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Abstract

In this thesis, we present an analysis of two-point functions in quantum gravity,
based on a nonperturbative path integral. Specifically, we consider the quantum
gravity framework of two-dimensional causal dynamical triangulation (2D CDT).
We perform a numerical study of the behaviour of curvature in 2D CDT, by mea-
suring the two-point functions of the so-called quantum Ricci curvature. As a
result we find that there are no curvature correlations in 2D CDT. Additionally,
we give a detailed discussion of the computational methods used for numerical
analysis in 2D CDT, based on Monte Carlo simulations, and we perform mea-
surements of the local Hausdorff dimension and the spectral dimension.



Curvature Correlations in Quantum Gravity ii

Contents

1 Introduction 1

2 Causal Dynamical Triangulation 2
2.1 Causal triangulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Discretized path integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Numerical Model 5
3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Volume fixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Markov chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 Monte Carlo moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5 Ergodicity proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Model Verification 15
4.1 Vertex degree distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Hausdorff dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Spectral dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Quantum Ricci Curvature 22
5.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Topological effects 30
6.1 Cut-open triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2 Sphere volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.3 Average sphere distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7 Two-point functions 38
7.1 ‘Classical’ two-point functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.2 Quantum two-point functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8 QRC Correlations 51
8.1 Average sphere distance as curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

9 Conclusion 56

A Numerical implementation 57

B Additional material 58
B.1 Average sphere distance derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
B.2 Hausdorff dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
B.3 Distance matrix ASD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
B.4 ASD midpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

C Additional figures 62



Curvature Correlations in Quantum Gravity 1

1. Introduction

Quantum gravity has been a pursuit of theoretical physics for nearly a century. We are cur-
rently unable to measure physics at the Planck scale directly, but based on our understanding

of quantum fields, we believe that at this scale the classical theory of General Relativity is insuffi-
cient to describe spacetime. There have been numerous attempts to describe the curved spacetimes
of General Relativity with the principles of Quantum Field Theory, but so far none have succeeded.
In this thesis, we will follow one candidate theory of quantum gravity called Causal Dynamical
Triangulation (CDT), which is a nonpertubative lattice path integral approach, originally intro-
duced by Ambjørn and Loll in 1998 [1]. In this framework we study two-point functions of a
quantum notion of spacetime curvature, to try to gain a better understanding of the geometry of
the quantum spacetimes. We perform this study in a two-dimensional toy model of CDT, to allow
us to make a first investigation into the two-point functions of quantum curvature, without the
complications of the higher-dimensional theory, such that our insights can be used for the study
of curvature in the full four-dimensional theory.

First, chapter 2 gives a short overview of the (for this thesis) relevant points of the theory of 2D
CDT, to set the scene for the following chapters. Chapter 3 continues with a detailed description
of the numerical model used to computationally simulate 2D CDT, based on Markov chain Monte
Carlo methods. This chapter also aims to serve as a reference for those who wish to perform
their own numerical simulations, by highlighting some details that should be considered in an
implementation and what choices we made. Chapter 4 presents the measurement results for some
standard observables: vertex degree distribution, Hausdorff dimension and spectral dimension.
The measurements are performed as a consistency check for our numerical model, as well as serv-
ing as a reference of the numerical results of these observables in 2D CDT, which are infrequent in
the literature. Next, chapter 5 discusses a notion of curvature called quantum Ricci curvature based
on average sphere distance, as first presented by Klitgaard and Loll [2]. The construction of this
notion of curvature is introduced, and the average curvature measured for 2D CDT. Additionally,
the complications that arise with the numerical measurements due to sampling and the required
computational effort of the curvature measurements are discussed. Thereafter, chapter 6 discusses
the topological effects of the measurement results that arise due to the compact geometry. A
method is presented to determine a length scale range where topological effects are largely absent.
Chapter 7 presents two-point functions in a quantum gravity setting based on a nonperturbative
path integral. It focusses on the difficulties that arise in defining two-point functions, because of
the need for diffeomorphism invariance, the non-uniform geometry of quantum spacetime, and
the potential non-commutativity of the manifold and ensemble averages. It also discusses how
to make numerical estimates of these two-point functions, and the complications that arise due
to sampling. This is followed by chapter 8, which presents the measured two-point functions of
quantum Ricci curvature in 2D CDT. Finally, chapter 9 concludes this thesis, giving an overview
of the main results. Additionally, appendix A presents our open-source implementation of the
numerical model that was used for the simulation and measurements of this thesis. The imple-
mentation includes extensive documentation with the aim to provide a useful reference to those
who wish to make their own (C)DT simulations, or use (parts of) our implementation.
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2. Causal Dynamical Triangulation

This chapter provides a short introduction to the theory of CDT (Causal Dynamical Triangula-
tion) and will mainly be concerned with introducing and defining the terms and expression

necessary for the following chapters. This is not a full explanation of (Causal) Dynamical Triangu-
lation; for a more complete overview we refer to [3] or to [4] for a complete discussion.

CDT is a nonperturbative path integral approach to quantum gravity, which is to say that it
provides a method of calculating the gravitational path integral

Z =

∫
M
D[gµν] e

iSEH[gµν], (2.1)

where the path integral is over all geometries represented by four-metric gµν, where D[gµν] de-
notes the measure over all equivalence classes of the metric under diffeomorphism, since we only
want to integrate over inequivalent geometries without the redundancy of coordinates. We consider
pure gravity (vanishing stress-energy tensor) using the Einstein-Hilbert action

SEH =
1

16πGN

∫
d4x

√
−g(x)

(
R− 2Λ

)
, (2.2)

where we have a volume integral with metric determinant1 g(x), Ricci scalar R, cosmological
constant Λ and Newton’s gravitational constant GN. First we explain how in the two-dimensional
toy model we consider, spacetime is represented by something we call causal triangulations. Then
we discuss how these triangulations can be used to regularize and calculate the gravitational path
integral (2.1).

2.1 Causal triangulations

Causal Dynamical Triangulation gives a lattice discretization of Lorentzian spacetime as a way to
approximate the curved geometries. This provides a regularization method for the gravitational
path integral (2.1) by interpreting the smallest length unit of the discretization as a lattice UV cutoff
a, and taking a continuum limit by a→ 0.

In 2D CDT these geometric lattices take the form of 2-dimensional simplicial manifolds T2 with
a sliced structure built up from fixed 2-dimensional building blocks. For 2D CDT we use only a
single building block, which is a triangular piece of flat Minkowski space, with one spacelike edge
with (square) edge length2 a2

s = a2 and two timelike edges with a2
t = −αa2 where α > 0, as

displayed on the left side of Fig. 2.1. These triangles can be “glued” together to create a simplicial
manifold, called a triangulation. We only allow gluing of spacelike to spacelike and timelike to
timelike edges, and allow at most two spacelike edges to meet in each vertex.

Using only this building block gives rise to [5] spatial slices (also called time-slices) that are 1-
dimensional "spatial hypersurfaces" T1(t) of constant proper time t = 1, 2, . . . ; five of these spatial
slices are displayed on the right of Fig. 2.1 with the red edges forming a circle (left and right sides
are identified). Each of these spatial slices form a 1-dimensional simplicial manifold itself, which
we will fix to have a spherical topology; each spatial slice is simply a circle of vertices connected
with spacelike edges.

Now, consider the simplicial submanifold connecting T1(1) and T1(2) with the discussed build-
ing block, which we call a slab. The triangular building block can have two orientations: one where
the spacelike edge is on the past side of the triangle, i.e. part of T1(1); and the time reversal where

1Note we use the spacelike (−,+,+,+), or (−,+) in 2D, metric signature convention in this thesis.
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Figure 2.1: Left: CDT triangular building blocks; pieces of flat Minkowski space with spacelike and
timelike edges highlighted in red and blue respectively with their (square) lengths. Right: An example
triangulation of N2 = 80 and τ = 5 with periodically identified time and highlighted edges; note that
the left and right sides of the figure should be identified as well as the top and bottom.

the spacelike edge is on the future side of the triangle, i.e. part of T1(2). We will call these triangles
the future-pointing triangle, and the past-pointing triangle respectively, as displayed on the left side
of Fig. 2.1.

We will call τ the number of time-slices in a triangulation T2, where we choose to identify time
periodically3 for convenience in numerical simulations, such that T1(1) = T1(τ+ 1). Furthermore,
we will denote the number of k-simplices with Nk; so a triangulation T2 has N0 vertices, N1

edges and N2 triangles. For numerical simulations the relative number of spatial slices to the total
number of vertices is important, so we will define the ratio4 ℸ = τ2

/
N0 expression the relative

“length” of the triangulation.
Finally, we require all triangulations to obey the simplicial manifold condition [6]. For 2D CDT

this means we forbid the occurrence of spatial slices with length l ⩽ 2, i.e. each spatial slice
must have at least three edges. The same condition can also be viewed as requiring at least three
future-pointing and three past-pointing triangles in each slab of the triangulation.

2.2 Discretized path integral

By approximating Lorentzian manifolds with these triangulations we can discretize the gravita-
tional path integral (2.1). Moreover, we are able to perform a Wick rotation to Euclidean signature,
yielding triangles that are pieces of Euclidean space. This is essentially achieved by performing
the rotation α 7→ −α; see [4, p. 30] for a proper discussion. After Wick rotation we set α = 1, such
that the Euclidean triangles are equilateral with edge lengths a. In the end we get the 2D CDT
Wick-rotated Euclidean path integral, or partition function

ZCDT =
∑
T∈T

1

C(T)
e−SCDT(T), (2.3)

where T denotes the ensemble of all Wick-rotated CDTs (in our case with toroidal topology), i.e.
all Euclidean triangulations with the causal structure dictated by the causal gluing rules obeying
the simplicial manifold condition as explained earlier. Note that these causal gluing rules make the
ensemble T different from the ensemble of all Euclidean triangulations without restrictions, also
called EDT (Euclidean Dynamical Triangulation). The C(T) is a symmetry factor, specifically the
number of elements of the automorphism group of triangulation T ; see [4, p. 33] for more details.

3Alternatively one could have fixed boundaries T1(1) and T1(τ) as is usually done in theoretical treatments.
4Note: the ℸ symbol is a letter in the Hebrew alphabet called ‘daleth’.
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The Euclidean CDT action SCDT is the Wick-rotated discretization of the Einstein-Hilbert action
SEH[gµν] (2.2), and is given by

SCDT = λN2(T), (2.4)

where λ is the rescaled dimensionless cosmological constant and N2(T) the number of triangles
of T . We take the continuum limit of the partition function by letting a → 0 and N2 → ∞, while
keeping the continuum volume N2a

2 = const. This is achieved by tuning λ to its critical value,
analytically known to be λc = ln 2, such that in the continuum limit we obtain

λ→ λc +Λa2 +O(a3
)
,

where Λ is the physical cosmological constant.
Note that SCDT only contains the volume term of the Einstein-Hilbert action and not the cur-

vature term. This is because the integrated curvature is 0 in two dimensions by the Gauss-Bonnet
theorem [4]. In the discretized setting the geometry is restricted by the Euler characteristic formula

N2 −N1 +N0 = χ,

where χ is called the Euler characteristic and is fixed by the topology; χ = 0 for a toroidal topology.
Finally, we note that the triangulations in T are naturally without coordinates or labels, so

these triangulations are by construction already diffeomorphism-invariant. However, we can also
consider labelled triangulations, which is how we work with the triangulations in a numerical
simulation. For example, if we label each triangle5 we get the Euclidean partition function

ZCDT =
∑
Tl∈Tl

1

N2(Tl)!
e−SCDT(Tl). (2.5)

Here Tl is the ensemble of all distinct labelled triangulations, and we have an additional factor of
N2(T)!, which divides out the number of ways to relabel a triangulation.

With these partition functions we are now able to determine expectation values observables of
the triangulation O(T) as

⟨O⟩ = 1

Z

∑
T∈T

O(T)
1

C(T)
e−S(T) =

1

Z

∑
Tl∈Tl

O(Tl)
1

N2(Tl)!
e−S(Tl). (2.6)

We now drop the CDT subscript, as will be done in the rest of this thesis unless otherwise specified.
By determining the expectation values of interesting observables O, we are able to analyse the
properties of 2D CDT. We will discuss some interesting observables in the following chapters, but
first we discuss how we can study CDT numerically, for which dynamical triangulation is very
well suited because of its combinatorial and computational nature.

5In our numerical model this is how we represent the triangulations.



Curvature Correlations in Quantum Gravity 5

3. Numerical Model

Numerical methods allow us to study two-dimensional Causal Dynamical Triangulations us-
ing more complicated quantities like quantum Ricci curvature1, which is (currently) unavail-

able analytically due to its quasi-local nature. Moreover, this two-dimensional “toy model” serves
as good testing ground for the fully fledged 4D CDT.

In order to numerically study dynamical triangulations we can compute expectation values
(2.6) by summing over all (labelled)2 triangulations. However, computationally we are not able
to actually sum over all triangulations as there are far too many and the number of them grows
exponentially with N2. Instead, we use Monte Carlo methods, which in a nutshell entails estimat-
ing expectation values by using the sample average of a limited sample of triangulations from the
ensemble. That is we wish to generate a sample Σm =

{
Tl,1, Tl,2, . . . , Tl,m

}
⊂ Tl of m labelled

triangulations, each of which follows the same probability distribution

P(Tl) =
1

Z

1

N2(Tl)!
e−S(Tl) =

1

Z

1

N2(Tl)!
e−λN2(Tl). (3.1)

We can then estimate the ensemble average ⟨O⟩ of an observable O using the sample average

Ôm :=
1

m

m∑
i=1

O(Tl,i), (3.2)

which serves as an unbiased estimator3 for
〈O〉, whose uncertainty vanishes for m→∞:

E
[
Ôm

]
=
〈O〉, lim

m→∞E

[(
Ôm −

〈O〉
)2]

= 0.

The details of how such a sampling can be achieved are discussed later in this chapter. First,
we turn our attention to renormalization and using a fixed-volume ensemble. Note that for the
numerical model we only consider labelled triangulations, as this is how they are stored on a
computer when they are simulated. To avoid clutter we will suppress the subscript l denoting the
use of labelling, but all triangulations should be considered labelled unless otherwise specified.

3.1 Implementation

We will not discuss the full details of the implementation of the Monte Carlo simulation, but
we will present some of the details which are important for the rest of this section. For further
information on our implementation, see appendix A. Firstly, we consider triangulations with a
toroidal topology and a fixed number of spatial slices τ; we compactify both the spatial and time-
direction. Computationally this is more convenient to work with than fixed boundaries T1(1) and
T1(τ), and we do not have the additional problem of choosing appropriate boundary sizes. To
represent the triangulation, we store the triangles with their connectivity. Specifically, we store
an ordered list where each element of the list represents a triangle, which contains the label of

1This quantity [2] will be introduced in section 5.
2When we simulate the numerical model on a computer the triangulations are labelled because they are stored with a

labelling; in our case we chose to label the triangles. So for this chapter we will be working with labelled triangulations
as we indicate by the l subscript Tl.

3We will use the notation E[· · · ] for the statistical expectation value.
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its left, right4 and timelike neighbour, as well as its orientation (future- or past-pointing). This list
then uniquely represents triangle-labelled triangulation. However, for measurement of observables
we are also interested in the geometry of the vertex graph, for which the connectivity of the
vertices must be known. So, for every measurement we need to reconstruct the vertex connectivity
from the triangle connectivity, which adds a non-negligible computational cost. Alternatively one
might choose to label the vertices instead and keep track of the vertex connectivity; this has the
downside that the number of vertex neighbours is not constant while each triangle always has three
neighbours. So, we label the triangles, justifying the use of Tl as the ensemble of triangulation with
labelled triangles.

3.2 Volume fixing

In order to obtain the infinite-volume limit of the theory, we have to tune λ to its critical value
λc. Numerically we should fix λ > λc such that the relevant contributions to the sum have a finite
(two-)volume N2; and systematically decrease λ toward λc until large enough volumes are reached
to get a reasonable estimate of the continuum limit. While this is possible, it is computationally
far more effective to fix the total volume N2. We can perform simulations at increasingly large
fixed volumes N2, checking to see if there are still finite-size effects or the infinite-volume limit is
already closely approximated [4].

Formally we switch to an ensemble of all triangulations with constant volume. Analytically,
this can be achieved by a Laplace transform:

Z =

∞∑
N

e−λNZN, (3.3)

where ZN is the partition function of constant two-volume N. The constant-volume partition
function is special in 2D in that all its configurations have equal weight. Ensemble averages are
computed in this ensemble with the expectation value

⟨O⟩N =
1

ZNN!

∑
T∈TN

O(T), (3.4)

where TN denotes the ensemble of all labelled triangulations with constant volume. So, this
constant-volume ensemble average can be estimated by taking the sample average of a sample
from only triangulations with the desired volume N.

So, instead of finding a sampling method that samples all triangulations, we should find a
method which only samples triangulations with a given volume N. For 2D CDT this is possible,
and this method will be presented in the following section. However, in general and for higher-
dimensional models such a sampling method is a lot more difficult to find. Instead, one can add a
volume-fixing constraint to the action, usually of the quadratic form [7]

SE → SE + δS = λN2(T) + ϵ
(
N2(T) − N̂2

)2
, (3.5)

where N̂2 is the desired volume, and ϵ > 0 is a constant controlling the strength of the constraint.
The volume-fixed probability distribution for triangulations then becomes

P(T) =
1

ZN2(T)!
e−λN2(T)−ϵ(N2(T)−N̂2)

2

. (3.6)

4Note that we are able to distinguish the left and right neighbours as we have a distinguished forward time direction.
Specifically, right is chosen to be the direction, such that a rotation from right to future-pointing is positive on the
toroidal surface.
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From this probability distribution we can see that for large ϵ this constraint assigns a low probabil-
ity to sample triangulations with volumes away from N̂2, such that only samples with the correct
volume can be used for measurements without wasting many samples on unwanted volumes. In
principle one would want to have the ϵ as large as possible to have the volume distribution as
narrow around the desired volume as possible. However, the way the samples are made requires
the distribution to have some fluctuations of volume to remain ergodic and be an effective sam-
pling method, so there will be a largest possible ϵ after which the results start to be affected. So
one has to tune ϵ to give a narrow distribution whilst making sure the results are independent of
this choice. Additionally, for a given volume one needs to tune5 λ to its pseudo-critical value (this
depends weakly on the volume) [4], to keep the probability distribution of the sampled volumes
symmetric around N̂2.

3.3 Markov chain Monte Carlo

Now we turn to the problem of sampling triangulations. Preferably we want some method of
sampling a triangulation directly following probability distribution (3.1), that is, constructing a
random triangulation from scratch for every sample, as this is usually the fastest way to sample.
However, it is very challenging to construct such a method as the structure of the triangulations is
rather complex; this is even more the case for higher dimensions. So, usually a different method
is used called Markov chain Monte Carlo [9, 10]. In this method we start with a triangulation that
is constructed by hand. This is usually a very regular triangulation, which is far from a typical
triangulation, as these are simpler to construct. From this starting triangulation we can transition to
other triangulations by making ‘small’ changes to the triangulation T → T ′, called moves. Repeated
application of these moves yields a sequence of triangulations {T0, T1, . . . }, which form a Markov
chain, hence the name. This Markov chain effectively explores the ensemble, by walking through it
using the moves. Then to generate triangulations with the desired probability distribution (3.1), we
assign a transition probability Π(T → T ′) to each move, which must obey the following properties:

• Ergodicity: Every triangulation in the ensemble must be reachable by a finite number of moves
with non-zero probability.

• Π(T → T ′) must be chosen such that the distribution of the limiting triangulation of the
Markov chain is stationary and follows the desired distribution, i.e. limn→∞ P(Tn) = P(T).

Here P(Tn) denotes the probability distribution of the triangulation, which is obtained after per-
forming n Markov chain moves, and P(T) denotes the desired probability distribution of the
triangulations, in our case (3.1) or (3.6). The ergodicity condition must be checked for the chosen
move set to be certain the full ensemble is being sampled, and this will be done for the presented
moves. We will use the standard detailed balance condition to ensure the second property is obeyed,
for which Π must satisfy

P(T)Π(T → T ′) = P(T ′)Π(T ′ → T). (3.7)

In order to perform a move we must have some way of selecting a specific move with some
probability, which may be different from the required transition probability Π. We will call this
the selection or proposal probability S(T → T ′) of the proposed move T → T ′. To obtain the re-
quired transition probability we will only accept the proposed move with some acceptance probabil-
ity A(T → T ′). The move will only be performed if it is accepted, otherwise it will be rejected. Re-
jection means the proposed move is not performed but instead the ‘identity’ move, which leaves the
triangulation unchanged. We obtain the transition probability: Π(T → T ′) = A(T → T ′)S(T → T ′),
and for a given S(T → T ′) we then have to find an A(T → T ′) such that detailed balance (3.7) is

5We did not actually use this method for this research project. As such, the tuning procedure will not be explained
any further; see for example [8] for more details.
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obeyed. This acceptance probability is not unique. We will choose it such that it is maximal (so
there are as few rejections as possible), which is called the Metropolis-Hastings acceptance probability
[11], given by

A(T → T ′) = min
(
1,

S(T ′ → T)

S(T → T ′)
P(T ′)
P(T)

)
= min

(
1,

S(T ′ → T)

S(T → T ′)
N2(T)

N2(T ′)
eλ(N2(T)−N2(T

′))
)
, (3.8)

where we have used probability distribution (3.1) without volume fixing. Often, one has some
freedom in the method used to propose moves. It is usually preferable to pick the method with
the proposal probability S that yields the largest acceptance probability A, such that the least
amount of computation time is spent on computing moves that get rejected.

Finally, there are few practical issues6 to consider. In practice, we cannot perform an infi-
nite number of moves to obtain samples. Instead, we perform a limited number of moves until it
seems the samples are practically distributed like the desired stationary distribution. This is called
thermalizing or equilibrating the simulation, and the number of moves it takes to reach this point is
referred to as the equilibration time. Depending on how ‘far from typical’ the starting triangulation
is this can take more or less moves. So, if we know the equilibration time we only use samples
from after the equilibration time to ensure the samples have the correct probability distribution.
Secondly, the moves that are typically used make only very minor changes to the triangulation
T , such that an observable O(T) after a move will likely yield a very similar result. This means
that consecutive triangulation samples in the Markov chain are not identically independently dis-
tributed7. This means that observable measurements O(Ti) and O(T ′

i ) are highly correlated if the
number of moves |i ′ − i| between them is small. These correlated triangulations do not improve
the statistical error of the sample average much. So, if we wish to determine a good estimate of
the ensemble average we should attempt to only perform measurements on triangulations that are
not correlated. After many small moves however, the resulting triangulation will be significantly
different. The number of moves it takes for the triangulations to be effectively independently
distributed is called the correlation time, which can be estimated by measuring the autocorrelation
over Markov chain steps of the observable of interest. So instead of making measurements after
every move, we will only make them after every k moves, where we choose k to be close to the
correlation time.

3.4 Monte Carlo moves

Now, we present moves that can be used to perform Markov chain Monte Carlo on 2D CDT, and
compute the acceptance probabilities of those moves. Several options of moves are presented, that
we do not use in our simulation, but are included to provide the reader with an overview of some
possible options. The last of these moves is a volume-preserving move, which to our knowledge
has not been previously presented in the literature.

3.4.1 Shard move

A single move that is ergodic is the one presented in Fig. 3.1, which we will call the shard move [12].
For this move a shard (two oppositely oriented triangles, sharing a spacelike edge) is collapsed to
two connected timelike edges by collapsing the spacelike edge to a vertex. Or conversely, two
connected timelike edges that are part of different slabs8 and their connecting vertex are split
into two, creating a spacelike edge connecting two triangles. This move can be implemented by

6An accessible discussion of these issues is presented in the lecture notes of the course: Monte Carlo Techniques of
Timothy Budd, at Radboud University, https://hef.ru.nl/~tbudd/mct/lectures/mcmc_in_practice.html

7They are identically distributed after thermalization but not independent.
8We remind the reader a slab is simplicial manifold between two adjacent spatial slices, see chapter 2.

https://hef.ru.nl/~tbudd/mct/lectures/mcmc_in_practice.html
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⇄

Figure 3.1: Illustration of the shard move in a triangulation.

uniformly selecting a triangle and collapsing the shard it is part of, or conversely by uniformly
selecting two connected timelike edges that belong to adjacent slabs, splitting them and creating
two new triangles in between. This inverse move is computationally expensive to implement for
us, as we only keep track of the triangle connectivity, not having direct access to the existing edges
and their connections. A search of the local neighbourhood would be necessary to implement
this move with our setup, which makes it computationally unfavourable. Note that it is possible
to violate the simplicial manifold condition with this move, as it can create spatial slices with
less than three vertices. So after every move the simplicial manifold condition has to be checked,
rejecting the move if it is not satisfied. Finally, note that the shard move is ergodic [12] without the
need for additional moves.

3.4.2 Flip move

The standard move used for Euclidean Dynamical Triangulation (EDT) [13], where there is no
foliated structure, is to flip an edge. Given a pair of triangles which share two vertices, flip the
connecting edge such that the other vertices are now shared. In EDT this move can be performed
on any edge and is ergodic for the constant-volume ensemble. However, in 2D CDT we cannot
perform this flip move on space-like edges as this would create triangles that are not part of the
CDT prescription. Hence, in CDT we are restricted to performing the flip move on timelike edges.
So, the flip move of CDT amounts to flipping a timelike edge, as visualized in Fig. 3.2. Effectively
this move swaps two neighbouring triangles with opposite orientation (one future- and one past-
pointing).

⇄

Figure 3.2: Illustration of the flip move in a triangulation.

This move can be selected in two ways. We could uniformly select a triangle a, with which we
associate the pair consisting of triangle a and its left neighbour b, and flip the triangle pair a, b if
they have opposite orientations, otherwise we reject the move. This satisfies detailed balance (3.7)
without needing any additional rejections, meaning the acceptance probability is A(T → T ′) = 1.
This follows from the fact that the volume N2 remains constant (so P(T) = P(T ′)) and selection
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probability9 Π(T → T ′) = Π(T ′ → T) = 1/N2. Selecting triangles in this was has an overall
rejection rate of around 0.510., due to the rejection when selecting a triangle that is not associated
with a flip pair. Alternatively, one could keep a list of all the ‘flip pairs’ and uniformly sample
a pair from that list, giving a proposal probability S(T → T ′) = 1/nf(T) , with nf(T) denoting the
number of flip pairs in triangulation T . In this case we satisfy detailed balance (3.7) by using the
Metropolis-Hastings acceptance probability

A(T → T ′) =

1 for
(
nf(T

′) − nf(T)
)
⩽ 0

nf(T)

2+ nf(T)
for
(
nf(T

′) − nf(T)
)
= 2.

(3.9)

Note that nf can only change with −2, 0, or +2. Now, since the expectation value of nf is10 N2/2

this method gives a small rejection rate for large volumes. However, it brings the additional cost
of keeping track of a list. We opted for the first option.

Finally, in CDT this flip move is not ergodic on its own, unlike for EDT with fixed volume.
It obviously does not change the volume, so it is definitely not ergodic in the ensemble T of all
triangulations. Moreover, it also does not change the number of vertices in each spatial slice,
making it also not ergodic in the ensemble TN of triangulations with constant volume.

3.4.3 Diamond move

The flip move on its own is not ergodic, as discussed. So we introduce an additional move [4],
which we call the diamond move; a diagram of the move is presented in Fig. 3.3. We select a diamond
(a set of four triangles that fully surround a vertex, meaning that the degree of this vertex must
be 4) and collapse it to a shard, effectively removing the interior two timelike edges. Conversely,
we select a shard which can be split up in two, forming a diamond. Like the shard move, the

⇄

Figure 3.3: Illustration of the diamond move.

diamond move can create triangulations that violate the simplicial manifold condition, as it can
create spatial slices with less than three vertices. So, we need to check this condition after every
proposed move, and reject the move if it violates the condition11.

The diamond move with its inverse are not ergodic on their own. For example, it is impossible
to go from a triangulation with no vertices with degree 4 to a triangulation with smaller volume.
This is because the diamond move only removes a degree 4 vertex and its inverse creates just one.

9Since the acceptance probability is 1, the selection probability is directly identical to the proposal probability.
10Using the known distribution of future-pointing vertex neighbours (4.1) and the fact that 1 neighbour contributes no
flip pairs and ⩾ 2 neighbours contribute 2 flip pairs, one easily obtains ⟨nf⟩ = N2/2. So half the triangles are associated
with flip pairs, meaning that the probability of selecting one is 0.5.
11By mistake, we did not check this condition in the simulation we performed. So in principle triangulations could have
been created with spatial slices with lengths as small as 1. However, this should have a negligible effect on the systems
we considered, as we discuss in the conclusion, chapter. 9.
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So, a combination of these moves can never go to a triangulation with smaller volume. However,
the diamond move together with the flip move does give us an ergodic12 move set, see [4].

The selection for this move can be implemented by uniformly selecting a triangle and proposing
the diamond move if there is a diamond associated with that triangle, otherwise we reject the move.
In our implementation we associate both of the right triangles to the diamond. This association
gives an expected13 fraction of 1

4 of triangles to be associated with a diamond, so we expect to be
able to perform this move on 1

4 of the selected triangles. The inverse move can be selected easily
by uniformly selecting a triangle and using the shard it is a part of, then adding the shard to its
right. So, we get the selection probabilities P(T → T ′) = 2/N2(T) and P(T ′ → T) = 2/N2(T

′) for
the move and its inverse respectively. To get a higher acceptance probability, we will also reassign
all labels after performing the moves, i.e. performing a random relabelling of all triangles; so each
relabelled triangulation T has a probability of 1/N2(T)! of getting selected. This way a labelled
triangulation can reach any labelled triangulation that corresponds to the abstract triangulation
after the move. So with the reassigning of the labels, the new selection probabilities become
P(T → T ′) = 2

/(
N2(T)N2(T

′)!
)

and P(T ′ → T) = 2
/(

N2(T
′)N2(T)!

)
for the diamond move and

its inverse respectively. To satisfy detailed balance (3.7) with the desired volume-fixed probability
distribution (3.6) we use the Metropolis-Hastings acceptance probabilities

A(T → T ′) = min
(
1,

N2(T)

N2(T) − 2
e2λ+4ϵ(N2(T)−N̂2−1)

)
, (3.10)

A(T ′ → T) = min
(
1,

N2(T
′)

N2(T ′) + 2
e−2λ−4ϵ(N2(T

′)−N̂2+1)
)
, (3.11)

using the fact that N2(T) = N2(T
′) + 2. To get the acceptance probabilities for the normal action

without volume fixing simply take ϵ = 0. Note that these acceptance probabilities assume the
diamond move and its inverse are proposed equally often. This is not necessary, and one could
change the proposal probabilities to get less rejections in some cases.

Alternatively, we could also keep a list of the diamonds14 and uniformly sample a diamond
from that list, giving proposal probability S(T → T ′) = 1/nd(T) , with nd(T) denoting the number
of diamonds in T . Naturally, the inverse proposal probability S(T ′ → T) = 1/N2(T

′) remains
the same. Then, using the same reassignments of the labels, we obtain the Metropolis-Hastings
acceptance probabilities

A(T → T ′) = min
(
1,

nd(T)

N2(T) − 2
e2λ+4ϵ(N2(T)−N̂2−1)

)
, (3.12)

A(T ′ → T) = min
(
1,

N2(T
′)

nd(T ′) + 1
e−2λ−4ϵ(N2(T

′)−N̂2+1)
)
, (3.13)

using the fact that nd(T) = nd(T
′) + 1. Note that this way of proposing moves with an additional

list has an overall acceptance rate that is close to 1 for both the move and its inverse, when the
volume N2 is near the desired N̂2. So we get very few rejections when the simulation is in equilib-
rium. In contrast, the previous method without a list of diamonds has an overall acceptance rate
close to 0.25 in equilibrium. Hence, depending on the additional computational cost of keeping
the list of diamonds in one’s implementation, one or the other method may be desirable.

12One can see this fairly easily by showing that a combination of flip and diamond moves can be used to give the same
transition as a shard move. Flip moves can be used to create a diamond at the place of the shard, then the diamond
move can be performed, and finally the flip moves can be used again to restore the rest of the triangulation to its original
state. The inverse move can be reproduced in an analogous way.
13To see where this expectation value comes from, we can uniquely associate the centre vertex with degree 4 to each
diamond. So, the fraction of vertices associated with a diamond is precisely the fraction of vertices with degree 4. The
distribution of vertex degrees is known (4.3), giving 2 ⟨nd⟩ = N2/4 where nd denotes the number of diamonds.
14For our implementation we keep a list of the future-pointing triangle of the right shard of the diamond.
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3.4.4 Relocation move

Combining the flip move and diamond move, we have an ergodic move set that can be used
efficiently in our implementation, where we keep track of the triangle connectivity. However, this
move set will still require volume fixing, while it is preferable to have a sampling that only samples
from a fixed volume ensemble. So we propose another move, which keeps the total volume fixed,
and – to the best of our knowledge – has never been used in literature15. We will call this move
the relocation move as it effectively relocates a diamond to another location in the triangulation.
For this move a diamond and a shard have to be selected. Then the diamond gets collapsed into a
shard; and the shard gets expanded into a new diamond. Effectively this is the same as performing
the diamond move and immediately thereafter performing the inverse diamond move, which will
keep the overall volume constant. A diagram of this move is presented in Fig. 3.4.

⇄

Figure 3.4: Illustration of the relocation move in a triangulation.

Even though the diamond move combined with the flip move is ergodic in the ensemble of
triangulations of all volumes, this does not necessarily mean this relocation move combined with
the flip move is ergodic in the ensemble of all triangulations with fixed volume. It may be possible
that other moves performed in the Markov chain in-between the diamond move and its inverse
can reach a larger set of triangulations than the relocation move can. So, we will have to prove
its ergodicity to make sure it forms a valid move set together with the flip move. A proof for this
will be presented in the next section; for now we will assume it is valid and proceed to discuss its
implementation and acceptance probability.

We can select a diamond and shard in the same way as we did for the diamond move, with
or without a list of diamonds in the triangulation. Note, that if the selected diamond and shard
overlap the relocation move does not make sense, and we will define the move to keep the trian-
gulation unchanged to keep the proposal probabilities simple16. In this case the total volume N2

remains fixed, hence P(T) = P(T ′). Moreover, the proposal probability S(T → T ′) = 2/N2 · 2/N2

without a list of diamonds, or S(T → T ′) = 1/nd · 2/N2 with a list of diamonds. This is identical
to the proposal probability of the inverse, as we have that nd(T) = nd(T

′). Thus, we see that both
selection procedures already give a proposal probability that satisfies detailed balance, so no addi-
tional rejection is required. One can again decide which of the selection methods to use based on
the implementation of the move and diamond list. Our implementation uses the second selection
method, keeping an additional list of the diamonds in the triangulations, as we have very efficient
implementations for the operations necessary on this list (see appendix A).

For our numerical model we choose to use the combination of the relocation move and the
flip move to simulate all the 2D CDT triangulations on which the all presented measurements are

15Thanks to Timothy Budd for suggesting this move.
16In our implementation where we only store the triangle connectivity by label, we select a diamond by either its right
triangles and the shard by either of its triangles. Then we first remove the right shard of the diamond and second add
a shard to the right of the selected shard. This only fails when the selected shard is the same as the right shard of the
selected diamond, in which case we simply do not change the triangulation.
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taken. Finally, we note that one can choose the relative selection probabilities of the flip move with
respect to the relocation move, which is most effectively chosen to minimize the correlation time
of the Monte Carlo simulation. We tested different ratios of the selection probabilities and found it
had little to no impact on the correlation time for ratios between 0.3 and 0.7. Outside this range a
negative impact was observed, so we have chosen to use a ratio of 0.5, selecting the flip move and
relocation move equally often.

3.5 Ergodicity proof

As explained in the previous section, we use Markov chain Monte Carlo to sample triangulations
with a fixed volume N2 using a combination of the flip move and relocation move. To make sure
this move set is able to sample the full ensemble of fixed-volume triangulations, we will show it
is ergodic in this ensemble. For definiteness, we will consider only triangulations with toroidal
topology. So the spatial slices T1(t) are circles of vertices and T1(t + τ) = T1(t), where τ denotes
the number of spatial slices. Recall that each spatial slice T1(t) has length denoted by lt. Note that
for a toroidal topology without boundaries the number of triangles N2 is necessarily even.

First we show that the flip move is ergodic the ensemble of all triangulations that have a given
length distribution

{
l1, l2, · · · , lτ

}
of the spatial slices. Consider a single slab, the triangles between

two spatial slices T1(1) of length l1 and T1(2) of length l2, which we denote with (T1(1), T2(2)).
The slab contains l1 future-pointing triangles and l2 past-pointing triangles. Let us encode the
slab as a periodic sequence of future-pointing triangles (which we will denote with a 0) and past-
pointing triangles (which we will denote with a 1). For example 01110100011 encodes the slab
displayed in Fig. 3.5. Note that the sequence is periodic so 01110100011, 11101000110, 11010001101,

0 0 0 0 0

1 1 1 1 1 11

Figure 3.5: An example triangulation slab. Note that the slab is periodic: the first ‘1’ is the same as the
last ‘1’. The slab has been visualized with a region that is slightly larger than the period of the slab,
such that one can see overlap.

10100011011, etc. are equivalent. We only consider triangulations obeying the simplicial manifold
condition, so there will be at least three 0’s and three 1’s in each sequence. In this encoding the
flip move entails swapping an adjacent 0 and 1, i.e. 01→ 10 or 10→ 01.

To encode how the slabs are glued together to form the full triangulation we mark one 0 (future-
pointing triangle) and one 1 (past-pointing triangle) in each slab. And we glue each marked future-
pointing triangle 0 in a slab (T1(t), T1(t + 1)) to each marked past-pointing triangle 1 in the next
slab (T1(t+ 1), T1(t+ 2)). This uniquely defines the gluing, as the rest of the triangles can only be
glued together in a single way. For example, the gluing of slab (T1(1), T1(2)) given by 01110100011

and (T1(2), T1(3)) given by 011011000011 is shown in Fig. 3.6. Using the marked encoding for
each slab, we uniquely encode any triangulation in the ensemble with a fixed spatial slice length
distribution.

To show that we can go from any triangulation to any other triangulation using a finite number
of flip moves, it is enough to show that we can go from a single marked slab to any other marked
slab. This is because the flip move does not affect triangles in other slabs, and the two marked
triangles makes sure all possible gluings are considered. To see that we can reach any marked
sequence encoding a slab from any other marked sequence, consider the standard marked sequence.
The standard marked sequence is given by l1 0’s followed by l2 1’s, where the leftmost 0 and the
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0 0

0 0 0 0 0 0

0 0 0

1 1 1 1 1

1 1 1 1

11

1 1 1

Figure 3.6: An example of two slabs glued together, by gluing the marked 1 future-pointing triangle of
the bottom slab to the marked 0 past-pointing triangle of the top slab. Note that the slabs are periodic.

leftmost 1 are marked,
l1︷ ︸︸ ︷

00 . . . 0

l2︷ ︸︸ ︷
11 . . . 1 .

We can go from any marked sequence to the standard marked sequence by repeatedly applying the
flip moves, which in this encoding are given by 01→ 10 or 10→ 01. To do so, we first perform the
10 → 01 move as many times as possible using only unmarked 0’s. This will result in a sequence
where the leftmost 0 is marked. An example of this process is

000011→ 000101→ 000011→ 000101→ 000011.

Next, we perform the 01→ 10 move as many times as possible using only unmarked 1’s. This will
result in a sequence in the standard marked form. Continuing the example for this process gives

000011→ 000101→ 001001→ 010001→ 000011.

We can get from any sequence to the standard marked sequence by a finite number of flip moves.
We can then perform this procedure in reverse to get from the standard marked sequence to any
other marked sequence. Using this procedure and thereafter a reverse procedure we can get from
any marked sequence to any other. This shows that the flip move is ergodic in the ensemble with
a fixed length distribution of spatial slices

{
l1, l2, · · · , lτ

}
using a finite number of flip moves.

To be ergodic in the ensemble of triangulations with a fixed volume, we need to also allow the
relocation move. Using the relocation move, it is possible to move a vertex from a spatial slice T1(i)
to another timeslice T1(j). Given a length distribution of the spatial slices

{
l1, · · · , li, · · · , lj, · · · , lτ

}
the relocation move from slice T1(i) to T1(j) gives a distribution

{
l1, · · · , li − 1, · · · , lj + 1, · · · , lτ

}
.

Repeated application of the relocation move can yield any length distribution of spatial slices with
fixed total volume N0 =

∑
t lt. However, performing the relocation move is only possible if the

vertex that is moved has vertex order four. Fortunately, we know we can get each slab to the
standard marked form using the flip moves. And in the standard marked form each spatial slice
T1(t) has lt − 1 vertices with degree 4, meaning we have at least 2. So indeed using the flip move
it is always possible to make sure each spatial slice has a vertex with degree four, such that the
relocation move can be performed between any spatial slices.

This concludes the proof showing that it is possible to go from any triangulation with fixed
volume N2 to any other triangulation with volume N2, using the flip and relocation moves. Thus,
the Markov chain Monte Carlo move set consisting of the flip and relocation moves are ergodic in
the ensemble triangulations with fixed volume.
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4. Model Verification

In order to verify the validity of the numerical model and get an idea of the possibilities and
limitations of the model, we will measure the vertex degree distribution, which is known ana-

lytically. Additionally, we measure some standard observables, namely the Hausdorff dimension
and the spectral dimension.

Besides verifying the numerically obtained observables with their analytical predictions, they
also serve as a useful tool in analysing the equilibration as well as the correlation of the numerical
measurements.

4.1 Vertex degree distribution

One of the simplest properties of a triangulation is the degree distribution of the vertex graph. With
vertex degree we mean the number of edges connected to the vertex or equivalently1 the number of
directly neighbouring vertices.

4.1.1 Theoretical distribution

The expected distribution can be derived by realizing that for a CDT triangulation with infinite
volume N2, the number of future k(f) and past k(p) time-like links from a vertex are completely
independent of the number of links of other vertices [12]. Now, consider only the future time-
like links; each of these links adds a triangle contributing a weight factor of e−λ to the partition
function. So k future time-like links give a weight factor of e−kλ. Hence, the probability of a
vertex having k future-directed links is proportional to e−kλ, giving the (normalized) probability
distribution

pλ[k] =
(
eλ − 1

)
e−kλ for k ⩾ 1. (4.1)

By symmetry the probability distribution of the past-directed links is identical to (4.1). With the
addition of the fixed two space-like links of every vertex and remembering that there is a minimum
of one future and one past time-like link, one obtains

pλ[c] =

j−3∑
k=1

pλ[k]pλ[c− 2− k]

= (eλ − 1)2
c−3∑
k=1

e(2−c)λ

= (c− 3)(eλ − 1)2 e(2−c)λ. (4.2)

In the thermodynamic limit, where λ → λc = ln 2, we obtain that the distribution of the vertex
degree c is given by

p[c] =
c− 3

2c−2
for c ⩾ 4 (4.3)

which is properly normalized.

1This is only true because we are working with triangulations that obey the simplicial manifold condition.



Chapter 4. Model Verification 16

4.1.2 Numerical distribution

The distribution of vertex degrees is easily measured in the numerical model by counting the
number of neighbouring vertices of each vertex. We can measure the ensemble average of the
distribution of vertex degrees and compare it to the expected distribution (4.3). The results are
shown in Fig. 4.1, and estimate the ensemble average using 50 configurations. From the figure it is

4 6 8 10 12 14 16 18

Vertex degree

0.00
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0.15

0.20

0.25 Measured distribution

Theoretical:
j − 3

2j−2

4 5 6 7 8 9 10 15 20 25

Vertex degree

10−7

10−6

10−5
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10−3

10−2
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j − 3

2j−2

Measured distribution

Figure 4.1: Measured vertex degree distribution compared to the theoretical distribution (4.3). On the
right a logarithmic scale is used to better compare higher vertex degree frequencies; this plot also
shows the standard deviation of the vertex degree distribution over different configurations.

clear that the numerical model correctly reproduces the expected vertex distribution, and is thus
consistent with the theoretical model in this respect. Also note that the difference in distribution
between different configurations in the ensemble is negligible, as can be seen from the small2

standard deviation between the different configurations as displayed in Fig. 4.1.

4.2 Hausdorff dimension

One of the standard results of 2D causal dynamical triangulation is the intrinsic Hausdorff dimen-
sion of dH = 2, which is equal to the topological dimension. This result is in contrast to EDT
where a Hausdorff dimension of dH = 4 is found [1]. Whilst it may seem a trivial result to obtain a
dimension of 2 for a 2D model, this is not the case. The topological dimension of the triangulations
does in general not determine the dimension of the continuum limit of dynamical triangulations.
This is for example the case for 2D EDT, which have a fractal geometry in the continuum limit. In
these cases what we do is determine scaling dimensions like the Hausdorff dimension.

The idea of the Hausdorff dimension is motivated by the following observation. Consider a
(geodesic) sphere in a d-dimensional Riemannian manifold (M,g), by which we mean the sub-
manifold Sx(r) := {y ∈M | dg(x, y) = r}, where dg(x, y) is the shortest geodesic distance between
x and y. Its volume is given by VolSx(r) =

∫
Sx(r)

ddy
√
h(y) where h denotes the determinant of

the induced metric hµν on the sphere. Then for a smooth Riemannian manifold the volume of the
sphere scales with its radius r like

VolSx(r) ∝ rd−1
(
1+O(r2)

)
,

2A non-negligible standard deviation can be seen for the larger vertex degrees in the logarithmic plot on the right of
Fig. 4.1. This is caused by statistical errors, since the higher vertex degrees are very rare and the limited measurements
performed for this test are not enough to obtain reliable statistics for those vertex degrees.
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where the higher-order terms are curvature corrections depending on the Riemann tensor and its
covariant derivatives. We can extract the dimension from the ball volume, using

lim
r→0

d log(VolS(r))
d log r

= d− 1,

where the dependence on the origin point x vanishes in the limit r→ 0. For the continuum limit of
CDT we would like to use this relation to define the local Hausdorff dimension, similar to analysis
in [14] at a given point x to be

dH(x) = 1+ lim
r→0

d log(VolSx(r))
d log r

, (4.4)

where for a quantum geometry this local Hausdorff dimension does in general depend on the
origin point x. So, we define the overall local Hausdorff dimension of the quantum geometry to be

dH = 1+ lim
r→0

d log
(〈

VolS(r)
〉
V

)

d log r
, (4.5)

where
〈

VolS(r)
〉
V

denotes the fixed-volume ensemble average of the manifold average VolS(r) of
the sphere volume.

We discretize this definition by measuring distance and volume on the vertex graph of the
triangulation, using link distance as geodesic distance. For (unlabelled) triangulations with fixed
finite two-volume N2 = N we get that

〈
VolS(r)

〉
N

=
1

ZN

∑
T∈TN

1

N0

∑
p∈T

VolSp(r), (4.6)

where TN denotes the fixed-volume ensemble (see section 3.2) with partition function ZN, and
N0 the number of vertices. Also, r is now discrete and denotes the link distance, and VolSp(r) =∑

q 1 δd(p,q),r. In the discrete setting we can no longer take the limit r→ 0 for discrete r. Instead3,
we fit a two-parameter (c, dH) power law

〈
VolS(r)

〉
= crdH−1, (4.7)

for an appropriate region of r to extract the Hausdorff dimension dH. The measured sphere
volumes at different volumes N2 are presented in Fig. 4.2, which are based on 100 triangulations
with 50 origin point p samples on each of them. For small r the sphere volume is subject to
discretization artefacts which we want to exclude, so we choose to only fit to r ⩾ 5. Moreover,
for large r one can see in Fig. 4.2 that the sphere volume starts to deviate from power law like
behaviour. This is due to finite-size effect where the spheres are large enough that they wrap
around the triangulation and overlap with themselves. This effect appears later for larger N2 as
the spheres need to be larger before they start wrapping around. We choose the upper bound of
our fitting region at least before finite-size effects start to appear. It is not trivial to determine at
what r this happens, and we will discuss this in more detail in chapter 6. For now, it suffices to
know we have a method to determine a maximum r for which finite-size effects are negligible,
which we use as the upper bound of our fitting region. Finally, we introduce a shift to r in the
fitting r 7→ r − r0, to improve the fit quality as is commonly done [15, 16], which is the same for
different N2. For our measurements we found the best shift to be r0 = 0.63. With this fitting

3We have also analysed the logarithmic derivative (4.5) directly using finite differences as a function of r. This yields
the same estimate for dH but gives rise to some different considerations which are presented in appendix B.2.
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Figure 4.2: Estimated average of sphere volume
〈

VolS(r)
〉

in 2D CDT at several two-volumes N2 with
ℸ = 0.32. This includes a power law fit to the sphere volume at the largest volume N2 = 300k to
extract the Hausdorff dimension.

procedure we are able to estimate the local Hausdorff dimension at increasing volumes N2; an
example of such a fit is also displayed in Fig. 4.2. The obtained estimates of dH are displayed
as a function of volume N2 in Fig. 4.3. From this figure we can see that in this volume range
there appears to be no significant difference in the dH estimates for different N2. This leads us
to conclude that the measured local Hausdorff dimension of 2D CDT is dH = 2.23 ± 0.01 for
ℸ = τ2/N2 = 0.324.

This result deviates from the theoretically expected dH = 2 [1]. Other numerical estimates
that have been previously obtained are dH = 2.2 ± 0.2 [17] and dH = 2.03 ± 0.04 [12]. Our result
is consistent with the first source, but not with the second, while both of these are consistent
with the theoretically expected value. However, both these results are obtained using a different
method than the one we use, namely using finite-size scaling of the sphere volume profile. For this
method the full sphere volume profile is considered, not just small r. This gives a global Hausdorff
dimension, which need not be the same as our local Hausdorff dimension, but previous results
[12, 14] find they are the same for 2D CDT. Note that using finite-size scaling in CDT is more
difficult than in Euclidean Dynamical Triangulation (EDT) where the Hausdorff dimension has
been consistently measured using finite scaling to great precision [15]. For EDT finite-size scaling
can be performed with respect to a single scale N2, giving a scaling limit where the sphere volume
profiles collapse to a known limiting curve for all r. This is more challenging in CDT, where we
have the additional scale of time extension. The most natural treatment is to keep the ratio ℸ = τ2

N0

[14] fixed, although it is not stated in [17] and [12] what choice is made here. Moreover, we find
that the collapse is not nearly as good for CDT as is the case in EDT, as was also seen by [17]. For
our analysis we use only a small range of r to base our estimate on. A problem our result may
still have is that the range we use is already subject to significant curvature corrections, giving
a deviation from power law behaviour, as our range continues up until finite-size effects start to
appear. However, experimenting with a smaller upper bound on the radius r range yielded no
significant difference; only decreasing the error due to having less points to fit to.

4Investigation at other ℸ up to ℸ = 4 seems to give no significant difference.
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Figure 4.3: Estimates of the Hausdorff dimension dH based on a power law fit (4.7) of the sphere
volume in 2D CDT at several volumes N2 with ℸ = 0.32. The displayed error bars are 95% confidence
intervals based on bootstrap resampling of the sampled triangulations.

In conclusion, it seems that for CDT sphere volume profiles are not well suited to extract the
Hausdorff dimension, at least for the volumes considered here. It may be better to extract the
Hausdorff dimension using other methods, like looking at the scaling of the length distribution of
the spatial slices [12, 14]. However, since investigating the Hausdorff dimension is not the focus of
this study we will not spend more time on this investigation.

4.3 Spectral dimension

Another notion of dimension is the spectral dimension, which is a scaling dimension of a diffusion
process,

∂ρ(x, x0;σ)
∂σ

= η∇2ρ(x, x0;σ), (4.8)

where ρ(x, x0;σ) is the probability density of diffusion from x0 to x in diffusion time σ ∈ R, ∇2 the
Laplace operator on a d-dimensional Riemannian manifold (M,g), and η > 0 a diffusion constant.
From ρ(x, x0;σ) we can construct the return probability P on manifold M as the manifold average

P(σ) =
1

VolM

∫
ddx

√
g(x) ρ(x, x;σ), (4.9)

with metric determinant g. Then the return probability P(σ) has the expansion [18]

P(σ) =
1

(4πησ)d/2

(
1+O(σ)

)

So we are able to extract the dimension from the return probability with

lim
σ→0

−2
d logP(σ)

d logσ
= d.
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Using this relation, we define the spectral dimension of dynamical triangulations at constant two-
volume N2 = N to be

ds(σ) =

〈
−2

d logPT (σ)

d logσ

〉

N

, (4.10)

where now σ ∈ Z is discrete, PT (σ) is the return probability on the triangulation T , and the
derivative is realized using finite differences. Since σ is discrete we cannot simply take the limit
σ → 0, so instead we measure ds(σ) up to large σ and determine a region of small σ where
curvature corrections are still negligible to approximate the limit.

To measure the return probability on a triangulation T , we will perform a diffusion process
(4.8) with a discrete probability field ρT (i, i0;σ), which represents the probability of diffusing from
triangle5 i0 to i in σ diffusion steps. The diffusion process is implemented using the evolution rule

ρT (i, i0;σ+ 1) = (1− η) ρT (i, i0;σ) +
η

3

∑
k→i

ρT (k, i0;σ), (4.11)

where k → i signifies the set of all triangles neighbouring i, and η ∈ (0, 1] takes the role of the
diffusion constant. We initialize the diffusion process by setting ρT (i, i0; 0) = δi,i0 . An example of
the first steps of such a diffusion process on the triangles of a triangulation is illustrated in Fig. 4.4.
One can check that using this evolution rule ρT will remain properly normalized,

∑
i ρ(i, i0;σ) = 1.

The return probability is then calculated with the triangulation average

PT (σ) =
1

N2(T)

∑
i

ρT (i, i;σ), (4.12)

where N2(T) again denotes the number of triangles in the triangulation. The diffusion constant η
can be freely chosen within its range (0, 1], as it only rescales the dimensionless σ. If η = 1, the
small-σ behaviour of PT (σ) is very different for odd and even σ, due to the discretized nature of
the set-up; this effect can be seen in the example in Fig. 4.4. To alleviate this strong dependence
it can help to choose η < 1, as this smoothes out this even-odd effect; a value around η = 0.8 is
common [8, 19].

To measure the spectral dimension ds(σ) for 2D CDT, we estimate the ensemble average by
taking a sample average over 1370 configurations. In each triangulation we only measured the
return probability for a single origin triangle, instead of taking a triangulation average, i.e. we
estimate PT (σ) by ρT (i0, i0, σ) for some randomly sampled triangle i0. We consider a single tri-
angle sample to be sufficient for large enough N2, because we expect that for a local quantity like
the spectral dimension, taking the ensemble average over single triangle samples will be equiv-
alent to an ensemble average over a manifold average. For the finite differences implementing
the derivatives in (4.10) we have used second-order central differences. The results of this mea-
surement are displayed in Fig. 4.5. The figure shows a region with discretization artefacts up to
around σ = 300. These discretization artefacts are caused by the previously discussed even-odd
effect, the discretization of the derivative, and the discretized nature of the triangulation. After the
discretization region the ds(σ) estimate shows a plateau, which remains constant up to σ = 2000.
This seems to indicate that in the diffusion step σ region that is shown there are no visible curva-
ture effects. So to approximate the limit σ → 0 in this discretized setting it appears sufficient to
use any region in σ ∈ [300, 2000], in which case we obtain that the spectral dimension of 2D CDT
is measured to be: ds = 2.013 ± 0.007. This is within the 95% confidence interval of the expected
theoretical value of ds = 2 [20]. Moreover, it is compatible with the numerical result 2.02± 0.02 of
[17]. Note that the measurement is only shown for a single N2. Small measurement sets have been

5Note that this diffusion process is performed on the dual graph of triangulations, that is, the probability is associated
with the triangles.
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Figure 4.4: Example of the first three steps of a diffusion process on a triangulation with η = 1, where
each triangle has its ρT (i, i0;σ) displayed (note that the ρT = 0 values are not shown). The return
probabilities of the first few steps are PT (0) = 1, PT (1) = 0, PT (2) = 1/3, PT (0) = 0, . . . , showing
the odd-even effect by the vanishing return probability at odd σ. This can be understood for the
triangulation in the figure by considering the paths that start at and return to triangle i0 (the triangle
with ρT (σ = 0) = 1). For short lengths, only paths with an even length can be constructed.

performed on smaller sizes (N2 = 100k, 200k) that have no significant difference in the region up
to σ = 2000, which seems to indicate that there are no significant finite-size effects for N2 = 300k
up to this σ = 2000. However, to be certain that there are no finite-size effects significantly altering
the estimated spectral dimension, more measurements should be performed at different volumes
N2. Since estimating the spectral dimension is not the focus of this research project, we will not
investigate this further.
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Figure 4.5: Spectral dimension estimate for 2D CDT at N2 = 300k and τ = 219 using a diffusion
process with η = 0.9. Only 1 in 30 error bars is shown to avoid clutter, and they display the 95%
confidence interval.
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5. Quantum Ricci Curvature

Measuring curvature in quantum gravity, where the geometries are non-smooth, is challeng-
ing; one cannot use normal Ricci curvature in terms of derivatives of the metric since no

such smooth metric may exist. Klitgaard and Loll [2] defined an alternative coarse-grained construc-
tion of curvature, inspired by Ollivier [21], by comparing the distance of two nearby infinitesimal
spheres with the distance of their centres. In a smooth Riemannian space this construction is
shown to retrieve Ricci curvature, but crucially this construction can be defined in non-smooth
metric spaces as it depends solely on geodesic distance. For this quantum Ricci curvature a notion
of distance between spheres is necessary. In [2] the average sphere distance (ASD) between spheres1

Sx(δ) and Sx ′(δ), centred at x and x ′, is defined as

d̄
(
Sx(δ), Sx ′(δ)

)
:=

1

VolSx(δ)
1

VolSx ′(δ)

∫
Sx(δ)
dn−1y

√
h(y)

∫
Sx ′(δ)
dn−1y ′√h ′(y ′)dg(y, y

′). (5.1)

Here, dg(y, y
′) is the geodesic distance between y and y ′ with respect to metric g, and h and h ′

are the determinants of the induced metrics on the geodesic spheres1 Sx(δ) and Sx ′(δ) respectively.
The volume of these spheres is given by the volume integral with respect to their induced metric.

We call the centre distance ϵ ≡ d(x, x ′), meaning we have two length scales δ and ϵ. Since
this construction only relies on geodesic distance, it can be used in a more general setting than
differentiable manifolds. Importantly, it can be applied to triangulations, meaning we can measure
it numerically for our dynamical triangulations. For the case of a Riemannian manifold where the
distances are sufficiently small, one finds that the point x ′ can be expressed uniquely using the
exponential map from x, such that x ′ = expx(ϵ v) where v is a unit vector in the tangent space of
x. The relative positioning of x and x ′ therefore serves as the ‘direction’ or ‘vector’ of the average
sphere distance. It is precisely this direction that reproduces the directional nature of the Ricci
curvature in the limit of δ = ϵ → 0. This construction is further illustrated by a two-dimensional
example in Fig. 5.1, where one should imagine averaging the distance d(y, y ′) over all possible
combinations of y and y ′ on the spheres.

In practice, it is convenient to have a curvature prescription which only depends on a single
length scale. As such it is convenient to fix the distances between the spheres to be ϵ = δ, such
that the spheres intersect one another; this is the standard choice made in previous works on
average sphere distance [2, 22]. For this choice of ϵ we will sometimes denote the average sphere
distance by d̄xx ′(δ) for convenience. For sufficiently small δ it is related to the Ricci curvature in a
two-dimensional Riemannian manifold in the following way [13]:

d̄
(
Sx(δ), Sx ′(δ)

)

δ
≈ 1.5746− 0.0720 R δ2 +O(δ3), where dg(x, x

′) = δ, (5.2)

where R is the Ricci scalar2. An alternative is to set ϵ = 0, such that the two spheres overlap, and
we have the average distance of a single sphere to itself; in this case we will sometimes denote
this d̄x(δ). However, doing this loses all directional information. This means that the average
sphere distance for ϵ = 0 can only retrieve scalar curvature, without direction. In this case we find
(see section B.1 for a derivation) the average sphere distance to be related to Ricci curvature in a
two-dimensional Riemannian manifold for sufficiently small δ according to

d̄
(
Sx(δ), Sx(δ)

)

δ
=

4

π
−

R

9π
δ2 +O(δ3) ≈ 1.273− 0.0354R δ2 +O(δ3). (5.3)

1A geodesic sphere with centre point x is the submanifold given by Sx(r) =
{
y ∈M

∣∣dg(x, y) = r
}

together with the
induced metric h.

2In two dimensions the Ricci scalar is algebraically equal to twice the Ricci curvature in the direction of v.
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Figure 5.1: Diagram illustrating the construction of the average sphere distance on a manifold M for
infinitesimal ϵ and δ. ϵ is the geodesic distance between x and x ′, and v is the vector at x which points
along the geodesic.

From (5.2) and (5.3) we can see that the largest difference between these two prescriptions can be
seen as a rescaling of δ (of about 1.24). This makes sense as for the same δ the area covered by the
spheres of the ASD with ϵ = δ is larger than the area covered by the sphere of the ASD with ϵ = 0.
So for the same δ the average sphere distance is larger, and the effect of curvature is stronger with
ϵ = δ. So if one wishes to extract the curvature from average sphere distance using ϵ = 0, one may
expect that one needs to measure up to slightly larger values of δ to see the same curvature effects
as for ϵ = δ.

The relation of average sphere distance to Ricci curvature in continuum motivates to define the
coarse-grained QRC (quantum Ricci curvature) as K(x, x ′; δ) for ϵ = δ, such that

d̄
(
Sx(δ), Sx ′(δ)

)

δ
:= cq

(
1− K(x, x ′; δ)

)
, (5.4)

with prefactor cq := limδ→0 d̄
/
δ . For the case of ϵ = 0, we only measure scalar curvature and

have a quantum Ricci scalar K(x; δ), such that

d̄
(
Sx(δ), Sx(δ)

)

δ
:= c ′q(1− K(x; δ)), (5.5)

where c ′q is a prefactor defined equivalently to cq. Note that in the continuum cq and c ′q are
constants that only depend on the dimension. However, in a discrete setting this constant also
depends on the type of lattice – it is for example different for a hexagonal and a square lattice. In
a dynamical triangulation situation where the lattice is not uniform, cq and c ′q are in general not
constant, and can have a point dependence.

We want to highlight the δ dependence of this prescription of curvature. For non-infinitesimal
δ the quantum Ricci curvature measures curvature based on a non-infinitesimal area of a manifold.
Because of this, the quantum Ricci curvature is called a ‘coarse-grained’ prescription of curvature.
In a way it measures the average curvature of a region, smoothing out the details of that region.
The coarse-grained nature of this prescription of curvature allows us to renormalize the quantum
Ricci curvature of CDT in the continuum limit. This is something that we do not know how to do
in 4D CDT for the Regge curvature [23], which is based on the deficit angle.
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In quantum gravity, we are only able to measure diffeomorphism-invariant quantities as there
is no way to identify a specific point in multiple configurations of the ensemble. So to measure
average sphere distance in quantum gravity, we consider the manifold average of the average
sphere distance. This gives an averaged measure of curvature associated with the scale δ in the
manifold. In order to get a better idea of how the curvature changes throughout the manifold, we
can also measure two-point correlations of the quantum Ricci curvature. However, to be able to
do this we first need to define what two-point functions are in a quantum setting, which we will
discuss in section 7. For now, we will consider the manifold average of the average sphere distance
[24], which is called the curvature profile d̄av(δ), for a manifold M with metric g,

d̄av(δ) :=
1

G11
g (δ)

∫
M

dnx
√

g(x)

∫
M

dnx ′√g(x ′) d̄
(
Sx(δ), Sx ′(δ)

)
δD(dg(x, x

′), δ), (5.6)

for ϵ = δ where G11
g (δ)3 is given by

G11
g (δ) =

∫
M

dnx
√

g(x)

∫
M

dnx ′√g(x ′) δD(dg(x, x
′), δ).

On a lattice this becomes the number of point pairs separated by distance δ. When we take
a manifold average in this way, we also average over all directions between x and x ′. So the
directional information is lost in the average. If there is a distinguished direction in the quantum
geometries one considers, it is also possible to average over point pairs that are only separated
along this direction. This has been done for 2D CDT using the timelike and spacelike separation in
[22], although the authors note that this time direction is not strictly well-defined. For the present
work, we will only consider d̄av(δ), the manifold average over all point pairs. This means we can
only measure scalar curvature without directional information. Since we will not try to extract
directional information, we can also use average sphere distance with ϵ = 0. ASD d̄x(δ) itself
has no directional information, so it does not need to be averaged over all directions, just over all
points x in the manifold. For ϵ = 0 the manifold-averaged ASD becomes

d̄0
av(δ) :=

1

VolM

∫
M

dnx
√
g(x) d̄

(
Sx(δ), Sx(δ)

)
, (5.7)

where VolM =
∫
M dnx

√
g(x). We can define the (averaged) quantum Ricci scalar Kav(δ), such that

d̄av(δ)

δ
=: cav

(
1− Kav(δ)

)
, (5.8)

where cav := limδ→0 d̄av
/
δ , and we define K0

av(δ) using d̄0
av(δ) equivalently. Like we discussed

for cq and c ′q this cav is known to be non-universal in the discrete setting, where it for example
depends on the type of lattice [2, 13]. Kav(δ) now takes the role of the Ricci scalar in quantum
gravity setting.

5.1 Discretization

To be able to measure average sphere distance on dynamical triangulations we need to discretize
the definitions for (manifold-averaged) average sphere distance. To discretize (5.1) we substitute
the sphere integrals by sums over all vertices in the spheres4 Sp(δ), Sp ′(δ), with the local volume
elements equal to 1 in our discretization. The geodesic distance is given by the geodesic distance on

3This is the same notation we use for two-point functions, which will become more clear in section 7.
4In the discrete case the spheres become a set of vertices (or triangles in the dual) Sp(r) =

{
q ∈ T

∣∣dT (p, q) = r
}

.
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the vertex graph d(q, q ′), i.e. the link distance. In this discretization the sphere volume VolSp(δ)
is given by the number of elements in its set Sp(δ). The discretization of (5.1) becomes

d̄
(
Sp(δ), Sp ′(δ)

)
:=

1

VolSp(δ)
1

VolSp ′(δ)

∑
q∈Sp(δ)

∑
q ′∈Sp ′(δ)

d(q, q ′), (5.9)

where δ now is a discrete distance.
To discretize the manifold averaging of (5.6) and (5.7) we substitute it with a sum over all

vertices of the triangulation T with local volume elements 1, giving

d̄av(δ) :=
1

G11
T (δ)

∑
p∈T

∑
p ′∈T

d̄
(
Sp(δ), Sp ′(δ)

)
δd(p,p ′),δ , (5.10)

d̄0
av(δ) :=

1

Vol T

∑
p∈T

d̄
(
Sp(δ), Sp(δ)

)
, (5.11)

where G11
T (r) is the number of point pairs of distance r,

G11
T (r) =

∑
p∈T

∑
p ′∈T

δdT (p,p ′),r,

and Vol T is the number of vertices in the triangulation.
Finally, in the quantum setting we are interested in the expectation value of the manifold-

averaged ASD. For the fixed-volume ensemble TN with N2(T) = N, we get that the expectation
value of the average curvature profile d̄av(δ)/δ is given by

〈
d̄av(δ)

δ

〉

N

=
1

δ ZN

∑
T∈TN

d̄av(δ). (5.12)

5.1.1 Analytical average sphere distance

For 2D CDT it is possible to analytically determine the average sphere distance for ϵ = 0 and
δ = 1. This is because it only depends on the direct neighbours of the origin point, and none of the
geodesic paths can go outside the δ = 1 sphere, because of the simplicial manifold condition and
the sliced structure5 of the triangulations. The derivation is rather simple, so it is presented here.
The average sphere distance at a vertex p on a triangulation at ϵ = 0 and δ = 1 can be expressed
as a function of its vertex degree c,

d̄p(δ = 1) =
1 · 0+ 2 · 1+ (c− 3) · 2

c
= 2−

4

c
.

We know the distribution of vertex degrees in a 2D CDT triangulation, namely (4.3), which allows
us to compute the expectation value ⟨1/c⟩ = 17

2 − 12 ln 2. So, we can determine the expectation
value of the average sphere distance and find

〈
d̄0

av(δ = 1)
〉
= 16

(
3 ln 2− 2

)
≈ 1.271 (5.13)

This result is not particularly useful as it only gives us the average sphere distance at δ = 1,
which does not allow us to determine the quantum Ricci curvature. However, it can serve as a
good consistency check for numerical results, which is why it is presented here.

5For example in 2D Euclidean dynamical triangulation with no sliced structure the geodesic paths can go outside the
δ = 1 sphere.
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5.2 Implementation

In order to numerically measure the average sphere distances we need to be able to measure
distances on the vertex graph and construct geodesic spheres. This is most effectively done using
a breadth-first search. To be able to determine the averaged ASD with ϵ = δ we also need a
method of finding all point pairs p, p ′ to average over them. However, averaging over all point
pairs can be very computationally expensive, because there are many point pairs in a triangulation
and computing the ASD between a single point pair is already quite expensive. Computationally
it is therefore a lot more effective to take a sample point pairs and only average over those, instead
of taking the average over the full triangulation. To be able to do this, we need a way to effectively
sample point pairs. However, first we will turn our attention to measuring geodesic distance.

5.2.1 Breadth-first search

A breadth-first search (BFS) is a graph exploration algorithm that works by exploring outwards
from a starting node first exploring all nodes at a given distance before moving on to nodes at a
further distance, making it ideal to identify nodes at a given distance. The basis of the breadth-first
search exploration algorithm is illustrated using pseudocode in Alg. 1. This algorithm crucially

Algorithm 1 A breadth-first search that will iterate through the entire graph in breadth-first fash-
ion.
Require: An initial node, startNode, in the graph

1: Let explored be an empty list
add(explored, startNode)

2: Let toExplore be an empty queue // A queue is a first-in first-out list
enqueue(toExplore, startNode) // Add node to end of the queue

3: repeat
4: currentNode← dequeue(toExplore) // Remove node from the front of the queue
5: neighbours← getNeighbours(currentNode)
6: for all neighbour ∈ neighbours and /∈ explored do
7: enqueue(toExplore, neighbour) // Add all new neighbours to queue
8: add(explored, neighbour) // And mark new neighbours as visited
9: until toExplore is empty

relies on the use of queue6 or a first-in first-out data structure, which is ordered collection where
elements are added on one side (enqueued) and removed (dequeued) on the other. Such a data
structure can be implemented in several ways. The most effective implementation depends on size
of the triangulation and the maximum required distance. For the implementation we used, see
appendix A. Furthermore, to keep track of the distance of each node to the chosen initial node,
one can store the distance along with the node in the toExplore queue or the explored list. Then, one
can determine the distance of the neighbour node based on the distance of the currentNode. One
can decide to break the exploration early when the desired distance has been reached. The BFS
algorithm has a computation time complexity of O(N̂0 + N̂1

)
, where N̂0 and N̂1 are the number

of vertices and edges region over which the breadth first search is performed. Note that in the 2D
triangulations we are considering, the number of edges is proportional to the number of vertices.
So in our case the time complexity is O(N̂0

)
.

6For a simple example see deque, an implementation in Python https://docs.python.org/3/library/coll
ections.html#collections.deque. Or for an informal introduction to queues see https://www.geeksforge
eks.org/introduction-to-queue-data-structure-and-algorithm-tutorials/.

https://docs.python.org/3/library/collections.html#collections.deque
https://docs.python.org/3/library/collections.html#collections.deque
https://www.geeksforgeeks.org/introduction-to-queue-data-structure-and-algorithm-tutorials/
https://www.geeksforgeeks.org/introduction-to-queue-data-structure-and-algorithm-tutorials/
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Next we consider how to measure average sphere distance with ϵ = δ for a given pair of δ-
seperated points p, p ′. First we need to construct the spheres Sp(δ) and Sp ′(δ) by making use of
two breadth-first searches up to distance δ, starting from p and p ′. Then we need to determine
the distances between all pairs of points in the spheres. This is done by performing a BFS from
each of the nodes of one sphere up to 3δ, which is the maximal distance between a pair. Then, we
average over all the distances at which the BFS finds the nodes of the other sphere. A simple and
effective optimization [22] is to pick the smaller sphere to do the BFS from. This means we need to
do a total of two BFSs up to δ, and min

(
VolSp(δ),VolSp ′(δ)

)
BFSs up to 3δ. This gives an average

time complexity of7 O(VolS(δ)VolB(3δ)
)
. We can estimate the average size of spheres and balls

using the local Hausdorff dimension, as this is the scaling exponent of the volume of a ball. We
obtain that the time complexity with respect to δ and dH is given by O(3dH δ2dH−1

)
. For 2D CDT

we find approximately O(δ3) and for 2D EDT O(δ7); the higher the power, the stronger the limit
on the maximum δ we can feasibly reach for numerical measurements.

To measure average sphere distance with ϵ = 0 for a given vertex p, we need to construct only
a single sphere Sp(δ). For this case, one needs to determine the distances between all pairs of
points on the sphere, for which one only needs a BFS to go up to 2δ. This means we need to do
a total of one BFS up to δ and Vol Sp(δ) BFSs up to 2δ. This gives an average time complexity
of O(VolS(δ)VolB(2δ)

)
or O(2dH δ2dH−1

)
in terms of δ. In this case, we have the same time

complexity order in δ as for ϵ = δ, but the exploration need not go as far, making it faster for
the same δ. However, as we discussed earlier, we likely need to go to higher δ to see the same
curvature effects, because the area explored for the same δ is smaller.

5.2.2 Point sampling

To be able to determine the manifold-averaged ASD (5.11) for ϵ = 0, we need to determine the
average sphere distance at every vertex and average over all of them. While this is not difficult
to do, it is very inefficient. The ASDs of neighbouring points are correlated (see section 8), so
if we are interested in a manifold average, we can estimate it well by taking the average over
a limited sample of points. This way we do not lose computation time by determining average
sphere distances that bring little ‘new’ information. To do this, we can sample nodes uniformly
and determine the sample average, estimating (5.11). Here, uniform sampling means that each
vertex is selected with a probability proportional to its local volume element. In our discretization
all vertices have local volume element 1, so each vertex is sampled with equal probability.

Similarly, we can determine the averaged ASD for ϵ = δ (5.10) by only averaging over a sample
of point pairs p, p ′. To this end, we can use the following sampling as used by other authors [13,
22]:

1. Uniformly sample a first point p from T ;

2. Identify the geodesic sphere Sp(r);

3. Uniformly sample a second point p ′ from Sp(r).

However, using this sampling the sample average estimates the following manifold-averaged ASD

d̄av(δ) :=
1

Vol T

∑
p∈T

1

VolSp(δ)

∑
p ′∈T

d̄
(
Sp(δ), Sp ′(δ)

)
δdT (p,p ′),δ, (5.14)

not (5.10) as other authors [13, 22] take it to be8. Why this sampling gives this result is discussed in
great detail in the section 7.1.4. To estimate the manifold-averaged ASD as given in (5.10), we can

7We use B to denote a geodesic ball.
8Note that is not per se wrong of these authors to use this sampling. They are just estimating a different discrete

triangulation average of ASD than they state, but (5.14) is in principle a valid alternative definition of taking the
triangulation average.
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use another sampling. We construct a list of pairs of points at distance δ and uniformly sample a
pair from that list. Here, uniform sampling means that each point pair is selected with a probability
equal to the product of their local volume elements, which in our case is 1. In order to do this,
a list of all point pairs needs to be constructed. This requires N0 breadth-first searches up to the
maximum δ that we want to measure. This can be done, and is in fact what we do for some
measurements9. However, if only a smaller sample of the triangulation is required, performing a
BFS for every vertex in the triangulation is rather inefficient. So, alternatively we can use a weighted
sample average using the non-uniform sampling described previously,

d̄av(δ) =
E
[
VolSp(δ) d̄

(
Sp(δ), Sp ′(δ)

)]

E
[
VolSp(r)

] , where ϵ = δ, (5.15)

where E represents the statistical expectation value of a sample using the non-uniform sampling.
This estimates (5.10) as desired, and it has no additional computational cost as VolSp(r) is already
computed for the ASD computation. Again this result is explained in detail in section 7.1.4.

5.3 Results

By using the sampling methods discussed in the previous sections we are able to estimate the
ensemble average of the manifold-averaged average sphere distance (5.12) on 2D CDT triangula-
tions generated by the previously described Monte Carlo methods. For the ASD with ϵ = δ we
obtain the results presented in Fig. 5.2, where both the non-uniform sampling (5.14) and uniform
sampling (5.10) are used. The first points (for δ < 5) are understood to be lattice artefacts, due to
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(with ϵ = δ) for different system sizes at ℸ = 0.32. The higher-saturated colours with
round markers are the ASD estimates using the non-uniform sampling (5.14). The lower-saturated
colours with diamond markers are the ASD estimates using uniform sampling (5.10). In both cases
5k point pairs are used to estimate the triangulation average, and the ensemble average is estimated
using a sample of 50 configurations.

9In this case we store the found distances in a distance matrix. This allows the distance measurements to be reused for
many distance-related quantities, which is discussed in section B.3.
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the specific discretization of the geometry and are irrelevant in the continuum limit. The last few
points of each plot are understood to be finite-size effects, due to wrapping effects of the geodesics
around the triangulation as will be discussed in chapter 6. From this figure it can be seen that the
largest difference between the samplings is a vertical shift. A different vertical shift corresponds
to a different cav as given in (5.8). As discussed earlier, this prefactor cav is not universal and its
specific value is not important for the curvature interpretation. Additionally, the difference slightly
decreases with increasing δ, meaning that the slope is smaller for (5.14) than for (5.10).

These results can serve as a good consistency check, as average sphere distance has been mea-
sured before in 2D CDT. Our results, using the non-uniform sampling (5.14), are identical to those
of Brunekreef and Loll [22] for small enough δ. This suggests that our implementation is consistent
with the implementation of these authors. Note that for larger δ where finite-size effects start to
play a role, the results start to differ. This is to be expected, because different sizes and ℸ have
been used, giving rise to different finite-size effects.

The average sphere distance profile is not constant (for δ ⩾ 5) as one might expect, but in-
stead curves upwards indicating a negative quantum Ricci scalar. This result is discussed in the
previously mentioned work [22], and we will not discuss it any further in this thesis.

Additionally, we present the results of the average sphere distance for ϵ = 0 in Fig. 5.3. From
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(ϵ = 0) for different system sizes at ℸ = 0.32. The triangulation average (5.11) esti-
mate is based on 5k point samples, and the ensemble average is estimated using 50 triangulations.

this figure we can see that the curvature profile is qualitatively very similar to the profile with
ϵ = δ. The jump between the initial points from δ = 1 to δ = 2 appears to be considerably smaller
compared to the ϵ = δ case (note the difference in the scale on the y-axis). In addition, the entire
curvature profile is shifted downwards, starting at d̄0

av(δ = 1) ≈ 1.27 instead of d̄av(δ = 1) ≈
1.60. This is consistent with the expectation from the local continuum expansion on a Riemannian
manifold, where the additive constant is larger for ϵ = δ than for ϵ = 0. In fact, these additive
constants are reasonably close to the δ = 1 point of our results. Finally, we know from (5.13) what
the average sphere distance of the first point δ = 1 should be, namely d̄0

av(δ = 1) ≈ 1.271. Our
results give d̄0

av(δ = 1) = 1.271±0.004, which is perfectly consistent with the analytical expectation,
providing another consistency check for the validity of our numerical setup.
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6. Topological effects
For the numerical study of 2D causal dynamical triangulations we use a toroidal topology, i.e.
each spatial slice is a circle, and we identify the first and last slice. We are interested in studying
the quasi-local geometry of CDT like the coarse-grained quantum Ricci curvature introduced in
section 5, and the two-point functions that will be introduced in chapter 7. To be able to properly
interpret these results we need to make sure that they are evaluated at length scales that reflect the
local geometry of the triangulations, and are not influenced by the finite size of the triangulations.

A simple example of this effect can be illustrated with the volume of balls. Consider a classical
flat two-torus created by identifying the opposing sides of a unit square (side lengths 1), inside
which we place a geodesic ball1 B(r) of radius r; a diagram of this situation is shown in Fig. 6.1.
As long as the radius r ⩽ 1

2 the ball will have the same shape and 2-volume VolB(r) = πr2 as in a

Figure 6.1: Visualization of a growing ball in a two-torus (the opposing sides of the square are associ-
ated with one-other), where one can see the ball starts to overlap with itself after its radius becomes
half that of the square side. The sphere (the boundary of the ball) is marked by a thick line.

flat infinite plane. However, when the radius r > 1
2 the ball will overlap with itself and its volume

will increase less, so VolB(r) < πr2. This continues until r ⩾ 1
2

√
2, when the ball has filled the

entire torus and the volume is VolB(r) = 1. This means the 1-volume of the geodesic sphere S(r)
(the boundary of the geodesic ball) will decrease for r > 1

2 until it is 0. The volume profiles of the
ball and sphere on a torus, compared to those on an infinite plane are shown in Fig. 6.2.

We see the ball and sphere volumes are not the same for a flat torus and a flat plane at large
enough radii; they are influenced by the global topology of the manifold, even though these man-
ifolds have the same local geometry. We will call these effects topological effects. In a discretized
setting the term finite-size effects is often used, as was done in the previous sections. Thus, if we
want to investigate the quasi-local geometry using geodesic balls and spheres we can only cor-
rectly interpret results for radii smaller than half the smallest diameter Lmin of toroidal manifold
we consider. We define the smallest diameter Lmin to be the length of the smallest non-contractible
loop. For other quasi-local quantities with some length scale there will also be a maximum length
scale, such that the results can still be interpreted correctly. For the average sphere distance d̄av(δ)
(δ = ϵ) we need to make sure the spheres do not have any additional overlap. Additionally, we
need to make sure that a geodesic between a point pair on the spheres does not wrap around the
torus, giving a shorter distance than we would have had on a plane. The longest geodesic distance
between points on the spheres can be 3δ, so no such wrapping will occur for 6δ < Lmin. For the

1With a geodesic ball B(r) we mean the set of points that have the geodesic distance of r or less to a given origin, and
the geodesic sphere S(r) is its boundary given by the set of all points with geodesic distance r.
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Figure 6.2: The volume profiles of a 2-ball (disk) and its boundary 1-sphere (circle), comparing an
infinite plane with a flat torus.

average sphere distance with ϵ = 0 the analogous condition is 4δ < Lmin.
Hence, to be able to correctly interpret our results for CDT we need to know what the small-

est diameter2 Lmin of our toroidal triangulations is. We can easily get an upper bound on the
smallest diameter, namely the number of spatial slices τ, as this will be the length of the smallest
non-contractible timelike loop. However, the situation is much more complicated in the spatial
direction. From the analytical analysis of 2D CDT [4] we know that the length of the spatial slices
and the standard deviation are of the order of λ−

1
2 , or on the order of

√
N0 for a fixed volume. This

means the length of the spatial slices can fluctuate strongly, and a triangulation may have some
spatial slices with much shorter length than the average length; the smallest diameter Lmin may
be a lot smaller than the average spatial slice length N0/τ. An example triangulation snapshot is
shown in Fig. 6.3, illustrating the large difference in spatial slice lengths. In fact, if ℸ = τ2/N0 is

Figure 6.3: A visualization of a snapshot of a CDT triangulation of N2 = 10k and τ = 122 (ℸ = 3), time
runs from left to right and the first and last spatial slice should be identified.

large enough we get a substantial number of triangulations with spatial slices of link length3 3.
In this case Lmin = 1, so the interpretation range for the average sphere distance would be 6δ < 1.

2In the following we take the geodesic distance to be the link distance.
3Recall this is the smallest possible length a triangulation satisfying the simplicial manifold condition can have.
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This means we cannot interpret the average sphere distance to be without finite-size effects for
any δ. Moreover, even if we measure quantities in spatial slices with large lengths the short length
spatial slices can still influence the results, because of the coarse-grained nature of the quantities
we consider. Notably, a closed geodesic through a vertex that is situated in a spatial slice of large
length, can be much shorter than the length of that spatial slice, because it may be shorter to go
through neighbouring shorter spatial slices and back. Thus, for 2D CDT it is practically impossible
to put a strict bound on the length scale of any quantity we want to consider, because in some
small degree finite-size effects can occur at any length.

Instead of putting a strict bound on the length scales of the quantity by the minimal diameter of
our triangulations, we will estimate how many of the measurements of the quantity are affected by
finite-size effects, and determine an effective bound by measuring at what length scale the number
of affected measurements is still acceptably low. This is very similar to what has been done for the
average sphere distance in [22]. The method of determining when a measurement is affected by
finite-size effects depends on the observable. But they all rely on determining how many times a
geodesic has wrapped around the compact direction of the toroidal triangulation.

6.1 Cut-open triangulation

To identify how many times a path wraps around the triangulation we will cut open the triangu-
lation, unfolding it to a ‘rectangle’. In order to do this we need to identify paths along which to
cut. We will use two closed non-contractible loops: one timelike and one spacelike loop. For the
spacelike loop we can use a time-slice and for the timelike loop we can use any closed timelike
geodesic. The original toroidal triangulation can then be retrieved from the cut-open triangulation
by identifying the opposing sides. We use this ‘rectangle’ to tile a two-dimensional plane. We do
this by making copies, which we call patches, of the cut-open triangulation and gluing them to
each other. These steps are illustrated in Fig. 6.4. This results in an infinite triangulation with a

Figure 6.4: Illustration of the cutting procedure. Starting from a toroidal triangulation on the left (the
marked leftmost and rightmost spatial slices should be identified), we cut it open along the spatial
slice and time-like geodesic marked with a thick black line. This yields the cut-open triangulation in
the middle. The cut-open triangulation is used to tile the plane as displayed in the right figure, where
a single patch of the vertices, edges and triangles of the triangulation is marked.

repeating geometry. We will then assign a unique label4 to every vertex by using the label of the
corresponding vertex of the original triangulation together with which copy of the original trian-
gulation it is in. As such we can easily see which vertices correspond to the same vertex on the

4In the numerical simulation we specifically use the label (i, t, x). The i is the corresponding original label, t the ‘time’
label of the patch (the base patch has t = 0 the following future-directed patches t = 1, 2, . . . and the past-directed
patches t = −1,−2, . . . ), and x the ‘space’ label of the patch (the base patch has again x = 0 and the following right
patches x = 1, 2, . . . and the left patches x = −1,−2, . . . ). Strictly speaking there is no ‘base’ patch as all patches are
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original triangulation. We can now do measurements on this cut-open triangulation instead of the
toroidal triangulation, which will give the same results for length scales for which no wrapping oc-
curs. But crucially, on the cut-open triangulation no wrapping can occur as it has planar topology.
However, we can determine when wrapping would have occurred in the original toroidal triangu-
lation by tracking when another copy of a vertex is/would have been used for the measurement.
We will illustrate this more clearly for the specific observables.

Note that we can do measurements on the cut-open triangulation without having wrapping
effects. However, this does not necessarily mean measurements on the cut-open triangulation
give the same results as measurements on a toroidal triangulation with infinite volume. This is
because the geometry of the cut-open graph is periodic, which will affect some observables, like
two-point functions for example. So, the cut-open triangulation is associated with a length scale.
And for larger length scales results measured on this cut-open graph cannot be interpreted as
free from finite-size effects. Finally, we note that this procedure can be extended to be applied to
higher-dimensional toroidal topologies, if a systematic study of wrapping effects is desired.

6.2 Sphere volumes

To determine at what radius the volume of a geodesic ball and sphere are subject to finite-size
effects is rather simple using the cut-open triangulation. We grow the geodesic ball Bp(r− 1) with
radius r− 1 from a vertex p of the cut-open triangulation. Then we check the number up(r) of the
vertices q ∈ Sp(r), which have another copy of q in Bp(r− 1). If up(r) ⩾ 1 this means the result is
subject to finite-size effects. As discussed before, we will not discard all measurements for r ⩾ rmax
where rmax is the smallest r for which up(r) ⩾ 1. Instead, we will consider the fraction of vertices

wp(r) :=
up(r)

VolSp(r)
(6.1)

that are affected. We can compute the average of wp(r) for all the sphere volume measurements
we perform, and take rmax to be the smallest r for which wp(r) exceeds some small ratio, which we
no longer consider to be acceptable. The measurement results of the average of w(r), for sphere
volume VolS(r) in 2D CDT for several two-volumes N2, are displayed in Fig. 6.5. These show
there is a considerable region of r where little to no wrapping effects occur, and where we can
reasonably interpret the sphere volume results as being free of finite-size effects.

For the measurements of the Hausdorff dimension in section 4.2 we made use of rmax, by
performing a fitting procedure (as described in that section) to the average sphere volume, using
the region 5 < r < rmax (the first few points are excluded because of discretization effects). For this,
we used a maximum allowed wrapping fraction of w(rmax) = 5× 10−3. To show the rmax that are
used for this fitting on the average sphere volume

〈
VolS(r)

〉
N2

, we present Fig. 6.6. This figure

shows the estimates of the sphere volume
〈

VolS(r)
〉
N2

as measured on the toroidal triangulation

and the cut-open triangulation. For each volume N2 a vertical dashed line is included indicating
the rmax used based on the maximum allowed wrapping fraction of w(rmax) = 5 × 10−3. From
this figure we can see that for r < rmax the average sphere volume is identical up to our statistical
accuracy between the measurements on the toroidal triangulations and cut-open triangulations,
as expected. For r > rmax these results start to be different, due to finite-size effects. From these
measurements from the cut-open triangulation, we can see that also in the region r > rmax the
estimates of the average sphere volume for different volumes N2 overlap. This indicates that the
periodic geometry of the cut-open triangulation has little influence on the average sphere volumes
for r > rmax to at least 2rmax. This suggests that the average sphere volume as measured on

equivalent. We choose one of the patches to be (t = 0, x = 0), and call this the base patch.
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Figure 6.5: The average fraction w(r) of vertices in the measured spheres S(r) that are subject to
wrapping effects for 2D CDT, as explained in section 6.2. For this example rmax is marked for each
size N2 of triangulation for a maximum acceptable w(rmax) = 0.05 (this is a lot larger than is actually
considered acceptable for the Hausdorff dimension measurements). All the triangulations in this plot
use ℸ = τ2/N0 = 0.32.

the cut-open triangulation may be equal to the average sphere volume as measured on a toroidal
triangulation with infinite volume N2 for r significantly larger than rmax.

Finally, we want to note that we expect rmax to scale with the average length of the spatial
slices, because we expect the effective minimal length of the spatial slices to be proportional to
their average length. Given that we keep ℸ = τ2/N0 constant, this means that the average length
and rmax should scale with

√
N2. We attempted to measure the behaviour of rmax with respect to

the volume N2, but our statistical uncertainty is too large to verify this claim.

6.3 Average sphere distance

To determine at what δ the average sphere distance d̄av(δ) is subject to finite-size effects, we will
do essentially the same as in [22] using winding numbers. For the average sphere distance we can
consider two different types of wrapping effects (called level-1 and level-2 violations in [22]):

1. The spheres themselves do not additionally overlap, but the paths of the shortest distance
between points on the spheres wrap around the triangulation.

2. The spheres themselves overlap by wrapping around the triangulation (besides overlapping
already without wrapping).

Note that wrapping effect 2 is stronger than 1, in that δ needs to be larger for 2 to occur. Wrapping
effect 2 can be detected with the cut-open triangulation in the same way as is done for sphere
volumes, by checking when the spheres contain copies of vertices that are already in their interior
balls. For wrapping effect 1 we proceed as follows. We grow the two spheres from p and p ′ on the
cut-open triangulation and determine the geodesic distance from vertex q to q ′ on the respective
spheres Sp(δ) and Sp ′(δ)). This geodesic can never ‘wrap around’ on the cut-open triangulation,
but we can check if there are geodesics to other copies of q ′ that are shorter. If this is the case, we
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Figure 6.6: Sphere volume estimates for 2D CDT at several volumes N2 with ℸ = 0.32. The results
for both the measurements on the compact toroidal triangulation and on the cut-open triangulation
are presented in the same colour. The results for the compact toroidal triangulation are the same as
those presented in section 4.2, and decrease for large r. The results for the cut-open triangulation
are presented with a lower opacity, and do not decrease for large r. Note that the results overlap,
making them difficult to distinguish. The rmax used to determine the fitting region for the Hausdorff
dimension in section 4.2 is displayed using dashed vertical lines. Finally, a power law fit used to
estimate the Hausdorff dimension (see section 4.2) is included for the triangulation with the largest
volume N2 with a black dash-dotted line.

know we would have found a geodesic that wrapped around in the original toroidal triangulation.
So we count the number of point pairs (q, q ′) on the spheres Sp(δ) and Sp ′(δ)) that have a geodesic
that would have been subject to wrapping effects up,p ′(δ) on the toroidal triangulation. Again we
consider the fraction of point pairs

wp,p ′(δ) = up,p ′(δ)
(
VolSp(δ)VolSp ′(δ)

)−1 (6.2)

that are affected. Then we take the average of wp,p ′(δ) over all sphere pairs we measure for the
average sphere distance. We take δmax to be the smallest δ for which the average w(δ) exceeds a
small threshold, which we no longer consider to be acceptable. In this way we can consider the
average sphere distance

〈
d̄av(δ)

〉
to be without too many finite-size effects for δ < δmax.

Note that we determine δmax solely on the occurrence of wrapping effect 1, because wrapping
effect 2 will occur for δ larger than 1 (this can be seen in the results of [22]). Since we are interested
in a lower bound of δmax, only considering wrapping effect 1 is sufficient.

Using the described method, we measured the wrapping fractions w(δ) as given by (6.2) for
the average sphere distance d̄ for ϵ = δ and ϵ = 0. We present the results for the average wrapping
fraction w(δ) in Fig. 6.7 and Fig. C.35 for ASD with ϵ = δ and ϵ = 0 respectively. From these figures
we can see there is a considerable region of δ, where the wrapping fractions are small, and we can
reasonably argue that the result of the ASD measurements is not affected by finite-size effects. We
did not measure many samples (around 600 varying for the different volumes N2) of the wrapping
fraction w(δ), as it is rather computationally expensive to compute the average sphere distance for

5Fig. C.3 is qualitatively very similar to 6.7, so it is put in the appendix to avoid needlessly much space being taken up
by figures.
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Figure 6.7: Average wrapping fraction wp,p′(δ) (6.2) for average sphere distance δp,p′(δ) with δ = ϵ
in 2D CDT with ℸ = 0.32. As an example, we include the δmax using a vertical dashed line for each
triangulation volume N2 for a maximum allowed wrapping fraction of w(δmax) = 0.02 (this is a lot
larger than what is actually considered an acceptable amount of wrapping effects).

larger δ on the cut-open triangulation. The estimation of the wrapping fraction is therefore not
very accurate, as can be seen from the significant statistical uncertainty on the estimates of Fig.
6.7 and Fig. C.3. This means that our estimates of δmax, the maximum δ for which the wrapping
fraction w(δmax) is acceptably small, also have a large uncertainty. For a proper analysis of the δ

region where wrapping effects are negligible, more measurements should be performed. In Fig. 6.8
and Fig. 6.9 we again present our results of the average sphere distance in 2D CDT for ASD with
ϵ = δ and ϵ = 0 respectively. Now, we included the δmax for each volume N2 based on a maximum
allowed wrapping fraction of w(δmax) = 1 × 10−3 in case of ϵ = δ and w(δmax) = 5 × 10−4 for
ϵ = 0. From these figures we can see that the decreasing part of the average sphere distance for
larger r only appears for δ > δmax. Thus, we can verify that this behaviour is due to finite-size
effects, as we assumed in section 5.3.

Finally, we want to note that just like rmax, we expect δmax to scale with the average length of
the spatial slices. This would again mean that δmax should scale with

√
N2. The statistical accuracy

of our ASD wrapping fractions is even lower than for the sphere volumes, so also in this case we
cannot numerically verify this claim.
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Figure 6.8: Curvature profile or normalized average sphere distance
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(5.10) for δ = ϵ in 2D

CDT with ℸ = 0.32. We have marked the δmax for every volume N2 with a vertical dashed line, based
on the maximum allowed wrapping fraction of w(δmax) = 1× 10−3. We consider the average sphere
distance to be minimally affected by finite-size effects for δ < δmax.
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on the maximum allowed wrapping fraction of w(δmax) = 5× 10−4. We consider the average sphere
distance to be minimally affected by finite-size effects for δ < δmax.
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7. Two-point functions

Defining a two-point function is challenging in quantum gravity as we are severely restricted
by diffeomorphism invariance, i.e. there can be no dependence on specific points. In a

standard quantum field theory of a scalar field ϕ on a flat background the two-point function is
defined as the vacuum expectation value1

G(x, y) = ⟨Ω|T
{
ϕ(x)ϕ(y)

}
|Ω⟩ ,

where |Ω⟩ denotes the vacuum state of the system. In a path integral formulation this is given by
the functional integral

G(x, y) =
1

Z

∫
Dϕϕ(x)ϕ(y) eiS[ϕ],

where Z =
∫DϕeiS[ϕ] and S[ϕ] is the action of the scalar field. In this standard QFT example

we are able to make sense of the points x and y, because we are working on a fixed background.
In quantum gravity the geometry itself is dynamical, so there is no way to identify specific points
x and y between different geometries. Thus, our two-point function has to be diffeomorphism-
invariant, there can be no dependence on a specific point. In the following sections we will discuss
how we will define two-point functions in quantum spacetimes and what complications arise in
these spacetimes. In fact, defining a diffeomorphism-invariant two-point function for a single
configuration of the quantum ensemble already illuminates many of the difficulties, so we will
start here.

7.1 ‘Classical’ two-point functions

We will attempt to define a two-point function on a single manifold and forget about taking the
path integral over all manifolds for a moment, hence the use of the word ‘classical’. However, it is
still important to realize that in the end we are interested in the behaviour of quantum spacetimes,
and we will be taking a path integral over whatever two-point function we define. So one should
think of the manifolds discussed here as a typical manifold in the quantum ensemble. In general,
such a manifold is not smooth, in fact in some quantum gravity theories like 2D EDT and CDT the
manifolds obtained in the continuum limit are nowhere differentiable.

With this and the restriction that our two-point function should be diffeomorphism-invariant
in mind, we define an integrated two-point function, which is a function of the geodesic distance
between two points. This restriction leads us to consider the unnormalized (integrated) two-point
function2 of two local field quantities ϕ1 and ϕ2, which themselves can depend on the geometry.
On a given n-dimensional compact Riemannian manifold M with metric gµν, it is given by

Gϕ1ϕ2
g (r) =

∫
dnx

√
g(x)

∫
dny

√
g(y)ϕ1(x)ϕ2(y) δ(dg(x, y) − r), (7.1)

where3 g(x) denotes the metric determinant, and dg(x, y) is the geodesic distance between x and y

with respect to metric gµν. G
ϕ1ϕ2
g (r) can be interpreted as the integral over all ϕ1(x)ϕ2(y) over all

1As viewed in the Heisenberg picture, the field operators having the time dependence.
2A lot of new notation will be introduced in this chapter, which may make it difficult to follow when the notation does

not make sense to the reader. We will provide footnotes to highlight features and possible points of confusion.
3The (unnormalized) two-point functions will be denoted by G

ϕ1ϕ2
g (r). We use subscript g to indicate that this is

the two-point function of a single manifold. The superscript is used to indicate the two-point function is taken of the
fields ϕ1(x) and ϕ2(y), where the left quantity corresponds to the first integration variable x and the right quantity
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possible point pairs (x, y) with geodesic separation r, where the Dirac delta δ(dg(x, y)− r) realizes
the selection of the point pairs. Note that this definition of a two-point function is symmetric under
exchange of the fields, i.e. Gϕ1ϕ2

g (r) = G
ϕ2ϕ1
g (r). Interesting to note is that, when considering the

path integral of this two-point function (7.1), we can view it as a kind of three-operator correlation
function since δ(dg(x, y) − r) is a complicated non-local operator for any non-trivial geometry as
remarked by [25]; this is in contrast to flat space. We can also view (7.1) in an asymmetric looking
way by removing the Dirac delta by evaluating one of the integrals,

Gϕ1ϕ2
g (r) =

∫
dnx

√
g(x)

∫
Sx(r)

dn−1y
√
h(y)ϕ1(x)ϕ2(y), (7.2)

where Sx(r) is the geodesic sphere around the point x with radius r4, and h(y) denotes the de-
terminant of the induced metric on Sx(r). In this form the two-point function no longer looks
symmetric, but it still is of course; alternatively we could have evaluated one of the ‘x’ integrals,
swapping around the integrals. In this form of the integrated two-point function we interpret it
differently. Now we have an integral over all points in the geodesic sphere Sx(r), which itself
is then integrated over all points x in the manifold. The form (7.2) suggests a different way to
normalize this two-point function than the original form (7.1), as we will see in the next section.

7.1.1 Normalization

Now that we have a definition for an unnormalized (integrated) two-point function on a given
manifold as given by (7.1), we need to define how we normalize it and how we will define a
connected two-point function. Doing so leads to ambiguities, which is what we will discuss in the
following sections.

Starting from (7.1), the integral over all r-separated points pairs, it seems natural to normalize
it by dividing by the number of such point pairs. Hence, a possible definition for the normalized
two-point function5 is

G̃ϕ1ϕ2
g (r) =

Gϕ1ϕ2
g (r)

G11
g (r)

=

∫
dnx

√
g(x)

∫
dny

√
g(x)ϕ1(x)ϕ2(y) δ(dg(x, y) − r)∫

dnx
√
g(x)

∫
dny

√
g(x) δ(dg(x, y) − r)

, (7.3)

which can be interpreted as the average of ϕ1(x)ϕ2(y) over all r-separated point pairs. Note here
that the normalization factor itself is a non-trivial object, due to the Dirac delta being a complex
non-local object,

G11
g (r) =

∫
dnx

√
g(x)

∫
Sx(r)

dn−1y
√

h(y) (7.4)

=

∫
dnx

√
g(x)VolSx(r)

= VolMVolS(r), (7.5)

where the Vol · · · denotes the total volume of the given (sub)manifold with respect to the induced
metric, so VolM =

∫
dnx

√
g(x) and VolSx(r) =

∫
Sx(r)

dn−1y
√
h(y); and the bar or overline is

to the second integration variable y (this difference will be important later when asymmetric two-point functions are
introduced); if left and right the field quantities are not clearly separable we will also use the notation Gϕ1,ϕ2 to avoid
ambiguity.

4The geodesic sphere is already defined in chapter 5
5We will use a tilde ˜. . . to denote normalized quantities like the normalized two-point function G̃

ϕ1ϕ2
g (r).
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used to denote the manifold average

Q =
1

VolM

∫
dnx

√
g(x)Q(x). (7.6)

Note that G11
g (r) can in general also be different for manifolds with the same volume, which is

something to take into account when taking the path integral later. Also, VolSx(r) is in general
x-dependent, which is a complication that one does not have in maximally symmetric Riemannian
spaces like flat space, where VolSx(r) = VolS(r) for all x. The normalization factor (7.4) can be
interpreted as the number of r-separated point pairs, or as a manifold average with an additional
normalization by the average volume of geodesic spheres by (7.5).

This leads us to suggest another, inequivalent normalization of the two-point function, which
seems more natural starting from the asymmetric looking form of (7.2),

∗G̃ϕ1ϕ2
g (r) =

1

VolM

∫
dnx

√
g(x)

1

VolSx(r)

∫
Sx(r)

dn−1y
√
h(y)ϕ1(x)ϕ2(y), (7.7)

where instead of normalizing the two integrals together, we normalize the inner integral for each
point separately, so we have the average of ϕ1(x)ϕ2(y) of the sphere around each point x and then
averaged over all x. In a maximally symmetric space where VolSx(r) = VolS(r), (7.3) and (7.7) are
equivalent. However, on a general manifold they are not. It is important to note that (7.7) is not
symmetric6 under exchange of ϕ1(x) and ϕ2(y), if ϕ1(x) ̸= ϕ2(x) for some x. If one insists on
having a symmetric two-point function one could symmetrize 1

2

(
∗G̃ϕ1ϕ2

g (r) + ∗G̃ϕ2ϕ1
g (r)

)
; we will

take (7.7) as is and investigate its properties.
Now, we wish to investigate how G̃

ϕ1ϕ2
g (r) and ∗G̃ϕ1ϕ2

g (r) differ. We first note that they can be
related by an r-dependent weighting,

G̃ϕ1ϕ2
g (r) =

1

VolMVolS(r)

∫
dnx

√
g(x)

∫
Sx(r)

dn−1y
√

h(y)ϕ1(x)ϕ2(y)

=
1

VolM

∫
dnx

√
g(x)

1

VolSx(r)

∫
Sx(r)

dn−1y
√

h(y)
VolSx(r)
VolS(r)

ϕ1(x)ϕ2(y)

= ∗G̃ϕ̂1ϕ2
g (r), where ϕ̂(x; r) :=

VolSx(r)
VolS(r)

ϕ(x). (7.8)

So the different normalization are related by a weighting of the first field quantity. Note that
this weighting cannot be understood as a different discretization with a different association of
local volume element, because this weighting is non-local as it is r-dependent. An example of the
different normalizations is shown in Fig. 7.1 using the vertex degree ϕ1 = ϕ2 = c for 2D CDT7.
From this figure we can see a significant difference for small correlation distances r, but for the
vertex degree the different normalizations are indistinguishable for larger r ≳ 10.

7.1.2 Connected two-point function

Next we turn our attention to constructing the connected two-point function. The connected two-
point function is the two-point function of the deviation from the mean of the field quantities.

6This normalized two-point function is not symmetric so the order matters. Important to note is that the notation
∗G̃ϕ1ϕ2 means the first superscript ϕ1(x) is associated with the integration over x and the second superscript ϕ2(y) is
associated with the integration over y as defined in (7.7).

7At this stage we have not yet defined the discretization or ensemble averaging of the two-point function, which are
used for the measurement of these two-point function in 2D CDT. This will be defined in the following sections, but for
now this just serves to illustrate the difference.
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Figure 7.1: Comparison of the ensemble average of different normalizations
〈
G̃cc

T (r)
〉

(7.3) and〈∗G̃cc
T (r)

〉
(7.7) of the two-point function of vertex degree c. This is measured for 2D CDT with

N2 = 300k and τ = 219 using link distance r on the vertex graph.

As such, we have to determine what mean to use. Most straightforward is to take the manifold
average (7.6) of the field quantities ϕ1 and ϕ2. This results in the (unnormalized) connected two-
point function8 [25, 26]

Gϕ1ϕ2

1,g (r) =

∫
dnx

√
g(x)

∫
dny

√
g(y)

(
ϕ1(x) − ϕ1

)(
ϕ2(y) − ϕ2

)
δ(dg(x, y) − r). (7.9)

This connected two-point function Gϕ1ϕ2

1,g can be written out:

Gϕ1ϕ2

1,g (r) =

∫
dnx

√
g(x)

∫
dny

√
g(y)

(
ϕ1(x) − ϕ1

)(
ϕ2(y) − ϕ2

)
δ(dg(x, y) − r)

= Gϕ1ϕ2
g (r) − ϕ2G

ϕ11
g (r) − ϕ1G

1ϕ2
g (r) + ϕ1ϕ2G

11
g (r). (7.10)

This can be normalized using the first prescription (7.3) to give

G̃ϕ1ϕ2

1,g (r) = G̃ϕ1ϕ2
g (r) − ϕ2G̃

ϕ11
g (r) − ϕ1G̃

1ϕ2
g (r) + ϕ1ϕ2. (7.11)

Using the alternative asymmetric normalization of (7.7) yields

∗G̃ϕ1ϕ2

1,g (r) = ∗G̃ϕ1ϕ2
g (r) − ϕ1

∗G̃1ϕ2
g (r) (7.12)

Note that we get additional, perhaps unexpected, terms involving9 G
1ϕ
g (r). This is the 1, ϕ

two-point function, which can be interpreted as the two-point function of the local volume element
dnx

√
g(x) with ϕ(y). Investigating this term further we find

G1ϕ
g (r) =

∫
dnx

√
g(x)

∫
dny

√
g(y)ϕ(x) δ(dg(x, y) − r)

8We introduce a calligraphic G to denote the connected two-point function. We will have two different definitions for
the connected two-point function, so we differentiate between them with a subscript: G1 and G2.

9Recall that G1ϕ
g (r) = Gϕ1

g (r) and G̃1ϕ
g (r) = G̃ϕ1

g (r) by symmetry, but ∗G̃1ϕ
g (r) ̸= ∗G̃ϕ1

g (r) in general.
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=

∫
dnx

√
g(x) VolSx(r)ϕ(x)

G1ϕ
g (r) = G11

g G̃1ϕ
g = G11

g (r) ϕ̂(r). (7.13)

We see that the normalized G̃
1ϕ
g (r) can be interpreted as ϕ̂(r), an r-dependent weighted average10

of ϕ, with the weights as defined in (7.8). To see how this weighted average ϕ̂(r) differs from
the manifold average ϕ, we show an example7 of the vertex degree ϕ = c in 2D EDT (Euclidean
dynamical triangulation)11 in Fig. 7.2. From this figure one can see that the weighted mean is
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Figure 7.2: Ensemble average of weighted mean of the vertex degree
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N2
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〉

for 2D EDT

for N2 = 200k. Note that the ensemble average of the vertex degree c = 6(1− 2/N2) ≈ 6 is indicated
with the dashed line.

higher than the normal manifold average for small r, and for large r, nearing the effective size of
the triangulation, the weighted mean12 is slightly smaller. In a maximally symmetric Riemannian
space like a sphere, we have VolSx(r) = VolS(r) for all x, and we find that the weighted average
ϕ̂(r) = ϕ is equal to the manifold average. In this case (7.11) simplifies to

G̃ϕ1ϕ2

1,g (r) = G̃ϕ1ϕ2
g (r) − ϕ1ϕ2, (7.14)

10Note that in the other normalization (7.7), we have ∗G̃ϕ1
g (r) = ϕ, which is just the standard (unweighted) manifold

average. ∗G̃1ϕ
g (r) can be seen as a weighted manifold average, but it has a lot more complicated weights, ∗ϕ̂(x; r) =

ϕ(x)
∫
Sx(r) dn−1y

√
h(y)VolSx(r)

−1.
11We include an example of 2D EDT instead of CDT, because for this theory the differences are larger, making it a
clearer example.
12In [25] they propose that in the discrete theory two-point function G1Φ

N2
(r) shows the behaviour

G1ϕ
N2

(r) =
〈
ϕ
〉
G11

N2
(r+ δ),

for some shift δ. This does indeed appear to be the case for our measurements of the vertex degree c and the average
sphere distance d̄(δ) if the correlation distance r is larger than the coarse-graining region of the ASD. So one can also
use these shifted G11

g (r+ δ) two-point functions for the normalization and defining the connected two-point function, as
is done in [25]. However, we observed no significant difference to the connected two-point functions of the quantities
we measured. We will therefore not discuss this option in this thesis, but it is an interesting possibility to look at in
other quantum-gravitational two-point functions.
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which is the familiar expression for a connected two-point function.
Then, since G̃

1ϕ
g (r) = ϕ̂(r) is a (weighted) average of ϕ we might also consider defining the

connected two-point function using G̃
1ϕ
g (r) as a mean instead. This leads us to suggest a second

unnormalized connected (integrated) two-point function, as first considered in the context of the
quantum theory by [27] and later by [25, 26],

Gϕ1ϕ2

2,g (r) =

∫
dnx

√
g(x)

∫
dny

√
g(y)

(
ϕ1(x) − G̃ϕ11

g (r)
)(

ϕ2(y) − G̃1ϕ2
g (r)

)
δ(dg(x, y)− r), (7.15)

where the mean used is now the r-dependent weighted manifold average G̃
1ϕ
g (r) = ϕ̂(r) as defined

in (7.8). This connected two-point function can also be rewritten to yield

Gϕ1ϕ2

2,g (r) =

∫
dnx

√
g(x)

∫
dny

√
g(y)

(
ϕ1(x) − G̃1ϕ1

g (r)
)(

ϕ2(y) − G̃1ϕ2
g (r)

)
δ(dg(x, y) − r)

= Gϕ1ϕ2
g (r) − G̃1ϕ1

g (r) G̃1ϕ2
g (r) G11

g (r), (7.16)

which has only two terms, as some terms cancel with this weighted average, resulting in a simpler
expression.

Applying the standard normalization of (7.3) yields

G̃ϕ1ϕ2

2,g (r) = G̃ϕ1ϕ2
g (r) − ϕ̂1(r) ϕ̂2(r). (7.17)

Using the alternative asymmetric normalization of (7.7), where we use ∗G̃ϕ11
g (r) and ∗G̃1ϕ2

g (r) as
the means in (7.15) respectively, gives

∗G̃ϕ1ϕ2

2,g (r) =
1

VolM

∫
dnx

√
g(x)

1

VolSx(r)

∫
dny

√
g(y)

(
ϕ1(x) −

∗G̃ϕ11
g (r)

)(
ϕ2(y) −

∗G̃1ϕ2
g (r)

)
δ(dg(x, y) − r)

= ∗G̃ϕ1ϕ2
g (r) − ϕ1

∗G̃1ϕ2
g (r). (7.18)

Comparing this result to (7.12), we see that the two definitions of the normalized connected two-
point functions are in fact equivalent when using the asymmetric normalization (7.7).

To show how the connected two-point function definitions (7.9) and (7.15) are different we
include an example of the ensemble average7 of the connected two-point functions of the vertex
degree in 2D EDT11 in Fig. 7.3. From this figure we can see that the connected two-point functions
quickly go to 0 for large r, indicating that there are no long-range two-point correlations. More-
over, we see that the two different definitions for the connected two-point function have different
behaviour for small r < 15. The small r behaviour can be attributed to discretization effects [25],
so the differences in the definitions of the connected two-point functions are also attributed to
discretization effects. Since the large r behaviour shows no correlations for both definitions as we
expect in two dimensions, this example gives us no reason to prefer either (7.9) or (7.15).

7.1.3 Discretization

Now we have definitions for the two-point function on a given manifold, our next task is to
discretize these definitions for a triangulation, so they can be used for 2D CDT. Discretizing (7.1)
for a given triangulation T we obtain the (integrated) two-point function13

G
ϕ1ϕ2

T (r) =
∑

p,q∈T

ϕ1(p)ϕ2(q) δdT (p,q), r , (7.19)

13We use the subscript T to denote a two-point function on a given triangulation T .
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Figure 7.3: Ensemble average of the connected two-point functions G̃cc
i,N2

(r), i = 1, 2, of the vertex
degree c for 2D EDT with N2 = 300k.

where the sum is over the vertices of the triangulation14 T , and the field quantities ϕ1(p), ϕ2(q)
live on the vertices. The selection of pairs is realized using the Kronecker delta, where d(p, q) now
denotes the geodesic distance on the vertex graph, which we take to be the link distance. Note that
the local volume elements are 1 by our choice of discretization, such that Vol T = N0, the number
of vertices in the triangulation. In this way we define the two-point function of field quantities that
live on the vertex graph of the triangulation. One might also consider the two-point function of
field quantities on the dual graph, in which case the geodesic distance becomes the graph distance
in the dual graph and the sum is over triangles. For this thesis we only performed two-point
function measurements on the vertex graph.

Using the same discretization, the normalized two-point function (7.3) becomes

G̃
ϕ1ϕ2

T (r) =
G

ϕ1ϕ2

T (r)

G11
T (r)

=

∑
p,qϕ1(p)ϕ2(q) δdT (p,q), r∑

p,q δd(p,q), r
. (7.20)

Eq. (7.7) becomes

∗G̃ϕ1ϕ2

T (r) =
1

Vol T

∑
p∈T

1

VolSp(r)

∑
q∈Sp(r)

ϕ1(p)ϕ2(q) δd(p,q), r, (7.21)

where the geodesic sphere is given by the set Sp(r) = {q ∈ T | d(p, q) = r}, and the local volume
element on the sphere is also 1, such that VolSx(r) is the number of vertices in the sphere.

Finally, the connected two-point functions (7.9) and (7.15) become

Gϕ1ϕ2

1,T (r) =
∑
p,q

(
ϕ1(p) − ϕ1

)(
ϕ2(q) − ϕ2

)
δd(p,q), r , (7.22)

and
Gϕ1ϕ2

2,T (r) =
∑
p,q

(
ϕ1(p) − G̃

ϕ11
T (r)

)(
ϕ2(q) − G̃

ϕ11
T (r)

)
δd(p,q), r . (7.23)

14Note that we also use T to denote the set of vertices. It should be clear from context if the triangulation or its vertices
are meant.
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The manifold average ϕ is given by

ϕ :=
1

Vol T

∑
p∈T

ϕ(p),

in parallel to the continuum.

7.1.4 Point-pair sampling

Now that we have discrete definitions for the two-point functions, we can in principle measure
them on the triangulations obtained from the 2D CDT Monte Carlo simulation. However, if the
field observable ϕ of interest is computationally expensive to compute – like is the case for average
sphere distance – it may be useful to approximate the point-pair sum by a sampling. This is analo-
gous to approximating the manifold average by taking the sample average of a limited number of
points. For sampling single points, one simply defines uniform sampling to be the sampling such
that the selection probability of a given point is proportional to the local volume element, as this
will give the same result as the manifold average for large samples. However, for sampling point
pairs it is not immediately evident what uniform sampling means.

Coming from the delta-restricted double sum of (7.19) it seems natural for a given triangulation
to consider the set of all pairs of points separated by distance r

ΠT (r) :=
{
(p, q) | p, q ∈ T, dT (p, q) = r

}
, (7.24)

where it is important to note that (p, q) is an ordered pair. This is chosen, since (7.19) also sums
over ordered pairs, but since both orderings appear once in the sum the total is still symmetric.
Note that in our discretization the number of elements15 in the set

∣∣ΠT (r)
∣∣ = G11

T (r) = Vol T VolS(r) and
∣∣∣∣
⋃

r⩾0

ΠT (r)

∣∣∣∣ =
∣∣T
∣∣2 = Vol(T)2.

We can uniformly sample from ΠT (r) by selecting each ordered pair with equal probability, i.e.
with sampling probability

P0
T (p, q; r) =

1∣∣ΠT (r)
∣∣ =

1

Vol T VolS(r)
, such that

∑
(p,q)

P0
T (p, q; r) = 1, (7.25)

where (p, q) ∈ ΠT (r). The expectation value of ϕ1(p)ϕ2(q) under this sampling probability P0 is
then found to be

EP0

[
ϕ1ϕ2(r)

]
:=

∑
(p,q)∈ΠT (r)

P0(p, q; r)ϕ1(p)ϕ2(q)

=
1∣∣ΠT (r)
∣∣
∑
(p,q)

ϕ1(p)ϕ2(q)

=
1

G11
T (r)

∑
p,q

ϕ1(p)ϕ2(q) δdT (p,q), r = G̃
ϕ1ϕ2

T (r). (7.26)

We find that this sampling P0 reproduces the integrated two-point function in the standard nor-
malization form (7.20).

15We use |. . .| to denote the cardinality or number of elements in a set.
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However, numerically realizing this uniform P0 sampling is computationally expensive. We
could identify ΠT (r) for all required r, and then sample uniformly from this list, as per the def-
inition of the sampling. This identification of all point pairs is computationally expensive as it
requires Vol T breadth-first searches up to the maximum required r. This is especially inefficient if
only a small sample is necessary. In this case, we could also use rejection sampling. This means we
sample both points p and q uniformly from T and reject them if d(p, q) ̸= r. In general, this has
a small acceptance rate of VolS(r)/Vol T , and requires a breadth-first search for each (p, q) pair to
check their separation distance.

An alternative sampling of point pairs is to first sample one of the points and then sample the
second point from the sphere around the first, more accurately:

1. Uniformly sample a first point p from T ;

2. Identify the geodesic sphere Sp(r);

3. Uniformly sample a second point q from Sp(r).

This sampling only requires a single breadth-first search for every point pair and has no rejections,
making it a lot less computationally expensive than the two previously suggested methods. It
seems that in previous papers [26, 27] this sampling is used instead of the uniform sampling, al-
though we do not know this as the specific computational method is not explicitly stated. However,
this method does not sample uniformly from ΠT (r), but has the sampling probability

P ′
T (p, q; r) =

1∣∣T
∣∣ ∣∣Sp(r)

∣∣ =
1

Vol T VolSp(r)
, such that

∑
(p,q)

P ′
T (p, q; r) = 1, (7.27)

where (p, q) ∈ ΠT (r); hence P ′ ̸= P0. Important to note is that the sampling P ′
T (p, q; r) is now

asymmetric in p and q, stemming from the fact that we consider the point pairs to be ordered. Using
the sampling procedure P ′, the expectation value of ϕ1ϕ2 becomes

EP ′
[
ϕ1ϕ2(r)

]
:=

∑
(p,q)

P ′(p, q; r)ϕ1(p)ϕ2(q)

=
1

|T |

∑
(p,q)

1∣∣Sp(r)
∣∣ ϕ1(p)ϕ2(q)

=
1

Vol T

∑
p

1

VolSp(r)

∑
q

ϕ1(p)ϕ2(q) =
∗G̃ϕ1ϕ2

T (r). (7.28)

We see that sampling in this way reproduces the integrated two-point function with an alternative
normalization (7.21). Thus, these different sampling methods are in general not equivalent as they
estimate two-point functions with different normalizations, which themselves are non-equivalent
as discussed in section 7.1.1.

Nevertheless, if one desires the standard normalization (7.20) but prefers sampling with P ′,
one can still obtain this by weighting the samples. That is, we can compute a weighted expectation
value instead of (7.28) to obtain the standard normalization, namely

EP ′
[
(VolS(r)ϕ1)ϕ2(r)

]

EP ′
[
VolS(r)

] :=

∑
(p,q)P ′(p, q; r) VolSp(r)ϕ1(p)ϕ2(q)∑

(p,q)P ′(p, q; r) VolSp(r)

=

∑
(p,q)ϕ1(p)ϕ2(q)∑

(p,q) 1

=
1

G11
T (r)

∑
p,q

ϕ1(p)ϕ2(q) δdT (p,q),r = G̃
ϕ1ϕ2

T (r), (7.29)
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where the VolS(r) is with respect to the first sampled point. For the construction of the sampling
the sphere Sp(r) has to be determined in any case, so determining VolS(r) has no additional
computational cost.

To check the relation between the different samplings, we have measured the ensemble average
of the two-point function for the vertex degree using different methods for 2D CDT. We have
performed the full sum over all point pairs, directly following (7.20), and we have estimated the
sum using the two different samplings methods (7.26), (7.28). The results of all these measurements
are displayed in Fig. 7.4, where we also show the result of the weighted expectation value of the P ′

sampling (7.29). From the results it is evident that the uniform sampling (7.26) and the weighted
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Figure 7.4: Comparison of different sampling methods and the full sum for the two-point function of
vertex degree c: ϕ1 = ϕ2 = c. Results from ensemble averages of measurements of triangulations with
N2 = 200k and τ = 179. Full sum directly computes (7.20), the sampled results use their respective
samplings, and Weighted estimates (7.29). It may not be completely evident from the figure, but all
curves except Sampled P ′ lie on top of one another. The error bars give 95% confidence intervals.

alternative sampling (7.29) indeed yield the same result within statistical error as performing the
full sum (7.20) as expected. We also see that the alternative sampling (7.28) in itself produces a
different result, which corresponds to the alternative normalization (7.21).

7.2 Quantum two-point functions

In the previous section we have presented several diffeomorphism-invariant definitions of a two-
point function. The two-point functions are valid observables, which we can measure in our
quantum theory of causal dynamical triangulation. So we can define two-point functions of our
quantum theory as ensemble averages of the two-point function observables we defined in the
previous section. However, there are different ways in which the ensemble average can be applied,
which is what we will discuss in this section.

For this thesis we consider the constant-volume16 ensemble MV – this is discussed for the
discrete theory in section 3.2. We define the (unnormalized) two-point function for quantum
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gravity as

G
ϕ1ϕ2

V (r) =
〈
Gϕ1ϕ2

g (r)
〉
V
=

1

ZV

∫
MV

D[g]Gϕ1ϕ2
g (r), (7.30)

where the subscript V denotes that the ensemble average is taken over the constant-volume en-
semble, and ZV is the partition function of this ensemble. We only consider ensemble averages
over the constant-volume ensemble in the rest of this chapter, so we drop the subscript V in the
following expressions to avoid notational clutter. We have two unique definitions of the normal-
ized two-point function. The most straightforward one is the ensemble average of the normalized
two-point function of a single geometry G̃

ϕ1ϕ2
g ,

G̃
ϕ1ϕ2

V (r) =
〈
G̃ϕ1ϕ2

g (r)
〉
=

1

ZV

∫
MV

D[g]
G

ϕ1ϕ2
g (r)

G11
g (r)

, (7.31)

which is the normalization that has been used in the previously shown figures. However, one
might alternatively consider

′G̃ϕ1ϕ2

V (r) =

〈
G

ϕ1ϕ2
g (r)

〉

〈
G11

g (r)
〉 =

∫
MV

D[g]Gϕ1ϕ2
g (r)∫

MV

D[g]G11
g (r)

. (7.32)

These definitions are not identical as G11
g (r) = VolMVolS(r) = V VolS(r), and VolS(r) is not

constant as a function of g.
The difference between these definitions depends on the correlation between G

ϕ1ϕ2
g (r) and

VolS(r) as a function of g. In 2D CDT we observe (see Fig. C.1) that σVolS(r), the deviation of
VolSp(r), given by

σ2
VolS(r) :=

〈
VolSp(r)

2
〉
N2

−
〈

VolS(r)
〉2
N2

, (7.33)

is independent of the volume N2 for r smaller than the effective linear size of the triangulation. We
assume interchangeability between the manifold and ensemble average, in the sense that for in-
creasing volume the ensemble becomes dominated by triangulations that have VolS(r) =

〈
VolSr

〉
.

In this case, σVolS(r), the deviation of the manifold average of the sphere volume VolS(r), can be
expected to decrease with increasing volume V (which is what we observe (C.2)). In the infinite-
volume limit we are interested in, the deviation of VolS(r) is expected to go to zero, and the
different ensemble averages (7.31) and (7.32) will be equivalent for r smaller than the effective
linear size. Moreover, in measurements of the normalized two-point function G̃cc

N2
(r) for vertex

degree c and G̃d̄d̄
N2

(r) for the average sphere distance d̄ in 2D CDT and EDT, we find that the differ-
ences between the normalizations (7.31) and (7.32) are smaller than our statistical accuracy. Other
authors have noted [27] that for their measurements of the Regge curvature two-point function
in 4D EDT the difference is also negligible, using a similar argument. We conclude that for the
two-point function we measure for this thesis there is no significant difference between (7.31) and
(7.32) for r smaller than the linear size of the system. Since this is what we are interested in, we
will not differentiate between these forms of normalization, and use (7.31) for the rest of this thesis.

Next, we consider the non-uniqueness of the connected (unnormalized) two-point functions.
The most straightforward definitions for the connected two-point function for quantum gravity are
the ensemble averages of (7.9) and (7.15), giving

Gϕ1ϕ2

1,V (r) =
〈
Gϕ1ϕ2

1,g (r)
〉

(7.34)

16We denote the constant volume in continuum by V and in the discrete 2D CDT theory with the two-volume N2.
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and
Gϕ1ϕ2

2,V (r) =
〈
Gϕ1ϕ2

2,g (r)
〉
. (7.35)

Recall that these two different definitions compute the two-point function of the deviation from dif-
ferent means. The connected two-point function Gϕ1ϕ2

1,V uses the manifold average ϕ as the mean,

and Gϕ1ϕ2

2,V uses the normalized 1-ϕ two-point function ϕ̂(r) as the mean. In the full quantum grav-
ity setting, we can also consider taking an ensemble-averaged quantity as the mean, specifically〈
ϕ
〉

and
〈
ϕ̂(r)

〉
. Using these ensemble-averaged means, the connected (unnormalized) two-point

functions for quantum gravity can be defined as17

Gϕ1ϕ2

q1,V (r) =

〈∫
dnx

√
g(x)

∫
Sx(r)
dn−1y

√
h(y)

(
ϕ1(x) −

〈
ϕ1

〉)(
ϕ2(y) −

〈
ϕ2

〉)〉
, (7.36)

and

Gϕ1ϕ2

q2,V (r) =

〈∫
dnx

√
g(x)

∫
Sx(r)
dn−1y

√
h(y)

(
ϕ1(x) −

〈
G̃

ϕ11
1,g (r)

〉)(
ϕ2(y) −

〈
G̃

1ϕ2

1,g (r)
〉)〉

. (7.37)

These definitions of the connected two-point function can be interpreted as correlations of quantum
fluctuations, since they are two-point functions of the deviation from a quantum average. Writing
out these definitions of the connected two-point functions, we obtain

G̃ϕ1ϕ2

1,V (r) =
〈
G̃ϕ1ϕ2

g (r)
〉
−
〈
ϕ̂1(r)ϕ2

〉
−
〈
ϕ1ϕ̂2(r)

〉
+
〈
ϕ1ϕ2

〉
, (7.38)

G̃ϕ1ϕ2

q1,V (r) =
〈
G̃ϕ1ϕ2

g (r)
〉
−
〈
ϕ̂1(r)

〉 〈
ϕ2

〉
−
〈
ϕ1

〉 〈
ϕ̂2(r)

〉
+
〈
ϕ1

〉 〈
ϕ2

〉
, (7.39)

and

G̃ϕ1ϕ2

2,V (r) =
〈
G̃ϕ1ϕ2

g (r)
〉
−
〈
ϕ̂1(r) ϕ̂2(r)

〉
, (7.40)

G̃ϕ1ϕ2

q2,V (r) =
〈
G̃ϕ1ϕ2

g (r)
〉
−
〈
ϕ̂1(r)

〉〈
ϕ̂2(r)

〉
. (7.41)

Hence, we find that the difference between using the ensemble average and manifold average as
reference is given by the correlation of the different combinations of the averaged quantities ϕ and
ϕ̂(r). These correlations are bounded18 by the variance of the observables, for example,

(〈
ϕ1 ϕ2

〉
−
〈
ϕ1

〉 〈
ϕ2

〉)2
⩽
(〈

ϕ1
2
〉
−
〈
ϕ1

〉2)(〈
ϕ2

2
〉
−
〈
ϕ2

〉2)
:= σ2

ϕ1
σ2
ϕ2

. (7.42)

This implies the upper bounds on the differences between the connected two-point functions,
∣∣∣G̃ϕ1ϕ2

q1,V (r) − G̃ϕ1ϕ2

1,V (r)
∣∣∣ ⩽ σ

ϕ̂1(r)
σϕ2

+ σϕ1
σ
ϕ̂2(r)

+ σϕ1
σϕ2

(7.43)
∣∣∣G̃ϕ1ϕ2

q2,V (r) − G̃ϕ1ϕ2

2,V (r)
∣∣∣ ⩽ σ

ϕ̂1(r)
σ
ϕ̂2(r)

. (7.44)

These differences only contain deviations of manifold-averaged quantities like σϕ1
. Like we argued

for σVolS(r), we expect σϕ to go to 0 in the infinite-volume limit. This is because the manifold
average is taken over an increasingly larger volume, causing the deviation of the manifold average
to go down. Here we again need to assume that for increasing volume the manifold average of
almost all triangulations approaches the ensemble average. Also, the deviation will not vanish if

17Note that we use a subscript q1 and q2 to denote the connected two-point functions with ensemble-averaged means.
18By means of the Cauchy-Schwarz inequality.
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the quantity ϕ grows too quickly with increasing volume, but this does not appear to be the case
for the vertex degree c and average sphere distance d̄(δ) we consider in this thesis. Thus, for 2D
CDT and the quantities we consider, we expect the difference between the different definitions for
the connected two-point functions (7.34) and (7.35), and between (7.36) and (7.37) to be negligible,
if the volume N2 is large enough and finite-size effects are negligible. Moreover, test measurements
of the connected two-point functions of the vertex degree c and average sphere distance d̄(δ) in 2D
CDT showed no differences within our statistical accuracy.

In conclusion, interchanging the manifold averaging and ensemble averaging in a constant
volume does not seem to make a significant difference to the connected two-point functions, at
least for the vertex degree c and average sphere distance d̄. It seems reasonable that for large
enough system sizes the atypical parts of manifolds are ‘washed out’ in the manifold averaging,
such that the deviations from the ensemble average vanish. We will not differentiate between the
definitions of the connected two-point functions with respect to the two different means, and will
only work with the connected two-point functions (7.36) and (7.37) that are defined with respect
to the ensemble-averaged means. However, it would be interesting to investigate the differences
further and investigate our assumption on the interchangeability of the manifold and ensemble
average in greater detail.
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8. QRC Correlations

Now that we have definitions for two-point functions in quantum gravity we can try and mea-
sure them in 2D CDT for the quantum Ricci curvature (QRC) introduced in chapter 5. For

the two-point functions, we will use the normalization as defined by (7.31). We consider both
definitions (7.36) and (7.37) of the connected two-point function. We make use of the uniform sam-
pling as given by the sampling probability (7.25), estimating the point pair sums of the two-point
functions by (7.26). We will estimate the fixed-volume ensemble average (3.4) using the Markov
chain Monte Carlo methods as discussed in section 3.3.

8.1 Average sphere distance as curvature

To measure curvature two-point functions we will analyse the two-point functions of the average
sphere distance, or more accurately the curvature profile d̄(δ)/δ. In order to compute these two-
point functions we need to associate an ASD value to every point of the triangulation. To accurately
represent the coarse-graining regions of the triangulation, we want this association to be a one-
to-one map, i.e. each point should be mapped to a unique coarse-graining region. We will only
consider ASD for ϵ = 0, i.e. the ASD of two fully overlapping spheres. In this case, we choose
the one-to-one mapping of the coarse-graining region Sp(δ) with the origin point p. We use the
field quantity: p 7→ dp(δ)/δ, for some fixed δ. If one is interested in measuring curvature two-
point functions with directional information one can consider ASD for ϵ = δ. However, making
an association between the coarse-graining region given by the two δ-separated spheres is more
challenging, the details of which are described in section B.4.

As discussed in section 5, the average sphere distance is related to the quantum Ricci scalar
K(p; δ) according to (5.5),

d̄p(δ)
/
δ = c ′q

(
1− K(p; δ)

)
,

where c ′q is a prefactor, which is known to be point-independent on a smooth Riemannian mani-
fold. Assuming c ′q is constant in 2D CDT one can interpret the two-point functions1 G̃d̄d̄

N2
(r)/δ2 of

d̄p(δ)/δ as two-point functions of K(p; δ), as they are related by

G̃d̄d̄
N2

(r)

δ2
=

〈
1

Vol T VolS(r)

∑
p∈T

∑
q∈T

d̄p(δ)

δ

d̄q(δ)

δ
δd(p,q),r

〉

N2

=

〈
c ′2q

Vol T VolS(r)

∑
p∈T

∑
q∈T

(1− K(p; δ))(1− K(q; δ)) δd(p,q),r

〉

N2

= c ′2q
(
1− 2G̃1K

N2
(r) + G̃KK

N2
(r)
)
, (8.1)

and for the connected two-point functions this becomes

G̃d̄d̄
N2

(r)

δ2
= c ′2q G̃KK

N2
(r). (8.2)

Assuming c ′q is constant we can interpret the two-point functions of ASD as scaled two-point
functions of QRC. However, note that in 2D CDT c ′q can be point-dependent because of the non-
uniform nature of the lattice. It is non-trivial to determine c ′q for a given dp(δ)/δ. So we are not

1To avoid notational clutter we will denote the two-point functions of d̄p(δ)/δ by the quotient Gd̄d̄(r)/δ2, which is
algebraically equivalent as δ is constant.
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able to extract K(p; δ) for each d̄p(δ) measurement separately. Thus, we will simply present the
two-point functions of ASD as they are. These are strongly related to the two-point functions of
QRC, but keep in mind that they cannot directly be interpreted as the two-point functions of QRC,
because they may be mixed with the two-point functions of c ′q.

8.2 Results

First, we measure the normalized two-point function G̃d̄d̄
N2

(r) (the discretized version of (7.31))
of the curvature profile d̄p(δ)/δ with fully overlapping spheres (ϵ = 0) for 2D CDT. We have
performed these measurements at fixed volumes N2 = 100k, 200k, and 300k and for fixed coarse-
graining scales δ up to 18. The ensemble average is estimated using 150 configurations sampled
using the Markov chain Monte Carlo simulation. In each triangulation, the two-point function is
estimated using 5000 uniform point-pair samples (7.26). All statistical error bars presented in the
following figures are 95%-confidence intervals based on the sampling2. The resulting normalized
two-point function G̃d̄d̄

N2
(r)/δ2 is shown on the left in Fig. 8.1. On the right of the same Fig. 8.1
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Figure 8.1: Left: the normalized two-point function G̃d̄d̄
N2

(r) for the average sphere distance d̄(δ)/δ

(7.31). Right: the r-dependent mean of the average sphere distance

〈
^̄d(δ;r)

〉

δ
, i.e. G̃1d̄

N2
(r)/δ, together

with the standard triangulation average ⟨d̄⟩
δ

. Both are measured for δ ∈ [8, 18] for CDT at fixed volume
N2 = 300k and τ = 219.

we show the ensemble average of the r-dependent weighted average, i.e. the (local-volume, ASD)

two-point function G̃1d̄
N2

(r)/δ =
〈
^̄d(δ; r)

〉
(7.13). Based on the results of G̃1d̄

N2
(r)/δ we can see that

for ASD we find that ^̄d(δ; r) ̸= d̄(δ), reflecting the irregular geometries of CDT. It is also clear

that ^̄d(δ; r) is considerably larger than d̄ around r = δ, indicating that spheres with larger volume
VolSp(r) have larger d̄(Sp(r), Sp(r)). Finally, the shape of G̃d̄d̄

N2
(r)/δ2 can be seen to be very similar

to G̃1d̄
N2

(r)/δ. In fact,
(
G̃1d̄

N2
(r)/δ

)2
is almost identical to G̃d̄d̄

N2
(r)/δ2, reflecting the fact that the

2Note that the different samples in each triangulation are not independent, so the error is only estimated based on the
average of each triangulation, considering each triangulation to be independently sampled. This has been verified to be
the same as computing the error using a batched bootstrapping method to account for any statistical correlation.
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connected two-point function G̃d̄d̄
q2,N2

(r)/δ2 = 0 for most r, as we will show in a moment.
To make further interpretations of curvature correlations we will look at the connected corre-

lators. In Fig. 8.2 we show the result of the normalized connected two-point function G̃d̄d̄
q1,N2

(r)

(that is the normalized and discretized version of (7.36)) of the ASD d̄. On the right the same
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Figure 8.2: Left: normalized connected two-point function G̃d̄d̄
q1,N2

(r) for average sphere distance d̄(δ)
using the subtraction prescription (7.36). Measured in 2D CDT with δ ∈ [8, 18] with N2 = 300k and
τ = 219. Right: the same connected two-point function but rescaled like G̃d̄d̄

q1,N2
(r)/G̃d̄d̄

q1,N2
(0) against

the rescaled correlation distance r/δ. This allows us to better compare the two-point correlation for
different δ.

normalized connected two-point function is displayed, but it is rescaled with G̃d̄d̄
1,N2

(r = 0)/δ2,
which is precisely the variance of d̄/δ over the triangulation. Additionally, the correlation distance
r is rescaled with the coarse-graining scale δ, giving us an “additionally normalized” correlation
function. This is done, such that we can interpret the shape without needing to account for the δ-
dependence. From this result on the right of Fig. 8.2 we can clearly see that this rescaling removes
all δ-dependence and perfectly overlaps the curves for different δ. From this we see that for small r
the two-point function starts off positive, which makes sense as in this case the coarse-graining re-
gions used to compute the ASD have a lot of overlap, causing the resulting ASDs to be (positively)
correlated. If we are interested in physical correlations that are still present in the continuum limit
we should only consider correlation distances r≫ δ. Indeed, for r > 2δ where the coarse-graining
regions given by geodesic spheres of radius δ no longer overlap, we see that the correlation is 0.
This is precisely what we would expect for 2D quantum gravity, as a non-vanishing correlation
would have an emergent physical length-scale associated with it, and we know that classically
there are no propagating degrees of freedom. There is only a single length scale, which in our
model is already fixed by the global size of the triangulation. So we expect no additional length
scale to emerge. This is indeed what we see, the only length scale being δ which is put in by con-
struction. Note that in the region around r = δ a negative correlation appears, which corresponds
to the region where the spheres half overlap. We have been unable to give an explanation for this
feature, which we would like to understand. However, as discussed this region is irrelevant from
a continuum perspective, where we have r≫ δ, so for this purpose it suffices to say this is simply
a discretization feature of the coarse-graining observable. Furthermore, notice the deviation from
0 appearing for r > 120, which is when finite-size effects start to appear. We are interested in “lo-
cal” curvature correlations, in the sense that we want to consider correlation distances 2r ≪ deff,
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where deff is the effective diameter of the triangulation. For the analysis of topological effects on
sphere volumes (see section 6.2) we used a lower bound of around rmax ≈ 60 for N2 = 300k,
which indicates that deff ≈ 120. To be able to interpret the two-point function as reflecting the
“local” geometry we should look no further than rmax = 60. Thus, r > 120 is definitely subject to
global topological effects. Note that we only present the results of N2 = 300k here; for the smaller
volumes the same results are obtained, except for the finite-size effects starting for smaller r as
expected.

Finally, we will consider the difference between the two different connected two-point functions
(7.36) and (7.37). Specifically, we compare the normalized connected two-point functions G̃d̄d̄

q1,N2
(r)

and G̃d̄d̄
q2,N2

(r), the results of which are shown in Fig. 8.3 for δ = 15 (the result is very similar for
other δ). From this result we see that in the region of interest (r ∈ (30, 110)) both correlators are 0
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Figure 8.3: Comparison between the different definitions G̃d̄d̄
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(r)/δ2 and G̃d̄d̄
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(r)/δ2 of the con-
nected two-point functions (7.22) and (7.23) for the curvature profile or normalized average sphere
distance d̄(δ)/δ for δ = 15.

as expected. The only differences of G̃2 compared to G̃1 are a slightly smaller negative correlation
around r = δ = 15, and even less finite-size effects for r > 110. Based on these results in 2D CDT
where the correlation is 0 we cannot meaningfully distinguish between the two definitions of the
connected two-point function (7.36) and (7.37), and we cannot favour one or the other.

To gain more insight in curvature two-point functions it would be interesting to analyse them
in a model where there are propagating degrees of freedom and where we might expect non-
trivial correlations to emerge, like the full theory of 4D CDT. This may give one a more “fine-
grained” understanding of the behaviour of curvature in quantum gravity, to get a better idea
of the geometry of the quantum spacetimes. And it may allow one to gain more insight in the
differences between the different definitions of the connected two-point function.

Finally, we note that additional research is necessary to understand how strongly the correla-
tions of the curvature profile d̄(δ)/δ are mixed with the correlation of the prefactor c ′q, as discussed
in section 8.1. In other words, we do not yet understand how different the correlation of the quan-
tum Ricci curvature (or scalar in our case) K(p; δ) is from the correlation of the curvature profile
d̄p(δ)/δ. There is ongoing research [28] in defining alternative definitions of scalar curvature in a
quantum gravity settings, which aim to avoid having to introduce an unknown prefactor like c ′q.
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If such a definition of scalar curvature can successfully be found, this could provide a helpful tool
in understanding the impact of the c ′q correlations. However, at this stage we do not know if this
can be successfully done.
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9. Conclusion
In this thesis we presented a numerical investigation of the behaviour of two-point functions in
two-dimensional causal dynamical triangulations (2D CDT). To be able to perform numerical mea-
surements we developed a numerical model based on Markov chain Monte Carlo methods to sim-
ulate 2D CDT. We should note that at the time of performing our measurements, we incorrectly
implemented the simplicial manifold condition (see chapter 2). Our implementation allowed all
spatial slices with length l ⩾ 1, which violates the simplicial manifold condition for l ⩽ 2. How-
ever, for the sizes of triangulations we used in our measurements the probability of creating a
triangulation with short spatial slices that violates the simplicial manifold condition is close to 0.
We conclude that the effect that the incorrect implemention of the simplicial manifold condition
has on our results is negligible.

We measured the local Hausdorff dimension to be dH = 2.23± 0.01, which is significantly dif-
ferent from the theoretically expected dH = 2. We argued that the method used, which is based on
the small-radius behaviour of the geodesic sphere volume, is not well suited for the estimation of
the Hausdorff dimension. However, we have not performed other measurements of the Hausdorff
dimension as this is not the primary focus of this thesis. Additionally, we measured the spectral
dimension to be ds = 2.013± 0.007, which is found to be consistent with the theoretically expected
ds = 2 and other numerical results.

In quantum gravity, the observables that are often considered are manifold averages of local
field quantities, because observables need to be diffeomorphism-invariant. Two-point functions
give us a way to get a more “fine-grained” look at the geometry of the dynamical triangulations,
by expressing how the relation between two field quantities changes over distance. We discuss
the several ambiguities in defining two-point functions. There are multiple ways to normalize the
two-point function and multiple possible definitions for the connected two-point function. We also
argued that one should be careful when estimating the average over point pairs using a sampling
method, as the sample average of point pairs may not estimate what one expects.

Finally, we measured the two-point functions of the average sphere distance in 2D CDT. These
can be interpreted as the two-point functions of the quantum Ricci curvature, with some caveats
(see chapter 8). From the results of the connected two-point functions we conclude that there is
no correlation between curvatures in 2D CDT, which aligns with our expectations of 2D grav-
ity. For future research it would be interesting to further investigate the two-point functions of
the quantum Ricci curvature in full 4D CDT, where we may expect to see non-trivial curvature
correlations.

Acknowledgments

Firstly, I would like to thank my supervisor, Renate Loll, for the many long interesting discussions
we have had. Her interest in my project and supervision during it were very motivating and
greatly appreciated, and her thorough reading of my thesis was very helpful in finalizing it. I also
want to thank Thijs Niestadt, Agustín Silva and Tom Gerstel for being great to work with and
for discussing many aspects of my project with me. Finally, I would like to thank Timothy Budd
for sparking my interest in dynamical triangulations with his wonderful course on Monte Carlo
techniques.



Curvature Correlations in Quantum Gravity 57

A. Numerical implementation

For this thesis I have implemented a numerical model from scratch in the Rust1 programming
language. In doing so I came across a lot of difficulties, which required some thought to be
implemented effectively. Some of the choices I made are discussed in this thesis, but most are not
relevant to the presented research and thus left out. However, I think it can be very helpful to have
a good reference if one needs to implement a numerical dynamical triangulations model oneself.
So, I hope to provide such a reference implementation for 2D CDT.

My implementation is available via a GitLab repository at https://gitlab.com/dynam
ical-triangulation/dyntri as an open-source library/crate in the Rust programming
language. As a library it provides all the functionality to perform simulations and measurements,
which one can use in a binary application to set up the simulations in whatever configuration
one would like. An example implementation of such a binary application, which was used to
set up the measurements for this thesis is also provided along with this library. Moreover, I
tried my best to make the library well-documented and its source code clearly written, such that
my implementation is hopefully easy to understand to anyone who wants to see an example of
numerical 2D CDT. If one wants to read our implementation of some part of the numerical model
the easiest option is likely to use the documentation (as provided with the repository) to search
for the relevant functions and data structures.

Besides simulating 2D CDT and performing measurements on the triangulation, the library
also implements importing and exporting of graphs. This allows one to perform measurements
of all the quantities presented in this thesis, like average sphere distance and two-point functions
on any graph generated by external programs, for example, the vertex graphs of EDT. The library
also implements some embeddings for 2D CDT triangulations, which can be used to make visual-
izations, like the one presented on the title page and all other triangulation visualizations in this
thesis. Finally, just because I really enjoy looking at these visualizations, here is a bonus:

Figure A.1: A visualization of the average sphere distance on a single toroidal 2D CDT triangulation
using a Tutte embedding. The triangulation is folded out and repeated; features can be seen to repeat
around the edges of the image. Each triangle is coloured based on the average ASD d̄p(δ = 8) (ϵ = 0)
of their vertices. Blue corresponds to high d̄ and yellow to low d̄.

1See https://www.rust-lang.org/

https://gitlab.com/dynamical-triangulation/dyntri
https://gitlab.com/dynamical-triangulation/dyntri
https://www.rust-lang.org/
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B. Additional material
This chapter contains sections discussing topics relevant to the main text, but not crucial for the
main story. They are included here for the readers that are interested.

B.1 Average sphere distance derivation

We want to show that in a two-dimensional Riemannian manifold the small-δ expansion of the
average sphere distance (ASD) d̄x(δ) = d̄

(
Sx(δ), Sx(δ)

)
for the fully overlapping spheres Sx(δ) is

given by
d̄
(
Sx(δ), Sx(δ)

)

δ
=

4

π
−

R

9π
δ2 +O(δ3) ≈ 1.273− 0.0354R δ2 +O(δ3).

For this we follow the derivation Nilas Klitgaard presents in his PhD thesis [29] for ASD where
the spheres are separated with distance δ. In our case, where the spheres are fully overlapping,
the situation is a lot simpler.

This derivation is performed in Riemann normal coordinates (RNC) [30]. As an expansion
point for RNC we use x, the origin of the sphere Sx(δ), for which we wish to compute the average
sphere distance. With this choice of origin and in RNC, Sx(δ) looks like a regular sphere in
Euclidean space for sufficiently small δ. So, we can parameterize a point y on the sphere y ∈ Sx(δ)
with an angle ϕ like

y(ϕ) =
(
δ cosϕ, δ sinϕ

)
. (B.1)

The distance L(xi, xj) between two points xi and xj in RNC is given by [30]

L2xi,xj
= gab∆xaij∆x

b
ij −

1

3
Rabcdx

a
i x

b
j x

c
ix

d
j +O(δ5) (B.2)

where ∆xij = xj − xi, and gab and Rabcd are the metric and Riemann tensor at x in RNC. The
average sphere distance d̄ can then be determined by calculating

d̄(δ) =
1

VolSx(δ)
2

∫2π
0

∫2π
0

dϕ1

√
h(ϕ1)dϕ2

√
h(ϕ2) L

(
y(ϕ1), y(ϕ2)

)
, (B.3)

where h is the determinant of the induced metric on Sx(δ).
To determine a local expansion of hab, we consider the infinitesimal distance between two

points y(ϕ) and y(ϕ+ dϕ) on the sphere, and obtain

L2
(
y(ϕ), y(ϕ+ dϕ)

)
= δ2 dϕ2 −

1

3
R1212δ

4 +O(δ5) = hϕϕ +O(δ5). (B.4)

Note that in two-dimensions R = 2 R1212, where R is the Ricci scalar. We find that the measure
√
h

is given by
√
h =

√
hϕϕ = δ

√
1−

1

6
Rδ2 +O(δ4) = δ

(
1−

1

12
Rδ2

)
+O(δ5).

With this measure we can compute the sphere volume

VolSx(δ) =
∫2π
0

dϕ
√
h = 2πδ

(
1−

1

12
Rδ2

)
+O(δ5). (B.5)



Chapter B. Additional material 59

We obtain the integral (B.3) for d̄,

d̄(δ) =
1

4π2

∫2π
0

∫2π
0

dϕ1 dϕ2

√
2δ2(1− cos(ϕ1 − ϕ2)) −

1

6
Rδ4 sin(ϕ1 − ϕ2)

2 +O(δ3)

=
δ

4π2

∫2π
0

∫2π
0

dϕ1 dϕ2

(
√
2
√
1− cos(ϕ1 − ϕ2) −

R

12
√
2
δ2

sin(ϕ1 − ϕ2)
2

√
1− cos(ϕ1 − ϕ2)

)
+O(δ3)

=
δ

4π2

(
√
2 · 8
√
2π−

R

12
√
2

16
√
2π

3
δ2

)
+O(δ3)

= δ

(
4

π
−

1

9π
R δ2

)
+O(δ3). (B.6)

This concludes the derivation.

B.2 Hausdorff dimension

In section 4.2 we discuss the local Hausdorff dimension and define it to be

dH = 1+ lim
r→0

d log
(〈

VolS(r)
〉
V

)

d log r
, (B.7)

in a continuum setting. In a discrete setting we cannot take this limit r → 0, so instead we used a
power-law fitting procedure to extract dH from the average sphere volume

〈
VolS(r)

〉
, as discussed

in that section. However, we could take definition (B.7) and analyse it in the discrete setting of 2D
CDT directly without considering the limit. We define a “quasi-local” Hausdorff dimension dH(r)
for 2D CDT as

dH(r) =
d log

(〈
VolB(r)

〉
N

)

d log r
, (B.8)

where the ensemble average is taken over the fixed-volume ensemble with two-volume N2 = N.
Note that we now use the volume of the full geodesic ball B(r) instead of its boundary, the sphere
S(r). We do this because we used the discrete ball volume in our measurements, but the same
could be done for the sphere volume.

For our measurements we estimate the ensemble average using 1000 triangulations, where for
each one the manifold average is estimated using 100 samples. The results of these measurements
of dH(r) are presented in Fig. B.1. From the figure it seems clear that, after a region of discretization
artefacts to about r = 15, a plateau is formed at around dH = 2.24. This indicates that the start of
this plateau may be reasonably used as an estimate of the r→ 0 limit. Doing so gives us the same
estimate for the local Hausdorff dimension as presented in section 4.2. We can also consider dH(r)
for larger r, although then it does not necessarily reflect the local Hausdorff dimension any more,
and can contain curvature corrections. Zooming in on the plateau of dH(r) (see right of Fig. B.1)
we can see a very slow decrease in dH(r). This might indicate that dH(r) is significantly smaller
than 2.24 for very large r, but we clearly do not have the statistical accuracy to make conclusions
about this long-distance behaviour. It could also be possible that this slight decrease is a non-trivial
finite-size effect and that it will disappear in the infinite-volume limit.

B.3 Distance matrix ASD

For the measurements of many of the quantities we present in this thesis we need to be able to
measure geodesic distance on the triangulation, which for our measurements is taken to be the
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Figure B.1: “Quasi-local” Hausdorff dimension for several system sizes N2, where the right figure is
a zoomed-in version of the left. These figures also include the measurement results of the Hausdorff
dimension as measured on the cut-open triangulation (see chapter 6) in lower opacity. The error bars
show 95% confidence intervals.

link distance. This includes sphere volumes for the Hausdorff dimension, point pair sampling,
and average sphere distance. If many of these quantities need to be measured for a significant
number of the vertices of the triangulation, it may happen that one computes the distance between
vertices several times over. In this case it could be useful to precompute the distance between all
pairs of points in the triangulation and store them in a distance matrix. If one has such a distance
matrix, this also allows one to perform uniform sampling of point pairs as discussed in section
7.1.4. Moreover, the average sphere distance can be easily computed from the distance matrix by
making use of matrix multiplication, which can be done very efficiently on a computer. How this
works is what we present here for a general graph G, where one can think of this graph as the
vertex graph of a triangulation.

Given a finite graph G, let D be the distance matrix, such that

Dij = dG(i, j) (B.9)

is the geodesic or link distance of the graph between node i and j. Let S(r) be the binary distance-r
matrix, such that

Sij(r) =

{
1 if dG(i, j) = r,

0 otherwise.
(B.10)

Thus, S(r) acts like a mask of all elements of D that equal r, so we have that
∑

r r Sij(r) = Dij.
With these matrices we can compute the discrete average sphere distance d̄ij(δ) (5.9) as

d̄ij(δ) =

∑
k,l

Sik(δ)Dkl Slj(δ)∑
m

Sim(δ)
∑
n

Snj(δ)
=

(
S(δ)DS(δ)

)
ij(

S(δ) 1S(δ)
)
ij

, (B.11)

where 1 represents the matrix where each element is 1. Note that d̄ij(δ) gives the average sphere
distance d̄(Si(δ), Sj(δ)) regardless of the distance between i and j, specifically dG(i, j) = ϵ.

We see that it is possible to calculate the average sphere distance for all combinations of ϵ

and δ between all pairs of points by performing a double matrix multiplication. Note that the
size of the distance matrix is N0 × N0, where N0 is the number of nodes in the graph G. This
means the number of matrix elements can get very large for the triangulations we consider. In fact,
for a triangulation of N2 = 300k the distance matrix has 2.25 × 1010 elements. If we store each
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matrix element as a 16-bit integer, the resulting distance matrix has a size of 45GB, which is higher
than the computer memory we can easily access for our simulations. So if one wishes to use this
distance matrix approach, one likely needs to resort to storing the distance matrix on disk, as we
have done. Then, one can access the distance matrix data by reading one section at a time from
disk. Only being able to read one section at a time is no problem, as a matrix product can easily
be split up in a sum of matrix products of parts of the full matrix.

Consequently, if one wants to compute the average sphere distance for many or even all points
in the triangulation, it can be very effective to precompute the distance matrix and compute the
ASD from that. In addition, having this distance matrix allows one to perform other measurements
using the distance without the need to compute those distances separately.

B.4 ASD midpoint

In section 8.1 we discussed that in order to measure two-point functions we need to associate a
field value to each vertex p. If one wishes to use the average sphere distance d̄q,q ′(δ) with ϵ = δ as
a field, this association is non-trivial. The average sphere distance d̄q,q ′(δ) uses a coarse-graining
region as given by the two spheres Sq(δ) and Sq ′(δ). We need to choose a mapping of a point
p to a coarse-graining region, such that each p maps to a unique region, i.e. we need to find
a one-to-one map p 7→

(
Sq(p)(δ), Sq ′(p)(δ)

)
. A natural choice is to let p be the midpoint of the

geodesic connecting q to q ′, because this is the closest to the “centre” of the coarse-graining region.
However, this may not always be possible in a triangulation, as it can happen that a point is not
the midpoint of any geodesic. To see this, imagine we wish to measure the ASD in the spatial
direction, meaning we consider all δ-separated (q, q ′) pairs with time separation 0. Then there can
exist vertices like those in the configuration presented in Fig. B.2, which are not the midpoint of
any geodesic, because the paths along the dashed blue lines are always shorter. Instead, one can

Figure B.2: Example of vertices (in blue) that are not midpoints of any geodesic with separation
distance ⩾ 2 between maximally spacelike separated (∆t = 0) points. Note that spacelike edges are
marked red and timelike edges are marked blue.

choose to associate the point with the origin of either one of the spheres. Then we get the field,
defined by the map p 7→ d̄p,p ′(δ), where p ′ is a point at geodesic distance δ from p. Which p ′ is
chosen is determined by the direction condition one wishes to impose, for example, the maximally
spacelike separation we considered before. One could also choose a condition that allows for
multiple p ′ points, in which case one could average over of all possible points p ′.
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C. Additional figures
This section includes figures that support the main text, but would take up too much space when
included in the main text body.
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Figure C.1: Standard deviation of the sphere volume σVolS(r) for 2D CDT, given by σ2
VolS(r) =

〈
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〉
N2

−
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VolS(r)
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. The measurements are performed at several volumes N2 with ℸ =

τ2/N2 = 0.32 and show 95%-confidence intervals. This shows the standard deviation of the sphere
volume VolS(r) is independent of the total triangulation volume N2 for r smaller than the effective
linear size of the triangulation.
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standard deviation of the manifold/triangulation average of the sphere volume VolS(r) goes down
with the triangulation volume N2 for r smaller than the effective linear size of the triangulation.
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semiclassical limit of causal dynamical triangulations’, Nuclear Physics B 849, 144 (2011),
arXiv:1102.3929.

[8] B. Ruijl, ‘Locally causal dynamical triangulations’, Master’s thesis (Radboud University Ni-
jmegen, 2013).

[9] J. F. Monahan, ‘Markov chain Monte Carlo methods’, in Numerical methods of statistics, 2nd ed.,
Cambridge Series in Statistical and Probabilistic Mathematics (Cambridge University Press,
2011), pp. 375–402.

[10] J. Ambjørn, B. Durhuus and T. Jonsson, Quantum geometry: a statistical field theory approach,
Cambridge Monographs on Mathematical Physics (Cambridge University Press, 1997).

[11] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, ‘Equation
of state calculations by fast computing machines’, The Journal of Chemical Physics 21, 1087
(2004), eprint: https://pubs.aip.org/aip/jcp/article- pdf/21/6/1087/
8115285/1087\_1\_online.pdf.

[12] J. Ambjørn, K. N. Anagnostopoulos and R. Loll, ‘New perspective on matter coupling in 2d
quantum gravity’, Physical Review D 60 (1999), arXiv:hep-th/9904012.

[13] N. Klitgaard and R. Loll, ‘Quantizing quantum Ricci curvature’, Physical Review D 97, 10.
1103/physrevd.97.106017 (2018), arXiv:1802.10524.

[14] J. Ambjørn, K. Anagnostopoulos and R. Loll, ‘Crossing the c=1 barrier in 2d Lorentzian
quantum gravity’, Physical Review D 61 (2000), arXiv:hep-lat/9909129.

[15] J. Barkley and T. Budd, ‘Precision measurements of Hausdorff dimensions in two-dimensional
quantum gravity’, Classical and Quantum Gravity 36, 244001 (2019), arXiv:1908.09469.

[16] J. Ambjørn, J. Jurkiewicz and Y. Watabiki, ‘On the fractal structure of two-dimensional quan-
tum gravity’, Nuclear Physics B 454, 313 (1995), arXiv:hep-lat/9507014.

[17] R. Loll and B. Ruijl, ‘Locally causal dynamical triangulations in two dimensions’, Physical
Review D 92 (2015), arXiv:1507.04566.

[18] D. Vassilevich, ‘Heat kernel expansion: user’s manual’, Physics Reports 388, 279 (2003),
arXiv:hep-th/0306138 [hep-th].

https://arxiv.org/abs/hep-th/9805108
https://arxiv.org/abs/1712.08847
https://arxiv.org/abs/1905.08669
https://doi.org/10.1016/j.physrep.2012.03.007
https://doi.org/10.1016/j.physrep.2012.03.007
https://arxiv.org/abs/1203.3591
https://doi.org/10.1016/j.physletb.2009.06.027
https://doi.org/10.1016/j.physletb.2009.06.027
https://arxiv.org/abs/0812.4261
https://doi.org/10.1007/978-3-540-69427-4_2
https://doi.org/10.1007/978-3-540-69427-4_2
https://doi.org/10.1016/j.nuclphysb.2011.03.019
https://arxiv.org/abs/1102.3929
https://doi.org/10.1017/CBO9780511977176.015
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://pubs.aip.org/aip/jcp/article-pdf/21/6/1087/8115285/1087\_1\_online.pdf
https://pubs.aip.org/aip/jcp/article-pdf/21/6/1087/8115285/1087\_1\_online.pdf
https://arxiv.org/abs/hep-th/9904012
https://doi.org/10.1103/physrevd.97.106017
https://doi.org/10.1103/physrevd.97.106017
https://doi.org/10.1103/physrevd.97.106017
https://doi.org/10.1103/physrevd.97.106017
https://arxiv.org/abs/1802.10524
https://arxiv.org/abs/hep-lat/9909129
https://arxiv.org/abs/1908.09469
https://arxiv.org/abs/hep-lat/9507014
https://arxiv.org/abs/1507.04566
https://doi.org/10.1016/j.physrep.2003.09.002
https://arxiv.org/abs/hep-th/0306138


BIBLIOGRAPHY 65

[19] D. Benedetti and J. Henson, ‘Spectral geometry as a probe of quantum spacetime’, Physical
Review D 80, 10.1103/physrevd.80.124036 (2009), arXiv:0911.0401 [hep-th].

[20] B. Durhuus, T. Jonsson and J. F. Wheater, ‘On the spectral dimension of causal triangulations’,
Journal of Statistical Physics 139, 859 (2010), arXiv:0908.3643.

[21] Y. Ollivier, ‘Ricci curvature of Markov chains on metric spaces’, (2007), arXiv:math/0701886
[math.PR].

[22] J. Brunekreef and R. Loll, ‘Quantum flatness in two-dimensional quantum gravity’, Physical
Review D 104, 10.1103/physrevd.104.126024 (2021), arXiv:2110.11100.

[23] R. Loll, ‘Quantum curvature as key to the quantum universe’, 2023, arXiv:2306.13782
[gr-qc].

[24] J. Brunekreef and R. Loll, ‘Curvature profiles for quantum gravity’, Physical Review D 103,
10.1103/physrevd.103.026019 (2021), arXiv:2011.10168.

[25] J. Ambjørn, J. Jurkiewicz and P. Bialas, ‘Connected correlators in quantum gravity’, Journal
of High Energy Physics 1999, 005 (1999), arXiv:hep-lat/9812015.

[26] P. Bialas, ‘Correlations in fluctuating geometries’, Nuclear Physics B - Proceedings Supple-
ments 53, Lattice 96, 739 (1997), arXiv:hep-lat/9608029.

[27] B. V. de Bakker and J. Smit, ‘Two-point functions in 4D dynamical triangulation’, Nuclear
Physics B 454, 343 (1995), arXiv:hep-lat/9503004.

[28] A. Silva and J. van der Duin, in preparation.

[29] N. Klitgaard, ‘New curvatures for quantum gravity’, PhD thesis (Radboud University Ni-
jmegen, 15th Apr. 2022), eprint: https://www.ru.nl/highenergyphysics/theses/
phd-theses/.

[30] L. C. Brewin, ‘Riemann normal coordinates’, Department of Mathematics Preprint, Monash
University, Clayton, Vic. 3168. Also available online at https://users.monash.edu.au/
~leo/research/papers/files/lcb96-01.pdf, 1997.

https://doi.org/10.1103/physrevd.80.124036
https://doi.org/10.1103/physrevd.80.124036
https://doi.org/10.1103/physrevd.80.124036
https://arxiv.org/abs/0911.0401
https://arxiv.org/abs/0908.3643
https://arxiv.org/abs/math/0701886
https://arxiv.org/abs/math/0701886
https://doi.org/10.1103/physrevd.104.126024
https://doi.org/10.1103/physrevd.104.126024
https://doi.org/10.1103/physrevd.104.126024
https://arxiv.org/abs/2110.11100
https://arxiv.org/abs/2306.13782
https://arxiv.org/abs/2306.13782
https://doi.org/10.1103/physrevd.103.026019
https://doi.org/10.1103/physrevd.103.026019
https://doi.org/10.1103/physrevd.103.026019
https://arxiv.org/abs/2011.10168
https://arxiv.org/abs/hep-lat/9812015
https://arxiv.org/abs/hep-lat/9608029
https://arxiv.org/abs/hep-lat/9503004
https://www.ru.nl/highenergyphysics/theses/phd-theses/
https://www.ru.nl/highenergyphysics/theses/phd-theses/
https://users.monash.edu.au/~leo/research/papers/files/lcb96-01.pdf
https://users.monash.edu.au/~leo/research/papers/files/lcb96-01.pdf

	Introduction
	Causal Dynamical Triangulation
	Causal triangulations
	Discretized path integral

	Numerical Model
	Implementation
	Volume fixing
	Markov chain Monte Carlo
	Monte Carlo moves
	Ergodicity proof

	Model Verification
	Vertex degree distribution
	Hausdorff dimension
	Spectral dimension

	Quantum Ricci Curvature
	Discretization
	Implementation
	Results

	Topological effects
	Cut-open triangulation
	Sphere volumes
	Average sphere distance

	Two-point functions
	`Classical' two-point functions
	Quantum two-point functions

	QRC Correlations
	Average sphere distance as curvature
	Results

	Conclusion
	Numerical implementation
	Additional material
	Average sphere distance derivation
	Hausdorff dimension
	Distance matrix ASD
	ASD midpoint

	Additional figures

