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1 Introduction

The field of High Energy Physics deals with the smallest particles, usually elementary particles,
and their interactions. Ironically, the tiniest particles are studied with the largest machines in the
world. In particle accelerators small particles are given enormous energies before being collided. The
products of these collisions provide information on the building blocks of the universe.

At the moment, the most powerful accelerator to date is being finished. In the Large Hadron
Collider (LHC), protons with an energy of 7 TeV each will be collided. These collisions will be studied
by four detectors. It is expected that they will find the famous Higgs boson, which is predicted by
the Standard Model of particle physics.

If the Higgs boson is found, the Standard Model is complete. However, no one believes that
nature is completely described by the Standard Model. Therefore the LHC also aims to search for
new physics. Two of the four detectors at the LHC are multi-purpose detectors, designed to detect
a variety of signals, in particular indications for new physics. The multi-purpose detector that will
be mentioned specifically in this thesis is ATLAS (A Toroidal LHC Apparatus).

One of the most popular extensions of the Standard Model is supersymmetry, and the search
for supersymmetry is an important physics goal for ATLAS. Unfortunately supersymmetry is not
characterized by a single signal. There are many different possible phenomenologies depending on
the supersymmetric model and the parameters within the model.

Since a different phenomenology yields a different signal at the LHC, it is important to identify
the possible phenomenologies in order to recognize supersymmetry. In this thesis, the possible
phenomenologies associated with minimal supergravity breaking (mSUGRA) are investigated.

To this end, we first discuss some key concepts of the Standard Model in section 2. In section 3,
supersymmetry and mSUGRA are introduced. The methods and programs used in this research are
presented in section 4. In section 5, the mass spectrum following from mSUGRA is explained. The
results are applied in section 6, where we develop a systematic method to investigate the possibilities
for supersymmetric phenomenology in the context of mSUGRA.

1.1 Notation and Conventions

Natural units are used throughout this thesis, so ~ = c = 1. Also, the Einstein summation convention
is used, so repeated indices are summed over unless explicitly stated otherwise. All other conventions
are introduced when they are needed.
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2 The Standard Model

The Standard Model is one of the most succesful theories ever. The match between theoretical
predictions and actual measurements is astounding. Also, the entire theory can be derived from
symmetry arguments. The fact that such a simple concept yields such a successful theory is truly
amazing. The purpose of this section is to give a short overview of some important concepts that
are used later in this thesis. For a rigorous treatment of quantum field theory, see for instance [1],
[2] or [3].

2.1 Gauge Invariance

When we look at nature, we see certain symmetries. Or more precise, we see that physics is invariant
under certain transformations. These transformations are described by group theory. In this sense
the Standard Model ‘is described by the group SU(3) × SU(2) × U(1)’: it is derived by requiring
invariance under this group. So how do we do that?

In this section, we start with a Lagrangian for spin 1/2 fermions and introduce the postulate
of local gauge invariance. We first encounter this postulate in an Abelian (commuting) theory and
find that it reproduces the theory of electrodynamics. We then apply it to non-Abelian theories and
obtain the Standard Model gauge group.

Abelian Gauge Symmetries. Spin 1/2 fermions are the most commonly observed particles.
They are described by spinors ψ that have four degrees of freedom: two for the particle and two for
the corresponding antiparticle. We can split a fermion into a left-handed part ψL and a right-handed
part ψR using the helicity operator, which is the projection of the spin onto the direction of motion.
Massive fermions are always a linear combination of ψL and ψR since the helicity can be flipped with
a Lorentz boost1. Massless fermions, that travel with the speed of light, are pure helicity eigenstates.
Therefore the spinors that describe them only have two degrees of freedom. The basic relativistic
Dirac Lagrangian for a massless fermion2 consists of kinetic terms of the form:

L = iψ̄γµ∂µψ (2.1)

where the γµ are the Dirac gamma matrices. The question we ask ourselves is what symmetries this
Lagrangian has. According to Noether’s theorem, a continuous symmetry gives rise to a conserved
charge and current, so conserved quantities can guide us to an underlying symmetry. The simplest
example is electric charge. This is the conserved charge generated by the U(1)-symmetry of the
fermion Lagrangian (2.1) under the constant phase transformation:

ψ → eiϕψ (2.2)

This type of symmetry is called global, since it is the same for every point in spacetime. The trick
is to require the symmetry to be local, so ϕ can depend on place and time. This makes sense, for
instance because gravity is inherently local. However, the most important reason to introduce the
postulate of local gauge symmetry is that it works. As we will see in a moment, local gauge invariance
yields very nice results. So let us study how the theory is changed if we require the symmetry to be
local.

We still want our Lagrangian to be invariant under equation (2.2), even if ϕ depends on place
and time, so we replace the derivative ∂µ with a covariant derivative

Dµ = ∂µ − ig1Aµ (2.3)

where Aµ is a vector field (gauge field) and g1 is the coupling strength. In case of U(1)-symmetry,
the covariant derivative is invariant under the local gauge transformation (2.2) provided that Aµ

1For massive particles, an appropriate Lorentz boost flips the direction of motion while the spin is unchanged, so
the helicity changes sign.

2For massive fermions we also need a mass term of the form mψ̄ψ, but we will omit that for now.
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transforms as:
Aµ → Aµ +

1
g1

∂µϕ (2.4)

Introducing the covariant derivative is identical to what is known in electrodynamics as minimal
substitution, which describes interactions between the electromagnetic field Aµ and charged particles.
Also, we recognise equation (2.4) as the gauge freedom in electrodynamics.

We complete the Lagrangian by adding kinetic terms for the vector field Aµ. They need to
contain derivatives of the field Aµ and should leave the theory gauge invariant. The simplest object
we can use is the commutator of two covariant derivatives. In case of U(1)-symmetry this gives the
electromagnetic field tensor:

[Dµ, Dν ] = −ig1 (∂µAν − ∂νAµ) = −ig1Fµν

The kinetic term for a vector boson is then given by − 1
4
F µνFµν . In case of electrodynamics the

equations of motion for the complete Lagrangian, including the kinetic terms, reproduce Maxwell’s
equations. The field Aµ describes the massless spin 1 gauge bosons that are more commonly known
as photons. So the theory of electrodynamics can be derived from a simple symmetry argument!

Non-Abelian Gauge Symmetries. Encouraged by this success, we try to generalize this
approach. Electric charge is not the only conserved quantity. Another example is conservation
of electron number. An electron can decay to a W boson and an electron-neutrino, but not to
for instance a muon-neutrino. This can be described mathematically by saying that the electron
and the electron-neutrino are grouped together in a doublet and that they are linked by a unitary
transformation. The underlying symmetry group turns out to be SU(2).

Another example is quantum chromodynamics (QCD). Quarks have a three-valued conserved
quantum number called ‘colour’. The underlying symmetry group is SU(3). Since free coloured
particles have never been observed, we do not see this symmetry directly, but we can infer it from
the multiplet structure we observe in hadrons [4].

The underlying symmetries of non-Abelian gauge theories are associated with additional degrees
of freedom. If they are labeled by indices, the Lagrangian is invariant under a unitary transformation:

ψj → U jkψk (2.5)

Any unitary matrix can be written as the exponential function of a Hermitian matrix that can in
turn be written as a linear combination of the generators T a of the Lie-algebra of the symmetry
group, so equation (2.5) can be written as:

ψ → Uψ = eiθaT a

ψ ≡ ei~θ·~Tψ (2.6)

In case of SU(2) the index a can be 1, 2 or 3, while for SU(3) the index can run from 1 to 8. The
generators T a do not commute, so equation (2.6) is a generalization of equation (2.2) to non-Abelian
gauge transformations. The arguments used to construct the Lagrangian are the same, but the
resulting terms are more complicated. For instance, the covariant derivative that follows from SU(2)
gauge invariance is given by:

Dµ = ∂µ − ig2T
aAa

µ (2.7)

with T a the SU(2) generators, Aa
µ the gauge fields and g2 the coupling constant. The kinetic terms

are constructed in the same way as in the U(1) case. This introduces the commutator of two co-
variant derivatives that have the form of equation (2.7). The generators T a do not commute, so this
implies self-interactions between the gauge bosons. Working out the details shows that the number
of gauge bosons that is obtained with SU(3), SU(2) and U(1) symmetry is indeed the number that
is observed experimentally.

Group Theory. In group theory language we say that particles are in certain representations
that are characterized by their dimension [5]. If we say that quarks are in an SU(3) triplet, we mean
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that they are in a three dimensional representation of SU(3), because a quark can have three different
colours3. Table 2.1 lists the Standard Model particles and the SU(3)×SU(2)×U(1) representations
they are in. Fermion representations are split into a left-handed doublet and a right-handed singlet
representation since experiments show that weak interactions only couple to the left-handed part.

Name Symbol (SU(3), SU(2), U(1))

Quarks

Left-handed doublet (u, d)L ≡ QL (3, 2, 1
6
)L

Right-handed up-type singlet uR (3, 1, 2
3
)R

Right-handed down-type singlet dR (3, 1,− 1
3
)R

Leptons

Left-handed leptons (νe, e
−)L ≡ LL (1, 2,− 1

2
)L

Right-handed charged leptons e−R (1, 1,−1)R

Gauge bosons

Gluons (strong force) g (8, 1, 0)
W and Z bosons (weak force)4 W±, Z (1, 3, 0)
Photon (electromagnetic force)4 γ (1, 1, 0)

Scalar (see section 2.2)

Higgs boson H (1, 2, 1
2
)

Table 2.1: Particle content of the Standard Model. Of the three generations of quarks and leptons
only the first is shown. Note that left-handed fermions are doublets under SU(2) while right-handed
fermions are singlets. SU(2) and SU(3) representations are labeled by their dimension while U(1)
representations are labeled by the eigenvalue of the U(1) hypercharge generator Y , which is related
to the electric charge Q and the third component of isospin T3 by the Gell-Mann-Nishijima formula
Q = T3 + Y

2.2 The Higgs Mechanism

Obtaining the Standard Model gauge bosons from group theory is certainly a nice result, but there is
one problem: all particles in our theory are massless. This is fine for the photon and the gluons and
perhaps for the neutrinos, but we know all other particles have mass. The simplest way to solve this
problem is by adding mass terms to the Lagrangian. However, if we do that, we run into problems.

Mass terms for fermions break chiral symmetry, under which left-handed and right-handed
fermions transform independently. A fermion mass term has the form mψ̄ψ = m(ψ̄LψR + ψ̄RψL)
and couples a left-handed fermion, which is an SU(2) doublet, to a right-handed fermion, an SU(2)
singlet. That means that we will end up with a Lagrangian that is a doublet under SU(2). This is
not gauge invariant and therefore unacceptable.

Adding a mass term for gauge bosons, which is of the form 1
2
m2AµA

µ, breaks the gauge invariance
we based the theory on. This essentially leaves us without a theory, so that is not an option either.
It is clear that we need a proper way to generate mass.

Let us start with fermion masses. The simplest way to add a mass term without breaking chiral
symmetry is by introducing another SU(2) doublet φ. This can be used to couple a left-handed

3To get a feeling for representations, it is useful to realize that the Standard Model fermions are in the fundamental
representation. In familiar terms that means they can be viewed as vectors. E.g. a doublet is a 2D vector, a singlet
is a number. If ψ is a column vector, ψ̄ is a row vector, so ψ̄ψ can be contracted to form a singlet. The gauge bosons
are in the adjoint representation, which means they can be seen as matrices.

4The W and Z bosons and the photon are actually mixtures of the unbroken representations listed here. They
emerge after spontaneous symmetry breaking (see section 2.2).

7



doublet to a right-handed singlet with a Yukawa interaction:

Ly = −yψ̄LφψR = −y (
ψ̄u, ψ̄d

)
L

(
φu

φd

)
ψR = −yφuψ̄uLψR − yφdψ̄dLψR (2.8)

Here u and d denote the up and down components of SU(2) doublets, so they should not be summed
over, and the coupling y is different for fermions with different masses. Although equation (2.8)
couples left-handed fermions to right-handed fermions in a gauge invariant way, it does not auto-
matically generate a mass term. But if φ has a vacuum expectation value (vev), it can be written
as:

φ = 〈φ〉+ η (2.9)

where the vev 〈φ〉 is the first order expansion of φ, and η contains the higher order terms (quantum
fluctuations). The coupling to η is an interaction between three fields, but the coupling to the constant
〈φ〉 has the form of a mass term. That means that an additional SU(2) doublet can generate a mass
term if it has a non-zero vev.

The particles we encountered so far do not have a vev and we cannot add it without breaking
either gauge or Lorentz invariance. However, there is a field that can obtain a vev. For a complex
scalar, the most general Lagrangian that is gauge invariant and renormalizable (see section 2.4) is:

Lφ = (Dµφ)†(Dµφ)− V = (Dµφ)†(Dµφ)− µ2φ†φ− 1
4
λ(φ†φ)2 (2.10)

with µ2, λ ∈ R. The covariant derivative in equation 2.10 follows from U(1) and SU(2) gauge
invariance and is found by combining equations (2.3) and (2.7):

Dµ = ∂µ − i

2
g1Bµ − ig2T

aAa
µ

where Bµ is the U(1) hypercharge gauge boson and Aa
µ are the SU(2) gauge bosons. The potential

V needs to be bounded from below, so λ must be positive. For µ2 we can distinguish two cases,
that are shown in figures 2.1 and 2.2. In figure 2.1 the minimum of the potential is zero and nothing
interesting happens. In contrast, in figure 2.2 the minimum is non-zero and φ obtains a vev.

Figure 2.1: µ2 > 0 Figure 2.2: µ2 < 0

Figure 2.1 and 2.2: The scalar Lagrangian from equation (2.10) gives rise to two possible shapes of
the potential. If µ2 > 0, the potential looks like the graph in figure 2.1. If µ2 < 0, the potential looks
like the graph in figure 2.2.

Now we simplify equation (2.8) by fixing the gauge. First we use SU(2) rotations to bring 〈φ〉 to
the form

〈φ〉 =
1√
2

(
0
v

)
(2.11)

and then we make v real with a U(1) phase transformation. Inserting this in equation (2.8) indeed
yields a mass-term for down-type fermions. A mass-term for the up-type fermions is generated by
the charge conjugate5 of φ. That means our first problem is solved: we now have massive fermions.

5Charge conjugation is essentially a transformation between matter and antimatter. The charge conjugate of a
complex SU(2) doublet is given by φc = iσ2φ∗ where the Pauli matrix σ2 is responsible for bringing equation (2.11)
into the right form to generate mass for the up-type fermions.
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It turns out that φ generates masses for the gauge bosons as well. We can see this by expanding
the Lagrangian (2.10) around the new minimum (2.11). This is an exercise for a rainy Sunday
afternoon, but writing out the Lagrangian to first order shows that 〈φ〉 gives rise to a term for the
U(1) and SU(2) bosons (A1

µ, A
2
µ, A

3
µ, Bµ) ≡ Vµ that is given by:

Lm =
1
2
VµM

2V µ

where the mass matrix M2 is:

M2 =
v2

4




g2
2 0 0 0
0 g2

2 0 0
0 0 g2

2 −g1g2

0 0 −g1g2 g2
1




The off-diagonal terms in M2 mix the neutral SU(2) boson A3
µ and the U(1) boson Bµ. To obtain

the mass-eigenstates, we have to diagonalize M2. This results in massive W and Z bosons and a
massless photon, exactly as observed in nature.

The next order expansion of φ, which is the field η from equation (2.9), behaves like a scalar field,
describing the famous Higgs particle that will hopefully be discovered at the LHC. That covers all
four real degrees of freedom of φ: one scalar particle and three longitudinal components of the now
massive vector bosons6. Higher order terms in the Lagrangian give rise to interactions among the
Higgs and gauge bosons. For instance it follows that a photon couples to a W boson, as it should
since W bosons are charged particles.

This way of generating mass is called the Higgs mechanism, after one of its inventors. It is also
known as spontaneous symmetry breaking. The last name can be understood from figures 2.1 and 2.2.
Both potentials have the same SU(2) rotation symmetry, but seen from a minimum of figure 2.2 the
potential does not seem to be symmetric. In that case the symmetry is said to be ‘spontaneously
broken’. Although the symmetry appears to be broken, the theory is still intact, and so are most of
its properties.

2.3 Feynman Rules

Now that we have a Lagrangian, we can use the Euler-Lagrange equations to obtain the equations
of motion. That is a good check on the validity of our Lagrangian, but experiments do not measure
equations of motion, they measure cross sections. We can calculate those from the Lagrangian as
follows:

1. Go from the Lagrangian to the Hamiltonian in the usual way.

2. Insert the Hamiltonian in the quantum mechanical wave equation to get the time evolution of
the system. Using the interaction picture it follows that the time evolution between initial time
ti and final time tf is given by:

U(tf , ti) = T exp
(
−i

∫ tf

ti

HIdt

)

where HI is the interaction Hamiltonion and T stands for time-ordering.

3. Define the S-matrix as S = lim
t→∞

U(t,−t). Then the transition amplitude for a particular
scattering process follows from the expression:

〈final state|S|initial state〉 =
〈
final state

∣∣Te−i
R∞
−∞ HIdt

∣∣ initial state
〉

(2.12)

6A massive vector boson has three degrees of freedom while a massless vector boson only has two. Three real
degrees of freedom of the Higgs doublet are ‘eaten’ by the vector bosons W+,W− and Z, which acquire mass.
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4. Combining the transition amplitude with relativistic kinematics gives the cross section.

This is quite a lot of work if we have to repeat these steps for every single cross section. To
make matters worse, the matrix element (2.12) seems impossible to calculate. Luckily perturbation
theory comes to the rescue. A Taylor expansion of the exponential function gives a power series
that can be represented graphically as propagators, that denote the propagating fields, and vertices,
that represent interactions. Propagators and vertices are associated with Feynman rules. Once these
rules are defined, any process can be calculated by drawing all possible arrangements of propagators
and vertices with the given initial and final state. The formulas can then simply be read off from
the resulting Feynman graphs. For ϕ3-theory, which describes a real scalar with the Lagrangian
L = 1

2
∂µϕ∂

µϕ− 1
2
m2ϕ2 − 1

3!
gϕ3, the Feynman rules are given by:

�p =
i

p2 −m2 + iε
≡ G2 (2.13)

� = −ig (2.14)

where p is the momentum. For fields with internal degrees of freedom, interactions contain the
generators of the Lie-algebra of the corresponding symmetry group. In that case one has to pay more
attention to the order of the building blocks in the matrix element, but the concept is the same.
Fermion propagators and their vertices also contain Dirac matrices. Combining several indices is also
possible. For example, a coupling of two quarks to a gluon is:

�a, µ = igSγ
µT a

A list of all relevant Feynman rules used in this thesis can be found in appendix A. Apart from
rules for propagators and vertices, there are also rules for Feynman graphs as a whole, such as
combinatorial factors for interchangeable lines, integration over internal momenta in loops and a
minus sign for every fermion loop [6].

2.4 Renormalization

Now that we know how to calculate cross sections, the theory seems to be complete. Unfortunately
there is a complication. Take as an example the φ3 theory from section 2.3. The value of the bare
propagator G2 is given by equation (2.13), but this is not the propagator we measure. If we include
higher order corrections from the perturbative Taylor expansion, the effective propagator also has
contributions from loop diagrams such as:

�p k + p

p

k

= G2
2 ×

g2

2

∫ ∞

−∞

d4k

(2π)4
1

(k2 −m2 + iε)((p+ k)2 −m2 + iε)
(2.15)

The momentum inside the loop is not determined so we have to integrate over all possible mo-
menta. That is a problem, because this integral diverges. That means that the value of graph (2.15),
and therefore the effective propagator, is not well-defined. The solution is renormalization: redefine
masses, coupling constants and fields to absorb infinities in a consistent manner.

Renormalization consists of several parts. The first step is to label the infinities in the theory.
This is called regularization. Second we decide how to deal with these infinities. That is the actual
renormalization. Finally, the freedom in both regularization and renormalization prescription leads
to renormalization group equations (RGEs), which predict that the masses and couplings change
with the energy scale, as observed in experiments. The rest of this section illustrates these concepts
using φ3 theory and loosely sketches the consequences for the Standard Model. For a thorough review
of the topic, see for instance [7].
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2.4.1 Regularization

The first step in dealing with infinities is to label them. There are many ways to do this, but we will
use a cut-off procedure. This regularization scheme is rarely used in practice, but it illustrates the
basic concepts.

Equation (2.15) diverges if we integrate over all possible momenta, but doing so implies that we
can extend the Standard Model to infinite momenta. It is quite unrealistic to assume physics is
unchanged up to infinite energies. Even in the unlikely case that gravity is the only thing missing
from the Standard Model, something is bound to happen at the Planck scale. To take this into
account, we introduce a cut-off Λ in all four components of the loop momentum k and define the
one-loop self-energy as:

Σ1(p2,m2,Λ) ≡ i×� =
ig2

2(2π)4

∫ Λ

−Λ

d4k

(k2 −m2 + iε)((p+ k)2 −m2 + iε)

To make this more precise we split the self-energy in a finite part that contains information about
the process and a regulator part that contains the divergences. The problem occurs for Λ → ∞, so
the natural way to do this is by subtracting a term with the same asymptotic behaviour as Σ1:

Σ1(p2,m2,Λ) =
ig2

32π4

∫ Λ

−Λ

d4k

[
1

[k2 −m2 + iε][(p+ k)2 −m2 + iε]
− 1

(k2 − µ2 + iε)2

]

+
ig2

32π4

∫ Λ

−Λ

d4k
1

(k2 − µ2 + iε)2

≡Σ1fin(p2,m2, µ2,Λ) + Σ1div(µ2,Λ) (2.16)

This introduces an additional parameter µ that we can choose any way we want. A specific choice
of µ is a renormalization prescription. The divergence is now absorbed in the regulator part Σ1div,
while the external momentum p and mass m of the original propagator only occur in the finite part
Σ1fin.

Graph (2.15) is not the only contribution to the propagator. The effective propagator at one-loop
level also has higher order contributions and the total one-loop correction is:

G2,eff =�+�+�+ · · · =

= G2 +G2(−iΣ1)G2 +G2(−iΣ1)G2(−iΣ1)G2 + · · · = i

p2 −m2 − Σ1 + iε
(2.17)

This looks familiar. If we can absorb the self-energy in some m2
eff , equation 2.17 is the usual

propagator, just with a different mass. Something similar occurs for the coupling constants appearing
in the interaction vertices. In this case the correction is of the form:

	p+ k

q + k

k
p

p− q

q

= ig3

∫
d4k

(2π)4
G2(p+ k)G2(k)G2(q + k) (2.18)

For the ϕ3 theory diagram (2.18) is finite, but for more complex theories this does not need to be
the case. If a contribution to the vertex diverges, we need to renormalize the coupling constant. If
all corrections have the same form as terms that are already present in the Lagrangian, a theory is
called renormalizable. In that case all diagrams can be dealt with by a redefinition of masses and
couplings. Non-renormalizable theories yield divergent higher order corrections with a form that is
different from any term in the Lagrangian. For such theories the predictive power of the perturbative
expansion is lost since additional interactions have to be introduced at every next order to absorb all
divergences. An example is the theory that results from quantizing general relativity, which is why

11



gravity is not incorporated in the Standard Model. An easy way to check if a theory is renormalizable
is by power counting. The total mass dimension of the Lagrangian must be four. If this cannot be
accomplished without negative dimensional couplings, higher order corrections will introduce terms
with a different structure and a theory is non-renormalizable.

2.4.2 Renormalization

Now that we have labeled our infinities, we need to decide how to deal with them. Equation (2.16)
splits the self-energy into a finite and a diverging part, but the value of both parts depends on the
parameter µ. In principle we can pick any value for µ, since an arbitrary parameter should cancel
in the final result: a change in renormalization prescription should not change physics. However, if
a finite number of terms in the perturbative expansion is taken into account, the result does depend
on µ. In that case it is important that the perturbative expansion converges as fast as possible, so
some values of µ are more natural than others. In the physical scheme, µ is chosen in such a way
that the pole of the propagator resides at the physical mass mph. To this end we rewrite m2 in the
Lagrangian as:

m2 = m2
ph + δm2 (2.19)

The resulting δm2-dependent term in the Lagrangian is called a ‘counterterm’ since it compensates
infinities. Then we define the finite one-loop renormalized self-energy Σ1R as:

Σ1R(p2) ≡ [
Σ1(p2,m2

ph,Λ) + δm2
]
Λ→∞ = Σ1fin(p2,m2

ph, µ
2) + [δm2 + Σ1div(µ2)]

If a theory is renormalizable, it is always possible to find a δm2 with δm2 + Σ1div <∞. Now we
can tune the free parameter µ in such a way that Σ1R(m2

ph) = 0. That ensures that the pole of the
effective propagator resides at the physical mass. Finding the actual function Σ1R(p2) requires some
tedious calculation, but the upshot is that the propagator in the physical scheme is:

G2,ph =
i

p2 −m2
ph − Σ1R(p2) + iε

Since Σ1R(m2
ph) = 0, the mass that we measure is indeed mph. The function Σ1R(p2) determines

the shape of the resonance. The residue of G2,ph at p2 = m2
ph changes the normalization of the

propagator. In general it does not need to be finite. If it diverges, the field itself has to be renormalized
by rewriting the field φ as φ = Z1/2φR. This results in a rescaling of the propagator and is called the
wave function renormalization. Of course Z needs to be tuned to produce the correct normalization.

Finally we need to renormalize the coupling constant for corrections such as diagram (2.18). In
the physical scheme this means that we choose the counterterms and free parameters such that the
renormalized coupling constant coincides with the physical coupling constant. The end result is a
consistent theory with redefined masses, fields and couplings.

The renormalization procedure seems a bit strange: we have expressions that yield infinity, then
we subtract infinity, and we end up with well-defined quantities. How can that be? The answer is
that we do not measure the bare quantities that occur in the original Lagrangian. It is impossible to
measure a propagator without its loop corrections. That is also the reason we can add counterterms
to the Lagrangian. As long as they have the same form as terms that are already present, we can never
measure them anyway. The renormalization procedure redefines the theory in terms of quantities
that have a physical meaning. It does not matter that the counterterms diverge. We can only get
information about the theory through measurements, and they involve the physical quantities.

Of course the story does not end with one-loop corrections, there are also higher order contri-
butions. The parameters of the theory need to be retuned for every additional loop correction one
takes into account and calculating higher order corrections is a difficult and painstaking process.
However, it can be shown for a number of theories that they are renormalizable to all orders. This
is for instance the case for the Standard Model.
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2.4.3 Renormalization in the Standard Model

Since in the Standard Model there are a lot more possible loop diagrams than in the ϕ3 theory, at
first glance it is not even clear if the Standard Model is renormalizable. This is where symmetry
becomes important: gauge theories are renormalizable [8] even if the symmetry is spontaneously
broken [9]. We will not prove this here, but we will show some examples of renormalization in the
Standard Model using the Feynman rules listed in appendix A.

Natural Smallness of Parameters. Apart from being renormalizable, the Standard Model
has another nice property. For most cases it ensures that parameters that start out small stay
naturally small even after renormalization. As an example, consider the fermion self-energy generated
by the following graph:

i×
p k p

k − p

ν µ
= i(iQe)2

∫
d4k

(2π)4
−i2γµ(/k +m)γνgµν

(k2 −m2 + iε)((k − p)2 + iε)

=
2iQ2e2

(2π)4

∫
d4k

/k − 2m
(k2 −m2 + iε)((k − p)2 + iε)

(2.20)

To quantify the divergence, we introduce a cut-off Λ and do a Taylor expansion in p of the photon
propagator. Omitting the iε terms, the one loop self-energy is:

Σ1 =
2iQ2e2

(2π)4

∫ Λ

−Λ

d4k
/k − 2m
k2 −m2

1
k2

(
1 +

2k · p
k2

+ · · ·
)

The most divergent part is the first term in the Taylor expansion combined with /k. However, this
term is odd under k → −k, so it integrates to zero. That means that the leading order terms of
diagram (2.20) are:

Σ1 ≈ 4iQ2e2

(2π)4

∫ Λ

−Λ

d4k

[
p · k/k

k4(k2 −m2)
− m

k2(k2 −m2)

]
(2.21)

We can rewrite this by using the following identity, which holds for any even function f(k):
∫ Λ

−Λ

d4k
p · k/k
f(k)

= pµγν

∫ Λ

−Λ

d4k
kµkν

f(k)
= pµγν

∫ Λ

−Λ

d4k
gµνk2

4f(k)
= /p

∫ Λ

−Λ

d4k
1
4
k2

f(k)
(2.22)

Here we used that for µ 6= ν the function kµkν is odd. Since the cut-off is symmetric in all components
of k, integrating these terms yields zero. The denominators in equation (2.21) are even functions, so
using equation (2.22) the leading order terms of the self-energy yield:

Σ1 ∝
(
/p− 4m

)
log Λ = −3m log Λ +

(
/p−m

)
log Λ

The first term has to be removed by mass renormalization, the second term by wave function renor-
malization. We conclude that the mass term generated by graph (2.20) is logarithmically dependent
on Λ and proportional to the lowest order mass of the fermion m. This explains why fermion masses
are naturally small. If the lowest order fermion mass is small, even choosing a large value for the
renormalization parameter µ will not yield a high fermion mass at higher loop order. It turns out
that this holds for higher orders as well. Thus the Standard Model preserves the smallness of the
fermion mass in a natural way.

Symmetry and Dimensional Regularization. An example where this is less clear is the
photon self-energy. Here we have an additional constraint, since the photon mass needs to remain
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strictly zero. However, the correction of a fermion loop to the photon self-energy is:

i×�p, ν k + p

p, µ

k

= −i(iQe)2
∫

d4k

(2π)4
i2Tr

(
γµ

(
/k + /p+m

)
γν (/k +m)

)

((k + p)2 −m2 + iε) (k2 −m2 + iε)

= −4ie2Q2

(2π)4

∫
d4k

(kν + pν)kµ + (kµ + pµ)kν − (k2 + p · k −m2)gµν

((k + p)2 −m2 + iε)(k2 −m2 + iε)
(2.23)

Using the same procedure as for the fermion self-energy gives for the most divergent term:

Σµν
1 ≈ −4ie2Q2

(2π)4

∫ Λ

−Λ

d4k
2kµkν − k2gµν

((k + p)2 −m2 + iε)(k2 −m2 + iε)
∝ −gµνΛ2

The effective propagator follows in the same way as in equation (2.17). Absorbing all constants in
Λ2, the result is:

G2,eff = i
−gµν

p2 − Λ2

We cannot absorb Λ2 in any term in the Lagrangian, so we now have a photon with an effective
mass Λ2. Clearly this is not correct. The reason that the cut-off procedure does not work is that
the newly introduced momentum Λ is not Lorentz invariant. This breaks the gauge symmetry of the
theory. Without the cut-off, it is possible to shift k in such a way that the integral has the required
gauge symmetric form ∝ pµpν − gµνp2, leaving the photon massless. After introducing Λ, a Lorentz
boost does not leave the integral invariant, so k cannot be shifted. It turns out that a regularization
scheme that breaks a symmetry often fails to produce the correct results.

A regularization scheme that does respect Standard Model symmetries is dimensional regulariza-
tion. Take a D-dimensional integral of the form that is encountered in loop diagrams:

Σ =
∫
dDk

1
(k2 −m2 + iε)2

If D → 4 this integral diverges, but for dimensions smaller than four it is finite. In dimensional reg-
ularization we use this to our advantage by taking the dimension as regulator. The usual renormal-
ization scheme used with dimensional regularization is minimal subtraction, where the counterterms
are pure poles proportional to 1/(D − 4).

It turns out that almost all Standard Model propagators and vertices have a logarithmic diver-
gence that is proportional to the original parameters of the theory, similar to graph (2.20). This
ensures that these parameters will stay small if the tree-level parameters are small. The underlying
reason is symmetry. Symmetries ‘protect’ parameters, preventing them from becoming large, even if
the symmetry is broken by the Higgs mechanism described in section 2.2. Gauge boson masses are
protected by gauge symmetry, whereas fermion masses are protected by chiral symmetry. This also
explains that regularization schemes have to respect the symmetries of the theory in order to give
correct results.

The Hierarchy Problem. The only particle in the Standard Model that is not protected by
any symmetry is the Higgs boson. This means we can safely use a cut-off for its regularization. The
Higgs boson has many possible loop corrections, but we will pay particular attention to the fermion
loop:

i×� = − i|y|2
(2π)4

∫ Λ

−Λ

d4k
Tr

(
(/k +m)(/k + /p+m)

)

(k2 −m2 + iε)((k + p)2 −m2 + iε)
∝ −|y|2Λ2 (2.24)

In the Standard Model, the Yukawa coupling y is not related to any other interactions, so there
are no diagrams that can cancel this divergence. Equation (2.24) implies that the smallness of the
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Higgs mass does not survive renormalization if the renormalization parameter µ is chosen to be large.
Yet all predictions show that the Higgs mass must be relatively low. This discrepancy is called the
hierarchy problem and it is one of the unsolved riddles in the Standard Model. We will come back
to the hierarchy problem in the context of supersymmetry.

2.4.4 Renormalization-Group Equations

The physical scheme mentioned in section 2.4.2 is not the only possible renormalization prescription.
Every possible value of µ is in principle a valid solution. If we also take different regularization
schemes into account, the number of possibilities is even greater, since every regulator comes with
its own collection of renormalization prescriptions. For the purpose of clarity, the discussion will be
limited to a change in the parameter µ introduced in section 2.4.1.

One could raise the question why we would want to use a different renormalization prescription
than the physical scheme. The most important reason is to study high-energy behaviour. Recall from
section 2.3 that Feynman diagrams are a perturbative expansion. If we want to get precise results
at some high energy, we either have to do the expansion around some value close to the desired
energy scale or compute high-order corrections. Looking at the simple one-loop examples from the
previous section and realizing that both the number and the complexity of loop diagrams increases
at higher order, it is clear that the first option is more attractive. That means we have to choose
µ to have the same order of magnitude as the energy scale associated with the proces we want to
study. The price we pay for this is that our masses and couplings change. This change is governed
by the renormalization-group equations.

This approach is radically different from the physical scheme introduced in section 2.4. There the
behaviour at the physical mass pole is calculated completely. Here we just want to obtain the general
energy dependence of masses and couplings. That is most easily done by using minimal subtraction,
taking pure poles as counterterms. We will not go into that much detail here, but it is useful to keep
in mind that the goal in this section is to obtain large-scale behaviour only.

First recall how our theory is affected by a change in renormalization prescription. In a theory
with just one bare mass m0 and coupling g0, we describe physics in terms of the renormalized masses
and couplings m(µ) and g(µ), where g is made dimensionless by multiplying with the appropriate
power of µ. We also have the wave function renormalization Z, but we will omit that for now since it
is not important to the main argument. Changing µ does not affect physical observables such as the
S-matrix, but it does change the effective masses and couplings. The set of all possible masses and
couplings for all values of µ forms the renormalization-group (RG). If we have the RG, we can use it
to translate from one energy scale to another, so our next task is to find the RG. For this we use the
fact that the S-matrix is invariant under a change in variables (µ,m(µ), g(µ)) → (µ′,m(µ′), g(µ′)).
We can rewrite this statement as:

µ
dS

dµ
=

[
µ
∂

∂µ
+ µ

dg(µ)
dµ

∂

∂g
+ µ

dm2(µ)
dµ

∂

∂m2

]
S = 0

From this equation we define the renormalization-group coefficients:

β = µ
dg(µ)
dµ

(2.25)

γm = − µ

m2

dm2(µ)
dµ

(2.26)

If we know the RG coefficients, we have coupled differential equations for g(µ) and m2(µ) so we
can compute the effective couplings and masses at any energy scale µ. These differential equations
are the renormalization-group equations (RGEs).
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Our problem is now reduced to obtaining the RG coefficients, which can be done perturbatively.
From equation (2.19) we know how to write the bare masses and couplings m0 and g0 perturbatively
in terms of the effective masses and couplings m2(µ) and g(µ)

g0 = g(µ)
(

1 +
[δg]1
g

+
[δg]2
g

+ · · ·
)

(2.27)

m2
0 = m2(µ)

(
1 +

[δm2]1
m2

+
[δm2]2
m2

+ · · ·
)

(2.28)

where [δg]j and [δm2]j are the perturbative corrections of order j, which are proportional to g2j .
Calculating these terms is complicated, but if we have the loop corrections to a certain order, we
can use them to calculate the RG coefficients by realizing that the bare masses and couplings do not
depend on µ. This gives us the differential equations:

µ
dg0

dµ
=

[
µ
∂

∂µ
+ β(g)

∂

∂g
− γm(g)m2 ∂

∂m2

]
g0 = 0

µ
dm2

0

dµ
=

[
µ
∂

∂µ
+ β(g)

∂

∂g
− γm(g)m2 ∂

∂m2

]
m2

0 = 0

that we can solve for β and γm by inserting (2.27) and (2.28). So if we calculate equations (2.27) and
(2.28) up to a certain order, we can obtain the RGEs to the same order. The RGEs can then be used
to predict high-energy phenemenology. They determine how masses and couplings change with the
energy scale. These so-called ‘running’ masses and couplings have been confirmed by experiment, as
can be seen in figure 2.3 for the QED coupling.

Figure 2.3: Measurement of the running QED coupling in Bhabha scattering by the OPAL collabo-
ration [10]. The flat line corresponds to a fixed coupling, the other dotted lines are predictions that
include different types of loop contributions. The uppermost line includes all possible loops, while
the solid line is the best fit to the data.
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Obviously the most difficult part of this procedure is obtaining the RGEs, since this involves
calculating loop diagrams. One may wonder why we replace one type of loop calculation by another.
The answer is that even though we still need to calculate some loop diagrams, we can afford to
calculate them to a much lower order. We essentially rearrange the perturbation series to take into
account the µ-dependence, which becomes extremely important when the difference between the
renormalization scale and the energy scale of the process is large. This way we get a good precision
using relatively low-order results, even for extremely high energies. The two-loop RGEs have been
calculated for many theories and can be used to obtain precise predictions for high-energy behaviour
from low-energy measurements.
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3 Supersymmetry

The Standard Model covers almost all experimental observations of particles. An exception might
be neutrino masses [11], but they can easily be incorporated [12]. However, although the agreement
with experiment is very good, there is a number of theoretical problems and unanswered questions.
Some examples are:

• Gravity is not described by the Standard Model and as mentioned in section 2.4.2, attempts
to incorporate it lead to a non-renormalizable theory.

• Symmetry is a beautiful concept to build a theory on, but why is the Standard Model described
by SU(3)× SU(2)× U(1) and not by some other group?

• Why do tree-level masses and coupling constants have the values they have? There are a
lot of free parameters in the Standard Model and the mass differences between for instance
the fermion masses are quite big. Even worse, compared to the Planck scale all masses are
ridiculously small. A theory that explains this would be more compelling.

• As mentioned in section 2.4.1, it is unlikely that there is no physics beyond the Standard Model.
If the Standard Model Higgs interacts with the particles associated with this new physics, these
high-mass particles contribute to loop corrections. The Standard Model does not protect the
mass of the Higgs boson against such high-scale corrections, leading to the hierarchy problem
described in section 2.4.3. An additional symmetry could protect the Higgs mass in the same
way the other Standard Model masses are protected from high-scale corrections.

• The Standard Model accounts for only 4% of the universe. From astrophysical data we know
that an additional 20% consists of so-called dark matter [13][14]. We cannot observe it directly
so we do not know any of its properties. The remaining 76% is the even more mysterious dark
energy. Clearly a theoretical framework is needed to explain all this.

This list is not exhaustive [15][16], but it gives enough reasons to look beyond the Standard Model.
Many theories have been proposed to address these problems. Some examples are string theory
[17], which is the only theory that successfully includes gravity, Grand Unified Theories (GUTs, see
Appendix B), which partially address the group structure and the small tree-level masses in the
Standard Model, and supersymmetry, which is the topic of this thesis.

As we will see in this section, supersymmetry protects the Higgs mass from high-scale corrections
and thus provides a solution for the hierarchy problem. In addition, most supersymmetric theories
predict that the lightest supersymmetric particle is stable and nearly undetectable. This makes it
a good candidate for dark matter, so supersymmetry explains both the hierarchy problem and dark
matter.

Supersymmetry is also interesting in the context of other theories. For instance, the minimal
GUT is not consistent with the Standard Model, while it is with supersymmetry (see Appendix B).
In addition, most string theories predict supersymmetry. Thus supersymmetry is a promising theory
for both experimental and theoretical reasons.

3.1 What is Supersymmetry?

We have seen in section 2.1 that symmetry arguments are a powerful tool in theory building. There-
fore a natural way to extend the Standard Model would be to find an additional symmetry. Super-
symmetry is a symmetry between bosons and fermions, so a transformation Q with:

Q|boson〉 = |fermion〉 Q|fermion〉 = |boson〉 (3.1)

Supersymmetry is usually treated as a global symmetry, so ∂µQ = 0. From equation (3.1) it follows
that Q is fermionic, which leads to an algebra of anticommutation relations. It turns out that the
anticommutator is proportional to the momentum [18]:

{Q,Q†} ∼ pµ
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Since Q commutes with both p2 and the gauge transformations, any particles that are in the same
supermultiplet have equal masses and gauge charges. Furthermore, within a supermultiplet the
numbers of bosonic and fermionic degrees of freedom need to be equal.

These properties have important phenomenological consequences. Looking at the Standard Model
particles in table 2.1, we see that none of them can be each others superpartners. That means we
have to introduce new particles and that we will end up with twice as many particles as we have now.
Also, since the masses of these particles are predicted to be the same as those of their Standard Model
partners, they should have been measured long ago. This apparent contradiction with experiment is
addressed by supersymmetry breaking in section 3.4.

A technical detail of supersymmetry is that fermions are usually described by left-handed Weyl
spinors. The Weyl representation splits a fermion field into a left-handed and a right-handed part,
which is more natural since weak interactions treat left-handed particles different than right-handed
particles. A four-component Dirac spinor can be written in terms of two Weyl spinors7 that each
have two complex degrees of freedom. Using charge conjugation, a right-handed Weyl spinor can be
written as a left-handed one with opposite hypercharge. In working with Lagrangians, the following
notation will be used:

f ≡ fL f̄ † ≡ fR (3.2)

This notation only applies to fields. When discussing particles, the labels L and R are used and a
bar is used to label an antiparticle. The meaning of a bar should be clear from the context.

Finally a few words on nomenclature. Supersymmetric partners of fermions have the name of
their Standard Model counterparts preceded by an ‘s’. For partners of bosons, we add ‘ino’ to the
end of their name. This leads to silly names like winos and squarks, but it is unambiguous. The
symbol for a supersymmetric particle is usually the Standard Model symbol with a tilde, so a top
squark (‘stop’) is denoted as t̃. An exception is the chargino and neutralino sector8, where the gauge
eigenstates do not correspond to the mass eigenstates due to mixing effects.

3.2 Supersymmetric Lagrangians

We want supersymmetry to be an extension of the Standard Model, a theory with spin 0, spin 1/2
and spin 1 particles. The simplest way to accomplish that is by using two kinds of supermultiplets:

• a chiral supermultiplet, which combines a Weyl fermion with a complex scalar.

• a gauge supermultiplet, which combines a gauge boson with a Weyl fermion.

These supermultiplets are the building blocks of our supersymmetric theory. However, they are
incomplete. A complex scalar has two degrees of freedom, while an off-shell9 Weyl fermion has four.
This mismatch within the chiral supermultiplet can be solved by introducing an auxiliary field F , a
complex scalar field that enters the Lagrangian as:

LF = F ∗F (3.3)

The gauge multiplet needs a similar adjustment, since an off-shell gauge boson only has three degrees
of freedom instead of the necessary four to match the Weyl fermion. Here we introduce a real bosonic
auxiliary field Da with a corresponding term in the Lagrangian:

LD =
1
2
DaDa (3.4)

7A Dirac spinor written in terms of Weyl spinors has the form ΨD =
`
ξα, χ†α̇

´
where ξ is a left-handed Weyl spinor

and χ† a right-handed Weyl spinor. The independent indices α and α̇ can take the values 1 and 2. The undotted
indices denote the first two components of the Dirac spinor and the dotted indices the last two components. Weyl
spinors are contracted using the anti-symmetric ε tensor: ε12 = −ε21 = ε21 = −ε12 = 1, ε11 = ε22 = ε11 = ε22 = 0.
This notation is very useful in proving that a Lagrangian is supersymmetric, but it can be quite confusing. We will
not explicitly prove supersymmetry for our Lagrangians, but cite the results from [19].

8A chargino is a linear combination of a Wino and a charged Higgsino. A neutralino contains the photino, the Zino
and the neutral Higgsinos.

9A particle that is on-shell satisfies the ‘classical’ equation of motion, while an off-shell particle does not. Particles
that correspond to internal lines in Feynman diagrams are in general off-shell. External lines are on-shell.

19



The auxiliary fields D and F do not have any kinetic terms, since they are not propagating fields.
This can be understood by the fact that the mismatch occurs off-shell only. On-shell, all fields
involved have two real degrees of freedom and the F and D terms vanish. Since the auxiliary fields
are not physical, they are fixed by their equations of motion, which follow from the Lagrangians of
the chiral and gauge supermultiplets.

Now that we have the building blocks, the next step is to obtain a supersymmetric Lagrangian.
The basic concepts are the same as in the Standard Model case of section 2.1. We start with the
chiral supermultiplets and their interactions. These are specified by the superpotential. Then we
add the gauge supermultiplets and their interactions by requiring gauge invariance. The resulting
Lagrangian will have many terms, but they all follow from the superpotential and the gauge group.

The Superpotential. In the Standard Model our starting point was a fermion Lagrangian, so
let us write down the most general Lagrangian for a collection of chiral supermultiplets labeled by
indices i and j. This involves kinetic terms for the scalars φi and the fermions ψi, the Lagrangian
(3.3) for the auxiliary fields Fi and interactions between φi, ψi and Fi. The possible interaction
terms are limited by demanding the Lagrangian to be renormalizable, so the mass dimension cannot
be larger than four (see section 2.4.2), and supersymmetric, so it is invariant under Q. This leads to
an interaction Lagrangian of the form [19]:

Lint =
(
−1

2
W ijψiψj +W iFi

)
+ c.c. (3.5)

where W ij and W i are polynomials in the scalar fields that are related to each other as:

W ij =
δ2W

δφiδφj

W i =
δW

δφi

with W an analytic function in the scalar fields φi that is called the superpotential :

W = Liφi +
1
2
M ijφiφj +

1
6
yijkφiφjφk (3.6)

Inserting equation (3.6) in the first term of the Lagrangian (3.5), we can recognise a Yukawa inter-
action similar to equation (2.8) in the term containing yijk. The term with M ij contains a fermion
mass term, which is allowed in a general theory. The linear term is only allowed if φi is a gauge
singlet, so it does not occur in the Standard Model. We will discuss the second term in equation
(3.5) later.

Gauge Invariance. Having specified the Lagrangian for the chiral supermultiplet, we require
it to be gauge invariant. The recipe is essentially the same as in section 2.1, except that we are
dealing with supermultiplets. In the Standard Model, gauge invariance results in gauge bosons. In a
supersymmetric theory we cannot introduce new particles without introducing their supersymmetric
partners. That means gauge invariance yields gauge supermultiplets that contain not only gauge
bosons, but also gauginos and D terms. And of course all these fields interact with each other.

Since the interactions are supersymmetric, any Standard Model gauge coupling will have a su-
persymmetric counterpart. In other words, we have to take into account all interactions between the
gauge and the chiral supermultiplet as well. In order to complete the Lagrangian, we write down all
possible interaction terms that are renormalizable and yield a supersymmetric Lagrangian.

The F and D terms are then fixed by their equations of motion. It turns out that [19]:

Fi = −W ∗
i F ∗i = −W i Da = −gφ∗T aφ (3.7)

where T a is the generator of the gauge group and g the gauge coupling. Inserting this into equations
(3.3) and (3.4), we can see that the F and the D terms introduce trilinear and quartic scalar
interactions into the Lagrangian.

20



We now have the complete Lagrangian that contains:

• Interaction terms within the chiral supermultiplet, specified by the superpotential.
• Kinetic terms for the chiral supermultiplet.
• Interaction terms between the chiral supermultiplet and the gauge supermultiplet.
• Kinetic terms for the gauge supermultiplet.
• Interaction terms within the gauge supermultiplet.
• Trilinear and quartic scalar interactions coming from the F and D terms.

In spite of the plethora of terms, the Lagrangian is completely determined by the superpotential
and the gauge group. The superpotential specifies the chiral supermultiplets and their interactions.
By requiring gauge invariance we can derive the gauge supermultiplets and all other interactions.
Thus the entire theory is specified by a single equation and the gauge group.

3.3 The Minimal Supersymmetric Standard Model

Although we now have the basic form of a supersymmetric Lagrangian, this still leaves a lot of freedom
in constructing an actual theory. One can introduce any number of chiral supermultiplets and gauge
symmetries or even have several supersymmetry generators. Some of these theories have interesting
characteristics10, but we will restrict ourselves to the simplest extension of the Standard Model,
with one supersymmetric generator and a minimal particle content. The Minimal Supersymmetric
Standard Model (MSSM) is specified by the superpotential:

W = ˜̄uyuQ̃H2 − ˜̄dydQ̃H1 − ˜̄eyeL̃H1 + µH2H1 (3.8)

The Yukawa couplings yi are 3 × 3 matrices in the family space of generations and all gauge and
family indices have been suppressed. The sfermion fields correspond to their Standard Model coun-
terparts in the notation of table 2.1. Equation (3.8) has some interesting implications.

Two Higgs Doublets. The first three terms resemble the Standard Model Yukawa couplings,
but in supersymmetry we need two Higgs doublets. Remember from section 2.2 that the charge
conjugate of the Higgs doublet is used to give mass to the up-type fermions. However, the charge
conjugate of a scalar field is not an analytic function in that field, so it cannot appear in the super-
potential. Therefore a second Higgs doublet with opposite hypercharge is introduced to give mass to
the up-type fermions after spontaneous symmetry breaking11. Explicitly, the Higgs doublets are:

H1 =

(
H0

1

H−
1

)
H2 =

(
H+

2

H0
2

)

Only the neutral components H0
i can get a vev, for otherwise the photon would couple to the charged

vev and acquire a mass. So it would seem that the H2 doublet gives mass to the down-type fermions.
However, contraction using an ε-tensor (see footnote 7) is implicitly understood in equation (3.8),
so the lower component of H2 combines with the up-type fermions and the upper component of H1

with the down-type fermions.

The Hierarchy Problem. In the Standard Model, the Yukawa coupling y is not related to
any other interaction. This is not the case in supersymmetry. It follows from equations (3.3) and
(3.7) that y also occurs quadratically in quartic interactions coming from the F terms that have the
form |yf |2HiH

∗
i f̃ f̃

∗ or |yf |2H∗
i Hi

˜̄f∗ ˜̄f , with Hi (i = 1, 2) the appropriate Higgs field for the sfermion

10For supersymmetric gauge theories with four supersymmetry generators, it can be shown that non-renormalization
theorems apply, which state that parameters do not have to be renormalized or that higher loop corrections do not
contribute [20]. This spurred the hope for a renormalizable theory of gravity using supersymmetry. So far such a
theory has not been found.

11A second Higgs doublet is also needed for anomaly cancellations [21].
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f̃ . They give rise to radiative corrections to the Higgs propagator:

i×�f̃L, f̃R

=
i|yf |2
(2π)4

∫ Λ

−Λ

d4k
1

k2 −m2
f̃

+ iε
∝ |yf |2Λ2 (3.9)

Taking into account the combinatorial factors, it turns out that the quadratic divergences in these
diagrams exactly cancel the quadratic divergences from the fermion loop correction in section 2.4.3.
Thus supersymmetry solves the hierarchy problem. If the supersymmetric particles are too heavy, a
new hierarchy problem is introduced by the next order logarithmic term, which depends quadrati-
cally on the mass difference between the superpartners. This indicates that supersymmetric particles
cannot be too heavy. Usually it is assumed that the masses of the lightest superpartners cannot be
much larger than 1 TeV.

R-Parity and Dark Matter. The superpotential (3.8) reproduces the Standard Model parti-
cles and interactions, but it is not the most general superpotential for the MSSM chiral supermulti-
plets. Other terms that are allowed by supersymmetry and gauge invariance do not conserve baryon
and lepton number, so experiment puts severe limits on the magnitude of such couplings [22]. To
explain the absence of these terms we introduce a new symmetry with a multiplicative quantum
number called R-parity PR = (−1)3(B−L)−2s with B the baryon number, L the lepton number and s
the spin of the particle. For Standard Model particles PR = 1. For their supersymmetric partners
PR = −1, since their spin is shifted by ±1/2. Conservation of R-parity implies that in collider
experiments supersymmetric particles are always produced in pairs as the initial state consists of
Standard Model particles. It also means that the Lightest Supersymmetric Particle (LSP) is stable,
since it cannot decay to Standard Model particles alone. In many supersymmetric models, the LSP
is a neutralino. This particle is almost impossible to detect, which makes it a good candidate for
dark matter (see page 18).

Masses and Spontaneous Symmetry Breaking. The MSSM Lagrangian has all Standard
Model symmetries, so particles that are massless in the unbroken Standard Model do not have a
mass here either. As a result only the Higgs supermultiplets have the equivalent of a mass term,
which is the last term in the superpotential (3.8). It contains the only new parameter in the theory
µ. The Higgs potential is completely determined by the F and the D terms and is given by:

V = |µ|2 (|H0
2 |2 + |H+

2 |2 + |H0
1 |2 + |H−

1 |2) + “quartic terms” ≥ 0 (3.10)

This potential is positive with one global minimum at the origin, so it does not give rise to spontaneous
symmetry breaking. That means that the Higgs mechanism, which generates mass in the Standard
Model (see section 2.2), does not work in unbroken supersymmetry. Since the MSSM superpotential
only contains mass terms for the Higgs fields, that implies that all particles except the Higgs are
massless! This is another reason that supersymmetry cannot be exact.

3.4 Supersymmetry Breaking

Unbroken supersymmetry predicts that there are no mass differences within supermultiplets and the
MSSM does not explain mass at all. Clearly we need to find a way to break supersymmetry. We have
seen in section 2.2 how to break a symmetry while preserving key aspects of the theory. However, for
supersymmetry this is not easy. Several methods have been proposed, but none of them are able to
derive a broken supersymmetric Lagrangian from first principles. We will first shortly discuss some
generalities of supersymmetry breaking and then look at how supersymmetry is broken in practice.

3.4.1 Breaking Mechanisms

The only way we know to break a symmetry while maintaining the characteristics of a theory is
spontaneous symmetry breaking. So our only hope is to do something similar and change our theory
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in such a way that the vacuum is not invariant under the supersymmetry transformation Q. There
are two terms in the supersymmetry Lagrangian that can acquire a vev without breaking other
symmetries: the F terms and the D terms.

Fayet-Iliopoulos breaking [23] adds a linear term to the auxiliary fieldD. Since we want our theory
to remain gauge invariant, this is only possible for the D term of the U(1)Y gauge supermultiplet.
But even in that case it does not work. The extra term changes the equations of motion for the D
field and in order to make the field vanish on-shell, some of the squarks and charged sleptons have
to acquire a vev. This would break not only supersymmetry, but also the gauge symmetries and is
therefore unacceptable.

The other option is that the F field acquires a vev. This is called O’Raifeartaigh breaking [24]
and is equivalent to keeping the linear term in equation (3.6). As mentioned in section 3.2, we do
not have a gauge singlet in the Standard Model that could provide this term. Therefore one usually
assumes that this type of breaking originates in some hidden sector that contains particles that couple
very weakly to the particles we observe. These small interactions would be responsible for symmetry
breaking through radiative corrections.

There are many possible scenarios for this hidden sector and the way it couples to the visible
sector. A few examples are gauge-mediated supersymmetry breaking [25], anomaly-mediated super-
symmetry breaking [26] and extra-dimensional mediated supersymmetry breaking [27]. Probably
the most popular scenario is Planck-scale-mediated supersymmetry breaking [28]. This assumes that
the breaking sector couples to the visible sector through gravitational interactions. Since general
relativity is inherently local, this makes it necessary to treat supersymmetry as a local symmetry,
just like the gauge symmetries. This is mathematically complicated. In addition, we do not have a
quantum theory of gravity, so it is impossible to derive low-energy phenomenology from first prin-
ciples. However, as we will see in section 3.5, gravity-mediated supersymmetry breaking can put
important constraints on the effective form of supersymmetry breaking.

3.4.2 Soft Breaking Terms

The lack of a supersymmetry breaking mechanism does not seem very promising for supersymmetry,
but in practice we ignore our ignorance by manually introducing breaking terms. We describe the
theory by an effective Lagrangian that includes all possible breaking terms that leave the basic
properties of the theory intact. In other words, the Lagrangian has to remain renormalizable and the
breaking terms should not introduce quadratic divergences that would give rise to a new hierarchy
problem. This is called soft breaking. The possible soft breaking terms are [19]:

• Gaugino masses for each gauge group: − 1
2
(M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + c.c.) with Mi ∈ C

• Sfermion masses: −Q̃†m2
Q̃
Q̃− L̃†m2

L̃
L̃− ˜̄um2

˜̄u
˜̄u†− ˜̄dm2

˜̄d

˜̄d†− ˜̄em2
˜̄e
˜̄e† where the mass matrices are

3× 3 hermitian matrices in family space

• Higgs masses and mixing: −m2
H2
H†

2H2 −m2
H1
H†

1H1 − (bH2H1 + c.c.) with m2
Hi
∈ R, b ∈ C

• Triple scalar couplings: −(˜̄uauQ̃H2 − ˜̄dadQ̃H1 − ˜̄eaeL̃H1 + c.c.) where the scalar couplings are
complex 3× 3 matrices in family space.

These terms break supersymmetry, but they conserve R-parity. Also, in contrast to the equivalent
mass terms for the Standard Model particles, the gaugino and sfermion mass terms respect chiral
and gauge symmetry. In that sense the mass difference between Standard Model particles and their
supersymmetric partners is quite natural.

3.4.3 Spontaneous Symmetry Breaking

For spontaneous symmetry breaking the Higgs potential needs to have minima outside the origin.
This requirement is not met in unbroken supersymmetry, but the soft breaking terms change the
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potential. Writing out the Higgs fields in their components, the Higgs potential with the breaking
terms included is:

V =
(|µ|2 +m2

H2

)
(|H0

2 |2 + |H+
2 |2) +

(|µ|2 +m2
H1

)
(|H0

1 |2 + |H−
1 |2) + [b(H+

2 H
−
1 −H0

2H
0
1 ) + c.c.]

+
1
8

(g2 + g′2) (|H0
2 |2 + |H+

2 |2 − |H0
1 |2 − |H−

1 |2)2 +
1
2
g2 |H+

2 H
0∗
1 +H0

2H
−∗
1 |2

where the breaking parameters b and mHi
can take complex values. Just like in section 2.2, we can

simplify this expression by fixing the gauge. First we use SU(2) rotations to choose H+
2 = 0. Since

in a minimum we must have ∂V/∂H+
2 = 0, this also implies H−

1 = 0. Then we use that the b term is
the only term that depends on the phase of the Higgs fields. Using a U(1) phase rotation to make b
real and positive, it follows that in a minimum of the potential H0

2H
0
1 must be real and positive as

well. In other words: the Higgses have opposite phases. Since they have opposite hypercharge, we
can choose both Higgses to be real and positive. In this gauge the equation takes a more manageable
form:

V = (|µ|2 +m2
H2

)|H0
2 |2 + (|µ|2 +m2

H1
)|H0

1 |2 − [bH0
2H

0
1 + c.c.] +

1
8
(g2 + g′2)(|H0

2 |2 − |H0
1 |2)2

The quartic terms ensure that the potential is bounded from below for almost all values of H0
2 and

H0
1 . However for H0

2 = H0
1 the quartic terms vanish and the potential will not be bounded from

below unless:
2b <

(|µ|2 +m2
H2

)
+

(|µ|2 +m2
H1

)
(3.11)

This implies that not both |µ|2+m2
H1

and |µ|2+m2
H2

can be negative, so we can only have a minimum
outside the origin if the origin itself is a saddle point, which is the case if:

b2 > (|µ|2 +m2
H2

)(|µ|2 +m2
H1

) (3.12)

If equations (3.11) and (3.12) are met, supersymmetry breaking results in spontaneous symmetry
breaking. The ratio of the vevs of the neutral Higgs components is usually written as:

tanβ =
〈H2〉
〈H1〉 (3.13)

Just like in the Standard Model, the Higgs vevs are related to the mass of the W and Z bosons
mW and mZ . The minimum of the potential satisfies ∂V/∂H1 = ∂V/∂H2 = 0, which gives us two
equations we can use to express b and |µ|2 in terms of tanβ. At tree level, the result is:

b =
m2

H1
−m2

H2
+m2

Z cos(2β)
tanβ − cotβ

(3.14)

|µ|2 =
1
2

(
b(cotβ + tanβ)−m2

H1
−m2

H2

)
(3.15)

A complex phase of µ would introduce large CP -violating effects that are not observed in nature,
so we demand µ to be real. That means we can eliminate b and µ in favour of tanβ and the sign
of µ. For phenomenological purposes, these variables are more convenient, since particle masses are
closely related to tanβ.

In the Standard Model, three of the four degrees of freedom of the Higgs doublet were ‘eaten’ by
the gauge bosons and one physical Higgs boson was left. In the MSSM there are two complex Higgs
doublets, so a total of eight degrees of freedom. The gauge bosons still absorb three of them, so we
now end up with five Higgs bosons: h0,H0,H+,H− and A0. By convention h0 is lighter than H0

and A0 is the only CP -odd state.
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Due to the mixing terms, the mass eigenstates are considerably different from the gauge eigen-
states. Diagonalizing the mass matrix gives the following masses at tree level [19]:

m2
A0

=
2b

sin(2β)
(3.16)

m2
h0,H0 =

1
2

(
m2

A0 +m2
Z ∓

√
(m2

A0 −m2
Z)2 + 4m2

Zm
2
A0 sin2(2β)

)
(3.17)

m2
H± = m2

A0 +m2
W (3.18)

This result indicates a low h0 mass. In fact mh0 ≤ mZ | cos(2β)| [19], which is excluded experimen-
tally. Due to large radiative corrections from especially tops and stops, the actual h0 mass is larger,
but it cannot exceed 135 GeV [29], which means it has to be found at the LHC if supersymmetry
exists. The other Higgs bosons are much heavier and nearly degenerate in mass.

3.5 Minimal Supergravity

We now have a model with spontaneous symmetry breaking and mass differences, but we do have a
problem. We introduced supersymmetry at the cost of a single new parameter. Including the soft
breaking terms leaves us with over a hundred free parameters. That means our theory has lost all
predictive power. Fortunately, experimental limits put stringent bounds on many of them.

�µ− B̃

µ̃R ẽR

e−

γ

Figure 3.1: Contribution of m2
˜̄e

to µ− → e−γ

First look at the soft-breaking slepton mass terms. The mass term
corresponding to the off-diagonal element (m2

˜̄e)12 couples a smuon
to a selectron. This contributes to the branching ratio of µ− →
e−γ through the diagram in figure 3.1, where the smuon-selectron
coupling is denoted by a cross. Because of the experimental limit
on this branching ratio [30], (m2

˜̄e)12 has to be very small. The
other off-diagonal terms are restricted by τ− → µ−γ and τ− →
e−γ, although experimental limits on these branching ratios are
weaker. Similar flavour mixing processes limit the off-diagonal
elements of m2

L̃
and ae. This is straightforward for m2

L̃
, but for

ae the argument is more complicated. The off-diagonal trilinear couplings combine with the Higgs
vev to yield mass terms that couple sfermions of different flavours to each other. Thus the strength of
the interaction depends on both the Higgs vev and the trilinear coupling, which makes limits depend
on the other soft breaking parameters as well. Yet the general conclusion is that the off-diagonal
elements have to be small.

�
s̄

d

s̃∗R

g̃

d̃∗R d̄

g̃

d̃R
s̃R

s

Figure 3.2: Contribution of m2
˜̄d

to K0 ↔ K̄0 mixing

Constraints on the off-diagonal matrix elements in the squark
sector come from experimental limits on meson mixing [22]. Fig-
ure 3.2 shows an example of a diagram that contributes to
kaon mixing that together with similar diagrams for B0

d ↔ B̄0
d,

B0
s ↔ B̄0

s and D0 ↔ D̄0 mixing put limits on other off-diagonal
terms of m2

˜̄d, ˜̄u,Q̃
and au,d. Just like in the slepton case the limit on

the triple scalar coupling comes from combining it with the Higgs
vev.

Finally, soft-breaking terms with a complex phase result in
CP -violation [31], which we can avoid by requiring soft-breaking
parameters to be real. Experimental bounds on flavour chang-
ing neutral currents put constraints on mass differences between
flavours, so the breaking matrices are not only diagonal, their
components must have the same order of magnitude [32]. The experimental constraints on breaking
parameters are summarized in table 3.1.

These constraints lead to soft supersymmetry breaking universality, which is the hypothesis that
all mass matrices are proportional to the unit matrix, that the triple scalar couplings are propor-
tional to the Yukawa matrices and that breaking parameters introduce no complex phases. These
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Breaking term Constraint For instance constrained by

m2
˜̄e,m

2
L̃
,ae Small off-diagonal elements µ− → e−γ

m2
˜̄u,m

2
Q̃
,au Small off-diagonal elements D0 ↔ D̄0 mixing

m2
˜̄d
,m2

Q̃
,ad Small off-diagonal elements K0 ↔ K̄0 mixing

Complex phases have to be small CP -violation

Table 3.1: Some experimental constraints on the form of soft supersymmetry breaking parameters.
The last column mentions the most important sources of these constraints.

assumptions are the basis of minimal supergravity (mSUGRA), one of the most widely used models
in supersymmetry. It assumes that breaking occurs through a coupling to gravity in its simplest
form. Since gravity is flavour-blind, this justifies the assumption that the breaking mass matrices are
proportional to the unit matrix. It also assumes unification at a high energy scale (see appendix B).
This leaves just four (and a half) free parameters: M0,M1/2

, A0, tanβ and the sign of µ, where:

M1/2
= M1 = M2 = M3 (3.19)

M2
0 1 = m2

Q̃
= m2

L̃
= m2

˜̄u = m2
˜̄d
= m2

˜̄e (3.20)

M2
0 = m2

H1
= m2

H2
(3.21)

au = A0yu ad = A0yd ae = A0ye (3.22)

mSUGRA involves two assumptions that are weakly motivated. Even in the Standard Model we
know of small nonzero parameters, such as the off-diagonal components and the CP -violating phase
in the quark mixing matrix. So the case for strict soft supersymmetry breaking universality is not
very strong. Yet even though it might not be exact, the constraints in table 3.1 show that soft
supersymmetry breaking universality is a good approximation.

The second assumption is unification. The MSSM is consistent with the minimal GUT (see
page 18), but in general the theoretical motivation for unification is mainly aesthetical. In fact,
the most important reason for assuming unification is a practical one. As long as no signs of su-
persymmetry have been found, the main purpose of models is to reveal general phenomenological
implications. It is conceivable that dropping the requirement of unification yields a completely dif-
ferent phenomenology, but it is not very likely. Assuming unification reduces the complexity of the
problem, but still allows a broad range of phenomenological scenarios.

In short, the most important property of mSUGRA is its predictive power. A theory with too
many parameters is simply impractical, so we need the additional assumptions to make supersym-
metry a workable theory.

3.6 Renormalization Group Equations

Knowing the soft breaking parameters at a high energy scale does not tell us anything about the
phenomenology we could observe at the LHC. We first need to translate these parameters to their
values at low energy. We know from section 2.4.4 how to use RGEs for that. In principle all
parameters appearing in the supersymmetric Lagrangian are subject to RGEs.

Obtaining the RGEs for supersymmetry is not an easy task. Firstly because of the enormous
amount of possible interactions and loop corrections, but also because dimensional regularization
poses a problem in supersymmetry. Remember from section 2.4.3 that a regularization scheme
should not break any symmetries of a theory. However, the number of degrees of freedom within a
supermultiplet needs to match. That means that the number of degrees of freedom of an on-shell
Weyl fermion needs to be equal to the number of degrees of freedom of both an on-shell complex
scalar and an on-shell massless gauge boson. A change in dimension does not affect scalars, but
an on-shell massless gauge boson in N − ε dimensions has N − 2 − ε degrees of freedom. So in
dimensional regularization, the number of degrees of freedom within supermultiplets does not match,
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which means supersymmetry is violated. A more fitting renormalization prescription is dimensional
reduction (DRED) [33][34]. The basic concept is the same as in dimensional regularization, but the
vector index of the gauge boson fields runs over 4 dimensions instead of 4−2ε. That ensures that the
number of degrees of freedom within supermultiplets match. The usual renormalization procedure
used in DRED is modified minimal subtraction (DR).

The technical details of supersymmetric renormalization are complicated, but life is made easier
by non-renormalization theorems. These state that chiral supermultiplets do not require mass renor-
malization [35]. As a result the RGEs for the superpotential have a simple form. Unfortunately,
the soft breaking parameters from section 3.4.2 need to be renormalized as well, which leads to an
enormous list of coupled differential equations.

This raises questions about the validity of soft supersymmetry breaking universality. This hy-
pothesis is based on low-energy observations, but how do we know that for instance the diagonality
of matrices stays intact after RG evolution? Fortunately, it turns out that many properties of the
theory are RG-invariant [36], including the form of the mass matrices and triple scalar couplings
dictated by soft supersymmetry breaking universality.

Appendix C contains the one-loop RGEs for softly broken supersymmetry. These RGEs are
the dictionary between the unified theory at a high energy scale and the low-energy masses and
couplings. A specific set of values for the high-energy parameters M0,M1/2

, A0, tanβ and sign(µ)
are the boundary conditions for the RGEs and thus affect low-energy behaviour. Although some
properties of the theory stay intact, low-energy phenomenology depends heavily on the boundary
conditions.

The RGEs explain how spontaneous symmetry breaking can occur in a unified theory. The
conditions for spontaneous symmetry breaking (3.11) and (3.12) cannot be satisfied simultaneously
if the two Higgs breaking masses are equal, which is assumed in mSUGRA. However, radiative
corrections change the value of the Higgs breaking parameters through the RGEs. Equation (C.40) for
the mass parameter m2

H2
has a positive contribution from the top quark mass through the parameter

Xt. That means that m2
H2

decreases as the energy decreases. Since the top quark mass is large, this
can drive |µ|2 +m2

H2
to very small and even negative values at low energy, as shown in figure 3.3.

Figure 3.3: RG evolution of the mSUGRA masses for m0 = 80 GeV, m1/2 = 250 GeV, A0 =
−500 GeV, tanβ = 10 and µ > 0 from [19]. Although the masses start out unified, the RGEs result
in a non-degenerate mass spectrum at low energies. The large value of the top quark mass drives
|µ|2 + m2

H2
to small values, ensuring spontaneous symmetry breaking in large parts of mSUGRA

parameter space.
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4 Methods

At this point we have a broken supersymmetric theory and we have limited the number of free
parameters by restricting ourselves to mSUGRA. It is time to put theory to practice and discuss the
implications for collider experiments, in particular the LHC. Predictions for the LHC are obtained
in three steps.

The first step is to apply RG evolution to calculate low-energy masses and branching ratios12 for
a particular set of high-energy parameters. The RGEs are coupled differential equations that cannot
be solved analytically. Low-energy phenomenology is complicated further because mixing angles and
couplings depend on the high-scale parameters as well. Therefore the RGEs are solved numerically.

The second step is simulating a collision. In principle the phenomenology is fixed by masses,
mixing angles and branching ratios, but the sheer number of possible decay chains makes it necessary
to do a Monte Carlo simulation of collisions. The final step is to do a detector simulation. This is
beyond the scope of this research.

This section is dedicated to explaining in more detail how to go from theory to experimental
predictions. For each step, we first discuss the methods used in the field in general and then introduce
the methods and programs specifically used in this research.

4.1 Obtaining a Low-Energy Spectrum

As mentioned before, obtaining a low-energy spectrum with the RGEs is done numerically. There
are several programs available that do a two-loop calculation. They all have slightly different as-
sumptions and precisions at various points in the calculation. For instance, some use dimensional
regularization, others dimensional reduction. As a result, different programs yield slightly different
results. A comparison of the mass spectra in GeV for a generic point in mSUGRA parameter space

SPheno Isasugra SuSpect Softsusy SPheno Isasugra SuSpect Softsusy

h0 110.38 109.99 110.12 110.73 ẽL 231.12 232.29 229.01 230.68
H0 517.01 512.97 513.62 516.39 ẽR 156.87 154.70 155.18 157.52
A0 516.24 508.89 512.84 516.39 ν̃e 217.64 216.83 215.78 217.43
H+ 522.71 518.29 519.36 522.86 µ̃L 231.13 232.29 229.01 230.68
d̃L 675.18 670.41 666.64 668.67 µ̃R 156.85 154.70 155.18 157.52
d̃R 648.48 643.64 640.51 641.54 ν̃µ 217.64 216.83 215.78 217.43
ũL 670.83 665.49 662.15 662.73 τ̃1 151.53 151.50 149.86 152.12
ũR 649.47 644.81 641.57 646.92 τ̃2 232.76 232.33 230.72 232.34
s̃L 675.18 670.41 666.64 668.67 ν̃τ 216.96 214.64 215.13 216.75
s̃R 648.47 643.64 640.51 641.54 g̃ 719.96 719.82 716.83 720.01
c̃L 670.84 665.49 662.15 662.73 χ̃10 118.33 118.69 118.66 117.96
c̃R 649.46 644.81 641.57 646.92 χ̃20 222.90 222.78 222.98 222.97
b̃1 606.22 606.43 603.53 601.25 χ̃30 466.63 456.47 462.00 468.66
b̃2 647.94 642.25 640.34 639.16 χ̃40 481.64 475.08 478.94 482.48
t̃1 452.36 440.25 446.58 449.11 χ̃1+ 222.66 222.83 222.52 224.56
t̃2 677.34 670.96 672.03 673.33 χ̃2+ 481.89 472.91 478.30 478.52

Table 4.1: Mass spectrum in GeV for the high-scale parameters M0 = 100 GeV, M1/2
= 300 GeV,

A0 = −300 GeV, tanβ = 6, µ > 0 computed by SPheno 2.2.3 [37], ISASUGRA 7.78 [38], SuSpect
2.34 [39] and SOFTSUSY 2.0.17 [40]. For this point in parameter space, the differences are smaller
than 3%.

12The branching ratio is the fraction of a certain type of particle that decays through a specific decay mode.
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is shown in table 4.1. For this set of high-energy parameters, the differences are smaller than 3%.
The differences tend to increase for more exotic regions of the parameter space, but in general the
results of different programs are in reasonable agreement. A systematic review of these programs
can be found in [41].

For this research, SPheno 2.2.3 was used to calculate masses, couplings, branching ratios and
decay widths of supersymmetric particles. The advantage of SPheno is that it is the only program
that calculates both masses and branching ratios and uses DR as regularization scheme. To easily
scan parameter space, a C++ program was written to generate an input file for specific high-energy
parameters and then call SPheno to generate a spectrum file. The resulting mass spectrum is
discussed in section 5. Occasionally ISASUGRA linked with ISATOOLS is used to calculate the
dark matter relic density.

4.2 Event Simulation

The next step is to run a Monte Carlo simulation of proton-proton collisions at 14 TeV. There are
Monte Carlo generators available that can do this. In general these calculations are done to leading
order only.

In this research, the event generator Pythia 6 [42] was used through an interface within the
ROOT framework [43]. It automatically reads in the mass spectrum and branching ratios generated
by SPheno. For each point in parameter space, 20.000 SUSY events were generated. These are events
where supersymmetric or Higgs particles are produced in the initial interaction.

The Pythia event record contains information on the particles that were produced in the event,
for instance their identity, their origin (mothers) and decay products (daughters) and their mo-
menta. Part of a sample event summary can be found in Appendix D. Figure 4.1 shows a graphical
representation of the most important particles in this event.

�g̃ χ̃−1

t

b̃1

b̄

τ̃1

ν̄τ

W+

b

χ̃0
1

τ−

s̄

c

Figure 4.1: Part of a possible decay chain of a SUSY event. The notation is further explained in
section 5. The only stable particles in this chain are χ̃0

1 and ν̄τ . The strange quark will form a Kaon
in the hadronization chain. All other particles will decay inside the detector.

A typical event record starts with a short summary of the event, where the most important
particles in the event are listed with their mothers and momenta. As can be seen in Appendix D,
these particles have ‘status code’ 21, and are usually repeated later in the event record. After this
summary, all particles produced in the event are listed. They are sorted such that particles with the
same mother are grouped together.

Not the entire event record was saved, since for instance hadronization chains are not interesting
for this research. The following particles were saved for analysis:

• Particles in the descriptive part of the event record (status code 21).
• Supersymmetric particles and their daughters.
• Taus and their daughters.

29



• Tops and their daughters.
• Bottoms
• Final state leptons (leptons with status code 1).

Most particles in the event record shown in Appendix D are not saved by this procedure. Mothers of
the remaining particles are adjusted to ensure consistency of the event record. If the actual mother
of a particle was not saved, the mother was changed to be the last particle in the decay chain that
was saved. This reduces the length of the event record from over a thousand lines to less than fifty
lines, while retaining the important information. This makes it possible to save events and run a
new analysis without having to repeat the event simulation.

In the analysis, not all final state leptons should be taken into account. Many electrons and muons
are produced in jets and we can be certain that they cannot be distinguished from the jet. Leptons
whose mother is a supersymmetric particle or a W or Z boson are listed in the descriptive part of
the event record. Thus when determining the number of final state leptons, only those electrons and
muons are counted whose mother either has status code 21 or is a tau. This is not entirely correct,
but for an actual prediction of the number of observed final state leptons produced by SUSY events
we would need to perform a detector simulation.

The events contain information about the relative quantities in which supersymmetric particles
are produced. The number of times a particular supersymmetric particle is produced is determined
by multiplying the number of times it is produced per SUSY event by the total cross section for
supersymmetric particles. This cross section is different for every point in parameter space and is
calculated by Pythia during the event simulation.

Supersymmetric Particle Production. By only selecting SUSY events, the possibility that
Standard Model particles from the initial interaction at the LHC produce supersymmetric particles
later in the decay chain is neglected. This is a reasonable assumption since only those Standard
Model particles whose mass is large enough to decay to two supersymmetric particles can produce
secondary supersymmetric particles. As an extra check, supersymmetric particles that were not pro-
duced in the first interaction and do not have a supersymmetric particle as their mother were counted
in all events. The highest number occurred, as was to be expected, for a low-mass scenario and was
3.6 · 10−3 particle per SUSY event, which is indeed negligible since two particles are produced in the
initial interaction. In fact, this number is an overestimate, since it also counts the supersymmetric
particles produced by Higgs particles, which are included in the initial interaction.

Instabilities. Although Pythia is widely used, a program of such complexity is not flawless.
For a number of points in mSUGRA parameter space, internal consistency checks fail regularly.
Also, Pythia occasionally generates negative cross sections or daughters with masses that exceed the
energy of their mother. These errors are most likely due to phase space effects in the Monte Carlo
generator and are sometimes dealt with by trying a different probability distribution as the basis of
the Monte Carlo simulations. This was not done in this research. Instead, inconsistent events are
not saved and if their number reaches 1% of the total number of events for a particular point in
mSUGRA parameter space, this point is not taken into account in the analysis.

Detector Simulation. For a full analysis, generating events is not sufficient. Due to the com-
plicated design of detectors and event reconstruction algorithms, the only way to obtain a proper
prediction is by including a detector simulation. As mentioned before, this is not done in this re-
search, which means no direct predictions for the LHC are obtained.

K-factors. The total cross section calculated by Pythia does not include radiative corrections.
Especially in the QCD sector, next to leading order contributions can be 30% or more of the original
cross section. This can be corrected using K-factors, with which the cross section of a particular
process is multiplied. K-factors for the benchmark points (see section 4.3) have been calculated,
but for most parts of parameter space they are not readily available. In addition, it is difficult to
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properly implement them in an event simulation, since that requires changing every single branching
ratio. Therefore K-factors are not taken into account in this research. The K-factors for the overall
supersymmetry cross sections for different benchmark points have the same order of magnitude [44],
so the general phenomenological implications derived in this research should hold.

4.3 Benchmark Points

Calculating the low-energy spectrum for a given set of high-energy parameters takes less than a
minute, but generating thousands of events easily takes an hour. Doing a detector simulation would
take even longer. Clearly it is impossible to scan the entire mSUGRA parameter space this way.
Some low-energy observables limit the possible parameter space, but it is still too big to do a full
simulation on a reasonably fine grid.

The conventional solution is to use benchmark points. For these points a full simulation is per-
formed to find general predictions of supersymmetric phenomenology. Table 4.2 lists the benchmark
points used by ATLAS [44]. The SU5 points are not used in recent simulations. The names of the
points reflect the different regions of parameter space that are not excluded by low-energy observables
[45].

Point M0 (GeV) M1/2
(GeV) A0 (GeV) tanβ sgn(µ)

Coannihilation (SU1) 70 350 0 10 +
Focus Point (SU2) 3550 300 0 10 +
Bulk (SU3) 100 300 -300 6 +
Low Mass (SU4) 200 160 -400 10 +
Scan (SU5.1) 130 600 0 10 +
Scan (SU5.2) 250 600 0 10 +
Scan (SU5.3) 500 600 0 10 +
Funnel (SU6) 320 375 0 50 +
Coannihilation (SU8.1) 210 360 0 40 +
Coannihilation (SU8.2) 215 360 0 40 +
Coannihilation (SU8.3) 225 360 0 40 +

Table 4.2: Benchmark points used by the ATLAS collaboration [44].

The necessity of the benchmark points is clear, but their foundation in theory is not very strong.
Firstly, table 4.1 shows that the mass spectrum of different programs can be different for the same
point in parameter space. Event simulations use the low-energy spectrum, which means their result
depends not only on the high-energy parameters, but also on (the version of) the program used to do
the RG evolution. What happens in practice is that one program is chosen to do the RG evolution
and everyone works with the resulting low-energy spectrum. If a different program or version is
used, the high-scale parameters are adjusted to reproduce the original spectrum as well as possible.
Of course there is no guarantee that this is possible, since it is quite improbable that a different
treatment of the RGEs yields unification of masses and couplings starting from the same low-energy
spectrum.

Although this procedure might seem strange, the motivation for GUT was not very strong to
begin with. Also, an important reason to assume unification was to have a workable theory. If
letting go of this assumption at this point makes the theory more workable, there is no good reason
to require strict unification anymore. It might not be very appealing from a theoretical point of view,
but it is the only way results can be compared in a consistent manner. As long as there is no proper
theory for supersymmetry breaking, the only approach is a practical one.

Unfortunately, there is a more serious drawback to the benchmark points. The mSUGRA param-
eter space is enormous and there is a good chance that certain phenomenological scenarios are not
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included in the analysis if only these eleven points are used. The main goal of this research is to look
beyond the benchmark points and see if there are points with completely different phenomenology
that are not currently studied in preparation for the LHC. This is done in section 6.3. Another
part is to investigate the stability of the benchmark points. What happens to the predictions if the
high-scale parameters are changed by a small amount? This is discussed in section 6.4.

4.4 Focus on Low Masses

When studying supersymmetry in preparation for the LHC, one has to consider a number of things.
In order to detect signs of supersymmetry, one wants to study particles that are produced with
reasonable cross sections and can easily be distinguished from the Standard Model background. Of
course, ‘reasonable’ and ‘easily’ are relative terms, since the Standard Model background at 14 TeV
collisions is enormous and particle identification is difficult at a hadron collider. Missing energy
would be a particularly good signal for supersymmetry, since the undetectable LSP is stable, but
it will be difficult to accurately measure missing energy at the LHC. These factors make it very
important to find as many distinguishable signals for supersymmetry as possible.

In some parts of the parameter space, supersymmetry is almost impossible to detect. The simplest
example is a point where all supersymmetric particles have a very high mass. In that case the cross
section at the LHC is very low and could even be zero due to insufficient energy. Therefore this
research will focus on supersymmetry with relatively low masses.

4.5 Uncertainties

In the previous sections, several sources of errors in this research were mentioned. The most important
one is the fact that all calculations are at leading order only. As a result, the predicted numbers
of different particles are not correct. However, this research focuses on qualitative effects. Whether
or not a decay is allowed does not depend on next to leading order effects in the collision or decay.
Thus exact error calculation does not add significantly to this analysis and is not included. Statistical
errors are shown for results of Pythia simulations, but are usually too small to be visible in graphs.
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5 The Mass Spectrum

In this section we discuss the low-energy mass spectrum that follows from the RGEs. We start with
the general properties and then investigate the influence of different high-energy parameters on the
low-energy spectrum using SPheno. In the second part, we limit ourselves to scenarios with M0 and
M1/2

smaller than 600 GeV.
Most characteristics are explained with the one-loop RGEs (Appendix C). Since the masses of

particles and antiparticles are equal, only one of them is mentioned. Sfermions from the first two
generations are given the labels L and R, denoting the helicity of their fermionic partners. For the
third generation this identification is not possible due to mixing effects, so the labels 1 and 2 are
used.

5.1 General Properties

The low-energy mass spectrum follows from the RGEs. However, the interaction eigenstates are
usually not the mass eigenstates, so mixing plays an important role in the spectrum.

The Higgs Sector. The Higgs sector was discussed in section 3.4.3. After diagonalization of
the mass matrix, the lightest Higgs has a mass smaller than 135 GeV and the heavy Higgses are nearly
degenerate. The lightest Higgs is always subject to large radiative corrections. When the couplings
to the Higgses are strong, as is the case for large values of tanβ or |A0|, loop corrections become
so important that for the heavy Higgses the tree-level equations from section 3.4.3 do not hold either.

The Gaugino Sector. In the gaugino sector, the gluino is heavier than the other gauginos.
This is a consequence of equation (C.4), where M3 has a negative slope, while M1 and M2 have
a positive slope. So as the energy decreases, the gluino mass M3 becomes larger, while the other
gaugino masses become smaller. However, this is complicated by mixing. The gluinos g̃ form a
colour octet and cannot mix with any of the other gauginos, but the U(1) × SU(2) gauginos mix
with each other and with the Higgsinos. The resulting mass eigenstates are called ‘charginos’ if they
are charged and ‘neutralinos’ if they are neutral. The neutralino mass matrix is a 4× 4 matrix that
contains a number of terms:

• Two diagonal entries M1 and M2 that are subject to the RGEs (C.4).

• Relatively small off-diagonal elements due to the Higgs-Higgsino-gaugino coupling of the form
g〈H0

i 〉h̃χ̃ where 〈H0
i 〉 (i = 1, 2) is the vev of the Higgs field that couples to the Higgsino h̃ and

the gaugino χ̃ with interaction strength g. These terms come from the interactions between
the gauge and chiral supermultiplets and give rise to mass terms after the Higgs fields obtain
a vev.

• An off-diagonal term −µ coming from the superpotential coupling between the two Higgsinos.

The chargino mass matrices are 2 × 2 matrices with diagonal entries M2 and µ coming from the
Winos and the Higgsinos respectively. They also have off-diagonal entries that come from the Higgs-
Higgsino-gaugino coupling. After the mass matrices are diagonalized, the charginos and neutralinos
are denoted as χ̃±1 , χ̃

±
2 , χ̃

0
1, χ̃

0
2, χ̃

0
3 and χ̃0

4, where by definition the lower index is higher for an eigenstate
with higher mass and the upper index is the charge.
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Now we can distinguish two cases. In the most common scenario, the neutralino χ̃0
1 is Bino-like,

χ̃0
2 and χ̃±1 SU(2) gaugino-like, and χ̃0

3, χ̃
0
4 and χ̃±2 Higgsino-like. The states χ̃0

2 and χ̃±1 are nearly
degenerate, as are χ̃0

4 and χ̃±2 . The state χ̃0
3 has a somewhat smaller mass than χ̃0

4. Because of their
µ dependence, the mass spectra of the (Higgsino-like) neutralinos and charginos share some of the
characteristics of the Higgs mass spectra.

The second case occurs if the soft-breaking scalar mass M0 has the same order of magnitude as
the electroweak symmetry breaking scale µ (a few TeV). In that case, the Higgsino-like neutralinos
and charginos have a lower mass than the other gauginos and the LSP is Higgsino-like. This results
in very different phenomenology, but we will not discuss this scenario in detail for reasons that are
explained in section 6.

The Sfermion Sector. Because mSUGRA is constructed to conserve flavour, mixing between
sfermions of different flavours can be neglected. However, left-handed and right-handed sfermions
with the same flavour can interact with each other so these states are subject to mixing. After the
Higgs fields obtain a vev, the 2× 2 sfermion mass matrices are composed of several components:

• Diagonal soft-breaking sfermion mass terms that are subject to RGEs.

• A relatively small diagonal mass term coming from the D terms in the Lagrangian.

• Diagonal terms coming from the F terms that have the form |y|2〈H0
i 〉2f̃2 or |y|2〈H0

i 〉2 ˜̄f2, where
〈H0

i 〉 is the vev of the Higgs field that couples to the sfermion f̃ .

• Terms of the form −µyf̃ ˜̄f〈H0
i 〉 that also come from the F terms and that are proportional to

cosβ for up-type squarks and to sinβ for down-type squarks. These are off-diagonal terms in
the mass matrix that are proportional to the Yukawa couplings.

• Terms that contain the soft-breaking trilinear couplings and that are proportional to the Yukawa
couplings. These too are off-diagonal contributions to the mass matrix, but unlike the off-
diagonal terms coming from the F terms, they are proportional to sinβ for up-type sfermions
and to cosβ for down-type sfermions.

The contributions containing Yukawa couplings are particularly important for the third generation,
so mixing effects are much stronger there. Yet several properties of the sfermion sector follow directly
from the RGEs, without including mixing effects. Firstly, sfermions from the first two generations
that are in the same representation are nearly degenerate in mass, since they have the same RGEs.
This can be seen in for instance equations (C.42) and (C.50). Secondly, because of the large value
of the gluino mass, the terms proportional to M3 are the main contribution to the RGEs of the light
squarks (C.42), (C.44) and (C.46). As a result, the up-type and the down-type squarks of the first
two generations are also nearly degenerate. Thirdly, if mixing can be neglected, sleptons are lighter
than squarks. This can be seen most easily by comparing RGEs (C.44) and (C.50):

βm2
˜̄u
− βm2

˜̄e
=

8
3
g2
1M

2
1 −

32
3
g2
3M

2
3 < 0

This inequality certainly holds at the unification scale, where g1 = g3 and M1 = M3. For lower
energies, it follows from equation (C.3) that g3 > g1 and from equation (C.4) that M3 > M1, so the
difference becomes larger. As a result, the slope of the squark mass is always more negative than the
slope of the slepton mass, which means that the squark mass increases faster as the energy decreases.
Similar arguments hold for the other sfermions, although they are complicated by additional terms
in the RGEs.
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Within the squark sector, the stop and sbottom are generally lighter than squarks from the first
two generations due to the |yt|2Xt and |yb|2Xb terms in the RGEs (C.43) and (C.45):

βm2
˜̄t
− βm2

˜̄u
= 4|yt|2Xt > 0

Similar equations hold for the down-type squarks and the sleptons, so the slope of the masses of the
first two generations is more negative than the slope of the third generation masses. That means that
the masses of the first two generations increase faster as the energy decreases. The mass difference
is the largest for the up-type squarks, because of the high value of the top Yukawa coupling. In the
slepton sector, the effect is negligible, because the tau Yukawa coupling is much smaller.

Finally, the masses of the left-handed states are different from the masses of the right-handed
states because the RGEs of the left-handed doublets have an additional SU(2) gaugino mass contri-
bution compared to the right-handed singlets. For instance, comparing the RGEs (C.42) and (C.44)
or (C.48) and (C.50):

βm2
Q̃`

− βm2
˜̄u

= 2g2
1 |M1|2 − 6g2

2 |M2|2 < 0 (5.1)

βm2
L̃`

− βm2
˜̄e

=
18
5
g2
1 |M1|2 − 6g2

2 |M2|2 < 0 (5.2)

It follows from unification and the RGEs for the gauge couplings (C.3) and the gaugino masses (C.4),
that this is true for all energies. As a result, left-handed sfermions are heavier than right-handed
sfermions.

For the first two generations, the off-diagonal entries in the mass matrices can be neglected. This
is not the case for the third generation due to the large Yukawa couplings. For the stop, sbottom and
stau, diagonalizing the mass matrix gives a heavy and a light mass eigenstate. The splitting is most
important for the stop, because of the large top Yukawa coupling. The bottom Yukawa coupling is
large enough to cause considerable mixing as well. In addition, the top Yukawa coupling affects Ab

through the RGE (C.33) and Ab contributes to the off-diagonal elements. The tau Yukawa coupling
is smaller and Aτ is not affected by yt, so for the stau the mass splitting only becomes significant for
very large or small tanβ.

Running Masses. RGEs evolve masses to a certain energy scale, for instance the scale of the
Z-mass. However, masses are still scale-dependent. A more sensible quantity than the mass at the
Z-scale is the pole mass, which is mph(mph) in the notation of section 2.4.4. This is indeed what is
calculated by SPheno. As a result, masses for different particles are given at different energy scales.
These effects are typically small, but they can slightly change particle masses in ways that do not
immediately follow from the RGEs.

Summarizing this section, we conclude that supersymmetric masses are determined by two build-
ing blocks. The general mass hierarchy follows from the RGEs. The mass splitting follows from the
relative importance of the off-diagonal terms in the mass matrix, which is also determined by the
RGEs. These building blocks are the basis of the discussion in the following sections.
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5.2 Soft-Breaking Scalar Mass

Soft-breaking scalar masses occur in the RGEs of the Higgs fields and the third generation sleptons.
Figure 5.1 shows how the low-energy mass spectrum changes asM0 is varied with all other parameters
kept constant. As mentioned before, the discussion is limited to M0,M1/2

≤ 600 GeV. Also, not all
particles from the first two generations are plotted, since they are nearly degenerate.
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Figure 5.1: Low-energy mass dependence on M0 calculated with SPheno. All other parameters are
kept constant at M1/2

= 250 GeV, A0 = 0 GeV, tanβ = 10, µ > 0.

The general characteristics of the mass spectrum explained in section 5.1 can easily be recognised
in figure 5.1. The mass splittings for third generation squarks can be seen clearly. For the much
lighter sleptons, the splitting between left-handed and right-handed particles is more important for
low M0. This is caused by the gaugino mass terms in the RGEs. If the scalar masses get smaller,
which is the case for low M0, the relative effect of the gaugino masses in equation (5.2) is larger.
This does not play a role in the squark sector, since even for low M0 the squark masses are much
larger than M2.

As one could expect from the RGEs, the scalar masses are affected the most by a change in M0.
The shape of the graphs is explained by the relative importance of M0. The RGEs for the scalar
masses in Appendix C are for the masses squared. To obtain the linear mass parameters plotted in
figure 5.1, we essentially have to take the square root of a quadratic function in M0. If the terms
containing M0 are the leading contributions, which is the case for the slepton sector for large M0, this
yields an almost linear function. If other contributions are more important, such as M3 in the squark
sector, the result behaves more like a quadratic function. We can also see the quadratic behaviour
for small M0 in the slepton sector.

The masses of the gauginos and the lightest Higgs hardly change with M0. For the Higgs this is
because of equation (3.17), which keeps the value low. The mass difference over the entire range of
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M0 in figure 5.1 is only 1 GeV. The gaugino masses hardly depend on M0 because they are affected
through higher-order corrections only.

5.3 Soft-Breaking Gaugino Mass

Gaugino masses occur in the RGEs of all soft-breaking terms. So changing the unification value M1/2
of the soft-breaking gaugino mass affects all masses, as can be seen in figure 5.2.
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Figure 5.2: Low-energy mass dependence on M1/2
calculated with SPheno. All other parameters are

kept constant at M0 = 200 GeV, A0 = 0 GeV, tanβ = 10, µ > 0.

The RGEs for the gaugino sector (C.4) are relatively simple. They are linear and depend only
on the gauge couplings. Since the RGEs of gauge couplings (C.3) do not depend on any of the other
running masses or couplings, the relation between the low-energy gaugino mass and M1/2

is linear.
The RGEs of all other mass terms contain the gaugino masses as a −|Mi|2 contribution. This

means that if M1/2
is larger, the slope of these mass terms is more negative, so they grow more

rapidly with decreasing energy. This leads to a higher mass for larger M1/2
. The squarks have a

stronger dependence on M1/2
than the sleptons, since their RGEs depend on the gluino mass M3.

From equation (C.4) and figure 5.2 it is clear that M3 has a stronger dependence on M1/2
than the

other gauginos, which results in a stronger M1/2
dependence in the squark sector.

This also affects other characteristics of the graphs. Firstly, it explains the difference in shape
between the graphs of the slepton sector and those of the squark sector. As mentioned in section 5.2,
the square root of a quadratic function yields a quadratic behaviour if the influence is small and
linear behaviour if the influence is large. Thus the dependence in the squark sector is practically
linear, while the slepton curves bend for low M1/2

.
The splitting between left-handed and right-handed sleptons is more important for higher M1/2

,
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which can be explained by the relative contribution of M2 to the slepton mass RGEs that was
mentioned in section 5.2. As M1/2

gets larger, so does M2. This makes the slope of the left-handed
slepton masses more negative, so the splitting increases, as follows from equation (5.2). In the squark
sector, this effect does not play a role, since the squarks are much heavier than M2. As a result, the
mass splitting caused by M2 is small compared to the other contributions in the RGEs (compare
section 5.2).

Although the effect is small compared to the changes in the other masses, M1/2
has a larger

influence on the mass of the lightest Higgs than M0. Over the range of M1/2
plotted in figure 5.2, the

mass of the lightest Higgs increases by as much as 10 GeV. In fact, for these parameters, the lightest
Higgs crosses the LEP Standard Model Higgs bound13 for M1/2

≈ 470 GeV.

5.4 Higgs Vacuum Expectation Value

The ratio of the Higgs vevs influences the masses of particles through their coupling to the Higgs
fields. The dependence on tanβ is shown in figure 5.3.
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Figure 5.3: Low-energy mass dependence on tanβ calculated with SPheno. All other parameters are
kept constant at M0 = 300 GeV, M1/2

= 310 GeV, A0 = 0 GeV, µ > 0

As mentioned in section 3.4.3, the masses of the heavy Higgses depend on m2
A0

and are nearly
degenerate. From equations (3.14) and (3.16), the sharp rise in the heavy Higgs masses for low tanβ
(tanβ < 5) can be understood, since this is the behaviour of b/ sin(2β). Even though radiative

13The famous LEP limit on the Higgs mass is that the Standard Model Higgs cannot be lighter than 114.4 GeV at
95% confidence level [46]. For the MSSM Higgs, this limit is actually 92.8 GeV. But since the light Higgs in mSUGRA
models usually resembles the Standard Model Higgs, the exclusion limit for most points in mSUGRA parameter space
is actually closer to 114.4 GeV.
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corrections are enormous, the drop in the h0 mass for low tanβ follows from equation (3.17) as well.
However, based on the same equations, one would expect the masses of the heavy Higgses to remain
constant for high tanβ, which is clearly not the case. The reason for this is that equation (3.14)
holds for the tree-level Higgs potential only. For large tanβ, loop corrections from the bottom and
sbottom loops that have a sinβ dependence (see section 5.1) become increasingly important. This
drives the Higgs mass down for large tanβ. The lower Higgs mass also affects the masses of the third
generation sleptons through loop corrections.

The off-diagonal terms in the third generation slepton mass matrices are important for large and
small tanβ, since they depend on cosβ and sinβ. As mentioned in section 5.1, the mass splitting for
the stau is most important for large tanβ, although in some parts of parameter space it occurs for low
tanβ as well. For the stop the small tanβ effect is quite strong. In some exotic parts of parameter
space, the lightest stop can even become the LSP, for instance at M0 = 140 GeV, M1/2

= 150 GeV,
A0 = −600 GeV, tanβ = 4, µ > 0. A large tanβ has a particularly strong effect on the stau mass
and can easily drive it below the mass of the lightest neutralino in parts of parameter space. If the
LSP is not a neutral particle, it would have been observed long ago, so these points are excluded.
The exact splitting and the extent to which sfermion masses are driven down depends on the other
mSUGRA parameters as well as on tanβ.

The gauginos are mostly unaffected by a change in tanβ. An exception is the low tanβ behaviour
of the Higgsino-like neutralinos and charginos. This is caused by the β-dependence of the off-diagonal
terms in the mass matrix.

5.5 Soft-Breaking Trilinear Coupling

The unification value of the trilinear couplings A0 is perhaps the most complicated parameter in
mSUGRA. It always occurs in combination with a Yukawa coupling. The parameter A0 is not
directly a boundary condition for the RGEs of any of the masses, but the trilinear couplings occur in
the RGEs of all third generation sfermions as well as the Higgses. On top of that, they occur in the
off-diagonal elements in the sfermion mass matrices, which are important for the third generation as
well. The A0 dependence of supersymmetric masses is shown in figure 5.4.

Of the two effects that change the sfermion masses through the parameter A0, we first discuss
the off-diagonal terms in the sfermion mass matrices. Diagonalizing the mass matrix yields the
square root of a quadratic function in A0. Since the influence of A0 is small compared to the
other parameters, this results in an approximate quadratic dependence on A0. This effect explains
the strong mass splitting for large |A0| as well as the −A2

0 dependence of the light third generation
sfermions. It follows from section 5.1 that for the up-type sfermions this effect is especially important
for large tanβ, while for down-type sfermions it is significant for small tanβ. Due to the large value
of the top Yukawa coupling, the stop mass is always affected.

For the heavy third generation sfermions one would predict an A2
0 dependence based on this

argument. In contrast, figure 5.4 shows a slight −A2
0 dependence. This is caused by the second effect:

the RGEs in Appendix C. The trilinear couplings also affect the third family diagonal sfermion mass
terms through the Xt,b,τ terms in the RGEs. If A2

0 increases, the slopes of the third generation
soft-breaking sfermion masses increase as well, so the masses at low energy decrease. This gives rise
to an overall −A2

0 dependence of the sfermion masses, which has to be added to the splitting effect
of the off-diagonal terms.

Of course, the trilinear couplings themselves are subject to RGEs as well, so it is not actually
A0 that occurs quadratically in the equations. This is the reason that the maxima do not occur at
A0 = 0 GeV. The actual position of a maximum is determined by all values of that particular trilinear
coupling over the entire range of the RGEs. Thus they are different for the different sfermions, and
also change if other breaking parameters are varied. The maxima of all graphs are shifted to more
positive values of A0, but not all are shifted by the same amount.

Based on the RGEs one would expect the Higgs sector to behave in approximately the same
way as the sfermion sector, but figure 5.4 tells a different story. Most likely this is due to radiative
corrections, but it cannot be explained by simple first-order arguments and only follows from a full
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Figure 5.4: Low-energy mass dependence on A0 calculated with SPheno. All other parameters are
kept constant at M0 = 200 GeV, M1/2

= 310 GeV, tanβ = 20, µ > 0

calculation such as done by SPheno.
Some of these loop corrections have an important effect on the mass of the lightest Higgs. The

h0 mass becomes larger as A0 gets more negative and changes by as much as 10 GeV over the range
shown in figure 5.4. This is quite a strong effect and is caused by corrections of the trilinear couplings
to the Higgs quartic interaction [47], which affects the Higgs mass through loop corrections.

The masses of most gauginos are hardly affected by A0, as can be expected from the RGEs and
the mass matrices. The influence on the Higgsino-like neutralinos and charginos is much larger. They
behave very much like the masses of the Higgses, because they are subject to the same RGEs and
interactions.

5.6 The Superpotential Higgs Mass

The sign of µ does not have a major effect on the mass spectrum. It causes a small shift in the
masses, but the effect is negligible compared to the other parameters. This is the reason that most
research focuses on µ > 0. The parameter space for µ < 0 also seems to be more restricted than for
µ > 0, for instance because the stau usually becomes the LSP for lower tanβ. Although it is possible
that nature is described by supersymmetry with µ < 0, this scenario does not seem to introduce
new phenomenology, so as long as no signs of supersymmetry are found, it is more useful to focus
research on µ > 0.
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5.7 Rules of Thumb

The mSUGRA mass spectrum depends in a complicated way on the boundary conditions at the
unification scale, but there are a few observations that hold for most parts of mSUGRA parameter
space.

• The lightest stop, sbottom and stau are lighter than their counterparts of the first two gener-
ations.

• Squarks are heavier than sleptons.

• Right-handed sfermions are lighter than left-handed sfermions.

• The gluino is the heaviest gaugino. Unless the soft-breaking scalar mass becomes as large as
the electroweak symmetry breaking scale, the lightest neutralino is Bino-like, while χ̃0

2 and χ̃±1
are SU(2) gaugino-like and nearly degenerate in mass. The heaviest neutralinos and charginos
are then Higgsino-like and χ̃0

4 and χ̃±2 are nearly degenerate in mass.

The masses depend on the mSUGRA parameters roughly in the following way:

• If M0 increases, all masses rise considerably except the lightest Higgs and the gauginos, which
are nearly constant.

• All masses increase with increasing M1/2
.

• The masses of the gauginos and the first two generations of sfermions hardly depend on tanβ.

• The mass of the lightest Higgs is constant for large tanβ, but drops considerably if tanβ
becomes small.

• For small tanβ, the heavy Higgs and Higgsino masses rise sharply with decreasing tanβ. The
masses of third generation sfermions decrease for lower tanβ depending on the other mSUGRA
parameters.

• For large tanβ, the heavy Higgses and the third generation sfermions become lighter. The
mass splitting of the third generation sfermions, especially the τ̃1 and τ̃2, is more important for
large tanβ as well.

• Sfermions of the third generation have an approximate −A2
0 dependence with a maximum that

is shifted to positive values of A0.

• The mass of the lightest Higgs is higher for lower A0.

• The sign of µ has little effect compared to the other parameters.

These conclusions are only valid within the mSUGRA framework. mSUGRA was constructed on the
hypotheses of soft supersymmetry-breaking universality and unification, which leaves little freedom
for extreme mixing angles or large differences in couplings between different points in parameter
space. In the general MSSM, and even more so in extensions of the MSSM, the effects of couplings
and off-diagonal terms can be much larger.

Although the mass spectrum by itself does not fix phenomenology, it does give important clues.
The mass spectrum determines which decays are kinematically allowed, and thereby fixes the phe-
nomenology to a large extent. Also, lighter particles are more likely to be produced at the LHC than
heavier particles if the couplings have the same magnitude. So the mass spectrum also has important
implications for the total supersymmetric cross section and thus for detecting supersymmetry.
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6 Phenomenology

If we do not want to restrict ourselves to benchmark points, we have essentially two ways to deal with
the mSUGRA parameter space. The first is, putting it crudely, to simulate events for an enormous
amount of points and see if the result of any of these points happens to coincide with measurements
at the LHC. The second is a more systematic approach that we will develop in this section.

We expect the phenomenology at a collider to be determined by three ingredients. The first
is the type of particles that is produced in the initial interaction. This is determined largely by
the couplings: particles that couple more strongly to the particles in the beam are produced more
abundantly. In case of the LHC, the beam particles are protons, so we expect the supersymmetric
QCD sector to be important.

The second ingredient is the supersymmetric cross section. This determines the amount of super-
symmetric particles that is produced at the LHC. The total supersymmetric cross section depends
on the masses of the particles produced the most in the first interaction. If these particles are light,
they are produced more abundantly relative to the Standard Model background, which results in
a better distinguishable signal at the LHC. Therefore, low-mass points in the mSUGRA parameter
space have the best discovery potential in the first years of the LHC.

Finally, the phenomenology at the LHC depends on the decay chains of supersymmetric particles.
These are determined by the supersymmetric mass spectrum that was discussed in section 5. Particles
with a lower mass are produced more often in the decay chain than heavier particles. In fact, heavy
particles might not be produced at all.

The following sections address these issues. Section 6.1 is dedicated to studying which particles are
produced in the inital interaction. In section 6.2 the consequences for the total supersymmetric cross
sections are discussed. Then regions in parameter space with similar phenomenology are identified in
section 6.3. Finally, stability and representativeness of benchmark points is discussed in section 6.4.
In our discussion we will limit ourselves to points with relatively low masses to ensure a reasonable
cross section for supersymmetry.

6.1 Particle Production

As mentioned in section 4.2, only supersymmetric and Higgs particles are selected to be produced
in the initial interaction of the Pythia simulation. Our first step is to determine which particles are
produced in the initial interaction for generic points in mSUGRA parameter space. After this we
discuss parts of parameter space that have a different behaviour.
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Figure 6.1: The number of times a given particle was produced in the initial interaction of 20.000
SUSY events for benchmark point SU3. Only the particles that are produced in at least 1% of the
events are shown.

Figure 6.1 shows the particles that are produced in the initial interactions of 20.000 SUSY events
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for the benchmark point SU3. Only the particles that are produced in the initial interaction of at
least 1% of the events are shown. A complete graph containing all initial interactions can be found
in Appendix E.

Due to the strength of the QCD coupling, the initial interaction is dominated by QCD processes.
This is not true if the gluino and all squarks are too heavy to be produced. But since such points
yield extremely low cross sections, we will not investigate this case.

6.1.1 The Effects of the Parton Distribution Function

Figure 6.1 shows that gluinos are produced the most, followed by up squarks and then down squarks.
Furthermore, more positive than negative particles are produced. This is explained by the parton
distribution function of a 7 TeV proton shown in figure 6.2.

Figure 6.2: Parton distribution function of a 7 TeV proton from [48].

Let us use the rough estimate that supersymmetric particles have a mass of at least 100 GeV.
Then partons need to have at least 1.4% of the momentum fraction of a 7 TeV proton to produce
supersymmetric particles. In fact, it is more likely that they have a higher momentum fraction,
since cross sections are typically small close to a kinematic threshold. Figure 6.2 shows that for such
high momentum fractions the content of a high-energy proton resembles that of a low-energy proton.
In other words, partons with high momentum fractions are dominantly valence quarks or gluons.
The couplings predicted by mSUGRA models do not have strong flavour-changing components, so
up squarks and down squarks are produced more often than other flavoured particles, usually in
combination with a gluino.

The role of the proton content can be verified by simulating a proton-antiproton collision with the
same parameters. On average this should yield an equal number of positive and negative particles.
Figure 6.3 shows the number of positive, negative and neutral particles produced in the initial
interaction for both a pp collision and a pp̄ collision.
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Figure 6.3: The number of supersymmetric particles of a certain charge produced in the initial
interaction in case of a proton-proton collision and a proton-antiproton collision at the same energy.
These numbers are based on 20.000 SUSY events for benchmark point SU3.

Figure 6.3 confirms that the abundance of positively charged particles is caused by the content of
the proton. This means that this effect is not specific to supersymmetry. From the parton distribution
function in figure 6.2, one would expect this behaviour for any high-mass particle at the LHC.

In short, gluinos are produced the most in the initial interaction, followed by up squarks and then
down squarks. This is caused by the parton distribution function of the proton shown in figure 6.2
and is true for most points in mSUGRA parameter space that have a reasonably high cross section.
There are a few exceptions to this general conclusion. Firstly stops can be an important contribution
to the total cross section if the mass of the lightest stop is small. Alternatively, if gluino masses are
very large while squark masses are small, or the other way around, the initial interaction could yield
different results.

6.1.2 Light Stops

The only particle that has QCD interactions and yet can have quite a small mass is the stop. In
section 5 we saw that the stop mass can easily become very low for large values of |A0|, especially if
tanβ is large. For extreme points where the stop almost becomes the LSP, stop production can be
the dominant process in the initial interaction, as can be seen in figure 6.4.
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Figure 6.4: The number of times a given particle is produced in the initial interaction of 20.000 SUSY
events for the point M0 = 200 GeV, M1/2

= 200 GeV, A0 = −800 GeV, tanβ = 15, µ > 0, with a
stop mass of 87 GeV. Only the particles that are produced in at least 0.5% of the events are shown.
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Large negative values of A0 that can yield such light stops are particularly interesting because
the mass of the lightest Higgs becomes large (see section 5.5).

6.1.3 Heavy Gluinos

If the soft-breaking gaugino mass is large while the soft-breaking scalar mass is small, the first
interaction produces mainly squarks and very little gluinos. However, this situation cannot be taken
to extremes for two reasons.

Firstly, we know from section 5 that the only parameter that has a large effect on the gluino mass
is M1/2

. However, scalar masses are affected by M1/2
as well. So within the framework of mSUGRA,

heavy gluinos automatically imply rather heavy scalar masses.
Secondly, if the gluino is heavy, so are the other gauginos. If M1/2

is too large compared to M0,
the LSP is a charged scalar particle, usually the lightest stau. In that case we would have observed
it already, so this scenario is excluded. In other words, M1/2

cannot become extremely large unless
M0 becomes large as well, in which case the cross section drops.

To investigate if this effect can be important nonetheless, we take a point in mSUGRA parameter
space with large gaugino masses and relatively small scalar masses. Due to the coupling strength,
gluinos are dominantly produced by processes that involve gluons. Thus judging from the parton
distribution function in figure 6.2, one expects the gluino contribution to drop if the gluino is heavier
than 1 TeV. So we choose a value for M1/2

that ensures the gluino is heavier than 1 TeV and find a
value for M0 such that the scalar masses are just large enough for the LSP to be a neutralino. The
particles produced in the initial interaction of such a point are shown in figure 6.5.
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Figure 6.5: Particles produced most abundantly in the initial interaction for the pointM0 = 120 GeV,
M1/2

= 600 GeV, A0 = 0 GeV, tanβ = 10, µ > 0, which has a gluino mass of 1.4 TeV and relatively
light scalars. Only particles produced in at least 1% of the initial interactions is shown. Clearly the
gluino production is suppressed compared to figure 6.1

The supersymmetric cross section for this point is 0.43 pb, which is a factor 500 smaller than
the supersymmetric cross section for the low-mass benchmark point SU4. The chance of discovering
such high-mass supersymmetry in the first years of the LHC is small. In addition, although gluino
production is suppressed, it is still significant even in this extreme scenario. The initial interaction
yields slightly different results, but that will not result in radically different collider phenomenology
and we will not treat this case separately.

6.1.4 Heavy Scalars

The last exception is a large scalar mass. Constraints from low-energy observables for this scenario
are weak. The most important constraint on supersymmetric masses comes from the dark matter
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relic density. Unfortunately this constraint has a loophole if the LSP has a large Higgsino component
[45], which is the case if M0 is a few TeV (see section 5.1).

However, supersymmetric collider phenomenology is rather straightforward in this case. Because
the scalars are much heavier than the gauginos, they are hardly ever produced. Thus supersymmetry
is effectively limited to the gaugino-sector. The gluinos decay through three-body decays involving
two Standard Model particles and a gaugino. The neutralinos and charginos usually decay to a lighter
gaugino and a W,Z or Higgs boson. At a collider, the most likely way to recognise this scenario is
by missing energy signals combined with the signals from the Standard Model bosons. We do not
discuss this part of parameter space in depth, because the supersymmetric phenomenology does not
need further discussion. It is an interesting region to study in the context of discovery potential, but
that is not the goal of this research.

Summarizing the conclusions of this section, the particles that are produced most abundantly in
the initial interaction are g̃, ũ and d̃ and in some cases t̃1. In general gluinos are produced the most.
Within the low-mass region, the relative numbers of supersymmetric particles produced in the initial
interaction can be taken as constant, with the exception of the stops. As a result, the effect of the
initial interaction can almost completely be absorbed in the total supersymmetric cross section. This
is a single number for a particular point in parameter space and is calculated by Pythia during the
event simulation. Only stop production has to be taken into account separately.

6.2 The Supersymmetric Cross Section

We concluded in section 6.1 that the most important processes in the initial interaction are the
production of gluinos, up or down squarks, and in some cases the production of two light stops. If
we treat stop production separately and only take moderate values of M0 and M1/2

into account,
the gluino is involved in all processes. As a result, the total supersymmetric cross section heavily
depends on the gluino mass. The scalar masses also influence the total cross section, but their effect
is not as large as that of the gluino.

The stop cross section depends on the stop mass and follows the gluon parton distribution func-
tion, since gluons are the leading contribution to stop production. Both the total supersymmetric
cross section and the cross section for stop production are shown in figure 6.6.
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Figure 6.6: The total supersymmetric cross section and the cross section for stop production for
many values of the high-scale parameters.

These plots contain the cross sections for many different values of the high scale parameters:
M0,M1/2

, A0 and tanβ are all varied. The total cross section clearly depends on the gluino mass.
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The scatter in the graph for the total cross section is caused by the difference in scalar masses. The
total cross section is not influenced by the changes in couplings that are associated with varying A0

and tanβ. As expected, the stop production rises considerably for low stop mass. For relatively high
gluino masses, it can even become the main contribution to the cross section. For instance the small
increase in the total cross section in figure 6.6 near mg̃ = 370 GeV is caused by stop production.

In short, the cross section generally increases as the gluino mass decreases. The scalar masses
have a smaller effect on the total cross section, but it is still significant, particularly in case of a
small stop mass. In general the particles produced in the first interaction do not have much effect on
phenomenology for moderate values of M0 and M1/2

. The only exception is the case of a stop mass
smaller than approximately 200 GeV. If the gluino mass is large, stop production can be the leading
contribution to the cross section in that case.

6.3 Phenomenological Regions

With the exception of stops, the changes in the type of particles produced in the first interaction are
negligible over the part of parameter space we investigate. In this section we take a closer look at
the last ingredient that determines the phenomenology: the mass spectrum. We limit ourselves to
M0,M1/2

≤ 600 GeV to ensure reasonable cross sections and interesting phenomenology.
The goal of this section is to predict phenomenology directly from the mass spectrum. This has

several advantages. Firstly, as mentioned in section 4, doing a complete event simulation takes much
more time than generating a mass spectrum. Secondly, a systematic approach gives more insight
in supersymmetric phenomenology. Finally, event generators have become so complex, that they
are practically black boxes. The results from an RG evolution program are checked more easily, for
instance using the results from chapter 5. In this section we will not take the total supersymmetric
cross section into account, but focus on how the phenomenology follows from the relative masses of
the particles. Graphs that include the effects of the supersymmetric cross section can be found in
Appendix I.

The first step is to identify which particles are particularly important for the phenomenology that
could be measured at the LHC. We first consider the points in parameter space where the lightest
stop has a mass of at least 200 GeV. In section 6.1 we concluded that in that case the particles
produced most abundantly in the first interaction are gluinos, up squarks and down squarks. Re-
ferring to section 5, we see that these are the heaviest particles in the spectrum. That means that
supersymmetric phenomenology is not determined by the beginning of the decay chain, since the
particles produced in the initial interaction can decay to almost all other supersymmetric particles.
The masses of the initial particles do affect the cross section, but that is a constant factor for a partic-
ular point in parameter space and mainly influences the discovery potential, not the phenomenology
within supersymmetry.

If the particles produced in the initial interaction are not the determining factor for the phe-
nomenology, how about their decay products? Gluinos decay to a squark and a quark, where decays
to the lightest stops and sbottoms are preferred because of their low mass. Up and down squarks de-
cay to up and down quarks because mixing between families is negligible. These decays also produce
charginos and neutralinos.

This suggests that the most important factor in determining the phenomenology is the spectrum
of the low-mass particles, which determines the possible decay chains. Therefore we will study the
lightest particles in sets of particles that have similar couplings. In other words: the lightest particle
of the squark sector, the lightest particle in the slepton sector, and the next to lightest particles in
the gaugino sector, since the lightest gaugino is the stable LSP. From section 5 it follows that these
particles are t̃1, τ̃1, χ̃0

2 and χ̃±1 . We discuss the properties of these particles and the phenomenological
implications in more detail in the following sections.
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The analyses can be divided in three steps

1. The leading production and decay modes of a specific particle are determined. The results are
listed in Appendix F.

2. Based on the mass spectrum obtained with SPheno, different phenomenological regions in
the mSUGRA parameter space are identified. The effects of stop production in the initial
interaction are taken into acount as well.

3. The validity of these regions and the resulting predictions is checked with an event simulation
using Pythia.

Decays that are not kinematically allowed anywhere in the low-mass region of mSUGRA parameter
space are not considered. These decay modes are suppressed, since they are only accessible to off-shell
particles.

In all graphs, particles and antiparticles are treated as one variable. For instance, the total
number of light staus is a shorthand for the number of light staus plus the number of light anti-staus.
This ensures that we do not have to correct for the surplus of positive particles produced in the
initial interaction when comparing charged particles.

6.3.1 Phase Space Effects

If a decay is kinematically allowed, it is not automatically important. Whether or not it gives a
significant contribution depends on the coupling and the available phase space. If the mass of the
mother particle barely exceeds the mass of the daughters, a decay is typically suppressed due to phase
space effects. As more phase space is available, the decay will become more important. In other
words, the boundary of a phenomenological region is the point where a decay begins to contribute,
not the point where it is the most important.

As a result, small phenomenological regions do not yield a new type of phenomenology, since
they resemble their neigbhouring regions. Small phenomenological regions arise when the total mass
of the daughters in two separate decay modes of a particular particle is almost equal. We will see
several examples of this situation.

6.3.2 The Light Stau

The decay modes of light staus are limited, since the tau-lepton quantum number is conserved.
The possible decays are listed in table F.1. Whether or not these decays are allowed depends on the
specific point in parameter space. The decay to the lightest neutralino is always allowed for otherwise
the light stau would be stable and it would have been observed already. We distinguish three regions
in parameter space that are shown in figure 6.7.

• If the lightest stau is lighter than the lightest charginos, it is likely to be produced quite
abundantly because of its low mass. It can only decay to the LSP and a τ , so supersymmetry
in this region of parameter space produces many taus.

• If the lightest stau is sufficiently heavy, it can decay to χ̃0
2, χ̃

±
1 and the LSP. Since decays to

charginos produce neutrinos rather than taus, one would expect the number of taus to go down
in this region. However, as we will see later, a second effect decreases the number of taus even
more.

• In the small band where mχ̃±1
< mτ̃ < mχ̃0

2
+mτ , the lightest stau can decay to a chargino and

to the LSP, but the decay to χ̃0
2 is not kinematically allowed. However, the phase space for the

decay to charginos is small and off-shell staus can decay to a χ̃0
2. As explained in section 6.3.1,

such a transition region yields no new phenomenology.

In the white regions in figure 6.7 no proper spectrum was created. This is either because electroweak
symmetry breaking does not occur or because the LSP is not neutral. In both cases the spectrum
can immediately be discarded.
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Figure 6.7: Phenomenological regions based on the decays of light staus in the M0,M1/2
plane. In all

plots A0 = 0 GeV and µ > 0. In the dark blue region, the lightest stau is heavier than the next to
lightest gauginos, while in the cyan region it is lighter.
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As for production, light staus can be produced in several ways, which are listed in table F.2.
The dominant production processes are those involving χ̃±1 and χ̃0

2. These particles occur more
abundantly than the other possible mothers because they are produced in many decays.

This has important consequences for the number of taus produced by supersymmetric processes
in different parts of parameter space. As mentioned earlier, fewer staus decay to taus if the stau is
heavier than the lightest charginos. However, a more important reason for the number of taus to
drop in this region is that fewer staus are produced: if a stau can decay to a chargino, a chargino
cannot decay to a stau. This is confirmed by an event simulation shown in figure 6.8. There is a
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Figure 6.8: The number of light staus and taus produced per SUSY event depending on M0 with
M1/2

= 205 GeV, A0 = 0 GeV, tanβ = 10, µ > 0. The number of staus and taus drops when the
stau becomes heavier than the light gauginos. A graph that includes the cross section can be found
in figure I.1.

clear drop in the number of staus if the stau is heavier than the light gauginos. Although taus can
also come from other particles than staus (for instance from W bosons or gauginos decaying through
a three-body decay), this drop is also visible in the number of taus. A comparison with figure 6.7
shows that the point where the number of staus and taus drops coincides with the point in parameter
space where the stau becomes heavier than the light charginos.

6.3.3 The Light Gauginos

The gauginos χ̃±1 and χ̃0
2 couple to almost all particles, just like the Standard Model W and Z bosons.

As a result there are many possible production and decay channels. Fortunately we can bring some
order to chaos using the general mass hierarchy of the mass spectrum.

As mentioned in section 5, the squarks and gluinos are heavier than the other supersymmetric
particles. The only squark that can be lighter than the next to lightest gauginos is the stop, but the
combined mass of the stop and the top is so high that this decay channel is not open. That means
that the squarks and the heavier gauginos can only play a role in the production of χ̃±1 and χ̃0

2 and
not in the decay. Still, all sleptons can be part of either the production mechanism or the decay
chain depending on the high-energy parameters. The possible decays are listed in table F.3.

Because squarks are produced abundantly in both the initial interaction and through gluino
decay, they are the main source of charginos and neutralinos. Thus, unless the stop is light, one
would expect the number of light gauginos per SUSY event to be quite stable over parameter space.
If the stop becomes light, the number of gauginos is affected. This is discussed in section 6.3.5.

We distinguish regions in parameter space in the same way as in section 6.3.2. The graphs are
a bit more colourful than for the staus due to the larger number of possible decay modes, but the
approximate mass degeneracies in the sfermion sector limit the number of regions. Figure 6.9 shows
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the number of possible decay modes of a chargino in the M0,M1/2
plane. In the white region the

spectrum is discarded because the LSP is not neutral. Plots for the individual decay channels from
table F.3 can be found in Appendix G. The black line is for later reference. We can recognise several
regions in parameter space based on the mass spectrum.
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Figure 6.9: Possible decay modes of the light charginos in different parts of parameter space with
A0 = 0 GeV, tanβ = 10, µ > 0. The labels indicate which of the decay modes listed in table F.3 are
kinematically allowed in a certain region. The colour code indicates how many of the decay modes
are kinematically allowed. Three-body decays are always allowed.

• In the dark blue region, only three-body decays are kinematically allowed. These are decays
such as χ̃+

1 → χ̃0
1ud̄ that are suppressed in the rest of the parameter space.

• In the large light blue region, the decays χ̃±1 → χ̃0
1W

± are allowed, but charginos cannot decay
to any other supersymmetric particles than the LSP.

• In the cyan region, mτ̃1 < mχ̃±1
. This region extends to lower values of M1/2

, so for instance at
M0 = 90 GeV and M1/2

= 200 GeV the decay to the light stau is kinematically allowed, even
though the decay to the LSP and a W± is not.

• In the green region, the sneutrinos are lighter than the light charginos as well, making three
additional decays kinematically possible. The small mass differences between the sneutrino
species and between the Standard Model leptons can usually be neglected due to the phase
space effects explained in 6.3.1.

• In the red region, all decays from table F.3 are kinematically allowed. In the small orange
region, the decay to the heavy stau is not kinematically accessible, but this region is too small
to yield a new phenomenology (see section 6.3.1).
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As can be seen in table F.3, the neutralino χ̃0
2, has even more possible decay modes than the light

charginos. Figure 6.10 shows the number of decay modes that are kinematically allowed for different
regions. Many decays involve particles whose masses are (nearly) degenerate, so we can distinguish
six main regions.
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Figure 6.10: Possible decay modes of χ̃0
2 in different parts of parameter space with A0 = 0 GeV,

tanβ = 10, µ > 0. The labels indicate which of the decay modes listed in table F.3 are kinematically
allowed in a certain region. The colour code indicates how many of the decay modes are kinematically
allowed. Three-body decays are always allowed.

• In the dark blue region, only three-body decays such as χ0
2 → χ0

1uū are kinematically allowed.

• In the light blue region just above it, the decay to the LSP and the Z0 is allowed. Three body
decays are suppressed, so almost all χ̃0

2 will decay to a Z boson and the LSP.

• In the large cyan region, the decay χ̃0
2 → χ̃0

1h
0 is allowed as well. Since the coupling to the

Higgs is stronger than the coupling to the Z boson, this is the dominant decay mode.

• In the dark-green area, the next to lightest neutralino is heavier than the light stau, so the
decay to the light stau is allowed as well. This region extends to the cyan and light blue region
with the same label, although the decays to the LSP and the lightest Higgs or Z boson are not
kinematically allowed there.

• In the yellow and light-green region, the sneutrinos are lighter than χ̃0
2, making those decays

kinematically possible. Once again, the mass differences are negligible due to the phase space
effects explained in section 6.3.1.

• In the red region, all decays listed in table F.3 are kinematically allowed. The orange region,
where the decay to the heavy stau is not allowed, is too small to yield a new phenomenology.
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To test if these regions indeed yield different phenomenology, 20.000 SUSY events were generated
with Pythia along the line in figures 6.9 and 6.10. The results are shown in figure 6.11.
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Figure 6.11: The number of times a particular particle is produced per event along the path through
parameter space indicated in figures 6.9 and 6.10. Both M0 and M1/2

are varied, A0 = 0 GeV, tanβ =
10, µ > 0. The kinks in the graphs exactly coincide with the boundaries of the phenomenological
regions. Graphs that include cross section effects can be found in figure I.2.

Figure 6.11 shows the expected characteristics of the different phenomenological regions. Firstly,
the number of light gauginos rises slightly asM0 increases, since that makes gauginos lighter compared
to the rest of the spectrum. Secondly, we can clearly see when a boundary of a phenomenological
region is crossed. Reading the graphs from high to low M0, we can see exactly when decays become
kinematically accessible. For M0 . 250 GeV, the decay to the light stau is kinematically allowed and
the number of staus increases. Below M0 ≈ 160 GeV, the decays to sneutrinos become kinematically
allowed as well. This can be seen in a rise in the number of sneutrinos, but also in a drop of the
number of staus. At M0 ≈ 140 GeV, the remaining decays become kinematically accessible and we
see the number of heavy sleptons increase. As more decay channels are allowed, a smaller fraction
of the charginos and neutralinos decays to staus and the number of staus decreases.
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The number of staus has a direct effect on the number of taus, as can be seen in figure 6.12,
which shows the number of taus produced per SUSY event.
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Figure 6.12: The number of times a tau is produced per SUSY event along the path through parameter
space indicated in figures 6.9 and 6.10. A graph including cross section effects can be found in I.3

The effects can also be seen in the number of final muons and electrons, as can be seen in
figure 6.13. The number of final muons and electrons is determined using the procedure described
in section 4.2. There are two kinks in both graphs. One occurs when the decay to the stau becomes
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Figure 6.13: The number of final state muons and electrons at points along the path through
parameter space indicated in figures 6.9 and 6.10. Both M0 and M1/2

are varied, A0 = 0 GeV,
tanβ = 10, µ > 0. Graphs that include cross section effects can be found in figure I.4.

kinematically accessible. Since the stau can be produced by light gauginos, it can only decay to
the LSP and a tau at this point in parameter space. Approximately 35% of the taus decay to
electrons or muons, which can be detected relatively easily. The other kink is at the point where
the chargino decay to the sneutrinos is kinematically accessible. A chargino decaying to an electron
(muon) sneutrino also produces an electron (muon), since lepton quantum numbers are conserved.
This decay replaces part of the decays to staus, so more electrons and muons are produced. Of
course neutralinos decaying to heavy sleptons also produce the associated leptons, which adds to the
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total number. The change in the number of final muons and electrons is not as pronounced as the
change in the number of taus, so in order to determine the high-scale parameters, tau identification
is necessary.

Finally, from figures 6.9 and 6.10 we see that there is a part of parameter space where the
light gauginos cannot decay to any sleptons. There are distinct phenomenological regions here too.
Figure 6.14 shows the number of h0, Z and W bosons produced per SUSY event. There is a jump
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Figure 6.14: The number of h0, Z0 and W± bosons per event depending on M1/2
with M0 = 300 GeV,

A0 = 0 GeV, tanβ = 10 and µ > 0

in the number of Z bosons at the point where the decay χ̃0
2 → χ̃0

1Z
0 becomes kinematically allowed.

Once the decay χ̃0
2 → χ̃0

1h
0 is allowed as well, it almost completely replaces the first decay due to

the stronger coupling to the Higgs boson. This results in an increased number of Higgs bosons and
a corresponding drop in the number of Z bosons. The number of W bosons produced only has one
jump, which corresponds to the point where the chargino decay to theW boson becomes kinematically
allowed. If supersymmetry is in this part of the parameter space, the high-scale parameters can be
determined by studying the number of Z, W and Higgs bosons.

6.3.4 The Light Stop

The possible production and decay channels of stops are limited because in general the mixing
between different generations is negligible. The production processes of stops are listen in table F.4
and the decay channels in table F.5. The large mass of the top quark is an important constraint on
which decays are kinematically accessible.

The number of stops and their decay modes affect the number of t and b quarks measured at
the LHC. As mentioned in section 6.1.2, light stops can also be produced abundantly in the initial
interaction, but we will discuss that in section 6.3.5. Figure 6.15 shows the phenomenological regions
based on stop production for A0 = 0 GeV, tanβ = 10, µ > 0, where stop production in the first
interaction does not play a large role. Plots for the individual decays can be found in Appendix H.
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Figure 6.15: Phenomenological regions based on stop production for A0 = 0 GeV, tanβ = 10, µ > 0.
The labels indicate which production modes from table F.4 are not allowed in a specific part of
parameter space. The colour code indicates how many of the decay modes are kinematically allowed.
The stop can always be produced in the initial interaction.

We can distinguish several regions in parameter space.

• In the red region, all production processes listed in table F.4 are kinematically allowed.

• In the orange region, the gluino is not heavy enough to decay to a stop and a top. Stops can
still be produced by sbottom decay.

• In the light-green region, the decay of the lighter sbottom to a stop and aW is not kinematically
allowed either.

• In the dark-green region, the heavy sbottom is too light to decay to stops, so only the production
processes involving heavy stops are kinematically accessible.

• In the cyan region, the heavy stop cannot decay to a light stop and a Higgs.

• In the dark blue region, none of the processes from table F.4 are allowed.

The phenomenological regions based on the subsequent decay of the light stop are shown in figure 6.16.
Plots for individual decays can be found in Appendix H. In this part of parameter space, the decay
to the lightest chargino and a b quark is always allowed. This is not necessarily the case for other
values of A0.

56



 (GeV)0M
100 200 300 400 500 600

 (
G

eV
)

1/
2

M

100

200

300

400

500

600

0

1

2

3

4

5

6

7

no t
0

2
χ∼no 

0

3
χ∼no 

0

4
χ∼no 

all decay channels

Figure 6.16: Phenomenological regions in parameter space based on stop decay for A0 = 0 GeV,
tanβ = 10, µ > 0. The labels indicate which decay modes from table F.5 are not allowed in that
part of parameter space. The colour code indicates how many of the decay modes are kinematically
allowed. The suppressed decay t̃1 → χ̃0

1c is always kinematically accessible.

We can identify several regions that have different phenomenology based on the mass spectrum.

• In the blue region, only the decay to χ̃±1 and a b quark is kinematically allowed.

• In the dark-green region, the decay to the heavy chargino and a b quark is allowed as well, but
the light stop cannot decay to a t quark.

• In the light-green region, the decay to the LSP and a t quark is kinematically allowed, but
decays to other neutralinos are not.

• In the yellow region the stop can also decay to χ̃0
2.

• In the orange region the decay to χ̃0
3 is kinematically accessible as well.

• In the red region, all decays listed in table F.5 are kinematically allowed.
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Figure 6.17 shows the number of stops, sbottoms, tops and bottoms produced on the line M0 =
M1/2

, A0 = 0 GeV, tanβ = 10, µ > 0. Near M0 ≈ 160 GeV, a small kink in the number of stops is
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Figure 6.17: The number of stops, sbottoms, tops and bottoms per SUSY event along the line
M0 = M1/2

for A0 = 0 GeV, tanβ = 10, µ > 0.

visible. In figure 6.15 we can see that this is the point in parameter space where the decay of the
light sbottom to a stop and a W boson becomes kinematically accessible. A more significant kink
in both the stop and the sbottom production is at M0 ≈ 250 GeV. From figure 6.15 we can see that
this is the point where the decay g̃ → t̃1t̄ is kinematically allowed. This results in more stops and
tops and less sbottoms, since the decay to the stop replaces part of the decay to the sbottom. The
number of b quarks remains constant since most tops decay to b quarks, so they end up in both plots.

However, there is a sudden jump in the number of b quarks at M0 = 330 GeV. This is caused by
the effect from figure 6.14. Looking at figure 6.10, we see that the decay χ̃0

2 → χ̃0
1h

0 is kinematically
accessible for M1/2

> 330 GeV. Since the channel h0 → bb̄ is one of the most important decay channels
of the light Higgs, this results in a higher number of b quarks.
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6.3.5 Small Stop Mass

For large negative values of A0, which are interesting because of the high mass of the lightest Higgs,
the stop mass can become quite small, especially for extreme values of tanβ. To show what happens
if we vary A0 and tanβ, we first discuss the phenomenological regions based on production and decay
channels of stops in the A0, tanβ plane. After this we include the stop cross section in the analysis.

The phenomenological regions based on stop decay in the A0, tanβ plane for M0 = M1/2
=

200 GeV are shown in figure 6.18. Plots for the individual processes can be found in Appendix H.
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Figure 6.18: Phenomenological regions in parameter space based on stop decay for M0 = M1/2
=

200 GeV and µ > 0. The labels indicate which decay modes from table F.5 are allowed.

For these values of M0 and M1/2
, the decays to χ̃0

3,4 are never allowed. Most of the other decays
are familiar from figure 6.16. An exception is the blue region. Here the stop is so light that even the
decay t̃1 → χ̃+

1 b is not allowed. Because all other decay channels are suppressed in this region, stops
decay through the flavour-changing process t̃1 → χ̃0

1c.
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Figure 6.19 shows a similar plot for the production of stops. Plots from the individual processes
can be found in Appendix H.
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Figure 6.19: Phenomenological regions in parameter space based on stop production for M0 = M1/2
=

200 GeV and µ > 0. The labels indicate which production modes from table F.4 are not allowed in
that part of parameter space.

We can distinguish several phenomenological regions based on the mass spectrum.

• In the red region, the lightest stop is one of the lightest supersymmetric particles and all
production processes from table F.4 are possible.

• In the orange region, the decay g̃ → t̃1t̄ is not allowed due to the large top mass.

• In the light-green region, the light sbottom cannot decay to a stop and a W . Figure 5.4 shows
why: the mass difference between the light stop and the light sbottom decreases for increasing
A0 until the stop mass has reached its maximum. This region extends to the small orange strip
for large tanβ, where the gluino decay is kinematically allowed.

• In the dark-green region, the mass difference between the light and the heavy stop is too small
for the decay t̃2 → t̃1h

0.

• In the cyan region, the decay t̃2 → t̃1Z
0 is not kinematically allowed either. The only production

process from table F.4 that is allowed here is the one involving the heavy sbottom.

• In the dark blue region, this last process is not kinematically allowed either and stops can only
be produced in the initial interaction.
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Now it is time to discuss how the stop cross section fits into this. From figure 6.6 we know that the
stop cross section rises considerably when mt̃1

. 200 GeV. This is the case below the dotted lines in
figures 6.18 and 6.19. Many stops are produced in this region. If it is kinematically allowed, they
decay to b quarks. In the region where the stop cross section is the dominant contribution to the
supersymmetric cross section, even the decay to b quarks is not kinematically accessible, so stops
decay to a c quark and the LSP.

A low stop mass also influences the gaugino sector. If the decay t̃1 → χ̃0
2t is not kinematically

allowed, the number of χ̃0
2 decreases. At the same time the number of χ̃±1 increases, since the decay

t̃1 → χ̃±1 b replaces part of the decays to χ̃0
2. The number of charginos rises even more once no

decays to tops are allowed. If only decays to c quarks are allowed, the number of χ̃0
2 and χ̃±1 drops

dramatically. In that case supersymmetric phenomenology is essentially limited to stops and the
lightest neutralino.

This is confirmed by an event simulation over the line M0 = M1/2
= 200 GeV, tanβ = 15, µ > 0

shown in figure 6.20.
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Figure 6.20: The number of stops, tops, χ̃±1 and χ̃0
2 produced per SUSY event depending on A0 with

M0 = M1/2
= 200 GeV, tanβ = 15, µ > 0. For large negative values of A0, the stop mass is small, so

many stops are produced.

For positive values of A0, most stops are produced by decays of light sbottoms. The number of
stops increases considerably at A0 ≈ −200 GeV when they can be produced by gluinos. That decay
produces top quarks as well so the number of top quarks rises. Once the stop can no longer decay
to a top, the number of tops decreases. At A0 ≈ −700 GeV, stop production becomes an important
process in the initial interaction and the number of stops per SUSY event rises even more. Naturally,
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the number of t quarks drops dramatically at that point because they are no longer produced by the
decay g̃ → t̃1t.

The gauginos also behave as expected. As the stop gets lighter, the number of charginos per SUSY
event first increases, while the number of neutralinos decreases. When the stop can only decay to a
c quark very few gauginos are produced. Of course a drop in gauginos affects stau phenomenology.
But since charginos and neutralinos have the opposite behaviour, the effect is small unless the stop
mass is so small that only the decay to the c quark is allowed.

These graphs and the conclusions derived from them hold for the number of stops produced per
SUSY event. However, we know from section 6.2 that a small stop mass strongly influences the stop
cross section. To obtain a prediction for the number of stops produced at the LHC for different
points in parameter space, we have to take the cross section into account as well. Figure 6.21 shows
the total number of stops, tops, charginos and neutralinos produced per 1 fb−1 of luminosity. The
shape of these graphs are considerably different from the graphs in figure 6.20 because of the increase
in the total supersymmetric cross section that is caused by the small stop mass.
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Figure 6.21: The number of stops, tops, χ̃±1 and χ̃0
2 produced per fb−1 of luminosity depending on

A0. For all points M0 = M1/2
= 200 GeV, tanβ = 15, µ > 0. For large negative values of A0, the

stop mass is so small that the total cross section rises considerably. This changes the shape of the
graphs compared to figure 6.20

Of all other graphs presented in this section, a version where the cross section is taken into ac-
count can be found in Appendix I.
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The parameters A0 and tanβ influence the couplings as well as the masses. However, the effect
of the couplings on supersymmetric phenomenology is small. The reason is that A0 and tanβ only
influence interactions that involve the Higgses. The heavy Higgses are usually too heavy to be
produced in large amounts at the LHC, while the light Higgs is too light to decay to supersymmetric
particles. Thus, A0 and tanβ only affect the supersymmetric phenomenology through their effect on
the mass spectrum. The change in couplings will most likely affect Higgs phenomenology, but that is
beyond the scope of this research. In Appendix J the phenomenological regions based on the decays
of the light gauginos for tanβ = 30 are discussed. The regions have a different form, but the tools
developed in this section still apply, confirming that supersymmetric phenomenology is dominantly
determined by the mass spectrum.

6.4 Benchmark Points

We have now developed a way to study mSUGRA parameter space based on phenomenology. An
important question is in which phenomenological regions the benchmark points are located and if
they are representative for the mSUGRA parameter space. In table 4.2 we see that almost all the
benchmark points have a moderate value of A0. The only exception is the SU4 benchmark point
with A0 = −400 GeV. We discuss each of the benchmark points and their phenomenology. We also
investigate how the phenomenology changes around benchmark points. For brevity, not all these
aspects will be discussed in detail for all benchmark points.

6.4.1 Benchmark Points and Dark Matter

The strongest experimental bound on high-mass supersymmetry is the dark matter relic density.
If R-parity is conserved, the LSP contributes to the total amount of dark matter in the universe.
This can result in a dark matter relic density that is many times higher than the measured value of
Ωmh

2 = 0.1277+0.0080
−0.0079 [14].

The supersymmetric contribution to the total amount of dark matter in the universe is equal to
the number of LSPs times the mass of the LSP. Thus there are two ways to obtain a low dark matter
relic density. The first is to have a light LSP, which is another argument for relatively low-mass
supersymmetry. However, most points in mSUGRA parameter space that yield an LSP that is light
enough are ruled out by other experimental bounds, such as the LEP bound on the Higgs mass. The
second option is to decrease the number of LSPs. In the high-density early universe, supersymmetric
particles could annihilate into Standard Model particles. Since two supersymmetric particles are
involved in the initial state, this decreases the number of supersymmetric particles without violating
R-parity. Thus the number of LSPs depends on the thermodynamics in the early universe and on
the annihilation cross section that is determined by the supersymmetric theory. In general only
annihilation of two LSPs plays a role. However, there are several regions where other processes are
important that enhance supersymmetric annihilation processes. The benchmark points are chosen
in these regions. An insightful description of the calculation of the dark matter relic density can be
found in [49].

ISASUGRA linked with ISATOOLS was used to calculate the dark matter relic densities men-
tioned in this section. The SU3 benchmark point, the SU5 benchmark points and two of the SU8
benchmark points have dark matter relic densities that exceed the present experimental value. The
SU5 benchmark points are not studied anymore due to their high dark matter relic density, so we
will not discuss them here either.
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6.4.2 Coannihilation Benchmark Points SU1 and SU8

Coannihilation regions exist because of a loophole in the calculation of the total dark matter relic
density. If the mass of the light stau is close to the mass of the LSP, the decay of the stau to the LSP
and a tau is suppressed. As a result, the LSP and the light stau coexist in the early universe. The
cross section for stau-neutralino interactions is much higher than the cross section for neutralino-
neutralino interactions, so this leads to higher annihilation rates of supersymmetric particles and
thus a lower dark matter relic density.

If the mass difference between the stau and the LSP is too small, the dark matter relic density
is many times smaller than the measured value. These points in parameter space are not excluded,
since it is possible that there are other sources of dark matter, but they are not the most interesting
points. The mass difference that yields a correct dark matter relic density depends on the mass of
the LSP.

For benchmark point SU1, SPheno yields a mass difference of δm = 8.0 GeV, while for benchmark
point SU8.1 it gives δm = 8.8 GeV. The other SU8 benchmark points have dark matter relic densities
that exceed the recent experimental value and since all SU8 benchmark points are in the same
phenomenological region, we only discuss the SU8.1 benchmark point.

Coannihilation lines were determined by a recursive algorithm that finds a value for M1/2
for a

given value of M0 such that δm− 0.1 GeV < mτ̃1 −mχ̃0
1
< δm+ 0.1 GeV. If no integer value of M1/2

can be found, the algorithm allows a smaller or larger mass difference. However, the mass difference
is not allowed to exceed 2δm. This procedure does not yield a constant dark matter relic density, but
it is a reasonable approximation of a coannihilation line for a limited mass range. The points used
for the SU1 and the SU8 coannihilation lines and their total supersymmetric cross sections are listed
in table 6.1. All points in table 6.1 have an acceptable dark matter relic density. The lowest-mass
points for both coannihilation lines have a dark matter relic density that is approximately a factor
10 too low, but as mentioned before this does not necessarily exclude them.

SU1 (tanβ = 10) SU8.1 (tanβ = 40)

M0 M1/2
σ (pb) M0 M1/2

σ (pb)

40 221 74.78 180 274 23.16
45 241 48.86 185 288 18.31
50 262 32.81 190 302 14.52
55 285 21.61 195 316 11.55
60 306 15.24 200 331 9.187
65 328 10.74 205 345 7.445
70 350 7.774 210 360 6.007
75 372 5.657 215 375 4.893
80 394 4.203 220 389 4.054
85 415 3.232 225 404 3.351
90 437 2.443 230 419 2.762
95 460 1.857 235 433 2.299
100 480 1.456 240 448 1.914

Table 6.1: Points used for the coannihilation lines and their cross sections. All masses are in GeV.

Figure 6.22 shows the changes in the number of staus along the coannihilation line belonging to
the SU1 benchmark point and figure 6.23 shows the changes along the coannihilation line belonging
to the SU8 benchmark point.
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Figure 6.22: Staus produced per SUSY event and per fb−1 of luminosity along the SU1 coannihilation
line from table 6.1.
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Figure 6.23: Staus produced per SUSY event and per fb−1 of luminosity along the SU8 coannihilation
line from table 6.1. The number of staus per SUSY event is almost constant, so the change is
completely due to the higher cross section that is associated with lower M1/2

.

The total supersymmetric cross section plays an important role for both coannihilation lines, but
there are some important differences. The SU1 benchmark point is in a phenomenological region
where all decays from table F.3 are allowed. In contrast, for the SU8 benchmark points only decays
to light staus and the LSP are kinematically accessible. This results in a higher number of staus per
SUSY event for the SU8.1 benchmark point. However, this effect is partly cancelled by cross section
effects.

The second difference is that the number of staus per SUSY event along the SU1 coannihilation
line changes considerably, while it is nearly constant for the SU8.1 benchmark point. The reason
can once again be found in the phenomenological regions. In the language of figures 6.9 and 6.10,
the SU1 coannihilation line essentially follows the boundary of the white and the red region. Thus
it moves further away from the green and yellow region as the mass increases. In other words, for
higher masses more phase space is available for χ̃0

2 and χ̃±1 decays to sneutrinos and heavy sleptons.
Thus the number of staus decreases.

This effect does not play a role for the SU8.1 coannihilation line, since all points on this line are
in the stau-dominated phenomenological region. For the low masses along the SU8.1 coannihilation
line, the gaugino-decays to the Higgs boson is no longer kinematically accessible, which results in a
slightly higher number of staus.

65



6.4.3 Focus Point Benchmark Point SU2

The focus point region is the region where the LSP has a large Higgsino component that enhances
its annihilation. As mentioned in section 5.1, this is the case for very large values of M0. As a result,
the gaugino masses are much smaller than the scalar masses. The phenomenology of this region was
briefly discussed in section 6.1.4. Figure 6.24 shows all supersymmetric particles produced in the
initial interactions and decay chains of 20.000 SUSY events.
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Figure 6.24: The number of times a particle was produced in 20.000 SUSY events of benchmark
point SU2.

Because of conservation of R-parity, the LSP is produced twice per event, which leads to a total
of 40.000 χ̃0

1 particles. As predicted in section 6.1, the number of scalars produced is negligible.
This type of phenomenology is representative for the entire focus point region, since as mentioned in
section 6.1.4, the phenomenology is dominated by gauginos.

6.4.4 Bulk Benchmark Point SU3

Benchmark point SU3 is quite close to the border of two phenomenological regions based on gaugino
decays. Decays to sneutrinos are allowed, but a small change in parameters increases the phase space
for this decay considerably. As a result, a small variation around the SU3 benchmark point yields
very different results for the number of staus and taus. The SU3 benchmark point is stable for stop
phenomenology. As can be seen in table 4.1, the stop mass is well above the critical value of 200 GeV
and no decays become (im)possible by a small change in parameters.

Figure 6.25 shows the total number of staus produced in 1 fb−1 of 14 TeV proton-proton collisions
for two grids around benchmark point SU3, one in the parameters M0 and M1/2

, and one in the
parameters A0 and tanβ. The total supersymmetric cross section calculated by Pythia has been
taken into account.
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Figure 6.25: The number of light staus produced by supersymmetric processes per 1 fb−1 of luminosity
for two grids around the SU3 benchmark point.

Even though M0 and M1/2
are varied by only 20 GeV, the number of light staus produced changes

by more than a factor of 3. Varying A0 and tanβ can double the number of staus produced. This
results in a similar change in the number of taus produced, which is shown in figure 6.26.
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Figure 6.26: Number of taus produced per 1 fb−1 of luminosity for two grids around the SU3
benchmark point.

There are two reasons for this change. The first is a cross section effect: lower masses lead to
higher cross sections. The second reason is that the gaugino-decay to sneutrinos and heavy sleptons
becomes more important for lower M0 or higher M1/2

. This can also be seen in figure 6.27, where
the number of muon-sneutrinos for an M0,M1/2

grid around SU3 is plotted. Note that the axes are
rotated relative to the other graphs for readability of figure 6.27.

Figure 6.27 shows that the effect of the supersymmetric phenomenology is more important than
the effect of the cross section in this case. If M1/2

is changed, the two contributions (cross section
and phenomenology) have the opposite effect on the number of sneutrinos. Near the boundary of a
phenomenological region, phenomenology usually wins.
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Figure 6.27: Number of ν̃µ’s produced per SUSY event and per 1 fb−1 of luminosity for a grid around
the SU3 benchmark point.

The effect of such small variations in M0 and M1/2
is less visible in the number of final state

muons and electrons. Figure 6.28 shows the number of final state electrons and muons produced by
supersymmetric processes per 1 fb−1 of luminosity.
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Figure 6.28: The number of final electrons and muons produced by supersymmetric processes per
1 fb−1 of luminosity around the SU3 benchmark point.

As we already saw in figure 6.13, the number of final muons and electrons depends significantly
less on the point in parameter space than the number of taus. The small changes in figure 6.28
are almost entirely due to the supersymmetric cross section. Since many points in the mSUGRA
parameter space have the same supersymmetric cross section yet different tau phenomenology, the
identification of taus is vital to determine the soft breaking parameters if supersymmetry is found at
the LHC.

6.4.5 Funnel Benchmark Point SU6

Funnel regions are another loophole to lower the dark matter relic density. If the mass of the lightest
neutralino is of the order of half the mass of the Z boson or half the mass of a Higgs boson, its
annihilation is enhanced, because it takes place near a resonance14 in the cross section. This results
in more rapid annihilation and thus a lower dark matter relic density. Annihilation is also enhanced
if the mass of the LSP is half the mass of a neutral resonance such as the J/Ψ. Given the large

14In literature, this resonance is often referred to as a pole. This terminology is not entirely correct, since the
resonance does not contain a singularity for real momenta (it has a finite width).
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masses of supersymmetric particles, the most interesting annihilation processes are those involving
the neutral heavy Higgses.

If we neglect the kinetic energy of the neutralinos, annihilation takes place at the peak of the
resonance if mH0 = 2mχ̃0

1
. In that case the predicted dark matter relic density is considerably lower

than the experimental value. For the SU6 benchmark point, the mass difference calculated by SPheno
is mH0−2mχ̃0

1
= 69 GeV. The width of H0 in benchmark point SU6 is only 12 GeV, so the difference

is quite large. That means that this mechanism works for a large range of Higgs and neutralino
masses.

Yet in most parts of parameter space the Higgs mass is much larger than twice the LSP mass.
From section 5 we know that the only high-scale parameter that affects the neutralino mass is M1/2

,
and M1/2

affects the Higgs mass as well. Thus this mechanism can only play a role if the heavy
Higgses are relatively light. In practice this means that the funnel region is important only for high
values of tanβ and relatively low values of M0.

Benchmark point SU6 is chosen to be in such a funnel region. The SU6 benchmark point is
in the center of the phenomenological region where the light gauginos are heavier than staus, but
lighter than all other sfermions. Thus staus are produced abundantly and the number of staus is
stable under a small variation of the parameters. The light stop can decay through almost all decay
channels from table F.5 except t̃1 → χ̃0

3,4t̄. It can be produced by a gluino and by the heavy sbottom,
but not by the light sbottom. This region corresponds to the small orange strip for high tanβ in
figure 6.19, although the high-energy parameters are different.

For high tanβ, the phenomenological region where all decays from table F.3 are allowed is quite
small, so production of heavy sleptons and sneutrinos is suppressed by phase space effects. However,
the funnel region does contain several phenomenological regions, since it extends to parts of parameter
space where the χ̃±1 and χ̃0

2 cannot decay to staus. Therefore the SU6 benchmark point is not
representative for the entire funnel region.

6.4.6 Low-Mass Benchmark Point SU4

Benchmark point SU4 is the only low-mass point and thus has a much higher supersymmetric cross
section than the other benchmark points. Due to the large negative value of A0, the stop mass is low.
However, with a stop mass of 209.8 GeV the dominant process in the first interaction is still gluino
production. This can be seen in figure 6.29, which shows the particles produced most abundantly in
the first interaction in the SU4 benchmark point. Only the particles produced in at least 1% of the
events are shown.
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Figure 6.29: The number of times a given particle was produced in the first interaction of 20.000
SUSY events for benchmark point SU4. Only the particles that are produced in at least 1% of the
events are shown.

Gluinos are still the most important contribution, but the contribution from stop production is
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not negligible. The light stop is too light to decay to a top, but tops are produced in approximately
one third of the SUSY events through the decay g̃ → t̃1t̄ and through sbottom decays. The number
of staus and taus is very low (only a few staus per fb−1), since benchmark point SU4 is in a region
where the light gauginos can only decay through three-body decays. Thus few sleptons are produced.
The SU4 benchmark point is quite stable under a change in parameters, but it is not representative
for the entire low-mass region. As we can see in figures 6.9 and 6.10, there are also low-mass points
where χ̃±1 and χ̃0

2 can decay to sleptons. For instance, the point M0 = 80 GeV, M1/2
= 170 GeV,

A0 = −400 GeV, β = 10, µ > 0 is comparable to the benchmark point SU4 except that almost 4×105

staus are produced per 1 fb−1 of luminosity.

6.4.7 Representativeness of the Benchmark Points

An important question is if the benchmark points are representative for the mSUGRA parameter
space. In other words: if we have benchmark points for all phenomenological regions. The answer is
no, but this is not always a problem. Some of the effects of the phenomenology are counteracted by
the cross section, as can be seen by comparing figures 6.20 and 6.21. It might not be necessary to
have benchmark points in all phenomenological regions to have a representative set of points. And
for practical reasons we want to keep the number of benchmark points as low as possible.

Another reason not to study a particular phenomenological region in detail is that it is excluded
by low-energy observables such as the dark matter relic density. However, one has to be extremely
careful with such exclusion limits, since the dark matter relic density can change considerably if the
requirement of unification is dropped [50]. Table 6.2 summarizes the stau and stop phenomenology
of the benchmark points that are studied in the most recent ATLAS note [44].

Point Slepton/lepton phenomenology Stop phenomenology

SU1 many sleptons, all flavours many stops
SU2 few sleptons, leptons from Standard Model gauge bosons few stops (few scalars)
SU3 many sleptons, particularly staus many stops
SU4 few sleptons, leptons from three-body decays many stops
SU6 dominated by staus many stops
SU8 dominated by staus many stops

Table 6.2: The phenomenology of the benchmark points. With the exception of benchmark point
SU2, stops can be produced by gluino decay in all benchmark points. All SU8 points are in the
same phenomenological region, so they are not listed separately. The SU5 benchmark points are not
studied anymore, so they are not listed either.

Not all phenomenological regions are addressed by the benchmark points. Firstly, there are no
benchmark points in the region where the decay to the Higgs is the dominant decay mode of χ̃0

2.
As we can see in figure 6.14, this scenario yields a significant number of light Higgses and thus b
quarks. The original ATLAS benchmark points contained such a point (SU5.3), but this point is not
studied anymore due to its high dark matter relic density. An example of a point with the required
phenomenology is the point M0 = 420 GeV, M1/2

= 350 GeV, A0 = 0 GeV, tanβ = 50, µ > 0. This
point has a total supersymmetric cross section of 5.2 pb, which is comparable to the cross section
of benchmark point SU2. Since it is within the funnel region, it also has an acceptable dark matter
relic density.

Secondly, all benchmark points with the exception of SU2 are in regions where stops can be
produced by gluino decay. As mentioned in section 6.4.3 the phenomenology of the SU2 benchmark
point is dominated by gauginos. However, there are points where the decay g̃ → t̃1t̄ is not kimenati-
cally allowed while the decay g̃ → b̃1b̄ is accessible. It is an interesting question whether it is possible
to distinguish this case at the LHC.
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Given the LEP bounds on the Higgs mass, it is very likely that the decay b̃1 → t̃1W
− is allowed15.

The final states in both cases are quite similar:

• g̃ → t̃1t̄→ χ̃+
1 bW

−b̄ or g̃ → t̃1t̄→ χ̃0
1tW

−b̄→ χ̃0
1bW

+W−b̄

• g̃ → ˜̄b1b→ χ̃+
1 t̄b→ χ̃+

1 b̄W
−b or g̃ → b̃1b̄→ t̃1W

−b̄→ χ̃+
1 bW

−b̄ or χ̃0
1tW

−b̄→ χ̃0
1bW

+W−b̄

However, the kinematics are different, so the jets should yield a different invariant mass. It is
difficult to distinguish these cases at the LHC, but it might be possible. An example of such a point
is M0 = 420 GeV, M1/2

= 250 GeV, A0 = 0 GeV, tanβ = 50, µ > 0, which is in the funnel region
and has a supersymmetric cross section of 23 pb.

Finally, another type of benchmark point that would be interesting to study in the context of stop
phenomenology is a point with large negative A0. At the moment there is no such benchmark point.
There are three reasons to study this part of parameter space in more detail. Firstly, by not having
a benchmark point with relatively low stop mass, we have a gap in the possible phenomenology.
The second and third reason come from the low-energy constraints on parameter space. We saw in
section 5.5 that low values of A0 yield a relatively high mass for the lowest Higgs, which is interesting
in the light of the LEP Higgs mass limit. In addition, if the stop is so light that it can only decay
through the channel t̃1 → χ̃0

1c, it is stable enough to drive the dark matter relic density down through
coannihilation with the LSP. In other words: there is a stop coannihilation region. This is a part of
parameter space that is not studied in detail at the moment.

In short, we propose three additional benchmark points:

• A point such as M0 = 420 GeV, M1/2
= 350 GeV, A0 = 0, tanβ = 50, µ > 0, where the

dominant decay mode of χ̃0
2 is the decay χ̃0

2 → χ̃0
1h

0.

• A point such as M0 = 420 GeV, M1/2
= 250 GeV, A0 = 0 GeV, tanβ = 50, µ > 0, where the

stop cannot be produced by a gluino, but the sbottom can.

• Points with A0 ¿ 0 GeV. Specifically, points in the stop coannihilation region, such as the
point M0 = 160 GeV, M1/2

= 320 GeV, A0 = −1200 GeV, tanβ = 10, µ > 0, where t̃1 is lighter
than χ̃±1 and can only decay to the LSP and a c quark.

There are other regions that are not addressed by the benchmark points in table 4.2, such as the
scenario that the stop cannot decay to a top or the scenario that the main gluino decay mode is
g̃ → t̃1c. These would be interesting to study as well. However, the reason to use benchmark
points was to make supersymmetric parameter space manageable. Thus while preparing for the
LHC it is more important to limit the benchmark points to a set that shows the most important
phenomenological scenarios than it is to cover every remote corner of parameter space.

6.5 Using Phenomenological Regions

The predictive power of the phenomenological regions introduced in the previous sections is striking,
but they are not a substitute for a full analysis. Decay chains can be quite complex and one can
easily overlook an important contribution. Take for example figure 6.17. The jump in the b quark
production cannot be explained by stop and sbottom phenomenology without taking gaugino decays
into account as well.

Also, phenomenological regions do not predict the absolute number of particles produced. They
can only be used to predict how the number of specific particles per SUSY event changes if the
high-energy parameters are varied. To do a complete analysis, one has to take the entire decay chain
into account.

15The LEP bounds on the Standard Model Higgs mass makes it unlikely that M0 and M1/2
both have a low value.

From figure 6.15 we can see that this is exactly the region where the decay b̃1 → t̃1W− is not allowed. Thus it is
unlikely that a light sbottom cannot decay to a light stop.
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However, phenomenological regions can tell us where to start looking. Thus, in combination with
a full event simulation, they are a powerful tool. For instance, if we are interested in a particular
particle, phenomenological regions are a quick way to estimate the range of possibilities. Simply
list the possible processes that produce the particle of interest and determine which ones are the
most important. Then list the possible decay modes of the most important mothers and determine
where in the parameter space these decays are kinematically allowed. After that an event simulation
is needed to obtain the actual numbers. For a check on the validity of phenomenological regions,
relatively few events (1000 should suffice to see the most important changes) should be generated
along the following lines through parameter space:

• Lines crossing phenomenological regions, to confirm the expected changes.

• A line along which the results are expected to remain constant to confirm that the regions are
not unexpectedly affected by other processes, such as production processes of the mothers.

No detector simulation is necessary for these checks. If the phenomenological regions pass these tests,
one representative point for every region can be chosen for more elaborate simulations. These points
represent all possibilities for the phenomenology of the particle of interest.

As far as the benchmark points are concerned, phenomenological regions show that the cross
section of a benchmark point is not very important, since many points with similar phenomenology
but totally different cross section can be found. Also, the benchmark points do not represent all
possible phenomenologies (see section 6.4.7).

While preparing for the LHC, phenomenological regions can be used to identify the possible
signals of supersymmetry. However, they are more interesting once the LHC is running. If no
supersymmetry is found, phenomenological regions combined with the predicted supersymmetric
cross section can be used to exclude parts of parameter space. If supersymmetry is found at the
LHC, phenomenological regions can be used to quickly identify the interesting parts of parameter
space. In short, phenomenological regions are an efficient tool to exclude parts of the mSUGRA
parameter space so research can focus on the interesting regions.
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7 Conclusion and Outlook

In this research we developed a method to predict supersymmetric phenomenology at the LHC from
the mass spectrum in the context of mSUGRA. While preparing for the LHC, this method can be used
to find the possible phenomenological scenarios. Once the LHC is collecting data, phenomenological
regions can be used to exclude parts of parameter space and identify the interesting regions.

Within the low-mass mSUGRA parameter space, phenomenology is determined by the total
supersymmetric cross section, the stop cross section and the phenomenology within supersymmetry.
Cross sections are relatively simple functions that depend on the masses of the supersymmetric
particles involved in the production process. However, the phenomenology within supersymmetry
can produce sudden jumps in the number of particles near the border of a phenomenological region.
These effects are particularly strong in the slepton sector.

Phenomenology can vary considerably over different phenomenological regions. For example, de-
cays of light gauginos give rise to a slepton-dominated region, a Higgs-dominated region, a gauge
boson-dominated region and a region that is characterized by three-body decays. If supersymmetry
is in the slepton-dominated region, the identification of taus will be vital to determine the super-
symmetric phenomenology more precisely. For other regions the effect of the cross section can be
more important. For instance, the Higgs-dominated region spans an enormous part of parameter
space. Within this region, cross section effects are more important than changes in supersymmetric
phenomenology.

In the SUSY QCD sector phenomenological regions are generally larger than in the slepton sector.
As a result, the supersymmetric cross section plays an important role. There are still points that
have the same cross section yet different phenomenology. However, most phenomenological regions
based on stop and sbottom phenomenology can only be distinguished by studying top and bottom
kinematics, which is a very difficult task.

There are many interesting questions left about supersymmetry, some of which are very important
for the interpretation of the results at the LHC. Firstly, in preparation for the LHC, detector simula-
tions have to be performed for a representative set of points in the supersymmetric parameter space.
In addition to the existing benchmark points, it would be interesting to study the representative
points proposed in section 6.4.7 in more detail.

Secondly, to obtain actual exclusion limits from LHC data, next to leading order calculations
are needed as well. Implementing loop corrections in Monte Carlo simulations is quite difficult, but
it is necessary for accurate predictions. Next to leading order corrections do not change the shape
of the phenomenological regions, but they do affect the number of supersymmetric particles that
are produced. Since these corrections can be as large as roughly 100%, they have a large effect on
exclusion limits.

Finally, this research is limited to mSUGRA. An important question is if the phenomenology of
mSUGRA is representative for the supersymmetric parameter space. Can the method developed in
this research be applied to other breaking models, the MSSM or perhaps even a general supersym-
metric extension of the Standard Model?

Most likely it is possible to generalize the methods presented in this research, although in par-
ticular the general MSSM is more complex than mSUGRA. For instance, the mass spectrum can be
very different if the requirement of unification is dropped. This affects not only the phenomenology
within supersymmetry, it can also change which particles are produced in the initial interaction. In
the most general extension, with more than one supersymmetry generator, there are probably too
many possibilities to make any sensible predictions.

In all generalizations it is important to include the low-energy observables in the analysis, since
these put severe restrictions on the mass spectrum and the possible phenomenology. Research into
these observables is ongoing, particularly in the areas of the dark matter relic density and the loop
corrections that contribute to flavour changing processes. Fortunately, LHC Higgs searches will put
a strong restriction on the supersymmetric mass spectrum. In the meantime, it might be interesting
to find a quick way to put more accurate limits on the parameter space using the Higgs branching
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ratios as well as the mass. This would yield a more accurate bound than the LEP bound on the
Higgs mass that is currently used in many analyses.

There are many other things that are interesting to investigate. However, as far as phenomenology
is concerned, the representativeness of the benchmark points is probably the most important issue,
both in the context of mSUGRA and beyond. This is an interesting field of research from both a
theoretical and an experimental point of view. For experiments, the biggest challenge after finding
signs of supersymmetry will be to identify the type of phenomenology and thus the interesting part
of supersymmetric parameter space. It is vital to have a representative set of benchmark points to
identify the phenomenological region.

To obtain a good set of benchmark points, one has to answer a more theoretically motivated
question. Is mSUGRA representative for the parameter space of the general MSSM? Answering this
question while taking into account the low-energy parameters will truly show the range of possible
phenomenologies we could expect at the LHC.
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A Feynman Rules

This appendix lists the relevant Feynman rules used in this thesis.

A.1 φ3 theory

Scalar propagator: �p =
i

p2 −m2 + iε
(A.1)

Trilinear scalar interaction: � = −ig (A.2)

A.2 Quantum Electrodynamics

With Q the charge fraction, e the charge of the positron and /p = pµγ
µ, the Feynman rules are:

Fermion propagator: �p = i
/p+m

p2 −m2 + iε
(A.3)

Photon propagator: �pµ ν = i
−gµν

p2 + iε
(A.4)

Electromagnetic interaction: � µ = iQeγµ (A.5)

A.3 Higgs sector

Scalar propagator: �p =
i

p2 −m2 + iε
(A.6)

Yukawa interaction: � = −iy (A.7)

Quartic scalar interaction: � = −iλh (A.8)
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B Grand Unified Theories

If we look at the Standard Model, we have three forces. We could in fact say the Standard Model is
not one theory, but a combination of three distinct theories. It would be more appealing to have one
Grand Unified Theory (GUT). A natural way to do this would be by embedding SU(3)×SU(2)×U(1)
in a larger symmetry group [51]. This larger symmetry would have to be broken, since we do not
observe it in nature, but it could be a good symmetry at some high energy scale. Ideally the breaking
mechanism should explain the value of masses and coupling constants at low energies.

As shown in section 2.4.4, RGEs predict running coupling constants. If there is an energy scale
where the three coupling constants get the same value, that would be a good candidate for the
unification scale. A number of assumptions has to be made to arrive at this energy, especially
concerning the non-existence of particles in the energy range between 100 GeV and 1015 GeV, referred
to as the ‘desert’, since such particles would affect the RGEs. Furthermore, although we know the
normalization of the non-Abelian gauge couplings because of their self-interactions, we do not know
the relative normalization for the U(1)-coupling, which means we can choose it. Obviously, any
three lines can always be made to cross each other in one point if we can scale one of them with an
arbitrary factor.

However, if the Standard Model gauge group is embedded in a larger symmetry group, the relative
normalization of the U(1) coupling is determined by the normalization of the larger group. When
the idea of unification was first explored, the existing data hinted at unification with a scaling factor
for the U(1) coupling that could be explained by group theory. Meanwhile, measurements from LEP
have convincingly ruled out the possibility of the Standard Model couplings converging to a single
point [52] in the minimal GUT.

Unification is not ruled out if there are particles in the desert, which is the case for supersymmetry.
The extra particles contribute to the loop corrections and change the RGEs. If they have masses in
the TeV range, the coupling constants can converge to a unification point. To our present knowledge
supersymmetry is consistent with unification [53].

The smallest group in which the Standard Model gauge group can be embedded is SU(5) [54].
Actually, SU(5) does not quite contain SU(3)×SU(2)×U(1) but rather S(U(3)×U(2)), which is a
slightly different group. It does have the same Lie-algebra, which ensures most of the phenemenology
is unchanged. The most important difference is that S(U(3) × U(2)) predicts charge quantization
[16], so it is probably a better description of nature than SU(3)× SU(2)× U(1).

Now consider the matrix representation of SU(5). The part that contains the Standard Model
can be written as a matrix of the form:

(
U3 0
0 U2

)

where U(2) and U(3) are unitary matrices of dimension 2 and 3 with det(U3) det(U2) = 1. This
constraint corresponds to a single U(1) phase freedom and it follows that the corresponding repre-
sentations (compare the notation to Table 2.1) are given by:

(3, 1,−1
3
q) (1, 2,

1
2
q)

where q is the scaling factor that is determined by the normalization of the vector representation of
SU(N):

Tr(T aT b) =
1
2
δab (B.1)

Since the normalization of SU(5), SU(3) and SU(2) is given by equation (B.1), this fixes the U(1)
scaling factor:

1
2

= 3×
(
−q

3

)2

+ 2×
(q

2

)2

=
5
6
q2 ⇒ q =

√
3
5

(B.2)

This factor is usually absorbed in the definition of the coupling constant.
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C Renormalization Group Equations of the MSSM

The one-loop16 RGEs for the parameters of the MSSM given below are based on [55], [58] and [59].
In this appendix we will first give the matrix equations for the general case and then derive the
leading order RGEs for mSUGRA. The following notation is used for the different parameters:

gi Gauge couplings
Mi Soft-breaking gaugino mass parameters
yu,d,e Yukawa matrix for up-type and down-type squarks as well as for charged sleptons
m2

Q̃, ˜̄u, ˜̄d,L̃,˜̄e
Soft-breaking sfermion mass matrices

m2
H1,H2

Soft-breaking Higgs mass parameters
au,d,e Soft-breaking trilinear terms
b Soft-breaking Higgs mixing parameter
µ Superpotential µ parameter

The U(1) hypercharge is normalized according to the SU(5) GUT (see appendix B). Indices
are used to distinguish breaking terms belonging to different particles and are not summed over.
The following shorthand notation is used for parameters that enter the RGEs through common
combinations of second Casimir invariants:

bi =
(

33
5
, 1,−3

)
c′i =

(
7
15
, 3,

16
3

)

ci =
(

13
15
, 3,

16
3

)
c′′i =

(
9
5
, 3, 0

)

Another useful combination is:

S = m2
H2
−m2

H1
+ Tr

[
m2

Q̃
−m2

L̃
− 2m2

˜̄u + m2
˜̄d
+ m2

˜̄e

]
(C.1)

The β-function of a variable v is defined as:

βv = 16π2 dv

dt
(C.2)

where compared to the notation of section 2.4.4, an extra factor 16π2 is absorbed in the definition
of β and t = ln(µ/µ0) with µ0 the GUT scale that is used to make the argument of the logarithm
dimensionless. The beta functions for the supersymmetric parameters are:

βgi
=big

3
i (C.3)

βMi
=2big

2
iMi (C.4)

βyu =yu

(
3Tr(yuy†u) + 3y†uyu + y†dyd −

∑
i

cig
2
i

)
(C.5)

βyd
=yd

(
Tr(3ydy

†
d + yey†e) + 3y†dyd + y†uyu −

∑
i

c′ig
2
i

)
(C.6)

βye =ye

(
Tr(3ydy

†
d + yey†e) + 3y†eye −

∑
i

c′′i g
2
i

)
(C.7)

βau =−
∑

i

cig
2
i au + 2

∑
i

cig
2
iMiyu + 4yuy†uau + 6Tr(auy†u)yu (C.8)

+ 5auy†uyu + 3Tr(yuy†u)au + 2yuy
†
dad + auy

†
dyd

16The two-loop equations can be found in for instance [55], [56] and [57]

77



βad
=−

∑
i

c′ig
2
i ad + 2

∑
i

c′ig
2
iMiyd + 4ydy

†
dad + 6Tr(ady

†
d)yd + 5ady

†
dyd (C.9)

+ 3Tr(ydy
†
d)ad + 2ydy†uau + ady†uyu + 2Tr(aey†e)yd + Tr(yey†e)ad

βae
=−

∑
i

c′′i g
2
i ae + 2

∑
i

c′′i g
2
iMiye + 4yey†eae + 2Tr(aey†e)ye (C.10)

+ 5aey†eye + Tr(yey†e)ae + 6Tr(ady
†
d)ye + 3Tr(ydy

†
d)ae

βb =
(

6
5
g2
1M1 + 6g2

2M2 + Tr(6y†uau + 6y†dad + 2y†eae)
)
µ (C.11)

+
(
−3

5
g2
1 − 3g2

2 + Tr(3yuy†u + 3ydy
†
d + yey†e)

)
b

βµ =µ
(
− 3

5
g2
1 − 3g2

2 + Tr(3yuy†u + 3ydy
†
d + yey†e)

)
(C.12)

βm2
H1

=− 6
5
g2
1 |M1|2 − 6g2

2 |M2|2 + Tr
(
6(m2

H1
+ m2

Q̃
)y†dyd + 2(m2

H1
+ m2

L̃
)y†eye

)
(C.13)

+ Tr
(
6y†dm

2
˜̄d
yd + 2y†em

2
˜̄eye + 6a†dad + 2a†eae

)− 3
5
g2
1S

βm2
H2

=− 6
5
g2
1 |M1|2 − 6g2

2 |M2|2 + 6Tr
(
(m2

H2
+ m2

Q̃
)y†uyu + y†um

2
˜̄uyu + a†uau

)
+

3
5
g2
1S (C.14)

βm2
Q̃

=− 2
15
g2
1 |M1|2 − 6g2

2 |M2|2 − 32
3
g2
3 |M3|2 + 2y†um

2
˜̄uyu + 2y†dm

2
˜̄d
yd + 2a†uau + 2a†dad (C.15)

+ (m2
Q̃

+ 2m2
H2

)y†uyu + (m2
Q̃

+ 2m2
H1

)y†dyd + (y†uyu + y†dyd)m2
Q̃

+
1
5
g2
1S

βm2
˜̄u

=− 32
15
g2
1 |M1|2 − 32

3
g2
3 |M3|2 + (2m2

˜̄u + 4m2
H2

)yuy†u (C.16)

+ 4yum2
Q̃
y†u + 2yuy†um

2
˜̄u + 4aua†u −

4
5
g2
1S

βm2
˜̄d
=− 8

15
g2
1 |M1|2 − 32

3
g2
3 |M3|2 + (2m2

˜̄d
+ 4m2

H1
)ydy

†
d (C.17)

+ 4ydm2
Q̃
y†d + 2ydy

†
dm

2
˜̄d
+ 4ada

†
d +

2
5
g2
1S (C.18)

βm2
L̃

=− 6
5
g2
1 |M1|2 − 6g2

2 |M2|2 + (m2
L̃

+ 2m2
H1

)y†eye + 2y†em
2
˜̄eye + y†eyem2

L̃
+ 2a†eae − 3

5
g2
1S
(C.19)

βm2
˜̄e

=− 24
5
g2
1 |M1|2 + (2m2

˜̄e + 4m2
H1

)yey†e + 4yem2
L̃
y†e + 2yey†em

2
˜̄e + 4aea†e +

6
5
g2
1S (C.20)

Since these equations are not very enlightening, we give the leading order contributions for the
case of mSUGRA (section 3.5). We use the following approximations:

• The soft-breaking mass matrices are assumed to be diagonal.

• The trilinear couplings are taken proportional to the Yukawa couplings: au = Auyu, ad = Adyd

and ae = Aeye.

• Since the corresponding Standard Model particles are so much heavier, only the Yukawa cou-
plings of the third generation yt, yb, yτ are considered significant.

• If all masses in equation (C.1) are equal, then S = 0. From equation (C.1) and the β-functions
it follows that dS/dt ∝ S. That means that if the masses are unified at some point, S will
vanish at any energy scale. Since mSUGRA assumes this unification, we take S = 0.

Due to the approximation that only the Yukawa couplings of the third generation are significant, the
result for the heaviest generation is different from the two lighter generations. If the difference is not
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clear from the names of the particles, the light generations will be denoted by an ` and the heavy
generations by an h. For instance Q̃h denotes the top-bottom squark doublet. To obtain the RGEs
for the trilinear couplings Ai, we have to separate them from the Yukawa couplings. For instance,
for the stop trilinear coupling, we get:

[
dau

dt

]

tt

=
dAtyt

dt
=
dAt

dt
yt +

dyt

dt
At (C.21)

Finally, the following combinations will be useful:

Xt = m2
Q̃h

+m2
˜̄t
+m2

H2
+A2

t (C.22)

Xb = m2
Q̃h

+m2
˜̄b
+m2

H1
+A2

b (C.23)

Xτ = m2
L̃h

+m2
˜̄τ +m2

H1
+A2

τ (C.24)

Then the result is:

βyt
≈ yt

(
6|yt|2 + |yb|2 −

∑
i

cig
2
i

)
(C.25)

βyu,c
≈ yu,c

(
3|yt|2 −

∑
i

cig
2
i

)
(C.26)

βyb
≈ yb

(
|yt|2 + 6|yb|2 + |yτ |2 −

∑
i

c′ig
2
i

)
(C.27)

βyd,s
≈ yd,s

(
3|yb|2 + |yτ |2 −

∑
i

c′ig
2
i

)
(C.28)

βyτ ≈ yτ

(
3|yb|2 + 4|yτ |2 −

∑
i

c′′i g
2
i

)
(C.29)

βye,µ ≈ ye,µ

(
3|yb|2 + |yτ |2 −

∑
i

c′′i g
2
i

)
(C.30)

βAt
= 2

∑
i

cig
2
iMi + 12|yt|2At + 2|yb|2Ab (C.31)

βAu,c ≈ 2
∑

i

cig
2
iMi + 6|yt|2At (C.32)

βAb
≈ 2

∑
i

c′ig
2
iMi + 12|yb|2Ab + 2|yt|2At + 2|yτ |2Aτ (C.33)

βAd,s
≈ 2

∑
i

c′ig
2
iMi + 6|yb|2Ab + 2|yτ |2Aτ (C.34)

βAτ ≈ 2
∑

i

c′′i g
2
iMi + 6|yb|2Ab + 8|yτ |2Aτ (C.35)

βAe,µ ≈ 2
∑

i

c′′i g
2
iMi + 6|yb|2Ab + 2|yτ |2Aτ (C.36)

βb ≈ µ
(6

5
g2
1M1 + 6g2

2M2 + 6|yt|2At + 6|yb|2Ab + 2|yτ |2Aτ

)
(C.37)

+ b
(
− 3

5
g2
1 − 3g2

2 + 3|yt|2 + 3|yb|2 + |yτ |2
)

βµ ≈ µ
(
− 3

5
g2
1 − 3g2

2 + 3|yt|2 + 3|yb|2 + |yτ |2
)

(C.38)

βm2
H1
≈ −6

5
g2
1 |M1|2 − 6g2

2 |M2|2 + 6|yb|2Xb + 2|yτ |2Xτ (C.39)

βm2
H2
≈ −6

5
g2
1 |M1|2 − 6g2

2 |M2|2 + 6|yt|2Xt (C.40)

βm2
Q̃h

≈ − 2
15
g2
1 |M1|2 − 6g2

2 |M2|2 − 32
3
g2
3 |M3|2 + 2|yt|2Xt + 2|yb|2Xb (C.41)
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βm2
Q̃`

≈ − 2
15
g2
1 |M1|2 − 6g2

2 |M2|2 − 32
3
g2
3 |M3|2 (C.42)

βm2
˜̄t
≈ −32

15
g2
1 |M1|2 − 32

3
g2
3 |M3|2 + 4|yt|2Xt (C.43)

βm2
˜̄u,˜̄c
≈ −32

15
g2
1 |M1|2 − 32

3
g2
3 |M3|2 (C.44)

βm2
˜̄b
≈ − 8

15
g2
1 |M1|2 − 32

3
g2
3 |M3|2 + 4|yb|2Xb (C.45)

βm2
˜̄d,˜̄s
≈ − 8

15
g2
1 |M1|2 − 32

3
g2
3 |M3|2 (C.46)

βm2
L̃h

≈ −6
5
g2
1 |M1|2 − 6g2

2 |M2|2 + 2|yτ |2Xτ (C.47)

βm2
L̃`

≈ −6
5
g2
1 |M1|2 − 6g2

2 |M2|2 (C.48)

βm2
˜̄τ
≈ −24

5
g2
1 |M1|2 + 4|yτ |2Xτ (C.49)

βm2
˜̄e, ˜̄µ
≈ −24

5
g2
1 |M1|2 (C.50)
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D Pythia Event Record

An example of a summary of an event generated by Pythia. Only part of the event is shown, since the
complete record in this case contains 1205 lines. The first column is the line number of the particle
and the second column its name. The third line contains the particle’s status code, that displays if
a particle is part of the event summary (status code 21), has decayed (status code 11 and 12 in this
record) or is part of the final state (status code 1). The letters ‘A’ and ‘I’ are for internal use of the
program. The ‘KF’ column contains the particle ‘PDG’ code as defined by the Particle Data Group.
The ‘orig’ column contains the line number of the mother of the particle. The other columns are the
momentum in x, y and z direction, the energy and the mass in GeV. For brevity, only the summary
event listing is shown. The complete event record also contains other information on the particles
such as the line numbers of daughters of particles.

Event listing (summary)

I particle/jet KS KF orig p_x p_y p_z E m

1 !p+! 21 2212 0 0.000 0.000 7000.000 7000.000 0.938

2 !p+! 21 2212 0 0.000 0.000-7000.000 7000.000 0.938

==============================================================================

3 !d! 21 1 1 -1.430 0.413 4410.288 4410.288 0.000

4 !d! 21 1 2 1.139 0.838-2920.576 2920.576 0.000

5 !g! 21 21 3 28.978 -132.907 991.344 1000.633 0.000

6 !g! 21 21 4 516.567 50.851 -585.399 782.381 0.000

7 !~g! 21 1000021 0 519.815 12.491 529.544 1044.688 735.249

8 !~g! 21 1000021 0 25.730 -94.548 -123.600 738.326 721.282

9 !~b_1! 21 1000005 7 330.757 50.445 322.928 762.027 603.704

10 !bbar! 21 -5 7 189.058 -37.954 206.617 282.661 4.800

11 !~b_2bar! 21-2000005 8 -5.926 -147.829 -103.563 673.015 648.332

12 !b! 21 5 8 31.657 53.282 -20.036 65.311 4.800

13 !~chi_1-! 21-1000024 9 97.658 153.547 -32.593 289.915 223.326

14 !t! 21 6 9 233.324 -103.206 355.786 472.316 177.220

15 !~chi_10! 21 1000022 11 -282.270 13.942 -163.130 347.120 118.366

16 !bbar! 21 -5 11 277.228 -159.834 59.355 325.497 4.800

17 !~tau_1-! 21 1000015 13 7.085 97.212 -11.949 181.272 152.369

18 !nu_taubar! 21 -16 13 90.572 56.336 -20.644 108.643 0.000

19 !W+! 21 24 14 236.125 -122.559 281.406 395.259 79.145

20 !b! 21 5 14 -2.802 19.353 74.380 77.057 4.800

21 !~chi_10! 21 1000022 17 18.788 95.970 -33.043 157.052 118.366

22 !tau-! 21 15 17 -11.702 1.241 21.094 24.219 1.777

23 !sbar! 21 -3 19 180.995 -83.323 157.519 253.996 0.500

24 !c! 21 4 19 53.498 -38.327 122.209 138.810 1.500

==============================================================================

25 (~chi_1-) 11-1000024 13 97.658 153.547 -32.593 289.915 223.326

26 ~chi_10 1 1000022 15 -270.976 12.999 -156.868 334.985 118.366

27 (~tau_1-) 11 1000015 17 7.085 97.212 -11.949 181.272 152.369

28 nu_taubar 1 -16 18 90.572 56.336 -20.644 108.643 0.000

29 (W+) 11 24 19 234.493 -121.650 279.728 392.806 79.145

30 ~chi_10 1 1000022 21 18.788 95.970 -33.043 157.052 118.366

31 (tau-) 11 15 22 -11.702 1.241 21.094 24.219 1.777

32 (s) A 12 3 4 -59.584 -29.032 -146.611 160.898 0.500

33 (g) I 12 21 4 -32.513 -19.990 -85.737 93.848 0.000

34 (g) I 12 21 4 -10.387 -3.936 -25.949 28.227 0.000

35 (g) I 12 21 4 -0.597 0.293 -0.485 0.824 0.000

169 nu_mubar 1 -14 31 -3.416 0.871 6.407 7.313 0.000

170 mu- 1 13 31 -4.481 0.548 8.877 9.960 0.106

171 nu_tau 1 16 31 -3.805 -0.177 5.809 6.947 0.000
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172 (string) 11 92 32 -104.154 239.546 3444.034 4265.239 2502.532

173 (K*bar0) 11 -313 172 -18.651 -9.271 -46.248 50.729 0.874

174 (pi0) 11 111 172 -6.162 -2.771 -15.625 17.023 0.135

175 (rho-) 11 -213 172 -20.572 -11.217 -51.591 56.668 0.753

176 (K*+) 11 323 172 -17.056 -9.103 -43.189 47.328 0.932

177 (Kbar0) 11 -311 172 -13.460 -6.293 -32.427 35.673 0.498

178 pi- 1 -211 172 -3.335 -1.460 -8.023 8.811 0.140

179 (rho+) 11 213 172 -13.550 -8.094 -37.453 40.652 0.845

180 (rho-) 11 -213 172 -5.265 -3.005 -12.388 13.815 0.805

181 pi+ 1 211 172 -2.236 -0.912 -5.890 6.367 0.140

182 pi- 1 -211 172 0.053 0.005 -0.105 0.183 0.140

183 (pi0) 11 111 172 -2.262 -0.931 -5.372 5.904 0.135

184 pi+ 1 211 172 -0.312 0.207 -0.957 1.037 0.140

185 (eta) 11 221 172 -0.007 -0.447 -1.226 1.415 0.547

186 (Lambda0) 11 3122 172 0.722 -0.063 -6.301 6.440 1.116

187 (Sigmabar-) 11 -3222 172 0.870 0.584 -5.863 6.074 1.189

188 (omega) 11 223 172 1.004 0.237 -6.381 6.511 0.779

189 pi+ 1 211 172 0.875 -0.910 -7.929 8.030 0.140

190 (pi0) 11 111 172 1.024 -0.270 -3.165 3.340 0.135

191 (K*0) 11 313 172 2.387 0.768 -15.735 15.967 1.043

192 (K*bar0) 11 -313 172 2.464 -0.593 -14.186 14.434 0.824

193 (pi0) 11 111 172 0.887 0.519 -1.754 2.037 0.135

194 (rho0) 11 113 172 0.479 0.401 -0.576 1.149 0.773

1188 K- 1 -321 1150 -0.200 0.572 1.585 1.767 0.494

1189 pi+ 1 211 1150 -0.106 0.126 2.176 2.187 0.140

1190 gamma 1 22 1154 4.757 -2.839 10.941 12.263 0.000

1191 gamma 1 22 1154 0.040 -0.020 0.066 0.080 0.000

1192 gamma 1 22 1172 10.222 -1.995 10.844 15.035 0.000

1193 gamma 1 22 1172 10.993 -2.050 11.793 16.252 0.000

1194 gamma 1 22 1174 5.870 -0.939 6.197 8.587 0.000

1195 gamma 1 22 1174 5.351 -0.813 5.818 7.946 0.000

1196 (K_S0) 11 310 1175 1.898 3.716 -1.139 4.354 0.498

1197 (K_S0) 11 310 1186 -0.765 0.634 2.108 2.383 0.498

1198 pi+ 1 211 1196 0.661 1.053 -0.194 1.266 0.140

1199 pi- 1 -211 1196 1.237 2.663 -0.946 3.088 0.140

1200 (pi0) 11 111 1197 -0.066 0.196 0.282 0.375 0.135

1201 (pi0) 11 111 1197 -0.699 0.438 1.826 2.008 0.135

1202 gamma 1 22 1200 -0.006 0.002 -0.014 0.016 0.000

1203 gamma 1 22 1200 -0.061 0.194 0.297 0.360 0.000

1204 gamma 1 22 1201 -0.683 0.422 1.811 1.981 0.000

1205 gamma 1 22 1201 -0.016 0.016 0.015 0.027 0.000

==============================================================================

sum: 2.00 0.00 0.00 0.00 14000.00 14000.00
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E Particles Produced in the First Interaction

These are all the particles produced in the first interaction of 20.000 SUSY events of benchmark
point SU3 on a logarithmic scale.
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F Production and Decay Modes

This appendix lists possible decays and production processes of the supersymmetric particles studied
in section 6. Of course all particles can be produced in the first interaction as well.

The decay modes listed are the most important contribution for most points in mSUGRA pa-
rameter space. In some parts of the parameter space none of these decays are allowed. In that case
particles decay through channels that are suppressed in other points of parameter space. An example
is the three-body decay χ̃0

2 → χ̃0
1uū. Other decays mediated by loop corrections can also become

important if the normal decay modes are not kinematically accessible. For instance, t̃1 → χ̃0
1c is the

most important decay mode for the stop if the stop cannot decay to a b quark. Such decays are not
listed here. Possible decays of off-shell particles (γ, Z0 or Higgs radiation) are not listed either.

Finally, there are other decays that are suppressed but occasionally occur. An example is the
decay χ̃0

2 → ẽ+Re
−, which would not be allowed if χ̃0

2 were a pure SU(2) gaugino, which only couples
to left-handed sfermions. However, χ̃0

2 is only approximately an SU(2) gaugino, since it contains
Bino and Higgsino components as well. Also, due to mixing the actual sfermion mass eigenstate
contains a small left-handed component. Since these effects are usually small, we have not listed the
decays. The only exception is the third generation sfermions, where mixing is so strong that it is
impossible to define left-handed and right-handed states.

τ̃−1 → χ̃−1 ντ

τ̃+
1 → χ̃+

1 ν̄τ

τ̃±1 → χ̃0
i τ
±

Table F.1: Possible decays of
light staus

χ̃+
i → τ̃+

1 ντ χ̃−i → τ̃−1 ν̄τ χ̃0
i → τ̃±1 τ

∓ A0 → τ̃±1 τ̃
∓
2

H0 → τ̃±1 τ̃
∓
1 H0 → τ̃±1 τ̃

∓
2 H+ → ν̃τ τ̃

+
1 H− → ˜̄ντ τ̃

−
1

τ̃±2 → τ̃±1 Z τ̃±2 → τ̃±1 h
0 ν̃τ → τ̃−1 W

+ ˜̄ντ → τ̃+
1 W

−

Table F.2: Possible production processes for light staus.

χ̃+
1 → ẽ+Lνe χ̃−1 → ẽ−L ν̄e χ̃0

2 → ẽ∓Le
± χ̃0

2 → µ̃∓Lµ
±

χ̃+
1 → ν̃ee

+ χ̃−1 → ˜̄νee
− χ̃0

2 → ν̃eν̄e χ̃0
2 → ˜̄νeνe

χ̃+
1 → µ̃+

Lνµ χ̃−1 → µ̃−L ν̄µ χ̃0
2 → ν̃µν̄µ χ̃0

2 → ˜̄νµνµ

χ̃+
1 → ν̃µµ

+ χ̃−1 → ˜̄νµµ
− χ̃0

2 → ν̃τ ν̄τ χ̃0
2 → ˜̄ντντ

χ̃+
1 → τ̃+

1 ντ χ̃−1 → τ̃−1 ν̄τ χ̃0
2 → τ̃∓1 τ

± χ̃0
2 → τ̃∓2 τ

±

χ̃+
1 → τ̃+

2 ντ χ̃−1 → τ̃−2 ν̄τ χ̃0
2 → χ̃0

1Z
0 χ̃0

2 → χ̃0
1h

0

χ̃+
1 → ν̃ττ

+ χ̃−1 → ˜̄νττ
−

χ̃+
1 → χ̃0

1W
+ χ̃−1 → χ̃0

1W
−

Table F.3: Possible decays of χ̃±1 and χ̃0
2

t̃2 → t̃1Z
0

t̃2 → t̃1h
0

b̃i → t̃1W
−

g̃ → t̃1t̄

Table F.4: Possible production processes for light
stops

t̃1 → χ̃0
i t

t̃1 → χ̃+
i b

Table F.5: Possible decays of the light stop

The production and decay channels for the anti-stop are not listed, since they follow trivially
from the processes for the stop.
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G Gaugino Decays

These are the individual plots on which figures 6.9 and 6.10 are based. In the cyan region, a specific
decay is kinematically allowed. In the dark-blue region it is not allowed. Similar decay channels of
charginos and neutralinos are shown in the same plot. The kinematical boundaries in such combined
plots are not exactly at the same point in parameter space, as can be seen in for instance the
χ̃0

2 → χ̃0
1Z

0 and χ̃+
1 → χ̃0

1W
+ plot.
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H Stop Production and Decay

These are the individual plots for stop production and decay modes. In the cyan regions, a particular
decay is allowed. In the dark blue regions it is not kinematically accessible.
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I Supersymmetric Phenomenology with Cross Section Ef-
fects
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Figure I.1: The number of light staus and taus produced by SUSY events per 1 fb−1 of luminosity.
This graph has the same specifications as the graph in figure 6.8 except that the effects of the cross
section are included.
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Figure I.2: The number of times χ̃±1 , χ̃0
2 and sleptons are produced per fb−1 of luminosity. This graph

has the same specifications as the graph in figure 6.11 except that the effects of the cross section are
included.
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Figure I.3: The number of times a stau is produced per fb−1 of luminosity. This graph has the same
specifications as the graph figure 6.12 except that the effects of the cross section are included. So
higher M0 corresponds to lower M1/2

. The higher cross section for low M1/2
changes the shape of the

graph considerably.
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Figure I.4: The number of final muons and electrons per fb−1 of luminosity. This graph has the same
specifications as the graph from figure 6.13 except that the effects of the cross section are included.
So higher M0 corresponds to lower M1/2

. The higher cross section for low M1/2
makes the differences

in the number of muons and electrons even smaller.
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Figure I.5: The number of h0, W and Z bosons produced by SUSY events per 1 fb−1 of luminosity.
This graph has the same specifications as the graph in figure 6.14 except that the effects of the cross
section are included. The jumps are still clearly visible, but it is difficult to determine the point in
parameter space based on these numbers alone.
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Figure I.6: The number of stops, sbottoms, tops and bottoms produced by SUSY events per 1 fb−1

of luminosity. This graph has the same specifications as the graph in figure 6.17 except that the
effects of the cross section are included. Clearly the cross section is the main effect in this case.
However, cross section effects along this line are particularly strong. It is possible to find a line
through parameter space that crosses several phenomenological regions and does not span such a
large range of cross sections.
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J Phenomenological Regions for Higher tan β

To illustrate that the method introduced in section 6 also works for higher tanβ, figure J.1 shows
the phenomenological regions based on gaugino decays for A0 = 0 GeV, tanβ = 30, µ > 0. Com-
paring these plots to figures 6.9 and 6.10, shows that a change in tanβ shifts the boundaries of
phenomenological regions and thus changes their shape. Most of the characteristics are unchanged
though.
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Figure J.1: Phenomenological regions based on chargino decay (left) and neutralino decay (right) for
A0 = 0 GeV, tanβ = 30, µ > 0

The spectrum is discarded in a larger part of parameter space, since large tanβ results in a lower
stau mass, so the lightest stau often ends up being the LSP. The spectrum in the lower left corner is
rejected because the lightest stop is the LSP.

Figure J.2 shows the number of Higgs, Z and W bosons produced per SUSY event along the line
M0 = 320 GeV in figure J.1.
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Figure J.2: The number of Higgs, Z and W bosons per SUSY event depending on M1/2
with M0 =

320 GeV, A0 = 0 GeV, tanβ = 30, µ > 0. The decline in the number of Higgs and W bosons for
M1/2

& 400 GeV is due to the decay channel to the light stau that becomes kinematically accessible
at this point.

The jumps in the graphs exactly coincide with the boundaries of the phenomenological regions in
figure J.1. In figure J.3 the number of staus along the line indicated in figure J.1 is plotted. It shows
that the jump in the number of staus occurs just as in the low tanβ region. For M0 . 250 GeV the
number of staus decreases because the sneutrino decay channel becomes kinematically allowed.
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Figure J.3: The number of staus and sneutrinos per SUSY event for high tanβ. These points are
generated along the line indicated in figure J.1. The jump in staus coincides with the boundary of
the phenomenological region.

In the stop section (discussed in sections 6.3.4 and 6.3.5), higher values of tanβ can give rise to
new phenomenological regions. For instance, for some points in parameter space the gluino cannot
decay through any of the regular decay channels. It turns out that the decay mode g̃ → t̃1c̄ is
more important than three body decays if it is kinematically allowed. For a complete description
of stop phenomenology at high tanβ, one needs the phenomenological regions of stop production,
gluino decay and sbottom decay, since the production and decay modes of these particles are closely
related. We will not explicitly perform this analysis here, but simply summarize the result that
phenomenological regions apply to this case as well.
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