Masers
Precision probes of molecular gas

Anita M.S. Richards, UK ARC, Manchester
A. Baudry, L. Decin, M.D. Gray, S. Etoka, F. Herpin, E.M.L. Humphreys,
I. Marti-Vidal, A. Sobolev, W. Vlemmings, J.A. Yates and many more
Environments of compact masers

• Active galaxies \textit{Impellizzeri}
• Galactic structure, astrometry \textit{van Langevelde}
• Circumstellar envelopes of evolved stars
 – How is mass ejected from the stellar surface?
 • SiO masers overlap radio photosphere (\textit{Matthews})
 – How is wind driven?
 • Composition and acceleration of clumps
• Star-forming regions
 – Accretion, interaction, jet launching....
• Maser physics
 – Physical conditions
 • Flares
 • Turbulence
 – Basic physics
Zones around the star
CSE radius: log scale

- Infall and outflow
- Accelerating expansion
- Pulsational shocks
- Waves
- Pulsation
- Convection
- Masers:
 - SiO
 - H$_2$O 22GHz
 - OH 1665/7MHz
 - OH 1612MHz

- How is matter ejected from star?
- What transforms outflow / infall to radial acceleration?
- ~50x denser
- Same clouds? Re-form when dust condenses fully?

Adapted from Woitke Vesc
Transport across radio photosphere

- $2 \rightarrow 5 \ R_\star$ radio photosphere
 - $\lambda \ 1 - 6+ \ cm$
- Compare VLBA/KVN monitoring of SiO masers
 - VLA/e-MERLIN stellar continuum
 - 6 GHz stellar size
 - Optical/IR interferometry &/or ALMA dust formation?
- As done with SiO masers + VLTI in S Ori
 - Wittkowski et al. 2007

W Hya
Color Vlemmings et al. 338 GHz
Reid & Menten 22 GHz disc
Contours Cotton et al. 43 GHz
SiO masers
What forces act on SiO at 2-5 R_{\star}?

VLBA monitoring

- Heating \Rightarrow expansion \Rightarrow convection
 - Inside $2R_{\star}$: fails once $\tau_{\text{NIR}} < 1$
 - But + pulsation = waves Freytag
- R Cas SiO feature proper motions
 - Many directions, small net outflow
 - Consistent with $\dot{M} \sim 4 \times 10^{-7} M_\odot/yr$
- Flow mostly not along B lines
 - Minority of matched features have consistent polarization angles
 - Minority of those close to outflow, but more than any other direction
 - Magnetic field has enough energy to shape but not drive outflow
- Scattering by heat-resistant grains?
- Magnetic buoyancy?
 - Obs. evidence for small-scale field complexity; Lopez Ariste model
Resolving 22 GHz H$_2$O masers

- Each channel: beamed components:
- Fit 2-D Gaussian, FWHM s (0.01-10 mas)
 - Uncertainty $\sigma_{\text{pos}} \propto (\text{beamsize})/(S/N)$
- Series make features (e.g. A - D):
 - Gives 'true' cloud size L (2-100 mas)

- $\theta_B < ($few$)100$ mas resolve L
- $\theta_B \lesssim 25$ mas also resolve s
 - Beaming angle $\Omega = s^2/L^2$
 - Shock v. quiescent clouds
 - Accurate T_b
- $\theta_B \lesssim 5$ mas resolve out?
 - If shortest spacing $\lesssim 80$ mas (1.5 Mλ)
22 GHz maser clouds over-dense

- Filling factor (<1%), mass loss rate and quenching density suggest 22-GHz clouds are 30 - 80 x average wind density

- Birth size 5-10% R_*
 - If clouds expand radially in outflow

Richards+ 2012
Maser beaming

- Linear strings of components indicate velocity gradient
 - Not necessarily elongated maser
- Internal gradients vary at ~sound speed
- Symbol size \(\propto \) beamed component size \(s \)
- Beaming angle
 \[\Omega \sim \frac{\text{feature FWHM}^2}{\text{feature size } L} \]
 - feature FWHM \(\sim s_{\text{peak}} \)
Shrinking of brighter masers

- Component size s
- Intensity I_{ν}
- Brighter spots are smaller

$s \propto \frac{1}{\sqrt{\ln(I_{\nu})}}$

“Amplification-bounded” beaming from \sim spherical clouds
But *sometimes* brighter = bigger

- Spectral peak components swell
- Disorderly spatial distribution
But sometimes brighter = bigger

- Spectral peak components swell

- Shock 'into page'
 - Maser propagates perpendicular to shock
 - Pump photons escape orthogonally
 - Entire surface emission is amplified
 - "Matter bounded" beaming
 - Apparent size \(\sim \) actual size
Maser (negative) optical depths for some of the ~50 lines of H$_2$O visible to ALMA as functions of kinetic temperature & o-H$_2$O number density.
VY CMa maser model (Gray)

- 658, 321, 325 GHz deeper shade = stronger maser τ
- 22 (solid), 183 (dotted) GHz heavy contour at 50% max τ
- Lowest contour at crude estimate of sensitivity limit
ALMA SV VY CMa multi-λ water masers

- 183 GHz masers very extended as predicted
 - Distribution similar to/within HST scattered light (as are OH)
 - Follows small, cool dust grains/extends to low densities

183 GHz masers over HST contours/grey Smith+2001

- 183 GHz also found close to star
- Excited in exceptionally wide range of parameter space
VY CMa sub-mm H$_2$O masers

Star, VY

- 658-GHz surprisingly extended round cold clump C
 - Shock?
 - OGorman+15

- 325 GHz furthest
- 658 GHz closest
- 321 GHz between
 - Clearest strong acceleration
 - Richards+14
Zoom in on 5 transitions

- H_2O components
- Size $\propto \sqrt{\text{flux density}}$
- VY at (0, 0)

- 321, 325, 658 GHz obs 2013
- 183 GHz obs 2016
Angular separation-velocity

- Well-defined inner shell limits

- 22 GHz outer
- 658 GHz outer
- 183 GHz inner
- 22 GHz inner
- SiO outer
- 658 GHz inner
Temperature constraints

- Roughly supports Decin model (which includes dust formation feedback & variable mass loss rate)
Number density constraints

- Number density 50 or more \(n\) x higher often needed
 - Dense clumps?
Extending to 30-50 km baselines

- c. 50 predicted H$_2$O maser transitions in ALMA bands
 - $T_b \geq \text{few } 10^4 \text{ K (representative } \nu, \text{ good & bad transmission)}$

- Detectable at 10-20 mas resolution in 30-60 min
 - Resolve all maser emission, model physical conditions

<table>
<thead>
<tr>
<th>1st octile</th>
<th>0.1 km/s</th>
<th>current specs</th>
<th>Resolution/2</th>
<th>Resolution/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freq (GHz)</td>
<td>Time (h)</td>
<td>beam (mas)</td>
<td>5σ (K)</td>
<td>beam (mas)</td>
</tr>
<tr>
<td>86</td>
<td>0.5</td>
<td>66.0</td>
<td>1,172</td>
<td>33.0</td>
</tr>
<tr>
<td>137</td>
<td>0.5</td>
<td>41.4</td>
<td>1,024</td>
<td>20.7</td>
</tr>
<tr>
<td>183</td>
<td>1.0</td>
<td>31.0</td>
<td>6,201</td>
<td>15.5</td>
</tr>
<tr>
<td>230</td>
<td>0.5</td>
<td>24.7</td>
<td>911</td>
<td>12.3</td>
</tr>
<tr>
<td>325</td>
<td>1.0</td>
<td>17.5</td>
<td>7,079</td>
<td>8.7</td>
</tr>
<tr>
<td>354</td>
<td>0.5</td>
<td>16.0</td>
<td>1,288</td>
<td>8.0</td>
</tr>
<tr>
<td>447</td>
<td>0.5</td>
<td>12.7</td>
<td>9,018</td>
<td>6.3</td>
</tr>
<tr>
<td>658</td>
<td>0.5</td>
<td>8.6</td>
<td>13,226</td>
<td>4.3</td>
</tr>
<tr>
<td>899</td>
<td>0.5</td>
<td>6.3</td>
<td>24,724</td>
<td>3.2</td>
</tr>
<tr>
<td>906</td>
<td>1.0</td>
<td>6.3</td>
<td>29,804</td>
<td>3.1</td>
</tr>
</tbody>
</table>
Extending to 30-50-3000 km baselines

- c. 50 predicted H$_2$O maser transitions in ALMA bands
 - $T_b \gtrsim$ few 10^4 K (representative ν, good & bad transmission)
 - Detectable at 10-20 mas resolution in 30-60 min
 - Resolve all maser emission, model physical conditions
 - GMVA/EHT-type baselines for proper motions of peaks

<table>
<thead>
<tr>
<th>1st octile</th>
<th>0.1 km/s</th>
<th>current specs</th>
<th>Resolution/2</th>
<th>Resolution/3</th>
<th>Resln/20 (3200 km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freq (GHz)</td>
<td>Time (h)</td>
<td>beam (mas)</td>
<td>5σ (K)</td>
<td>beam (mas)</td>
<td>5σ (K)</td>
</tr>
<tr>
<td>86</td>
<td>0.5</td>
<td>66.0</td>
<td>1,172</td>
<td>33.0</td>
<td>4,686</td>
</tr>
<tr>
<td>137</td>
<td>0.5</td>
<td>41.4</td>
<td>1,024</td>
<td>20.7</td>
<td>4,095</td>
</tr>
<tr>
<td>183</td>
<td>1.0</td>
<td>31.0</td>
<td>6,201</td>
<td>15.5</td>
<td>24,803</td>
</tr>
<tr>
<td>230</td>
<td>0.5</td>
<td>24.7</td>
<td>911</td>
<td>12.3</td>
<td>3,643</td>
</tr>
<tr>
<td>325</td>
<td>1.0</td>
<td>17.5</td>
<td>7,079</td>
<td>8.7</td>
<td>28,315</td>
</tr>
<tr>
<td>354</td>
<td>0.5</td>
<td>16.0</td>
<td>1,288</td>
<td>8.0</td>
<td>5,153</td>
</tr>
<tr>
<td>447</td>
<td>0.5</td>
<td>12.7</td>
<td>9,018</td>
<td>6.3</td>
<td>36,073</td>
</tr>
<tr>
<td>658</td>
<td>0.5</td>
<td>8.6</td>
<td>13,226</td>
<td>4.3</td>
<td>52,903</td>
</tr>
<tr>
<td>899</td>
<td>0.5</td>
<td>6.3</td>
<td>24,724</td>
<td>3.2</td>
<td>98,894</td>
</tr>
<tr>
<td>906</td>
<td>1.0</td>
<td>6.3</td>
<td>29,804</td>
<td>3.1</td>
<td>119,216</td>
</tr>
</tbody>
</table>
Continuum detectable on 50 km b'lines

- Stellar/dust continuum extremely valuable, including:
 - Register masers
 - Self-calibration across the band in 20 sec solint
- Sufficient S/N simultaneous with masers at same resoln
THz water masers in CSE

- AGB W Hya, UHer;
- RSG VY CMa
 - Neufeld et al. 2017
- 1.278, 1.296, 1.885 THz, SOFIA GREAT
- Thermal, Maser, Quasi-thermal
- THz masers saturate at lower maser gain than 22 GHz
Resolving out

- MERLIN (200-km) gets all 22 GHz flux at >100 pc
- Even ground-based VLBI resolves-out more than half
 - Even at a few kpc
Environments of compact masers

- Active galaxies \textit{Impellizzeri}
- Galactic structure, astrometry \textit{van Langevelde}
- Circumstellar envelopes of evolved stars
 - How is mass ejected from the stellar surface?
 - SiO masers overlap radio photosphere \textit{(Matthews)}
 - How is wind driven?
 - Composition and acceleration of clumps
- Star-forming regions
 - Accretion, interaction, jet launching....
- Maser physics
 - Physical conditions
 - Flares
 - Turbulence
 - Basic physics
Cepheus A RadioAstron

- SF region at 700 pc
- RadioAstron-Yebes
 - 3.3 Earth diameter baseline
- Fit 15 μas spot FWHM s ≲ 0.01 au
 - 0.6 km/s, 80, 40 Jy components
- $T_b > 2 \times 10^{14}$ K

Total power (Yebes)
~800 Jy peak
Detected RA-GB

Rapid variability Pushchino

Sobolev et al. 2018
Sun-sized spots in CepA

- High 22-GHz gain if gas:dust ratio v. high (or dust cool?)
 - IR radiation quenches collisional pumping
 - YSO circumstellar/protoplanetary discs e.g. dust has coagulated (low n_{grain} density)?
 - Cloud overlap (Cep A needs complex distribution)?
 - Multiple turbulent vortices?

Compact components at ~0.6 km/s

Ground-based baselines peak 540 Jy
SFR also resolved-out, weaker sub-mm?

- Cep A 321/22 GHz 1/700
- W49 321/22 GHz 1/60; 325/22 GHz 1/8 Menten'91
Some SFR strong (sub-)mm H$_2$O masers

- Orion KL:
 - 658/22 GHz > 1/2
 - Spatially distinct
 - Other masers much weaker
- 183 GHz strong, common
 - But extended?
 - Chernicharo '99
 - Test with ALMA

Cernicharo+’90 Orion KL Hirota+’16
Some SFR strong (sub-)mm H$_2$O masers

- Orion KL:
 - 658/22 GHz $> 1/2$
 - Spatially distinct
 - Other masers much weaker
- 183 GHz strong, common
 - But extended?
 - Chernicharo '99
 - Test with ALMA
Most likely SOFIA maser (stepped line spectrum) Matches e-MERLIN line from hottest part of IRS1 as expected for THz maser

22 GHz Effelsberg, e-MERLIN
1296 GHz SOFIA
1st THz maser in SFR
Herpin et al. 2017
Why are compact 22-GHz masers seen around YSO but not evolved stars?

- RadioAstron: 7 Galactic SF at 22 GHz, 22-180 μas resolution and 2 in OH at 1-few mas resolution. No evolved stars.
- Cep A: 0.6 km/s peak region $L \sim 1$ au; spot $s \sim 0.01$ au
 - Estimate beaming angle $\Omega \sim (s/L)^2 \sim 0.0001$ sr
 - More evidence for maser saturation so tighter beaming
- Evolved star CSE gas:dust ~ 200 at $>5R_*$
 - Dust probably hotter than gas in 22 GHz region
 - Weakens collisional pumping, suppresses radiative pump
 - 658 GHz also v. bright, less variable - more saturated?
 - 183 GHz worth investigating
 - Even brighter predicted H_2O masers accessible from space
 - 120, 793, 899, 1077, 1486, 1689, 1849, 1873 GHz
Environments of compact masers

- Active galaxies *Impellizzeri*
- Galactic structure, astrometry *van Langevelde*
- Circumstellar envelopes of evolved stars
 - How is mass ejected from the stellar surface?
 - SiO masers overlap radio photosphere *(Matthews)*
 - How is wind driven?
 - Composition and acceleration of clumps
- Star-forming regions
 - Accretion, interaction, jet launching....
- Maser physics
 - Physical conditions
 - Flares
 - Turbulence
 - Basic physics
183 & 22 GHz blue-shifted flare 2013-16

- VY CMa \(V^* \) 22 km/s, 22-GHz peak \(\sim 18 \) km/s for decades
- 2016 183-GHz peak \(\sim -1 \) km/s as bright as \(\sim V^* \) peak
- 1994, 2000 weak 22 GHz \(\sim -1 \) km/s
- 2013 KVN 22 GHz \(\sim -1 \) km/s \(\sim 30\% \) of central peak
- 2016 22 GHz similar new peak: \(\sim -1 \) km/s \(\sim 90\% \) of central peak
Clump 'C' shock?

- Continuum contours
- 658-GHz masers appear to curve round 'C'
 - Wind collides with cold, dense clump?
 - O'Gorman+14
- All masers, many lines avoid 'C'
 - Only seen at velocities very different from V_\star in that direction
Shocks round clump C?

- 2016: 183 and 22 GHz flares around -1 km/s
- 2013 (KVN): 22 GHz flare starts?
- Both lie between VY & Clump C
- Probably not co-spatial
 - 22 GHz aligned only by centre of expansion

NB faint &/or extreme velocity emission not shown
W Hya localised flare

- W Hya $>10x$ increase of 40 km/s peak (\sim3000 Jy)
 - Pushchino monitoring (Rudniskij)
 - MERLIN imaging
Cloud overlap

- Two spectrally and spatially discrete features
- Exchange places spatially during flare
- Foreground amplifies background
 - Predicted by e.g. Kartje, Konigel & Elitzur
Maser properties reveal wind disturbances

- Brighter = smaller beamed size?
 - $s \propto \frac{1}{\sqrt{\ln(I_v)}}$
 - Smoothly expanding spheres

- Brightest emission \sim cloud size?
 - Thinner shells/inner edges
 - Rapid maser variability
 - Stars with deepest periods
 - Shocked slabs/flares

Richards Elitzur & Yates 2011
Elitzur Hollenbach & McKee 1992
Fractal scale metric for turbulence

- Direct measurements of turbulence:
 - Line width fluctuations
 - Maser proper motions

- Fractal scales
 - Incompressible/Kolmogorov within clumps
 - Shallower slope on larger scales: supersonic dissipation?

- Need full range of separation scales
 - Inside & between clouds

SFR S128A (22 GHz) Richards, Lekht+ '04, Gray'12, Strelniski+ '02, Silant'ev+06,
Non-Gaussian statistics

- Saturated masers may show residual coherence due to stimulation of emission ([Gray'12](#))
- Spectral resolution ~ 2 Hz (Lorenz width) sampled at $\frac{1}{2}$ sec
 - Sample line widths - Fourier components of avg. 'line'
 - (tens) mas resolution to avoid blending
 - 1000s Jy 6 GHz methanol etc. bright enough for eMERLIN
- Time coherence test, μs sampling
 - Single dish, [Takefuji+'16](#)
 - Coherence scale 30μs for W49N
 - $\gg 5\mu$s expected for Gaussian stats
 - Can't correct atm that fast
 - Try from space
 - 22, 183 GHz
 - Need μs sampling
Summary: High-res/ space maser science

- Proper motions
 - Evolved star mass loss mechanisms
 - Star-formation jet launching, proto-planetary discs
- Physical conditions on au scales or less (multi-transition)
- Magnetic fields (avoid beam depolarization)
 - Polarized flux maybe less resolved-out than total intensity
- Beaming: distinguish shock v. overlap amplification
 - Test saturation state
- Turbulence: extreme amplification, fractal scales
- Non-Gaussian photon statistics
 - Very high time and spectral resolution
 - Maybe practical up to 183 GHz incl. single dish
What do we need?

• Few Earth-diameter baselines at cm wavelengths
 – Plus multiple scales down to ~100 km
• Polarization - circular and linear - often strong
• Rapid (weeks) response for flares
• Potentially highly beamed (sub-)mm masers
 – Test with spectral line VLBI $\lambda < 3\text{mm}$!
 • LLAMA and ALMA extended baselines needed
• Great single dish space potential for (sub-)mm masers
 – Meths has multiple transitions
 • Sample a range of SF conditions
• I volunteer for the servicing mission...