
during (late) adolescence. To investigate this further, 
future studies should focus on the late adolescence 
and early adulthood. Possibly, the differences 
between individuals with ASD and TDs vanish 
around that time.

Some criticism has been made against studies 
investigating adaptation in ASD using social stimuli 
such as faces (eg. Ewing et al., 2013; Pellicano et al., 
2007). Since individuals with ASD have problems in 
the social domain (American Psychiatric Association, 
2013), it has been argued that the reduced adaptation 
after-effect could be specific to social stimuli. 
However, one study showed the same reduced 
adaptation after-effect in children with ASD, using 
nonsocial stimuli (Turi et al., 2015). Specifically, the 
children saw two patches of  dots and were asked 
to indicate which patch contained more dots. The 
children with ASD were less influenced by the size 
of  the patch in the adaptation phase when making 
that decision. Therefore, it can be argued that the 
reduced adaptation after-effect is reflecting a general 
processing difference which is not specific to social 
stimuli.

Action Prediction Task

The results from the action prediction task only 
seem partly in line with our hypotheses. The first 
hypothesis regarded the influence of  Action Step on 
predictive eye movements: in line with past research 
(Braukmann et al., 2017; Poljac et al., 2013), we 
expected to replicate an increase in predictive eye 

movements over the action steps for the TD group. 
This replication, however, was not successful. When 
investigating the TD group alone, no significant 
effect of  Action Step could be established. One 
explanation for this is the underestimation of  an 
apparently important predictor: Duration of  Time 
Window of  Interest (DoTOI). Unfortunately, 
DoTOI differed significantly between the first and 
the last two action steps. Ignoring DoTOI led to a 
significant effect of  Action Step (see Table 9 in the 
Appendix). However, this significant effect vanished 
when DoTOI was controlled for (see Tables 5 and 
6). This finding is striking since it raises the question 
whether past studies using the same stimulus material 
confounded the effect of  DoTOI with the effect of  
Action Step (Braukmann et al., 2017). Therefore, the 
question arises whether an effect of  Action Step can 
be found in eye tracking data at all. An indication 
to answering this might be found in the results of  
the models for the ASD and TD group combined. 
There, we see a significant effect of  DoTOI but also 
a significant effect of  Action Step for the duration 
of  predictive fixations. The effect of  Action Step 
in the onset of  predictive fixations, however, was 
not significant. These findings together indicate 
that the duration of  predictive fixations might be 
longer in TDs when they understand the displayed 
action, whereas the onset of  those fixations seems 
to remain unaffected by this understanding. An 
important recommendation for future studies is 
to consider the effect of  DoTOI already in the 
stimulus construction, making them equally long for 
all action steps. 

Based on the effect of  Action Step in the TD 
group, we also expected an interaction of  Action 
Step with Group, namely that Action Step would 
influence predictive eye movements to a lesser extent 
in the ASD group. Indeed, we saw a marginally 
significant interaction of  Group and Action Step 
in the onset and the duration of  predictive fixations 
(Table 3). This seems again to be in line with the 
hypothesis that predictions should be facilitated in 
later action steps only for the TD group. A definite 
conclusion, however, is not possible since the effect 
did not reach significance in either group when 
investigated separately (Tables 4 and 5). This might 
be due to insufficient statistical power when splitting 
the data into two groups and additionally due to the 
small effects we expected for the ASD group.

The second hypothesis aimed at the effect of  
being able to integrate background knowledge using 
the displayed objects. We expected that by hiding 
parts of  the action, the TD should show decreased 
predictive eye-movements. This effect should be 
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smaller in the ASD group since the integration of  
background knowledge should be impaired. This is 
indeed what we found for the onset and duration 
of  predictive fixations (see Table 3, 5, and 6). This 
indicates that TD individuals used cues from the 
presented objects to inform their prediction. In the 
absence of  those cues (in the occluded condition) 
their ability to make predictions was impaired. This 
difference was absent for the ASD group, indicating 
that they use the additional information less or not 
at all to inform their predictions. This result is in 
line with the predictive processing account of  ASD 
(Pellicano & Burr, 2012; Van de Cruys et al., 2014) 
that posits that individuals with ASD rely less on 
previous knowledge and more on direct sensory 
input in their perceptual process. 

However, both the effect of  Action Step and 
the effect of  Condition were only observed for two 
of  the three eye tracking measures. For the third 
measure, the planned regression model did not 
converge making it difficult to draw conclusions, 
especially when comparing the two groups. The 
group-wise results show that when comparing 
predictive against reactive predictions, neither of  
the two groups showed more predictive fixations in 
later action steps. However, the occlusion of  objects 
seems to influence both groups (see Table 4). This 
indicates that it is not the ability to make predictive 
fixations, per se, that is impaired in adolescents with 
ASD, but rather the quality of  the predictive fixations 
(eg. onset and duration). This is an important finding 
that should be taken into account in future studies 
investigating predictive eye movements in ASD: 
only looking at whether a fixation is predictive might 
hide important aspects of  the data. Concerning the 
(absent) influence of  the Action Step in this measure, 
two possibilities can be considered: either it is again a 
power problem, similar to the other two eye tracking 
measures, or this measure is not sensitive to the 
influence of  Action Step. Previous studies analysed 
this measure in a slightly different way, computing 
a ratio between predictive and reactive fixations per 
action step per participant (Braukmann et al., 2017; 
Poljac et al., 2013). This difference in analysis could 
account for the unsuccessful replication.

In sum, parts of  the eye tracking results are in 
line with the hypotheses. The effect of  Condition 
generally presents itself  as predicted. In two of  the 
three measures, it influenced the TD group but not 
the ASD group. The effect of  Action Step is more 
difficult to assess. Since it is mostly absent when 
controlling for the duration of  the TOI, it is not 
possible to determine whether the manipulation did 
not work in this sample, or whether it did not work 

in any of  the previous studies who did not control 
for DoTOI. The only measure that did not show 
the expected pattern at all was the measure Predictive 
versus Reactive Fixations. This might be because only 
some qualities of  predictive fixations are impaired 
in ASD, not the ability to make predictive fixations 
per se. 

Results from the EEG data seem to partly 
confirm the prior hypothesis: we expected an 
increase of  beta-power desynchronisation over the 
action steps for the TD group but not for the ASD 
group. A marginally significant increase in beta-
desynchronization can indeed be observed over 
the three action steps. This result, on its own, only 
shows that while observing someone’s action, the 
MNS engages. To assess the predicting function of  
the MNS, we included the occluded condition where 
prediction should be hindered. Contrary to the 
hypothesis, however, beta-desynchronisation does 
not seem to be influenced by condition which gives 
no indication that the MNS’s predictive function 
was successfully measured. It seems unlikely that the 
occluded condition failed completely as a control 
condition since differences have been observed in 
the eye tracking data. Interestingly, the interaction 
between Group and Action Step approached 
significance, indicating a greater activation of  the 
TD motor cortex than the ASD motor cortex. 
However, since it could not be distinguished whether 
the activation is reflecting or predicting the displayed 
action, no conclusions can be drawn for differences 
in predictive processing between ASD and TD.

An additional striking finding is that the random 
effects of  the model explain a large amount of  
variance (21% for the fixed effects only, 81% for all 
effects combined). The big discrepancy between the 
variance explained by fixed effects only and by both 
effects indicates that there are large inter-individual 
differences. This additionally shows that on the 
one hand, a multilevel model is very powerful in 
capturing those effects, and that on the other hand a 
large sample size is necessary to capture the relatively 
small effects of  our hypothesised predictors.

General Discussion

Results from both tasks, adaptation and action 
prediction, seem to point in the same direction: 
predictive processing seems to be impaired in 
adolescents with ASD. However, results from the 
adaptation task seem much stronger than in the 
action prediction task. Capturing a highly significant 
effect in such a small sample size speaks for large 
effects. This implies that differences in predictive 
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processing in low-order processes are more 
pronounced than in higher-order processes. This 
goes against the notion proposed by Van de Cruys 
and colleagues (2014). They argue that differences 
in low-level perception should get carried over into 
higher areas, with the effects adding up. Results from 
this study however, point to larger differences in the 
low-level areas compared to higher levels. Although 
this could point to a compensatory mechanism 
that prevents differences adding up, a somewhat 
more likely alternative is the difference in tasks: 
In the adaptation paradigm, we tested how much 
the participant’s perception is influenced by prior 
expectations. In the action prediction paradigm, we 
tested the participant’s ability to make predictions. 
The influence of  prediction on perception, and 
the ability to make predictions could be affected 
separately by ASD. 

Limitations

Although this study provided some interesting 
insights into predictive processing mechanisms in 
ASD, all results must be treated with the utmost 
caution. The main reason for this is the inadequate 
control group. Clearly, the two groups were not 
matched in age, and probably not in IQ either. 
Age was included as a predictor in all analyses and 
it reached significance only once. However, age 
could also have a nonlinear effect on the outcome 
variables which would not have been captured by 
the (generalized) linear models that were performed 
here. Also, the relationship between Age and Group 
is problematic, and hardly controllable for with the 
analyses performed here. It is therefore paramount 
to include a suitable, matched control group and 
to exclude the student controls before drawing any 
definite conclusions from this dataset.

Another limitation is the small sample size. 
Especially when investigating the plots for the eye 
tracking data, it becomes obvious that the data is 
very noisy, particularly for the ASD group. This 
is no surprise, since less eye tracking data were 
available for the ASD group and since variability in 
performance is probably higher in ASD compared to 
TDs. Some results do indeed show a trend towards a 
significant result that could become significant with 
more power. 

Another problem stemming from the small 
power, especially in the ASD group, is that results 
from the eye tracking data in the ASD group never 
reached significance (with one exception being 
the effect of  Condition on Predictive versus Reactive 
Fixations). We expected a smaller effect here, which 

is more difficult to detect in small sample sizes. 
However, the effect could also be completely 
absent. A bigger sample size and possibly a Bayesian 
statistics approach would be necessary to assess a 
small effect or its absence.

Conclusion

The present study is to the best of  our knowledge 
the first investigation of  predictive processing 
mechanisms of  adolescents with ASD. Although 
there are many serious limitations to this study, such 
as an insufficient control group and a small sample 
size, it does provide some interesting first results. 
Specifically, results from the adaptation task seem 
to show that the reduced adaptation after-effect 
in individuals with ASD is observable not only in 
children but also in adolescents. This evidence 
supports the recently proposed predictive processing 
accounts of  ASD. Results from the action prediction 
task, especially the eye tracking results, also seem 
to partly be in line with this account. However, 
differences in group effects seem much smaller and 
therefore in need of  confirmation in a much bigger 
sample. Together these results support the predictive 
processing account in ASD by providing evidence in 
a previously untested age range.

References

American Psychiatric Associaton. (2013). Diagnostic and 
Statistical Manual of  Mental Disorders.

Arain, M., Haque, M., Johal, L., Mathur, P., Nel, W., Rais, 
A., … Sharma, S. (2013). Maturation of  the adolescent 
brain. Neuropsychiatric Disease and Treatment. 

Barton, K. (2016). MuMIn: Multi-Model Inference. 
Retrieved from https://cran.r-project.org/
package=MuMIn

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). 
Fitting Linear Mixed-Effects Models Using lme4. 
Journal of  Statistical Software, 67(1), 1–48. 

Bekkering, H., De Bruijn, E. R. A., Cuijpers, R. 
H., Newman-Norlund, R., Van Schie, H. T., & 
Meulenbroek, R. (2009). Joint Action: Neurocognitive 
Mechanisms Supporting Human Interaction. Topics in 
Cognitive Science, 1(2), 340–352. 

Blakemore, S. J., & Choudhury, S. (2006). Development 
of  the adolescent brain: Implications for executive 
function and social cognition. Journal of  Child Psychology 
and Psychiatry and Allied Disciplines, 47(3-4), 296-312. 

Bliese, P. (2016). multilevel: Multilevel Functions. R 
package version 2.6. Retrieved from https://cran.r-
project.org/package=multilevel

Boucher, J. (1989). The theory of  mind hypothesis of  
autism: explanation, evidence and assessment. The 



Nijmegen CNS | VOL 13 | ISSUE 1 87

PREDICTION IN AUTISM SPECTRUM DISORDER

British Journal of  Disorders of  Communication, 24(2), 181-
198. 

Braukmann, R., Bekkering, H., Hidding, M., Poljac, E., 
Buitelaar, J. K., & Hunnius, S. (2017). Neuropsychologia 
Predictability of  action sub-steps modulates motor 
system activation during the observation of  goal-
directed actions. Neuropsychologia, 103(February), 44–
53. 

Burd, L., Kerbeshian, J., Westerland, A., Labine, J., Barth, 
A., Klug, M. G., … Burd, N. (2002). Prospective 
Long-Term Follow-Up of  Patients With Pervasive 
Developmental Disorders From the Departments of  
Pediatrics. Journal of  Child Neurology, 17(9), 681–688.

Caggiano, V., Fogassi, L., Rizzolatti, G., Casile, A., Giese, 
M. A., Thier, P., … Rizzolatti, G. (1996). Premotor 
cortex and the recognition of  motor actions. Current 
Biology, 3(2), 131-141. 

Cattaneo, L., Fabbri-Destro, M., Boria, S., Pieraccini, 
C., Monti, A., Cossu, G., & Rizzolatti, G. (2007). 
Impairment of  actions chains in autism and its 
possible role in intention understanding. Proceedings of  
the National Academy of  Sciences U S A, 104(45), 17825–
17830. 

Chambon, V., Farrer, C., Pacherie, E., Jacquet, P. O., 
Leboyer, M., & Zalla, T. (2017). Reduced sensitivity 
to social priors during action prediction in adults with 
autism spectrum disorders. Cognition, 160, 17–26. 

Christensen, R. H. B. (2015). ordinal - Regression Models 
for Ordinal Data. Retrieved from http://www.cran.r-
project.org/package=ordinal/

Clark, A. (2013). Whatever next? Predictive brains, 
situated agents, and the future of  cognitive science. 
Behavioral and Brain Sciences, 36, 181– 253. 

Cook, R., Brewer, R., Shah, P., & Bird, G. (2014). Intact 
facial adaptation in autistic adults. Autism Research, 
7(4), 481-490. 

Elsner, C., D’Ausilio, A., Gredebäck, G., Falck-Ytter, 
T., & Fadiga, L. (2013). The motor cortex is causally 
related to predictive eye movements during action 
observation. Neuropsychologia, 51(3), 488-492. 

Ewing, L., Pellicano, E., & Rhodes, G. (2013). Atypical 
updating of  face representations with experience in 
children with autism. Developmental Science, 16(1), 116-
123. 

Falck-Ytter, T. (2010). Young children with autism 
spectrum disorder use predictive eye movements in 
action observation. Biology Letters, 6(3), 375–378. 

Flanagan, J. R., & Johansson, R. S. (2003). Action plans 
used in action observation. Nature, 424(6950), 769–
771. 

Fox, J., & Weisberg, S. (2011). An R Companion to Applied 
Regression, Second Edition. SAGE Publications.

Friston, K. (2010). The free-energy principle: a unified 
brain theory? Nature Review Neuroscience, 11(2), 127–
138. 

Halekoh, U., & Hojsgaard, S. (2014). A Kenward-Roger 
Approximation and Parametric Bootstrap Methods 
for Tests in Linear Mixed Models - The R Package 
pbkrtest. Journal of  Statistical Software, 59(9), 1-32.

Happé, F., & Frith, U. (2006). The weak coherence 
account: Detail-focused cognitive style in autism 
spectrum disorders. Journal of  Autism and Developmental 
Disorders, 36(1), 5-25. 

Hooker, C. I., Paller, K. A., Gitelman, D. R., Parrish, T. B., 
Mesulam, M. M., & Reber, P. J. (2003). Brain networks 
for analyzing eye gaze. Cognitive Brain Research, 17(2), 
406-418. 

Jaeger, T. F. (2009). Categorical Data Analysis: Away from 
ANOVAs (transformation or not) and towards Logit 
Mixed Models. Journal of  Memory and Language, 59(4), 
434–446. 

Jenkins, R., Beaver, J. D., & Calder, A. J. (2006). I Thought 
You Were Looking at Me. Psychological Science, 17(6), 
506–513.

Kenward, M. G., & Roger, J. H. (1997). Small Sample 
Inference for Fixed Effects from Restricted Maximum 
Likelihood. Biometrics, 53(3), 983–997.

Kilford, E. J., Garrett, E., & Blakemore, S.-J. (2016). The 
development of  social cognition in adolescence: An 
integrated perspective. Neuroscience and Biobehavioral 
Reviews, 70, 106-120. 

Kilner, J. M., Friston, K. J., & Frith, C. D. (2007). Predictive 
coding: An account of  the mirror neuron system. 
Cognitive Processing, 8(3), 159-166. 

Kilner, J. M., Vargas, C., Duval, S., Blakemore, S.-J., & 
Sirigu, A. (2004). Motor activation prior to observation 
of  a predicted movement. Nature Neuroscience, 7(12), 
1299.

Knoll, L. J., Magis-Weinberg, L., Speekenbrink, M., 
& Blakemore, S.-J. (2015). Social influence on risk 
perception during adolescence. Psychological Science 
Online First, 26(5), 583-592. 

Kwisthout, J., Bekkering, H., & van Rooij, I. (2017). To 
be precise, the details don’t matter: On predictive 
processing, precision, and level of  detail of  
predictions. Brain and Cognition, 112, 84–91.

Maranesi, M., Livi, A., Fogassi, L., Rizzolatti, G., & 
Bonini, L. (2014). Mirror Neuron Activation Prior to 
Action Observation in a Predictable Context. Journal 
of  Neuroscience, 34(45), 14827–14832. 

Meijer, E., & York, S. N. (2008). Handbook of  Multilevel 
Analysis. In J. de Leeuw & E. Meijer (Eds.) (pp. 237–
274). Springer New York. 

Meyer, M., Bekkering, H., Paulus, M., & Hunnius, S. 
(2010). Joint Action Coordination in 2½- and 3-Year-
Old Children. Frontiers in Human Neuroscience, 4 
(December), 1–7. 

Nordt, M., Hoehl, S., & Weigelt, S. (2015). The use of  
repetition suppression paradigms in developmental 
cognitive neuroscience. Cortex, 80, 61-75.

O’Hearn, K., Schroer, E., Minshew, N., & Luna, B. 
(2010). Lack of  developmental improvement on 
a face memory task during adolescence in autism. 
Neuropsychologia, 48(13), 3955-3960. 

O’Hearn, K., Tanaka, J., Lynn, A., Fedor, J., Minshew, N., 
& Luna, B. (2014). Developmental plateau in visual 
object processing from adolescence to adulthood in 
autism. Brain and Cognition, 90, 124-134. 



Nijmegen CNS | VOL 13 | ISSUE 188

Ricarda Weiland

Oostenveld, R., Fries, P., Maris, E., & Schoffelen, 
J. (2011). FieldTrip : Open Source Software for 
Advanced Analysis of  MEG , EEG , and Invasive 
Electrophysiological Data. Computational Intelligence and 
Neuroscience, 2011, 1.  

Pellicano, E., & Burr, D. (2012). When the world becomes 
“too real”: A Bayesian explanation of  autistic 
perception. Trends in Cognitive Sciences, 16(10), 504-510. 

Pellicano, E., Jeffery, L., Burr, D., & Rhodes, G. (2007). 
Abnormal Adaptive Face-Coding Mechanisms in 
Children with Autism Spectrum Disorder. Current 
Biology, 17(17), 1508–1512. 

Pellicano, E., Rhodes, G., & Calder, A. J. (2013). Reduced 
gaze aftereffects are related to difficulties categorising 
gaze direction in children with autism. Neuropsychologia, 
51(8), 1504-1509. 

Pfeifer, J. H., & Blakemore, S.-J. (2012). Adolescent social 
cognitive and affective neuroscience: past, present, 
and future. Social Cognitive and Affective Neuroscience, 
7(1), 1-10. 

Poljac, E., Dahlslätt, K., & Bekkering, H. (2013). Shared 
predictive decision-making mechanisms in action and 
language. Language, Cognition and Neuroscience, 29(4), 
424–434. 

R Development Core Team. (2017). R: A language and 
environment for statistical computing. R Foundation 
for Statistical Computing. Vienna, Austria. Retrieved 
from http://www.r-project.org.

Sarkar, D. (2008). Lattice: Multivariate Data Visualization 
with R. New York: Springer.

Schuwerk, T., Sodian, B., & Paulus, M. (2016). Cognitive 
Mechanisms Underlying Action Prediction in Children 
and Adults with Autism Spectrum Condition. Journal 
of  Autism and Developmental Disorders, 46(12), 3623-
3639. 

Sebanz, N., & Knoblich, G. (2009). Prediction in Joint 
Action: What, When, and Where. Topics in Cognitive 
Science, 1(2), 353–367. 

Sevgi, M., Diaconescu, A. O., Tittgemeyer, M., & 
Schilbach, L. (2016). Social Bayes: Using Bayesian 
Modeling to Study Autistic Trait-Related Differences 
in Social Cognition. Biological Psychiatry, 80(2), 112–119. 

Shattuck, P. T., Seltzer, M. M., Greenberg, J. S., Orsmond, 
G. I., Bolt, D., Kring, S., … Lord, C. (2007). Change 
in autism symptoms and maladaptive behaviors in 
adolescents and adults with an autism spectrum 
disorder. Journal of  Autism and Developmental Disorders, 
37(9), 1735–1747. 

Sinha, P., Kjelgaard, M. M., Gandhi, T. K., Tsourides, 
K., Cardinaux, A. L., Pantazis, D., … Held, R. M. 
(2014). Autism as a disorder of  prediction. Proceedings 
of   National Academy of   Sciences USA, 111(42), 15220–
15225. 

Turi, M., Burr, D. C., Igliozzi, R., Aagten-Murphy, D., 
Muratori, F., & Pellicano, E. (2015). Children with 
autism spectrum disorder show reduced adaptation to 
number. Proceedings of   National Academy of   Sciences U S 
A, 112(25), 7868–7872. 

Van De Cruys, S., Evers, K., Van Der Hallen, R., Van 

Eylen, L., Boets, B., De-Wit, L., … Leuven, K. (2014). 
Precise Minds in Uncertain Worlds: Predictive Coding 
in Autism. Psychological Review, 121(4), 649–675. 

Wahlstrom, D., Collins, P., White, T., & Luciana, M. 
(2010). Developmental changes in dopamine 
neurotransmission in adolescence: Behavioral 
implications and issues in assessment. Brain and 
Cognition, 72(1), 146-159. 

Walsh, J. A., Vida, M. D., Morrisey, M. N., & Rutherford, 
M. D. (2015). Adults with autism spectrum disorder 
show evidence of  figural aftereffects with male and 
female faces. Vision Research, 115, 104-112.

Walsh, J. A., Vida, M. D., & Rutherford, M. D. (2014). 
Strategies for perceiving facial expressions in adults 
with autism spectrum disorder. Journal of  Autism and 
Developmental Disorders, 44(5), 1018-1026.

Warnes, G. R., Bolker, B., Gorjanc, G., Grothendieck, G., 
Korosec, A., Lumley, T., … Rogers, J. (2017). gdata: 
Various R Programming Tools for Data Manipulation. 
R package version 2.18.0.

Warnes, G. R., Bolker, B., Lumley, T., & Johnson, R. C. 
(2015). gmodels: Various R Programming Tools for 
Model Fitting. R package version 2.16.2. Retrieved 
from https://cran.r-project.org/package=gmodels

Webster, S., & Potter, D. D. (2008). Brief  report: Eye 
direction detection improves with development in 
autism. Journal of  Autism and Developmental Disorders, 
38(6), 1184-1186.

Wickham, H. (2009). ggplot2: Elegant Graphics for Data 
Analysis. New York: Springer.

Zalla, T., Labruyère, N., Clément, A., & Georgieff, 
N. (2010). Predicting ensuing actions in children 
and adolescents with autism spectrum disorders. 
Experimental Brain Research, 201(4), 809–819. 



Nijmegen CNS | VOL 13 | ISSUE 1 89

PREDICTION IN AUTISM SPECTRUM DISORDER

Appendix

Fig. 1. Example of the spatial distribution of a vertical (component 1) and horizontal (component 2) eye 
movement component, identified in the ICA.

Table 1. 

Summary of the linear model investigating the differences in Duration of Time Window for the three 
different action steps.
Variable b SE p
Action Step 1 – (2+3) 137.28*** 20.97 < .001
Action Step 2 – 3 -17.78 36.33 .626

Note: *** indicates a significant result to a level < .001. 
Significant results are printed in bold. 
Note that this linear model investigated the differences of DoTOI between action steps using two contrasts: 
action step one versus two and three, and action step two versus three.
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Fig. 2. Button Responses to Adapted Stimuli in Adaptation Task These boxplots show parts of the 
behavioural results from the adaptation task. Diamonds indicate means. This graph shows that both 
groups are comparable in their performance in classifying gaze direction in the preadaptation block. 
Interestingly, both groups seem to be similarly affected by the adaptation block, performing worse in 
the post adaptation block.

Fig. 3. Button Responses to Unadapted Stimuli in Adaptation Task. These boxplots show parts of the 
behavioural results from the adaptation task. Diamonds indicate means. This graph shows performances 
in classifying gazes in the un-adapted direction. Performance should not differ in either group between 
pre and postadaptation block, since the bias is towards the un-adapted direction. Therefore, stimuli in 
this direction should be classified as looking even more in this direction, a bias that cannot be captured 
by the behavioral response.
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Table 2.

Summary of the fixed effects from the multilevel regressions using the student TD group, without DoTOI as 
a predictor.
Variable Onset of Predictive Fixationa Duration of Predictive Fixationa

b SE t Appr. dfs p b SE t Appr. dfs p
Action Step 2.87*** .68 4.23 668.54 < .001 1.87*** .52 3.61 666.41 < .001
Condition 6.63*** 1.90 3.50 450.35 < .001 4.54*** .52 3.61 511.80 .001
Action Step 
* Condition

-1.48 .83 -1.78 669.99 .077 -1.04 .64 -1.64 669.58 .103

Note: * indicates a significant result to a level < .05, ** indicates a significant result to a level < .01, *** 
indicates a significant result to a level < .001. 
Significant findings to either of those levels are printed in bold. 
a The outcome variable of this model was transformed using a square root transformation.
Note that Predictive versus Reactive Fixations was not analyzed since it did not reveal significant effects of 
DoTOI in the previous analysis (see Table 4).
R2 for fixed effects:
R2 (Onset of Predictive Fixation) = .06
R2 (Duration of Predictive Fixation) = .05
R2 for fixed and random effects combined:
R2 (Onset of Predictive Fixation) = .24
R2 (Duration of Predictive Fixation) = .17
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Relative Clauses In Context
An EEG study on the influence of topicality cues on grammatical role assignment

J.A. (Thijs) Trompenaars, Herbert Schriefers, Dorothee Chwilla

Relative clauses in Dutch provide an ideal environment for testing the relative strength of  syntactic, semantic 
and pragmatic cues the listener might employ to link subject- and object roles to sentence constituents. This 
thesis investigates the interplay between two such cues – discourse topicality and inherent topicality – in an 
EEG experiment using short discourse contexts. The Topichood Hypothesis, introduced by Mak (2001) and 
reported in Mak et al. (2002, 2006, 2008), will be refined and further explored by directly contrasting two types 
of  topicality introduced to account for processing biases in relative clause processing: the discourse topicality 
of  a nominal referent and the inherent topicality of  a pronominal referent. Despite behavioural evidence for 
an effect of  both topicality factors on relative-clause processing in Dutch, we did not find a clear reflection 
of  processing preferences in ERPs.

Structural integrity of midbrain nuclei in tremor-dominant 
and non-tremor Parkinson’s disease

Margot Heijmans, Annelies van Nuland, Rick Helmich, Ivan Toni

Background
The reason for clinical variability between tremor-dominant and non-tremor Parkinson’s Disease (PD) 
patients is still unclear. Post-mortem evidence suggests that some of  this variability may be explained by 
differences in neurodegeneration patterns in the substantia nigra (SN) and retro-rubral area (RRA). The 
aim of  this study is to in vivo relate patterns of  neurodegeneration in the SN and RRA to PD subgroups and 
resting tremor.
Methods
Using high-resolution diffusion tensor imaging scans of  71 subjects (38 tremor-dominant, 10 non-tremor 
and 23 healthy controls), we test whether fractional anisotropy (FA) values in the SN and RRA differ between 
PD subgroups and healthy controls. Circular regions of  interest were manually drawn by two raters in sub-
regions of  the SN, in the RRA, and in the cerebral peduncles as control areas. 
Results
FA values for the different type of  regions [region of  interest (SN posterior and RRA) or control region 
(cerebral peduncles)] did not differ between PD patients and healthy controls (p = 0.400). This was the same 
between tremor-dominant, non-tremor and healthy controls (p = 0.306). When solely looking at the SN and 
RRA, there were no non-specific FA decreases in PD patients compared to healthy controls in both the SN 
(p = 0.090) and the RRA (p = 0.174). No correlation was found between resting tremor scores and FA values 
for the RRA (r = 0.064, p = 0.648). 
Conclusions
Our findings question whether FA values can be used as a consistent proxy for structural integrity. Other 
promising measures, like free-water, may provide more reliable measures of  neurodegeneration patterns in 
PD patients. 
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website: www.ru.nl/master/cns/journal.



Nijmegen CNS | VOL 13 | ISSUE 1 93

Habit Propensity as a Vulnerability Factor for Dependence 
in Experimentally Smoking Adolescents and Non-Smoking 

Controls
An Exploratory fMRI Study Investigating Group Differences

Rozemarijn Erdbrink, Maartje Luijten

Many Dutch adolescents have tried smoking, thereby risking the chance to become dependent on nicotine. 
In dependence, individuals show more habitual behaviour and less goal-directed behaviour. Dependent 
individuals might also activate the goal-directed brain system (the ventromedial prefrontal (VMPFC) cortex 
and ventral striatum) less and the habitual system (dorsal striatum) more. However, it is still unclear whether 
there are pre-existing differences in brain and behaviour that might indicate susceptibility to dependence. To 
test this, in the current study 8 experimentally smoking adolescents and 10 non-smoking controls participated 
in the slips-of-action task in the fMRI scanner to test differences in goal-directed and habitual behaviour and 
their corresponding brain systems between the two groups. It was expected that experimental smokers would 
be more habitual and less goal-directed compared to the non-smokers, indicating that habit propensity could 
be indicated as a risk factor to dependence. In addition, experimental smokers were expected to activate the 
goal-directed brain system (VMPFC and ventral striatum) less and the habitual (dorsal striatum) brain system 
more. However, there were no behavioural differences between both groups, nor were there differences in 
activity in the VMPFC, ventral and dorsal striatum between the groups. These findings may suggest that the 
differences between dependent and non-dependent individuals are not pre-existing, thus habit propensity 
might not indicate vulnerability to dependence. Due to the very small sample size and the difficulty of  the 
task, however, validation of  these results in a bigger sample is highly warranted. 

Towards layer specific fMRI: investigating feed forward and 
feedback processing in area V5/MT

Alexis Joyaux, David Norris, Floris de Lange, Tim van Mourik

High-resolution fMRI has been used to investigate layer specific feedback responses in V1. Currently, no 
paradigm exists for high-resolution fMRI which enables to investigate both feedforward and feedback 
processing in an area higher in the visual information processing hierarchy than V1. This study aimed to 
establish a paradigm with which those processes can be selectively elicited and manipulated in motion 
sensitive area V5/MT. Two different manipulations of  a moving dot stimulus were used to selectively 
manipulate feedforward and feedback processes. To manipulate feedforward processing, three different 
motion coherence levels were used. Feedback processing was manipulated using an attentional task where 
either the motion or the color of  the stimulus had to be attended. The results showed that increased motion 
coherence elicited increased percent signal change in V5/MT while no attention effect was observed in 
V5/MT. The absence of  such an effect might be explained by confounds of  task difficulty that could have 
weakened attentional influences on V5/MT activity. The proposed paradigm demonstrates an interesting 
approach to investigate layer specific feedforward and feedback processes in V5/MT. However, additional 
investigations and improvements of  the current paradigm are necessary before using it in a high-resolution 
fMRI setting.
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Mechanisms of activity modulation in V1 during illusory 
shape perception: predictions or amodal completion?

Patricia Romero Verdugo, Matthias Ekman, Peter Kok, Floris P. de Lange

Perception is proposed to arise as a generative process in which early areas of  the visual stream receive 
predictions from later areas, allowing for a faster and more efficient processing of  visual input. In a recent 
study using Kanizsa illusory configurations, Kok & de Lange (2014) found that a pattern of  BOLD activity 
resembling predictions and prediction errors could be found in primary visual cortex (V1), providing support 
for a predictive coding account of  perception. However, an alternative interpretation has been suggested to 
explain these effects (Moors, 2015). We conducted an fMRI experiment to test the two proposed interpretations. 
Our results fail to provide conclusive evidence for either of  the accounts, but provide insight into key aspects 
to consider for further research into the mechanisms of  illusory shape perception.

Spatiotemporal Context-Generalization of Object Category 
Representations during Fear Conditioning.

Yannick P. J. Murray, Lycia D. de Voogd, Erno J. Hermans

Generalization of  emotional arousing experiences to other contexts is adaptive. Fear-related disorders are often 
characterized by excessive generalization, indicating an impaired integration of  cue and context information. 
Neocortical representations of  emotional experiences show increased spontaneous reactivations during 
post-learning rest, which lead to better memory. However, it remains unclear whether context spontaneously 
reactivates these neocortical representations of  emotional experiences during rest and how this affects 
generalization. We hypothesize that increased context generalization is associated with heightened activity 
of  neocortical representations of  emotional experiences in a safe context. To test this, participants underwent 
a categorical localizer paradigm, followed by a categorical differential delay cue/contextual fear conditioning 
paradigm. We used a virtual reality environment that contained a threat and safe context to acquire context 
specific activity patterns of  CS+ and CS- object category representations from blood-oxygen-level dependent 
functional magnetic resonance imaging (BOLD fMRI). An exemplar of  the CS+ category was paired with 
a mild electrical stimulation, but only when it was presented in a threat context. We found differential skin 
conductance responses (SCR) in the threat context, indicating successful conditioning, but also in the safe 
context, indicating context generalization. Using representational similarity analyses we found increased 
differential representations in the threat context compared to the safe context. This was driven by reduced 
representation of  the CS- in the threat context. Critically, we found that the more participants inhibited 
CS- representations in the threat context, the more they exhibited fear generalization, measured with SCR. 
In conclusion, our data show that suppression of  neutral objects underlies individual differences in fear 
generalization. 
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The role of suboptimal mitochondrial function in stress 
adaptation and depression pathogenesis

Elisavet Vasileiou, Tamas Kozicz, Tim Emmerzaal

The brain requires massive amounts of  energy to operate optimally. These demands are almost exclusively 
covered by the powerhouses of  neurons, the mitochondria. Recently, a considerable body of  evidence 
implicates impaired mitochondrial bioenergetics in psychopathology, although the mechanism behind this 
link remains elusive. Here we test the hypothesis that the interaction of  suboptimal mitochondrial function with 
chronic stress confers vulnerability to depression, using the novel Ndufs4 deficient transgenic mouse model. 
To this end, we subjected wild type and transgenic adult male mice to the well-established chronic variable 
stress (CVS) paradigm and assessed its effects on physiological parameters and affective behavior. We found 
that chronically stressed Ndufs4 deficient mice showed reduced exploration behavior and a markedly higher 
preference for the outer zone in the open field arena that is not decreased with time, a greater propensity to 
passive coping and earlier signs of  behavioral despair in the forced swim test, but no significant loss of  interest 
in self-care in the splash test and no weight change alterations. Moreover, cFos imaging analysis revealed that 
impaired mitochondrial function was linked with higher activity in the dorsomedial hypothalamic nucleus 
(DMH) in response to acute stress and aberrant spontaneous activity in significant stress-related areas, i.e 
DMH and the ventral portions of  hippocampal CA1 and dentate gyrus, under conditions of  chronic stress. 
Taken together, these results provide evidence that compromised mitochondrial function mediates effects of  
chronic stress on mood and may be a vulnerability factor to maladaptive stress-coping. Our research could be 
the basis for the development of  novel antidepressant pharmaceuticals that target brain metabolic processes 
and could benefit at least a portion of  currently treatment-resistant patients.

Interaction of Stroke and Alzheimer’s disease in the APPswe/
PS1dE9 Mouse Model

Lieke Bakker, Nienke Timmer, Maximilian Wiesmann, Amanda J. Kiliaan

While the most well-known pathology associated with Alzheimer’s disease (AD) is the accumulation of  beta-
amyloid protein, more and more studies indicate a strong interaction of  vascular risk factors with AD, such 
as hypertension, atherosclerosis and stroke. With this study, we strived to clarify the link between AD and 
ischemic stroke in vivo, by means of  a longitudinal study in transgenic AD mice in which ischemic stroke was 
induced. Systolic blood pressure (SBP) measurements have been performed next to a variety of  behavioral 
paradigms, such as the open field, rotarod and Morris water maze. Results one month after surgery suggest 
a larger motor impairment in the AD stroke mice compared to the other groups. At the age of  9-10 months, 
the AD mice showed a higher SBP, in combination with higher activity levels in the open field, in contrast 
to measurements performed in the wildtype mice. At 12 months of  age however, this hyperactive behavior 
was only observed in the AD stroke mice. Moreover, throughout the study, a higher incidence of  epileptic 
seizures was observed in these same AD stroke mice, together with higher mortality rates. It seems that the 
combination of  AD and ischemic stroke leads to a higher sensibility to stressors than either pathology alone, 
resulting in pathological and behavioral alterations that vary during the different stages of  the disease. The 
combination of  AD and ischemic stroke thus deserves more attention, since more insight in the underlying 
mechanisms of  this combination can contribute to the development of  preventatives or treatments.
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Sex Differences in Affective Processing
Taking a Comparative and Evolutionary Approach

Victoria Heng, Eliza Bliss-Moreau, Rogier Mars

Across domains ranging from clinical to evolutionary psychology, and well engrained in the public’s 
perception, is the idea that women are the more emotional sex in comparison to men. However, the extent 
to which perceived sex differences are real and rooted in biology (and therefore evolutionary processes) 
and not the result of  social factors is not entirely clear. In order to investigate whether sex differences in 
affective processing are rooted in biology, we adopted an evolutionary and comparative approach and studied 
7 male and 7 female rhesus macaques (Macaca mulatta) in 4 different experiments that used behavioral, 
physiological and attentional measures to quantify sex differences in affective processing. We did not observe 
sex differences in the majority of  our experiments – including experiments that measured affective reactivity 
to threatening humans (Experiment 1) and live animal stimuli (Experiment 2) and an experiment that 
measured monkeys’ toy preference (Experiment 3). We did observe some sex differences in an experiment 
that measured autonomic nervous system activity and visual attention to passively viewed movies that varied 
in affective content (Experiment 4) We observed that in comparison to females, males has significantly higher 
Respiratory Sinus Arrhythmia values, a measure that reflects parasympathetic nervous system activity, and 
attended movies that showed neutral affective content significantly more than females. We did not observe 
any sex differences in measures that reflected sympathetic nervous system activity (i.e., Dark-Adapted Pupil 
Diameter) or in measures that reflected mixed parasympathetic and sympathetic nervous system activity (i.e., 
heart rate and respiration rate). These results suggest that males overall were less engaged with the movie 
stimuli compared to females and were possibly less anxious compared to females. Our findings are not in 
line with results from human studies, which generally do not report sex differences in physiological measures 
relating to affective processing. This could mean that human sex differences are largely the result of  social 
and cultural processes and are not rooted in biology. However, to our knowledge we are the first ones to study 
sex differences in rhesus macaques across tasks using various measures for affective processing, and more 
research using a wider variety of  animal models and translational tools is warranted.

Acquisition of Novel Concept Spaces

Adrian Jodzio, Stephanie Theves, Christian Doeller

The hippocampus is known to play a key role in spatial navigation as well as declarative memory. More 
recently, hippocampal circuitry has been shown to map more abstract spaces such as social space (Tavares 
et al., 2015) or the mapping of  frequency tones (Aronov et al. 2017). Here we test whether novel concepts are 
also acquired with a map-like representation in the hippocampus. We create a novel concept map comprising 
symbols spanning two feature dimensions. Participants learn to categorize symbols into A & B concepts, as 
well as associate real-world objects with some of  these symbols. By means of  showing them the objects in the 
scanner both before and after the learning phase, we are able to examine changes in neural representations 
as a function of  learning. Participants are able to learn the novel concept along with the concept space. fMRI 
data indicate a repetition suppression effect in the right body of  the hippocampus for objects that are close 
together compared to those that are further apart within the concept space. 
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